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Abstract—This paper addresses the development of a new 
localization system based on a security laser presented on most 
AGVs for safety reasons. An enhanced artificial beacons 
detection algorithm is applied with a combination of a Kalman 
filter and an outliers rejection method in order to increase the 
robustness and precision of the system. This new robust 
approach allows to implement such system in current AGVs. 
Real results in industrial environment validate the proposed 
methodology. 

Keywords—AGV, mobile robotics, localization, artificial 
beacons, Kalman filter, outliers rejection, security laser 

I.  INTRODUCTION 

One of the most important requirement of an industrial 
mobile robot is a robust self-localization. Basically, it can be 
defined as the task of estimating the robot's pose in a map of 
the environment. This task has captured the attention of 
researches and developers of mobile robots over the last years. 
There are some solutions adopted that solves the localization 
problem but bring some disadvantages [1][2]. 

One of the common approaches is based on floor line 
followers (colored or magnetic). This solution is limited with 
the rigid path becoming difficult and expensive to change. 
Other solution is based on lasers and artificial landmarks 
placed on specific places. In some circumstances this solution 
requires a laser scanner and a robot with a minimum height, in 
order to avoid occlusions of the landmarks. There are also 
some mechanical problems that invalidate this approach: for 
example robots that transport structures on the top (as seen in 
Fig. 1). The robot must localize itself with landmarks near the 
floor. This robot only possesses a security laser on the lower 
position. This approach allows developing new small AGV that 
improves flexibility.  

This type of situation requires the improvement of the current 
systems (as actually exist) with new approaches that could be 
used in an industrial environment. On the other hand, one of 
the main security requirements of industrial mobile robots is 
the use of security lasers, preventing collisions with obstacles 
and humans. 

Based on the present disadvantages of current localization 
systems and having in mind the presence of the security lasers 
in most mobile robots, unlike the other systems this paper 
presents a solution that uses the security laser to perform the 
self-localization task in the environment based on a few 
landmark’s number. By this way, it is also possible to reduce 
the cost of the final robot. The developed algorithm searches 
the artificial landmarks and avoids undesired outliers. 

In our example it was used an S3000 Expert laser scanner 
from SICK. 

 
Fig. 1. Robot in the shop floor of an industrial environment. 

The system was developed in ROS [3], a well-known Robot 
Operating System that provides libraries and tools to help 
software developers create robot applications. The main topic 
of this work is the robustness of the algorithm to the outliers 
(other robots, people and objects) that can affect the 
localization. 
Unfortunately, the field of view from the laser is considerably 
reduced (when compared to a localization laser). The security 
laser scanner provides 190 degrees whilst a standard 
localization laser provides 360 degrees of vision. In this work 
a 180 degrees Field of View (FOV) was used. This drawback 
can be overcome with accurate and robust algorithms 
improvement as stated in next sections. 
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This paper is organized as follows: after the introduction 
section, section II addresses the state of the art where related 
work is described. Section III presents the algorithm whereas 
section IV addresses the practical results. Finally, section V 
rounds up with conclusions and points out some future work. 

 

II. RELATED WORK 

Over the last two decades researches have been working in  
mobile robot localization [7]. There are a huge variety of 
solutions based on several approaches. Unfortunately, 
commercial solutions do not include the complete localization 
system and many only work in well-known and controlled 
environments. Using lasers it is possible to apply algorithms 
that finds the match between the information from the laser and 
the map [4] [11]. But, the related localization systems should 
be based on indistinguishable beacons. With this criteria, there 
is the well-known Thrun et al. of book [5] entitled “EKF 
Localization with Unknown Correspondences” as an extended 
Kalman filter approach. 

The core of this localization algorithm is the identification of 
the beacons that are indistinguishable between them to find the 
correspondence position in the map. Several approaches exist 
on the literature, such as Thrun [5] that uses the “maximum 
likelihood data estimation” to compute for each iteration and 
for each beacon the probability density function. The desired 
solution is the one that maximizes that function. There are 
other approaches, like Ronzoni et al. [8] that reaches the global 
localization based on the distance of the reflectors. By this 
approach encoders odometry data is not used and global 
positioning is computed without previous information of robot 
localization. 

III. ALGORITHM 

A. Problem definition 

The main problem for the beacon based localization task 
can be defined as the estimation of the AGV pose: 

[ ]
T

v v vvX yx= θ  (1) 

Different coordinates are denoted in Fig. 2 where W is the 
world coordinates whereas R is the AGV coordinates. From the 
beacons map (MB) it is possible to gather the information about 
reflectors positions of cylinder form and indistinguishable 
between them: 

T

B B,1 B,numBM M M� �= � ��  (2) 

Where T

B,i B,iB,iM yx� �= � �  is the position of reflector i in W 

coordinates. 
From ZL observations (laser measures), where ZL,i 

corresponds to the polar coordinates (rL,i distance, �L,i angle) of 
the detected obstacle in the R coordinates, and cL,i is a Boolean 
related with the reflectivity of the target (a reflector presents 
high reflectivity): 

[ ]{ }T

L L,i L,i L,i L,iZ (k) Z (k) r (k) (k) ,C (k) :  i 1 numL� �= = φ ∈� �  (3) 

Based on the odometry information, it is also possible to 
estimate the position and orientation of the R coordinates (robot 
pose): 

[ ]odos odos

T

odosu(k) (k) (k) (k)x y= Δ Δ Δθ  (4) 

This is an input for the Kalman filter as further presented. 
The mapping task will not be addressed here.  

�
������

 
Fig. 2. AGV and world coordinates with beacon map. 
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Fig. 3. System architecture. 

B. Problem approach 

The problem of localization can be expressed as a block 
diagram as presented in Fig. 3. Each block presents inputs 
(red), outputs (blue) and parameters (green). The grey area 
addresses the sensor fusion algorithm known as the Extended 
Kalman Filter (EKF). 

Next subsection presents the EKF application to perform 
the localization task based on reflectors and then further 
subsections address the reflectors detection and filtering. 

C. Extended Kalman Filter 

The EKF is a well-known algorithm applied to sensor 
fusion in mobile robotics, in this case the distance and angles to 
the reflectors and odometry. It computes the statistical data 
related to the state estimation (pose) and also deals with the 
noise and errors modelling it as a Gaussian signal. Besides, 
industrial application usually require high precision solutions 
where Kalman filter fits better in opposition to other 
approaches such as particle filters [6].  

In order to apply an EKF, it is necessary to define the 
model: state transition f(.) and observation h(.). As it can be 
expressed through equation 5, f(.) models the evolution of the 
robot pose based on the last state and odometry u(k). Q(k) is the 
noise co-variance and depends on the encoders data. Odometry 
model was based on [10]. 
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Observation h(.) models the relative position of reflectors 
as a robot pose function. It is a Gaussian zero average affected 
noise with a co-variance R. In the presented work, R is constant 
that depends on the system. For further details see [9]. 

( )B,i
B,i v

B,i

r
h M , X (k) N(0, R)

� �
= +� �

φ� �
 (6) 

Having in mind the transition and observation model it is 
possible to apply the algorithm as an adaptation of “EKF 
Localization with Unknown Correspondences” presented in 
[9]. 

 
Algorithm 1. Extended Kalman Filter with reflector and outlier detector. 

�
LInputs : X(k | k), P(k | k), u(k), Z (k)

 
 Pose Prediction:  

1: � ( ) � ( )( )X k+1|k f X k|k ,u(k)=
 

2: ( ) � ( )( ) ( ) � ( )( )T
X XP k+1|k f X k|k ,u(k) *P k | k * f X k|k ,u(k) Q(k)= ∇ ∇ +

 
 Observation Prediction:  

3: B,ifor all beacons M  do  

3.1: 
  
� ( )( )B,i B,i

ˆZ (k) h M ,X k+1|k=
 

3.2: 
  

( )( ) ( ) ( )( )
T

i B,i B,i
ˆ ˆS (k) h M , X k+1|k * P k+1|k * h M , X k+1|k R� �= ∇ ∇ +� �

 endfor  

4: ( )B LZ (k) Reflector _ Detector Z (k)=  

5: �( )BB BC (k) Association _ Outliers _ Filter Z (k),Z (k),S(k)=  

 Update :  

6: � �X(k 1| k 1) X(k 1| k) e P(k 1| k 1) P(k 1| k)+ + = + + + = +  
7: b,ifor all detected beacons z  do  

7.1: 
  B,iif  C (k) != INVALID _ BEACON _ ID then

 

7.1.1:
    

( ) ( )( )B,i B,i

T 1

i B, j C j C (k)
ˆK (k) P k+1|k * h M , X k+1|k * S (k)

−

= =
� � � �= ∇ � �� �  

7.1.2:
    
� � �

B,iB, j C (k )i B,iX(k 1 | k 1) X(k 1 | k 1) K (k) * Z Z =� �+ + = + + + −� �  

7.1.3:
    

� ( )( )B,ii B, j CP(k 1| k 1) I K (k)* h M ,X k+1|k *P(k 1| k 1)=
� �+ + = − ∇ + +
� �  

   endif  
 endfor  

�Outputs : X(k 1| k 1),P(k 1| k 1)+ + + +  

Algorithm 1 describes the processing of the Kalman Filter. 
As input there is the actual pose X(k|k), its co-variance, 
odometry data u(k) and laser information ZL(k). As output the 
filter presents the pose estimation with its uncertainty 
characterized by the co-variance matrix P(k+1|k+1). The 
algorithm presents  the following steps: 

1: Prediction of the next pose based on odometry data; 
2: Estimation of co-variance matrix of the state error; 
3.1 and 3.2:Prediction  of observations and co-variance 

(through observation model); 
4: Pre-processing of laser data and reflectors 

detection/filtering (further presented in subsection D); 
5: Reflectors identification: to match detected reflectors and 

reflectors map (further presented in subsection E). 

7.1: Rejecting outliers; 
7.1.1: Kalman gain. CB,i(k); CB,i(k) is the index’s beacons 

map element  (MB,i) associated  to i detection (ZB,i); 
7.1.2: Kalman filter update ; 
7.1.3: New co-variance calculation; 

D. Reflector detection/filtering 

 
Fig. 4. Laser beams intercepting the beacon. 

The reflector detector module processes the acquired data 
from laser ZL detecting reflectors and measures its distances ZB 
related to the robot coordinates. ZB provides a set of polar 
coordinated represented by [ri, �i]

T. 
Laser provides distance and reflectivity information. 

Detector/Filter tasks can be defined as: 
• Splits ZL in clusters depending on reflectivity CL,i. 
• For each cluster: compute its polar coordinates as a 

central measure (r in equation 6).  
• Finally, a detector filter is applied to ignore outliers. 
The detector filter is based on the geometric relation of (10) 

that allows to model Mnum (the number of the beams). This 
filter is able to reject other objects than the real beacons 
reflectors. The first approach is to accept the objects with a 
constant size (length of the beacon). As the number of beams 
(Mnum) depends on the distance of the laser-object a function 
can be found and is presented in equation (7). 

radius

num
Res

B
2*arcsin

r
M (r) floor

� 	� 	

 �
 �

� 

 �=

 θ �

 �
� 


 (7) 

Where Bradius is the beacon radius (usually cylinders), r is 
the distance between laser and the beacon center and θRes is the 
angular resolution of the laser, as presented in Fig. 4. By this 
way it is possible to ignore objects with wrong dimensions. 

 
Fig. 5. Comparison between model and measured number of beams for 
beacons intersection as a distance function (blue circles are measures and red 
line is the model). 

An experimental setup was implemented to validate this 
approach up to 19 meters of distance between beacons and 
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laser. The result is presented in Fig. 5 and it allows to validate 
the distance-number of beams function that further can be 
applied. 

The error between the number of detected beams and the 
model allows to reject or accept each cluster. Fig. 6 presents an 
acquisition data set (ZL e CL,i) where black points have lower 
reflection and red points have high reflection. As result, the 
three reflectors were correctly detected and filtered whereas the 
two other clusters were rejected. 

 
Fig. 6. Laser data: Distance and reflectivity (red points have high 
reflectivity). 

E. Association outliers filter 

The main purpose of this filter is composed by two 
functions: a) identify the detected reflectors and b) to filter 
outliers that the previous filter (reflector detector) could miss. 
This approach is based on the actual estimation of robot pose 
X(.) and P(.) rejecting measures that depend on its probability. 
This procedure is presented in algorithm 2, where ZB(k) are 
the detected reflectors and ZB(k) and S(k) are the predicted 
observations and its covariance. As result of this algorithm CB 
consists in an array where CB,i shows the reflectors map index 
of MB,i associated to detection ZB,i. 

Algorithm 2. Association Outliers Filter.  
�

BBInputs : Z (k), Z (k),S(k)  

1: B,ifor all detected beacons z  do
 

   Association:  

1.1
: 

  

( )

�( ) �( )

B,i j
j

T 1
B, j B,jB,i j B,i

C (k) argmax  det 2 *S (k) *

1
exp * Z (k) Z (k) * S (k) * Z (k) Z (k)

2

−

= π

� �� �− − −� �� �� �  
   Association filter:  

1.2
: 

  

( ) ( ) ( )B ,i B ,i
B ,i

T 1
2

j C ( k ) j C ( k )B,i j C ( k ) B,i df
if  Z (k) Z (k) * S (k) * Z (k) Z (k)  >  then

−

= =
=

− − χ� �

 
1.3
:     B,iC (k) INVALID_BEACON_ID=

 
   endif  
 endfor  

BOutputs : C (k)  

Step 1.1 ZB,i is related to MB,i that maximizes the 
probability. Each j of MB map calculates the probability 
distribution function ZB,i (likelihood). The i observation is 
related to j when maximized (maximum likelihood). For more 
details see [9]. 

Step 1.2: 2
dfχ  is a constant that depends of PG minimum 

threshold validation (Fig. 3).This value is related to the inverse 
function of the chi square quadratic form probability for two 
degrees of freedom. An enhanced approach was based on [9] in 
which is proposed a likelihood filter. Further Fig. 12 shows the 
probability of reflector detection of 95%. 

As conclusion, the Kalman Filter was used to implement 
the sensor fusion task between detected reflectors and 
odometry data. The robustness of this outliers filter algorithm 
can be emphasized due to the combination of detector and 
association filters. 

IV. PRACTICAL RESULTS 

First, the time requirements are validated: 5ms to process 
760 beams of laser with an Intel T4300 processor with 1.2 GHz 
clock speed. This is a compatible time to perform decision 
tasks and control. Robot position repeatability on target 
position was about 10mm. 

The assembled industrial mobile robot was used to perform 
all measurements and tests. The tests were conducted in the 
laboratories of the Faculty of Engineering of University of 
Porto and in the ADIRA company as present in next 
subsections. As it can be seen, the developed algorithm allows 
rejecting outliers objects that could interfere in localization.  

 
Fig. 7. Developed Mobile platform to perform security laser and 
triangulation ground truth comparison (reflector highlighted in red circle). 

A. Precision Results 

As a way to validate our approach with the ground truth it 
was used another mobile robot (see Fig. 7) which was equipped 
with a commercial navigation laser based on triangulation 
(SICK NAV350). This laser does not only provides the robot 
pose but also the reflectors relative position (ZB of Fig. 3). 

 
Fig. 8. Map of the AGV path testing. Grid size one meter. 

P0 

P1 

P2 
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In Fig. 8 we present four reflectors (blue circles) installed in 
the walls and the path followed by the mobile robot (red line). 
It starts moving forward from P0 reaching P1 and then moving 
backward to P2. This movement allow to compare the 
presented method (based on a security laser with the ground 
truth). Reflectors in this experience are not affected by outliers. 

TABLE I.  PRECISION ANALYSIS 

As expected, the low positioning errors (average and 
standard deviation) was observed as presented in TABLE I. It 
also shows that the proposed algorithm stays robust in terms of 
precision when the FOV is reduced to 180º (measures inside [-
90º,+90º] are considered) as it happens in security lasers 
scanners. 

 
Fig. 9. Comparison of error between the 360º FOV triangulation laser (red 
line) and 180º FOV (security laser). 

Blue bars of Fig. 9 present the average error whereas the 
ground truth error is shown by red line. Initially, the left bar is 
related to the start of movement (P0) while the right blue bar 
corresponds to the last movement of the mobile robot (P2). 

As it can be seen, precision of the proposed system is not 
considerably affected by the reduction of the FOV. This results 
allow to conclude that the use of Kalman Filter is an advantage 
and that the triangulation system should be used only in 
situations that allows three or more visible reflectors (five 
recommended). Our system (odometry and laser data fusion) is 
capable of positioning the robot even with three or less 
reflectors. The commercial navigation laser with 360º FOV 
always sees four reflectors. 

B. Robustness analisys-Outliers rejection 

This subsection presents the mobile robot equipped with 
the security laser of Fig. 1 navigating in a real industry 
environment with several outliers and adversities, like Fig. 10. 

In the scope of Project PRODUTECH PSI PPS3 it was 
implicit a public demonstration of the developed system which 
was used to validate our developed localization system in an 
industrial environment. Fig. 10 shows the demonstration 
scenario. The autonomous robot localization tests were 
developed during 6 hours. The robot mission was to transport 
tables between workstations with a required positioning 
precision of 1 cm and 3 degrees and a speed of 0.5m/s. This 
demanding mission had an increased difficulty since lots of 
people were circulating in the path of the robot and the 

irregular floor decreased (to 4m) the laser visibility. This 
environment increased the outliers’ number as show in Fig. 11 
where dark blue circles are the reflectors acquired during the 
movement from P0 to P2 (backward from P0 to P1 and forward 
from P1 to P2). Security laser data is represented by the yellow 
and red points: the yellow ones are the reflectors (inliers) and 
red ones are the outliers rejected by the detector and filter 
algorithm. Note that it is a compiled information and not all 
reflectors are seen simultaneously. 

 
Fig. 10. Industrial environment scenario where localization tests were 
developed. 

 
Fig. 11. Map of the mobile robot path: red points are outliers, yellow points 
are the reflectors detection and dark blue circles are the reflectors position. 
Grid size one meter. 

Figure 12 presents a screenshot of the developed interface 
application during the tests. There can be seen: reflectors map 
(MB represented in dark blue circles), co-variance of the 
estimated robot position (red ellipse in the right upper corner) 
and reflectors zones for the accepted measures (more than 95% 
probability)with blue ellipses. Red dots (the left bottom corner) 
show objects measured as reflectors but are rejected by filter 
once they are outside of 95% of accepted threshold: there is a 
certain area around the reflectors that supply the outliers filter. 
Outside reflectors are ignored by the outliers filter. Black 
points are the measured distances by the security laser (ZL). 

 
Fig. 12. - Screenshot of the real results during localization tests it is possible 
to notice a large number of positive false measures with a security laser. The 
developed robust outliers filter algorithm becomes the most  important task in 
this approach. It is applied in two ways: detector filter and association filter. 
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In order to highlight and compare the developed filtering 
system, Fig. 13. and Fig. 14. presents the localization system 
for positioning and orientation respectively without any filter 
(blue line), only with detection filter (green line) and finally 
with both (detector and association filter) in red line. As it is 
easy to understand, the absence of filtering system produces 
noisy and unstable results. The detector filter improves the 
result of positioning but it still lacks stability and introduces 
some error. Finally, the use of both filters allows to perform a 
stable and accurate measure without error and changes. 

 
Fig. 13. Comparison of filtering rejection outliers. Positioning. 

 
Fig. 14. Comparison of filtering rejection outliers. Orientation. 

Videos containing the localization system interface during 
the tests can be downloaded at these links: 

• Without outliers filter: http://youtu.be/wCv9qVTSICg 
• Detector filter: http://youtu.be/iTCb5UR6CRE 
• Detector and association filter: 

http://youtu.be/4_Io52ORvOE 
Videos during the tests where the mobile robot is in 

transporting mission can be downloaded at these links: 
• Laboratory: http://youtu.be/6SQ3llbTSFk 
• Adira industrial environment: 

http://youtu.be/KI3rkx7vS2Y 

V. CONCLUSION AND FUTURE WORK 

The developed localization system based on a security laser 
scanner was applied in an industrial AGV. The experiments 
allow to confirm that in real industrial environment there are 
advantages in the proposed localization algorithm over the 
current laser positioning systems. 

The Extended Kalman Filter was applied as a multi fusion 
sensor system in order to combine the odometry information 
and the result of the developed system. As final remark the 

presented algorithm ensures precision (10mm of best 
depending on the number of reflectors) and fast computation 
time (5ms). 

As a future direction, enhancing the beacon detection 
system (increasing the number of detected features) will allow 
to benefit of better robustness and precision. Moreover, 
implementing redundant methods will improve the good results 
of the presented system (minimizing the ambiguity in 
symmetric layouts and deal with the kidnapping problem). 
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