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ABSTRACT

Receiver Strength Signal Indication based Wireless Sensor Networks offer a cheap solution for location-aware appli-
cations. For a final breakthrough these systems need fast deployment and easy auto-configuration. In this study, we use
the real-life iMinds test bed to expand a two-dimensional localization algorithm to the pseudo third dimension with very
low additional computational time. Our experiments show that this fast three-dimensional algorithm has no outliers and
avoids manual calibration. Our algorithm has lower position errors than a maximum likelihood algorithm with a mean
square error cost function. Furthermore, with non-parametric statistical tests, we show that our previously designed two-
dimensional preprocessing performs equally well in pseudo-three dimensions: the preprocessing reduces the position error
in a statistically significant way. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The amount of location-aware applications is still boom-
ing. The Receiver Signal Strength Indication (RSSI) based
approach offers a cheap solution for the localization prob-
lem [1]. Indeed, because all sensors inherently need their
own RSSI for demodulation, no additional hardware is
needed. Localization in the presence of (indoor) multipath
fading, however, remains a challenging task [2]. Statistical
methods, like maximum likelihood (MLH) estimators [3]
and Bayesian estimators [4] are widely used to improve the
accuracy of the position. In [5], we presented an alternative
statistical method: Linear Regression based Fast Localiza-
tion Algorithm (LiReFLoA). This automated method opti-
mizes and calibrates two-dimensional experimental data
before offering it to our positioning tool. That tool uses
the accuracy of the regression model to eliminate measure-
ments with too much multipath fading before executing the
final weighted multilateration process. Three-dimensional
localization usually requires more (at least four) anchors
(nodes knowing their own position) and in a multilatera-
tion algorithm, the computational cost rises exponentially
with the number of anchors [6]. In the latter study, the

authors further use existing two-dimensional approaches to
simplify the complexity of pseudo-3D localization. In this
paper, we follow this approach and expand LiReFLoA to
obtain a fast pseudo-3D algorithm P3DLiReFLoA with the
same number of anchors. Execution times barely change,
enabling real-time localization. Pseudo-3D algorithms use
two-dimensional projection techniques to find an object in
a three-dimensional space.

This paper is organized as follows: In Section 2,
related work is described. The hardware is described in
Section 3. Our proposed algorithm can be found in
Section 4. Section 5 follows with test results. The pseudo-
3D algorithm is compared with the two-dimensional
algorithm and with the more conventional minimum
mean square error (MMSE) MLH algorithm. Finally, in
Section 6, conclusions are drawn.

2. RELATED WORK

In [7], a survey of different application areas, ranging
from military to civilian, is accompanied by their respec-
tive specific needs. A good starting point of the study
of localization algorithms can be found in [8–12]. Our
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work focusses on experimental RSSI-based Wireless Sen-
sor Networks (WSN) indoors localization as in [13–15].
The shortage of experimental results obtained from real
indoor test beds as outlined in [13] is well known. The
latter work shows many similarities with ours. Like these
authors, we also present a new localization algorithm. The
environments, however, are difficult to compare because
our test bed is larger (1512 vs. 23.2 square meter) with
the same number of anchors (12 anchors). This results
in an anchor density of only 0.008 (vs. 0.517) anchors
per square meter. Furthermore, our automated calibration
method is able to manipulate more measurements. Dur-
ing the selection and calibration method, each of the 41
nodes transmits 240 packets to the other nodes. The corre-
sponding RSSI-measurements are reported and averaged.
More than 380 000 RSSI-measurements are manipulated
(somewhat less than 41 � 40 � 240, because not all pack-
ets were above the noise floor of the receiver). This is
an order of magnitude higher than 12 240 RSSI measure-
ments reported in [13]. This increases the accuracy of the
rough measurements, because the fast fading variation is
averaged out.

The offline phase of the statistical indoor localization
method, described in [16], is based on a local regres-
sion[17] fitting method to build a large RSSI database
(called radio map) containing the distribution of the signal
strength received at each known location. Local regression
divides the independent statistical RSSI variable in small
intervals and performs a regression on these binned data
intervals. This offline phase tries to capture the complete
distribution of the RSSI-distribution. Next, an online phase
involves an MLH procedure on the distribution and the
measured signal strength. A time-consuming bootstrapping
method resamples the data (typically more than 1000 repe-
titions are needed), and gives 95% confidence intervals for
the estimated position. Our work is also based on statis-
tics, but takes a completely different approach: the under-
lying physical (and widely accepted [18,19]) relationship
between the RSSI and the logarithm of the distance results
in a regression that is simpler, because it is linear in the
complete RSSI-variable and does not need data binning.
Furthermore, our algorithm requires no radio mapping: the
knowledge of two parameters (slope and intercept of the
regression) is sufficient for the estimation of the position,
further reducing the execution time. In this paper, statistics
are also used for comparing results with non-parametric
hypothesis testing, where no assumption needs to be made
about the distribution of the position error. To our knowl-
edge, this has not been encountered in WSN localization
yet. More traditional research uses the cumulative dis-
tribution function (cdf) of the position error as well as
parametric statistical metrics (mean value, average value,
and standard deviation) to measure the localization perfor-
mance [15]. Outliers can affect these parametric parame-
ters substantially and make the tests and conclusions less
reliable.

Very few authors [13,20] calibrate the propagation
parameters to their individual values. In previous work [5],

we used linear regression techniques to automate the selec-
tion and the individual calibration of the anchors. Here, this
paper uses the same technique, but applied on a pseudo-3D
algorithm.

The MLH is widely accepted in WSN positioning.
A cost function is either minimized [21] or maximized
[22–25] to find the most likely position. In [25], a lin-
ear regression based cost function has been compared with
three other cost functions. In section 4, the results of our
algorithm are compared with the most conventional widely
used MMSE function.

Three-dimensional indoor positioning is complex and
requires a combination of technologies. In [26], a three-
dimensional algorithm is presented combining RSSI, time
of arrival and sophisticated three-dimensional ray tracing.
Ray tracing, which is a widely accepted technique for
genuine-three-dimensional positioning, is based on geo-
metrical optics. It can be applied as an approximate method
for estimating the levels of high-frequency electromagnetic
fields [27]. With the knowledge of the three-dimensional
layout of the building and the used materials, path losses
can be predicted. With this path loss, the distances can
be calculated. Although this time-consuming task can be
performed by the use of software tools as in [28], this pro-
cedure remains tedious. Therefore, we will not follow this
methodology in this paper.

RADAR-based localization systems [29] and their two-
dimensional fingerprinting method is widely known: in a
time-consuming training phase, a database is filled with
RSSI-measurements and in the online phase, a measure-
ment is matched with these previously stored measure-
ments. This two-dimensional fingerprinting method can be
expanded to the third dimension. In a dynamically chang-
ing environment (e.g., changes in the position of furniture
and presence of persons), however, the time-consuming
training phase needs to be redone in order to get accu-
rate results [30,31]. Therefore, [30] proposes an artificial
neural network (ANN) incorporating not only a dynamic
fingerprint, but also databases using a linear regression-
based tree model mining technique. This approach trades in
lack of accuracy for complexity. Three-dimensional finger-
printing incorporates not only RSSI, but also temperature,
humidity, and light fingerprints [31]. In most cases, sim-
ple localization algorithms, like Weighted Centroid Loca-
tion [13] are more robust against the variability of the
investigated parameters [31].

Another three-dimensional localization system requires
a full three-dimensional deployment. At least the double
amount is then required: one node on the ceiling and one
node on the floor. This solution is mostly used in multistory
buildings as in [32]. It could be useful in buildings with
extremely high ceilings. In these cases, the anchors are
used efficiently. In most practical situations, however, ver-
tical resolution is not always a primordial matter: for exam-
ple, in a museum information system, it is more important
to know that a person is in front of a particular paint-
ing, than the information that he is standing or kneeling.
Therefore, most localization algorithms do not take the
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third dimension into account and apply the procedures just
as in the two-dimensional localization. In simple RSSI-
based algorithms (like LiReFLoA [5]), however, the two-
dimensional and three-dimensional propagation paths can
differ significantly. When two-dimensional propagation
paths are used for calibration in a three-dimensional envi-
ronment, large errors occur, spoiling the accuracy of the
underlying model. Therefore, [6] proposes a complexity-
reduced multilateration for three-dimensional localization
using super anchors (anchors with pairwise positions
whose coordinates only differ in the z-axis, i.e., their
height). In this paper, we extend this approach of reduced
complexity with very low additional computing time: no
super anchors having two antennas are needed because our
three-dimensional calibration is performed with a mobile
node, just beneath the two-dimensional selected anchors.
Very few extra calibrations are needed.

3. THE HARDWARE

Our hardware consists of the iMinds (formerly IBBT)
iLab.t Wireless Lab (W-iLab.t) test bed. More about this

test bed can be found in [5]. Only the third floor is used
in this paper. On this 16:8� 90� 2:65m floor, there are 41
active nodes, represented by small green circles in Figure 1.

Figure 1 shows a floor plan of the third floor. The Tmote
Sky nodes are equipped with a CC2420 radio chip operat-
ing in the 2.4 GHz frequency band. The nodes are mounted
with the top of the printed circuit board down in a plane,
approximately 0.12 m below the highly conductive ceiling.
The integrated inverted-F antenna is mounted horizontally
with its longest leg parallel to the longest wall. An anchor
selection results in the best available quality (this will be
explained in section 4.2.1) anchors at a given time. These
are represented by the black squares. In this environment,
there is a lot of constructive multipath fading, because of
the presence of long corridors. Because the walls mainly
consist of plywood (these walls are represented by blue
solid lines), the presence of wall attenuation is rather lim-
ited. In this typical office environment, there is also fur-
niture: for example, bookshelves that are about 2 m tall.
There are also two microwave ovens, situated in the right-
hand side and left-hand side concrete zone of the building.
A previous study revealed that multipath fading is by far
the most annoying factor in this indoor environment.

Figure 1. Position of sensor nodes on the third floor of the iMinds office building. Plywood walls are presented by blue solid lines. The
solid brown lines are concrete wall. The black squares are the selected anchors. After the linear regression based selection between

the already deployed nodes, these anchors are calibrated (section 4.2.1).

Figure 2. Schematic overview of the pseudo-3D environment. For comparison reasons, two tests are performed: the two-
dimensional test uses the plane of the fixed nodes and the pseudo-3D test uses a mobile node in the plane 1.2 m below this

plane of the fixed nodes.
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4. TEST SETUP

4.1. Changing from two-dimensional
distances to pseudo-3D distances

Figure 2 presents the schematic overview of the pseudo-
3D environment. Again, the fixed ceiling nodes are shown
as green circles. The remainder of this section com-
pares a two-dimensional algorithm with a pseudo-3D algo-
rithm. Therefore, two tests are performed. The first one is
two-dimensional: every fixed node sequentially broadcasts
240 packets to all other nodes. Every packet consists of
100 bytes, transmitted at a symbol rate of 62.5 ksymbols/s.
The inter packet delay is 25 ms. Transmission is at channel
26 in order to avoid Wi-Fi interference. Upon swapping
sending nodes, the test bed is idle for at least 3.5 s. The test
is performed at transmit power levels of 0 dBm. Assum-
ing a receiver sensitivity of �92 dBm, this power level
corresponds to a distance range of approximately 82 m
[5], or almost the complete building. The test bed only
counts valid RSSI-measurements: our software detects cor-
rupted and lost packets; these packets are excluded in the
averaging process. Fast fading fluctuations can be aver-
aged out by considering large number of RSSI-readings
levels. Microwave ovens with a traditional power supply
only radiate at the positive peaks of the mains supply. Our
software is able to distinguish valid and invalid packets,
therefore RSSI-measurements from packets sent at the neg-
ative peaks of the main supply are recorded correctly. For
this two-dimensional test, the Euclidean distances are taken
into account. In Figure 2, these distances are represented by
blue solid lines. The second test is pseudo-3D. Now, a test
person activates a mobile node at a constant height from
the ceiling. This test was performed just 1.2 m beneath
each fixed node. The mobile node is hand carried with the
antenna parallel to the antenna of the fixed node above it.
The swapping time of the sending nodes is different, but
the other conditions remain the same. All but one pseudo-
3D distance (represented by solid red lines in Figure 2) are
approximated by their projection in the plane of the fixed
nodes (represented by solid blue lines). Only for the closest
distance, the exact distance is used (1.2 m). Although this
introduces an error (of maximum 3.5%) in the calibration
of the distances, this error is acceptable because the nodes
are on a relatively coarse grid of approximately 4.5 m. This
error is an order of magnitude smaller than the error on the
multipath faded RSSI-measurements [5].

4.2. The algorithm

Figure 3 gives a flowchart of the positioning algorithm. It
contains both the two-dimensional and the new pseudo-
3D steps. For a full understanding, the principles of the
two-dimensional algorithm are explained in a first subsec-
tion. In a next subsection, the pseudo-3D part is presented.
More details about the two-dimensional algorithm can be
found in [5].

Figure 3. This flowchart illustrates the similarities and
the differences between the two-dimensional and three-

dimensional algorithm.

4.2.1. The two-dimensional algorithm.

The two-dimensional algorithm, called LiReFLoA, is
based on linear regression tools [33] to select and cal-
ibrate anchors, preprocess the measurements, and locate
the target.

It is a simple RSSI-based localization algorithm, assum-
ing an already deployed two-dimensional wireless sensor
network, which is a realistic scenario for future dynamic
wireless indoor environments.

In Figure 3, the leftmost procedures are followed.
This path leads through the following steps: RSSI-
measurements for all nodes, a 2D-selection of anchors,
a 2D-calibration, the target RSSI-measurement, a 2D-
preprocessing, and a 2D-positioning. With the two-
dimensional test results, a linear regression is performed
for each sending node and an error_on_distance (eod)
parameter is computed. Eod is defined as twice the esti-
mated standard deviation on the (logarithmic) distance
(after an axis swap) [5]; it is a measure of how close the
measurements are to the regression line. This parameter
and the square of the correlation coefficient (rsq) are used
to select the best anchors. An rsq of zero indicates that there
is no linear fit between the RSSI and the logarithm of the
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distance, whereas an rsq of 1 implies that all points lie on
a straight line.

Equations (1) and (2) give an expression of the rsq and
eod, respectively:

rsq.i/D
slope2.i/�
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(2)

Slope.i/sw is the slope of the regression line of node i
after the axis swap, and di ;j is the exact distance between
node i and node j . In our building, a choice of ten best
correlated and two nodes having the lowest eod, results
in a selection of twelve anchors. This corresponds to an
anchor density of less than 0.008 anchors per square meter.
The nodes with the highest rsq are found in the extremi-
ties of the building, not in the corridors, as obtained with
a previous anchor selection method (where we selected
the best anchor nodes from a set of active nodes based
on the linearity of their calibrated path loss model and
on the error_on_distance) [5]. In Figure 1 and Figure 2,
the anchors are marked with a small black square. Next,
the intercept point (defined as the received power at a dis-
tance of 1 m) and slope (defined as the rise of the RSSI
over the run of the (logarithmic) distance) of the regres-
sion lines are used to individually calibrate these anchors.
The two-dimensional selection of anchors is a fast proce-
dure. All nodes are already deployed just below the ceiling.
Therefore, transmitting and receiving the packets, finding
the nodes with the highest correlation coefficient, and cal-
culating the estimated standard deviation on the regression
quickly result in the best available anchors at a given time.
After the calibration, all location information of the unse-
lected nodes is discarded. The anchors report the respective
(valid) RSSI-measurements. Next, the position of the tar-
get is estimated with the RSSI-measurements (from pack-
ets transmitted by the target and received by the anchors),
and the position of the calibrated anchors. The preprocess-
ing includes a min-max algorithm, an elimination of bad
measurements (based on the accuracy of the regression
model) and a MLH algorithm on the distance. After the
preprocessing, the position is calculated.

4.2.2. The pseudo-3D algorithm.

The pseudo-3D algorithm is based on this two-
dimensional algorithm. In Figure 3, the rightmost path is
taken. The difference between the two-dimensional and
pseudo-3D algorithm is the transmission of the RSSI-
beacons (triggered by the person to be located) beneath
the two-dimensionally selected anchors and the calibra-
tion procedure. The remainder of this section explains

this approach. A full three-dimensional counterpart of the
fast two-dimensional anchor selection procedure requires
either the automatic height variation of the nodes or,
alternatively a physical walk in the building with a mobile

target transmitting at many known places. Because this
full three-dimensional selection is neither cheap nor sim-
ple, the two-dimensional selection is kept in our pseudo-3D
algorithm.

The two-dimensional calibration of the anchors requires
linear regression between the measured RSSI and the log-
arithm of the distances. The (unknown) distances can be
calculated fast by using the intercept and the slope of
this regression line. The regression lines change when
the target is moved away from the two-dimensional plane
of the anchors, basically because there is a larger atten-
uation because of the presence of furniture. A human
body in the vicinity of the transmitter has a compara-
ble attenuating effect on the communication link. There-
fore, an easy pseudo-3D calibration is performed. It is
not necessary to use the complete test data of the sec-
ond test. Only the test bed RSSI values of sending mobile
node 1.2 m beneath the twelve anchors are needed. A
linear regression between the RSSI-values and the log-
arithmic distance is executed for each of the twelve
mobile node positions. The new slopes and intercepts are
used for pseudo-3D calibration of the anchors and the
distance calculations.

The pseudo-3D selection and calibration has several
advantages:

(1) A good two-dimensional anchor is also a good
pseudo-3D anchor. This is illustrated in Figure 4,
where the rsq-values of the two-dimensional
regression (in the first test, i.e., on the ceiling) are
plotted versus the pseudo-3D regression (in the sec-
ond test, i.e., with one mobile node for regression).
The large circles are the ten best pseudo-3D cor-
related ones, and the smaller circles represent the
others. The large ‘+’-signs denote the ten best two-
dimensional correlated ones and the small ‘+’-signs
are the others. The blue dash-dotted horizontal line
corresponds with a two-dimensional rsq of 0.76 and
the red vertical dash-dotted line corresponds with
a pseudo-3D rsq of 0.76. Above this 0.76 value,
the best correlated nodes are found. The diagonal
dashed line represents the bisector of the pseudo-3D
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Figure 4. Comparison of the correlation coefficient of the two-
dimensional and pseudo-3D tests. Two-dimensional nodes with

high rsq are also pseudo-3D nodes with high rsq.

rsq and two-dimensional rsq axes. The nodes with
largest rsq are in the upper right hand-side part of
the figure. A pseudo-3D selection instead of a two-
dimensional one would have resulted in only one
different anchor at a cost of a higher computational
time (because measurements beneath each node are
needed). Therefore, the two-dimensional selection
of the anchors is kept in P3DLiRefLoA, and there
is no extra time needed for a dedicated pseudo-3D
anchor selection. Please note that a pseudo-3D cor-
relation coefficient of 0.795 (instead of 0.840) is
still a very good value. We further observe that the
pseudo-3D rsq-values are somewhat higher than the
two-dimensional rsq-values: there are 12 anchors at
the right-hand side of the vertical line at 0.76 and
only 11 anchors above the horizontal line at 0.76.
Furthermore, there are 11 points above the bisec-
tor (positive ranks), none of the points are on the
bisector (no ties) and 30 points below the bisector
(negative ranks), therefore a Wilcoxon signed-rank
test rejects the null-hypothesis – that the pseudo-
3D rsq-distribution equals the two-dimensional rsq-
distribution.

(2) Thanks to the automated selection and two-
dimensional calibration of nodes, it can dynamically
select the best available two-dimensional anchors
at a given time. When anchors fail, the algorithm
can quickly reselect and calibrate other anchors.
In P3DLiReFLoA, this advantage is kept. Selecting
uniformly distributed anchors could have resulted in
an anchor that is down. In our sparse anchor den-
sity environment, each selected (and high quality)
anchor is needed.

(3) The measurements beneath an anchor result in a
RSSI at a very short distance. This nearby informa-
tion is very useful, because it is at the beginning
of the regression line. Without this measurement,

the regression line would have been extrapolated,
resulting in large errors [33].

(4) The complete extension to the pseudo-third dimen-
sion requires minimal effort and computation time:
only on twelve anchors a linear regression between
the logarithm of the distance and the RSSI is needed
to obtain the new propagation constants for the cali-
bration. This can easily be implemented: the person
to be located first takes a walk through the building.
Under the two-dimensionally selected anchors, he
pushes a button, and triggers the pseudo-3D calibra-
tion. Each time, the algorithm calibrates the corre-
sponding anchor. No fixed route can be postulated;
this is dependent on the dynamic anchor selection
and not always the same anchors are selected. The
order in which the anchors are calibrated is not
important, only the location where the device is trig-
gered (below the correct anchor) matters. Therefore,
we recommend that the anchors are calibrated in
numerical order. After this calibration, the target can
be located anywhere in the building.

The algorithm can calculate the (x,y)-position for any
point in the plane 1.2 m beneath the anchors, starting from
the position of the anchors and their pseudo-3D propa-
gation parameters. In this paper, the moving target sends
packets beneath the deployed two-dimensional nodes,
enabling a good comparison with the two-dimensional
parameters. The remainder of the two-dimensional algo-
rithm in Figure 3 is unchanged in the pseudo-3D algorithm.

5. RESULTS

5.1. Comparison of the two-dimensional
(first test) and pseudo-3D calibration
(second test)

Figure 5 compares the two-dimensional calibration with
the pseudo-3D calibration for a selected anchor (node 56)
at the left hand side of the building (Figure 2). The small
circles are the recorded RSSI-distance pairs for all nodes
when the selected anchor is sending (two-dimensional val-
ues). The ‘+’-values are the recorded RSSI-distance pairs
for all nodes when sending with the mobile node beneath
that anchor (pseudo-3D values). The solid and the dashed
line show the corresponding regression lines. The pseudo-
3D regression line has a higher attenuation at low distance
levels and a flatter slope. At high distances, the difference
in RSSI decreases. This can be explained by the fact that
the attenuation of furniture (or other obstacles) is more
pronounced at low to medium distances. This is in agree-
ment with the angle dependency of the attenuation factors
found in [34]: When electromagnetic radiation is obliquely
incident on a wall or floor, less power will be transmit-
ted through the wall than would occur at normal incidence.
Nodes in the neighborhood of the target incident at larger
angles than nodes that are further away. Although only
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Figure 5. Pseudo-3D regression lines not only have higher attenuation at low distances, but are also less steep than two-dimensional
ones. The pseudo-3D calibration procedure has an extra measurement at the beginning of the regression line.

Figure 6. The pseudo-3D calibration results in higher attenuation at small distances (compared to two-dimensional calibration).

one typical regression comparison is shown here, this con-
clusion holds true for the vast majority of the nodes, as
illustrated in figures 6 and 7. Figure 6 represents the
cumulative distribution plot for the intercept for two-
dimensional and pseudo-3D calibrations, respectively.
Except for a few nodes (not being anchor nodes), the two-
dimensional plot is at the right hand side of the pseudo-3D
plot. Hence, this confirms the higher attenuation at low
distances of the pseudo-3D calibration compared to the
two-dimensional calibration. Figure 7 represents the cumu-
lative distribution plot of the slope of the two-dimensional
and pseudo-3D calibration of all nodes. Now, the two-
dimensional plot is at the left hand side of the pseudo-
3D plot for the vast majority of the nodes. Therefore, the
two-dimensional calibration results in higher slopes.

Figure 8 represents a cdf plot of the error on dis-
tance for the two-dimensional and pseudo-3D calibration
of the anchors. Only the restricted data set limited to
the measurements of the anchors (two-dimensional) and
the mobile node 1.2 m below the anchors (pseudo-3D)
is considered here. Being defined as twice the estimated
standard deviation of the (logarithmic) distance frequency

distribution [5], the error on distance is a logarithmic value
on the tolerances of the distances. For example, a value of
0.3 means that the tolerances on a distance are 10�0:3 or
minus 50% and 10C0:3 or plus 200%. This figure illus-
trates that the anchors have a higher error on distance
when pseudo-3D calibrated than when two-dimensionally
calibrated. This difference in error on distance can be
explained by the higher attenuation in presence of furni-
ture. The tolerances are not only used in the preprocessing
step (both elimination of bad measurements and MLH on
the distance), but also in the positioning step for a decision
on the amount of constructive multipath fading present.
It therefore is important to offer the right empirical error
on distance to the algorithm: the two-dimensional eod for
two-dimensional localization and the pseudo-3D eod for
the pseudo-3D localization.

5.2. Comparison of our algorithm with a
more conventional algorithm

The three-dimensional algorithm is tested: the algorithm
is executed, and the results are compared with the exact
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Figure 7. The two-dimensional calibration results in higher slopes (compared to pseudo-3D calibration).

Figure 8. The pseudo-3D errors on distance of the anchors are larger than their two-dimensional ones.

position. For comparison, a MLH algorithm on the posi-
tion is implemented using the same anchors and the MMSE
cost function:

arg min
x;y

X
j � anchor .i/

�
Qdi ;j � di ;j

�2
(3)

where di ;j is the exact distance between anchor i and point
j . The tilded di ;j is the calculated distance (with the mea-
sured RSSI and the propagation constants). Like in our
previous work, the grid method is used. Unlike the conju-
gate gradient algorithm [35], the grid method always finds

the exact minimum and does not get stuck in local min-
ima (sacrificing computational time). The grid plane is now
formed 1.2 m below the vertical position of the anchors.
The point in this plane with coordinates (x,y) that mini-
mizes the sum of squared differences between the calcu-
lated and exact distances is the estimated position. With
both algorithms, the position is calculated and compared
with the exact distance. This is performed for both cases:
with and without our preprocessing steps, which are based
on a min-max criterion, elimination of bad measurements
and a MLH on the position [5]. The results of the posi-
tion errors of both algorithms are outlined in Table I and

Table I. Position error comparison between P3DLiReFLoA and pseudo-3D maximum livelihood algorithm with a mean square error.

P3DLiReFLoA w/o (m) P3DLiReFLoA with (m) P3D MMSE w/o (m) P3D MMSE with (m)

Upper outlier - - 22.47 17.56
Upper adjacent 19.00 13.37 17.67 12.36
Third quartile 9.80 8.48 10.33 7.68
Median 7.22 5.11 7.79 4.90
First quartile 3.49 2.91 4.70 3.50
Lower adjacent 1.19 0.46 1.79 1.22
Under outlier - - - -
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Figure 9. Table I lists the outliers, adjacent (most extreme
data points not considered outliers), and the first (25th per-
centile), second (50th percentile, median) and third (75th

percentile) quartile. The same information is given a graph-
ical form with boxplots in Figure 9. On each box, the
central mark is the median, the edges of the box are the
first and third quartile, the whiskers extend to the upper
and lower adjacent. All position errors that are 1.5 times
the box size above the third quartile are deemed upper out-
liers, and all position errors that are 1.5 times the box size
below the first quartile are considered under outliers. The
outliers are plotted individually with a ‘+’-sign [33]. This
Table I and Figure 9 reveal that

� there are no outliers with P3DLiReFLoA, in contract
with MMSE.

� a MLH algorithm with a mean square error cost func-
tion has a higher position error median when our
preprocessing is not applied.

� when our preprocessing is applied not only this
median, but also the high percentiles of this algorithm
are improved.

� none of the distributions are normal distributions:

- all of them have larger upper tails than lower tails,
introducing skewness in the distribution.

- for MMSE, there are outliers, which are absent in
normal distributions.

- except for MMSE without the processing, the medi-
ans (the large horizontal lines in the box) are not in
the center of the box. This means that the median of
the distribution is different to the average.

Further interpretation of the test results is based on sta-
tistical inference. Because the position error is not nor-
mally distributed, Student’s t-tests could lead researchers
to draw incorrect conclusions. Non-parametric tests make
no assumption on the distribution, and are a better option
here. Thanks to the increased availability of software, these
non-parametric statistical analyses are often found in med-
ical research [36]. The Wilcoxon signed-rank test [37] is
a non-parametric statistical hypothesis test for comparing
two related samples, for example, before preprocessing and
after. The null-hypothesis of a first Wilcoxon test – that the

Figure 9. Boxplot of the position errors with and without (w/o) the preprocessing steps: at the left hand side for the position errors of
the algorithm proposed in this paper and at the right hand side for the position errors of the minimum mean square error maximum
likelihood algorithm. A maximum likelihood algorithm with a mean square error cost function has a higher position error median when

our preprocessing is not applied.

Figure 10. Comparison of the cdfplot of LiReFLoA and P3DLiReFLoA.
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Table II. Comparison of the two-dimensional and pseudo-3D algorithm.

LiReFLoA P3DLiReFLoA

Localization Two-dimensional Pseudo-3D
Anchor selection Two-dimensional
Calibration Two-dimensional Three-dimensional on selected anchors
Position engine The same
Computation time Fast Slightly less fast: only quick additional

calibration is required for a limited
number of anchors

Accuracy
Without preprocessing Median 5.79m Median 7.22m
With preprocessing Median 5.49m Median 5.11m
Cdfplot Figure 10
Wilcoxon p-values Two-tailed p-value = 98%

P3DLiReFLoA position error distribution after the prepro-
cessing equals the P3DLiReFLoA position error distribu-
tion before the preprocessing – is rejected. The two-tailed
p-value (defined as the probability that the test statistic is
equal to or more extreme than the one observed under the
null hypothesis) equals 0.2%. A second test is performed
on MMSE with and without the preprocessing steps and
results in a two-tailed p-value of less than 0.1%. The third
Wilcoxon test follows, comparing P3DLiReFLoA with the
preprocessing steps and MMSE without them, results in a
two-tailed p-value of 2%. The first test concludes that there
is a difference in position error for P3DLiReFLoA with and
without the preprocessing. Test 2 shows that this is also
the case for MMSE. This proves that our preprocessing
has a positive effect on the positioning error. Furthermore,
the third Wilcoxon test shows that the position errors of
P3DLiReFLoA are significantly lower than those of the
MMSE without our preprocessing.

5.3. Comparison of LiReFLoA and
P3DLiReFLoA

This section compares the two-dimensional algorithm
LiReFLoA of our previous work (first test, left-hand side
of Figure 3) with the P3DLiReFLoA (second test, right-
hand side of Figure 3) described in this paper. Testing
the algorithm in their respective environment (2D for
LiReFLoA and pseudo-3D for P3DLiReFLoA) gives com-
parable medians. Figure 10 further illustrates that also the
distributions are very similar. Table II gives an overview
of the comparison of LiReFLoA and P3DLiReFLoA. This
table reveals that both algorithms use the same position
engine.

Both the preprocessing and the positioning procedure
are the same (as already outlined in Figure 3). Also the
anchor selection remains unchanged. Although LiReFLoA
calibrates these anchors in the two-dimensional plane of
these anchors, a pseudo-3D calibration with a mobile node
beneath these anchors is needed for P3DRiReFLoA. With
an anchor density of 0.008 anchors per square meter,
very little additional time is needed. A paired Wilcoxon

test results in a two-tailed p-value of 98%. Therefore
the null-hypothesis that P3DLiReFLoA performs equally
well in a pseudo-3D environment as LiReFLoA in a two-
dimensional environment is accepted.

6. CONCLUSIONS

This paper presents a new pseudo-3D localization algo-
rithm, based on a fast two-dimensional algorithm. Only a
quick recalibration is required for the limited number of
anchors. Our empirical tests show that the position errors
are lower than with a MLH algorithm with a mean square
error cost function. Preprocessing of the data also reduces
the position errors for the MLH algorithm in a statistically
significant way.
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