216 research outputs found

    Asimov's Coming Back

    Get PDF
    Ever since the word ‘ROBOT’ first appeared in a science\ud fiction in 1921, scientists and engineers have been trying\ud different ways to create it. Present technologies in\ud mechanical and electrical engineering makes it possible\ud to have robots in such places as industrial manufacturing\ud and assembling lines. Although they are\ud essentially robotic arms or similarly driven by electrical\ud power and signal control, they could be treated the\ud primitive pioneers in application. Researches in the\ud laboratories go much further. Interdisciplines are\ud directing the evolution of more advanced robots. Among these are artificial\ud intelligence, computational neuroscience, mathematics and robotics. These disciplines\ud come closer as more complex problems emerge.\ud From a robot’s point of view, three basic abilities are needed. They are thinking\ud and memory, sensory perceptions, control and behaving. These are capabilities we\ud human beings have to adapt ourselves to the environment. Although\ud researches on robots, especially on intelligent thinking, progress slowly, a revolution\ud for biological inspired robotics is spreading out in the laboratories all over the world

    Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Get PDF
    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. They can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a walking robot is a challenging task. In this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a biomechanical walking robot. The turning information is transmitted as descending steering signals to the locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations as well as escaping from sharp corners or deadlocks. Using backbone joint control embedded in the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments

    Behavior control in the sensorimotor loop with short-term synaptic dynamics induced by self-regulating neurons

    Get PDF
    The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot. © 2014 Toutounji and Pasemann

    VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition

    Full text link
    Spiking Neural Networks (SNNs) are at the forefront of neuromorphic computing thanks to their potential energy-efficiency, low latencies, and capacity for continual learning. While these capabilities are well suited for robotics tasks, SNNs have seen limited adaptation in this field thus far. This work introduces a SNN for Visual Place Recognition (VPR) that is both trainable within minutes and queryable in milliseconds, making it well suited for deployment on compute-constrained robotic systems. Our proposed system, VPRTempo, overcomes slow training and inference times using an abstracted SNN that trades biological realism for efficiency. VPRTempo employs a temporal code that determines the timing of a single spike based on a pixel's intensity, as opposed to prior SNNs relying on rate coding that determined the number of spikes; improving spike efficiency by over 100%. VPRTempo is trained using Spike-Timing Dependent Plasticity and a supervised delta learning rule enforcing that each output spiking neuron responds to just a single place. We evaluate our system on the Nordland and Oxford RobotCar benchmark localization datasets, which include up to 27k places. We found that VPRTempo's accuracy is comparable to prior SNNs and the popular NetVLAD place recognition algorithm, while being several orders of magnitude faster and suitable for real-time deployment -- with inference speeds over 50 Hz on CPU. VPRTempo could be integrated as a loop closure component for online SLAM on resource-constrained systems such as space and underwater robots.Comment: 8 pages, 3 figures, accepted to the IEEE International Conference on Robotics and Automation (ICRA) 202

    Linear combination of one-step predictive information with an external reward in an episodic policy gradient setting: a critical analysis

    Get PDF
    One of the main challenges in the field of embodied artificial intelligence is the open-ended autonomous learning of complex behaviours. Our approach is to use task-independent, information-driven intrinsic motivation(s) to support task-dependent learning. The work presented here is a preliminary step in which we investigate the predictive information (the mutual information of the past and future of the sensor stream) as an intrinsic drive, ideally supporting any kind of task acquisition. Previous experiments have shown that the predictive information (PI) is a good candidate to support autonomous, open-ended learning of complex behaviours, because a maximisation of the PI corresponds to an exploration of morphology- and environment-dependent behavioural regularities. The idea is that these regularities can then be exploited in order to solve any given task. Three different experiments are presented and their results lead to the conclusion that the linear combination of the one-step PI with an external reward function is not generally recommended in an episodic policy gradient setting. Only for hard tasks a great speed-up can be achieved at the cost of an asymptotic performance lost

    The brain's connective core and its role in animal cognition

    No full text
    This paper addresses the question of how the brain of an animal achieves cognitive integration—that is to say how it manages to bring its fullest resources to bear on an ongoing situation. To fully exploit its cognitive resources, whether inherited or acquired through experience, it must be possible for unanticipated coalitions of brain processes to form. This facilitates the novel recombination of the elements of an existing behavioural repertoire, and thereby enables innovation. But in a system comprising massively many anatomically distributed assemblies of neurons, it is far from clear how such open-ended coalition formation is possible. The present paper draws on contemporary findings in brain connectivity and neurodynamics, as well as the literature of artificial intelligence, to outline a possible answer in terms of the brain's most richly connected and topologically central structures, its so-called connective core

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented
    • 

    corecore