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Walking animals, like insects, with little neural computing can effectively perform

complex behaviors. For example, they can walk around their environment, escape

from corners/deadlocks, and avoid or climb over obstacles. While performing all these

behaviors, they can also adapt their movements to deal with an unknown situation.

As a consequence, they successfully navigate through their complex environment. The

versatile and adaptive abilities are the result of an integration of several ingredients

embedded in their sensorimotor loop. Biological studies reveal that the ingredients

include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating

such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking

robot is a challenging task. Thus, in this study, we present a bio-inspired approach to

solve this task. Specifically, the approach combines neural mechanisms with plasticity,

exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of

adaptive neural sensory processing and modular neural locomotion control. The sensory

processing is based on a small recurrent neural network consisting of two fully connected

neurons. Online correlation-based learning with synaptic scaling is applied to adequately

change the connections of the network. By doing so, we can effectively exploit neural

dynamics (i.e., hysteresis effects and single attractors) in the network to generate different

turning angles with short-term memory for a walking robot. The turning information

is transmitted as descending steering signals to the neural locomotion control which

translates the signals into motor actions. As a result, the robot can walk around and

adapt its turning angle for avoiding obstacles in different situations. The adaptation

also enables the robot to effectively escape from sharp corners or deadlocks. Using

backbone joint control embedded in the the locomotion control allows the robot to climb

over small obstacles. Consequently, it can successfully explore and navigate in complex

environments. We firstly tested our approach on a physical simulation environment and

then applied it to our real biomechanical walking robot AMOSII with 19 DOFs to adaptively

avoid obstacles and navigate in the real world.

Keywords: neural dynamics, hysteresis, correlation-based learning, navigation, walking robots, autonomous

robots
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1. Introduction

Living creatures, like insects, with their limited neural computing
show impressive versatile and adaptive behaviors (Ritzmann and
Büschges, 2007; Gruhn et al., 2011; Schütz and Dürr, 2011).
For example, they can walk around their complex cluttered
environment (Ritzmann et al., 2004) and, at the same time,
avoid, or climb over obstacles as well as escape from corners
or deadlocks (Watson et al., 2002; Awe, 2008; Baba et al.,
2010). By doing so, they can effectively explore the environment
and successfully navigate through it. They solve the tasks by
interacting with the environment and using their adaptive
neural circuits (Heisenberg, 1998; Wessnitzer and Webb, 2006;
Fuchs et al., 2010) in their sensorimotor loop to process
sensory information and generate adequate motor commands
(Strausfeld, 1999). Specifically, they use their exteroceptive
sensors (e.g., antennae Burdohan and Comer, 1990; Okada and
Toh, 2000; Comer et al., 2003) to detect environmental changes
or obstacles and process this sensory information in higher
brain areas by using the full capacity of their neural dynamics
adapted by synaptic plasticity (Strausfeld, 1999; Wessnitzer and
Webb, 2006; Tomchik and Davis, 2009; Guo et al., 2012; Frank
et al., 2013). The processed information is then transmitted as
descending signals to move their biomechanical legs through
their neural locomotion control (Pearson et al., 1973) in the
thoracic ganglia (Schaefer and Ritzmann, 2001; Ridgel et al.,
2007; Bender et al., 2010). This shows that the ability to perform
versatile and adaptive behaviors requires a combination of several
components as neural dynamics, synaptic plasticity, sensory
feedback, and biomechanics.

Generating such complex autonomous behaviors (walking,
avoiding obstacles, escaping from corners/deadlocks, as well as
exploring and navigating in an unknown cluttered environment)
as insects, for artificial many degrees-of-freedom (DOFs) systems
(like, legged robots) is still a challenging task. Attempts try to find
solutions to the problem by using different approaches. Many of
them use the conventional behavior-based robotics method, also
known as subsumption architecture (Brooks, 1989; Wettergreen
et al., 1995; Luk et al., 1996; Celaya and Porta, 1998; Celaya
and Albarral, 2003), where a complex behavior is generated by
combining several simple reactive behaviors. Each behavior is
typically controlled by one reactive control unit and all units are
run in parallel. For example, using this method, the physical six-
legged walking machine Genghis (Brooks, 1989) can walk over
rough terrain, avoid obstacles, and follow a person. While this
behavior-based robotics method can achieve versatile behaviors,
it still lacks learning ability to be adaptive and efficient in an
unstructured complex environment. When facing corners or an
insurmountable obstacle (like, wall), the behavior-based control
method can drive a correct behavior only after the corner or
obstacle is detected. If additional sensing and online learning
(learning during behaving) are applied (Togelius, 2004), a robot
can learn and adapt its movements properly (e.g., react earlier);
thereby leading to efficient maneuvers. Another shortcoming of
the behavior-based robotics method is that it is difficult to predict
the overall behavior of the system as the number of behavior and
the interaction between them increase.

Thus, machine learning, like reinforcement learning (RL)
(Barfoot et al., 2006; Erden and Leblebicioğlu, 2008) and
evolutionary computing (EC) (Parker, 2005; Seljanko, 2011;
Risi and Stanley, 2012), has become an attractive tool for
including adaptivity into artificial systems. For example, Erden
and Leblebicioğlu (2008) used RL to generate free gaits and also
let a six-legged walking machine learn to achieve a continuous
and stable walking pattern with five legs in an abnormal case.
Bongard et al. (2006) used EC as an adaptive process to generate
successful motor patterns for locomotion, before and after
damage of a starfish-like walking machine. With this technique,
if the machine has been damaged, it could sense the problem and
adapt its locomotion to compensate for this. While such machine
learning approaches allow for leaning and adaptation, they
usually require a long learning process for (complex) behavior
generation. Furthermore, an objective function (i.e., reward for
RL or fitness function for EC) needs to be properly designed
to archive a learning goal. Besides these approaches, artificial
neural networks (ANNs Beer et al., 1997; Lewinger and Quinn,
2011; Von Twickel et al., 2012) appear more appropriate due to
their intrinsically distributed architecture (Schilling et al., 2013)
and their capability to integrate different learning mechanisms
for different timescales of adaptivity (Filliat et al., 1999; Fischer
et al., 2004; Valsalam and Miikkulainen, 2008; Steingrube et al.,
2010). They also allow to develop a controller as a composition
of different neural modules (Valsalam and Miikkulainen, 2008).
Furthermore, ANNs with recurrent connections show a wide
variety of different neural dynamics (oscillations, hystereses,
chaotic patterns, fixed points, etc.) which can be exploited
for signal processing and locomotion generation (Steingrube
et al., 2010; von Twickel et al., 2011; Toutounji and Pasemann,
2014). According to this, many studies mainly employ ANNs
for the purpose of locomotion (Beer et al., 1997; Valsalam and
Miikkulainen, 2008; Lewinger and Quinn, 2011; von Twickel
et al., 2011; Von Twickel et al., 2012; Schilling et al., 2013;
Toutounji and Pasemann, 2014). For example, Beer et al. (1997)
developed a distributed neural network controller of a six-legged
walking machine for generating locomotion with reflex actions
to deal with irregular, slatted, and compliant terrains. Lewinger
et al. (Lewinger and Quinn, 2011) developed neurobiologically-
based control for an adaptively walking hexapod robot. The
control allows the robot to walk, cross a small gap, step over
an small bump, and seek a goal. Von Twickel et al. (2012)
developed neurocybernetic control for generating locomotion
of four-, six-, and eight-legged modular robots. While all these
neural control mechanisms can generate different locomotion
modes, they do not have complete mechanisms for generating
complex autonomous behaviors (i.e., walking, climbing, avoiding
obstacles, escaping from corners/deadlocks, as well as exploring
and navigating in an unknown complex cluttered environment).
Only a few works used ANNs for walking and navigating in
simple cluttered environments with a few obstacles (Filliat et al.,
1999; Fischer et al., 2004). Usually, most developed neural
mechanisms (Filliat et al., 1999; Fischer et al., 2004; Von Twickel
et al., 2012; Toutounji and Pasemann, 2014) use evolutionary
techniques to optimize neural parameters (i.e., synaptic weights
and structures). Thus, they typically end up with complex
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massive recurrent connectivity structures which is difficult to
understand and be mathematically analyzed. Furthermore, they
require a very long learning process which is not practical for real
robot implementation.

From this point of view, we present here modular neural
mechanisms with synaptic plasticity where their functions can
be analyzed and understood. The complete mechanisms with
online adaptation are implemented on a real biomechanical
walking robot with 19 DOFs. They can generate complex
autonomous behaviors of the robot in complex environments
with many obstacles, different sharp corners, and narrow
passages. During exploring the environment, the robot has to
learn to avoid different object arrangements by turning away
in an appropriate manner. The neural mechanisms consist of
two main components: (i) neural sensory processing with online
learning and (ii) modular neural locomotion control. We use
two ultrasonic sensors to detect the obstacles (exteroceptive
feedback) and use the neural dynamics adapted by plasticity
in the sensory processing network to process sensory signals
and generate different behaviors (e.g., turnings, walking speeds,
climbing) with short-term memory for the robot. The turning
information is transmitted as descending steering commands
to the neural locomotion control network previously developed
by us Manoonpong et al. (2013). Finally, the outputs of the
locomotion control network drive the biomechanical legs of the
robot. This will result in versatile and adaptive abilities of the
robot which include walking, avoiding or climbing over obstacles,
escaping from corners/deadlocks and narrow passages, as well
as exploring and navigating in complex unknown environments.
Taking all these behaviors into account, this approach, following
insects’ strategy, basically combines neural dynamics, synaptic
plasticity, sensory feedback, and biomechanics to achieve such
complex autonomous behaviors.

The main contribution here is not only to demonstrate
complex behaviors in complex environments but also to show
an option of integrating synaptic plasticity in a small recurrent
neural network to effectively exploit the rich neural dynamics
(i.e., hysteresis effects and attractor dynamics) for generating
complex behaviors in a sensorimotor loop of a behaving many
DOFs system. The following section describes the adaptive
neural sensory processing network developed in this study and
is followed by a short descriptions of the neural locomotion
control network and the biomechanical walking robot AMOSII
(for further details please see Manoonpong et al., 2013). Note,
for a better understanding several results are already provided in
this section. The main experimental results are then presented in
Section 3 and discussed in Section 4.

2. Materials and Methods

In this study complex autonomous behaviors with versatility
and adaptivity of a walking robot are generated through a
sensorimotor loop which involves neural dynamics, synaptic
plasticity, sensory feedback, and biomechanics (Figure 1). Neural
dynamics and plasticity are embedded in an adaptive neural
sensory processing network (Figure 1A). The network with
its online synaptic plasticity mechanism, which is the main

contribution of this work, will be described in the first section and
followed by a short description of themodular neural locomotion
control network and the used biomechanical walking robot
AMOSII (Figures 1B,C). Some results are described alongside
the introduced components to provide a better understanding of
their functionalities.

2.1. Adaptive Neural Sensory Processing
Network
Although a two-neuron recurrent network has a limited
complexity it already shows a wide variety of interesting
dynamical properties (Figure 2 and Supplementary Material)
which can be exploited for sensory processing, state
memorization, and behavior control (Hülse and Pasemann,
2002; Hülse et al., 2007; Manoonpong et al., 2010). Based on this
network, Hülse et al. (Hülse and Pasemann, 2002) employed
an evolutionary algorithm (Hülse et al., 2004) to evolve the
optimal parameters of the system. The resulting network,
named minimal-recurrent controller (MRC), consists of mutual
inhibitory synapses between the neurons and a self-excitatory
synapse at each neuron. This system exhibits a hysteresis in its
neuronal activations (Figure 2C) which can be used to process
sensory signals and generate obstacle avoidance behavior (tested
on a simple two wheeled Khepera robot with two DOFs Hülse
et al., 2004). However, using the evolved parameters of the
synaptic weights or other fixed values, the robot can get stuck
in complex environments composed of many obstacles, sharp
corners, and narrow passages. Thus, we use the two-neuron
network as our basic network structure (Figure 2) and adapt the
synaptic weights by an unsupervised correlation-based learning
rule with synaptic scaling (Tetzlaff et al., 2011) while interacting
with the environment. This allows the system to use all possible
neural dynamics (i.e., hysteresis, single fixed points, etc.) and,
thereby, to adaptively avoid obstacles in a complex environment.

All neurons of the network are modeled as discrete-time non-
spiking neurons. The neural outputs (O1,2) are governed by
Equations (1, 2), respectively:

O1(t + 1) = tanh
[

b1O1(t)+ c2O2(t)+ a1I1(t)
]

, (1)

O2(t + 1) = tanh
[

b2O2(t)+ c1O1(t)+ a1I2(t)
]

, (2)

where b1, 2 are the weights of the self-excitatory synapses, c1, 2
are the weights of inhibitory synapses between the neurons, and
I1, 2 are the sensory input signals. In this study, two ultrasonic
sensors, mounted on the forehead of the walking robot, provide
the sensory input signals to the network. The sensors, acting
as an insect’ antennae, are for obstacle detection. The range of
each sensor is adjusted to 40 cm. Before feeding the raw sensory
signals to the network, we map them to the range of [−1, 1]
where −1 means no obstacle in the range and 1 means that
an obstacle is near (about 5 cm distance). The output signals
(O1,2 ∈ [−1, 1]) of the two-neuron network are transmitted
to the neural locomotion control network triggering behavior
performed by the biomechanics (Figure 1A). Thus, the robot
can autonomously perform obstacle avoidance behavior through
a sensorimotor loop with respect to environmental stimuli. In
other words, it will walk around and also avoid obstacles if they
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FIGURE 1 | Adaptive embodied neural closed-loop control setup and the real and simulated biomechanical walking robots AMOSII. (A) The setup of

adaptive embodied neural closed-loop control for complex autonomous behaviors with versatility and adaptivity. It consists of the adaptive neural sensory processing

network with synaptic plasticity, the modular neural locomotion control network, the biomechanical walking robot AMOSII, and the environment. The sensory

processing network is in the focus of this study while the locomotion control network and the robot have been developed earlier (Manoonpong et al., 2013). (B) The

real biomechanical walking robot AMOSII with 19 DOFs and its sensors. It has one backbone joint for climbing and 3-jointed legs for walking on different terrains. Its

two ultrasonic sensors installed at the front are used to provide exteroceptive sensory feedback to its adaptive neural sensory processing network. Additionally, a

camera and a laser range finder are used for terrain recognition and obstacle height detection. (C) The simulated AMOSII using the LPZRobots simulation environment

(Martius et al., 2010).

FIGURE 2 | Adaptive neural sensory processing network. (A) The network is a two-neuron recurrent network based on the MRC network. Here, the synaptic

weights of the network are adapted by an online correlation-based learning rule with synaptic scaling. Changing the connections also changes the neural dynamics of

the network. Already for the single neuron with a recurrent connection b the possible neural dynamics are (B) an approximately linear I−O-relation, (C) a hysteresis,

and (D) a two state (active, non-active) system. Obviously, the two-neuron system exhibits more complex dynamics. Green solid line: stable attractor; orange doted

line; unstable attractor (for the influence of the inhibitory connections, see Supplementary Material).

are detected. Note that if the outputs O1,2 are zero, the robot has
actually to stop moving. However, this situation is very unlikely
as the robot is, without external trigger, forced to move forward
(O1,2 = −1), otherwise the robot would stand still and do
nothing. In Table 1 different walking directions with respect to
the sign of the output signals of the sensory processing network
are summarized.

2.1.1. Non-plastic Synapses
To understand neural dynamics and investigate the performance
of the network with static, non-plastic synapses, we manually
adjusted the synaptic weights (b1,2 and c1,2) for AMOSII on

the basis of their well understood functionalities (Hülse and
Pasemann, 2002;Manoonpong et al., 2008). The weights from the
input to output units were set to a1 = 4.7. The self-connections
(b1,2) were tuned to derive a reasonable hysteresis interval on
the input space (Figure 2C). The hysteresis assures that the
system still turns although the sensors do not detect an obstacle
anymore. Note, the width of the hysteresis is proportional to
the strength of the self-connections. Thus, the hysteresis width
determines the turning angle in front of the obstacles for avoiding
them, i.e., the larger the hysteresis interval (distance between
green arrows in Figure 2C), the larger the turning angle. Thus,
the self-connections are set to 2.4 to obtain a suitable turning
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TABLE 1 | Different walking directions with respect to the sensory

processing outputs.

Output 1 (left, O1) Output 2 (right, O2) Walking direction

Negative Negative Forward

Positive Positive Backward

Negative Positive Turn left

Positive Negative Turn right

Zero Zero Stop

The amplitude determines the walking speed.

angle of AMOSII. A too small self-connection will not induce
a hysteresis and, therefore, a long enough turning (Figure 2B)
while a too strong connection will induce either no turning
(non-active state) or permanent turning (active state; Figure 2D).
Finally, the mutual connections (c1,2) between the neurons are
symmetrized and manually adjusted to −3.5. Such inhibitory
recurrent connections form a so-called even loop (Wessnitzer
and Webb, 2006). In an even loop, in general, only one neuron
at a time is able to produce a positive output, while the other
one has a negative output, and vice versa. This guarantees the
optimal functionality for avoiding obstacles and escaping from
corners. The hysteresis induced by the self-connection enables
a strong activation even after turning away from one obstacle
and, by inhibiting the other neuron, continues turning. Stucked
in a trap, by this method the agent or robot can turn until it
gets out. In other words, in a trap (e.g., Figure 3A) the system
remembers for a certain duration the first object and executes the
related behavior (turn) and, in addition, it does not trigger the
behavior induced by the second object which would be a turning
in the opposite direction. This network, with the best working
configuration, enables AMOSII to avoid obstacles and escape
from corners and deadlocks (Figures 3A,F). However, AMOSII
got stuck when sharp corners or narrow passages are present
(Figures 3B,G). The neural dynamics for a narrow passage
(Figure 3B) are shown in (Figure 3C). Although the hysteresis
effect is triggered (Figures 3D,E), the turning angle is in such a
case not large enough and the behavior induced by the second
object is also triggered (turn in the opposite direction). Now,
again a hysteresis starts which is not long enough, too. Thus,
the robot starts to oscillate between the objects and is trapped.
To avoid this undesirable behavior the memory of the first
obstacle has to longer dominate the dynamics of the system and,
thereby, to increase the turning angle. Thus, the system needs a
mechanism to modify the synaptic weights of the network during
behavior, thereby, for instance, changing the neural dynamics of
the network from an hysteresis effect (Figure 2C) to a single fixed
point attractor having a prolonged memory (Figure 2D) and vice
versa. Therefore, we introduce a biological reasonable plasticity
rule based on the interaction between correlation-based learning
and synaptic scaling (Tetzlaff et al., 2011) to adapt the synaptic
weights in an online (while behaving) manner described in the
following.

2.1.2. Plastic Synapses Using Correlation-based

Learning and Synaptic Scaling
To modify all synaptic weights (b1,2 and c1,2) while the agent
interacts with the environment, we use here correlation-based

learning (Kolodziejski et al., 2008) based on three factors: the
output activity Oi(t) of the network at the time step t, the output
activity Oi(t − 1) of the network at the previous time step t − 1,
and a reflex signal Ti(t) (i ∈ {1, 2}). The reflex signal is used to
control the learning process which will start as soon as the robot
detects an obstacle at close range (about 30 cm). Additionally,
we also employ synaptic scaling (Tetzlaff et al., 2011, 2012) to
stabilize the synaptic weights. To assure that the synaptic weights
do not change their sign, for the learning rule, wemap the outputs
Oi ∈ [−1, 1] to the positive interval vi ∈ [0, 1]. Thus, synaptic
weights are updated as follows:

bi(t + 1) = µb · vi(t − 1) · vi(t) · Ti(t)+ γb (k− vi(t)) · bi(t)
2
,

(3)

qi(t + 1) = µq · vi(t − 1) · vi(t) · Ti(t)+ γq (k− vi(t)) · qi(t)
2
,

(4)

ci(t + 1) = 1
2 ·

(

q1(t + 1)+ q2(t + 1)
)

. (5)

µb,q are the learning rates or time scales of correlation-based
learning which are set to µb = 0.0065, µq = 0.015, and γq,b

are the forgetting rates or time scales of synaptic scaling which
are set to γq,b = 0.0003. The learning and forgetting rates are
empirically selected. Note, we introduce the auxiliary variables qi
for the inhibitory weights and calculate from them the average
inhibitory weight c = c1 = c2 in order to maintain symmetric
inhibition and, thereby, the even loop (Wessnitzer and Webb,
2006). The parameter k is an offset and set to k = −0.01. The
reflex signal Ti is computed from the sensory input Ii:

Ti(t)
(

Ii(t)
)

=

{

1 if Ii(t) > −0.5,
0 if Ii(t) ≤ −0.5.

(6)

In principle, this learningmechanism adapts the synaptic weights
in a way that the synaptic weights and therefore the neural output
will reach (via the hysteresis; Figure 2C) and stay (Figure 2D) at
the upper fixed point while the robot is trying to escape from
a narrow passage or deadlock. Thereby, the robot will escape
from the situation by performing a very large turning angle.
Once the robot has escaped or does not detect an obstacle any
more, the second part of the mechanism (synaptic scaling) will
decrease the synaptic weights such that the neural output returns
to the lower fixed point (Figures 2B,C); thereby the robot will
stop turning and continue to walk forward. In other words, the
interaction of correlation learning and scaling moves the neural
system between a two fixed point state (i.e., hysteresis effects)
and single fixed point states and vice versa. Note that the used
learning mechanism is independent of the used initial weight
values (Tetzlaff et al., 2011, 2012).

To show the basic dynamics of this adaptive system we, first,
initialized the synaptic weights with the values similar to the ones
used for non-plastic synapses (i.e., b1,2 = 2.4, c1,2 = −3.5) and
then provided constant inputs to the network (I1 = 1, I2 = −1).
According to the input values, T1 is one and T2 is zero. The
synaptic weights b1 and c1 increase and asymptotically converge
while b2 and c2 remain unchanged (Figure 4A). Interestingly, if
the system receives changing inputs, the weight changes are faster
and “peak-like” (Figure 4B). Afterwards, if the input becomes
inactive, the corresponding synaptic weights starts slowly to
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FIGURE 3 | Simulation results of AMOSII using non-plastic synapses in different deadlock situations. (A) The robot successfully escaped from a simple

deadlock situation. (B) If the situation becomes more complicated (only by inducing a small gap between obstacles) the robot is unsuccessful and trapped. However,

the neuronal activations (C) during this unsuccessful escaping behavior follow the desired hysteresis between input and output (D,E; color code illustrates time from

dark blue to dark red). Both tests were run for 5000 time steps. Similar effects arise in more complex environments. (F) In an environment with obstacles but no sharp

corners and narrow passages the agent was able to explore the area without getting stuck (red line: initial 70,000 time steps; gray line: further 330,000 time steps).

(G) In a more difficult environment with obstacles, sharp corners, and narrow passages the same network setup leads to an oscillating behavior as in (B) and the

agent is trapped. Red dot (−2,0) defines the starting position and green dot shows the position after 70,000 time steps. Arrows indicate walking direction.

FIGURE 4 | Synaptic weight changes for different input signals. (A) Weight changes for constant inputs (I1 = 1 and I2 = −1). While the input is active (i.e., here

left input), the corresponding synaptic weights (i.e., here b1 and c1) increase and start to converge to certain values. Note, this value does not depend on the initial

conditions (Tetzlaff et al., 2011). (B) Weight changes for changing inputs (I1,2) from a simulated environment. Synaptic weights increase quite fast when the input is

strong enough to trigger the reflex signal. Afterwards, if no input is present, the synaptic weights start to decay slowly.

decay. Thus, this plasticity mechanism enables the system to
reach the whole range of synaptic weight values.

To test the performance of the adaptive sensory processing
network, we tested it, similar to the constant system, in
two different environments (Figure 5). Remarkably, plasticity
enables the robot to successfully escape from a simple deadlock

(Figure 5A) and complex one (Figure 5B). For the complex case,
after a few turns to and from, the robot was able to escape from
it and was not trapped. The neural dynamics of the narrow
passage experiment (Figure 5B) is depicted in (Figures 5C–E).
This show that the learning mechanism is able to change the
neural dynamics in a way that the neural output can stay at
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FIGURE 5 | Simulation results of AMOSII using plastic synapses in deadlock situations. (A) The robot successfully escaped from a simple deadlock situation.

(B) If the situation becomes more complicated (small gap between obstacles) the adaptive robot is successful and not trapped. Neuronal activations (C) are much

more complicated due to the switch of the system between hysteresis and single attractor states (D,E; color code illustrates time from dark blue to dark red). Both

tests were run for 5000 time steps. (F,G) In a more difficult environment with obstacles, sharp corners, and narrow passages, the adaptive robot is able to escape from

all deadlocks, corners, etc. and explores the whole environment by permanently adapting the synaptic weights (F). The experiment was run for 1,000,000 time steps.

FIGURE 6 | Sixteen random environments with different numbers and orientations of obstacles. The red dot is the starting point of the robot and the green

dot indicates the end point of the robot. The environments were randomly filled with obstacles from the amount of 4–20 boxes. Red square shows the fail case. Green

and blue squares show the success cases where the agent was facing to a confined space and a trap, respectively.
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an upper fixed point for a long duration, thereby, implying a
very large turning angle resulting to a successful escape from the
difficult deadlock situation.

To evaluate the comprehensive performance of the network,
as the parameters of the environments are huge, we tested
50 random environments consisting of different numbers and
orientations of obstacles (i.e., non-climbable obstacles) and
surrounding walls (see Figure 6). We varied the number of
the obstacles from 2 to 20. According to this, the agent was
facing different (random) situations like obstacles, sharp corners,
deadlocks, and narrow passages. Remarkably, the agent failed
only one to explore the whole environment (see Table 2). Very
small confined spaces can pose a problem for the agent to escape
because it is barely/not able to turn; thereby getting stuck (see red
square in Figure 6). However, the agent can successfully escape if
the confined space is a bit bigger than in the fail case (see green
square in Figure 6) or even there is a trap (see blue square in
Figure 6).

2.2. Modular Neural Locomotion Control Network
The modular neural locomotion control network for locomotion
generation of the biomechanical walking machine AMOSII
consists of three main neural components (modules): central
pattern generator (CPG)-based control module (Manoonpong
et al., 2013), local leg control module (Manoonpong et al.,
2013), and backbone joint control module (Goldschmidt et al.,
2014). The CPG-based control basically coordinates all leg joints
and generate multiple insect-like gaits and different walking
directions (forward/backward walking, turning left, and right).
The local leg control, relying on proprioceptive sensory feedback
(like foot contact sensors) and internal forward models, adapt the
movement of an individual leg of AMOSII for foothold searching
and elevation, thereby, enabling rough terrain locomotion
and supporting the body of AMOSII during climbing. The
backbone joint control, using exteroceptive and proprioceptive
feedback, generates the leaning movements of the backbone
joint for climbing over obstacles. Here we will describe all these
components in brief since they are not the main contribution
here but they are required to support the adaptive neural sensory
processing network (described above) for generating the versatile
and adaptive behaviors of AMOSII.

The CPG-based control has four components: (1) a two-
neuron CPG system with neuromodulation for generating
different periodic patterns, (2) neural CPG postprocessing for
shaping the CPG patterns to obtain smooth leg movements, (3)
neural motor control consisting of two different feedforward
neural networks [phase switching network (PSN) and velocity
regulating networks (VRNs)] for controlling walking direction
(forward/backward and turning), and (4) motor neurons with
delay lines for sending motor commands to all leg joints of

TABLE 2 | Success and failure rate of different tested situations.

Environments Success Failure

50 49 1

AMOSII through muscle models (Xiong et al., 2014b) (see
Supplementary Figure 1).

The local leg control has two components for each leg: (1) a
neural forward model transforming the motor signal (efference
copy) generated by the CPG into an expected sensory signal
for estimating the walking state and (2) elevation and searching
control for adapting leg motion (e.g., extension/flexion and
elevation/depression).

The backbone joint control is based on a recurrent
neural network consisting of five input neurons, a hidden,
postprocessing neuron and an output neuron which drives
the backbone joint (see Supplementary Figure 1). All neurons
of the locomotion control network are modeled as discrete-
time non-spiking neurons. They are updated with a frequency
of approximately 27 Hz. The complete neural circuit, which
combines the adaptive neural sensory processing network and
the modular neural locomotion control network, is shown in
Supplementary Figure 1. For obstacle avoidance, the outputs
O1(left),2(right) of the adaptive neural sensory processing network
(Figure 2) are transmitted as descending steering signals to the
VRNs. This way, AMOSII will walk according to the outputsO1,2

(seeTable 1). Figure 7 exemplifies all leg joint movements during
forward/backward walking and turning right/left. The complete
description of the locomotion control network can be seen at our
previous work (Manoonpong et al., 2013).

2.3. The Biomechanical Walking Robot AMOSII
The biomechanical walking robot AMOSII is a biologically
inspired hardware platform (Figure 1B) having two main
components: bio-inspired structures and simulated muscles.

Its structures consist of six identical multi-jointed legs and one
backbone joint (BJ). Each leg has three joints (three degrees of
freedom): the thoraco-coxal (TC-) joint enables forward (+) and
backward (−) movements, the coxa-trochanteral (CTr-) joint
enables elevation (+) and depression (−) of the leg, and the
femur-tibia (FTi-) joint enables extension (+), and flexion (−)
of the tibia. The morphology of this multi-jointed leg is modeled
on the basis of a cockroach leg but the tarsus segments are
ignored. The BJ is inspired by the segmented body joints of a
cockroach. It can lean downwards to a minimum position of
−45◦ which is comparable to a cockroach. The joint also allows
to lean upwards to a maximum position of +45◦. The leaning
upward and downward motions are used for climbing over an
obstacle. All joints are driven by standard servomotors.

AMOSII has all in all 19 motors and various sensors, e.g.,
two ultrasonic sensors, a camera, a laser range finder, etc. The
ultrasonic sensors act as antennae to detect obstacles. They
are used to provide sensory inputs to our adaptive sensory
processing network. The camera is used for terrain classification
and the laser range finder is used to measure obstacle height
in order to distinguish between a wall and a surmountable
obstacle (see Kesper et al., 2013; Zenker et al., 2013 for more
details) . We use a Multi-Servo IO-Board (MBoard) to digitize
all sensory input signals (except the camera and laser range
finder signals) and generate a pulse-width-modulated signal to
control servomotor position. For the robot walking experiments
in this study, the MBoard was connected to a personal computer
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FIGURE 7 | Angles of the thoraco-coxal (TC-) joint, the coxa-trochanteral (CTr-) joint, and the femur-tibia (FTi-) joint of all legs. (A) Forward walking. (B)

Backward walking. (C) Turning right. (D) Turning left. All joint angles are in degrees. Gray and white areas indicate the swing and stance phases, respectively. Here the

CPG generates low frequency periodic signals which lead to a slow wave gait. For this gait, the legs swing one by one from hind to front. This gait is used through out

this study. TR1, CR1, FR1 = TC-, CTr-, and FTi-joints of the right front leg (R1); TR2, CR2, FR2 = right middle leg (R2); TR3, CR3, FR3 = right hind leg (R3); TL1, CL1,

FL1 = left front leg (L1); TL2, CL2, FL2 = left middle leg (L2); TL3, CL3, FL3 = left hind leg (L3). Note the TC-joint is for forward (+) and backward (−) movements, the

CTr-joint is for elevation (+) and depression (−) of the leg, and the FTi-joint is for extension (+) and flexion (−) of the tibia. Further details see main text and

Supplementary Material.

on which the neural locomotion controller was implemented.
The update frequency was 27 Hz. Electrical power supply was
provided by batteries: one 11.1 V lithium polymer 3200 mAh for
all servomotors and two 11.1 V lithium polymers 910mAh for
the electronic board (MBoard) and all sensors (see Manoonpong
et al., 2013 for more details). Besides the bio-inspired body and
leg structures, AMOSII also has muscle-like mechanisms (called
virtual agonist-antagonist mechanisms Xiong et al., 2014b) for
variable compliant leg motions. This biomechanical function
allows it to achieve stable and energy-efficient locomotion on
different surfaces (Xiong et al., 2014a). The complete description
of AMOSII can be seen at our previous work (Manoonpong et al.,
2013).

3. Results

In the previous sections, we describe an adaptive embodied
neural closed-loop control system for versatile and adaptive
behaviors (Figure 1A). The system consists of neural
mechanisms (i.e., the adaptive neural sensory processing
network and the modular neural locomotion control network),
biomechanics (i.e., the biomechanical walking robot AMOSII
with bio-inspired morphology and muscle models), and the
environment. Besides, we present the performance and neural
dynamics of the adaptive processing network and compare them

with the ones of a nonadaptive sensory processing network.
Here, we further evaluate the performance of the adaptive
embodied system through three main experiments.

The first experiment investigates the synaptic changes and
neural outputs of the adaptive neural sensory processing network
as well as robot behavior in a very complex environment with
many obstacles, different sharp corners, and narrow passages in
simulation. In this experiment, we initialized all synaptic weights
to zero and let the robot start from a certain location in the
environment. The experimental result is shown in Figures 5F,G.
It can be seen that the learning mechanism can stably adapt
the weights such that the robot can walk around and adapt its
turning angle for avoiding obstacles in different situations. The
adaptation also enables the robot to effectively escape from sharp
corners or deadlock (different to a static network; Figures 3F,G).
Consequently, the robot can successfully explore and navigate in
the complex environment.

The second experiment presents real robot behaviors in two
different environments. The first environment follows the one
shown in Figure 5B. The experimental result is shown as a series
of photos of AMOSII (Figure 8). AMOSII first walked toward a
narrow passage (0:00 min). Then, it detected the obstacle on its
left (0:10 min), thereby, turning to the right (0:20 min). It got
stuck briefly in front of the gap (0:27 min) because both sensors
detected both obstacles. In this situation, the synaptic weights
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FIGURE 8 | Escape behavior of AMOSII from a narrow passage. Snapshots of AMOSII during interaction with the environment. We encourage readers to also

see the video of this experiment at Supplementary Video 1.

of the left neuron of the adaptive sensory processing network
were strongly modified compared to the synaptic weights of the
right neuron. This adaptation reinforced the activation of the
left neuron while inhibiting the right one. As a consequence,
AMOSII could continually turn to the right (0:30–0:40 min)
and then successfully escaped from the passage (0:50 min). In
contrast, AMOSII got stuck and failed to escape from it when the
non-adaptive network was used (described in Section 2.1.1; see
Supplementary Video 1).

The second environment was constructed as a complex path
consisting of side walls on the right, small obstacles on the left,
and deadlock at the end of the path. This experiment aims to
access only obstacle avoidance behavior while walking in the
path. Thus, only the two ultrasonic sensors were used to allow
AMOSII to detect obstacles while the laser range finder for
detecting obstacle height was ignored. The experimental result is
shown as a series of photos of AMOSII (Figure 9). AMOSII first
entered the path (0:00 min) and then turned to the right since

it detected an obstacle on the left (0:20 min). It then continued
to walk toward the end of the path (0:47 min) and approached it
(1:08min). Afterwards, AMOSII turned left to avoid the deadlock
(1:50–2:05min), turned right to avoid the left wall (2:32min), and
finally went out of the path (3:20 min). This successful navigation
was autonomously controlled by the descending steering signals
from the adaptive neural sensory processing network. In contrast,
AMOSII got stuck in the path when the non-adaptive network
(described in Section 2.1.1) was employed (see Supplementary
Video 2).

The final experiment demonstrates versatile behavior
(walking, climbing up steps, and avoiding a wall) in a complex
environment. To do so, we constructed a track consisting of a
ground floor and two elevated platforms and let AMOSII start to
walk from the first platform (ground floor). In this experiment,
we used both the ultrasonic sensors and the laser range finder
to allow AMOSII to detect obstacles and distinguish between
climbable (i.e., step) and non-climbable (e.g., wall) obstacles. If
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FIGURE 9 | Navigation of AMOSII in a complex path. Snapshots of AMOSII during interaction with the environment. We encourage readers to also see the video

of this experiment at Supplementary Video 2.

AMOSII detects a climbable obstacle, it will start to climb over
it using extra BJ control embedded in the neural locomotion
control circuit (Goldschmidt et al., 2014, see also Supplementary
Figure 1). In contrast, if it detects a non-climbable obstacle, it
will avoid it. The avoiding behavior is driven by the adaptive
sensory processing network. The experimental result is shown
as a series of photos of AMOSII (Figure 10). It can be seen that
AMOSII started walking toward the first platform (0:01 min). It
then detected the platform as a climbable obstacle and climbed
onto it (0:17–0:23 min). Afterwards, AMOSII continued to walk
on the first platform (0:40 min). While walking on it, AMOSII
detected the wall in front of it, thereby, turning to avoid the wall

(0:47–1:00 min). After avoiding the wall, AMOSII climbed onto
the second platform (1:14 min) and continued to walk on it (1:34
min). The versatile behavior was achieved by the combination
of the complete neural circuit (Supplementary Figure 1) and the
bio-inspired structure of AMOSII (Figure 1B).

4. Discussion

In this study, we introduced neural mechanisms for versatile
and adaptive behaviors and used our biomechanical walking
robot AMOII as an experimental platform to evaluate the
performance of the mechanisms and demonstrate the behaviors.
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FIGURE 10 | Versatile behavior of AMOSII in a complex environment. Snapshots of AMOSII during interaction with the environment. We encourage readers to

also see the video of this experiment at Supplementary Video 3.

The mechanisms consist of adaptive neural sensory processing
and modular neural locomotion control. The sensory processing
was formed by a two-neuron recurrent network with fully
connections. Online correlation-based learning with synaptic
scaling was employed to stably modify network connections.
In principle, this online learning mechanism can increase
or decrease the weights of the connections depending on
the interaction of the robot with its environment; thereby
changing neural dynamics in the network (e.g., from hysteresis
effects to a stable attractor and vice versa). This changing
neural dynamics can be exploited for generating different
turning angles including very large ones to avoid different
obstacles and corners. Specifically, the sensory preprocessing
takes exteroceptive sensory inputs provided by, for instance,
two ultrasonic sensors installed at the front of AMOSII and

translates the signals into descending steering commands to the
locomotion control to generate adaptive turning angles with
short-term memory when facing to obstacles, sharp corners, or
narrow passages. This results in adaptively avoiding obstacles
and escaping from corners/deadlock and narrow passages.
Furthermore, this also enables AMOSII to successfully explore
and navigate in cluttered unknown environments.

Several obstacle avoidance techniques have been developed
in the past (Pasemann et al., 2003; Harter and Kozma, 2005;
Vargas et al., 2009; Risi and Stanley, 2012; Pitonakova, 2013).
A classical way is to use Braitenberg control (Braitenberg, 1986)
which reactively controls an agent with respect to the activations
of sensory inputs. For this approach, the agent will turn as long
as it detects an obstacle. At a corner or deadlock, it might switch
between turning left and right several times to avoid or escape
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from the situation or it sometimes gets stuck. To overcome the
problem, a sensor array can be used (Fend et al., 2003; Dongyue
et al., 2013; Mohammad et al., 2013) together with short-term
memory (Hülse and Pasemann, 2002). Hülse and Pasemann
(2002) developed a minimal recurrent controller (MRC) using an
evolutionary algorithm (Hülse et al., 2004). The MRC consists
of two neurons with mutual inhibitory synapses between the
neurons and a self-excitatory synapse of each neuron. According
to the recurrent connections, the controller exhibits hysteresis
effects which act as short-term memory to prolong turning
action. The MRC was tested on a simple Khepera robot, a
two wheeled platform (2 DOFs) with a sensor array (i.e., six
front proximity sensors). While the robot can effective avoid
obstacles, it has sometimes difficulties to explore and avoid
obstacles in complex environments with many obstacles, sharp
corners, and narrow passages. This is because MRCs exhibit
three hysteresis effects (Hülse and Pasemann, 2002) which can be
switched among them by inputs. This leads to a certain degree
of turning angle which sometimes is not enough for avoiding,
for instance, a sharp corner. Note that turning angle or turning
duration is basically derived from the width of the hysteresis.
According to this, Toutounji and Pasemann (2014) introduced
short-term plasticity induced by self-regulating neurons (Zahedi
and Pasemann, 2007) in MRC. This allows the wheel-driven
robot ALICE with five distance sensors to capable of avoiding
sharp corners. However, in this approach, different to the present
one, the activity states have to be predefined.

In contrast to the previous approaches, our work here show
that the small adaptive preprocessing unit with only two sensors
allow a many degrees of freedommachine (like AMOSII) to learn
and adapt its behavior to successfully avoid obstacles and navigate
in a very complex environment. However, it is important to note
that the agent does not learn ones the complete environment. It
basically adapts to the current situation it is situated in, moves on,
and adapts to the next situation. The adaptation time needed for
each situation cannot be precisely estimated as this depends on
several parameters (entrance angle, gap between objects, number
of objects, etc.) which can already seen in Figure 5. Further
investigations are needed which are beyond the scope of this
study.

In addition to the preprocessing unit, the neural locomotion
control can also allow AMOSII to walk around and climb
over a climbable obstacle. The plasticity mechanism used here
is different from others as it relies on a dynamic adaptation
whereby synaptic strengths are memorized with respect to the
neuronal excitation (Tetzlaff et al., 2011). Thereby, the presented
mechanism allows the neural dynamics to change from hysteresis
effects to single fixed point states (lower and upper) in order
to keep the neural output stay for longer duration at certain
values. This then generates, for instance, a very large turning
angle for the robot which will be sufficient to avoid or escape from
sharp corners and narrow passages. Once the robot has escaped
from the situation; i.e., its sensory inputs become inactive, the
synaptic strengths will decay. Thus, the neural dynamics will

change from having only the upper fixed point to having also the
lower fixed point (hysteresis). For survival behavior, it is in the
interest of the agent to keep the excitation of the front ultrasonic
distance sensors close to minimum. The agent has a stable
moving forward behavior, this is only interrupted by approaching
obstacles. Here the stable forward behavior is interrupted and
leads into a stable turning behavior of the agent. As soon as
the excitation ends, the adaptive preprocessing unit generates
negative steering motor outputs. Thus, the agent continues with
the stable forward behavior. The effective control and timing
of the adaptive processing network depends also on the chosen
learning and forgetting parameters, which were currently picked
by hand. Different values of these parameters can reflect different
learning speeds or different timescales of adaptivity. The current
chosen values deliver fast adaptation in difficult situations, but
also enough stability to prevent the hysteresis to fall into an
infinity-feedback-loop. These parameters seem to be quite critical
for satisfactory behavior. However, they can be found in principle
by using evolutionary algorithms.

Taken together this work provides a further step suggesting
how neural dynamics, plasticity, sensory feedback, and
biomechanics can be combined to generate versatile and
adaptive behaviors of complex robots. While biomechanical
components (e.g., structures and muscles) allow for complex
movements (walking, climbing), neural dynamics and plasticity
embedded in sensory processing and control networks as well
as sensory feedback form coordination, generate locomotion,
and provide adaptation. The results presented here show
that the employed embodied adaptive neural closed-loop
system (Supplementary Figure 1) is a powerful approach for
achieving versatility and adaptivity in machines. As the neural
mechanisms are modular, it is flexible and offers the future
possibility of integrating other modules, like a goal-directed
navigation learning module (Zeidan et al., 2014) and a neural
path integration module (Goldschmidt et al., 2015). This will
enable the robotic system to be capable of navigating in complex
environments toward given goals and autonomously return to
its home position. It is important to emphasize that although
here we show the use of the adaptive preprocessing network for
a walking robot system, the network can be applied to other
mobile robot systems for generating adaptive obstacle avoidance.
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