426 research outputs found

    Remote Shopping Robot System, -Development of a hand mechanism for grasping fresh foods in a supermarket

    Full text link

    The UJI librarian robot

    Get PDF
    This paper describes the UJI Librarian Robot, a mobile manipulator that is able to autonomously locate a book in an ordinary library, and grasp it from a bookshelf, by using eye-in-hand stereo vision and force sensing. The robot is only provided with the book code, a library map and some knowledge about its logical structure and takes advantage of the spatio-temporal constraints and regularities of the environment by applying disparate techniques such as stereo vision, visual tracking, probabilistic matching, motion estimation, multisensor-based grasping, visual servoing and hybrid control, in such a way that it exhibits a robust and dependable performance. The system has been tested, and experimental results show how it is able to robustly locate and grasp a book in a reasonable time without human intervention

    An Enhanced Robotic Library System for an Off-Site Shelving Facility

    Get PDF
    This paper describes our continued work of a unique robotics project, Comprehensive Access to Printed Materials (CAPM), within the context of libraries. As libraries provide a growing array of digital library services and resources, they continue to acquire large quantities of printed material. This combined pressure of providing electronic and print-based resources and services has led to severe space constraints for many libraries, especially academic research libraries. Consequently, many libraries have built or plan to build off-site shelving facilities to accommodate printed materials. However, given that these locations are not usually within walking distance of the main library, access to these materials, specifically the ability to browse, is greatly reduced. Libraries with such facilities offer extensive physical delivery options from these facilities, sometimes offering multiple deliveries per day. Even with such delivery options, the ability to browse in real-time remains absent. The goal of the CAPM Project is to build a robotic, on-demand and batch scanning system that will allow for real-time browsing of printed materials through a web interface. We envisage the system will work as follows: an end user will identify that a monograph is located in an off-site facility. The user will engage the CAPM system that, in turn, will initiate a robot that will retrieve the requested item. The robot will deliver this item to another robotic system that will open the item and turn the pages automatically

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry

    Improving Library Material Shelving Time By Implementing An Autonomous Book Truck

    Get PDF
    DissertationThe prompt shelving of returned library books is an important task in any traditional library. To help speed up the shelving process, this dissertation proposes an automated book truck capable of moving returned library books from the return desk back to the shelves. By making use of the design and creation research methodology, software algorithms, sensors and robotic hardware are evaluated and then selected to construct an autonomous book truck. It is determined that an autonomous book truck should consist of a robotic body that has the same footprint as an average human. Furthermore, the sensor skirt should consist of at least a LIDAR or equivalent sensor to be used for obstacle avoidance and that sonar sensors should be used for localisation. A simulator is created to test the selected components with the simulation data suggesting that shelving time – and therefore the dead time of returned books – is reduced by a significant factor. The research also provides a possible prototype which can be used for further development.

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    Command and Control Systems for Search and Rescue Robots

    Get PDF
    The novel application of unmanned systems in the domain of humanitarian Search and Rescue (SAR) operations has created a need to develop specific multi-Robot Command and Control (RC2) systems. This societal application of robotics requires human-robot interfaces for controlling a large fleet of heterogeneous robots deployed in multiple domains of operation (ground, aerial and marine). This chapter provides an overview of the Command, Control and Intelligence (C2I) system developed within the scope of Integrated Components for Assisted Rescue and Unmanned Search operations (ICARUS). The life cycle of the system begins with a description of use cases and the deployment scenarios in collaboration with SAR teams as end-users. This is followed by an illustration of the system design and architecture, core technologies used in implementing the C2I, iterative integration phases with field deployments for evaluating and improving the system. The main subcomponents consist of a central Mission Planning and Coordination System (MPCS), field Robot Command and Control (RC2) subsystems with a portable force-feedback exoskeleton interface for robot arm tele-manipulation and field mobile devices. The distribution of these C2I subsystems with their communication links for unmanned SAR operations is described in detail. Field demonstrations of the C2I system with SAR personnel assisted by unmanned systems provide an outlook for implementing such systems into mainstream SAR operations in the future
    corecore