132,860 research outputs found

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    FRAM for systemic accident analysis: a matrix representation of functional resonance

    Get PDF
    Due to the inherent complexity of nowadays Air Traffic Management (ATM) system, standard methods looking at an event as a linear sequence of failures might become inappropriate. For this purpose, adopting a systemic perspective, the Functional Resonance Analysis Method (FRAM) originally developed by Hollnagel, helps identifying non-linear combinations of events and interrelationships. This paper aims to enhance the strength of FRAM-based accident analyses, discussing the Resilience Analysis Matrix (RAM), a user-friendly tool that supports the analyst during the analysis, in order to reduce the complexity of representation of FRAM. The RAM offers a two dimensional representation which highlights systematically connections among couplings, and thus even highly connected group of couplings. As an illustrative case study, this paper develops a systemic accident analysis for the runway incursion happened in February 1991 at LAX airport, involving SkyWest Flight 5569 and USAir Flight 1493. FRAM confirms itself a powerful method to characterize the variability of the operational scenario, identifying the dynamic couplings with a critical role during the event and helping discussing the systemic effects of variability at different level of analysis

    Reliability-based design optimization using kriging surrogates and subset simulation

    Full text link
    The aim of the present paper is to develop a strategy for solving reliability-based design optimization (RBDO) problems that remains applicable when the performance models are expensive to evaluate. Starting with the premise that simulation-based approaches are not affordable for such problems, and that the most-probable-failure-point-based approaches do not permit to quantify the error on the estimation of the failure probability, an approach based on both metamodels and advanced simulation techniques is explored. The kriging metamodeling technique is chosen in order to surrogate the performance functions because it allows one to genuinely quantify the surrogate error. The surrogate error onto the limit-state surfaces is propagated to the failure probabilities estimates in order to provide an empirical error measure. This error is then sequentially reduced by means of a population-based adaptive refinement technique until the kriging surrogates are accurate enough for reliability analysis. This original refinement strategy makes it possible to add several observations in the design of experiments at the same time. Reliability and reliability sensitivity analyses are performed by means of the subset simulation technique for the sake of numerical efficiency. The adaptive surrogate-based strategy for reliability estimation is finally involved into a classical gradient-based optimization algorithm in order to solve the RBDO problem. The kriging surrogates are built in a so-called augmented reliability space thus making them reusable from one nested RBDO iteration to the other. The strategy is compared to other approaches available in the literature on three academic examples in the field of structural mechanics.Comment: 20 pages, 6 figures, 5 tables. Preprint submitted to Springer-Verla

    Fire Safety Analysis of a Railway Compartment using Computational Fluid Dynamics

    Get PDF
    Trains are considered to be the safest on-land transportation means for both passengers and cargo. Train accidents have been mainly disastrous, especially in case of fire, where the consequences are extensive loss of life and goods. The fire would generate smoke and heat which would spread quickly inside the railway compartments. Both heat and smoke are the primary reasons of casualties in a train. This study has been carried out to perform numerical analysis of fire characteristics in a railway compartment using commercial Computational Fluid Dynamics code ANSYS. Non-premixed combustion model has been used to simulate a fire scenario within a railway compartment, while Shear Stress Transport k-ω turbulence model has been used to accurately predict the hot air turbulence parameters within the compartment. The walls of the compartment have been modelled as no-slip stationary adiabatic walls, as is observed in real life conditions. Carbon dioxide concentration (CO2), temperature distribution and air flow velocity within the railway compartment has been monitored. It has been observed that the smoke above the fire source flows to both sides of the compartment. The highest temperature zone is located downstream the fire source, and gradually decreases with the increase in the distance from the fire source. It can be seen that CFD can be used as an effective tool in order to analyse the evolution of fire in railway compartments with reasonable accuracy. The paper also briefly discusses the topical reliability issues

    Optimal control of the heave motion of marine cable subsea-unit systems

    Get PDF
    One of the key problems associated with subsea operations involving tethered subsea units is the motions of support vessels on the ocean surface which can be transmitted to the subsea unit through the cable and increase the tension. In this paper, a theoretical approach for heave compensation is developed. After proper modelling of each element of the system, which includes the cable/subsea-unit, the onboard winch, control theory is applied to design an optimal control law. Numerical simulations are carried out, and it is found that the proposed active control scheme appears to be a promising solution to the problem of heave compensation

    Evaluation of Coordinated Ramp Metering (CRM) Implemented By Caltrans

    Get PDF
    Coordinated ramp metering (CRM) is a critical component of smart freeway corridors that rely on real-time traffic data from ramps and freeway mainline to improve decision-making by the motorists and Traffic Management Center (TMC) personnel. CRM uses an algorithm that considers real-time traffic volumes on freeway mainline and ramps and then adjusts the metering rates on the ramps accordingly for optimal flow along the entire corridor. Improving capacity through smart corridors is less costly and easier to deploy than freeway widening due to high costs associated with right-of-way acquisition and construction. Nevertheless, conversion to smart corridors still represents a sizable investment for public agencies. However, in the U.S. there have been limited evaluations of smart corridors in general, and CRM in particular, based on real operational data. This project examined the recent Smart Corridor implementation on Interstate 80 (I-80) in the Bay Area and State Route 99 (SR-99, SR99) in Sacramento based on travel time reliability measures, efficiency measures, and before-and-after safety evaluation using the Empirical Bayes (EB) approach. As such, this evaluation represents the most complete before-and-after evaluation of such systems. The reliability measures include buffer index, planning time, and measures from the literature that account for both the skew and width of the travel time distribution. For efficiency, the study estimates the ratio of vehicle miles traveled vs. vehicle hour traveled. The research contextualizes before-and-after comparisons for efficiency and reliability measures through similar measures from another corridor (i.e., the control corridor of I-280 in District 4 and I-5 in District 3) from the same region, which did not have CRM implemented. The results show there has been an improvement in freeway operation based on efficiency data. Post-CRM implementation, travel time reliability measures do not show a similar improvement. The report also provides a counterfactual estimate of expected crashes in the post-implementation period, which can be compared with the actual number of crashes in the “after” period to evaluate effectiveness

    Warranty Data Analysis: A Review

    Get PDF
    Warranty claims and supplementary data contain useful information about product quality and reliability. Analysing such data can therefore be of benefit to manufacturers in identifying early warnings of abnormalities in their products, providing useful information about failure modes to aid design modification, estimating product reliability for deciding on warranty policy and forecasting future warranty claims needed for preparing fiscal plans. In the last two decades, considerable research has been conducted in warranty data analysis (WDA) from several different perspectives. This article attempts to summarise and review the research and developments in WDA with emphasis on models, methods and applications. It concludes with a brief discussion on current practices and possible future trends in WDA
    • …
    corecore