182 research outputs found

    RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions

    Get PDF
    RegulonDB is the internationally recognized reference database of Escherichia coli K-12 offering curated knowledge of the regulatory network and operon organization. It is currently the largest electronically-encoded database of the regulatory network of any free-living organism. We present here the recently launched RegulonDB version 5.0 radically different in content, interface design and capabilities. Continuous curation of original scientific literature provides the evidence behind every single object and feature. This knowledge is complemented with comprehensive computational predictions across the complete genome. Literature-based and predicted data are clearly distinguished in the database. Starting with this version, RegulonDB public releases are synchronized with those of EcoCyc since our curation supports both databases. The complex biology of regulation is simplified in a navigation scheme based on three major streams: genes, operons and regulons. Regulatory knowledge is directly available in every navigation step. Displays combine graphic and textual information and are organized allowing different levels of detail and biological context. This knowledge is the backbone of an integrated system for the graphic display of the network, graphic and tabular microarray comparisons with curated and predicted objects, as well as predictions across bacterial genomes, and predicted networks of functionally related gene products. Access RegulonDB at

    CoryneRegNet 6.0—Updated database content, new analysis methods and novel features focusing on community demands

    Get PDF
    Post-genomic analysis techniques such as next-generation sequencing have produced vast amounts of data about micro organisms including genetic sequences, their functional annotations and gene regulatory interactions. The latter are genetic mechanisms that control a cell's characteristics, for instance, pathogenicity as well as survival and reproduction strategies. CoryneRegNet is the reference database and analysis platform for corynebacterial gene regulatory networks. In this article we introduce the updated version 6.0 of CoryneRegNet and describe the updated database content which includes, 6352 corynebacterial regulatory interactions compared with 4928 interactions in release 5.0 and 3235 regulations in release 4.0, respectively. We also demonstrate how we support the community by integrating analysis and visualization features for transiently imported custom data, such as gene regulatory interactions. Furthermore, with release 6.0, we provide easy-to-use functions that allow the user to submit data for persistent storage with the CoryneRegNet database. Thus, it offers important options to its users in terms of community demands. CoryneRegNet is publicly available at http://www.coryneregnet.de

    Information content based model for the topological properties of the gene regulatory network of Escherichia coli

    Full text link
    Gene regulatory networks (GRN) are being studied with increasingly precise quantitative tools and can provide a testing ground for ideas regarding the emergence and evolution of complex biological networks. We analyze the global statistical properties of the transcriptional regulatory network of the prokaryote Escherichia coli, identifying each operon with a node of the network. We propose a null model for this network using the content-based approach applied earlier to the eukaryote Saccharomyces cerevisiae. (Balcan et al., 2007) Random sequences that represent promoter regions and binding sequences are associated with the nodes. The length distributions of these sequences are extracted from the relevant databases. The network is constructed by testing for the occurrence of binding sequences within the promoter regions. The ensemble of emergent networks yields an exponentially decaying in-degree distribution and a putative power law dependence for the out-degree distribution with a flat tail, in agreement with the data. The clustering coefficient, degree-degree correlation, rich club coefficient and k-core visualization all agree qualitatively with the empirical network to an extent not yet achieved by any other computational model, to our knowledge. The significant statistical differences can point the way to further research into non-adaptive and adaptive processes in the evolution of the E. coli GRN.Comment: 58 pages, 3 tables, 22 figures. In press, Journal of Theoretical Biology (2009)

    Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach

    Get PDF
    The E. coli transcriptional regulatory network is shown to have a nonpyramidal architecture of independent modules governed by transcription factors, whose responses are integrated by intermodular genes

    The comprehensive updated regulatory network of Escherichia coli K-12

    Get PDF
    BACKGROUND: Escherichia coli is the model organism for which our knowledge of its regulatory network is the most extensive. Over the last few years, our project has been collecting and curating the literature concerning E. coli transcription initiation and operons, providing in both the RegulonDB and EcoCyc databases the largest electronically encoded network available. A paper published recently by Ma et al. (2004) showed several differences in the versions of the network present in these two databases. Discrepancies have been corrected, annotations from this and other groups (Shen-Orr et al., 2002) have been added, making the RegulonDB and EcoCyc databases the largest comprehensive and constantly curated regulatory network of E. coli K-12. RESULTS: Several groups have been using these curated data as part of their bioinformatics and systems biology projects, in combination with external data obtained from other sources, thus enlarging the dataset initially obtained from either RegulonDB or EcoCyc of the E. coli K12 regulatory network. We kindly obtained from the groups of Uri Alon and Hong-Wu Ma the interactions they have added to enrich their public versions of the E. coli regulatory network. These were used to search for original references and curate them with the same standards we use regularly, adding in several cases the original references (instead of reviews or missing references), as well as adding the corresponding experimental evidence codes. We also corrected all discrepancies in the two databases available as explained below. CONCLUSION: One hundred and fifty new interactions have been added to our databases as a result of this specific curation effort, in addition to those added as a result of our continuous curation work. RegulonDB gene names are now based on those of EcoCyc to avoid confusion due to gene names and synonyms, and the public releases of RegulonDB and EcoCyc are henceforth synchronized to avoid confusion due to different versions. Public flat files are available providing direct access to the regulatory network interactions thus avoiding errors due to differences in database modelling and representation. The regulatory network available in RegulonDB and EcoCyc is the most comprehensive and regularly updated electronically-encoded regulatory network of E. coli K-12

    Reverse-engineering transcriptional modules from gene expression data

    Full text link
    "Module networks" are a framework to learn gene regulatory networks from expression data using a probabilistic model in which coregulated genes share the same parameters and conditional distributions. We present a method to infer ensembles of such networks and an averaging procedure to extract the statistically most significant modules and their regulators. We show that the inferred probabilistic models extend beyond the data set used to learn the models.Comment: 5 pages REVTeX, 4 figure

    Automated design of bacterial genome sequences

    Get PDF
    Background: Organisms have evolved ways of regulating transcription to better adapt to varying environments. Could the current functional genomics data and models support the possibility of engineering a genome with completely rearranged gene organization while the cell maintains its behavior under environmental challenges? How would we proceed to design a full nucleotide sequence for such genomes? Results: As a first step towards answering such questions, recent work showed that it is possible to design alternative transcriptomic models showing the same behavior under environmental variations than the wild-type model. A second step would require providing evidence that it is possible to provide a nucleotide sequence for a genome encoding such transcriptional model. We used computational design techniques to design a rewired global transcriptional regulation of Escherichia coli, yet showing a similar transcriptomic response than the wild-type. Afterwards, we “compiled” the transcriptional networks into nucleotide sequences to obtain the final genome sequence. Our computational evolution procedure ensures that we can maintain the genotype-phenotype mapping during the rewiring of the regulatory network. We found that it is theoretically possible to reorganize E. coli genome into 86% fewer regulated operons. Such refactored genomes are constituted by operons that contain sets of genes sharing around the 60% of their biological functions and, if evolved under highly variable environmental conditions, have regulatory networks, which turn out to respond more than 20% faster to multiple external perturbations. Conclusions: This work provides the first algorithm for producing a genome sequence encoding a rewired transcriptional regulation with wild-type behavior under alternative environments

    DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli

    Get PDF
    DISTILLER, a data integration framework for the inference of transcriptional module networks, is presented and used to investigate the condition dependency and modularity in Escherichia coli networks

    Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

    Get PDF
    Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data

    Two distinct logical types of network control in gene expression profiles

    Get PDF
    In unicellular organisms such as bacteria the same acquired mutations beneficial in one environment can be restrictive in another. However, evolving Escherichia coli populations demonstrate remarkable flexibility in adaptation. The mechanisms sustaining genetic flexibility remain unclear. In E. coli the transcriptional regulation of gene expression involves both dedicated regulators binding specific DNA sites with high affinity and also global regulators - abundant DNA architectural proteins of the bacterial chromoid binding multiple low affinity sites and thus modulating the superhelical density of DNA. The first form of transcriptional regulation is dominantly pairwise and specific, representing digitial control, while the second form is (in strength and distribution) continuous, representing analog control. Here we look at the properties of effective networks derived from significant gene expression changes under variation of the two forms of control and find that upon limitations of one type of control (caused e.g. by mutation of a global DNA architectural factor) the other type can compensate for compromised regulation. Mutations of global regulators significantly enhance the digital control; in the presence of global DNA architectural proteins regulation is mostly of the analog type, coupling spatially neighboring genomic loci; together our data suggest that two logically distinct types of control are balancing each other. By revealing two distinct logical types of control, our approach provides basic insights into both the organizational principles of transcriptional regulation and the mechanisms buffering genetic flexibility. We anticipate that the general concept of distinguishing logical types of control will apply to many complex biological networks.Comment: 19 pages, 6 figure
    corecore