2,697 research outputs found

    Designing a Fuzzy Strategic Integrated Multiechelon Agile Supply Chain Network

    Get PDF

    A comparative performance analysis of intelligence-based algorithms for optimizing competitive facility location problems

    Get PDF
    Most companies operate to maximize profits and increase their market shares in competitive environments. Since the proper location of the facilities conditions their market shares and profits, the competitive facility location problem (CFLP) has been extensively applied in the literature. This problem generally falls within the class of NP-hard problems, which are difficult to solve. Therefore, choosing a proper solution method to optimize the problem is a key factor. Even though CFLPs have been consistently solved and investigated, an important question that keeps being neglected is how to choose an appropriate solution technique. Since there are no specific criteria for choosing a solution method, the reasons behind the selection approach are mostly unclear. These models are generally solved using several optimization techniques. As harder-to-solve problems are usually solved using meta-heuristics, we apply different meta-heuristic techniques to optimize a new version of the CFLP that incorporates reliability and congestion. We divide the algorithms into four categories based on the nature of the meta-heuristics: evolution-based, swarm intelligence-based, physics-based, and human-based. GAMS software is also applied to solve smaller-size CFLPs. The genetic algorithm and differential evolution of the first category, particle swarm optimization and artificial bee colony optimization of the second, Tabu search and harmony search of the third, and simulated annealing and vibration damping optimization of the fourth are applied to solve our CFLP model. Statistical analyses are implemented to evaluate and compare their relative performances. The results show the algorithms of the first and third categories perform better than the others

    A review on Estimation of Distribution Algorithms in Permutation-based Combinatorial Optimization Problems

    Get PDF
    Estimation of Distribution Algorithms (EDAs) are a set of algorithms that belong to the field of Evolutionary Computation. Characterized by the use of probabilistic models to represent the solutions and the dependencies between the variables of the problem, these algorithms have been applied to a wide set of academic and real-world optimization problems, achieving competitive results in most scenarios. Nevertheless, there are some optimization problems, whose solutions can be naturally represented as permutations, for which EDAs have not been extensively developed. Although some work has been carried out in this direction, most of the approaches are adaptations of EDAs designed for problems based on integer or real domains, and only a few algorithms have been specifically designed to deal with permutation-based problems. In order to set the basis for a development of EDAs in permutation-based problems similar to that which occurred in other optimization fields (integer and real-value problems), in this paper we carry out a thorough review of state-of-the-art EDAs applied to permutation-based problems. Furthermore, we provide some ideas on probabilistic modeling over permutation spaces that could inspire the researchers of EDAs to design new approaches for these kinds of problems

    A solution method for a two-layer sustainable supply chain distribution model

    Get PDF
    This article presents an effective solution method for a two-layer, NP-hard sustainable supply chain distribution model. A DoE-guided MOGA-II optimiser based solution method is proposed for locating a set of non-dominated solutions distributed along the Pareto frontier. The solution method allows decision-makers to prioritise the realistic solutions, while focusing on alternate transportation scenarios. The solution method has been implemented for the case of an Irish dairy processing industryŚłs two-layer supply chain network. The DoE generates 6100 real feasible solutions after 100 generations of the MOGA-II optimiser which are then refined using statistical experimentation. As the decision-maker is presented with a choice of several distribution routes on the demand side of the two-layer network, TOPSIS is applied to rank the set of non-dominated solutions thus facilitating the selection of the best sustainable distribution route. The solution method characterises the Pareto solutions from disparate scenarios through numerical and statistical experimentations. A set of realistic routes from plants to consumers is derived and mapped which minimises total CO2 emissions and costs where it can be seen that the solution method outperforms existing solution methods

    Classification of the Existing Knowledge Base of OR/MS Research and Practice (1990-2019) using a Proposed Classification Scheme

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordOperations Research/Management Science (OR/MS) has traditionally been defined as the discipline that applies advanced analytical methods to help make better and more informed decisions. The purpose of this paper is to present an analysis of the existing knowledge base of OR/MS research and practice using a proposed keywords-based approach. A conceptual structure is necessary in order to place in context the findings of our keyword analysis. Towards this we first present a classification scheme that relies on keywords that appeared in articles published in important OR/MS journals from 1990-2019 (over 82,000 articles). Our classification scheme applies a methodological approach towards keyword selection and its systematic classification, wherein approximately 1300 most frequently used keywords (in terms of cumulative percentage, these keywords and their derivations account for more than 45% of the approx. 290,000 keyword occurrences used by the authors to represent the content of their articles) were selected and organised in a classification scheme with seven top-level categories and multiple levels of sub-categories. The scheme identified the most commonly used keywords relating to OR/MS problems, modeling techniques and applications. Next, we use this proposed scheme to present an analysis of the last 30 years, in three distinct time periods, to show the changes in OR/MS literature. The contribution of the paper is thus twofold, (a) the development of a proposed discipline-based classification of keywords (like the ACM Computer Classification System and the AMS Mathematics Subject Classification), and (b) an analysis of OR/MS research and practice using the proposed classification

    Capturing preferences for inequality aversion in decision support

    Get PDF
    We investigate the situation where there is interest in ranking distributions (of income, of wealth, of health, of service levels) across a population, in which individuals are considered preferentially indistinguishable and where there is some limited information about social preferences. We use a natural dominance relation, generalized Lorenz dominance, used in welfare comparisons in economic theory. In some settings there may be additional information about preferences (for example, if there is policy statement that one distribution is preferred to another) and any dominance relation should respect such preferences. However, characterising this sort of conditional dominance relation (specifically, dominance with respect to the set of all symmetric increasing quasiconcave functions in line with given preference information) turns out to be computationally challenging. This challenge comes about because, through the assumption of symmetry, any one preference statement (“I prefer giving 100toJaneand100 to Jane and 110 to John over giving 150toJaneand150 to Jane and 90 to John”) implies a large number of other preference statements (“I prefer giving 110toJaneand110 to Jane and 100 to John over giving 150toJaneand150 to Jane and 90 to John”; “I prefer giving 100toJaneand100 to Jane and 110 to John over giving 90toJaneand90 to Jane and 150 to John”). We present theoretical results that help deal with these challenges and present tractable linear programming formulations for testing whether dominance holds between any given pair of distributions. We also propose an interactive decision support procedure for ranking a given set of distributions and demonstrate its performance through computational testing

    Computing with strategic agents

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 179-189).This dissertation studies mechanism design for various combinatorial problems in the presence of strategic agents. A mechanism is an algorithm for allocating a resource among a group of participants, each of which has a privately-known value for any particular allocation. A mechanism is truthful if it is in each participant's best interest to reveal his private information truthfully regardless of the strategies of the other participants. First, we explore a competitive auction framework for truthful mechanism design in the setting of multi-unit auctions, or auctions which sell multiple identical copies of a good. In this framework, the goal is to design a truthful auction whose revenue approximates that of an omniscient auction for any set of bids. We focus on two natural settings - the limited demand setting where bidders desire at most a fixed number of copies and the limited budget setting where bidders can spend at most a fixed amount of money. In the limit demand setting, all prior auctions employed the use of randomization in the computation of the allocation and prices.(cont.) Randomization in truthful mechanism design is undesirable because, in arguing the truthfulness of the mechanism, we employ an underlying assumption that the bidders trust the random coin flips of the auctioneer. Despite conjectures to the contrary, we are able to design a technique to derandomize any multi-unit auction in the limited demand case without losing much of the revenue guarantees. We then consider the limited budget case and provide the first competitive auction for this setting, although our auction is randomized. Next, we consider abandoning truthfulness in order to improve the revenue properties of procurement auctions, or auctions that are used to hire a team of agents to complete a task. We study first-price procurement auctions and their variants and argue that in certain settings the payment is never significantly more than, and sometimes much less than, truthful mechanisms. Then we consider the setting of cost-sharing auctions. In a cost-sharing auction, agents bid to receive some service, such as connectivity to the Internet. A subset of agents is then selected for service and charged prices to approximately recover the cost of servicing them.(cont.) We ask what can be achieved by cost -sharing auctions satisfying a strengthening of truthfulness called group-strategyproofness. Group-strategyproofness requires that even coalitions of agents do not have an incentive to report bids other than their true values in the absence of side-payments. For a particular class of such mechanisms, we develop a novel technique based on the probabilistic method for proving bounds on their revenue and use this technique to derive tight or nearly-tight bounds for several combinatorial optimization games. Our results are quite pessimistic, suggesting that for many problems group-strategyproofness is incompatible with revenue goals. Finally, we study centralized two-sided markets, or markets that form a matching between participants based on preference lists. We consider mechanisms that output matching which are stable with respect to the submitted preferences. A matching is stable if no two participants can jointly benefit by breaking away from the assigned matching to form a pair.(cont.) For such mechanisms, we are able to prove that in a certain probabilistic setting each participant's best strategy is truthfulness with high probability (assuming other participants are truthful as well) even though in such markets in general there are provably no truthful mechanisms.by Nicole Immorlica.Ph.D
    • 

    corecore