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A B S T R A C T

Most companies operate to maximize profits and increase their market shares in competitive environments.
Since the proper location of the facilities conditions their market shares and profits, the competitive facility
location problem (CFLP) has been extensively applied in the literature. This problem generally falls within
the class of NP-hard problems, which are difficult to solve. Therefore, choosing a proper solution method to
optimize the problem is a key factor. Even though CFLPs have been consistently solved and investigated, an
important question that keeps being neglected is how to choose an appropriate solution technique. Since there
are no specific criteria for choosing a solution method, the reasons behind the selection approach are mostly
unclear. These models are generally solved using several optimization techniques. As harder-to-solve problems
are usually solved using meta-heuristics, we apply different meta-heuristic techniques to optimize a new version
of the CFLP that incorporates reliability and congestion. We divide the algorithms into four categories based on
the nature of the meta-heuristics: evolution-based, swarm intelligence-based, physics-based, and human-based.
GAMS software is also applied to solve smaller-size CFLPs. The genetic algorithm and differential evolution
of the first category, particle swarm optimization and artificial bee colony optimization of the second, Tabu
search and harmony search of the third, and simulated annealing and vibration damping optimization of the
fourth are applied to solve our CFLP model. Statistical analyses are implemented to evaluate and compare
their relative performances. The results show the algorithms of the first and third categories perform better
than the others.

1. Introduction

Competition occurs in many real-world environments and conse-
quently influences the behavior of nature. In evolution, animals and
plants compete for food, nests, sunlight, water, etc. For example, some
birds compete to find and occupy nesting sites before others. Indeed,
competition exists among the animals that need the same environ-
mental resources (Zeigler, 2014). The competition also exists among
service facilities operating in a competitive environment providing
similar services. These facilities aim to maximize their market shares
and profits influenced significantly by choice of their locations. This
brings about the so-called competitive facility location problem (CFLP)
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to find the best locations for the facilities in a market area. Applications
of CFLP involve selecting the locations of restaurants, shopping malls,
grocery stores, banks, and the like (Berman et al., 2009).

Competitive location selection deals with the problem of locating
new facilities to provide a service (or goods) to the customers of a
given geographical area where other facilities (competitors) offering
the same service are already present or will be established in the future.
The new facilities must compete to capture the maximum market share.
There are three types of competition in facility location problems: static
competition, dynamic competition, and sequential competition. In the
first case, some facilities already exist in the market, the competitors’
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information is accessible, and the existing facilities do not react to the
new facilities. In the second type, competitors react to new facilities and
constantly optimize their location. This game continues until a Nash
equilibrium is reached, where no moves can improve the conditions of
players. Finally, in the third scenario, also called the Stackelberg game,
there are two players named leader and follower, and the first player
makes their decision based on the decision of the second player.

The selection of an optimization methodology is one of the most im-
portant features of CFLPs (Fletcher, 1972). Optimization methodologies
can be categorized into the classes of classical (exact) methodologies
such as branch and bound (Beresnev & Mel’nikov, 2016; Drezner &
Drezner, 2004; Fernández et al., 2014) that give optimal solutions,
or heuristic algorithms (Drezner et al., 2007; Fernández et al., 2014;
Rohaninejad et al., 2017), and meta-heuristic algorithms (Shan et al.,
2019; Zarrinpoor & Seifbarghy, 2011; Zhang et al., 2016) that can
generally find near-optimal solutions of more complex CFLPs.

CFLPs belong to the class of NP-hard problems (Fernández et al.,
2014), for each of which some of the optimization mentioned above
methodologies perform better than others. This chooses an appropriate
methodology, a very important quality. While in previous studies, the
problem was solved using one or more optimization methodologies, less
attention was given to selecting an appropriate optimization method-
ology. There are no specific criteria in the literature for selecting the
right solution approach, and the reason for choosing one is unclear.
Therefore, in this study, several optimization methodologies that have
been applied to solve CFLPs are analyzed to distinguish them in terms
of their performances.

Our objective is to shed light on selecting an appropriate solution
approach. We propose a new CFLP that will be solved using different
methodologies to fulfill this aim. The new CFLP involves a static com-
petition setting where facility congestion and reliability are considered.
The objective function of this problem is to minimize the total cost
of the new facilities, including the installation cost, the customers’
traveling, waiting costs, and service costs. That is, we consider the
main set of factors affecting the choices of customers, defining a real
competitive environment where facilities may not always be available.

The remainder of the paper is organized as follows. Section 2 sur-
veys and classifies related CFLP works, reviewing the different solution
methods applied. The problem, notations, parameters, decision vari-
ables, and the mathematical formulation of the problem are introduced
in Section 3. Nine solution algorithms are applied in Section 4 to
solve the problem. Even though the parameters of the algorithms are
calibrated using the Taguchi approach, several test problems are solved
in Section 5 to compare their performances statistically. Finally, the
conclusion and recommendations for future research are presented in
Section 6.

2. Related works

The related works reviewed in this section are categorized into two
classes, including (1) CFLPs and (2) the optimization methods applied
to solve CFLPs.

2.1. The literature on CFLPs

Hotelling (1990) was the first to introduce competition in a market
with two competing firms in the facility location problem. Later, the
CFLP model was employed in different real-world problems, including
location determination of clothing stores (Huff, 1964), supermarkets
(Bell et al., 1998), and shopping malls (Drezner & Drezner, 2002),
among others. Due to the importance of market competition, CFLPs
attracted increasing attention, and different conditions, such as con-
gestion and reliability, were considered. For instance, ReVelle (1986)
introduced a competitive location–allocation problem. Aboolian et al.
(2009) worked on a competitive location–allocation problem of web
services and applied a queuing system to model facility congestion.

Zarrinpoor and Seifbarghy (2011) developed a CFLP that considers
capacity constraints and congestion in facilities. Shiode et al. (2012)
followed a Nash equilibrium approach to propose a CFLP with three
competitors. Snyder and Daskin (2005) introduced a location problem
that considers the reliability of the different facilities. Hajipour et al.
(2014) proposed a location–allocation problem where the failure prob-
ability of the facilities was considered. Similarly, Zhang et al. (2016)
defined a CFLP that considers the failure probability of the facili-
ties. Zarrinpoor et al. (2016) presented a location–allocation problem
addressing the reliability of congested facilities.

The introduction of constraints in CFLPs is another important topic
tackled by many researchers. For instance, Beresnev and Mel’nikov
(2016) proposed a CFLP with bounded capacities of the facilities. Qi
et al. (2017) developed a CFLP model with a limited distance for
services. They assumed that people only patronize facilities within a
range they feel convenient. Wang and Chen (2017) addressed a CFLP
by assuming that attractiveness is a function of the distance coverage
of a facility.

Table 1 summarizes some of the CFLP literature, where the arti-
cles are classified in terms of competition, location space, congestion,
queuing system, allocation, and reliability. As seen in Table 1, few
papers consider congestion in CFLPs. Moreover, no paper addresses the
reliability of facilities in CFLPs. In real-world problems, nonetheless,
there is congestion in some facilities, and the facilities sometimes are
not available for service. As a result, a CFLP with facility congestion
and reliability is considered in this paper to analyze the solution
performance of several intelligence-based algorithms.

2.2. Optimization approaches

In this section, several optimization methodologies applied in dif-
ferent CFLPs are reviewed. Generally, the optimization approaches are
classified into three categories: exact, approximation, and heuristic.
While exact methods cannot find optimal solutions for all types of
problems of all sizes, heuristic methods that involve special heuristics
and meta-heuristics can find near-optimum solutions to all problems.
Approximation approaches are also able to find near-optimal solutions
(Chong & Zak, 2013). It should be noted that Hotelling (1990), Huff
(1964), Bell et al. (1998), and Drezner and Drezner (2002), who were
the first to work on CFLPs, did not apply any optimization approach to
find a solution. They just analyzed the CFLP problem and introduced
methods and concepts such as facility attraction and market share.
Nevertheless, there are many works available in the literature that
apply various optimization methodologies to solve CFLPs. The next four
sub-sections review CFLP papers based on the methods used to solve the
related problems.

2.2.1. Exact and approximation approaches
Among the many research works in which exact methodologies were

used to solve CFL problems, Drezner and Drezner (2004) proposed an
efficient branch & bound (B&B) algorithm to solve the Huff gravity-
based model. Aboolian et al. (2007) used tangent-line approximation
(TLA), greedy algorithm (GRA), and steepest ascent heuristic (SAH).
Later, Aboolian et al. (2009) decomposed the CFLP into two sub-
problems and applied CPLEX to solve them. Shiode et al. (2012)
employed TLA to solve the CFLP with three competitors. Fernández
et al. (2014) utilized a B&B method to solve various CFLPs in medium
sizes. Another application of the B&B method to solve the CFLP is given
by Beresnev and Mel’nikov (2014). More recently, Gentile et al. (2018)
employed the branch & cut (B&C) approach to optimize a CFLP in
which competition was modeled using the Stackelberg game.

Since exact methods cannot find the optimal solution to some prob-
lems, especially large-size ones, many researchers have used heuristic
approaches. To name just a few researchers who have applied approx-
imate algorithms, Beresnev (2009) proposed a method to find upper
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Table 1
Some related works on CFLPS.

References Competition Location space Congestion Queuing system Allocation Reliability

Static Nash Stackelberg Continuous Discrete Network M/M/1 M/G/1 M/M/m M/M/m/k

Drezner and Drezner (2004) ✓ ✓

Aboolian et al. (2007) ✓ ✓

Drezner et al. (2007) ✓ ✓

Aboolian et al. (2009) ✓ ✓ ✓ ✓ ✓

Zarrinpoor and Seifbarghy (2011) ✓ ✓ ✓ ✓

Shiode et al. (2012) ✓ ✓

Ashtiani et al. (2013) ✓ ✓

Fernández et al. (2014) ✓ ✓

Hajipour et al. (2014) ✓ ✓ ✓ ✓ ✓

Panin et al. (2014) ✓ ✓ ✓

Beresnev and Mel’nikov (2016) ✓ ✓

Hajipour, Farahani, and Fattahi (2016) ✓ ✓ ✓ ✓

Hajipour, Fattahi, et al. (2016) ✓ ✓ ✓ ✓

Ivanov and Morozova (2016) ✓ ✓

Zarrinpoor et al. (2016) ✓ ✓ ✓ ✓ ✓

Zhang et al. (2016) ✓ ✓ ✓ ✓

Lančinskas et al. (2017) ✓ ✓

Qi et al. (2017) ✓ ✓

Rohaninejad et al. (2017) ✓ ✓

Wang and Chen (2017) ✓ ✓

Shan et al. (2019) ✓ ✓

This Research ✓ ✓ ✓ ✓ ✓ ✓

bounds for a two-level CFLP model. He then applied a polynomial-
time algorithm to find approximate solutions. Beresnev and Mel’nikov
(2011) utilized an approximate algorithm in which a local search was
applied to improve the solutions. Panin et al. (2014) presented a two-
level CFLP model and proposed two approximate algorithms based on
alternating heuristics and local search to optimize the model. Roha-
ninejad et al. (2017) developed an approximate algorithm to optimize
a bi-objective CFLP. More recently, Kung and Liao (2018) introduced
an approximate algorithm based on demand function approximation,
linear relaxation, decomposition of the problem into two sub-problems,
and sorting. To illustrate the average performance of the proposed
algorithm, they solved the problem using both a genetic algorithm
and CPLEX. Papers that have applied heuristic approaches are also
discussed in the next section.

2.2.2. Heuristic algorithms
Drezner et al. (2007) proposed a novel CFLP and applied a greedy

algorithm (GRA) to solve the problem. Konur and Geunes (2012)
developed two heuristic algorithms based on random search (RSM)
and self-adaptive projection (SAPM) methods to define a Stackelberg
equilibrium location decision. Ashtiani et al. (2013) used a penalty
function algorithm (PFA) to solve a competitive facility location model.
Sasaki et al. (2014) presented a Stackelberg hub-arc location algo-
rithm (SHALA). Ivanov and Morozova (2016) employed a local search
algorithm (LS) to optimize a competitive facility location model. Fer-
nández, Pelegrín, et al. (2017) used both the B&B algorithm and
the Weiszfeld-like algorithm (WA) to optimize a CFLP with the static
competition.

2.2.3. Meta-heuristic algorithms
As previously stated, meta-heuristic algorithms can be classified

into four general classes, including (1) evolution-based, (2) human-
based, (3) swarm-intelligence-based, and (4) physics-based approaches
(Du & Swamy, 2016). Algorithms based on the principle of Darwin’s
evolutionary theory (such as evolutionary algorithms) are included
within the evolution-based class. Human-based algorithms (such as
Tabu search) include algorithms based on human behavior or char-
acteristics. Algorithms based on swarm intelligence (such as particle
swarm optimization), namely, the social behavior of animals, also
belong to a class of intelligence-based algorithms. Finally, algorithms
inspired by physical laws (such as simulated annealing) are grouped
in the physics-based class. We review the literature on the use of
meta-heuristic algorithms to solve CFLPs based on the four categories
above.

Redondo et al. (2015) presented a bi-objective model for the CFLP
and proposed a new evolutionary multi-objective optimization algo-
rithm to solve it. They compared the results obtained by their solu-
tion algorithm to the ones derived based on a B&B algorithm and a
non-dominated sorting genetic algorithm (NSGA). Konak et al. (2017)
developed a two-objective model for the CFLP and applied a multi-
objective genetic algorithm to optimize it. Wang and Chen (2017)
presented a two-objective competitive facility location model in which
the attractiveness of each facility was determined through the coverage
radius. They used a NSGA to solve it. Fernández et al. (2019) employed
an evolutionary and B&B algorithm to optimize a CFLP.

Zarrinpoor and Seifbarghy (2011) optimized a competitive facility
location model using a genetic algorithm (GA) and a Tabu search
algorithm (TSA). They showed the overall better performance of TSA
compared to GA. Drezner et al. (2011) introduced a CFLP and opti-
mized it using a TSA. They compared the result with the ones obtained
using B&B and GRA. Küçükaydın et al. (2012) utilized a TSA to op-
timize a bi-objective CFLP and applied an exact method to evaluate
the performance of their proposed meta-heuristic. Drezner et al. (2012)
employed a TSA to optimize a competitive location model and com-
pared its results with the ones of GRA and B&B. Drezner et al. (2015)
proposed a TSA and a B&B to solve a two-level competitive facility
location model. Finally, Biesinger et al. (2016), Shan et al. (2019), and
Qi et al. (2017) used TSA to optimize their competitive facility location
models.

MirHassani et al. (2015) developed several versions of the particle
swarm optimization algorithm (PSO) to optimize a competitive model.
They applied the Taguchi method to adjust the parameters of the
algorithms and used a B&B algorithm to compare and analyze the
results obtained. Nasiri et al. (2018) applied PSO and GA to optimize
a competitive location model. They also used the Taguchi approach to
tune the parameters of their algorithm and GAMS software to derive
their results.

Redondo et al. (2009) applied the simulated annealing (SA) al-
gorithm, an evolutionary algorithm, and a Weiszfeld-like algorithm
(WA) to optimize a competitive facility location model. Ghaffarinasab
et al. (2018) recently developed several versions of SA with different
operators to optimize single-level and two-level CFLP models. They
solved the problem using CPLEX software to validate and compare the
results.

Table 2 summarizes several CFLP works alongside the optimization
approaches used to solve them. The solution approaches are explicitly
described in Table 3.

As shown in Table 2, meta-heuristics have been applied more fre-
quently than other optimization approaches to solve CFLPs in recent
years. Fig. 1 provides a graphical illustration of this claim. Moreover,
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Table 2
Research on CFLPs and classification of the optimization methods applied.

References Competition Optimization methods

Exact Approximate Heuristic Meta-heuristic Commercial
solver

Yang and Wong (2000) Static ✓

Fischer (2002) Nash ✓ ✓

Drezner and Drezner (2004) Static ✓ ✓

Suárez-Vega et al. (2004) Stackelberg ✓ ✓

McGarvey and Cavalier (2005) Static ✓ ✓ ✓

Aboolian et al. (2007) Stackelberg ✓ ✓ ✓

Drezner et al. (2007) Static ✓

Aboolian et al. (2008) Static ✓

Marianov et al. (2008) Static ✓

Redondo et al. (2008) Static ✓

Beresnev (2009) Stackelberg ✓

Lee and O’Kelly (2009) Nash ✓

Redondo et al. (2009) Static ✓ ✓

Beresnev and Mel’nikov (2011) Stackelberg ✓ ✓

Drezner et al. (2011) Static ✓ ✓ ✓

Küçükaydın et al. (2011) Static ✓ ✓ ✓

Pelegrín-Pelegrín et al. (2011) Nash ✓

Zarrinpoor and Seifbarghy (2011) Static ✓

Konur and Geunes (2012) Stackelberg ✓

Küçükaydın et al. (2012) Stackelberg ✓ ✓

Shiode et al. (2012) Stackelberg ✓

Drezner et al. (2012) Static ✓ ✓

Saidani et al. (2012) Nash ✓ ✓

Ashtiani et al. (2013) Stackelberg ✓

Lüer-Villagra and Marianov (2013) Static ✓

Beresnev and Mel’nikov (2014) Stackelberg ✓

Panin et al. (2014) Stackelberg ✓

Sasaki et al. (2014) Stackelberg ✓

Fernández et al. (2014) Nash ✓ ✓

Drezner et al. (2015) Stackelberg ✓ ✓

MirHassani et al. (2015) Stackelberg ✓ ✓ ✓

Lančinskas et al. (2015) Static ✓

Redondo et al. (2015) Static ✓ ✓

Beresnev and Mel’nikov (2016) Stackelberg ✓ ✓

Biesinger et al. (2016) Stackelberg ✓ ✓

Ivanov and Morozova (2016) Stackelberg ✓

Rahmani (2016) Stackelberg ✓ ✓

Zhang et al. (2016) Stackelberg ✓ ✓

Sadjadi et al. (2016) Static ✓

Fernández, Tóth, et al. (2017) Static ✓ ✓ ✓

Fernández, Pelegrín, et al. (2017) Stackelberg ✓ ✓

Konak et al. (2017) Stackelberg ✓

Niknamfar et al. (2017) Stackelberg ✓ ✓

Qi et al. (2017) Stackelberg ✓

Bilir et al. (2017) Static ✓

Lančinskas et al. (2017) Static ✓

Wang and Chen (2017) Static ✓

Rohaninejad et al. (2017) Nash ✓ ✓

Bagherinejad and Niknam (2018) Stackelberg ✓ ✓ ✓

Beresnev and Mel’nikov (2018a) Stackelberg ✓

Beresnev and Mel’nikov (2018b) Stackelberg ✓

Gentile et al. (2018) Stackelberg ✓

Ghaffarinasab et al. (2018) Stackelberg ✓ ✓

Nasiri et al. (2018) Stackelberg ✓ ✓

Kung and Liao (2018) Static ✓

Ljubić and Moreno (2018) Static ✓ ✓

Fernández et al. (2019) Static ✓ ✓

Shan et al. (2019) Nash ✓

some meta-heuristic methods display a more satisfactory performance.
As there is no specific guideline in the literature to select a proper
meta-heuristic, this paper aims to shed light on the selection process of

the meta-heuristics used to solve a novel CFLP introduced in the next
section. To this end, different meta-heuristic algorithms are applied to
solve the problem, and their relative performances are compared.
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Table 3
Research works that applied meta-heuristics.

References Meta-Heuristics

Evolution based Swarm intelligence
based

Human-based Physics-based

Suárez-Vega et al. (2004) ✓

Marianov et al. (2008) ✓

Redondo et al. (2008) ✓

Redondo et al. (2009) ✓ ✓

Drezner et al. (2011) ✓

Küçükaydın et al. (2011) ✓

Zarrinpoor and Seifbarghy (2011) ✓ ✓

Drezner et al. (2012) ✓

Lüer-Villagra and Marianov (2013) ✓

Drezner et al. (2015) ✓

Lančinskas et al. (2015) ✓

MirHassani et al. (2015) ✓

Redondo et al. (2015) ✓

Biesinger et al. (2016) ✓ ✓

Sadjadi et al. (2016) ✓

Zhang et al. (2016) ✓ ✓

Fernández, Tóth, et al. (2017) ✓

Fernández, Pelegrín, et al. (2017) ✓

Konak et al. (2017) ✓

Lančinskas et al. (2017) ✓

Niknamfar et al. (2017) ✓

Qi et al. (2017) ✓

Wang and Chen (2017) ✓

Bagherinejad and Niknam (2018) ✓

Ghaffarinasab et al. (2018) ✓

Kung and Liao (2018) ✓

Nasiri et al. (2018) ✓ ✓

Fernández et al. (2019) ✓

Shan et al. (2019) ✓

Fig. 1. Usage of different optimization methods to solve FCPLs.

2.3. Current research trends

We summarize below the main lines of research on CFLPs currently
being developed in the literature. Most of the models described in
this section are solved via heuristic and metaheuristic techniques,
highlighting their relevance within the main branches of the literature
on CFLP.

2.3.1. Uncertain customer behavior
Beresnev and Melnikov (2020) assumed that customers followed a

binary decision rule summarized within a list of possible scenarios.
Given this information, the Stackelberg leader decided before a scenario

was realized. Both events led to a decision being made by the follower.
Santos-Peñate et al. (2020) integrated the linear programs of the leader
and the follower into an algorithm considering binary and S-shaped
customer choice rules. Lančinskas, Žilinskas, et al. (2020) defined a
population-based heuristic algorithm to solve a discrete CFLP with a
binary customer choice rule and an asymmetric objective function. Ma
et al. (2020) introduced heterogeneity in the choice rules determining
customers’ behavior and relative proportions. Yu (2020) analyzed a
CFLP where customers’ behavior was uncertain and categorized into
two main types. Yu (2022) further considered uncertain demand types
in the definition of a location problem. Lin and Tian (2021a) defined

5



V. Hajipour, S.T.A. Niaki, M. Tavana et al. Machine Learning with Applications 11 (2023) 100443

Fig. 2. A congested competitive facility location problem.

a generalized setting where customers followed either the proportional
or the partially binary choice rule.

2.3.2. Stochastic demand
The previous models share intuition with those presented in this

subsection regarding the uncertain behavior of consumers. For instance,
Ahmadi and Ghezavati (2020) developed a sustainable CFLP where
a chance-constrained model was used to formalize the potential dis-
satisfaction of customers when having to wait too long to receive a
given service. Mai and Lodi (2020) studied a CFLP where a random
utility function determined the selection of facilities. Rahmani and
Hosseini (2021) defined a Stackelberg inventory CFLP where order
quantities took place in a stochastic environment. Basciftci et al. (2021)
considered a distributionally robust facility location problem where
location decisions were strategically determined by the moments of
stochastic customer demand. Qi et al. (2022) formalized the sequential
opening of facilities when a probabilistic choice model determines
demand.

2.3.3. Attractiveness of the facilities
The attractiveness of the facilities to the potential customers lo-

cated within a reasonable distance constitutes one of the main lines
of research within the CFLP literature. Küçükaydın and Aras (2020)
defined a model where the preferences of customers were represented
as probabilities. Customers choose the closest facility, whose capacity
to satisfy the customer is based on two distances determined by the
attributes of the customers and the type of facility. Levanova and
Gnusarev (2020) studied a model where customers chose facilities to
satisfy their demands according to the location and type of facility.
Marianov et al. (2020) introduced comparison-shopping in CFLP where
consumers visited multiple stores selling substitute products before
making a purchase decision.

Lin and Tian (2021b) considered a CFLP where firms maximized
profits by selecting a facility–customer attractiveness level. Similarly,
Lin and Tian (2021c) applied a mixed-integer quadratic conic approach
to find exact solutions to a CFLP whose objective was to define the

location and attractiveness of the facilities that maximized profits.
Wang and Chen (2021) designed a model where the attractiveness of
a facility was determined through a distance-based coverage of the
demand points it served. Latifi et al. (2022) analyzed a CFLP where
the gains of the leader and the followers’ losses were conditioned by
the capacity of the former to correctly foresight the latter’s response.

2.3.4. Rankings, supply chain interactions, and regret
The final branch of CFLP models currently developed in the liter-

ature is more heterogeneous and focuses on scenarios extending the
standard analysis framework into various research lines. For instance,
Lančinskas, Fernández, et al. (2020) defined random search algorithms
based on ranking candidate facility locations. Esmaeili and Hamedani
(2022) studied a Stackelberg game environment in two supply chains
composed of suppliers, distributors, and customers, where lead-time
was considered a competitive factor. Finally, Li et al. (2020) assumed
that the leader does not know the follower’s response when making a
location decision. They categorized the potential responses in terms of
the number of new facilities and defined a minimax regret model to
minimize the maximum potential loss of the leader.

2.4. Interactions with machine learning techniques

The main features defining CFLPs are also the object of analysis
when implementing machine learning techniques to decision models
dealing with spatial selection and demand evaluation. For instance,
Stepinski and Dmowska (2022) predicted a map of segregated neigh-
borhoods through an empirical model generated by a machine learning
algorithm. Adamu et al. (2021) defined a hybrid algorithm based
on chaotic crow search and particle swarm optimization to solve a
feature selection problem that used k-Nearest Neighbor as a classifier.
Di Caprio and Santos-Arteaga (2022) designed different sequential
evaluation processes determined by the information retrieval capacity
of consumers and analyzed the ability of machine learning techniques
to categorize the complexity of these processes correctly. Finally, Asani
et al. (2021) considered the opinions of customers and the extrapolation
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Fig. 3. Classification of meta-heuristic algorithms.

of their food preferences through a semantic approach to enhance
the quality of a restaurant recommender system. These models, along
with many others applying machine learning techniques, can be easily
adapted and implemented within the formal structure of CFLPs to
incorporate additional features and extend the framework of analysis.

3. Problem description

To have closer to reality CFLP and better location decisions, the
reliability of the chosen facilities and the customer congestion in front
of these facilities are investigated in the current research. The com-
petition type is assumed to be static, i.e., an organization intends to
establish several new facilities in a competitive market with some
existing operating facilities. Facilities are congested and behave as an
M/M/m queue system. Each facility has several servers that may not
be available with a certain probability when customers visit them. At
the same time, the facility will lose customers when all the servers
are unavailable. Customers often prefer more available facilities. The
distance between a customer and a facility is limited, and customers
can only be allocated to facilities closer to the maximum acceptable

distance. A schematic of this problem is presented in Fig. 2. In the next
two subsections, the indices, parameters, and decision variables used
to model the problem at hand are introduced. Then, the mathematical
formulation of the problem is derived.

3.1. Indices, parameters, and decision variables

The indices, parameters, and decision variables used to model the
problem are defined as follows

𝑗 Index of facilities (existing facilities: 𝑗 = 1, 2,… , 𝑓 ;
new facilities: 𝑗 = 𝑓 + 1, 𝑓 + 2,… , 𝑓 + 𝑝)

𝑖 Index of demand points (𝑖 = 1, 2,… , 𝑁)
𝑟 Index of assignment levels (𝑟 = 1, 2,… , 𝑅)
𝜆𝑗 Arrival rate of customers to the facility located at

node 𝑗
𝜇𝑗 Service rate at facility 𝑗
ℎ𝑖 Demand rate at demand point 𝑖
𝑚 Number of servers in each facility

7
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Fig. 4. Schematic of CFLP optimization using different meta-heuristics.

Fig. 5. Solution representation.

𝑞 Failure probability of the servers
𝑅 Number of assignment levels
𝜌𝑗 Productivity rate of facility 𝑗
𝑃0𝑗 Probability of no customer being present at

facility 𝑗
𝐿𝑞𝑗 Average queue length at facility 𝑗

𝑊 𝑞𝑗 Average waiting time at facility 𝑗
𝑑𝑖𝑗 Distance between demand point 𝑖 and facility 𝑗
𝑑max Maximum acceptable distance
𝑘 Maximum number of new facilities that could be

established
𝛽 Minimum acceptable percentage of market share

for new facilities
𝑓𝑗 Fixed installation cost to establish a new facility

at node 𝑗
𝜃𝑗 Waiting cost at facility 𝑗
𝜋𝑖 Penalty cost for losing the demand point 𝑖
𝑆𝑖𝑗 Cost of serving the customer at node 𝑖 by facility 𝑗
𝐶𝑖𝑗 Travel cost from demand point 𝑖 to facility 𝑗

Decision variables

𝑦𝑗 1 If the new facility is established at node 𝑗, 0
otherwise

𝑋𝑖𝑗𝑟 1 If demand point 𝑖 is assigned to facility 𝑗 at
assignment level 𝑟, 0 otherwise

3.2. The model

A mixed-integer non-linear programming model that minimizes the
total cost, including fixed and transportation costs, the cost of cus-
tomer’s waiting time, and service costs, is proposed in this section. To
this end, the equations of the M/M/m queue system are first stated as
follows (Aboolian et al., 2009; Hajipour et al., 2014):

𝜆𝑗 =
𝑅
∑

𝑟=1

𝑁
∑

𝑖=1
ℎ𝑖𝑋𝑖𝑗𝑟; ∀𝑗 = 𝑓 + 1,… , 𝑓 + 𝑝 (1)

𝜌𝑗 =
𝜆𝑗
𝑚𝜇𝑗

; ∀𝑗 = 𝑓 + 1,… , 𝑓 + 𝑝 (2)

8
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Fig. 6. Pseudo-code of GA.

Fig. 7. Pseudo-code of the differential evolution algorithm.

𝑃0𝑗 =

(𝑚−1
∑

𝑛=0

𝜌𝑛𝑗
𝑛!

+
𝜌𝑚𝑗

𝑚!(1 − 𝜌𝑗 )

)−1

; ∀𝑗 = 𝑓 + 1,… , 𝑓 + 𝑝 (3)

𝐿𝑞𝑗 =
𝑃0𝑗

𝑚!

( 𝜆𝑗
𝜇𝑗

)𝑚 𝜌𝑗
(1 − 𝜌𝑗 )2

; ∀𝑗 = 𝑓 + 1,… , 𝑓 + 𝑝 (4)

𝑊 𝑞𝑗 =
𝐿𝑞𝑗
𝜆𝑗

; ∀𝑗 = 𝑓 + 1,… , 𝑓 + 𝑝 (5)

The arrival rate of customers is defined in Eq. (1). The rate of
productivity for each facility, the probability that the facility is empty,
the average queue length, and the average customer waiting time are
defined in Eqs. (2)–(5), respectively. The mathematical model of the
problem is defined as follows.

𝑀𝑖𝑛𝑍 =
𝑓+𝑝
∑

𝑗=𝑓+1
𝑓𝑗𝑦𝑗 +

𝑁
∑

𝑖=1

𝑓+𝑝
∑

𝑗=𝑓+1

𝑅
∑

𝑟=1
𝜆𝑗𝐶𝑖𝑗 (1 − 𝑞𝑚) 𝑞(𝑟−1)𝑚+

𝑁
∑

𝑖=1

𝑓+𝑝
∑

𝑗=𝑓+1

𝑅
∑

𝑟=1
𝜆𝑗𝜃𝑗𝑊 𝑞𝑗 (1 − 𝑞𝑚) 𝑞(𝑟−1)𝑚

+
𝑁
∑

𝑖=1

𝑓+𝑝
∑

𝑗=𝑓+1

𝑅
∑

𝑟=1
𝜆𝑗𝑆𝑖𝑗 (1 − 𝑞𝑚) 𝑞(𝑟−1)𝑚

(6)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶

𝜆𝑗 ≤ 𝑚𝜇𝑗 ; ∀𝑗 = 𝑓 + 1,… , 𝑓 + 𝑝
(7)

∑𝑅
𝑟=1

∑𝑁
𝑖=1

∑𝑓+𝑝
𝑗=𝑓+1 ℎ𝑖𝑋𝑖𝑗𝑟

∑𝑅
𝑟=1

∑𝑁
𝑖=1

∑𝑓+𝑝
𝑗=1 ℎ𝑖𝑋𝑖𝑗𝑟

≥ 𝛽 (8)

𝑋𝑖𝑗𝑟 = 0; ∀𝑟,∀𝑖,∀𝑗 {𝑖, 𝑗| 𝑑𝑖𝑗 > 𝑑max
}

(9)
𝑅
∑

𝑟=1

𝑓+𝑝
∑

𝑗=1
𝑋𝑖𝑗𝑟 = 1; ∀𝑖 = 1,… , 𝑁 (10)

𝑅
∑

𝑟=1
𝑋𝑖𝑗𝑟 ≤ 1; ∀𝑖,∀𝑗 (11)

𝑋𝑖𝑗𝑟 ≤ 𝑦𝑗 ; ∀𝑖,∀𝑗,∀𝑟 (12)
𝑓+𝑝
∑

𝑗=𝑓+1
𝑦𝑗 ≤ 𝑘 (13)

𝑦𝑗 ∈ {0, 1}; ∀𝑗 = 𝑓 + 1,… , 𝑓 + 𝑝 (14)

𝑋𝑖𝑗𝑟 ∈ {0, 1}; ∀𝑖,∀𝑗,∀𝑟 (15)

The model’s objective function that minimizes the total cost is
shown in Eq. (6). As customer allocation is level-by-level (Zarrinpoor

9
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Fig. 8. Selecting solutions through HMCR.

et al., 2016), the facilities are not available in levels 1 to 𝑟−1, until one
facility becomes available in level 𝑟 to which the customer is assigned.
If all the servers of a facility fail, the facility loses the customer,
and the assignment level is changed. Therefore, the probability that a
customer gets a service at level 𝑟 is equal to (1 − 𝑞𝑚) 𝑞(𝑟−1)𝑚 . Constraint
(7) ensures that the arrival rate of customers to any facility is less
than or equal to its service rate. Through Constraint (8) new facilities
reach a minimum acceptable percentage of the market share. Constraint
(9) allows customers to be assigned to the facilities if the maximum
acceptable distance criterion is met. Constraint (10) ensures that each
customer is assigned to exactly one facility at one assignment level.
Constraint (11) prevents customers from being assigned to a facility
at more than one assignment level. Constraint (12) enables customers
to be assigned to open facilities. Constraint (13) limits the maximum
number of new facilities that can be established. Constraints (14) and
(15) define the type of binary decision variables.

3.3. CFLP optimization algorithm classification

Several optimization algorithms are classified and selected to solve
the NP-hard CFLP problem at hand to determine which solution al-
gorithms display better performances. The classification is presented
in Fig. 3. As shown in this figure, meta-heuristic algorithms are di-
vided into four categories, (1) evolution-based, (2) human-based, (3)
physics-based, and (4) swarm intelligence-based (Du & Swamy, 2016).

The first category is composed by evolution-based algorithms in-
cluding evolutionary strategies (Rechenberg, 1973), genetic algorithm
(Holland, 1975), memetic algorithm (Moscato, 1989), genetic program-
ming (Koza, 1994), differential evolution (Storn & Price, 1997), esti-
mation of distribution (Larrañaga & Lozano, 2001), and biogeography-
based optimization (Simon, 2008). The second category includes al-
gorithms such as simulated annealing (Kirkpatrick et al., 1983); (Fer-
reira & de Queiroz, 2018), quantum computing (Neil & C.L., 1998),

electromagnetism-like algorithm (Birbil & Fang, 2003), big bang big
crunch (Erol & Eksin, 2006), water flow-like algorithm (Yang & Wang,
2007), central force optimization (Formato, 2007), vibration damping
optimization (Mehdizadeh & R., 2008), gravitational search (Rashedi
et al., 2009), and charged system search (Kaveh & Talatahari, 2010),
all of which are based on physics laws. The third category includes
algorithms such as tabu search (Glover, 1986), cultural algorithm
(Reynolds, 1994), harmony search (Geem et al., 2001), imperialist
competitive algorithm (Atashpaz-Gargari & Lucas, 2007; Hosseini &
Al Khaled, 2014), and teaching and learning-based optimization (Rao
et al., 2011), which are based on human behavior. The final cat-
egory corresponds to algorithms based on swarm intelligence. This
category includes artificial immune systems (Farmer et al., 1986),
ant colony optimization (Dorigo, 1992), particle swarm optimization
(Eberhart & Kennedy, 1995), bacterial foraging (Passino, 2002), shuffle
frog leaping (Eusuff & Lansey, 2003), artificial bee colony (Karaboga,
2005), invasive weed optimization (Mehrabian & Lucas, 2006), cat
swarm optimization (Chu et al., 2006), monkey search (Mucherino
& Seref, 2007), fish school search (Bastos Filho et al., 2008), firefly
algorithm (Yang, 2009), dolphin partner optimization (Shiqin et al.,
2009), cuckoo optimization (Yang & Deb, 2009), bat-inspired algorithm
(Yang, 2010), wolf search (Tang et al., 2012), flower pollination
(Yang, 2012), krill herd algorithm (Gandomi & Alavi, 2012), social
spider optimization (Cuevas et al., 2013), dolphin echolocation (Kaveh
& Farhoudi, 2013), forest optimization (Ghaemi & Feizi-Derakhshi,
2014), grey wolf optimizer (Luo, 2019; Mirjalili et al., 2014), and lion
optimization (Yazdani & Jolai, 2016).

In this paper, two algorithms from each of the above four categories
(shaded in Fig. 3) are chosen to compare their performances in solving
the new CFLP problem modeled in Section 3.2. Fig. 4 displays a
schematic of the current research.
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Fig. 9. Pseudo-code of the harmony search algorithm.

4. Solution algorithms

Feasible solutions are first generated to initialize the meta-heuristic
algorithms designed to improve upon these initial solutions. In ad-
dition, the Dicopt solver in GAMS, which applies an approximation
algorithm to solve the problem, is used to validate the model. The
solution representation, general approach used, and pseudo-code for
the eight solution algorithms implemented are briefly presented below.
Since these algorithms have been extensively used in the literature,
interested readers are referred to the research cited in Section 3.3 for
additional details.

4.1. Solution representation

In this study, a one-dimensional binary vector, 𝑦𝑗 , and a multidi-
mensional binary matrix, 𝑋𝑖𝑗𝑟, both illustrated in Fig. 5, are used to
encode a solution to the problem.

4.2. Genetic algorithm (GA)

In the implementation process of the GA, 𝑛 random feasible solu-
tions (chromosomes) are first generated to comprise the initial popu-
lation. Then, the chromosomes of the initial population are evaluated.
Next, some solutions are randomly selected as parents for reproduction
using the mask crossover and inversion mutation operations. In the next
step, the populations generated are merged and sorted according to the
fitness value of their chromosomes. Only the 𝑛 primary chromosomes of
this population are kept, while the chromosomes that have less fitness
and are therefore placed at the end of the sequence are eliminated (Yu
et al., 2019). This process continues until the algorithm stops when a
certain number of similar solutions in successive repetitions is obtained
(stall generation). Fig. 6 shows the Pseudo-code of the GA used in this
study.
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Fig. 10. Pseudo-code of the tabu search algorithm.

Fig. 11. Pseudo-code of the simulated annealing algorithm.

4.3. Differential evolution (DE)

Population-based algorithms begin with an initial population of
solutions. Similarly to GA, they have operators such as mutation and
crossover, with the difference that mutation occurs before crossover
and is applied regularly to each generation for the production of
offspring. In GA, mutation comes after crossover; its actions are not reg-
ular and definitive but are only used occasionally. The same crossover
and mutation operators used in GA are also employed in DE. Fig. 7
shows the Pseudo-code of DE (Brabazon et al., 2015).

4.4. Harmony search algorithm (HSA)

The harmony memory in HSA is similar to the elitism concept used
in GA. This operator ensures that the best harmonies will not be erased
when optimizing the memory. This operator is controlled at a harmony
memory rate (HMCR), which describes the probability of selecting a
component from the members of the harmony memory. The selection
of members from the harmony memory by HMCR is described in Fig. 8.
Similarly to GA, the stall generation approach is used to terminate the
algorithm. The Pseudo-code of the harmony search algorithm is shown
in Fig. 9.

12
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Fig. 12. Pseudo-code of the vibration damping optimization algorithm.

Fig. 13. Pseudo-code of the particle swarm optimization algorithm.

4.5. Tabu search algorithm (TS)

Similarly to GA, the initial population is generated randomly, based
on which the same mutation operation is applied to generate new
solutions in TS. Any solution that is reviewed is maintained in a tabu
list, so the algorithm does not return to those positions and moves to a
position with a better fitness function. This search process is repeated
until the stop criteria are met (stall generation). In this algorithm, the
best solution is always stored. In each generation, the solution obtained
is compared with the best solution found up to that moment, and if it is

better, it is stored as the best solution. Fig. 10 presents the Pseudo-code
of the tabu search algorithm.

4.6. Simulated annealing algorithm (SA)

This algorithm is implemented in three steps: (1) initializing a
solution with a well-founded initial answer defined randomly, (2)
neighborhood search to achieve thermodynamic equilibrium, and (3)
cooling step, in which the temperature decreases based on a specific
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Fig. 14. Pseudo-code of the artificial bee colony algorithm.

structure. These steps continue until the stopping criterion (stall gen-
eration) is met. Fig. 11 describes the Pseudo-code of the simulated
annealing algorithm.

4.7. Vibration damping optimization (VDO)

Similarly to the SA algorithm, the VDO algorithm involves three
steps: (1) solution initialization, (2) neighborhood search, and (3)
vibration damping (decreasing oscillation amplitude). These steps con-
tinue until the stopping criterion (Stall Generation) is met. The Pseudo-
code of this algorithm is shown in Fig. 12.

4.8. Particle swarm optimization (PSO)

As an evolutionary algorithm, PSO starts with a population of
solutions. Then, it examines different areas in the solution space con-
sisting of several birds (called particles) as feasible solutions to the
optimization problem. In other words, a particle swarm is created in
the space of the problem and randomly initialized. Then, as the birds
search for a food source, the algorithm also searches for particles to
find the best solution.

In the discrete version of this algorithm, each particle is a string of
binary variables. Here, each particle assigned a random position has

its path and speed. PSO identifies its path based on the best situation
experienced by all particles. Particles exchange information with other
particles to update their speeds and positions. The two most important
parameters of PSO are cognitive and social learning, which control
the balance between the concepts of exploitation and exploration. The
stopping criterion of this algorithm is chosen to be the standard Stall
Generation. The Pseudo-code of the PSO utilized in this paper is given
in Fig. 13.

4.9. Artificial bee colony algorithm (ABC)

ABC involves four steps that include (1) initializing the population
of forager bees in the hive randomly, (2) performing a local search
around food sources using employed bees, (3) selecting employed bees
by onlooker bees to determine the position, and (4) releasing a poor-
quality food source by finding a new food source. One of the most
interesting features of the honeybee colony is their efforts to find food
sources to store in the hive for future use. These steps continue until
the stopping criterion (Stall Generation) is met. Fig. 14 illustrates the
Pseudo-code of this algorithm.

The results obtained using the above eight meta-heuristic algorithms
and the one derived using GAMS are analyzed in the next section.
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Fig. 15. SN diagram to tune the GA parameters.

Fig. 16. Performance comparison of the meta-heuristics and GAMS.

5. Analysis of the results

Ten test problems of different sizes (regarding the number of lo-
cations and demand points) are generated randomly to analyze and
compare the solutions obtained using the algorithms. The problems
are listed in Table 4, and their parameters are described in Table 5.
The values of the minimum acceptable market share (𝛽), the failure
probability of servers (𝑞), the number of servers (𝑚), and the maximum
acceptable distance

(

𝑑max
)

are 0.4, 0.4, 2, and 35, respectively. In
Table 5, 𝜇𝑗 ∼ 𝑈 [1015] means that the service rate of the 𝑗th facility is
generated randomly using a uniform distribution in [10,15]. The same
intuition applies to the other parameters composing this table.

5.1. Calibration of the algorithm parameters

Each solution algorithm has a set of initial parameters that signif-
icantly affect its performance. In this section, the Taguchi method is
applied to adjust the parameters.

Table 4
Test problems.

No. No. of facility locations (𝑃 ) No. of demand points (𝑁)

1 5 5
2 5 10
3 5 20
4 10 20
5 10 25
6 10 30
7 10 35
8 10 40
9 12 45
10 12 50

• GA involves three parameters, including the number of chromo-
somes in the initial population (nPop), the crossover rate (Pc), and
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Fig. 17. Graphical comparison of the algorithms excluding PSO and ABC.

Fig. 18. Graphical performance analysis of GA and DE.

Fig. 19. Graphical performance analysis of HSA and TS.
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Fig. 20. Graphical performance analysis of SA and VDO.

Fig. 21. Graphical performance analysis of PSO and ABC.

Fig. 22. Graphical performance of evolution-, human-, physics-, and swarm intelligence-based meta-heuristics.
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Fig. 23. Graphical performance of evolution-, human-, and physics-based meta-heuristics.

Table 5
Problem parameters.

Parameters Values

𝜇𝑗 𝜇𝑗 ∼ 𝑈 [10 15]
ℎ𝑖 ℎ𝑖 ∼ 𝑈 [2 6]
𝑑𝑖𝑗 𝑑𝑖𝑗 ∼ 𝑈 [10 55]
𝑓𝑗 𝑓𝑗 ∼ 𝑈 [380000 420000]
𝜃𝑗 𝜃𝑗 ∼ 𝑈 [2800 4000]
𝜋𝑖 𝜋𝑖 ∼ 𝑈 [48000 53000]
𝑆𝑖𝑗 𝑆𝑖𝑗 ∼ 𝑈 [14000 16500]
𝐶𝑖𝑗 𝐶𝑖𝑗 ∼ 𝑈 [4000 6500]

the mutation rate (Pm). DE has two parameters: initial population
size (nPop) and mutation rate (Pm).

• HSA contains the harmony memory rate (HMCR), pitch-adjusting
rate (PAR), and initial harmony population (nPop). The parame-
ters of the TS algorithm are the number of neighbors (NN) and
the tabu list (LT) limitation.

• The SA algorithm includes the initial population size (nPop),
initial temperature (T0), final temperature (Tf ), and the number
of neighbors in the inner loop (nMove). The parameters of the
VDO algorithm are the initial oscillation amplitude (A0), length of
the inner loop (nMove), damping coefficient (Gama), and standard
deviation of the Rayleigh distribution function.

• The parameters of the PSO algorithm are the swarm size
(Swarmsize), cognitive learning (C1), and social learning (C2),
with C2 = 4-C1. Finally, the parameters of the ABC algorithm
are the population size of the honeybee hive (nHive) and the
limitation of releasing food source (LNF ) (Hajipour, Farahani,
& Fattahi, 2016; Hajipour, Fattahi, et al., 2016; Hajipour et al.,
2014; Nasiri et al., 2018; Saif et al., 2014).

Table 6 presents the above set of parameters, each of them defined
across three different levels. The Stall Generation is assumed to be 30
in all algorithms.

The problem at hand is solved using meta-heuristics, where each
technique is applied considering different combinations of its parameter
levels. The responses obtained are the objective function value and the
required computational time in seconds. For the sake of comparison,
we combine both responses into a single one through the weighted sum
defined in Eq. (16), where 𝑊1 and 𝑊2 are the weights assigned to each
response and assumed equal to 0.4 and 0.6, respectively. This combined

Table 6
Levels of the algorithms’ parameters.

Algorithm Parameters Level 1 Level 2 Level 3

GA
nPop 25 50 100
Pc 0.6 0.8 0.99
Pm 0.01 0.2 0.4

DE nPop 25 50 100
Pc 0.6 0.8 0.99

HSA
HMCR 0.75 0.85 0.95
PAR 0.1 0.3 0.5
nPop 25 35 50

TS NN 30 50 70
LT 3 5 7

SA

nPop 5 15 30
T0 500 750 1000
Tf 5 10 20
nMove 10 30 50

VDO

A0 6 8 10
nMove 4 8 12
Gama 0.005 0.05 0.5
Sigma 1 1.5 2

PSO Swarmsize 60 80 100
C1 1 1.5 2

ABC nHive 200 400 600
LNF 10 20 30

variable is used as the response in the Taguchi method.

CombinedVariable =
𝑊1 ∗ 𝑇 𝑖𝑚𝑒

Maximum Time +
𝑊2 ∗ Objective Function

Maximum Objective Function
(16)

To illustrate the use of the Taguchi method, consider the GA algo-
rithm. The values of the two responses based on different combinations
of its parameters alongside the corresponding combined variable are
described in Table 7 and Fig. 15. This latter figure illustrates the Signal
to Noise (SN) ratio.

According to Fig. 15, the appropriate levels for nPop, Pc, and Pm
are level two (50), level one (0.6), and level three (0.4), respectively.
The parameters of the other seven meta-heuristics are tuned similarly.
Table 8 contains the tuned values of all the solution algorithms.
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Table 7
Values of the combined variable defined to tune the GA parameters.

Test
problems

Parameters Objective
function

Time (s) Combined
variablenPop Pc Pm

1 1 1 1 1462933.3589 0.457020 0.606572811
2 1 2 2 1658023.6545 0.429390 0.67250589
3 1 3 3 1365400.5866 1.158187 0.68967555
4 2 1 2 1462934.1756 0.538897 0.62039868
5 2 2 3 1364583.3459 0.694750 0.61112482
6 2 3 1 1557480.4202 0.774318 0.69436545
7 3 1 3 1406154.0715 0.995525 0.67695653
8 3 2 1 1107287.1733 2.341994 0.79616548
9 3 3 2 1462934.5782 2.368856 0.92940182

Fig. 24. An overview of meta-heuristics performances when solving CFLPs.
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Table 8
Tuned levels of the algorithms’ parameters.

Algorithms Parameters Tuned value

GA
nPop 50
Pc 0.6
Pm 0.4

DE nPop 25
Pc 0.6

HSA
HMCR 0.85
PAR 0.5
nPop 35

TS NN 30
LT 3

SA

nPop 5
T0 750
Tf 10
nMove 10

VDO

A0 8
nMove 4
Gama 0.05
Sigma 2

PSO Swarmsize 60
C1 2

ABC nHive 400
LNF 20

5.2. Comparison analysis

The tuned parameters determined in Section 5.1 are used in each of
the eight meta-heuristics to optimize the test problems. GAMS software
is also employed to solve the problems. Tables A.1 to A.5 within
the appendix section present the outputs derived from GAMS, the GA
and DE, HSA and TS, SA and VDO, and PSO and ABC algorithms,
respectively. The non-parametric Kruskal–Wallis test, which does not
require the normality of the data, is used to compare the solution algo-
rithms statistically. In particular, we analyze and compare the values
of the combined variable. Fig. 16 illustrates graphically the differences
between the values obtained. Table A.6 formally complements the
intuition provided by this figure, describing how the solution means
obtained from these algorithms differ significantly (𝑃 -value is 0.000).
Clearly, PSO and ABC are incompatible with the other algorithms.
We have therefore eliminated these two algorithms from the analysis.
The resulting output is illustrated in Fig. 17, and the corresponding
numerical values are reported in Table A.7.

The results in Table A.7 do not present any significant difference
between the solution methods in terms of the mean of the combined
variable (𝑃 -value is 0.402). In addition, according to Fig. 17, even
though the performances of the different methods are close to each
other, HSA, TS, DE, and GA, respectively, display better performances
than GAMS, SA, and VDO. Note that the best-performing algorithms,
HSA and TS, belong to the human-based class. We elaborate on this
feature below.

We start by testing whether there is a significant difference between
the two algorithms that belong to the same group. The performances
of GA and DE within the evolution-based algorithms are reported in
Table A.8 and graphically illustrated in Fig. 18.

The results in Table A.8, as well as those in Fig. 18, show no
significant difference between GA and DE (𝑃 -value is 0.940). The same
analysis has been performed between HSA and TS, which belong to
the class of human-based algorithms. The corresponding results are
reported in Table A.9 and Fig. 19, from which the same conclusion can
be drawn, i.e., HSA and TS do not differ significantly (𝑃 -value is 0.496).

The same conclusions can be drawn from the performances of the
physics-based SA and VDO algorithms. These algorithms do not differ

Table A.1
GAMS results.

NO. GAMS

Objective
function

Time (s) Combined
variable

1 463935.448 0.309 0.62699974
2 885707.654 2.837 0.750882185
3 930400.187 0.981 0.511229562
4 997323.672 0.959 0.63218509
5 987918.69 1.342 0.299610862
6 1867649.401 8.834 0.434938894
7 1476416.444 5.956 0.221709644
8 2471083.448 2.45 0.242333123
9 2570437.925 1.515 0.184997277
10 3955736.316 2.233 0.626899974

significantly regarding the average combined variable derived from
the facility location problems. Table A.10, displaying a 𝑃 -value of
0.406, and Fig. 20 support this claim. A similar intuition applies to
the performances of the intelligence-based PSO and ABC algorithms,
compared in Table A.11 (𝑃 -value is 0.545) and Fig. 21.

Finally, we compare the performance of the different algorithm
classes through the average of the combined variable obtained for
each group. Tables A.12 and A.13 present the average values of the
combined variable for the different classes of solution algorithms. The
results described in these tables are statistically analyzed in Table A.14
and graphically illustrated in Fig. 22. The 𝑃 -value displayed in Ta-
ble A.14 is smaller than 0.05, implying a significant difference among
the four solution algorithms.

In this regard, Fig. 22 illustrates how the swarm intelligence-based
algorithms are incompatible with the other classes. Thus, we eliminate
these algorithms from the subsequent analysis, where the other three
classes are further compared. The results obtained are reported in
Table A.15, while Fig. 23 demonstrates their performance graphically.
Note how these three classes do not differ statistically (𝑃 -value is
0.217). Based on Fig. 23, it can be concluded that while the results
obtained are close to each other, the human- and evolution-based
algorithms display better performances than the physics-based ones.
Furthermore, as illustrated in Table A.7 and Fig. 17, HSA performs
better than TS within the human-based class, defining the best potential
choice when facing the type of CFLP framework described in this paper.

5.3. Discussion

Fig. 24 provides a graphical representation of the conclusions de-
rived in Section 5.2. As shown in this figure, the human- and evolution-
based algorithms display the best performances in solving the CFLP
analyzed in the current paper. On the other hand, the physical- and
swarm intelligence-based algorithms have the lowest performances.

Being human-based algorithms, the harmony search and tabu search
algorithms require fewer computations, are based on simple concepts
and few parameters, and are easy to run, making them better fits
for optimizing CFLPs. Although many researchers have utilized the
tabu search algorithm to solve CFLPs, the harmony search algorithm,
which performs considerably well on these problems, has not been
implemented. These results should encourage its use when optimizing
CFLPs.

The genetic algorithm and differential evolution are evolution-based
algorithms, which, according to the analysis, display good perfor-
mances when solving CFLPs. These algorithms have substantial search
power in the solution space. Namely, they do not seek only part of the
space when finding the best solution but randomly select points from
the whole solution space. Furthermore, these algorithms are highly
flexible and can be applied to a variety of problems. Many studies have
applied genetic algorithms within the literature on CFLPs, while the
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Table A.2
GA and DE results.

NO. GA DE

Objective
function

Time (s) Combined
variable

Objective
function

Time (s) Combined
variable

1 385200.0148 1.540104 0.63224642 398000.0148 0.921090 0.594912
2 489671.2044 0.518648 0.35929886 553486.4568 0.795816 0.41727
3 1072768.9039 0.603568 0.57296319 1072771.0933 0.962578 0.584189
4 775630.5476 0.992898 0.49994311 808948.4954 1.536440 0.538226
5 769062.8308 1.976647 0.25758521 640932.8705 1.916512 0.221703
6 854259.5328 1.152710 0.15101731 988029.8686 3.936455 0.217864
7 1588530.5906 1.845624 0.195029 1236376.3413 4.389603 0.179959
8 3332378.9508 1.608730 0.31275517 2351353.2766 3.440795 0.23783
9 3078207.0677 1.849930 0.2175293 3699620.697 4.018755 0.277141
10 5899626.0119 2.606391 0.35876644 5265677.0463 5.899738 0.338482

Table A.3
HSA and TS results.

NO. HSA TS

Objective
function

Time (s) Combined
variable

Objective
function

Time (s) Combined
variable

1 398000.0148 0.936717 0.596273 385200.0148 0.983200 0.583765
2 442082.4243 1.063148 0.35602 480505.1206 0.598926 0.357359
3 592909.3268 1.535219 0.354241 785819.343 1.901903 0.465345
4 823205.2194 1.484000 0.545043 787103.0775 1.576521 0.526428
5 1055644.076 0.678177 0.246847 875677.3937 2.985747 0.31299
6 854266.148 0.703129 0.143558 1270256.8058 3.560210 0.255193
7 1681248.0485 1.223945 0.199456 1259277.4025 2.945479 0.168744
8 2228507.3402 0.935710 0.207992 2387503.4178 4.456171 0.251442
9 3285990.152 0.802730 0.229787 2822123.5126 3.701960 0.215172
10 4576713.4131 1.320705 0.266638 4917300.3436 2.755516 0.296155

Table A.4
SA and VDO results.

NO. SA VDO

Objective
function

Time (s) Combined
variable

Objective
function

Time (s) Combined
variable

1 385200.0148 0.755788 0.563968 385200.0148 2.391468 0.706362
2 476617.1087 1.302520 0.392145 489671.4763 2.839987 0.482756
3 1161650.4524 2.007820 0.662776 908061.396 3.720682 0.58535
4 805054.6802 3.716447 0.609032 774856.6296 5.696973 0.657319
5 1145165.3177 3.773017 0.405232 999402.9757 6.709794 0.442924
6 1246954.2092 2.747810 0.238115 852444.8438 10.606521 0.307615
7 1140570.7871 3.940148 0.164972 2026030.9874 9.471612 0.316628
8 3547466.1111 3.523345 0.347942 2961388.7005 10.611692 0.354
9 3436428.8891 5.387180 0.1267213 4339711.145 12.403014 0.370581
10 4594507.5227 7.587707 0.313 3075525.0841 14.050953 0.358717

Table A.5
PSO and ABC results.

NO. PSO ABC

Objective
function

Time (s) Combined
variable

Objective
function

Time (s) Combined
variable

1 385200.0148 1.954129 0.668289 385200.0148 4.5948 0.898173
2 480505.1747 2.159404 0.440351 410062.0295 7.5211 0.677786
3 978730.3407 2.706251 0.590134 1085186.14 12.7935 0.960506
4 992669.9115 3.850869 0.726413 983591.2984 11.921 0.991738
5 2240602.2033 4.666431 0.721915 1123217.0423 15.3105 0.700781
6 3886263.3851 6.848124 0.173639 1571087.0426 24.1049 0.64256
7 5371912.3086 7.990135 0.676206 1603226.8143 41.9395 0.579068
8 6677478.1658 7.163850 0.659345 2156658.0029 48.2861 0.593785
9 8761156.1413 8.074459 0.647771 3002263.6333 67.6104 0.60507
10 10681675.4552 8.933362 0.664662 5291351.5743 55.2615 0.69722
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Table A.6
Comparative performance analysis of the Meta-Heuristics and GAMS.

Algorithms N Median Ave. Rank 𝑃 -value

ABC 10 0.6875 77.2

0.000

DE 10 0.3078 33.3
GA 10 0.3360 35.1
GAMS 10 0.3673 40.7
HSA 10 0.2835 28.4
PSO 10 0.6665 74.7
SA 10 0.3700 40.0
TS 10 0.3043 31.6
VDO 10 0.4068 48.5
Overall 90 45.5

Table A.7
Comparative performance analysis of the algorithms excluding PSO and ABC.

Algorithms N Median Ave. Rank 𝑃 -value

DE 10 0.3078 32.6

0.402

GA 10 0.3360 34.3
GAMS 10 0.3673 37.9
HSA 10 0.2835 27.9
SA 10 0.3700 38.6
TS 10 0.3043 31.2
VDO 10 0.4068 46
Overall 70 35.5

Table A.8
Comparative performance analysis of GA and DE.

Algorithms N Median Ave. Rank 𝑃 -value

DE 10 0.3078 10.4
0.940GA 10 0.3360 10.6

Overall 20 10.5

Table A.9
Comparative performance analysis of HSA and TS.

Algorithms N Median Ave. Rank 𝑃 -value

HSA 10 0.2835 9.6
0.496TS 10 0.3043 11.4

Overall 20 10.5

Table A.10
Comparative performance analysis of SA and VDO.

Algorithms N Median Ave. Rank 𝑃 -value

SA 10 0.3700 9.4
0.406VDO 10 0.4068 11.6

Overall 20 10.5

Table A.11
Comparative performance analysis of PSO and ABC.

Algorithms N Median Ave. Rank 𝑃 -value

ABC 10 0.6875 11.3
0.545PSO 10 0.6665 9.7

Overall 20 10.5

differential evolution algorithm remains mainly unused. As was the
case with the harmony search algorithm, the results obtained should
encourage its use when optimizing CFLPs.

Finally, simulated annealing and vibration damping optimization
are physics-based algorithms. These algorithms have the advantage

of simplicity in implementation compared to similar methods and
the ability to escape local optima. Even though a limited number of
studies have applied simulated annealing to solve CFLPs, the vibra-
tion damping optimization algorithm remains unused. Given the fairly
good performance of both algorithms, they should constitute potential
alternatives when solving CFLPs.

6. Conclusion and potential extensions

In today’s competitive environment, facilities are generally similar
in terms of services provided. Hence, they must compete to attract
customers and increase their profits. One of the main features affecting
competition between similar facilities is their location, which con-
siderably impacts their capacity to attract customers. A wide variety
of models displaying different sets of real-world features have been
proposed to select the location of competitive facilities. Given the
important role played by the solution methodology, we have compared
the relative performances of several meta-heuristic algorithms. These
algorithms have been applied to solve a new CFLP modeled in this
paper, which considers the static competition among facilities subject
to reliability and congestion constraints. GAMS was also applied to
validate and optimize the model.

According to our analysis, human-based and evolutionary algo-
rithms display better performance in optimizing CFLPs. Physics-based
algorithms follow while GAMS is able to perform relatively close to
these groups of meta-heuristics. On the other hand, swarm intelligence-
based algorithms such as particle swarm optimization and artificial bee
colony were among the less efficient methods in optimizing CFLPs.

Based on the results obtained in this research, the following sugges-
tions are presented as potential extensions:

• Investigate the capacity of the solution algorithms to solve Nash
and Stackelberg equilibrium models and determine how the type
of competition affects the conclusions obtained.

• Investigate the performance of the algorithms when solving loca-
tion problems that are not competitive and compare their behav-
ior with the results of this research.
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Table A.12
Average of the combined variable in evolution-based and human-based meta-heuristics.

Based on evolution Based on human

GA DE Average HSA TS Average

0.63224642 0.594912 0.613579325 0.596273 0.583765 0.590019
0.35929886 0.41727 0.388284276 0.35602 0.357359 0.356689
0.57296319 0.584189 0.578576133 0.354241 0.465345 0.409793
0.49994311 0.538226 0.51908438 0.545043 0.526428 0.535736
0.25758521 0.221703 0.239644022 0.246847 0.31299 0.279673
0.15101731 0.217864 0.184440631 0.143558 0.255193 0.199376
0.195029 0.179959 0.187494239 0.199456 0.168744 0.1841
0.31275517 0.23783 0.276268862 0.207992 0.251442 0.229717
0.2175293 0.277141 0.252460458 0.229787 0.215172 0.224793
0.35876644 0.338482 0.344367924 0.266638 0.296155 0.281396

Table A.13
Average of the combined variable in physics-based and swarm intelligence-based meta-heuristics.

Based on physics Based on swarm intelligence

SA VDO Average PSO ABC Average

0.563968 0.706362 0.635165 0.668289 0.898173 0.783231
0.392145 0.482756 0.437451 0.440351 0.677786 0.559069
0.662776 0.58535 0.624063 0.590134 0.960506 0.77532
0.609032 0.657319 0.633175 0.726413 0.991738 0.859076
0.405232 0.442924 0.424078 0.721915 0.700781 0.711348
0.238115 0.307615 0.272865 0.173639 0.64256 0.678099
0.164972 0.316628 0.2408 0.676206 0.579068 0.627637
0.347942 0.354 0.350971 0.659345 0.593785 0.626565
0.1267213 0.370581 0.328031 0.647771 0.60507 0.63835
0.313 0.358717 0.335858 0.664662 0.69722 0.680941

Table A.14
Results of the statistical analysis across groups of meta-heuristics.

Algorithms N Median Ave. Rank 𝑃 -value

Evolution-Based 10 0.3103 14.4

0.000
Human-Based 10 0.2805 13.0
Physics-Based 10 0.3875 20.3
Swarm Intelligence-Based 10 0.6795 34.3
Overall 40 0.3103 20.5

Table A.15
Statistical analysis of evolution-, human-, and physics-based meta-heuristics.

Algorithms N Median Ave. Rank 𝑃 -value

Evolution-Based 10 0.3103 14.2

0.217Human-Based 10 0.2805 12.9
Physics-Based 10 0.3875 19.4
Overall 30 0.3103 15.5

Appendix. Numerical results from Section 5.2

We provide below the set of tables summarizing the numerical
results presented in Section 5.2.
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