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Abstract

We investigate the situation where there is interest in ranking distributions (of income, of

wealth, of health, of service levels) across a population, in which individuals are considered

preferentially indistinguishable and where there is some limited information about social pref-

erences. We use a natural dominance relation, generalized Lorenz dominance, used in welfare

comparisons in economic theory. In some settings there may be additional information about

preferences (for example, if there is policy statement that one distribution is preferred to an-

other) and any dominance relation should respect such preferences. However, characterising

this sort of conditional dominance relation (specifically, dominance with respect to the set of

all symmetric increasing quasiconcave functions in line with given preference information) turns

out to be computationally challenging. This challenge comes about because, through the as-

sumption of symmetry, any one preference statement (“I prefer giving $100 to Jane and $110

to John over giving $150 to Jane and $90 to John”) implies a large number of other preference

statements (“I prefer giving $110 to Jane and $100 to John over giving $150 to Jane and $90

to John”; “I prefer giving $100 to Jane and $110 to John over giving $90 to Jane and $150 to

John”). We present theoretical results that help deal with these challenges and present tractable

linear programming formulations for testing whether dominance holds between any given pair

of distributions. We also propose an interactive decision support procedure for ranking a given

set of distributions and demonstrate its performance through computational testing.

Keywords: multiple criteria analysis, equitable preferences, generalized Lorenz dominance, con-

ditional dominance, interactive approaches

1 Introduction

1.1 The problem of fair allocation and application domains

An overriding concern in matters of public (and sometimes private) sector management is the equi-

tability in the distribution of good (or alternatively bad) outcomes (income, wealth, health, service

quality) across persons or population groups flowing from some particular decision. This might

apply, for example, where budgetary pressures make it imperative to reform taxation or welfare ar-

rangements; where differences in facility location lead to variations in accessability (travelling times

to nearest hospital, speed of internet service provision); or where social policies to redress the plight
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of deprived populations (provision of recreational facilities, early life educational interventions) are

being contemplated.

There is a large body of literature on applications where equity concerns naturally arise and

are considered (reviewed in Karsu and Morton (2015)). Note that in most of these applications,

equity is rarely the sole concern and the decision makers consider both fairness and efficiency as

important. However, they generally find it difficult to explicitly state the equity-efficiency tradeoffs

which underlie their decisions (due to a number of reasons elaborated in the ensuing discussion).

In this study we consider such problems and try to support the decision makers in these settings

by helping them choose their most preferred solution or rank the solutions based on preference.

Some examples of the applications in which equity concerns arise are the following:

• Bandwidth allocation on a network: The problem is making bandwidth allocations considering

equity over users as well as efficiency (throughput) (Ogryczak et al. (2008), Luss (2010)).

• Public service facility location: Locating a public service facility involves equity concerns over

the customers as well as efficiency concerns (e.g. minimizing total distance travelled to the

facility) (Ogryczak (1999), Ogryczak (2009)).

• Capital-budgeting with fairness concerns: Health care project funding settings, in which

project portfolios are evaluated based on the distribution of the potential benefit to differ-

ent population groups are an example (Morton (2014)). Trying to achieve more equitable

investments across different sectors resulting from an underlying motive for risk reduction is

another example relevant in many settings (Karsu and Morton (2014)).

• Ranking countries with respect to social welfare: Comparing income distributions of different

countries (Shorrocks (1983)).

• Workload allocation: Managers have concerns for ensuring an equitable workload allocation

when assigning tasks to staff.

Taking the workload allocation example, a motivating case is a problem faced by a firm working

in the heating ventilation and air conditioning (HVAC) sector in Turkey (Karsu and Azizog̃lu (2012),

Karsu and Azizog̃lu (2014)). The manager faces the problem of assigning staff (agents) to tasks

such that once assigned the agent will perform the task for multiple periods. Agents have different

levels of experience across different types of tasks, hence the time required to perform a task is

different for different agents. Each feasible assignment results in a load distribution over the agents.

An assignment that minimizes the total workload, which may be considered as the most efficient

solution, in fact may result in an extremely unfair workload allocation across the agents. On the

other hand, the (lexicographic) max-min fairness solution (which first minimizes the maximum

workload over all the agents, then the second maximum and so on), which is sometimes referred to as

the most equitable solution (Luss (2012)), may significantly increase the total workload. Therefore,

there is usually a need to seek compromise solutions between these two extreme solutions.

Although managers may concur that both fairness and efficiency are important in workload allo-

cation, in our experience they are generally unable to articulate a precise mathematical expression

which can serve as an objective function balancing these two competing objectives, or explicitly

state the equity-efficiency tradeoffs which underlie their decisions. This may be for political reasons

– stakeholders may be unhappy to learn precisely, quantitatively, how much their service providers
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or elected representatives care about them relative to others – or may reflect genuine cognitive

difficulties, as assessing relative desert is an unstructured task and may involve balancing multiple

conflicting considerations. As an example, consider the following two allocations of a good across

three indistinguishable entities: (2,7,8) and (4.5,4.5,8). Common sense suggests that the second

distribution is better since the total amount of 17 units is more equitably allocated. Now consider

(2,7,8) and (4,4,5). The first allocation seems more efficient in the sense that the total amount

allocated is larger but in the second one the good seems more equitably distributed. We observe

the trade-off between equity and efficiency here. In this example there is no “objective” way of

choosing the better allocation and different people may take different views.

The problems we mention above can be thought of as what Karsu and Morton (2015) call

equitability problems. In this work, we consider such equitability problems in which a social planner

(henceforth “SP”) who has equity concerns as well efficiency concerns tries to compare distributions

of a good over multiple parties, when there is symmetry (meaning that the identities of the parties

are not important and do not affect the decision, hence Jane getting $100 and John getting $150 is

as good as John getting $100 and Jane getting $150 for the SP). As mentioned before, in general

SPs may be unable to specify a mathematical expression that encapsulates the trade-off between

efficiency and equity; yet in many settings it is possible to obtain social preferences involving

distributions (for example by asking the SP “Do you prefer distribution a or distribution b?”).

This leads naturally to the question which is precisely the problem we study in this work: How

do we support a SP who is confronted with a set of distributions to select the best one or rank

them from the most preferred to the least, taking into account available information about social

preferences (for example the direct expression by the Minister that one distribution is to be preferred

to another distribution)? As we demonstrate later in Section 3, the classical results in the literature

on equitability problems (see Karsu and Morton (2015) for a review) are not suited to the problem

of comparing distributions while taking preferences into account. In this paper we propose a new

method for this problem which is based on the use of such information to infer more about the SP’s

preferences. Specifically, preference information will help us to refine the ranking of the distributions

in the sense that given one distribution a is preferred to another distribution b by the SP, we will

be able to make statements such as “she should also prefer distribution c to d ”, even if the SP

does not express a preference relation over c and d directly. Checking whether such statements can

be made between any given pair of distributions requires calculations of combinatorial complexity

due to symmetry. We introduce substantial theory to tackle the technical challenges due to the

symmetry property of such problems as we will discuss in Section 4.

Our contributions in this paper can be summarised as follows:

• We present an effective way of using preference information in equitability problems. We

discuss how preferences can be used to derive a stronger ordering of distributions under

consideration.

• We introduce results to address the significant computational problems of deriving the stronger

ordering of distributions. Specifically, by Theorems 5 and 7 in Section 4, we address the in-

tractability problem due to symmetry.

• We illustrate the implementability of our approach by applying it to a ranking problematique,

i.e. the category of decision problems consisting of the effort to rank the distributions from

the best to the worst, which arises naturally in many settings.

3



2 Overview of related work

There is a broad literature in economics dealing with equity (see e.g. Young (1994), Sen and Foster

(1997)). In this section we provide a review of the most relevant work on comparing distributions

and clarify our contribution to the literature.

2.1 The theory of majorization

The theory of majorization gives a frame for comparing distributions in the absence of preference

information (Hardy et al. (1934), Müller and Stoyan (2002), Marshall et al. (2009), Shaked and

Shanthikumar (2007)). We sketch this well-known theory below.

Let Z denote a (finite) set of distributions (alternatives) with a typical member as zi =

(zi1, ..., z
i
p), where zi ∈ Z represents a distribution of a good among p parties and hence zij is the

amount of good that party j gets in distribution i. Given z ∈ Rp (Rp denotes the n-dimensional

real space), let −→z denote the ordered permutation of z such that −→z 1 ≤ −→z 2 ≤ ... ≤ −→z p.
A distribution z1 ∈ Rp is majorized by another distribution z2 ∈ Rp if

∑p
j=1

−→
z1j =

∑p
j=1

−→
z2j (i.e.

they have the same total output) and
∑i

j=1

−→
z1j ≥

∑i
j=1

−→
z2j ∀i < p . An application of majorization is

in comparing distributions with respect to inequality and the resulting quasi-order is called Lorenz

order (introduced by Lorenz (1905)) in the economics literature. If z1 is majorized by z2 then it

represents a more equitable allocation of the same amount of output to the parties, i.e. it Lorenz

dominates z2.

Note that majorization and hence Lorenz dominance order allow us to distinguish distributions

with the same amount of total output. An extension of these concepts to distributions with different

total outputs is the generalized Lorenz order, introduced by Shorrocks (1983).

Definition 1 A distribution z2 generalized Lorenz dominates another distribution z1 (denoted by

z1 �GL z2) if
∑i

j=1

−→
z1j ≤

∑i
j=1

−→
z2j ∀i.

Starting from the origin (0) and plotting the points (
∑k

j=1
−→zj , k/p) for all k = 1, ..., p and joining

these points by line segments provides the so called generalized Lorenz curve of a distribution z.

Hence, z1 �GL z2 if the corresponding generalized Lorenz curve does not lie below that of the latter.

Generalized Lorenz dominance is referred to as equitable dominance in the multicriteria decision

making literature (Kostreva and Ogryczak (1999), Ogryczak (2000), Kostreva et al. (2004), Baatar

and Wiecek (2006), Mut and Wiecek (2011)).

Example 1 Consider the following distribution pairs: (1,2,5,7) and (2,2,5,6); (1,2,5,6) and (2,2,4,7);

(3,3,3.5,3.5) and (2,2,4,7). The generalized Lorenz curves of these distribution pairs are seen in

Figures 1a, 1b and 1c respectively. In Figures 1a and 1b the second distribution dominates the first

one and in Figure 1c neither of the distributions dominates the other. In the first example, the

same amount of total output is distributed more equitably in the second distribution (in (1,2,5,7),

taking 1 unit of output from the richest entity and giving it to the worst off one results in the sec-

ond distribution (2,2,5,6), such an equity-enhancing transfer leads to a better distribution). In the

second example, the amount allocated to the k poorest entities in the second distribution is always

at least as high as the amount allocated in the first distribution for all k = 1, 2, ..., p. In the third

example, distribution 1 is more equitable but there is greater total wealth in distribution 2, and

hence we observe the trade-off between equity and efficiency.
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Figure 1: Generalized Lorenz curves

Theorem 1 (Dasgupta et al. (1973), Rothschild and Stiglitz (1973), Shorrocks (1983)). For any

two distributions z1 and z2, z1 �GL z2 ⇐⇒ u(z1) ≤ u(z2) ∀u(.) ∈ Qsym, where Qsym is the set of

symmetric increasing strictly quasiconcave 1 social evaluation functions.

By Theorem 1, another way to look at generalized Lorenz dominance is dominance with respect

to the set of symmetric increasing strictly quasiconcave social evaluation functions.

2.2 Second order stochastic dominance

Another frame to consider while comparing distributions in the absence of preference information is

the second order stochastic dominance (SSD), which concerns itself with comparing distributions of

risky options (Müller and Stoyan (2002), Shaked and Shanthikumar (2007)). The analogy between

stochastic dominance and inequality comparisons is well-established in the literature. The classic

works in the theory of inequality measurement draw on the analogy between inequality- and risk-

aversion (Atkinson (1970)). To underscore the qualitative analogy, one way to think about the

comparison of societies a and b with different distributions of income is to ask oneself the question:

“If I was to wake up tomorrow with the life circumstances of a randomly chosen individual, would

I prefer to be a randomly chosen member of society a or society b?”.

In the context of inequality comparisons SSD can be defined as follows:

Definition 2 A distribution z2 dominates another distribution z1 in the sense of second order

stochastic dominance (denoted z1 �SSD z2) if u(z1) ≤ u(z2) for all social evaluation functions of

the form u(.) =
∑

j v(zj), where v(.) is concave. (Levy (1992)) 2.

It is worth noting here that the problems of comparison of risks and the comparison of income

distributions are not precisely formally identical. The main mathematical difference is that, when

comparing risky options, utility (evaluation) functions are generally taken to be additively separable

over states (reflecting the “sure thing principle” that one’s preferences for consequences which one

1A function u(.) is strictly quasiconcave if for all z1, z2: z1 6= z2 and α ∈ (0, 1) we have u(αz1 + (1 − α)z2) >
min{u(z1), u(z2)}. A function u(.) is symmetric if for all z ∈ Rp, u(z) = u(Πs(z)) for all s = 1, ..., p!, where Πs(z)
is an arbitrary permutation of z. In other words, the function assigns the same value to all permutations of a
distribution.

2To be more precise, SSD is defined by using expectations, i.e.
∑
i piu(zi). However, this would be equivalent to

the definition we use above. To see this, observe that the expectation can be obtained by the additive aggregation
(and vice versa) by dividing by n, the number of parties, and factorising.
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does experience should not depend on the consequences in the states of nature which are not

realised) (Savage (1954), Jeffrey (1982), Wakker (1989), Hurley (1992)). In the theory of inequality

there is no compelling argument for separability in the same way, and indeed some writers argued

that a theory of inequality should take into account “caring externalities”, that is to say, the

distress A feels at B’s disadvantage (Culyer (1989), see also Diamond (1967) for a criticism of

assuming the sure thing principle for social choice). The need to take into account such caring

externalities provides a compelling argument that, in the inequality context, unlike the risk context,

a comprehensive theory has to allow for the possibility of nonadditivity in the evaluation function.

Moreover, several natural evaluation functions have a non-additive form. For example, think about

a situation where we evaluate alternative monetary allocations to two people A and B, who are

otherwise indistinguishable. Suppose that giving $1 more to A (B) is worth 1 util to the social

planner as long as the difference between what A (B) already has and what B (A) already has is

less than a certain threshold, say $10. When the difference (A-B) ((B-A)) exceeds that threshold

every $1 added to the income of A (B) is worth 0.5 utils to the social planner. Such a preference

statement cannot apply to a social planner with an additive evaluation function.

It is well known that checking dominance with respect to the functions of the form u(.) =∑
j v(zj), where v(.) is concave, is equivalent to checking dominance with respect to the set of

functions that are symmetric, increasing and strictly quasi-concave (Qsym for short) in the absence

of preference information (see Rothschild and Stiglitz (1973), Shorrocks (1983), Thistle (1989),

Gravel and Moyes (2013)).

Theorem 2 For any two distributions z1 and z2, z1 �SSD z2 ⇐⇒ z1 �GL z2.

We commented previously that SPs may have preferences represented by non-additive evaluation

functions. Yet, Theorem 2 illustrates that it would make no difference to merely include such

functions to the set relative to which dominance is derived. In this sense, the results of Theorem 2

would be of little use to a SP who has already expressed preferences incompatible with an additive

evaluation function (e.g. as in the previous example). In the following section we examine how this

equivalence breaks when preferences expressed by SPs are taken into account.

3 The usefulness of preference information: Conditional domi-

nance

We now discuss the implications and usefulness of introducing preference information in comparing

distributions of a good among a set of entities. We also demonstrate that this approach is both

useful and substantively different to the existing approaches discussed in the previous section.

Consider a situation where a SP has provided preference information over a finite set R of

distributions, denoted �R. This could be a set of binary preference statements, or in the form of

determining the least preferred distribution in a set of given reference distributions. Let A(�R)

denote the set of additive functions of the form u(.) =
∑

j v(zj), with v(.) concave, that are

compatible with the preference information �R. Specifically, for any two distributions one of which

is preferred to the other by the SP, the compatible function u(.) has a higher value for the more

preferred one. Similarly, let Qsym(�R) denote the set of strictly quasiconcave symmetric increasing

functions that are compatible with �R. The sets A(�R) and Qsym(�R) are subsets of sets A and
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Qsym respectively. We can use these subsets to make further inferences about the social planners’

preferences (choices) compared to the case where the original sets of functions A or Qsym are used.

Theorem 2 asserts that dominance with respect to sets A and Qsym are equivalent, implying

that additivity of the social evaluation function is not a material assumption in the absence of

preference information. However, in the presence of preference information, additivity is a material

assumption because dominance with respect to sets A(�R) and Qsym(�R) are not equivalent.

To see this, consider the following example.

Example 2 Table 1 shows four feasible allocations of a good over three people.

Table 1: Example allocations of a good

Alternative Person 1 Person 2 Person 3
1 2 7 8
2 3 4 8
3 2 7 1
4 3 4 1

Suppose the SP compares between (2,7,8) and (3,4,8) and she prefers (2,7,8). If we check

dominance with respect to A(�R) then we conclude that she must also prefer, for example (2,7,1)

to (3,4,1) since if her preferences are represented by an additive function u(z1) +u(z2) +u(z3) then

we have learned from her preference statements that u(2) + u(7) > u(3) + u(4). Her preference

for (2,7,1) over (3,4,1) depends on whether u(2) + u(7) + u(1) is greater than or less than u(3) +

u(4) + u(1) but this is fixed by the above inequality. This means that all functions in A(�R) would

render distribution (2,7,1) superior to distribution (3,4,1). But this is not true if we allow general

symmetric quasi-concave functions. For example, if the evaluation function f is the sum of the

pairwise minima, then f(2, 7, 8) = min(2, 7) + min(2, 8) + min(7, 8) = 2 + 2 + 7 = 11, and similarly,

f(3, 4, 8) = 3 + 3 + 4 = 10 but f(2, 7, 1) = 1 + 1 + 2 = 4 and f(3, 4, 1) = 1 + 1 + 3 = 5.

It is possible to check dominance with respect to A(�R) using linear programming models and this

is considered in some studies (see e.g. Armbruster and Delage (2015), Karsu (2016)). However, to

our knowledge, the problem of checking dominance with respect to Qsym(�R) has not been tackled

in the literature so far.

Our approach introduces this machinery to work with preference information and is able to

accommodate the aforementioned social planner. But there is no a-priori insistence that the social

planner’s evaluation function is non-additive. Thus our approach can accommodate any social

planner whose preferences are representable by functions in the set Qsym(�R) (of which A(�R
) is a potentially empty subset). In sum, the approach verifies dominance with respect to the

set Qsym(�R) and extends generalized Lorenz dominance, which does not include any preference

information, by incorporating preference information.

We shall use the term conditional generalized Lorenz dominance (c-dominance, denoted as �GLc
) to refer to dominance with respect to all social evaluation functions that are increasing, symmetric,

strictly quasiconcave and consistent with �R.

Definition 3 Let Qsym(�R) be the set of increasing symmetric strictly quasiconcave social eval-

uation functions, which are compatible with some preference statement �R. Then for any two

distributions z1 and z2, z1 �GLc z2 ⇐⇒ u(z1) ≤ u(z2) ∀u(.) ∈ Qsym(�R).
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Incorporating preference information and hence using conditional generalized Lorenz dominance

would be useful as generalized Lorenz dominance can not be used to compare even quite extreme

distributions (consider e.g. (3,4,7,11) and (2,100,110,140). These two distributions do not general-

ized Lorenz dominate each other). Preference information can help us to compare two distributions

z1 and z2 which are otherwise incomparable by generalized Lorenz dominance even if the SP has

not expressed a preference relation over z1 and z2 directly. Thus, preference information can help

refine the ranking of distributions under consideration. We demonstrate with an example.

Example 3 Suppose that the SP is considering a set of distributions of e.g. wealth over two people,

seen in Table 2. In this set, the only pair that is comparable by the generalized Lorenz dominance

relation is z2 and z3; z2 generalized Lorenz dominates z3.

Table 2: Example distribution of wealth over two people

Distribution Person 1 Person 2
z1 2 6
z2 3.7 3.7
z3 4 3
z4 8 0.5

Now suppose that the SP provided the preference information that she prefers z3 to z1. What

can we infer about the preference relation between the distributions in this set by assuming that her

social evaluation function is in set Qsym?

We can infer that z2 should also be preferred to z1 due to transitivity but this is trivial. What

else can we infer from this preference statement?
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Figure 2: Example on the usefulness of preference information

Given z3 is preferred to z1, one can infer that for any decision maker with a symmetric in-

creasing strictly quasiconcave function, the points in the blue dotted region in Figure 2a will be
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less preferred than z1, and the points that are in the green region with diagonal lines will be more

preferred to z1. We know this from quasiconcavity (i.e. the indifference curves are convex) and

from symmetry. To see how; consider z4, which is a point which should be less preferred than z1.

Suppose, on the contrary, that z3 is preferred to z1 but z4 is also preferred to z1. Then there has

to be an indifference curve which separates z3 and z4 from z1, with z3 and z4 (and all their per-

mutations) above the indifference curve and z1 (and its permutations) below the indifference curve

(see Figure 2b for an example). But such a curve is not and can not be convex, contradicting the

assumption of quasiconcavity. So we can infer that z1 is preferred to z4 given z3 is preferred to z1.

And the same reasoning goes for all points in the blue dotted region in Figure 2a. Similarly, we can

infer that the points in the green region with diagonal lines should be preferred to z1.

4 Theoretical Results

Table 3 summarizes the notation and terminology used throughout the paper.

Table 3: Notation and Terminology

Notation Definition Expression

z ∈ Rp or zi ∈ Rp A generic alternative (distribution vector)
Z A (finite) set of distributions (alternatives)

Πl(z) An arbitrary permutation of z
−→z Ordered vector of z −→z = Πl(z) : −→z 1 ≤ −→z 2 ≤ ... ≤ −→z p
� /≺/ ∼ Weak /strict/ indifference preference relation
Q The set of functions that are increasing and strictly quasiconcave

R Set of distributions that are preferred to the same distribution zk R = {z1, z2, ..., zk−1}
�R Preference information taken from the SP z1, ..., zk ∈ Rp such that zi � zk
�c Dominance with respect to Q(�R) Conditional dominance in the asymmetric case
Qsym The set of functions that are

strictly quasiconcave, symmetric and increasing
�GL Generalized Lorenz dominance relation Dominance without any preference information

, i.e. dominance with respect to Qsym
�GLc c-dominance relation Extension of �GL, includes preference information.

(conditional generalized Lorenz dominance relation) Dominance with respect to Qsym(�R)

C(R; zk) Cone generated by preference information �R

Upper generators of C(R; zk) Alternatives zi ∈ R
Lower generator of C(R; zk) Alternative zk

P (R; zk) Polyhedron spanned by z1, ..., zk (distributions in set R ∪ zk)

Lasym or Lasym(zk) Given �R the set of points conditionally dominated {z : z ≤ z′ for some z′ ∈ C(R; zk)}
by zk (asymmetric case)

Uasym or Uasym(zk) Given �R the set of points conditionally dominating {z : z′ ≤ z for some z′ ∈ P (R; zk)}
zk (asymmetric case)

Π(R) The set of all permutations of the distributions in set R

Lower set (L or L(zk)) Given �R the set of points c-dominated by zk {z′ : z′ �GL z

(symmetric case) for some z ∈ C(Π(R ∪ zk); Πs(zk))

for some permutation Πs(zk) of zk}.
Upper set (U or U(zk)) Given �R the set of points c-dominating zk {z′ : z �GL z′ for some

(symmetric case) z ∈ P (Π(R ∪ zk); zk)}.

Π̂(
−→
zk) The set of (p− 1) distributions, each of which is obtained by Π̂(

−→
zk) = {z′ : z′

i′ =
−→
zki′+1, z

′
i′+1

=
−→
zki′

swapping two consecutive elements in
−→
zk z′i =

−→
zki ∀i 6= i′, i′ + 1 for some i′ ∈ I}.

In this section we introduce results that allow for using preference information provided by

a SP to refine the ranking of distributions. As seen in the example of the previous section, the

preferences provided by the SP define, for each distribution, a non-trivial upper set, denoted U(z)

(the green etched region in Figure 2a), and a non-trivial lower set, denoted L(z) (the blue dotted

region in Figure 2a). In a setting where the SP’s preferences are not characterised by symmetry,

there are results in the literature that allow for characterising these sets. Such settings are discussed

by Korhonen et al. (1984) and Hazen (1983) (see Karsu (2013) for more information). Relying on

these results, however, is not possible where symmetry is a feature of the SP’s preferences. In

particular, symmetry would necessitate checking a set of conditions with respect to every possible

combination of all permutations of a set of distributions, thus imposing an intractable computational

load. Instead, our results provide a compact characterization of U(z) and L(z) which avoid the need

9



for considering all permutational checks, and in some cases avoid them altogether, thus affording

tractability.

In the ensuing we will assume that the SP has provided preference information �R of the form

zi � zk, i = 1, ..., k − 1, which stands for “the SP prefers distribution zi to zk”. (Note that when

k = 2 this is pairwise comparison information). We will also use R = {z1, ..., zk−1} to denote the

set of reference distributions zi which the SP prefers to zk. In practice the SP may provide further

preferences (in the form of a partial ranking), but our assumption here does not restrict generality.

With use of the reference distributions in R , we also define a cone C(R; zk) and a polyhedron

P (R; zk) as follows:

C(R; zk) = {z| z = zk +
∑k−1

i=1
µi(z

k − zi), µi ≥ 0},

P (R; zk) = {z| z =
∑k

i=1
µiz

i,
∑

µi = 1, µi ≥ 0},

where the reference distributions zi ∈ R are referred to as the upper generators of the cone (and

polyhedron) and zk as the lower generator. We express upper and lower sets for a distribution zk

through cones and polyhedrons as follows.

Lasym(zk) = {z|z ≤ z′ for some z′ ∈ C(R; zk)}
Uasym(zk) = {z|z′ ≤ z for some z′ ∈ P (R; zk)}

Similar to Definition 3, we can define conditional dominance for the asymmetric settings.

Definition 4 For any z1, z2 ∈ Rp , z1 �c z2 ⇐⇒ u(z1) ≤ u(z2) ∀u(.) ∈ Q(�R), where Q(�R) is

the set of social evaluation functions that are increasing, strictly quasiconcave and consistent with

�R.

The following result can be used to check this conditional dominance in asymmetric settings:

Theorem 3 (Korhonen et al. (1984)) 3 Consider z, z′ ∈ Rp. Then z �c z′ if the following hold:

(i) z ∈ Lasym(zk).

(ii) z′ ∈ Uasym(zk).

Example 4 To illustrate the application of the Theorem 3, consider the example in Figures 3a and

3b. Consider the distribution defined by point (2, 6). Figure 3a shows the region of distributions that

dominate (2, 6) (etched region) and the set of points that are dominated by (2, 6) (dotted region)

in the absence of preference information. Figure 3b shows the impact of introducing preference

information, namely (3, 4) is preferred to (2, 6). Both the regions of points dominated by (2, 6) and

the set of points that dominate (2, 6) increase as seen in the figure. These sets are again derived by

using the convexity property of the indifference curves of the evaluation function as explained in the

previous section. Any distribution z falling within the dotted region is (conditionally) dominated by

any distribution z′ falling within the etched region. By use of Theorem 3, we can check (by solving

systems of linear inequalities) whether this is the case for any arbitrary points z and z′ and, if so,

the original ranking of distributions can be refined by adding the information that z �c z′.
3Although the original results do not impose the symmetry assumption they also hold for the case with symmetry

due to the axiom of convexity, which is common to both cases.

10



Theorem 3 has been traditionally applied when there is no a priori assumption that the SP is

indifferent between all permutations of a distribution (in the preceding example, we made no use of

the symmetry assumption about the SP’s preferences). If this were the case, however, the ranking

could be refined further. To see this, consider the same example in a symmetric setting. Figures

4a and 4b show the dominating and dominated regions with and without preference information

respectively. In Figure 4a, (2, 6) is considered equally good as (6, 2), by symmetry, and so there are

now two dominated regions. In Figure 4b, symmetry dictates that any of (3, 4) or (4, 3) is preferred

to any of (2, 6) and (6, 2) and so both dominating and dominated regions increase. For any two

distributions z and z′ such that z falls within any of the two (dotted) enlarged dominated regions

and z′ falls within the (etched) dominating region we can again infer that z �GLc z′.
In addition to the usefulness of preference information in a symmetric setting, the above example

also illustrates the increase in computational complexity due to symmetry. As can be seen, we

need to perform checks by taking into account every permutation of the distributions over which

preferences are provided. With an increase in the number of entities and the reference distributions

considered, this becomes prohibitive. The results that we introduce below alleviate this problem.
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Figure 3: Asymmetric setting

Let I be the index set of entities, i.e. I = {1, 2, ..., p}. For our results, we will use the following

two sets of permutations of the reference distributions in R and distribution zk:

Π(R) = {z′ : z′ = Πs(z) for some permutation Πs(z) of z ∈ R}.
Π̂(
−→
zk) = {z′ : z′i′ =

−→
zki′+1, z

′
i′+1 =

−→
zki′ , z

′
i =
−→
zki ∀i 6= i′, i′ + 1 for some i′ ∈ I}.

Π(R) is the set of all possible permutations of the reference distributions and Π̂(
−→
zk) is the set

of permutations of
−→
zk, each of which is obtained by swapping two consecutive elements of

−→
zk.

Using Π(R), we may now formally express the lower and upper sets L(zk) and U(zk) through

11



these cones and polyhedrons:

L(zk) = {z| z �GL z′ for some z′ ∈ C(Π(R ∪ zk); Πs(zk)) for some permutation Πs(zk) of zk}.
U(zk) = {z|z′ �GL z for some z′ ∈ P (Π(R ∪ zk); Πs(zk)) for some permutation Πs(zk) of zk}.

Theorem 4 Consider z, z′ ∈ Rp. Then z �GLc z′ if the following hold:

(i) z ∈ L(zk).

(ii) z′ ∈ U(zk).

Proof.

(i) z ∈ L(zk) then z �GL z′ for some z′ ∈ C(Π(R∪zk); Πs(zk)) for some permutation Πs(zk) of zk.

This implies z′ �c Πs(zk). Note that �c implies �GLc (as the set of symmetric quasiconcave

functions is a subset of the set of quasiconcave functions) hence z′ �GLc Πs(zk). �GLc is

symmetric, therefore z′ �GLc zk. Then z �GL z′ �GLc zk, implying z �GLc zk.

(ii) z′ ∈ U(zk) then z′′ �GL z′ for some z′′ ∈ P (Π(R∪zk); Πs(zk)) for some permutation Πs(zk)of zk}.
This implies Πs(zk) �c z′′, hence Πs(zk) �GLc z′′. �GLc is symmetric, therefore zk �GLc z′′.
We have zk �GLc z′′ �GL z′, implying zk �GLc z′.

From parts (i) and (ii) z �GLc zk �GLc z′, then z �GLc z′.
The sets L(zk) and U(zk) above contain distributions that are conditionally generalized Lorenz

dominated by, or conditionally generalized Lorenz dominate zk. It follows that any distribution in

L(zk) is conditionally generalized Lorenz dominated by any distribution in U(zk). Therefore these

sets provide a mechanism for checking conditional generalized Lorenz dominance between any pair

of distributions, z and z′, specifically by checking membership of either in L(zk) or U(zk). This

would involve solving two LPs for each permutation. As mentioned before, this can be computa-

tionally prohibitive, as it requires a membership check for every single one of the p! permutations

Πs(zk) of zk and in each check all permutations of the reference alternatives zi ∈ R should be con-

sidered. However, our result below shows that we can completely remove the need for considering

all permutations of zk and zi ∈ R.

In particular, instead of L(zk) and U(zk), we will use the following:

L̂(zk) = {z| z �GL z′ for some z′ ∈ C(
−→
R ∪ Π̂(

−→
zk);
−→
zk)}.

Û(zk) = {z|z′ �GL z for some z′ ∈ P (
−→
R ;
−→
zk)}.

Theorem 5 Consider two distributions z, z′ ∈ Rp. The following are equivalent:

(i) z ∈ L(zk) and z′ ∈ U(zk)

(ii) z ∈ L̂(zk) and z′ ∈ Û(zk).

Corollary 6 Consider two distributions z, z′ ∈ Rp, z ∈ L̂(zk) and z′ ∈ Û(zk) implies z �GLc z′.

To summarise, the result above allows for checking conditional generalized Lorenz dominance

between a pair of distributions in an analogous way to Theorem 3, but also taking symmetry into
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Figure 4: Symmetric setting

account, therefore further refining the ranking of distributions. At the same time, the computational

burden of accounting for symmetry is avoided, as it suffices to work with the ordered vector
−→
zk

as the lower generator, instead of considering all permutations Πs(zk) of zk separately. Moreover

instead of using Π(R) in the set of upper generators we only consider
−→
R , i.e., the ordered vectors of

distributions in reference set R. Checking dominance involves solving a LP per each membership

check for L̂(zk) and Û(zk). The details of this (and the proof of the Theorem) are given in the

Appendix (Section A.1).

In addition to the above, further simplification and computational savings are possible for the

special case where we are considering a single reference distribution zi at a time and use two-point

cones of the form C(zi; zk) (A two-point cone is a cone that consists of one upper generator and

one lower generator). In particular, define:

L(zk) = {z| z �GL z′ for some z′ ∈ C(Πr(zi); Πs(zk)) for some permutations Πr(zi) and Πs(zk)

of zi and zk, for some zi ∈ R or z′ ∈ C(Πr(zk); Πs(zk)) for some permutations Πr(zk) and

Πs(zk) of zk}.
L̄(zk) = {z| z �GL z′ for some z′ ∈ C(

−→
zi ;
−→
zk) for some zi ∈ R}

Theorem 7 Consider two distributions z, z′ ∈ Rp. The following are equivalent:

(i) z ∈ L(zk) and z′ ∈ U(zk)

(ii) z ∈ L̄(zk) and z′ ∈ Û(zk).

To summarise, by considering separately every zi ∈ R, and using two-point cones, we may

reduce the computational burden, as we can disregard taking permutations of zk into account and

instead just use the ordered vector
−→
zk (see Korhonen et al. (1984) for a discussion on the difference

between using two-points cones and larger cones in settings without symmetry assumption. Their

computational experiments indicate that using larger cones eliminates more alternatives than using

13



two-point cones. On the other hand the LPs solved considering two-point cones are easier to handle

as they are of smaller size, hence there is a trade-off between computational gain and information

gain). The proof of the Theorem is provided in Appendix Section A.2. 4

The mathematical models solved to check whether a distribution is in the L̂(zk) (or L̄(zk)) or

Û(zk) given preference information �R are provided in Appendix Section B. In the next section

we propose an interactive ranking algorithm which is based on our theoretical results.

5 Interactive Algorithm

We propose an algorithm that can be used to obtain a ranking of a given discrete set of distributions.

Suppose that we are given a finite number of distributions each showing a distribution profile for

p entities. We can summarize our algorithm with the following main steps:

S.1.Check whether any distribution is generalized Lorenz dominated by the other for each pair

of distributions. This check is performed by the dominancecheck subroutine in Algorithm 1.

S.2. Select k distributions (k ≥ 2) based on a predetermined rule. Get the preference in-

formation from the SP by asking her to compare these distributions. Denote the least preferred

distribution as zk and the rest as zi for i = 1, 2, ..., k−1. This is performed by the getinfo subroutine

in Algorithm 1.

S.3. Based on the preference information obtained, check for each distribution z whether

z ∈ L(zk). If not, then check whether zk ∈ U(zk). If any new information is obtained, which

would allow new cones and polyhedra to be generated, repeat this step. We perform these checks,

respectively, by solving two linear programming models, LP1 and LP2, discussed in Appendix

Section B. Conegeneration subroutine in Algorithm 1 performs these operations.

S.4. Update the results accordingly (in the Countassigned subroutine). If the result is not

satisfactory according to some predetermined stopping criterion, continue with Step 2.

The pseudocode of the algorithm is as follows.

Algorithm 1 Interactive algorithm

Read problem data and initialize the parameters using Initialization subroutine
Check GL dominance between each pair of distributions using Dominancecheck subroutine
Repeat

Get preference information from the SP using Getinfo subroutine
newinfo=1 //This parameter is used to check whether any new information is obtained that

can allow us to generate new cones and polyhedra
Repeat

Perform the checks related to L and U using Conegeneration subroutine
Until newinfo=0
Count the number of distributions whose ranks are known using Countassigned subroutine

Until n-unassigned= n or CPUtime>1800 //n is the number of distributions
Display results and performance measure values

See Appendix Section C for detailed explanation of the subroutines.

4Note that Theorem 7 applies to situations where p > 2 as long as only two-point cones and polyhedra are used.
However, it is not generalizable to cases where we use larger cones. This is because for two distributions zi and
zk such that zi � zk, we can claim for a distribution z that, if there is a z′′ ∈ C(zi; zk) : z �GL z′′ then there is

z′′′ ∈ C(
−→
zi ,
−→
zk) : z �GL z′′′. However, for any k vectors z1, ..., zk∈ Rp such that zi � zk for all i 6= k and z ∈ Rp we

cannot claim for a distribution z that, if there is a z′′ ∈ C(R; zk) : z �GL z′′ then there is a z′′′ ∈ C(
−→
R ;
−→
zk) : z �GL z′′′.

See the counterexample in Appendix Section A.2.
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6 Results

6.1 Tests with real subjects

The proposed interactive decision support system was tested with fourteen individuals with a

variety of backgrounds in economics, mathematics, statistics and engineering to see whether it is

usable. These individuals were selected as thoughtful people with quantitative backgrounds. We

presented the subjects the following cover story, which involved ranking 10 distributions (options)

each of which represents an allocation of a good over three indistinguishable people.

You are giving three presents to three indistinguishable nephews or nieces (they are triplets so

there are no age differences) for their 21st birthday. One of them likes books; one likes CDs and

the other likes clothes, so you want to give them vouchers for these items. You want to spend £270

altogether, but some shops will give you vouchers with a total value >£270 for this money. For

example, you can buy vouchers at shop A which will give you a voucher for each niece for £90

(hence with a total value of £270, equitably distributed) or at shop B which will give you 2 £80

vouchers and a £130 voucher (with a total value of £290 but less equitably distributed). Which do

you prefer? Suppose that you have a list of alternative vouchers from different shops (10 options

in total) and you want to rank these from best to the worst.

The option set is given in Table 4. Note that only one of the distributions in the option set is

generalized Lorenz dominated.

Table 4: Option Set

Voucher 1 2 3 Voucher 1 2 3

1 90 90 150 6 50 75 230
2 75 125 125 7 65 125 150
3 85 85 180 8 80 115 115
4 95 95 110 9 65 130 135
5 70 105 160 10 85 95 155

Our tests involved the use of two procedures. The first procedure (Procedure 1) was based

on asking holistic comparisons between pairs of options. The second procedure (Procedure 2)

was based on the use of an additive power evaluation (social welfare function (SWF)) of the form

(
∑p

i=1(zi)
α)

1
α . The power SWF of procedure 2 was parameterised, i.e. a value for α was found, by

asking a single indifference question to the subject. The indifference question was based on finding

the equally distributed equivalent (EDE) of a given option. Specifically, the subject was given (90,

90, 150) and asked to provide a value x such that s/he valued (90, 90, 150) and (x, x, x) the same

(i.e. s/he was indifferent). After finding the corresponding α value, we obtained a full ranking.

With each subject, we used both procedures to obtain two (potentially different) rankings of

the options. At the end, we asked the subjects the following questions:

1. How easy did you find it to make holistic comparisons between options (relative to finding

an EDE)? (very easy, quite easy, neither easy nor difficult, quite difficult, very difficult).

2. How satisfactory do you find the interactively derived ranking versus the SWF derived rank-

ing? (more satisfactory, quite satisfactory, neither satisfactory nor unsatisfactory, quite un-

satisfactory, very unsatisfactory)
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We note here that our aim in performing these tests is in the spirit of an existence proof: we

want to establish whether people could use the procedure, not to establish the definitive superiority

of Procedure 1 vs Procedure 2 (as we would expect that different people would prefer different

questioning modes). In any case, such a comparison would not be appropriate as our experimental

design was not counterbalanced to guard against order effects, as one of the subjects noted.

One of the main observations we made in our experiments is that the problem we try to handle

is cognitively challenging due to the tradeoff between efficiency and equity. This justifies the

importance of designing appropriate decision support which relies on inputs collected from the SP

in a way that is natural to him/her (like our holistic comparisons) and which provides satisfactory

results.

Table 5 summarizes some information on the experiments in terms of the solution time of

Procedure 1 (in seconds) and the number of questions answered. As seen in the Table the whole

procedure took less than 20 minutes for most trials and the number of questions answered was at

most 20.

Table 5: Results of the tests with real subjects

Subject Solution Time Number of questions Subject Solution Time Number of questions

A 1234 20 H 898 19
B 727 13 I 765 19
C 842 15 J 753 17
D 810 14 K 819 18
E 1087 19 L 616 16
F 873 20 M 810 18
G 600 15 N 692 18

All of the subjects provided a positive feedback in terms of the usability of our method. We also

asked about acceptability of the distribution question (Question 1) but without getting consensus

about whether Procedure 1 or Procedure 2 was preferred (seven subjects found making holistic

comparisons quite difficult while six subjects found it quite easy, and one subject found it very easy

relative to finding an EDE). In terms of the satisfaction derived from the two rankings (Question

2), the feedback was also mixed. One subject found Procedure 1 neither satisfactory nor unsat-

isfactory, four found it quite satisfactory, seven found it more satisfactory and two found it quite

unsatisfactory relative to Procedure 2.

Overall, our small set of trials indicated that the procedure is usable and is competitive with

an EDE-based approach, Procedure 2. We also note that our method does not make the strong

structural assumptions which are required by Procedure 2, in the sense that no parametric form is

assumed.

6.2 Computational experiments

Our initial motivation for this study was to provide a ranking procedure for comparing income

distributions. In order to test our procedure in this setting, we used income distribution informa-

tion of different countries from the World Bank WB (2011) and UNU-WIDER (United Nations

University- World Institute for Development Economics Research) WIDER (2011) databases. We

used the quintile values to represent a country’s income distribution. We performed tests with

smaller discrete datasets (for n values of 14, 15, 26, 39, 54 and 66) but we found that many

relations in these datasets are already determined by generalized Lorenz dominance and so these
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datasets do not allow our procedure to demonstrate its full potential.

To demonstrate the full potential of the procedure, we explore its performance in an environment

where none or only some of the distributions are generalized Lorenz dominated. Note that this is

the sort of dataset which might be generated by one of the previously discussed algorithms (e.g. by

Kostreva and Ogryczak (1999), Ogryczak (2000), Kostreva et al. (2004), Baatar and Wiecek (2006),

Ogryczak et al. (2008)) for exhaustively generating or sampling the efficient set in the context of

some optimisation problem such as might naturally occur in, for example, a telecommunication or

logistics application.

To test the performance of our procedure for such settings, distributions are generated randomly

from a uniform distribution using MATLAB’s random number generator. In this set only nondom-

inated distributions are generated (a distribution is nondominated if there is no other distribution

in the set that generalized Lorenz dominates it).

We simulated the SP’s responses using an underlying evaluation function. Three types of

underlying evaluation functions are used in the experiments:

1. Linear evaluation function

U(zi) =
∑p

j=1
←−w j
−→z ij

where wj , j = 1, ..., p are generated from a uniform distribution between 0 and 1.

2. Product function

U(zi) =
p∏
j=1

zij

3. Tchebycheff evaluation function

U(zi) = −→z i1

We use the following performance measures used to evaluate performance of approach and the

algorithm.

1. CPU time in seconds

2. Number of LP1 problems solved

3. Number of LP2 problems solved

4. Number of binary comparisons gathered from the SP

5. Ratio of the binary comparisons gained through the c-dominance approach

The definitions of measures 1,2, 3 and 4 are clear. Let us explain measure 5.

In order to achieve a complete ranking of n distributions, one has to know the relation between

each pair of distributions in this set. Hence, we should know the result of
(
n
2

)
binary comparisons.

At each iteration one binary comparison is asked to the SP, hence, in t iterations t such comparisons

will be provided. We then calculate the ratio of the binary comparisons gathered from the SP, which

we call qratio as follows:

qratio = t/
(
n
2

)

In the Dominancecheck subroutine of the algorithm we find the number of pairwise generalized

Lorenz dominance relations. Let us denote it by d. We also find the ratio of the generalized Lorenz

dominance relations which is a property of the problem set rather than a performance measure.

We call it dratio and calculate as follows:
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dratio = d/
(
n
2

)
.

Ratio of the binary comparisons gained through the c-dominance approach (gainratio): Similar

to qratio, this measure is used to see the amount of information that we gain by using the c-

dominance approach. It is calculated as follows:

gainratio=1-qratio-dratio

The optimal solutions of the LPs are found by using CPLEX 12.2. We set a termination limit

of 30 minutes to the algorithm. All experimentations are done in Intel Core i5 2.27 GHz, 4 GB

RAM. The algorithm is coded with MATLAB.

We now discuss the performance of our algorithm. For each combination of the settings discussed

above, we generate instances starting with n = 10 and p = 2, increasing them in increments of

10 and 1, respectively. For each combination of evaluation function, p and n values, 10 problem

instances are generated. For the linear evaluation function case, objective function weights are

randomly generated for each problem instance and then ordered in the nondecreasing manner. The

average performance measure values over the 10 instances are shown in Table 6. Recall that in

each problem instance none of the distributions are generalized Lorenz dominating each other, i.e,

dratio=0. Hence this set consists of more difficult problems in that sense.

We can find complete rankings for problems with up to 70 distributions when the number of

parties, p, is two, and up to 40 distributions when p is three, four and five in our time limit of 30

minutes.

These results reveal the contribution of using c-dominance (conditional generalized Lorenz dom-

inance). The minimum average gainratio value is 0.49, that is, at least about 50% of the binary

comparisons are provided by the lower and upper sets (L and U). This indicates a satisfactory

performance for the approach. Note here that in some instances gainratio is seen as 1, which is

due to rounding.

We can see the effect of problem size on the performance of the algorithm and on the amount

of information gained.

As can be observed from the table when the number of distributions, n, increases gainratio

increases. Hence for constant p, the contribution of the conditional dominance approach to the

solution increases as n increases. Note that with increasing n, the number of questions increases,

resulting in an increase in the number of cones/polyhedra generated. Moreover as n increases so

does the the number of LPs solved per L and U . As a result, we observe an increase in the number

of LPs solved and the solution time.

The effect of number of entities, p, is also notable in the performance of the approach. As p

increases the number and ratio of the comparisons required from the SP increase. As a result of

the increase in the ratio of the comparisons required, the ratio of information gained decreases.

Moreover the increase in the number of comparisons provided by the SP leads to an increase in the

number of LP models solved and in turn an increase in solution time.

It is also observed that the effects of p and n are consistent over the three types of evaluation

functions used.
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Table 6: Results of the computational experiments

Evaluation p n Number of LP1 Number of LP2 Solution Time gainratio Number of
Function (CPU seconds) questions asked

1 2 10 32.60 18.80 3.32 0.95 2.40
20 192.40 149.30 21.66 0.96 7.90
30 589.70 506.20 85.97 0.97 11.40
40 944.20 813.00 121.55 0.98 13.70
50 1714.20 1543.40 248.86 0.98 19.80
60 2258.50 2005.80 341.17 0.99 17.80
70 2159.40 1847.70 313.64 1.00 10.60

3 10 100.90 94.10 12.27 0.68 14.50
20 707.80 694.40 113.45 0.77 44.60
30 2061.00 2011.50 320.35 0.84 70.60
40 3446.10 3351.40 612.62 0.89 88.60
50 6397.10 6308.70 1438.71 0.91 111.90

4 10 129.50 128.70 16.43 0.54 20.90
20 884.80 874.10 124.20 0.73 52.00
30 2778.30 2757.50 472.12 0.78 95.80
40 5737.00 5706.60 1278.61 0.82 140.90

5 10 133.40 132.70 16.95 0.49 23.00
20 1070.80 1065.30 149.77 0.64 67.70
30 3100.40 3089.80 533.22 0.75 109.20
40 6895.75 6881.38 1483.24 0.81 145.88

2 2 10 46.70 33.40 5.07 0.91 4.10
20 260.80 220.70 31.30 0.95 9.90
30 739.70 669.60 96.78 0.96 17.50
40 1399.70 1296.20 197.30 0.97 22.00
50 2617.40 2466.60 418.67 0.98 28.10
60 4026.70 3826.20 733.58 0.98 34.40
70 5528.70 5267.70 1110.43 0.98 38.50

3 10 98.50 92.90 12.11 0.64 16.20
20 752.30 729.20 101.44 0.77 43.00
30 2075.00 2035.50 325.55 0.81 82.20
40 4332.30 4272.80 843.19 0.85 119.60

4 10 123.50 122.40 15.80 0.52 21.70
20 971.80 967.10 137.55 0.68 60.40
30 2946.70 2934.10 508.64 0.76 104.70
40 6290.67 6265.67 1213.64 0.80 152.67

5 10 127.20 126.40 16.37 0.50 22.50
20 1092.20 1088.70 153.25 0.66 64.70
30 3380.00 3375.30 611.02 0.73 119.20

3 2 10 27.20 11.80 2.51 0.96 1.80
20 106.30 58.70 10.48 0.98 4.50
30 263.00 157.40 26.79 0.99 3.20
40 467.30 320.60 51.32 1.00 3.50
50 573.20 375.60 73.15 1.00 3.40
60 943.60 692.20 112.40 1.00 3.10
70 1286.00 966.10 159.81 1.00 3.10

3 10 96.00 90.30 11.77 0.67 14.90
20 717.80 696.90 95.15 0.77 43.60
30 2063.30 2019.90 323.04 0.84 71.70
40 4189.10 4118.70 795.93 0.87 103.30

4 10 128.20 127.00 16.56 0.49 23.10
20 985.20 978.90 142.83 0.70 56.30
30 2758.30 2740.40 562.76 0.78 95.10
40 6040.00 6009.90 1324.71 0.81 147.10

5 10 128.30 127.60 62.92 0.50 22.70
20 1055.70 1052.00 531.56 0.66 64.20
30 3275.90 3269.90 586.79 0.74 113.30
40 4606.70 4594.50 1832.07 0.94 47.70
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7 Discussion

In this study we consider a method to incorporate preference information for equitability problems.

We are motivated by the fact that problems involving equity concerns are widely encountered in

real life, especially in the public sector. Such problems include, facility location, income distribution

and resource/service allocation problems.

We extend the generalized Lorenz dominance concept by introducing the concept of conditional

generalized Lorenz dominance (c-dominance): that is, generalized Lorenz dominance consistent

with given preference information. We propose a method that, based on preference information

about a distribution, characterizes the lower set (the set of points c-dominated by that distribution)

and the upper set (the set of points c-dominating that distribution) in a compact way. Characteriz-

ing these sets in a compact way is not straightforward as symmetry brings combinatorial complexity

to the problem. We provide theoretical results that help us handle this complexity and propose a

tractable computational scheme for checking whether a given point belongs to one of these sets. In

that sense, we extend the available methods in the multicriteria decision making (MCDM) litera-

ture such that they can be used for problems with equity concerns without significantly increasing

the computational efforts.

Our method does not rely on the assumption of an additive evaluation function and can handle

non-additive preference models unlike stochastic dominance based approaches. It would in principle

be possible to build a theory of conditional dominance in an environment where non-additive social

evaluation functions are allowed using the machinery of Argyris et al. (2014). But this method

cannot capture symmetry and it is not obvious and it is beyond the scope of this paper how one

should do it.

We check the performance of the suggested approach by using it in a ranking problem. Our tests

with individuals indicate that people could use the procedure in real life settings. Our simulation

results also suggest that the approach is computationally feasible for small to medium size problem

settings. It is observed that the satisfactory performance of the algorithm is mostly due to the

high ratio of information (at least 50%) gained by the conditional generalized Lorenz dominance

approach.

To the best of our knowledge, this study is the first extensive study that attempts to incorporate

SP’s preference information in equitability problems where the evaluation function is not assumed

to be additive. This is also the first discussion on the convex cones approach in a symmetric envi-

ronment and the first study that reports results for a ranking algorithm that uses the information

from cones and polyhedra (conditional dominance approach) in this context.

This study can be extended by working more on the use of preference information in this

context.

Our results in Theorem 4 of Section 4 provide only sufficient conditions for verifying conditional

dominance in the symmetric setting. We note that this is also the case for the existing results in

the literature for the asymmetric setting (see Theorem 3 of Section 4). Establishing whether our

conditions are also necessary and if not, providing an extended set of conditions that would be both

necessary and sufficient would settle the question as to whether further inferences about conditional

dominance can be made and how this may be achieved. Clearly this is a promising extension to the

methods introduced in this paper. Other than this, generalizing the approach includes four main

areas: Searching for alternative ways to handle computational complexity due to symmetry; using

the approach in “selecting the best” and “sorting” problematiques (Roy (1971)), also in optimisation
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with different feasible sets; and performing an experimental study to use the approach as efficiently

as possible. These potential research topics are discussed below.

1. Handling the computational complexity: Recall that the method we propose to handle com-

putational complexities due to symmetry reduces many of the permutational computations.

However, in LP1 we still have to find some of the permutations of the lower generator of each

cone. In the near future, more theoretical studies may be performed to see whether there

exists a way to obtain the information without any permutational calculations or even if it is

not possible, to design efficient algorithms for the solution of the resulting models.

2. Interactive algorithms for selecting the best and sorting problematiques: We have demon-

strated the computational performance of the proposed approach in a ranking setting. The

method can also be tested for selecting the best and sorting problematiques. Extending the

method for sorting settings would especially be interesting since we use different ways to

gather and use SP’s preference information in different problematiques. For example, in a

sorting environment, instead of taking pairwise comparisons or rankings, we may request

him/her to assign the distributions into the classes.

3. Use of the method for optimisation problems with different feasible sets: One can study

different problem environments where the feasible region is defined by constraints. Some ex-

amples are transportation problems, telecommunication network problems or location prob-

lems, where providing equitable service to the users of the system is an important concern.

More research can be done to generalize the use of conditional dominance approach in such

environments.

4. Experimental study on convex cones: While designing an algorithm the analyst makes various

decisions regarding the ways to collect preference information from the SP. The performance

of the algorithm may vary based on the size of the sample used for gathering preference

information, the selection rule applied to select the distributions in the sample and the form of

the information the SP provides. For example, given a set of k distributions, we may require

the SP to rank them or select the best/worst distributions in the sample. An interesting

direction for further research would be to perform an experimental study to see the impact

on computational performance and user behavior of such decisions.
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A PROOFS AND MODELS

A.1 Proof of Theorem 5

We prove Theorem 5 in two parts by proving Theorems 8 and 14 below.

A.1.1 Proof of Theorem 8

Recall the definition of U given preference information �R: U(zk) = {z|z′ �GL z for some z′ ∈
P (Π(R∪ zk); Πs(zk)) for some permutation Πs(zk) of zk}. That is, it is the set of points that gen-
eralized Lorenz dominate at least one point in the polyhedron generated by all the permutations
of the distributions mentioned in �R (distributions in set R ∪ zk). We show in Theorem 8 that
U(zk) can be characterized compactly using the ordered vectors only. It shows that one can check
whether a given distribution is in set U without any permutational calculations.

Theorem 8 If z ∈ U(zk) then there is z′ ∈ P (
−→
R ;
−→
zk) : z′ �GL z (hence z ∈ Û(zk), where

Û(zk) = {z|z′ �GL z for some z′ ∈ P (
−→
R ;
−→
zk)}).

We first prove Lemmas 9 and 10, which are auxiliary results that are used in multiple places in
our proofs. We then prove Lemmas 11 and 13, which will be used in our main proof of Theorem 8.
A short sketch of the proof strategy is as follows:

1. We first show in Lemma 9 that if one distribution is generalized Lorenz dominating another
then it is obtainable from the latter by a finite-number of equity enhancing (PD) transfers.
Using this result, we then provide an auxiliary result in Lemma 10 to be used in the proof of
Lemma 11.

2. We show in Lemma 11 that for z2, z1 ∈ Rp, if z ∈ P (z1;
−→
z2) then ∃z′ ∈ P (

−→
z1;
−→
z2) : z′ �GL z.

This shows that using the ordered version of the upper generator is sufficient in terms of the
information that can be obtained using a two-point polyhedron when the lower generator is

ordered (
−→
z2) .

3. We then provide a more general result in Proposition 12 and show that for any z2, z1 ∈ Rp, if

z ∈ P (z1; z2) then ∃z′ ∈ P (
−→
z1;
−→
z2) : z′ �GL z. This shows that using the ordered versions of

the upper and lower generators is sufficient in terms of the information that can be obtained
using any two-point polyhedron.

4. We link the above results on the two-point polyhedra to the more general case of larger
polyhedra of size k, by showing in Lemma 13 that, given zi such that zi � zk, ∀zi ∈ R we
have the following:

If z ∈ P (R; zk) then there exists λi and yi ∈ P (zi; zk) for i = 1, ..., k − 1 such that z =∑k−1
i=1 λiy

i and
∑k−1

i=1 λi = 1.

5. Finally, we prove Theorem 8. We make use of the fact that each point z in a k-point polyhe-
dron (that is, z ∈ P (R; zk)) can be written as a convex combination of other points yi that are
in the two point polyhedrons (generated by one of the upper generators and the lower genera-
tor of the k-point polyhedron) (see part 4 above). Each of these points (yi) generalized Lorenz

dominate a point in P (
−→
zi ;
−→
zk) for some i (hence a point in P (

−→
R ;
−→
zk) as this polyhedron includes

the smaller one). As set {z|z′ �GL zfor some z′ ∈ P (
−→
R ;
−→
zk)} is a convex set, any convex com-

bination of these yis is also in this set, hence there is z′ ∈ P (
−→
R ;
−→
zk) : z′ �GL

∑k−1
i=1 λiy

i = z.

We now give the detailed results. In a distribution, we call a transfer that takes an amount of
good from a party and gives it to a poorer party without changing their relative positions to each
other a Pigou-Dalton (P-D) transfer.
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Lemma 9 If z �GL z′ then there is a z′′ ∈ Rp such that z′′ ≤ z′, and z′′ is obtainable from z by a
finite number of P-D transfers.

Proof. Proof of Lemma 9. See Ok (1998), Lemma 1 for the proof.

Lemma 10 Let z and z′ ∈ Rp such that zi = z′i ∀i 6= h, h + 1. Then z �GL z′ if and only if
Min{zh, zh+1} ≤Min{z′h, z′h+1} and zh + zh+1 ≤ z′h + z′h+1.

Proof. Proof of Lemma 10.
Necessity:
This proof comes from the definition of the generalized Lorenz dominance. Min{zh, zh+1} ≤

Min{z′h, z′h+1} and zh + zh+1 ≤ z′h + z′h+1 imply
∑i

j=1
−→zj ≤

∑i
j=1

−→
z′j ∀i, hence z �GL z′.

Sufficiency:
From Lemma 9, if z �GL z′ then there is a z′′ ∈ Rp such that z′′ ≤ z′, and z′′ obtainable from z

by a finite number of P-D transfers. Suppose that we have obtained a z′′ such that z′′ ≤ z′ holds.
Without loss of generality suppose that Min{zh, zh+1} = zh and Min{z′h, z′h+1} = z′h. If this is not
the case, we can arrange them accordingly since we have symmetry.

Suppose that at least one of the following holds:

zh > z′h or zh + zh+1 > z′h + z′h+1 (A1)

z′i = zi ∀i 6= h, h + 1, so for z′′ ≤ z′ to hold, the P-D type transfer in distribution z to obtain
z′′ should be from zh+1 to zh.

That is, z′′h = zh + ε, z′′h+1 = zh+1 − ε, where 0 ≤ ε ≤ zh+1 − zh.
z′i = zi = z′′i ∀i 6= h, h+ 1 and z′′ ≤ z′ ⇒ z′h ≥ z′′h = zh + ε and z′h+1 ≥ z′′h+1 = zh+1 − ε.
That is, z′h ≥ zh and z′h + z′h+1 ≥ zh + zh+1, which is a contradiction to our initial assumption

A1.

Lemma 11 For z2, z1 ∈ Rp, if z ∈ P (z1;
−→
z2) then ∃z′ ∈ P (

−→
z1;
−→
z2) such that z′ �GL z.

Proof. Proof of Lemma 11. Let z1 6=
−→
z1 (Otherwise, the result is immediate). Let h be the

minimum value for which z1h > z1h+1 holds. Define z1′ as the permutation obtained from z1 by
swapping z1h and z1h+1. That is, z1 = (z11 , z

1
2 , ..., z

1
h, z

1
h+1, ..., z

1
p) and z1′ = (z11 , z

1
2 , ..., z

1
h+1, z

1
h, ..., z

1
p)

where z1h > z1h+1. We will first show the following holds:

If z ∈ P (z1;
−→
z2) then ∃z′ ∈ P (z1′;

−→
z2) such that z′ �GL z.

Suppose for an arbitrary 0 ≤ µ ≤ 1 we have a point z : z = µ
−→
z2+(1−µ)z1, that is z ∈ P (z1;

−→
z2).

Define z
′ ∈ P (z1′;

−→
z2) : z

′
= µ
−→
z2 + (1− µ)z1′.

One can easily show that z and z′ have the same elements except the hth and h+ 1th elements,
which are as follows:

zh = µ
−→
z2h + (1− µ)z1h;

zh+1 = µ
−→
z2h+1 + (1− µ)z1h+1;

z′h = µ
−→
z2h + (1− µ)z1h+1;

z′h+1 = µ
−→
z2h+1 + (1− µ)z1h.

Note that z′ �GL z if Min{z′h, z′h+1} ≤Min{zh, zh+1} and z′h + z′h+1 ≤ zh + zh+1 (See Lemma
10 above). Let us check (Recall that z1h > z1h+1):

Min{z′h, z′h+1} = Min{µ
−→
z2h + (1− µ)z1h+1, µ

−→
z2h+1 + (1− µ)z1h}

= µ
−→
z2h + (1− µ)z1h+1 = z′h.

We do not know what Min{zh, zh+1} is, hence we will compare z′h with both zh and zh+1.

z′h = µ
−→
z2h + (1− µ)z1h+1 ≤ µ

−→
z2h + (1− µ)z1h = zh
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z′h = µ
−→
z2h + (1− µ)z1h+1 ≤ µ

−→
z2h+1 + (1− µ)z1h+1 = zh+1. Hence,

Min{z′h, z′h+1} ≤Min{zh, zh+1} (1)

zh + zh+1 = µ
−→
z2h + (1− µ)z1h + µ

−→
z2h+1 + (1− µ)z1h+1

= µ
−→
z2h + (1− µ)z1h+1 + µ

−→
z2h+1 + (1− µ)z1h

= z′h + z′h+1. That is,

z′h + z′h+1 ≤ zh + zh+1 (2)

From 1 and 2 the conditions of Lemma 10 is satisfied so z′ �GL z . Since µ is arbitrary, this

result is valid for every z ∈ P (z1;
−→
z2).

We showed that if z ∈ P (z1;
−→
z2), then ∃z′ ∈ P (z1′;

−→
z2) such that z′ �GL z, where z1′ is the

permutation obtained by a single swap of two consecutive elements of z1 as defined above.

Note that any permutation of vector z1 will result in
−→
z1 if we apply a finite number of such

binary contiguous swaps. Starting from the first element which is higher than its consecutive

element, these type of swaps will eventually result in
−→
z1. Hence, we have the following result:

For any z2, z1 ∈ Rp, if z ∈ P (z1;
−→
z2) then ∃z′ ∈ P (

−→
z1;
−→
z2) such that z′ �GL z.

Proposition 12 For any z2, z1 ∈ Rp, if z ∈ P (z1; z2) then ∃z′ ∈ P (
−→
z1;
−→
z2) such that z′ �GL z.

Proof. Proof of Proposition 12. Let z1 = Πs(
−→
z1) and z2 = Πq(

−→
z2). Then z = µ(Πq(

−→
z2)) + (1 −

µ)(Πs(
−→
z1)) for some 0 ≤ µ ≤ 1. Let the inverse permutation of Πq be Πr and let Πr(Πs) = Πt.

We can rewrite the condition as follows: If Πr(z) ∈ P (Πt(
−→
z1);
−→
z2) then ∃z′ ∈ P (

−→
z1;
−→
z2) such

that z′ �GL Πr(z), implied by Lemma 11 proved above.

Lemma 13 Every point in a k-point polyhedron is a convex combination of k− 1 points which are
in the k − 1 distinct two-point polyhedrons generated by one of the upper generators and the lower
generator. That is, given zi such that zi � zk, ∀zi ∈ R we have the following:

If z ∈ P (R; zk) then there exists λi and yi ∈ P (zi; zk) for i = 1, ..., k−1 such that z =
∑k−1

i=1 λiy
i

and
∑k−1

i=1 λi = 1.

Proof. Proof of Lemma 13. z ∈ P (R; zk) hence z = µzk +
∑k−1

i=1 µiz
i such that µ+

∑k−1
i=1 µi = 1.

Let yi = (1− µ′i)zk + µ′iz
i ∀i.

Now we will show that there exist λi i = 1, ..., k − 1 such that z =
∑k−1

i=1 λiy
i. Given µi

corresponding to vector z, we will show that λis and µ′is exist as defined so that we can write z as
a convex combination of yis. Suppose that we have λi values for i = 1, ..., k − 2 such that λi > 0
and

∑k−2
i=1 λi < 1 and we set λk−1 = 1 −∑k−2

i=1 λi. Given these λi and µi, we can set µ′i values as
follows:

µi = λiµ
′
i for i = 1, ..., k − 1
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µ′i = µi/λi. Since λi > 0 and µi ≥ 0, we have µ′i ≥ 0.

z = µzk +

k−1∑

i=1

µiz
i

= (1−
k−1∑

i=1

λiµ
′
i)z

k +
k−1∑

i=1

λiµ
′
iz
i (Since µ = 1−

k−1∑

i=1

µi = 1−
k−1∑

i=1

λiµ
′
i)

=
k−1∑

i=1

λi(1− µ′i)zk +
k−1∑

i=1

λiµ
′
iz
i.

=

k−1∑

i=1

λi[(1− µ′i)zk + µ′iz
i]

=

k−1∑

i=1

λiy
i

Note that Lemma 13 can be expressed more sharply as follows: Every point in a k-point
polyhedron is a convex combination of k − 1 points which are in the k − 1 distinct two-point
polyhedrons, each of which is generated by one of the generators (which is used in all these two-
point polyhedrons) and each one of the other generators. The above proof mechanism can be used
to prove it: replace zk with an arbitrary generator and repeat the steps.

Proof of Theorem 8 We claim that if z ∈ U(zk) then z ∈ Û(zk).
Proof. Proof of Theorem 8 If z ∈ U(zk) then there exists z′ ∈ P (Π(R∪ zk); Πs(zk)) : z′ �GL z for
some permutation Πs(zk) of zk. First note that this polyhedron includes all permutations of zk, so
without loss of generality we can assume Πs(zk) = zk as the lower generator.

Note that R is the set of reference distributions each of which is preferred to the lower generator
zk. For the sake of simplicity and with an abuse of notation, in this proof we are going to refer to
Π(R ∪ zk) as R (this is again without loss of generality).

From Lemma 13 if z′ ∈ P (R; zk) then we can find yi ∈ P (zi; zk) : z′ =
∑k−1

i=1 λiy
i for i =

1, 2, ..., k − 1, where
∑k−1

i=1 λi = 1.

By Proposition 12, yi ∈ P (zi; zk)⇒ ∃z′′ ∈ P (
−→
zi ;
−→
zk)(hence z′′ ∈ P (

−→
R ;
−→
zk)) : z′′ �GL yi for all yi

i = 1, 2, ..., k− 1. Since yis, as defined above, are all in set {z′ : z′′ �GL z′ for some z′′ ∈ P (
−→
R ;
−→
zk)}

and this set is convex; any convex combination of them will also be in the same set. Hence,

∃z′′ ∈ P (
−→
R ;
−→
zk) : z′′ �GL z′.

To summarize, if z′ ∈ P (Π(R ∪ zk); zk) then ∃z′′ ∈ P (
−→
R ;
−→
zk) : z′′ �GL z′ (i.e., we can use the

ordered vectors of the generators only). Then we have z′′ ∈ P (
−→
R ;
−→
zk) : z′′ �GL z (by transitivity).

Recall that Û(zk) = {z|z′ �GL z for some z′ ∈ P (
−→
R ;
−→
zk)}. Hence if z ∈ U(zk) then z ∈ Û(zk).

A.1.2 Proof of Theorem 14

In this part we are going to prove the rest of Theorem 5 on the equivalence of using L(zk) and
L̂(zk). L(zk) is the union of c-dominated regions of all permutation cones generated using all the
permutations of the generators. For a distribution to be in L(zk), it is sufficient if it belongs to the
dominated region of any of these permutation cones.

The following theorem is our main result on L(zk).

Theorem 14 If z ∈ L(zk) then z ∈ L̂(zk).

Given preference information �R (zi � zk for zi ∈ R), for each permutation of
−→
zk, say Πs(

−→
zk),

we can generate a permutation cone of the form
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C(Π1(
−→
z1), ...,Πp!(

−→
z1), ...,Π1(

−−→
zk−1), ...,Πp!(

−−→
zk−1),Π1(

−→
zk), ...,Πp!(

−→
zk); Πs(

−→
zk))

This cone has all the permutations of the upper generators, zi ∈ R. Note that it also has

all permutations of the lower generator Πs(
−→
zk) as upper generators since any permutation of a

distribution is weakly preferred to itself by symmetry and can be considered as an upper generator.
For notational simplicity we denote this cone as C(Π(R ∪ zk); Πs(zk)).

This is the largest cone that we can generate for Πs(
−→
zk) as the lower generator given this pref-

erence information. We have p! such cones each having a different permutation of
−→
zk as the lower

generator. The region we are interested in, L(zk), is the union of the c-dominated regions of these p!
cones, L(zk) = {z| z �GL z′ for some z′ ∈ C(Π(R∪zk); Πs(zk)) for some permutation Πs(zk) of zk}.

A short sketch of the proof is as follows:

1. We first show in Remark 1 that these p! cones have the same c-dominated region since they
are reflections of each other. Hence it is sufficient to use only one of them. For convenience,

we use C(Π(R ∪ zk);
−→
zk).

2. C(Π(R ∪ zk);
−→
zk) is a convex region defined by an extreme point (

−→
zk) and extreme rays. In

Lemma 15 we determine nonextreme rays of the region and state this result in Corollary 16.

3. Finally in Theorem 14 we link the above results together.

We now give the detailed results.

Remark 1 Sets Set1 = {z : z �GL z′ and z′ ∈ C(Π(R ∪ zk);
−→
zk)} and Set2 = {z : z �GL z′ and

z′ ∈ C(Π(R ∪ zk); Πs(
−→
zk))} are equivalent for any Πs(

−→
zk) of

−→
zk .

Proof. Proof of Remark 1. This proof consists of two parts. In the first part we will show that
∀z ∈ Set1, z ∈ Set2 and in the second part we will show that ∀z ∈ Set2, z ∈ Set1.

Part 1: Now we want to prove ∀z ∈ Set1, z ∈ Set2.

Set1 = {z : z �GL z′ and z′ ∈ C(Π(R ∪ zk);
−→
zk)}. The c-dominated region consists of distribu-

tions z, which are generalized Lorenz dominated by a point z′ on the cone. Any point z′ on the
cone can be expressed by the following expression:

z′ =
−→
zk +

∑p!
j=1

∑k−1
i=1 µji(

−→
zk − Πj(

−→
zi )) +

∑p!
j=1 βj(

−→
zk − Πj(

−→
zk)) for µji ≥ 0 and βj ≥ 0 by

definition.
Apply Πs so that

Πs(z′) = Πs(
−→
zk) +

∑p!
j=1

∑k−1
i=1 µji(Π

s(
−→
zk)−Πj(

−→
zi )) +

∑p!
j=1 βj(Π

s(
−→
zk)−Πj(

−→
zk)). We rearrange

the elements of vector z′ such that we obtain Πs(z′). This rearranged vector Πs(z′) is on the cone
generated by the rearranged versions of the cone generators. As we consider all permutations of the

upper generator vectors in C(Π(R ∪ zk);
−→
zk), this rearrangement affects only the lower generator.

That is, Πs(z′) ∈ C(Π(R ∪ zk); Πs(
−→
zk)) by definition. Since the generalized Lorenz dominance

relation has symmetry property z is generalized Lorenz dominated by any permutation of z′, hence
it is in Set2. That is,

z �GL z′ =⇒ z �GL Πs(z′) hence z ∈ Set2.
Part 2: We skip the explanations since the structure of the proof is the same as that of part

1. Now we want to prove ∀z ∈ Set2, z ∈ Set1.

Set2 = {z : z �GL z′ and z′ ∈ C(Π(R ∪ zk); Πs(
−→
zk))}.

z′ = Πs(
−→
zk) +

∑p!
j=1

∑k−1
i=1 µji(Π

s(
−→
zk) − Πj(

−→
zi )) +

∑p!
j=1 βj(Π

s(
−→
zk) − Πj(

−→
zk)) for µji ≥ 0 and

βj ≥ 0.
Let Πr be the inverse permutation of Πs (that is, Πr (Πs(z)) = z). Apply Πr so that

Πr(z′) =
−→
zk +

∑p!
j=1

∑k−1
i=1 µji(

−→
zk −Πj(

−→
zi )) +

∑p!
j=1 βj(

−→
zk −Πj(

−→
zk)). That is, Πr(z′) ∈ C(Π(R∪

zk);
−→
zk)}. We have
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z �GL z′ =⇒ z �GL Πr(z′) hence z ∈ Set1.

Remark 1 implies that the c-dominated regions of all the cones of the form C(Π(R∪zk); Πs(
−→
zk))

obtained by using different permutations of the lower generator zk are the same. Hence it is

sufficient to use only one of them. For convenience, we use C(Π(R∪ zk);
−→
zk) and the corresponding

dominated set Set1. Hence, Set1 is a region that summarises all the information provided by all
the permutation cones generated based on zi � zk, zi ∈ R. Given preference information �R, for
any distribution z, to check whether z is in L(zk) we check whether z is in Set1.

C(Π(R ∪ zk);
−→
zk) is a convex set (cone), defined by an extreme point (

−→
zk ) and a set of rays

generated as in Definition 5 below.

Definition 5 For zi ∈ Rp : zi � zk for all zi ∈ R, C(Π(R ∪ zk);
−→
zk) =

−→
zk +

∑
λtrt such that

λt ≥ 0 and rt are the rays in set Setofrays = {Rays defined by (
−→
zk − Πj(

−→
zi )), for all zi ∈ R and

j = 1, ..., p! , rays defined by (
−→
zk − Πj(

−→
zk)) for all j = 1, ..., p!}. (We assume that the vectors have

been perturbed so that all entities of zk are nonidentical).

C(Π(R∪ zk);
−→
zk) can actually be characterized by the extreme point (

−→
zk ) and the extreme rays

in set Setofrays. We will show that these extreme rays have a particularly simple structure. We

claim in Lemma 15 that in region C(Π(R∪zk);
−→
zk), the rays given by zk−Πj(

−→
zi ) for zi ∈ R, where

Πj(
−→
zi ) 6=

−→
zi are not extreme, hence can be written as a nonnegative combination of the other rays

in R. In other words the cones C(Πj(
−→
zi );
−→
zk) : Πj(

−→
zi ) 6=

−→
zi do not lie on the boundary of the

region C(Π(R∪ zk);
−→
zk). In our 2D example (recall that the preference statement by the SP is that

(3,4) is preferred to (2,6)) this corresponds to claiming that the ray (2, 6) − (4, 3), i.e. (−2, 3), is

not an extreme ray for C(Π(R ∪ zk);
−→
zk) (dotted region) and this is clearly seen in Figure 5.
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Figure 5: Region C((3, 4), (4, 3), (2, 6), (6, 2); (2, 6))
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Lemma 15 Part (i): In set Setofrays the rays given by
−→
zk −Πj(

−→
zi ), where Πj(

−→
zi ) 6=

−→
zi , can be

written as a nonnegative combination of the rays
−→
zk −

−→
zi and

−→
zk −Πj(

−→
zk) ∀j : Πj(

−→
zk) is obtained

from
−→
zk by swapping two consecutive elements (note that we have p− 1 such Πj(

−→
zk)s).

Part (ii): In set Setofrays the rays given by
−→
zk − Πl(

−→
zk) can be written as a nonnegative

combination of the rays
−→
zk −Πj(

−→
zk) ∀j : Πj(

−→
zk) is obtained by swapping two consecutive elements.

Proof. Proof of Lemma 15. We will prove this for an arbitrary element zi ∈ R.
Let zi 6=

−→
zi as assumed. Let h be the minimum value for which zih > zih+1 holds. Define S(zi)

as the permutation obtained from zi by swapping zih and zih+1(i.e. S is a swap operator). That is,
zi = (zi1, z

i
2, ..., z

i
h, z

i
h+1, ..., z

i
p) and S(zi) = (zi1, z

i
2, ..., z

i
h+1, z

i
h, ..., z

i
p) where zih > zih+1. Note that

any permutation of vector zi will result in
−→
zi if we apply a finite number of such binary contiguous

swaps. Hence we will first show the following for a single swap.−→
zk − zi =

∑
λtrt where λt ≥ 0 and rt are in the set {

−→
zk − S(zi) and

−→
zk − Πj(

−→
zk) : Πj(

−→
zk)

6=
−→
zk and Πj(

−→
zk) obtained by swapping the hth and h + 1th elements of

−→
zk for h value used in

the S operator}. That is,
−→
zk − zi can be written as a nonnegative combination of

−→
zk − S(zi) and−→

zk −Πj(
−→
zk) (Πj(

−→
zk) as defined in Lemma 15).

For zi, S(zi) as defined above the following holds:

−→
zk − zi =

−→
zk − S(zi) +

(
zih − zih+1−→
zkh+1 −

−→
zkh

)
(
−→
zk −Πj(

−→
zk))

where Πj(
−→
zk)i =

−→
zki ∀i 6= h, h + 1 and Πj(

−→
zk)h =

−→
zkh+1; Πj(

−→
zk)h+1 =

−→
zkh (all the elements of−→

zk are the same in Πj(
−→
zk) except for hth and h + 1th being swapped and we have

−→
zkh ≤

−→
zkh+1 by

definition).
It is clearly seen when we analyze the vectors in detail as below:


−→
zk1 − zi1

...−→
zkh − zih−→

zkh+1 − zih+1

...−→
zkp − zip




=




−→
zk1 − zi1

...−→
zkh − zih+1−→
zkh+1 − zih

...−→
zkp − zip




+

(
zih−z

i
h+1−→

zkh+1−
−→
zkh

)




−→
zk1 −

−→
zk1

...−→
zkh −

−→
zkh+1−→

zkh+1 −
−→
zkh

...−→
zkp −

−→
zkp




In the above equation if
−→
zkh+1 >

−→
zkh then

(
zih−z

i
h+1−→

zkh+1−
−→
zkh

)
≥ 0, that is we are able to write the ray

that corresponds to
−→
zk − zi as a nonnegative combination of the rays

−→
zk − S(zi) and

−→
zk −Πj(

−→
zk).

Recall that we assume that the vectors have been perturbed so that all entities of zk are

nonidentical. That is, we do not have the following case:
−→
zkh+1 =

−→
zkh, hence

−→
zk = Πj(

−→
zk).

At each such step we will be able to write the first ray (
−→
zk − zi) as a nonnegative combination

of the rays (
−→
zk − S(zi) and

−→
zk − Πj(

−→
zk)). Starting from the first element which is higher than its

consecutive element, these type of swaps will eventually result in
−→
zi . Hence, we have the following

result:
In set Setofrays the rays given by

−→
zk − Πj(

−→
zi ), where Πj(

−→
zi ) 6=

−→
zi can be written as a

nonnegative combination of the rays
−→
zk −

−→
zi and

−→
zk − Πj(

−→
zk) ∀j : Πj(

−→
zk) is obtained by making

binary contagious swaps in
−→
zk (note that we have p− 1 such Πj(

−→
zk)s).

Example 5 Below is an example case that shows how this proof works:
Suppose that zi = (3, 2, 1). First note that in a number of binary contagious swaps we can

obtain
−→
zi as follows:
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(3, 2, 1) →
Swap at h = 1
swap 3 and 2

(2, 3, 1) →
Swap at h = 2
Swap 3 and 1

(2, 1, 3) →
Swap at h = 1
Swap 2 and 1

(1, 2, 3)

Hence S(3, 2, 1) = (2, 3, 1); S(2, 3, 1) = (2, 1, 3) and S(2, 1, 3) = (1, 2, 3).
Let us apply our result. Assume a generic zk vector. We have proven that:
−→
zk − zi =

−→
zk − S(zi) +

(
zih−z

i
h+1−→

zkh+1−
−→
zkh

)
(
−→
zk − Πj(

−→
zk)), such that Πj(

−→
zk) is obtained by swapping

the hth element with with h+ 1th element in
−→
zk. We see below that this holds for any

−→
zk .

Iteration 1: Start with zi = (3, 2, 1), hence S(zi) = (2, 3, 1), h = 1 and Πj(
−→
zk) = (

−→
zk2,
−→
zk1,
−→
zk3)

obtained by swapping 1st (hth) and 2nd (h+ 1th) elements in
−→
zk.



−→
zk1 − 3−→
zk2 − 2−→
zk3 − 1


 =




−→
zk1 − 2−→
zk2 − 3−→
zk3 − 1


+

(
1−→

zk2−
−→
zk1

)



−→
zk1 −

−→
zk2−→

zk2 −
−→
zk1−→

zk3 −
−→
zk3




At row 1:
−→
zk1 − 3 =

−→
zk1 − 2− 1 =

−→
zk1 − 3

At row 2:
−→
zk2 − 2 =

−→
zk2 − 3 + 1 =

−→
zk2 − 2

At row 3:
−→
zk3 − 1 =

−→
zk3 − 1 + 0 =

−→
zk3 − 1

Iteration 2: We set zi = (2, 3, 1) now. Hence S(zi) = (2, 1, 3), h = 2, and Πj(
−→
zk) =

(
−→
zk1,
−→
zk3,
−→
zk2) obtained by swapping 2nd (hth) and 3rd (h+ 1th) elements in

−→
zk.



−→
zk1 − 2−→
zk2 − 3−→
zk3 − 1


 =




−→
zk1 − 2−→
zk2 − 1−→
zk3 − 3


+

(
2−→

zk3−
−→
zk2

)



−→
zk1 −

−→
zk1−→

zk2 −
−→
zk3−→

zk3 −
−→
zk2




At row 1:
−→
zk1 − 2 =

−→
zk1 − 2− 0 =

−→
zk1 − 2

At row 2:
−→
zk2 − 3 =

−→
zk2 − 1− 2 =

−→
zk2 − 3

At row 3:
−→
zk3 − 1 =

−→
zk3 − 3 + 2 =

−→
zk3 − 1

Iteration 3: We set zi = (2, 1, 3) now. Hence S(zi) = (1, 2, 3), h = 1, and Πj(
−→
zk) =

(
−→
zk2,
−→
zk1,
−→
zk3) obtained by swapping 1st (hth) and 2nd (h+ 1st) elements in

−→
zk.



−→
zk1 − 2−→
zk2 − 1−→
zk3 − 3


 =




−→
zk1 − 1−→
zk2 − 2−→
zk3 − 3


+

(
1−→

zk2−
−→
zk1

)



−→
zk1 −

−→
zk2−→

zk2 −
−→
zk1−→

zk3 −
−→
zk3




At row 1:
−→
zk1 − 2 =

−→
zk1 − 1− 1 =

−→
zk1 − 2

At row 2:
−→
zk2 − 1 =

−→
zk2 − 2 + 1 =

−→
zk2 − 1

At row 3:
−→
zk3 − 3 =

−→
zk3 − 3 + 0 =

−→
zk3 − 3

To conclude


−→
zk1 − 3−→
zk2 − 2−→
zk3 − 1


 =




−→
zk1 − 1−→
zk2 − 2−→
zk3 − 3


+

(
1−→

zk2−
−→
zk1

)



−→
zk1 −

−→
zk2−→

zk2 −
−→
zk1−→

zk3 −
−→
zk3


+

(
2−→

zk3−
−→
zk2

)



−→
zk1 −

−→
zk1−→

zk2 −
−→
zk3−→

zk3 −
−→
zk2


+

(
1−→

zk2−
−→
zk1

)



−→
zk1 −

−→
zk2−→

zk2 −
−→
zk1−→

zk3 −
−→
zk3







−→
zk1 − 3−→
zk2 − 2−→
zk3 − 1


 =




−→
zk1 − 1−→
zk2 − 2−→
zk3 − 3


+

(
2−→

zk2−
−→
zk1

)



−→
zk1 −

−→
zk2−→

zk2 −
−→
zk1−→

zk3 −
−→
zk3


+

(
2−→

zk3−
−→
zk2

)



−→
zk1 −

−→
zk1−→

zk2 −
−→
zk3−→

zk3 −
−→
zk2




At row 1:
−→
zk1 − 3 =

−→
zk1 − 1− 2 + 0 =

−→
zk1 − 3

At row 2:
−→
zk2 − 2 =

−→
zk2 − 2 + 2− 2 =

−→
zk2 − 2

At row 3:
−→
zk3 − 1 =

−→
zk3 − 3 + 0 + 2 =

−→
zk3 − 1

Since any permutation of
−→
zi could be used at the beginning as zi, this applies to any permutation.
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The same proof mechanism can be used to show that this result holds for the rays
−→
zk− Πl(

−→
zk).

That is, such rays can be written as a nonnegative combination of
−→
zk− Πj(

−→
zk) : ∀ Πj(

−→
zk) : Πj(

−→
zk)

is obtained by swapping two consecutive elements in
−→
zk. Simply set zi = Πl(

−→
zk) and repeat the

proof.

Corollary 16 In C(Π(R∪zk);
−→
zk) the rays

−→
zk−Πj(

−→
zi ) : Πj(

−→
zi ) 6=

−→
zi where zi ∈ R are not extreme

rays. Also the rays
−→
zk − Πj(

−→
zk) : Πj(

−→
zk) cannot be obtained by swapping two consecutive elements

in
−→
zk, are not extreme rays.

Proof. Proof of Corollary 16 By Lemma 15, these rays can be written in terms of the other rays

in Setofrays. Hence they are not extreme rays of C(Π(R ∪ zk);
−→
zk).

Proof of Theorem 14
If z ∈ L(zk) then z ∈ L̂(zk), which is the set L̂(zk) = {z| z �GL z′ for some z′ ∈ C(

−→
R ∪

Π̂(
−→
zk);
−→
zk)}, where C(

−→
R∪Π̂(

−→
zk);
−→
zk) = {z : z =

−→
zk+

∑k−1
i=1 µi(

−→
zk−
−→
zi )+

∑p−1
j=1 βj(

−→
zk−Πj(

−→
zk)),where

µi ≥ 0, βj ≥ 0, j : Πj(
−→
zk) is obtained by swapping two consecutive elements in

−→
zk}.

Proof. Proof of Theorem 14. z ∈ L(zk), that is in set {z|z �GL z′ for some z′ ∈ C(Π(R ∪
zk); Πs(zk)) for some permutation Πs(zk) of zk} and hence z ∈ Set1 = {z : z �GL z′ and z′ ∈
C(Π(R ∪ zk);

−→
zk)} due to Remark 1. C(Π(R ∪ zk);

−→
zk) is a convex region, defined by an extreme

point (
−→
zk ) and a set of rays Setofrays generated as in Definition 5. By Corollary 16 we can

exclude the non-extreme rays from the definition and hence use C((
−→
R ∪ Π̂s(zk));

−→
zk) = {z : z =−→

zk +
∑k−1

i=1 µi(
−→
zk −

−→
zi ) +

∑p−1
j=1 βj(

−→
zk − Πj(

−→
zk)), where µi ≥ 0, βj ≥ 0, j : Πj(

−→
zk) is obtained by

swapping two consecutive elements in
−→
zk}.
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A.2 The results for setting when one uses two-point cones

A.2.1 Proof of Theorem 7

We first discuss Lemma 17 that will be used in our main proof of Theorem 7.

Lemma 17 Given z1, z2 ∈ Rp, if z ∈ C(z1;
−→
z2) then ∃z′ ∈ C(

−→
z1;
−→
z2) : z �GL z′ (i.e. z is

generalized Lorenz dominated by a point in C(
−→
z1;
−→
z2)).

Proof. Proof of Lemma 17. Let z1 6=
−→
z1 (Otherwise, the result is immediate). Let h be the

minimum value for which z1h > z1h+1 holds. Define z1′ as the permutation obtained from z1 by
swapping z1h and z1h+1. We will show the following holds:

If z ∈ C(z1;
−→
z2) then ∃z′ ∈ C(z1′;

−→
z2) : z �GL z′.

Suppose for an arbitrary µ ≥ 0 we have a point z : z =
−→
z2 + µ(

−→
z2 − z1), that is z ∈ C(z1;

−→
z2).

Define z
′ ∈ C(z1′;

−→
z2) : z

′
=
−→
z2 + µ(

−→
z2 − z1′).

One can easily show that z and z′ have the same elements except the hth and h+ 1th elements,
which are as follows:

zh =
−→
z2h + µ(

−→
z2h − z1h);

zh+1 =
−→
z2h+1 + µ(

−→
z2h+1 − z1h+1);

z′h =
−→
z2h + µ(

−→
z2h − z1h+1);

z′h+1 =
−→
z2h+1 + µ(

−→
z2h+1 − z1h)

From Lemma 10 we know that z �GL z′ if Min{zh, zh+1} ≤ Min{z′h, z′h+1} and zh + zh+1 ≤
z′h + z′h+1. Let us check (Recall that z1h > z1h+1):

Min{zh, zh+1} = Min{[
−→
z2h + µ(

−→
z2h − z1h)], [

−→
z2h+1 + µ(

−→
z2h+1 − z1h+1)]}

=
−→
z2h + µ(

−→
z2h − z1h) = zh.

We do not know what Min{z′h, z′h+1} is, hence we will compare zh with both z′h and z′h+1.

zh =
−→
z2h + µ(

−→
z2h − z1h) ≤

−→
z2h + µ(

−→
z2h − z1h+1) = z′h

zh =
−→
z2h + µ(

−→
z2h − z1h) ≤

−→
z2h+1 + µ(

−→
z2h+1 − z1h) = z

′
h+1. Hence,

Min{zh, zh+1} ≤Min{z′h, z′h+1} (3)

zh + zh+1 =
−→
z2h + µ(

−→
z2h − z1h) +

−→
z2h+1 + µ(

−→
z2h+1 − z1h+1)

= z′h+1 + z′h. That is,

zh + zh+1 ≤ z′h + z′h+1 (4)

From 3 and 4 the conditions of Lemma 10 is satisfied so z �GL z′. Since µ is arbitrary, this

result is valid for every z ∈ C(z1;
−→
z2).

We showed that if z ∈ C(z1;
−→
z2), then ∃z′ ∈ C(z1′;

−→
z2) : z �GL z′. where z1′ is the permutation

obtained by a single swap of two consecutive elements of z1 as defined above. Note that any

permutation of vector z1 will result in
−→
z1 if we apply a finite number of such binary contiguous

swaps. Starting from the first element which is higher than its consecutive element, these type of

swaps will eventually result in
−→
z1. Hence, we have the following result:

For any z1, z2 ∈ Rp, if z ∈ C(z1;
−→
z2) then ∃z′ ∈ C(

−→
z1;
−→
z2) : z �GL z′.

Proof of Theorem 7
The conclusion that for any distribution z if z ∈ U(zk) then z ∈ Û(zk) is by Theorem 5. We

are going to show that the remaining part of Theorem 7 holds, i.e., if z ∈ L(zk) then z ∈ L̄(zk).

That is for any zi, zk, z ∈ Rp, if z ∈ L(zk) there exists a z′′ ∈ C(
−→
zi ;
−→
zk) : z �GL z′′.

Proof. Proof of Theorem 7.
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In this special case L(zk) is the union of the c-dominated regions of all cones of the form

C(Πr(zi); Πs(zk)) for any r and s. If z ∈ L(zk) there exists a z′ ∈ C(Πr(
−→
zi ); Πs(

−→
zk)) for some

permutations r and s such that z �GL z′. Hence z′ = Πs(
−→
zk) +µ(Πs(

−→
zk)−Πr(

−→
zi )) for some µ ≥ 0.

Let the inverse permutation of Πs be Πq and let Πq(Πr) = Πt. Then Πq(z′) ∈ C(Πt(
−→
zi );
−→
zk).

If Πq(z′) ∈ C(Πt(
−→
zi );
−→
zk) then ∃z′′ ∈ C(

−→
zi ;
−→
zk) : Πq(z′) �GL z′′ ∀t, implied by Lemma 17 proved

above. Then from transitivity, z �GL z′ �GL z′′. Hence z ∈ L̄(zk).
This result is easily observed in Figures 6 and 7 for p = 2 (in R2). Figure 6 shows the 4

two-point cones based on the preference information (3, 4) � (2, 6), where each line shows a
cone. Figure 7 shows the set L̄(2, 6). One can verify by simple observation that L̄((2, 6)) =
{z| z �GL z′ for some z′ ∈ C((3, 4); (2, 6))} = {z| z �GL z′ for some z′ ∈ C((4, 3); (6, 2))} ⊃
{z| z �GL z′ for some z′ ∈ C((4, 3); (2, 6))} = {z| z �GL z′ for some z′ ∈ C((3, 4); (6, 2))}. The
dotted region is {z| z �GL z′ for some z′ ∈ C((4, 3); (2, 6))} and the region with diagonal lines is
{z| z �GL z′ for some z′ ∈ C((3, 4); (2, 6))}\{z| z �GL z′ for some z′ ∈ C((4, 3); (2, 6))}.
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Figure 6: Permutation cones in R2

Wealth of person 1 (z1)

W
ea
lt
h
of

p
er
so
n
2
(z

2
)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

z 1
=
z 2

(6, 2)

(2, 6)

(3, 4)

(4, 3)

Figure 7: L̄((2, 6))

A.2.2 Counterexample showing that Theorem 7 does not apply to larger cones

Example 6 Suppose that we have a case where k = 3 and p = 3, that is we have three-point cones
and we work in R3. Suppose that the SP has the following evaluation function:

f(x) = x1x2x3.
Suppose that we present the following distributions to the SP for him to compare:
z1 = (25, 4, 15)
z2 = (7, 11, 27)
z3 = (6, 7, 33)
The corresponding utility values are f(z1) = 1500, f(z2) = 2079, f(z3) = 1386. Hence the SP

will provide us with the information that z2 � z3 and z1 � z3. Based on this we can generate the
corresponding 3-point cones.

We will show that there exists a point z : z ∈ C(z1, z2; z3) (therefore z ∈ L(z3)) and @z′ ∈
C(
−→
z1,
−→
z2;
−→
z3) : z �GL z′. z = (4.82, 4.65, 37.2) is such an example.

z ∈ C(z1, z2; z3) since z = z3 +
∑2

i=1 µi(z
3 − zi) where µ1 = 0.03 and µ2 = 0.61.

Let us check whether there is a z′ ∈ C(
−→
z1,
−→
z2;
−→
z3) : z �GL z′. We solve the following LP :

Max 0
subject to
z′1 − 2µ′1 + 1µ′2 = 6
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z′2 + 8µ′1 + 4µ′2 = 7
z′3 − 8µ′1 − 6µ′2 = 33
r1 − d11 − d12 − d13 ≥ 4.65
2r2 − d21 − d22 − d23 ≥ 9.47
3r3 − d31 − d32 − d33 ≥ 46.67
rn − z′i − dni ≤ 0 i, n = 1, 2, 3
µ′1, µ

′
2 ≥ 0

dni ≥ 0 i, n = 1, 2, 3

The above problem is infeasible, which shows that there is no z′ ∈ C(
−→
z1,
−→
z2;
−→
z3) : z �GL z′.

35



B Checking whether a given distribution is in the L or U

B.1 Checking whether a given distribution is in L

Recall that by Theorem 14 if z ∈ L(zk) then there exists z′ ∈ C((
−→
R ∪ Π̂s(zk));

−→
zk) : z �GL z′.

Hence, for each distribution z we have to check whether there exists such z′. Using Corollary 16

we can define each point z′ ∈ C((
−→
R ∪ Π̂s(zk));

−→
zk) using the equation z′ =

−→
zk +

∑k−1
i=1 µi(

−→
zk −

−→
zi ) +

∑p
j=1 βj(

−→
zk − Πj(

−→
zk)) for j : Πj(

−→
zk) is obtained by swapping two consecutive elements in

−→
zk. Let

the set of such indices j be J ; note that |J | = p− 1.
We are going to make use of the following Theorem in our models.

Theorem 18 Ogryczak and Śliwiński (2003) For any z ∈ Rp,
∑n

j=1
−→zj is the optimal value of the

following LP problem:

MODCUM (Model Cumulative)
n∑

j=1

−→zj = maxnrn −
p∑

h=1

dnh

subject to

rn − dnh − zh ≤ 0 for h = 1, ..., p

dnh ≥ 0 for h = 1, ..., p

The (alternative) optimal values of rn and dnh are as follows (see Ogryczak and Śliwiński (2003)
for details) r∗n =−→z n + c, where c ≥ 0 is a constant and d∗nh = 0 for h : zh >

−→z n and d∗nh = −→z n−zh+c
for h : zh ≤ −→z n. Hence at optimality we have nr∗n−

∑p
h=1 d

∗
nh = n−→z n+nc−∑h:zh≤−→z n(−→z n+c−zh) =

n−→z n −
∑

h:zh≤−→z n(−→z n − zh) =
∑n

j=1
−→zj . To illustrate, suppose that we have z = (4, 2, 5) and we

would like to know
∑2

j=1
−→zj . One optimal solution of this model is r∗2 = 4, d∗11 = 0, d∗12 = 4− 2 = 2,

and d∗13 = 0. Hence
∑2

j=1
−→zj = 2 ∗ 4− (2 + 0 + 0) = 6. Note that at optimality we have n− 1 dnh

variables which are positive.
The following model will be used for checking whether z is in L :

(LP1)

max

p∑

n=1

nrn −
p∑

n=1

p∑

h=1

dnh

subject to

z′h −
k−1∑

i=1

µi(
−→
zkh −

−→
zih)−

∑

j∈J
βj(
−→
zkh −Πj(

−→
zk)h) =

−→
zkh for h = 1, ..., p (5)

nrn −
p∑

h=1

dnh ≥
n∑

h=1

−→z h for n = 1, ..., p (6)

rn − dnh − z′h ≤ 0 for h, n = 1, ..., p (7)

µi ≥ 0 for i = 1, ..., k − 1 (8)

βj ≥ 0 for j = 1, ..., p− 1 (9)

dnh ≥ 0 for h, n = 1, ..., p (10)

This model checks whether there exists z′ ∈ C((
−→
R∪Π̂s(zk));

−→
zk) such that

∑n
j=1
−→zj ≤

∑n
j=1

−→
z′j∀n =

1, ..., p. Constraint sets 5 and 6 ensure that z′ ∈ C((
−→
R ∪Π̂s(zk));

−→
zk) and

∑n
j=1
−→zj ≤

∑n
j=1

−→
z′j∀n, re-

spectively. The objective function and constraint sets 7 and 10 are used to ensure that
∑n

j=1
−→z ′j =

nr∗n −
∑p

h=1 d
∗
nh, where r∗n and d∗nh are the optimal values of these decision variables based on

Theorem 18.
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To see what is happening intuitively, imagine deleting constraint set 5 and fixing z′. Then

clearly the program will find the
∑n

j=1

−→
z′j ∀n (because it can be decomposed n subproblems of type

MODCUM for each n, each of which will return
∑n

j=1

−→
z′j ). Now we add back in constraint set 5

- so we are selecting a z′ from the cone - but by the same reasoning whatever z′ we select will be
cumulative ordered.

Remark 2 At optimality, for each n, nr∗n −
∑p

h=1 d
∗
nh =

∑n
j=1

−→
z′j .

Proof. Proof of Remark 2. Suppose that this does not hold and we have nr∗n−
∑p

h=1 d
∗
nh <

∑n
j=1

−→
z′j .

Then by setting r∗∗n = −→z ′n and d∗∗nh = 0 for h : z′h >
−→z ′n and d∗∗nh = −→z ′n−z′h for h : z′h ≤ −→z ′n, we can

obtain nr∗∗n −
∑p

h=1 d
∗∗
nh =

∑n
j=1

−→
z′j while satisfying all constraints. This contradicts the optimality

of (r∗n, d
∗
nh).

Suppose that we have nr∗n −
∑p

h=1 d
∗
nh >

∑n
j=1

−→
z′j . We can show that such a solution is not

feasible as constraint set 7 (rn − dnh − z′h ≤ 0 for h = 1, ..., p) ensures that r∗n − d∗nh ≤ −→z ′h for
all h = 1, ..., p. For any n, consider the corresponding constraints having right hand side z′h : z′h =
−→z ′i : i ≤ n. Aggregating these n constraints would give nr∗n−

∑
h:z′h=

−→z ′i:i≤n
d∗nh ≤

∑n
i=1
−→z ′i. Hence

nr∗n −
∑p

h=1 d
∗
nh ≤ nr∗n −

∑
h:z′h=

−→z ′i:i≤n
d∗nh ≤

∑n
i=1
−→z ′i =

∑n
j=1

−→
z′j .

Note that it is also possible to use a feasibility problem here: One can check whether there exist
any feasible rn and dnh values by changing the objective function as max 0. If there exist any feasible
rn and dnh values (leading to solution that satisfies all the relevant constraints 6, 7 and 10), then
the optimal values of r∗n and d∗nh in LP1 (which maximize

∑p
n=1 nrn−

∑p
n=1

∑p
h=1 dnh) also satisfy

the constraint set 6. This guarantees that constraint set 6 is satisfied hence
∑n

j=1
−→zj ≤

∑n
j=1

−→
z′j ∀n.

We use max 0 as the objective function of LP1. If the problem is feasible then z ∈ L̂(zk) hence
z ∈ L(zk).

LP1 is an LP problem with p2 + 3p + k − 2 variables and p2 + 2p constraints excluding the
set constraints (Recall that the we use p − 1 permutations of the lower generator). Note that, we
work on problems where we ask the SP to compare distributions, i.e. vectors. Requesting the SP
to compare vectors is only meaningful when the size of the vectors (p) is reasonable. p must be in
any case quite small as SPs will not be able to compare highly dimensional distributions.

Also note that in the algorithms which use two-point cones only a simpler LP can be used as
explained in the next subsection.

B.2 Checking whether a given point is in L when using two-point cones

In order to check whether z ∈ L(zk), we check whether there exists a point z′ ∈ C(
−→
z1 ;
−→
z2) : z �GL z′

for any two generators z1 and z2. We use the following LP model:

(LP3)

Max 0

subject to

z′h − µ(
−→
z2h −

−→
z1h) =

−→
z2h for h = 1, ..., p (11)

nrn −
p∑

h=1

dnh ≥
n∑

j=1

−→z j for n = 1, ..., p (12)

rn − dnh − z′h ≤ 0 for h, n = 1, ..., p (13)

µ ≥ 0 (14)

dni ≥ 0 for i, n = 1, ..., p (15)

This model checks whether there exists z′ ∈ C(
−→
z1;
−→
z2) such that

∑n
j=1
−→zj ≤

∑n
j=1

−→
z′j ∀n. Con-

straint sets 11 and 12 ensure that z′ ∈ C(
−→
z1;
−→
z2) and

∑n
j=1
−→zj ≤

∑n
j=1

−→
z′j ∀n, respectively. Con-
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straint set 13 is used to ensure that
∑n

h=1

−→
z′ h = nr∗n−

∑p
h=1 d

∗
nh, where r∗n and d∗nh are the optimal

values of these decision variables based on Theorem 18.
This is an LP problem with p2 + 2p + 1 variables and p2 + 2p constraints excluding the set

constraints.

B.3 Checking whether a given distribution is in U

If z ∈ U(zk) then there exists z′ ∈ P (
−→
R ;
−→
zk) : z′ �GL z. The following model will be used for the

corresponding check:

(LP2)

Max ε

subject to

z′h − µ
−→
zkh −

k−1∑

i=1

µi(
−→
zi h) = 0 for h = 1, ..., p (16)

n∑

h=1

z′h + ε ≤
n∑

h=1

−→z h for n = 1, ..., p (17)

k−1∑

i=1

µi + µ = 1 (18)

µi ≥ 0 ∀i (19)

µ ≥ 0 (20)

Constraint sets 16 and 18 ensure that z′ ∈ P (
−→
R ;
−→
zk) and constraint set 17 ensures that z′ �GL z

by ensuring
∑n

j=1

−→
z′j ≤

∑n
j=1
−→zj ∀n. If at optimality, ε∗ ≥ 0 then z ∈ U(zk).

It is an LP problem with p+k+1 variables and 2p+1 constraints excluding the set constraints.

C Explanation of the subroutines

Dominancecheck checks generalized Lorenz dominance. We store the information on generalized
Lorenz dominance relations in an n ∗ n matrix called Dominancemat. Dominancemat(i,j) =1 if
distribution i generalized Lorenz dominates distribution j; 0 otherwise.

Getinfo subroutine gathers information from the SP by providing him with a set of distribu-
tions. The preference information gathered is in form of ranking of the distributions in the sample.
The size of this set is controlled by a parameter called samplesize. We set samplesize=2, hence use
pairwise comparisons in our experiments. But it is possible to use samples with more than two
distributions, in which case the SP is asked to rank these distributions from the best to the worst.

The distributions to be put to the SP are selected according to a predetermined rule. In the
first iteration we rank the distributions according to their Euclidean distances to an ideal point
(IP) whose coordinates are defined as follows:

IPi = Max
z∈Z

∑i
j=1
−→zj ∀i = 1, ..., p.

We select the ones having the least (Euclidean) distances to the IP.
In the following iterations, we select the distributions on whose ranks we have the least infor-

mation. Before asking the SP we perform a consistency check for the pair as follows: When we
determine a pair of distributions (a, b) to be presented to the SP, we perform a consistency check
to see whether any of the following two cases would lead to violation of the consistency assumption
given the preference information so far: a � b or b � a. Consistency would be violated if, for
example a is c-dominated by a cone with a lower generator b (which should imply that b � a) and
when asked, the SP indicates that he prefers a over b. If only one of these cases (a � b or b � a)
would allow consistency, then we choose it without asking the SP. If both cases are possible (none
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would violate consistency) we ask the SP. If for a pair (a, b) neither a � b nor b � a would allow
consistency then the SP is inconsistent.

For example, suppose that the SP has provided the following preference information so far
(about 10 distributions indexed from z1 to z10) : z1 � z2, z4 � z7, z9 � z3, z7 � z2. Hence
we have the following quasi-orderings: z1 � z2 and z4 � z7 � z2 ,and z9 � z3. Suppose that
we ask the SP about (z1, z3). If z3 � z1 and z4 ∈ L(z1) (as ∃z ∈ C(z3; z1) : z4 �GL z) the
quasiordering will become z9 � z3 � z1 � z4 � z7 � z2. Moreover, suppose that z9 ∈ L(z2)
(i.e.,∃z ∈ C(z3, z1; z2) : z9 �GL z) resulting in z9 � z3 � z1 � z4 � z7 � z2 � z9, which results in
inconsistency. We try to avoid such situations as much as possible by checking whether such cases
occur before asking about a pair. In our example case, we also check whether z1 � z3 would lead
to inconsistency and if not we do not ask the SP but take z1 � z3. If both cases (z1 � z3 and
z3 � z1) lead to inconsistency we stop the procedure and inform the SP about the situation.

We keep track of the information on a distribution’s possible ranks using an n ∗ 2 matrix called
boundmatrix. In this matrix each row is dedicated to a distribution and the two values in each row
show the minimum and maximum possible ranks of the distribution, respectively. At the beginning
these values are set to 1 and n for all the distributions. Whenever new information is available,
this matrix is updated accordingly. While asking the SP for preference information, we choose the
distributions for which the difference between the maximum and minimum possible rank is larger.

When preference information is obtained, it is stored in an n ∗ n matrix called Userpreference.
This matrix keeps the information for cone and polyhedron generation. When new information is
gathered, the Userpreference matrix is updated based on transitivity. For example, if from previous
iterations we know that distribution i is preferred to distribution j and in the current iteration we
are given j is preferred to distribution k, then we update the matrix setting Userpreference(i,k)=1.
This allows us to generate the largest cone for a given lower generator.

Conegeneration performs the checks related to the cones (i.e., lower set) and polyhedra (i.e.,
upper set). The two LPs, LP1 and LP2, are generated and solved in this subroutine. Whenever
possible, redundant cones/polyhedra and checks are avoided. We do not solve the LPs for a distri-
bution if we already know that it is c-dominated by/c-dominates the cone’s lower generator (recall
that we check consistency before asking the question hence inconsistency does not arise). Since
some of the new information obtained through these checks leads us to new cones and polyhedra,
we repeat this subroutine until there is no useful new information. We check this condition by
using a binary variable called newinfo.

Countassigned Recall that we keep the lowest and highest possible ranks for an distribution in
boundmatrix. At the end of each iteration, for each distribution, we count the distributions that it
c-dominates/is preferred to and the ones that it is c-dominated by/less preferred than. We update
the information on boundmatrix accordingly. We then count the number of distributions whose
rank we know, i.e, whose maximum and minimum possible ranks are equal. This information is
then used to decide whether to terminate the algorithm.
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