54 research outputs found

    Chromosomer: A Reference-Based Genome Arrangement Tool for Producing Draft Chromosome Sequences

    Get PDF
    Background: As the number of sequenced genomes rapidly increases, chromosome assembly is becoming an even more crucial step of any genome study. Since de novo chromosome assemblies are confounded by repeat-mediated artifacts, reference-assisted assemblies that use comparative inference have become widely used, prompting the development of several reference-assisted assembly programs for prokaryotic and eukaryotic genomes. Findings: We developed Chromosomer – a reference-based genome arrangement tool, which rapidly builds chromosomes from genome contigs or scaffolds using their alignments to a reference genome of a closely related species. Chromosomer does not require mate-pair libraries and it offers a number of auxiliary tools that implement common operations accompanying the genome assembly process. Conclusions: Despite implementing a straightforward alignment-based approach, Chromosomer is a useful tool for genomic analysis of species without chromosome maps. Putative chromosome assemblies by Chromosomer can be used in comparative genomic analysis, genomic variation assessment, potential linkage group inference and other kinds of analysis involving contig or scaffold mapping to a high-quality assembly

    Computational Biology and Chemistry

    Get PDF
    The use of computers and software tools in biochemistry (biology) has led to a deep revolution in basic sciences and medicine. Bioinformatics and systems biology are the direct results of this revolution. With the involvement of computers, software tools, and internet services in scientific disciplines comprising biology and chemistry, new terms, technologies, and methodologies appeared and established. Bioinformatic software tools, versatile databases, and easy internet access resulted in the occurrence of computational biology and chemistry. Today, we have new types of surveys and laboratories including “in silico studies” and “dry labs” in which bioinformaticians conduct their investigations to gain invaluable outcomes. These features have led to 3-dimensioned illustrations of different molecules and complexes to get a better understanding of nature

    Scaffolding Contigs Using Multiple Reference Genomes

    Get PDF
    Scaffolding is an important step of the genome assembly and its function is to order and orient the contigs in the assembly of a draft genome into larger scaffolds. Several single reference-based scaffolders have currently been proposed. However, a single reference genome may not be sufficient alone for a scaffolder to correctly scaffold a target draft genome, especially when the target genome and the reference genome have distant evolutionary relationship or some rearrangements. This motivates researchers to develop the so-called multiple reference-based scaffolders that can utilize multiple reference genomes, which may provide different but complementary types of scaffolding information, to scaffold the target draft genome. In this chapter, we will review some of the state-of-the-art multiple reference-based scaffolders, such as Ragout, MeDuSa and Multi-CAR, and give a complete introduction to Multi-CSAR, an improved extension of Multi-CAR

    RECORD: Reference-Assisted Genome Assembly for Closely Related Genomes

    Get PDF
    Background. Next-generation sequencing technologies are now producing multiple times the genome size in total reads from a single experiment. This is enough information to reconstruct at least some of the differences between the individual genome studied in the experiment and the reference genome of the species. However, in most typical protocols, this information is disregarded and the reference genome is used. Results. We provide a new approach that allows researchers to reconstruct genomes very closely related to the reference genome (e.g., mutants of the same species) directly from the reads used in the experiment. Our approach applies de novo assembly software to experimental reads and so-called pseudoreads and uses the resulting contigs to generate a modified reference sequence. In this way, it can very quickly, and at no additional sequencing cost, generate new, modified reference sequence that is closer to the actual sequenced genome and has a full coverage. In this paper, we describe our approach and test its implementation called RECORD. We evaluate RECORD on both simulated and real data. We made our software publicly available on sourceforge. Conclusion. Our tests show that on closely related sequences RECORD outperforms more general assisted-assembly software

    Upgrading short read animal genome assemblies to chromosome level using comparative genomics and a universal probe set

    Get PDF
    Most recent initiatives to sequence and assemble new species’ genomes de novo fail to achieve the ultimate endpoint to produce contigs, each representing one whole chromosome. Even the best-assembled genomes (using contemporary technologies) consist of subchromosomal-sized scaffolds. To circumvent this problem, we developed a novel approach that combines computational algorithms to merge scaffolds into chromosomal fragments, PCR-based scaffold verification, and physical mapping to chromosomes. Multigenome-alignment-guided probe selection led to the development of a set of universal avian BAC clones that permit rapid anchoring of multiple scaffolds to chromosomes on all avian genomes. As proof of principle, we assembled genomes of the pigeon (Columbia livia) and peregrine falcon (Falco peregrinus) to chromosome levels comparable, in continuity, to avian reference genomes. Both species are of interest for breeding, cultural, food, and/or environmental reasons. Pigeon has a typical avian karyotype (2n = 80), while falcon (2n = 50) is highly rearranged compared to the avian ancestor. By using chromosome breakpoint data, we established that avian interchromosomal breakpoints appear in the regions of low density of conserved noncoding elements (CNEs) and that the chromosomal fission sites are further limited to long CNE “deserts.” This corresponds with fission being the rarest type of rearrangement in avian genome evolution. High-throughput multiple hybridization and rapid capture strategies using the current BAC set provide the basis for assembling numerous avian (and possibly other reptilian) species, while the overall strategy for scaffold assembly and mapping provides the basis for an approach that (provided metaphases can be generated) could be applied to any animal genome

    Upgrading short read animal genome assemblies to chromosome level using comparative genomics and a universal probe set

    Get PDF
    Most recent initiatives to sequence and assemble new species’ genomes de-novo fail to achieve the ultimate endpoint to produce a series of contigs, each representing one whole chromosome. Even the best-assembled genomes (using contemporary technologies) consist of sub-chromosomal sized scaffolds. To circumvent this problem, we developed a novel approach that combines computational algorithms to merge scaffolds into chromosomal fragments, scaffold verification by PCR and physical mapping to chromosomes. Multi genome-alignment-guided probe selection led to the development of a set of universal avian BAC clones that permit rapid anchoring of multiple scaffold loci to chromosomes on all avian genomes. As proof of principle we assembled genomes of the pigeon (Columbia livia) and peregrine falcon (Falco peregrinus) to chromosome level comparable, in continuity, to avian reference genomes. Both species are of interest for breeding, cultural, food and/or environmental reasons. Pigeon has a typical avian karyotype (2n=80) while falcon (2n=50) is highly rearranged compared to the avian ancestor. Using chromosome breakpoint data, we established that avian interchromosomal breakpoints appear in the regions of low density of conserved non-coding elements (CNEs) and that the chromosomal fission sites are further limited to long CNE “deserts”. This corresponds with fission being the rarest type of rearrangement in avian genome evolution. High-throughput multiple hybridization and rapid capture strategies using the current BAC set provide the basis for assembling numerous avian (and possibly other reptilian) species while the overall strategy for scaffold assembly and mapping provides the basis for an approach that could be applied to any animal genome

    Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies

    Get PDF
    Background Immune-response (IR) genes have an important role in the defense against highly variable pathogens, and therefore, diversity in these genomic regions is essential for species' survival and adaptation. Although current genome assemblies from Old World camelids are very useful for investigating genome-wide diversity, demography and population structure, they have inconsistencies and gaps that limit analyses at local genomic scales. Improved and more accurate genome assemblies and annotations are needed to study complex genomic regions like adaptive and innate IR genes. Results In this work, we improved the genome assemblies of the three Old World camel species - domestic dromedary and Bactrian camel, and the two-humped wild camel - via different computational methods. The newly annotated dromedary genome assembly CamDro3 served as reference to scaffold the NCBI RefSeq genomes of domestic Bactrian and wild camels. These upgraded assemblies were then used to assess nucleotide diversity of IR genes within and between species, and to compare the diversity found in immune genes and the rest of the genes in the genome. We detected differences in the nucleotide diversity among the three Old World camelid species and between IR gene groups, i.e., innate versus adaptive. Among the three species, domestic Bactrian camels showed the highest mean nucleotide diversity. Among the functionally different IR gene groups, the highest mean nucleotide diversity was observed in the major histocompatibility complex. Conclusions The new camel genome assemblies were greatly improved in terms of contiguity and increased size with fewer scaffolds, which is of general value for the scientific community. This allowed us to perform in-depth studies on genetic diversity in immunity-related regions of the genome. Our results suggest that differences of diversity across classes of genes appear compatible with a combined role of population history and differential exposures to pathogens, and consequent different selective pressures.Peer reviewe

    Multiple hybridization events punctuate the evolutionary trajectory of malassezia furfur

    Get PDF
    Malassezia species are important fungal skin commensals and are part of the normal microbiota of humans and other animals. However, under certain circumstances these fungi can also display a pathogenic behavior. For example, Malassezia furfur is a common commensal of human skin and yet is often responsible for skin disorders but also systemic infections. Comparative genomics analysis of M. furfur revealed that some isolates have a hybrid origin, similar to several other recently described hybrid fungal pathogens. Because hybrid species exhibit genomic plasticity that can impact phenotypes, we sought to elucidate the genomic evolution and phenotypic characteristics of M. furfur hybrids in comparison to their parental lineages. To this end, we performed a comparative genomics analysis between hybrid strains and their presumptive parental lineages and assessed phenotypic characteristics. Our results provide evidence that at least two distinct hybridization events occurred between the same parental lineages and that the parental strains may have originally been hybrids themselves. Analysis of the mating-type locus reveals that M. furfur has a pseudobipolar mating system and provides evidence that after sexual liaisons of mating compatible cells, hybridization involved cell-cell fusion leading to a diploid/aneuploid state. This study provides new insights into the evolutionary trajectory of M. furfur and contributes with valuable genomic resources for future pathogenicity studies. IMPORTANCE Malassezia furfur is a common commensal member of human/animal microbiota that is also associated with several pathogenic states. Recent studies report involvement of Malassezia species in Crohn’s disease, a type of inflammatory bowel disease, pancreatic cancer progression, and exacerbation of cystic fibrosis. A recent genomics analysis of M. furfur revealed the existence of hybrid isolates and identified their putative parental lineages. In this study, we explored the genomic and phenotypic features of these hybrids in comparison to their putative parental lineages. Our results revealed the existence of a pseudobipolar mating system in this species and showed evidence for the occurrence of multiple hybridization events in the evolutionary trajectory of M. furfur. These findings significantly advance our understanding of the evolution of this commensal microbe and are relevant for future studies exploring the role of hybridization in the adaptation to new niches or environments, including the emergence of pathogenicity.We thank Timothy James for reviewing our manuscript, Bart Kraak for some exploratory PCR and microscopy work, Simon Denil for assistance with the initial bioinformatics assessment of strain CBS1878, Claudia Cafarchia for providing strain CD866, and Marina Marcet-Houben for helpful discussions on the bioinformatics analyses. This study was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement H2020-MSCA-ITN-2014-642095. The T.G. group also acknowledges support from the Spanish Ministry of Economy, Industry, and Competitiveness (MEIC) for the EMBL partnership, and grants Centro de Excelencia Severo Ochoa 2013-2017 SEV-2012-0208 and BFU2015-67107 cofounded by European Regional Development Fund (ERDF); from the CERCA Program/Generalitat de Catalunya; from the Catalan Research Agency (AGAUR) SGR857; and from grants from the European Union’s Horizon 2020 research and innovation program under the grant agreement ERC-2016-724173. T.G. also receives support from an INB grant (PT17/0009/0023—ISCIII-SGEFI/ERDF). G.I. and J.H. were supported by NIH/NIAID R37 award AI39115-24 and R01 award AI50113-16A1. J.H. is fellow and codirector of the CIFAR program Fungal Kingdom: Threats and Opportunities. T.L.D. was supported by the Skin Research Institute of Singapore Fund (IAF-PP H17/01/a0/004).Peer ReviewedPostprint (published version
    • …
    corecore