62 research outputs found

    Large Scale 3D Mapping of Indoor Environments Using a Handheld RGBD Camera

    Get PDF
    The goal of this research is to investigate the problem of reconstructing a 3D representation of an environment, of arbitrary size, using a handheld color and depth (RGBD) sensor. The focus of this dissertation is to examine four of the underlying subproblems to this system: camera tracking, loop closure, data storage, and integration. First, a system for 3D reconstruction of large indoor planar environments with data captured from an RGBD sensor mounted on a mobile robotic platform is presented. An algorithm for constructing nearly drift-free 3D occupancy grids of large indoor environments in an online manner is also presented. This approach combines data from an odometry sensor with output from a visual registration algorithm, and it enforces a Manhattan world constraint by utilizing factor graphs to produce an accurate online estimate of the trajectory of the mobile robotic platform. Through several experiments in environments with varying sizes and construction it is shown that this method reduces rotational and translational drift significantly without performing any loop closing techniques. In addition the advantages and limitations of an octree data structure representation of a 3D environment is examined. Second, the problem of sensor tracking, specifically the use of the KinectFusion algorithm to align two subsequent point clouds generated by an RGBD sensor, is studied. A method to overcome a significant limitation of the Iterative Closest Point (ICP) algorithm used in KinectFusion is proposed, namely, its sole reliance upon geometric information. The proposed method uses both geometric and color information in a direct manner that uses all the data in order to accurately estimate camera pose. Data association is performed by computing a warp between the two color images associated with two RGBD point clouds using the Lucas-Kanade algorithm. A subsequent step then estimates the transformation between the point clouds using either a point-to-point or point-to-plane error metric. Scenarios in which each of these metrics fails are described, and a normal covariance test for automatically selecting between them is proposed. Together, Lucas-Kanade data association (LKDA) along with covariance testing enables robust camera tracking through areas of low geometrical features, while at the same time retaining accuracy in environments in which the existing ICP technique succeeds. Experimental results on several publicly available datasets demonstrate the improved performance both qualitatively and quantitatively. Third, the choice of state space in the context of performing loop closure is revisited. Although a relative state space has been discounted by previous authors, it is shown that such a state space is actually extremely powerful, able to achieve recognizable results after just one iteration. The power behind the technique is that changing the orientation of one node is able to affect other nodes. At the same time, the approach --- which is referred to as Pose Optimization using a Relative State Space (POReSS) --- is fast because, like the more popular incremental state space, the Jacobian never needs to be explicitly computed. Furthermore, it is shown that while POReSS is able to quickly compute a solution near the global optimum, it is not precise enough to perform the fine adjustments necessary to achieve acceptable results. As a result, a method to augment POReSS with a fast variant of Gauss-Seidel --- which is referred to as Graph-Seidel --- on a global state space to allow the solution to settle closer to the global minimum is proposed. Through a set of experiments, it is shown that this combination of POReSS and Graph-Seidel is not only faster but achieves a lower residual than other non-linear algebra techniques. Moreover, unlike the linear algebra-based techniques, it is shown that this approach scales to very large graphs. In addition to revisiting the idea of using a relative state space, the benefits of only optimizing the rotational components of a trajectory in order to perform loop closing is examined (rPOReSS). Finally, an incremental implementation of the rotational optimization is proposed (irPOReSS)

    Cartographie dense basée sur une représentation compacte RGB-D dédiée à la navigation autonome

    Get PDF
    Our aim is concentrated around building ego-centric topometric maps represented as a graph of keyframe nodes which can be efficiently used by autonomous agents. The keyframe nodes which combines a spherical image and a depth map (augmented visual sphere) synthesises information collected in a local area of space by an embedded acquisition system. The representation of the global environment consists of a collection of augmented visual spheres that provide the necessary coverage of an operational area. A "pose" graph that links these spheres together in six degrees of freedom, also defines the domain potentially exploitable for navigation tasks in real time. As part of this research, an approach to map-based representation has been proposed by considering the following issues : how to robustly apply visual odometry by making the most of both photometric and ; geometric information available from our augmented spherical database ; how to determine the quantity and optimal placement of these augmented spheres to cover an environment completely ; how tomodel sensor uncertainties and update the dense infomation of the augmented spheres ; how to compactly represent the information contained in the augmented sphere to ensure robustness, accuracy and stability along an explored trajectory by making use of saliency maps.Dans ce travail, nous proposons une représentation efficace de l’environnement adaptée à la problématique de la navigation autonome. Cette représentation topométrique est constituée d’un graphe de sphères de vision augmentées d’informations de profondeur. Localement la sphère de vision augmentée constitue une représentation égocentrée complète de l’environnement proche. Le graphe de sphères permet de couvrir un environnement de grande taille et d’en assurer la représentation. Les "poses" à 6 degrés de liberté calculées entre sphères sont facilement exploitables par des tâches de navigation en temps réel. Dans cette thèse, les problématiques suivantes ont été considérées : Comment intégrer des informations géométriques et photométriques dans une approche d’odométrie visuelle robuste ; comment déterminer le nombre et le placement des sphères augmentées pour représenter un environnement de façon complète ; comment modéliser les incertitudes pour fusionner les observations dans le but d’augmenter la précision de la représentation ; comment utiliser des cartes de saillances pour augmenter la précision et la stabilité du processus d’odométrie visuelle

    Robust and Efficient Semantic Sensor Registration for Mobile Robotics in Unorganized, Natural, Scenes

    Full text link
    Advances in sensing and computing hardware have led to renewed interest in registration algorithms. In particular, the proliferation of 3D LIDAR sensors and RGBD cameras and their use in robotic systems require efficient, robust, and accurate estimation algorithms for use in mapping, localization, and tracking tasks. Most modern approaches to autonomous driving require localizing and calibrating multiple LIDAR sensors, both of which are registration tasks. Meanwhile, tasks in the domain of indoor robotics require both localizing the robot and localizing objects of interest in the environment. The registration problem is that of trying to find the rigid body transformation between two measurements. This can include consecutive measurements (producing an odometry estimate), measurements from disparate points in time (such as for localization and mapping), and between different sensors (such as for calibrating multiple sensors on a platform). Semantic detection and segmentation have similarly significantly progressed. Semantic inference on images and point clouds has shown increasing value in vision-based applications. The application of Convolutional Neural Networks (CNNs) has improved the computational efficiency of semantic segmentation techniques with superior performance in both indoor and outdoor benchmarks. Together with pose estimation techniques, multiple scenes can be segmented and combined to perform semantic mapping or object tracking; nevertheless, most semantic mapping and object tracking research has focused on performing pose estimation, and then semantic inference. So far, most research has not focused on joint semantic and metric estimation. This thesis focuses on leveraging semantic inference to enable efficient and robust sensor registration. In robotics, semantic inference is increasingly used for downstream reasoning tasks. This thesis explores how that inference can be used in upstream task such as egomotion estimation,object pose estimation, and multisensor calibration. This work is based on improving the Iterative Closest Point (ICP) algorithm. Our first contribution in this thesis explores how probabilistic semantic labels can be used in sensor registration. We present an approach that uses the Expectation Maximization (EM) technique to improve associations in the ICP framework. We also use an M-Estimator and optimize directly on the SE(3) manifold to improve the robustness. Our results on publicly available indoor and outdoor data sets show that semantics can help improve registration accuracy. For the second contribution, we add informative channels to the semantic ICP framework to aid in object-level registration. This includes work on using sparse kernels to represent intensity and color channels for regularizing the registration problem, and work on curvature based alignment to improve object pose estimation. Both of these techniques extend registration algorithms beyond their purely geometric base. The third part presents our contribution on reformulating the registration problem as a mixed integer program (MIP). Most previous approaches to sensor registration use gradient-based optimization techniques. If the cost function used is nonconvex, they are prone to getting caught in local minima. The problem is reformulated as a MIP by linearizing the cost function and representing the data association as an integer valued variable. This thesis focuses on developing robust, accurate registration techniques for mobile robotics applications. It presents results and proposed evaluation in the areas of indoor home robotics and autonomous driving, many of which are publicly available benchmark data sets. Sensor registration is a fundamental component of many robotic systems, and the advances proposed in this thesis have the potential to benefit many more aspects of perceptual systems.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155198/1/sparki_1.pd

    Towards Robust Visual-Controlled Flight of Single and Multiple UAVs in GPS-Denied Indoor Environments

    Get PDF
    Having had its origins in the minds of science fiction authors, mobile robot hardware has become reality many years ago. However, most envisioned applications have yet remained fictional - a fact that is likely to be caused by the lack of sufficient perception systems. In particular, mobile robots need to be aware of their own location with respect to their environment at all times to act in a reasonable manner. Nevertheless, a promising application for mobile robots in the near future could be, e.g., search and rescue tasks on disaster sites. Here, small and agile flying robots are an ideal tool to effectively create an overview of the scene since they are largely unaffected by unstructured environments and blocked passageways. In this respect, this thesis first explores the problem of ego-motion estimation for quadrotor Unmanned Aerial Vehicles (UAVs) based entirely on onboard sensing and processing hardware. To this end, cameras are an ideal choice as the major sensory modality. They are light, cheap, and provide a dense amount of information on the environment. While the literature provides camera-based algorithms to estimate and track the pose of UAVs over time, these solutions lack the robustness required for many real-world applications due to their inability to recover a loss of tracking fast. Therefore, in the first part of this thesis, a robust algorithm to estimate the velocity of a quadrotor UAV based on optical flow is presented. Additionally, the influence of the incorporated measurements from an Inertia Measurement Unit (IMU) on the precision of the velocity estimates is discussed and experimentally validated. Finally, we introduce a novel nonlinear observation scheme to recover the metric scale factor of the state estimate through fusion with acceleration measurements. This nonlinear model allows now to predict the convergence behavior of the presented filtering approach. All findings are experimentally evaluated, including the first presented human-controlled closed-loop flights based entirely on onboard velocity estimation. In the second part of this thesis, we address the problem of collaborative multi robot operations based on onboard visual perception. For instances of a direct line-of-sight between the robots, we propose a distributed formation control based on ego-motion detection and visually detected bearing angles between the members of the formation. To overcome the limited field of view of real cameras, we add an artificial yaw-rotation to track robots that would be invisible to static cameras. Afterwards, without the need for direct visual detections, we present a novel contribution to the mutual localization problem. In particular, we demonstrate a precise global localization of a monocular camera with respect to a dense 3D map. To this end, we propose an iterative algorithm that aims to estimate the location of the camera for which the photometric error between a synthesized view of the dense map and the real camera image is minimal

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF

    Portable Robotic Navigation Aid for the Visually Impaired

    Get PDF
    This dissertation aims to address the limitations of existing visual-inertial (VI) SLAM methods - lack of needed robustness and accuracy - for assistive navigation in a large indoor space. Several improvements are made to existing SLAM technology, and the improved methods are used to enable two robotic assistive devices, a robot cane, and a robotic object manipulation aid, for the visually impaired for assistive wayfinding and object detection/grasping. First, depth measurements are incorporated into the optimization process for device pose estimation to improve the success rate of VI SLAM\u27s initialization and reduce scale drift. The improved method, called depth-enhanced visual-inertial odometry (DVIO), initializes itself immediately as the environment\u27s metric scale can be derived from the depth data. Second, a hybrid PnP (perspective n-point) method is introduced for a more accurate estimation of the pose change between two camera frames by using the 3D data from both frames. Third, to implement DVIO on a smartphone with variable camera intrinsic parameters (CIP), a method called CIP-VMobile is devised to simultaneously estimate the intrinsic parameters and motion states of the camera. CIP-VMobile estimates in real time the CIP, which varies with the smartphone\u27s pose due to the camera\u27s optical image stabilization mechanism, resulting in more accurate device pose estimates. Various experiments are performed to validate the VI-SLAM methods with the two robotic assistive devices. Beyond these primary objectives, SM-SLAM is proposed as a potential extension for the existing SLAM methods in dynamic environments. This forward-looking exploration is premised on the potential that incorporating dynamic object detection capabilities in the front-end could improve SLAM\u27s overall accuracy and robustness. Various experiments have been conducted to validate the efficacy of this newly proposed method, using both public and self-collected datasets. The results obtained substantiate the viability of this innovation, leaving a deeper investigation for future work

    Dense Visual Simultaneous Localisation and Mapping in Collaborative and Outdoor Scenarios

    Get PDF
    Dense visual simultaneous localisation and mapping (SLAM) systems can produce 3D reconstructions that are digital facsimiles of the physical space they describe. Systems that can produce dense maps with this level of fidelity in real time provide foundational spatial reasoning capabilities for many downstream tasks in autonomous robotics. Over the past 15 years, mapping small scale, indoor environments, such as desks and buildings, with a single slow moving, hand-held sensor has been one of the central focuses of dense visual SLAM research. However, most dense visual SLAM systems exhibit a number of limitations which mean they cannot be directly applied in collaborative or outdoors settings. The contribution of this thesis is to address these limitations with the development of new systems and algorithms for collaborative dense mapping, efficient dense alternation and outdoors operation with fast camera motion and wide field of view (FOV) cameras. We use ElasticFusion, a state-of-the-art dense SLAM system, as our starting point where each of these contributions is implemented as a novel extension to the system. We first present a collaborative dense SLAM system that allows a number of cameras starting with unknown initial relative positions to maintain local maps with the original ElasticFusion algorithm. Visual place recognition across local maps results in constraints that allow maps to be aligned into a common global reference frame, facilitating collaborative mapping and tracking of multiple cameras within a shared map. Within dense alternation based SLAM systems, the standard approach is to fuse every frame into the dense model without considering whether the information contained within the frame is already captured by the dense map and therefore redundant. As the number of cameras or the scale of the map increases, this approach becomes inefficient. In our second contribution, we address this inefficiency by introducing a novel information theoretic approach to keyframe selection that allows the system to avoid processing redundant information. We implement the procedure within ElasticFusion, demonstrating a marked reduction in the number of frames required by the system to estimate an accurate, denoised surface reconstruction. Before dense SLAM techniques can be applied in outdoor scenarios we must first address their reliance on active depth cameras, and their lack of suitability to fast camera motion. In our third contribution we present an outdoor dense SLAM system. The system overcomes the need for an active sensor by employing neural network-based depth inference to predict the geometry of the scene as it appears in each image. To address the issue of camera tracking during fast motion we employ a hybrid architecture, combining elements of both dense and sparse SLAM systems to perform camera tracking and to achieve globally consistent dense mapping. Automotive applications present a particularly important setting for dense visual SLAM systems. Such applications are characterised by their use of wide FOV cameras and are therefore not accurately modelled by the standard pinhole camera model. The fourth contribution of this thesis is to extend the above hybrid sparse-dense monocular SLAM system to cater for large FOV fisheye imagery. This is achieved by reformulating the mapping pipeline in terms of the Kannala-Brandt fisheye camera model. To estimate depth, we introduce a new version of the PackNet depth estimation neural network (Guizilini et al., 2020) adapted for fisheye inputs. To demonstrate the effectiveness of our contributions, we present experimental results, computed by processing the synthetic ICL-NUIM dataset of Handa et al. (2014) as well as the real-world TUM-RGBD dataset of Sturm et al. (2012). For outdoor SLAM we show the results of our system processing the autonomous driving KITTI and KITTI-360 datasets of Geiger et al. (2012a) and Liao et al. (2021) respectively

    3D reconstruction from multiple RGB-D images with different perspectives

    Get PDF
    Reconstrução de modelos 3D pode ser uma tarefa útil para várias finalidades. Alguns exemplos são a modelação de uma pessoa ou objeto para uma animação, em robótica, modelação de espaços para exploração ou, para fins clínicos, modelação de pacientes ao longo do tempo para manter um histórico do corpo do paciente. O processo de reconstrução é constituído pelas capturas do objeto a ser modelado, a conversão destas capturas para nuvens de pontos e o alinhamento de cada nuvem de pontos por forma a obter o modelo 3D.A metodologia implementada para o processo de alinhamento foi o mais genérico quanto possível, para poder ser usado para os múltiplos fins discutidos acima, com um foco especial nos objetos não-rígidos. Este foco vem da necessidade de reconstruir modelos 3D de alta qualidade, de pacientes tratadas para o cancro da mama, para a avaliação estética do resultado cirúrgico. Com o uso de algoritmos de alinhamento não-rígido, o processo de reconstrução fica mais robusto a pequenos movimentos durante as capturas.O sensor utilizado para as capturas foi o Microsoft Kinect, devido à possibilidade de se obter imagens de cores (RGB) e imagens de profundidade, mais conhecidas por imagens RGB -D. Com este tipo de dados o modelo 3D final pode ter textura, o que é uma vantagem em muitos casos. A outra razão principal para esta escolha foi o fato de o Microsoft Kinect ser um sensor de baixo custo, tornando-se assim uma alternativa aos sistemas mais dispendiosos disponíveis no mercado.Os principais objetivos alcançados foram a reconstrução de modelos 3D com boa qualidade a partir de capturas com ruido, usando um sensor de baixo custo. O registro de nuvens de pontos sem conhecimento prévio sobre a pose do sensor, permitindo a livre circulação do sensor em torno dos objetos. Por fim, o registo de nuvens de pontos com pequenas deformações entre elas, onde os algoritmos de alinhamento rígido convencionais não podem ser utilizados.3D model reconstruction can be a useful tool for multiple purposes. Some examples are modeling a person or objects for an animation, in robotics, modeling spaces for exploration or, for clinical purposes, modeling patients over time to keep a history of the patient's body. The reconstruction process is constituted by the captures of the object to be reconstructed, the conversion of these captures to point clouds and the registration of each point cloud to achieve the 3D model.The implemented methodology for the registration process was as much general as possible, to be usable for the multiple purposes discussed above, with a special focus on non-rigid objects. This focus comes from the need to reconstruct high quality 3D models, of patients treated for breast cancer, for the evaluation of the aesthetic outcome. With the non-rigid algorithms the reconstruction process is more robust to small movements during the captures.The sensor used for the captures was the Microsoft Kinect, due to the possibility of obtaining both color (RGB) and depth images, called RGB-D images. With this type of data the final 3D model can be textured, which is an advantage for many cases. The other main reason for this choice was the fact that Microsoft Kinect is a low-cost equipment, thereby becoming an alternative to expensive systems available in the market.The main achieved objectives were the reconstruction of 3D models with good quality from noisy captures, using a low cost sensor. The registration of point clouds without knowing the sensor's pose, allowing the free movement of the sensor around the objects. Finally the registration of point clouds with small deformations between them, where the conventional rigid registration algorithms could not be used

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects
    • …
    corecore