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Abstract 

3D model reconstruction can be a useful tool for multiple purposes. Some examples are 

modeling a person or objects for an animation, in robotics, modeling spaces for exploration or, 

for clinical purposes, modeling patients over time to keep a history of the patient’s body. The 

reconstruction process is constituted by the captures of the object to be reconstructed, the 

conversion of these captures to point clouds and the registration of each point cloud to achieve 

the 3D model. 

The implemented methodology for the registration process was as much general as 

possible, to be usable for the multiple purposes discussed above, with a special focus on non-

rigid objects. This focus comes from the need to reconstruct high quality 3D models, of patients 

treated for breast cancer, for the evaluation of the aesthetic outcome. With the non-rigid 

algorithms the reconstruction process is more robust to small movements during the captures. 

The sensor used for the captures was the Microsoft Kinect, due to the possibility of 

obtaining both color (RGB) and depth images, called RGB-D images. With this type of data the 

final 3D model can be textured, which is an advantage for many cases. The other main reason 

for this choice was the fact that Microsoft Kinect is a low-cost equipment, thereby becoming an 

alternative to expensive systems available in the market. 

The main achieved objectives were the reconstruction of 3D models with good quality 

from noisy captures, using a low cost sensor. The registration of point clouds without knowing 

the sensor’s pose, allowing the free movement of the sensor around the objects. Finally the 

registration of point clouds with small deformations between them, where the conventional rigid 

registration algorithms could not be used. 

 

 

Keywords: Microsoft Kinect, 3D Reconstruction, Non-rigid Registration, RGB-D, Point 

Cloud. 



Resumo 

Reconstrução de modelos 3D pode ser uma tarefa útil para várias finalidades. Alguns 

exemplos são a modelação de uma pessoa ou objeto para uma animação, em robótica, 

modelação de espaços para exploração ou, para fins clínicos, modelação de pacientes ao longo 

do tempo para manter um histórico do corpo do paciente. O processo de reconstrução é 

constituído pelas capturas do objeto a ser modelado, a conversão destas capturas para nuvens de 

pontos e o alinhamento de cada nuvem de pontos por forma a obter o modelo 3D. 

A metodologia implementada para o processo de alinhamento foi o mais genérico quanto 

possível, para poder ser usado para os múltiplos fins discutidos acima, com um foco especial 

nos objetos não-rígidos. Este foco vem da necessidade de reconstruir modelos 3D de alta 

qualidade, de pacientes tratadas para o cancro da mama, para a avaliação estética do resultado 

cirúrgico. Com o uso de algoritmos de alinhamento não-rígido, o processo de reconstrução fica 

mais robusto a pequenos movimentos durante as capturas. 

O sensor utilizado para as capturas foi o Microsoft Kinect, devido à possibilidade de se 

obter imagens de cores (RGB) e imagens de profundidade, mais conhecidas por imagens RGB -

D. Com este tipo de dados o modelo 3D final pode ter textura, o que é uma vantagem em muitos 

casos. A outra razão principal para esta escolha foi o fato de o Microsoft Kinect ser um sensor 

de baixo custo, tornando-se assim uma alternativa aos sistemas mais dispendiosos disponíveis 

no mercado. 

Os principais objetivos alcançados foram a reconstrução de modelos 3D com boa 

qualidade a partir de capturas com ruido, usando um sensor de baixo custo. O registro de nuvens 

de pontos sem conhecimento prévio sobre a pose do sensor, permitindo a livre circulação do 

sensor em torno dos objetos. Por fim, o registo de nuvens de pontos com pequenas deformações 

entre elas, onde os algoritmos de alinhamento rígido convencionais não podem ser utilizados. 

 

 

Palavras-chave: Microsoft Kinect, Modelação 3D, Alinhamento não rígido, RGB-D, 

Nuvem de Pontos. 
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Chapter 1 

Introduction 

1.1 Context 

Registration of point clouds with the goal of creating a 3D model is a complex process, full 

of constrains and not always fully automatic. Some of the key threshold values are hard to 

estimate, making the process manual when the goal is quality. One of the next steps to improve 

the methods of registration is the nullification of some limitations, for example, the limitation 

“rigid transformations only”, in other words, if the point clouds were obtained from a non-rigid 

type of object, it is possible that they can have small and localized deformations (movement) 

between consecutively point clouds, leading to impossible alignments when using rigid 

geometric transformations only. One practical example is the registration of point clouds 

obtained from a person. During the captures, where the sensor will be moving around this 

person, is hard for him/her to act like a rigid object, at the very least this person will be 

breeding, and after some time most people will start making small movements with the head or 

the arms. The current solutions for non-rigid registration are very dependent on expensive high 

quality and precision sensors and very dependent on the type of target. 

1.2 Motivation 

Some clinical evaluations, after the treatment or surgery, are being done visually by a 

physician. This happens because the current solutions for precise 3D model reconstruction of 

the patients are expensive and not very practical, requiring complex sensors and specialized 

staff to use it [34]. One example is the aesthetic evaluation of patients treated for breast cancer 

[35]. For these evaluations the physician will be observing and comparing some parameters like 

the color, shape and geometry. Ideally the patients are photographed after and before the 
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surgery, but sometimes this does not happen so the physician uses the untreated breast as a 

reference for comparison. There are two main types of evaluations, subjective and objective. 

The subjective methods are currently the most used and consist on choosing a score value based 

only on the visual comparison done by the physician. This type of evaluation will always have 

the problem of subjectivity and lower quality or precision of the results. The objective methods 

consist on the comparison of the parameters values. For these methods to work, a precise and 

high quality representation of the patient is needed, some pictures are not enough. This is where 

the 3D model reconstruction comes in, so the correct calculations of shape and volume can be 

done. 

1.3 Objectives 

The main objective of this work is the automatic creation of a 3D model of some object, 

rigid or non-rigid, using a low cost sensor. This tool must be as general as possible so it can be 

used for modeling a person, objects or spaces for an animation or a game, in robotics modeling 

the space around for exploration or localization or, for clinical purposes, modeling the patients 

over time to keep a history of the patient’s body. To achieve this goal there are two main steps: 

 

- Implementation of an acquisition software, with the objective of creating and storing 

point clouds. The acquisition process must be continuous, allowing the free movement 

of the sensor around the targeted object, without the need of knowing the exact pose of 

the sensor. 

- Registration of the resulting point clouds, obtained during the acquisition process. The 

objective in this step is the 3D model reconstruction of the captured object. The object 

can be non-rigid, so deformations between consecutive point clouds is a possibility. 

 

At the end the resulting 3D model must have a degree of quality and precision sufficient 

for clinical purposes. 

1.4 Contributions 

The contributions of this work are: 

- The acquisition software, used to create and store the point clouds of each frame 

captured with Microsoft Kinect. 

- The rigid registration methodology with two different approaches, one for the 

registration of scenes and the other for the registration of objects. 

 - The point-to-point approach for non-rigid registration. 

 - The parametric model approach for non-rigid registration. 
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1.5 Thesis Structure 

After this chapter the state of the art (chapter 2) is presented, where the most relevant 

methods and algorithms for this work are discussed, followed by the implementation of the 

reconstruction algorithm (chapter 3), where the tasks to achieve the objectives are proposed, 

after that the results are presented and the validation of the methods is done (chapter 4). Finally 

the conclusions and future work of this research (chapter 5). 
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Chapter 2 

State of the Art 

In this chapter a review of the state of the art methods related with this thesis is done. 

Starting with the analysis of some low cost sensors for the captures and discussing some 

calibration methods for RGB-D sensors. After this, multiple technics and methodologies for 

registration will be analyzed, from the most general rigid registration to the most specific non-

rigid registration algorithms.  

2.1 Low-Cost RGB-D sensors 

RGB-D sensors have existed in the market for years but used to be very expensive, like the 

Swiss Ranger SR4000 and PMD Tech products costing around €7 000 each [46]. Now RGB-D 

sensors can be found in the market for around €200, like the Microsoft Kinect and Asus Xtion 

PRO Live sensors. 

Microsoft Kinect 

The first version of Microsoft Kinect has one RGB camera, one infrared projector and one 

infrared camera. By projecting a pattern (structured light [51]) it can calculate the depth 

information. 

The newer version 2.0 of Kinect comes with many improvements. For depth sensing, 

instead of one infrared projector it now has three projectors emitting at different rates and wave 

lengths. The process of depth acquisition is TOF (Time of Flight) of photons [47] [4]. With the 

new SDK (Kinect for Windows SDK 2.0) we can track in each frame color, depth, sound, sound 

direction and an infrared view of the scene. The SDK offers tools to track six persons at the 

same time, as well as 25 skeleton joints of each person, including position, direction and 
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rotation of each joint. It has a degree of accuracy capable of sensing the fingers of the hands at 

around 5 meters of the camera, giving the ability of tracking complex and precise gestures. 

 

Table 1: Kinect 2.0 specifications 

Distance of use Between 0.5m and 5.0m 

Field of View 70° Horizontal, 60° Vertical 

Sensors RGB, Depth, Microphone 

Resolution RGB: 1920x1080 

Depth: 512 x 424 

Interface USB 3.0 

Software Kinect for Windows SDK 2.0 

OS Support  Windows 

Programming Language C#, C++, Visual Basic, Java, Python, 

ActionScript 

 

Asus Xtion Pro Live 

This sensor is similar to Microsoft Kinect, one RGB camera and a pair of projector / 

camera of infrared for the depth information but with much lesser support, relatively to 

documentation, tutorials, online community, forums and external software extensions (libraries 

and tools). 

 

Table 2: Asus Xtion Pro Live specifications 

Distance of Use Between 0.8m and 3.5m 

Field of View 58° Horizontal, 45° Vertical 

Sensors RGB, Depth, Microphone 

Resolution RGB: 1280x1024 

Depth: 640 x 480 

Interface USB 2.0 / 3.0 

Software Software development kits (OpenNI 

SDK bundled) 

OS Support Win 32/64 : XP, Vista, 7, 8 

Linux Ubuntu 10.10: X86,32/64 bit 

Android 

Programming Language C++/C# (Windows) 

C++ (Linux) 

JAVA 
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2.2 Calibration RGB-D 

RGB-D cameras acquire in each frame one RGB image plus a depth image [16], which 

means in each frame is possible to obtain a colored point cloud of the scene. But at the process 

of association of each depth value to one pixel (or a set of pixels) of the RGB image, some 

pixels of objects can get depth values of the background or vice-versa [11]. So some calibration 

process needs to be done. One easy to use method is by tracking some moving spherical object 

on both RGB and depth images [45] for a few seconds and with their center point locations it is 

possible to calibrate both images. Other method is by using a chessboard pattern above some 

flat surface (Figure 1), like a table, so that the color camera’s pose is calculated from this pattern 

and the depth sensor’s pose is calculated using the table’s surface, where the chessboard pattern 

is [17]. Then by establishing the relation between both poses it is possible to align the color 

image with the depth image. 

 

 

 

 

 

2.3 Registration 

Registration is the process of alignment of multiple captures, of the same scene or object, 

with different viewpoints. The result can be an extended version of a 2D image or a 3D 

representation of the scene / object.  

The use of registration can be found in weather forecasting, creation of super-resolution 

images [50], in medicine, by combining multiple scans to obtain more complete information 

about the patient [54] (monitoring tumor growth, treatment verification), in cartography (map 

updating), and in computer vision (3D representation)[57]. There are four main types of 

applications that require registration: 

- Different viewpoints, to expand a 2D view (Figure 2) [26] or acquire a 3D mesh of the 

scene (Figure 3) [53]. 

- Different times, to study and evaluate the changes over time in the same scene (motion 

tracking, global land usage or treatment evolution). 

- Different sensors (Figure 4), to achieve a more complex and detailed representation of 

the scene (in medicine the fusion of different types of scans of the same person). 

- Scene to model registration, to localize the acquired image by comparing it to some 

model of the scene [39] (2D/3D virtual representation) (object tracking, map updating).  

 

Figure 1: Example of the chessboard pattern over a rectangular flat surface. 
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Figure 2: Registration of two 2D images to expand the view [40]. 

Figure 3: Registration of 3D point clouds to build a 3D model. 

Figure 4: Registration of multiple scans from different sensors [54]. 
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The process of registration is very dependent on the type of scene being targeted, the type 

of sensors used for each capture and the final expected result [25] [38]. But, for almost every 

case, this process follows four main steps: 

 

- Feature Detection. Distinctive features of the image or capture like blobs, edges, 

contours, line intersections or corners are detected in order to find correspondences 

between the images to be align [11]. These features must be represented in a way so 

that transformations like scale and rotation does not affect the feature identifier [27], 

also known as descriptor or feature vector. Some of the most common algorithms used 

in feature detection are Canny and Sobel for edge detection, Harris and SUSAN for 

edge and corner detection, Shi & Tomasi and Level curve curvature for corner 

detection, FAST, Laplacian of Gaussian and Difference of Gaussians for corner and 

blob detection, MSER, PCBR and Gray-level blobs for blob detection [5]. 

 

- Feature Matching. After finding and identifying the features of a capture, the process 

of matching these features is the next step. The idea is to find identical features in both 

the new capture and the reference model (or reference capture). From brute-force 

descriptors matching and FLANN (Fast Library for Approximate Nearest Neighbors) 

to pattern recognition [33] there are many different approaches to solve this problem 

however they are very dependent on the type of scene and the available processing 

time (quality vs performance). 

 

- Transformation Model Estimation. This step is the most time consuming of all, 

especially if the targeted scene has non-static or non-rigid objects. Most of the times 

(just not to say all the times) the feature matching process is not perfect, matching 

some features wrongly result in the impossibility of finding a transformation model 

that works for every single match. One way of solving this problem is by estimating 

recursively a model that works for a set of matches until the size of that set is larger 

enough (RANSAC [7]). The remaining matches are discarded (considered as outliers). 

Other approach is using ICP (Iterative Closest Point [30]), that in some 

implementations does not need an individual feature matching process [28], each 

feature is paired with its closest neighbor (of a different capture) and the 

transformation model is recursively estimated (using a hill climbing algorithm) so the 

distance between neighbors gets close to zero. The most common type of models are 

for rigid body transformations with 6 parameters (3 rotations and 3 translations), affine 

transformations [32] with 12 parameters (translation, scaling, homothety, similarity 

transformation, reflection, rotation, shear mapping, and compositions) or an elastic 

transformation approach [21] for non-rigid body objects. 
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- Final Corrections. The last step of registration is the transformation of the new 

capture, using the estimated transformation model, and appending or comparing the 

result with the reference model or capture. In some cases, corrections must be made, 

normally on the edges of the new capture, so the final result looks like the result of a 

single capture and not the joining of multiple captures [36]. 

 

 

2.4 3D Registration 

For 3D model reconstruction, each capture needs to go throw a registration process. With 

each capture being represented as a point cloud, the registration process can be solved using 

point cloud registration algorithms. The most common methods for general registration of point 

clouds are Iterative Closest Point (ICP) [31] and its variants. There are some other methods, 

more object specific, which uses contour tracking [10] or a reference model [14] for the initial 

registration. Other method is the use of markers, placed over the object, so that the initial 

registration can be done by tracking and matching these markers [44].    

 

Iterative Closest Point and some variants 

This algorithm starts with two point clouds and recursively tries to estimate the 

transformation model by following these steps: 

- Association of points from one point cloud to the other. 

- Estimation of the transformation model that minimizes a cost function. 

- Transformation of the second point cloud using the estimated model. 

- If the result is not good enough iterate from the first step.  

 

For the association of points the distance can be used only and the closest pair of points is 

chosen [13]. Alternatively, a descriptor matching approach can be used, with descriptors 

obtained using Normal Aligned Radial Feature (NARF [42]), Point Feature Histograms (PFH 

[41]) or Persistent Feature Histogram [40], algorithms that use geometric relations of the 

neighbor points to create a descriptor for a 3D point, invariant to scaling and rotation. For the 

descriptor matching method an a priori step must be considered to remove the ambiguity of 

similar descriptors in flat surfaces, normally by using the closest point [39] or by using a color 

based descriptor, if the color information is available [29]. After this step, in some cases, a 

sampling algorithm (RANSAC [7]) is used to filter some outliers or mismatches. 

The most common cost functions are least squares [48], Woods [19], normalized 

correlation [24], correlation ratio [9], mutual information [54] and normalized mutual 
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information [12] [15]. The main problem of these cost functions are the local minima traps [8]. 

To avoid this problem, a low resolution version of the point clouds is used, with the resolution 

being iteratively increased until reaching the original version [20]. Another method that 

minimizes this problem is called Apodization of the Cost Function [19] that uses an estimation 

of the overlapping window of points in each point cloud to smooth the cost function, reducing 

local minima. 

The two main variants of ICP are point-to-point and point-to-plane [31], where the main 

difference is the input of the cost function. Point-to-point methods only uses the squared 

distance of the two linked points of each point cloud to minimize the error and the point-to-

plane uses the squared distance and the difference between the tangent planes of each point. The 

point-to-plane approach usually shows better results [23]. 

 

ICL and ICT 

Iterative closest line (ICL) is similar to ICP but instead of matching points it matches lines. 

Hough transformation is an edge detection method used to extract lines on 2D images but it can 

be used in 3D point clouds (Figure 5) as well by projection [3]. ICL works great if the scene is 

rich in edges, like some city view with multiple buildings. 

Iterative closest triangle patch (ICT) has the same principle of ICL but instead of searching 

for lines it uses sets of three points to form triangles [22]. For flat surfaces it uses bigger 

triangles, with far away points, and for curve surfaces it uses more and smaller triangles. 

   

Figure 5: Example of line extraction for ICL. 



State of the Art 

 

 11 

2.5 Non-Rigid Registration 

Registration of non-rigid objects cannot be solved by using common registration 

geometrical transformation models [12] (like rotations, translations or affine transformations), 

because from one point cloud to the other, the existence of some internal non-linear 

transformations is a possibility. Depending on the amount of deformation between point clouds 

there are some models that can be used, like elastic model [55] [52] and viscous fluid model [1]. 

The elastic model uses a pair of forces, internal and external, to estimate small deformations. 

This forces are estimated by calculating the derivative of the similarity for all degrees of 

freedom [18], using a B-spline representation [49] or a distance map represented using an octree 

spline [48] to speed up the process. To solve this step, two classes of optimizers can be used, 

deterministic methods, that assumes exact knowledge of criterion, and stochastic methods [52], 

that uses an estimation of a cost function. The viscous fluid model uses multiple forces to 

estimate greater number of types of deformations, which can lead to higher chances of miss 

registrations when the two point clouds are distant from each other.  

There are two main types of non-rigid registration methods, one of them is by using a cost 

function that minimizes both the rigid transformation and the internal deformation, and the other 

one consists on finding the best rigid transformation first and then calculating the best 

deformation to match [37]. The first method shows better results when the rigid transformation 

is small, which gives room for more complex deformations [14]. The second method is more 

robust for finding the rigid transformation, when the data sets are far away, but only works for 

small and localized deformations [14].  
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2.6 Parametric Model 

Parametric model is a surface or shape representation constituted by a set of Non-uniform 

rational basis spline. NURBS (Figure 6) is a mathematical model used to generate and 

manipulate curves or surfaces. This manipulation of the surface is done by moving control 

points, and the movement of each control point will affect the entire surface, with the intensity 

being based on the distance between the surface point and the control point.   

 

 

 

 

 

 

 

 

 

The initial surface of the parametric model can have a variety of shapes, and the choice of 

this initial shape will have a major impact on the quality and performance of the final fitting [6]. 

Some examples are the use of a superellipsoid (Figure 7) for the fitting of objects, or the use of 

a plane (Figure 8) for the fitting of a surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: An example of a NURBS curve. 

Figure 7: Examples of superellipsoids [6]. 
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The fitting of the parametric model to the reference object or surface, is done by 

calculating the displacement vector of each control point, so that minimizes the displacement 

field between the parametric model surface and the reference surface [6]. The figures 9, 10, 11 

and 12 are an example of the fitting process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Example of surface fitting when using the plane as initial shape of the parametric model. 

Figure 9: Reference object [6]. Figure 10: Initial shape of the parametric 

model [6]. 
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The use of a parametric model for non-rigid registration can be a solution for the 

deformation correction. If it is possible to fit the parametric model to the point cloud with 

deformations, then the non-rigid alignment can be done by fitting this point cloud with 

deformations, now being represented as a parametric model, to the reference point cloud. This 

method can also be used to fill gaps occurring due to occlusions [56]. 

 

2.7 Conclusions 

After this initial research, we can conclude that for rigid registration there are a great 

variety of methods and algorithms, each one with its improvements and drawbacks, with the 

success very dependent on the capture environment. For the non-rigid registration, the existing 

methods are dependent on a high quality and precision acquisition system, because noisy data 

have a stronger impact. In order to align point clouds with deformations, at least one point cloud 

needs to be a reference for the others. So if the reference point cloud have noisy data then all the 

point clouds with “good” data are going to be wrongly deformed. 

  

Figure 11: Displacement field between the 

parametric model surface and the 

reference object surface [6]. 

Figure 12: Final shape of the parametric model 

after the fitting [6]. 



A 3D Reconstruction approach for RGB-D Images 

 

 15 

 

Chapter 3 

A 3D Reconstruction approach for 

RGB-D Images 

In this chapter a proposal will be described, step by step of the implementation to achieve 

our objectives, the 3D model reconstruction of rigid or non-rigid objects. Some examples of the 

results of the most important steps will be presented.  

3.1 Captures and Point Clouds 

The chosen sensor for the captures was the Microsoft Kinect over the Asus Xtion Pro Live 

mainly because of the online support, tutorials, forums, online community and the known 

compatibility with tools like PCL.  

At this early stage the goal was to obtain color and depth images using the Microsoft 

Kinect sensor. For this purpose it was used the SDK “Kinect for Windows v2” for the 

communication with the sensor and obtaining the images. This tool is also used for the creation 

of point clouds resulting from the junction of the color information, depth and calibration 

parameters. These calibration parameters are obtained directly from the sensor and are 

constantly being updated. The capture rate (frame rate) can be set by the user, being limited 

only to the storage speed of each point cloud on the hard drive. Figure 13 shows a flowchart of 

the capture process. 

 

 

 



A 3D Reconstruction approach for RGB-D Images 

 

 16 

 

 

 

 

 

 

 

 

3.2 Registration 

The first approach used for a possible settlement of the main objective, 3D reconstruction 

of non-rigid objects, is the implementation of a variant of ICP with a cost function capable of 

obtaining the best rigid geometric transformation, without being influenced by possible 

deformations. The idea would be to use different weights for each point in the cost function, in 

such way that these weights would be the certainty of each point belonging to a rigid or non-

rigid region of the point cloud. 

This approach has been interrupted due to the difficulty of implementing the cost function 

with exact methods, so it was decided the use of approximate methods already implemented in 

PCL library [43]. With the PCL it is not possible to change the behavior of the cost function, so 

it was chosen a different approach. The methodology then consists of two main steps, first find 

the best rigid alignment and then adjust the non-rigid regions. For the rigid alignment, two 

different methods of coarse registration were implemented, one for scenes and other for objects. 

The reconstruction process is not fully automatic yet, it needs the manual setup of two threshold 

values: the noise reduction threshold and the smoothing threshold. These thresholds will be 

presented below. Figure 14 shows a flowchart of the reconstruction process. 

 

 

 

 

 

 

 

 

 

Figure 13: Flowchart of one iteration of the capture process. 

Figure 14: Flowchart of the 3D model reconstruction algorithm. 
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- Noise Reduction 

Before starting with the process of registration, each point cloud is filtered with the 

objective of improving its quality and reliability about the position of each point. The algorithm 

used is simple, not time consuming and presents good results (Figure 15 and Figure 16). This 

method consists on filtering each point, of the point clouds, that have a lower density value of 

neighbors than the noise reduction threshold.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 15: Example of a point cloud before the noise reduction algorithm. 

Figure 16: The same point cloud of Figure 6 after the noise reduction 

algorithm. 
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- Scenes 

The first test cases were scenes (rooms captured from the inside) to be rich in corners and 

high-contrast regions in relation to color. With these specific attributes of scenes we concluded 

that it would be a good idea to use methods with feature points to use descriptors composed 

with color and curvature information, to determine an initial alignment required for the ICP 

algorithm. Unfortunately the results were not positive. 

With this, we started to implement a different approach, consisting on several steps. 

Instead of feature points, the initial alignment was made up by comparison of the quality of the 

alignment after a limited number of iterations of a variant of ICP. This variant uses, as input of 

the cost function, the information of the curvature of each point, calculated with the geometric 

relations between neighbor’s points, along with the Euclidian distance, between each pair of 

closest points. At the first iterations it is used a smaller representation of the point cloud 

(sampled). The quality of the alignment is obtained iteratively and is compared between 

iterations, storing only the best. In each iteration is generated a different initial geometric 

transformation, that is applied to all points of the point cloud to be aligned in order to find a 

geometrical transformation that best approximates the actual transformation. After this, the final 

alignment is done by using the original version of ICP with a termination criteria of the type:  

έ – ε < T, έ is the error of the previous iteration, ε is the error of the current iteration and T 

is a value close to zero (10−8 was the value used). 

With this solution it is possible to align in most cases (Figure 17 and Figure 18), except in 

the parallel displacements between the sensor and surfaces with big flat regions (Figure 19). 

This is a problem for the correct alignment when using ICP, or its variants, due to the nature of 

these algorithms. When the point cloud to be aligned has a big flat region, the cost function will 

have a greater probability of getting stuck in a local minimum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Two point clouds of the same scene, 

before the registration. 

Figure 18: The same point clouds of Figure 8 after 

the registration. 
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- Objects 

For the registration of objects it was used a slightly different methodology. In this 

approach the initial alignment consists on a translation of one point cloud, so that the center of 

mass of both point clouds are at the same point, and a rotation obtained by the previous 

alignments:  

𝑅 = 𝐿𝐸 

 

Where R is the initial rotation for the current point cloud, L is the final rotation of the last 

aligned point cloud and E is the initial rotation of the last aligned point cloud. For the first 

iteration, R is initialized with the identity matrix. 

After this step it was used the ICP variant with the curvature information. The results were 

very positive (Figure 20) for most of the objects.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Example of failed registration when the sensor is 

moving parallel to a surface with big flat regions. 

Figure 20: Example of a successful alignment after the registration of 30 point clouds (captured at 10 fps). 

(1) 

 

Figu

re 20: 

Example 

of a 

successfu

l 

alignment 

after the 

registratio

n of 30 

point 

clouds 

(captured 

at 10 

fps).(1) 

 

Figu

re 20: 

Example 

of a 

successfu

l 

alignment 
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The small objects were having a problem with the density of the point clouds, in such way 

that in some cases the density of the noise was close to the density of the real data of the object. 

This way the noise was not being filtered after the noise reduction step (Figure 21 and Figure 

22), because the algorithm uses the density value to remove the noise (described above). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To improve the quality of the final 3D models, reconstructed from small objects, we added 

a smoothing step between consecutive alignments. The smoothing algorithm consists in 

dividing the point cloud in small cubes and calculating the center point of each set of points, 

inside each cube. The dimensions of these cubes is calculated using the smoothing threshold 

that needs to be set manually, and works as a tradeoff between low density of accurate data or 

higher density of data with a percentage of noise (Figure 23). 

 

  

  

Figure 21: Three views of 5 aligned 

point clouds of a small object. 

Figure 22: Three views of 50 aligned point 

clouds of a small object. 

Figure 23: Example of 50 aligned point clouds using four different smoothing. 



A 3D Reconstruction approach for RGB-D Images 

 

 21 

3.3 Non-rigid alignment 

If there is some kind of movement or deformation in the objects during the captures, rigid 

registration of the various resulting point clouds is not enough. To solve this problem two 

different approaches have been implemented with the objective of correcting the regions with 

deformations. The first algorithm is simple and fast, but is a point-to-point approach so it can be 

vulnerable to some inconsistencies and discontinuities, the second method is based on the use of 

a parametric model but only works for small regions of the point cloud at each time.  

 

Point-To-Point approach 

This method is applied after the rigid registration, described in the previous section, and 

consists in the following steps: 

 

- Identification of the overlap window. In this stage the closest points from the reference 

point cloud to the next point cloud are calculated. During this step the smallest calculated 

distance for each point of the next point cloud is stored (Figure 24). For example, with points A 

and B points in the reference point cloud and point C in the next point cloud, if the closest point 

of A and B in the next point cloud is C, then the distance to be stored is the lower between 𝐴𝐶̅̅ ̅̅  

and 𝐵𝐶̅̅ ̅̅ . This way, the points that do not have a stored value for the distance are considered as 

outside of the overlap region. 

 

 

 

 

 

 

 

 

 

 

 

 

- Identification of the region with deformation. Using the minimum distances calculated 

in the previous step, all points that have a distance greater than the mean density of the data on 

the reference will be considered as points belonging to the region with deformation (Figure 25).  

 

 

 

 

Figure 24: Illustration of the identification of the overlap window step. 
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- Alignment of the rigid region. In this step points of the next point cloud to be added to 

the reference point cloud are selected. These points are those in the overlap window but outside 

the region with deformation. 

 

- Alignment of the region with deformation. For each point identified as belonging to the 

region with deformation, are calculated three points closer to that point in the reference point 

cloud. With these three points (𝑃2, 𝑃3, 𝑃4) is calculated the equation of the plane, then is 

calculated the equation of the line perpendicular to this plane passing through the initial point 

(𝑃1). With this plane and this line is calculated the intersection point. This point of intersection 

(𝑃𝑖) is then added to the reference point cloud (Figure 26). 

 

𝑣1⃗⃗⃗⃗ = 𝑃3 − 𝑃2 

 

𝑣2⃗⃗⃗⃗ = 𝑃4 − 𝑃2 

 

𝑛⃗ =  𝑣1⃗⃗⃗⃗  𝑋 𝑣2⃗⃗⃗⃗   

 

𝑃𝑖  =  (
(𝑃2 − 𝑃1)  ∙  𝑛⃗ 

‖𝑛⃗ ‖2 ) 𝑛⃗ + 𝑃1 

(Deduction of the formula in Annexes) 

 

 

 

 

 

 

 

 

 

Figure 25: Illustration of the identification of the region with deformation step. 

Figure 26: Illustration of the alignment of the region with deformation. 
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- Alignment of the region outside the overlap window. For each point, considered as 

belonging to the region outside the overlap window, the closest point in the reference point 

cloud is calculated. In the case that the angle between the vector formed by these two points and 

the normal vector at the closest point in the reference point cloud are near 90 degrees, then this 

point is added to the reference point cloud. 

After all these steps is possible to align two point clouds with small deformations (Figure 

27 and Figure 28).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 27: Multiple views of the result of rigid registration between two point clouds with small deformations. 

Figure 28: Multiple views of the result of the non-rigid algorithm. 
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Parametric Model approach 

A different approach was also explored, the use of a parametric model to rectify the 

discontinuities resulting from rigid registration of point clouds with deformations. The Figure 

29 is the result of the rigid registration of point clouds obtained from patients. The region with 

higher discontinuities was at the belly (Figure 30, Figure 32). The Figure 31 is a drawing of this 

surface for a better understanding of the problem.  

 

 

 

 

 

 

  

Figure 29: Result after rigid registration Figure 30: Selection of the region with discontinuities 

Figure 31: Illustration of the 

discontinuities on the selection 

Figure 32: A different view of the selection 
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 After the selection of this region with discontinuities, it was used a parametric model to 

fit with this selection. The starting shape of the parametric model was a plane and the equation 

of the model is: 

 

𝑋 = ∑∑𝐶𝑙
𝑖

𝑚

𝑗=0

𝑙

𝑖=0

𝐶𝑚
𝑗
(1 − 𝑠)𝑙−𝑖𝑠𝑖(1 − 𝑡)𝑚−𝑗𝑡𝑗𝑃𝑖𝑗 

 

The points at the surface of the model are represented as X, the control points are 

represented as P and the other members of the equation are representing the function 

responsible for the intensity distribution of displacement of each control point over the entire 

surface of the model. 

 The resulting parametric model, after the fitting with the region with discontinuities, 

will replace the selection (Figure 33), in the need of rectification, and after a simple smoothing 

the model no longer has discontinuities at that region (Figure 34). 

 

  

Figure 33: Replacement of the selection with the 

parametric model 

Figure 34: Final result after the smoothing 

(6) 
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Chapter 4 

Validation and Results 

During this chapter, the validation of the proposed methodology will be presented and 

some results will be discussed.  

4.1 Validation with rigid objects 

For the validation of our methodology it was used a high precision sensor as a ground 

truth. This sensor was the David laserscanner, which is composed by a normal RGB camera, a 

hand laser and a calibration background plane (Figure 35). This sensor uses a method called 

triangulation based laser range finder to capture the xyz coordinates of the objects [2]. In short 

words the method consists in projecting a laser ray, with the shape of a line, against the 

calibration background plane. By using the RGB camera to capture the image of the projected 

ray is possible to calculate the equation of the laser’s ray plane. When an object is placed 

between the calibration background plane and the RGB camera (Figure 36), the shape of the 

object can be obtained by using the equation of the laser’s ray plane and the image of the 

projected laser on the surface of the object. 
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The objects used for validation were of the type rigid, because the David laserscanner can 

only capture small rigid objects. Only the rigid registration methods were validated, when using 

this sensor as ground truth. 

The validation process was done by comparison between the reconstruction of the 3D 

models of the objects in the Figure 37 and Figure 40, using the Microsoft Kinect with our 

framework (Figure 39 and Figure 42) and using the David laserscanner with David’s 3D 

reconstruction software (Figure 38 and Figure 41). Multiple configurations of the smooth 

threshold and noise reduction threshold were used for better understanding of its impact on the 

final result. As a comparison measure was used the mean of the Euclidian distances, between 

the 3D models of each object, after a manual alignment (results on Table 3). 

 

 

Figure 36: Illustration of the use of the David laserscanner. 

Figure 35: Two pictures of the components of 

the David laserscanner. 
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Figure 37: Rigid object used for validation. 

Figure 38: 3D model reconstruction with 

David laserscanner. 

Figure 39: 3D model reconstruction 

with Microsoft Kinect. 



Validation and Results 

 

 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Rigid object used for validation. 

Figure 41: 3D model reconstruction 

with David laserscanner. 

Figure 42: 3D model reconstruction 

with Microsoft Kinect. 
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Table 3: Validation results of rigid objects. 

 

First object (Figure 37) 

 

Smooth 

threshold 

value 

Noise 

reduction 

threshold 

value 

Mean of the Euclidian 

distances (mm), using 

the direction from the 

David laserscanner 

model to the Microsoft 

Kinect model 

Mean of the Euclidian 

distances (mm), using 

the direction from the 

Microsoft Kinect 

model to the David 

laserscanner model 

Mean of both 

distances 

(mm) 

 

 

 

0.005 

0.004 5 4 4.5 

0.005 3 5 4 

0.006 3 6 4.5 

0.007 3 8 5.5 

0.0005  

 

 

0.005 

3 5 4 

0.0010 2 5 3.5 

0.0050 3 5 4 

0.0100 5 5 5 

 

Second object (Figure 40) 

 

Smooth 

threshold 

value 

Noise 

reduction 

threshold 

value 

Mean of the Euclidian 

distances (mm), using 

the direction from the 

David laserscanner 

model to the Microsoft 

Kinect model 

Mean of the Euclidian 

distances (mm), using 

the direction from the 

Microsoft Kinect 

model to the David 

laserscanner model 

Mean of both 

distances 

(mm) 

 

 

 

0.005 

0.005 10 4 7 

0.006 7 6 6.5 

0.007 4 8 6 

0.008 4 8 6 

0.009 4 10 7 

0.0001  

 

 

0.007 

3 7 5 

0.0005 3 7 5 

0.0010 3 7 5 

0.0030 4 8 6 

0.0050 4 8 6 
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The variation of results were as expected, when using different values for the smooth 

threshold and the noise reduction threshold.  

The value used for the noise reduction threshold, have greater impact on the mean of the 

Euclidean distances, when using the direction from the Microsoft Kinect model to the David 

laserscanner model. This is because every single point of the Microsoft Kinect model will be 

used for the calculation of the distances, and by increasing the value of the noise reduction 

threshold, the number of noisy points used for the calculations will increase as well, leading to 

worst results as expected. On the other hand, if the value of this threshold is lower than the 

density of the “good” data, then the model will start losing detail. This loss of detail can be 

detected when the value of the mean of the Euclidean distances, when using the direction from 

the David laserscanner model to the Microsoft Kinect model, increases. When using this 

direction for the calculation of the mean of the Euclidean distances, the increase of the noise 

reduction threshold value does not change the result, because only the closest points of the 

Microsoft Kinect model will be used for the calculation of the Euclidean distances, this way the 

increase of noisy data does not change the results when using this direction. 

The smooth threshold is used to increase the accuracy of the data on the surface of the 3D 

model, by decreasing the density of the data. The increase of the smooth threshold value will 

increase the accuracy of the data, but after a certain value the model will start losing detail. This 

loss of detail can be detected when the mean of the Euclidean distances of both directions 

increases. 

 

4.2 Validation with non-rigid objects 

The validation by comparison with a ground truth model, of the point-to-point approach, 

was not possible. The results after the use of this approach to align two point clouds with 

deformations, are visually positives. The Figure 43 is the result after the rigid registration, 

where it can be seen two not aligned surfaces at the face region. This deformation between the 

point clouds is the result of the forward movement of the head. The Figure 44 is the result after 

the non-rigid registration, using the point-to-point approach. At the face region, only one 

surface can be seen which represents a good non-rigid alignment of the point clouds. 
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Figure 43: Rigid registration of two point clouds with deformations. 

Figure 44: Two perspectives of the result after the non-rigid registration. 
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 For the validation of the parametric model approach, the high precision sensor 3dMD 

(Figure 45) was used to obtain the models for comparison. The validation consists in comparing 

the rigid reconstruction, of three patients captured with Microsoft Kinect (Figures 46, 47 and 

48), with the models obtained from the 3dMD sensor, and then verifying the improvements of 

using the parametric model approach by comparing its results with the models obtained from 

the 3dMD sensor (Table 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: 3dMD sensor 

Figure 46: 3D models of patient A, the rigid reconstruction on the left, the result of the parametric model 

approach on the middle and the reconstruction from the 3dMD sensor on the right 
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Figure 47: 3D models of patient B, the rigid reconstruction on the left, the result of the parametric 

model approach on the middle and the reconstruction from the 3dMD sensor on the right 

Figure 48: 3D models of patient C, the rigid reconstruction on the left, the result of the parametric 

model approach on the middle and the reconstruction from the 3dMD sensor on the right 
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Table 4: Validation results of non-rigid objects 

Patients Mean of the Euclidian 

distances (mm), using the 

direction from the 3dMD 

model to the Microsoft 

Kinect model 

Mean of the Euclidian 

distances (mm), using the 

direction from the Microsoft 

Kinect model to the 3dMD 

model 

Mean of both 

distances 

(mm) 

A 

(after rigid 

registration) 

8 11 9.5 

A  

(after non-rigid 

registration) 

7 7 7 

B 

(after rigid 

registration) 

7 7 7 

B  

(after non-rigid 

registration) 

7 5 6 

C 

(after rigid 

registration) 

7 9 8 

C  

(after non-rigid 

registration) 

8 8 8 

 

 

 The results presented on table 4 are very positive, considering that only a small 

selection of each model was non-rigidly improved. These improvements are more visible when 

calculating the mean of the Euclidian distances using the direction from the Microsoft Kinect 

model to the 3dMD model, because of the increase on the accuracy and the decrease on the 

density of the data.   
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

3D reconstruction is a complex process, normally associated to expensive sensors and 

experienced staff. It cannot be found a single low-cost and practical system in the market, with 

sensor, software and the purpose of general 3D reconstruction of rigid and non-rigid objects.  

A study of the most common registration algorithms was presented in this document. The 

main conclusions gathered are that each different type of approach or algorithm to align point 

clouds are very dependent of the target, object or scene, and to achieve optimal results with 

different types of targets is really hard to make the process fully automatic.  

Our framework is not ready to be used by unexperienced people yet, but it can be seen as a 

small step forward towards the general 3D reconstruction of rigid and non-rigid objects. It is 

composed by a set of operations that allows the user to capture a scene or an object, with the 

Microsoft Kinect sensor in his hands, and after the manual setup of some thresholds, the 3D 

model is generated.  

Two non-rigid registration methodologies were implemented, the point-to-point approach 

for automatic and object independent registration, but a lesser robustness to discontinuities and 

inconsistency, and the parametric model approach, that because of the way is manipulated 

makes it more robust to discontinuities, inconsistency and occlusions. This last approach, with 

the parametric model, showed good results even when only using for a small region of the 3D 

model. 
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5.2 Future Work 

For future work the most important improvements could be: 

 

- The use of ICT for the registration of point clouds from scenes, for being more robust 

to big flat regions. 

 

- The extension of the parametric model approach to the entire 3D model. There are two 

possible paths, the use of multiple parametric models each one with different 

characteristics to match each region of the 3D model, or the use of a single parametric 

model with sufficient deformation freedom to match the entire 3D model.  

 

- The automatic setup of thresholds for target independent 3D reconstruction and better 

usability by unexperienced people.  
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Annexes 

Deduction of the formula used in the non-rigid algorithm: 

 

𝑃𝑖  =  (
(𝑃2 − 𝑃1)  ∙  𝑛⃗ 

‖𝑛⃗ ‖2 ) 𝑛⃗ + 𝑃1 

 

This formula returns the coordinates of the point of intersection (𝑃𝑖) between a plane and a 

perpendicular line. The normal vector (𝑛⃗ ) of the plane is the same directional vector of the line, 

so the equations of the plane and line are: 

 

(𝑃𝑝𝑙𝑎𝑛𝑒 − 𝑃2) ∙ 𝑛⃗   =   0 

𝑃𝑙𝑖𝑛𝑒  = d 𝑛⃗ + 𝑃1 

 

For the intersection we do  𝑃𝑝𝑙𝑎𝑛𝑒 = 𝑃𝑙𝑖𝑛𝑒 : 

 

(d 𝑛⃗ + 𝑃1 − 𝑃2) ∙ 𝑛⃗   =   0 

Solving for d: 

 

𝑑 =  (
(𝑃2 − 𝑃1)  ∙  𝑛⃗ 

‖𝑛⃗ ‖2 ) 

 

Finally, by substituting d in the line equation: 

 

𝑃𝑖  =  (
(𝑃2 − 𝑃1)  ∙  𝑛⃗ 

‖𝑛⃗ ‖2 ) 𝑛⃗ + 𝑃1 

 


