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Abstract

One of the main challenges for computer-assisted surgery (CAS) is to deter-
mine the intra-operative morphology and motion of soft-tissues. This infor-
mation is prerequisite to the registration of multi-modal patient-specific data
for enhancing the surgeon’s navigation capabilities by observing beyond ex-
posed tissue surfaces and for providing intelligent control of robotic-assisted
instruments. In minimally invasive surgery (MIS), optical techniques are an in-
creasingly attractive approach for in vivo 3D reconstruction of the soft-tissue
surface geometry. This thesis addresses the ambitious goal of achieving surgi-
cal autonomy, through the study of the anatomical environment by Initially
studying the technology present and what is needed to analyze the scene: vision
sensors.

A novel endoscope for autonomous surgical task execution is presented in
the first part of this thesis. Which combines a standard stereo camera with
a depth sensor. This solution introduces several key advantages, such as the
possibility of reconstructing the 3D at a greater distance than traditional en-
doscopes. Then the problem of hand-eye calibration is tackled, which unites
the vision system and the robot in a single reference system. Increasing the
accuracy in the surgical work plan.

In the second part of the thesis the problem of the 3D reconstruction and the
algorithms currently in use were addressed. In MIS, simultaneous localization
and mapping (SLAM) can be used to localize the pose of the endoscopic camera
and build ta 3D model of the tissue surface. Another key element for MIS
is to have real-time knowledge of the pose of surgical tools with respect to
the surgical camera and underlying anatomy. Starting from the ORB-SLAM
algorithm we have modified the architecture to make it usable in an anatomical
environment by adding the registration of the pre-operative information of the
intervention to the map obtained from the SLAM. Once it has been proven
that the slam algorithm is usable in an anatomical environment, it has been
improved by adding semantic segmentation to be able to distinguish dynamic
features from static ones.

All the results in this thesis are validated on training setups, which mimics
some of the challenges of real surgery and on setups that simulate the hu-
man body within Autonomous Robotic Surgery (ARS) and Smart Autonomous
Robotic Assistant Surgeon (SARAS) projects.
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1

Introduction

An autonomous system is an artificially intelligent entity that makes decisions
in response to input, independent of human interaction. robotic systems are
physical entities that interact with the physical world. In this thesis, we con-
sider an autonomous robotic system as a device that uses artificial Intelligence
(AI) and has a physical presence in and interacts with the real world. These
systems are complex, inherently hybrid, systems, combining both hardware
and software; they often require in depth safety, legal, and ethical analysys.
Autonomous robotics are increasingly being used in commonplace scenarios,
such as driverless cars [47], pilotless aircraft [208], and domestic assistants [36,
207].

For many engineered systems, extensive tests, either through real deploy-
ment or via simulation, are deemed sufficient for the validation and eval-
uation of the developed algorithms. However, the unique challenges of au-
tonomous robotics, their dependence on sophisticated software control and
decision making, and their increasing deployment in safety-critical scenarios
require a stronger form of verification.

Autonomous robotic systems lack formal specification and verification
methods and often have safety-critical behaviors. A survey on safety-critical
robotics [63] identified seven focus areas for the development of robots that can
safely work alongside humans and other robots, in unstructured environments.
These areas are:

� modeling and simulation of the physical environment to enable better safety
analysis;

� formal verification of robot systems;
� models of human-robot interaction;
� controllers that are correct by construction;
� identification and monitoring of hazardous situations;
� online safety monitoring that adapts to the robot’s context;
� certification evidence.

In this thesis, we focus more on the first three points by developing and
using Simultaneous Localization and Mapping (SLAM) [42] [192], which is a
technique for obtaining the 3D structure an unknown environment and for
estimating sensor motion. The use of this method allows to compute precisely
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the relative position of the robotic devices with respect to their environment
and this guarantee the robotic mitions are safe by design.

1.1 Modeling the physical environment

We consider an autonomous robot as a device that implements AI techniques,
has a physical presence, and interacts with the world. Thus, one of the most
prominent challenges in controlling an autonomous robotic system is to verify
its interaction with an unstructured environment. Interactions between a robot
and its physical environment has a major influence on its behavior since the
robot can react to changes in environmental conditions. Indeed, the behavior
of adaptive systems is directly driven by environmental interactions, such as
touch or object recognition. While it is accepted that formally modeling a
robotic system within its physical environment is important [52, 201], it has
had limited attention in the literature.

Apart from the difficulty of modeling the real world, a robot only has partial
knowledge of its surroundings. To help robots learn more about their surround-
ings, they often come equipped with sensors that are used to estimate a robot’s
condition and its relation with the environment. Their signals are passed to a
controller to enable appropriate behavior.

Sensors in robots replicate the functions of human sensory organs. Robots
require extensive information about their environment in order to function ef-
fectively. But sensing limitations, caused by sensor blind-spots and interference
between sensors, add extra complexity to the modeling process [12, 71, 148].

To address the challenge of combining discrete computations and a continu-
ous environment, a robotic system is typically separated into several layers [2,
52]. At the bottom, the functional layer consists of control software for the
robot’s hardware. Then, the intermediate layer generally utilizes a middleware
framework (such as ROS [155]) that provides an interface to the hardware
components. The upper layer contains the decision-making components of the
robotic system, which capture its autonomous behavior.

Some previous work has focused on a robot’s decision making, ignoring
its environment [86, 104]. Others assume that the environment is static and
known, prior to the robot’s deployment [56, 121, 207], which is often neither
possible nor feasible [71].

For example, the environment may contain both fixed and mobile objects
whose future behavior is unknown [12], or the robot’s goal may be to map the
environment, so the layout is unknown.

Other approaches abtract away from the environment and assume that a
component has the ability to provide predicates that represent the continuous
sensor data about the robot’s environment [32, 33, 52, 190, 193].

While this encapsulates the high-level control, insulating it from the envi-
ronment, the implicit assumption of a static, known environment often re-
mains. Using models of the environment that are static and assume prior
knowledge may limit their effectiveness. However, Sotiropoulos et al.[182] ex-
amine the ability of low-fidelity environmental simulations to reproduce bugs
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that were found during field tests of the same robot. Of the 33 errors that oc-
cured during the field test, only one could not be reproduced in the low-fidelity
simulation. Perhaps similar results might be obtained with low-fidelity formal
models of a robot’s environment.

1.1.1 Probabilistic models

Probabilistic models are a popular approach to capturing dynamic and uncer-
tain environments. In[122], a Probabilistic symbolic model checker (PRISM)
model captures the environment of a domestic assistant robot. Nonrobot actors
in the environment are specified using probabilistic behaviors, to represent the
uncertainty about their behavior. The robot model is also written in PRISM,
so that it can be reasoned about within this probabilistic environment. This is
a useful step that accepts the changing nature of the environment. However,
for the model checker to explore outcomes based on a certain behavior, its
probability must be encoded into the environment model. This still leaves the
possibility of unforeseen situations having a detrimental effect on the robot’s
behavior.

Similarly, Hoffmann et al.[72] formalize a pilotless aircraft and its physical
environment using an extension of Probabilistic Finite-State Machines (PF-
SMs). They use PRISM to verify properties about their model, with the pilot-
less aircraft tasked with foraging for objects, which it must return to a drop-off
location. Their approach involves running small-scale simulations of the pilot-
less aircraft in its environment to determine the probabilities and timing values
for their formal model.

1.1.2 Hybrid models

A hybrid system is composed of a robot and dynamic obstacles in the unknown
environment. Robots make discrete control choices (e.g., compute the actuator
set values for acceleration, braking, or steering), which in turn influence their
actual physical behavior (e.g., slow down to a stop, move along a curve). Hy-
brid systems have been considered as joint models for both components, since
verification of either component alone does not capture the full behavior of a
robot and its environment.

Modeling the environment is particularly relevant for navigation, and tack-
ling collision avoidance and safe robot navigation[12, 119, 148, 154] often fea-
ture in the literature. Many navigation algorithms have been proposed for
autonomous mobile robots. Few of these algorithms, however, have been ver-
ified to ensure the safety of the robot[147]. One consequence of this situation
is that potentially superior but uncertified navigation algorithms are not de-
ployed in safety-critical applications. The Simplex architecture[171] provides
a gateway to using these unverified algorithms with the concept of advanced
controllers (ACs). ACs are used alongside a verified baseline controller (BC)
and a decision module, which chooses what controller is active. The decision
module monitors the system, and if it determines that the AC will violate one
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of the safety properties, then the BC takes control. Other work employs reach-
ability analysis to generate a maneuver automaton for collision avoidance of
road vehicles [71]. Here, differential equations model the continuous behaviour
of the system. Runtime fault monitoring is useful for catching irregular be-
haviors in running systems, but it does not ensure safety in all situations.
Mitsch et al. [119] use differential dynamic logic, designed for hybrid systems,
to describe the discrete and continuous navigation behavior of a ground robot.
Their approach uses hybrid programs for modeling a robot that follows the
dynamic window algorithm and for modeling the behavior of moving objects
in the environment. Using the hybrid theorem prover KeYmaera, Mitsch et
al. [119] verify that the robot will not collide with, and maintains a sufficient
distance from, stationary and moving obstacles. In proving these safety prop-
erties, 85 of the proof steps were carried out automatically. In further work,
Mitsch et al. [120] verify a safety property that makes less conservative driving
assumptions, allowing for imperfect sensors, and add liveness proofs to guaran-
tee progress. They extend their approach to add runtime monitors that can be
automatically synthesized from their hybrid models. They note that all models
deviate from reality, so their runtime monitors complement the offline proofs
by checking for mismatches between the verified model and the real world. For-
mal and nonformal models of the real world are prone to the problem of the
reality gap, where models produced are never close enough to the real world to
ensure successful transfer of their results[52, 206]. This is especially problem-
atic when real-world interactions can impact safety. Bridging the gap between
discrete models of behavior and the continuous nature of the real world in
a way that allows strong verification is often intractable [34]. Moreover, in a
multirobot setting one robot can be part of another’s environment [87]. There
is also a tradeoff between ensuring that the system is safe and ensuring that
it is not so restrictive that it is unusable in practice [206].

A model that combines probabilistic and hybrid approaches is needed. This
model should reconstruct the environment safely and it should update infor-
mation deriving from the environment and capable of handling unexpected
events. Localization and navigation are the key technologies of autonomous
mobile service robots, and simultaneous localization and mapping (SLAM) is
considered an essential basis for this. The main principle of SLAM is to detect
the surrounding environment through sensors on the robot, and to construct
the map of the environment while estimating the pose of the robot.

In the last decades, service robotics has reached a level of performance and
credibility that makes it appealing to the general public. Some progress has
been made in introducing autonomy, however only small individual actions
have been demonstrated. Because of this, commercial robots still rely on hard
automation, as industrial robots, or are teleoperated as surgical and under-
water robots. In critical scenarios like surgical procedures, knowledge based
approaches are the preferred way since they provide a clearer description of
the workflow. For instance, in [59] an ontology-based framework for the au-
tomation of the peg&ring task has been proposed. The main drawback was
the lack of real-time reconfiguration of the system. In fact, ontologies are much
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more used in the field of situation understanding by humans [37]. A solution to
the limitation of the ontologies can be found in non-monotonic programming,
where the planning is carried out in a more flexible way, thus the knowledge
can be updated in real-time from the sensing information. In [60] Answer Set
Programming (ASP) has been used to define the reasoning module and has
been successfully applied to an automated peg-and-ring task. The drawback of
non-monotonic programming resides in the computational complexity required
to solve a planning problem, which makes this approach often unsuitable for
real-time applications.

1.2 Autonomy in surgery

Looking into surgical applications, all robotic platforms within an operating
room primarily rely on surgeons to provide all guarantees through their ex-
perience and direct instrumental control via teleoperation. For instance, the
most advanced robotic system available today in the operating room is the
da Vinci® Surgical System, a remote teleoperation platform for minimally-
invasive surgery (MIS) that does not present any automation capability and
provides only video as feedback to the surgeon to ensure control stability under
all circumstances

A significant part of current research in Robotic-assisted Minimally Inva-
sive Surgery (R-MIS) is focussing on the development of autonomous systems
for the execution of repetitive surgical steps, such as suturing, ablation and
microscopic image scanning [40]. This would potentially help surgeons, who
could focus on the more cognitive demanding parts of the procedure, leaving
repetitive actions to the robot.

Every R-MIS system has to comply with tight requirements to be allowed
within an operating room and has to provide safe interaction for the tools
with both soft tissues and hard surfaces, such as needles, clips, and the tools
themselves. Soft-tissue surgery in non-rigid anatomical environments should
take into account hardly predictable scene changes, complicated tasks requiring
collision-free motion planning and physical interaction with the environment

A proposal for the classification of autonomy grade in a surgical system
[215], identifies five progressive levels:

� Level 0: no autonomy. The robot is fully teleoperated.
� Level 1: robot assistance. The robot provides support during teleoperation,
such as virtual fixture or assisted guidance.

� Level 2: task autonomy. The robot can perform autonomously specific task
initiated by the user, i.e. the user determines which task has to be performed
and where.

� Level 3: conditional autonomy. The robot can generate autonomously dif-
ferent strategies to perform a task an the user decides which one should
the robot apply.

� Level 4: high autonomy. The robot can take decision on the task to be
performed in the surgery but under the supervision of the user.
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Fig. 1.1: Different levels of autonomy as mapped to robotic surgery.

� Level 5: full autonomy. The robot can perform autonomously the entire
surgery.

Within this scale (reported in Figure1.1), this thesis is located at a level 2: the
system is bounded to operate reactively to the surgeon’s actions and follow
her/his lead during the operation while providing assistance to complete the
tasks.

An important step in the development of cognitive surgical architectures is
represented by the EU funded I-SUR project. It addressed the automation of
needle insertion and suturing tasks [129] by means of a dual-arm robot with
hybrid parallel/serial kinematics. The cognitive control architecture proposed
by I-SUR [152] was able to operate in either teleoperated [48] or autonomous
mode [153], guaranteeing a stable switch between the two and an adaptive
interaction with the environment in both modes [49].

The introduction of autonomy requires systems with advanced capabilities
in perception, reasoning and motion planning, together with specific methods
to handle the interaction with the physical environment. In the surgical domain
such tasks are very challenging due to the complexity of the anatomical envi-
ronment, which is patient-specific and composed of soft tissues with dynamic
behaviours.

Specifically, better medical imaging and vision techniques have significantly
improved the performance of robotic surgical systems in a range of clinical
scenarios, such as orthopaedics and neurosurgery [1]. Recently, several projects
are actively working on introducing some level of autonomy in these robotic
systems, as demonstrated by ARS (Autonomous Robotic Surgery) and SARAS
(Smart Autonomous Robotic Assistant Surgeon) projects.
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1.2.1 Autonomous Robotic Surgery (ARS)

The Autonomous Robotic Surgery (ARS) 1 project aims at making the scien-
tific advances that will enable the autonomous execution of complete proce-
dures in uncertain and partially unknown environments.

The first scientific objective of the ARS project is to fully analyze and
formally represent real surgical interventions with abstract models, integrating
a priori knowledge from textbooks with the structures identified by big data
analysis. This objective allows identifying not only the intervention details,
but also the reasoning during surgery and action motivations, by comparing
interventions done by different surgeons. Another key aspect of this objective is
environment modeling, since data will support the identification of structures
and properties of the anatomy and the creation of realistic phantoms. From
this analysis the project develops the intervention specification to be verified
during the demonstration phase.

The second scientific objective of the project isto develop methods to plan
an intervention for a specific anatomy. Task planning overcomes the combina-
torial explosion by instantiating the intervention model to the patient specific
anatomy, thus limiting the number of possible choices. However, since not all
steps can be planned in advance because of the changes occurring during the
intervention, a key aspect of this objective is on-line and reactive planning.

The third scientific objective of the project is to develop methods for the real
time control of the surgical instruments during the execution of the interven-
tion. Hybrid controller are designed to account for the discrete evolution of the
intervention and the continuous tool motions. Furthermore, since instruments
must be localized with respect to the patient anatomy, an important aspect of
this objective is the identification of the organ positions in the surgical area
and their biomechanical properties.

The fourth and most ambitious scientific objective of the ARS project is the
development of situation awareness and reasoning methods capable to handle
a real surgical intervention. The objective is to reach autonomy at the level of
sub-tasks of a surgical procedure, i.e. repetitive, yet tedious operations (e.g.,
dexterous manipulation of small objects in a constrained environment, as nee-
dle and wire for suturing). This will help reducing time of execution, hospital
costs and fatigue of surgeons during the whole procedure, while further im-
proving the recovery time for the patients. By using answer set programming
(ASP), a logic programming paradigm, for task planning (i.e., coordination of
elementary actions and motions). Logic programming allows to directly encode
surgical task knowledge, representing plan reasoning methodology rather than
a set of pre-defined plans. This solution introduces several key advantages, as
reliable human-like interpretable plan generation, real-time monitoring of the
environment and the workflow for ready adaptation and failure recovery.

The fifth and final objective of this project is to demonstrate the au-
tonomous execution of a representative surgical intervention using the daVinci
Research Kit (DVRK) setup and a patient specific physical phantom. This

1 European Research Council (ERC) Advanced Grant N. 742671 11/07/2017
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objective will first aim at improving the hardware setup and addressing the
robot safety and security. Finally, the quality of the autonomous execution is
measured, by developing specific benchmarks. The integration of these five sci-
entific objectives into a unified framework will permit the design, testing, and
validation of autonomous surgical robots that is the core of the ARS project.

1.2.2 Smart Autonomous Robotic Assistant Surgeon (SARAS)

The goal of the project 2 is to define the required technologies and to pur-
sue the development of an effective robotic substitute to the assistant surgeon
that currently works next to the patient within the operating room during
R-MIS operations. All the instruments involved are general-purpose products
for minimally invasive surgery, like scissors, graspers, clip appliers. However, to
effectively validate the SARAS concept, the project focuses on radical prosta-
tectomies, i.e. the resection of the whole prostate gland in male patients with
prostate cancer while preserving urinary continence and erectile function, and
partial or radical nefrectomies.

The project aims at developing three increasingly complex autonomous
platforms to assemble a data-driven cognitive control architecture in which
the surgeon and the robots operate seamlessly together. In the first, called
Multirobots-Surgery platform, the main surgeon controls the da Vinci® tools
from the console, whereas the assistant surgeon teleoperates standard laparo-
scopic tools mounted at the end effectors of the assistant robotic arms from a
remote control station equipped with virtual reality and haptic devices. The
assistant surgeon will perform the same actions as in standard robotic surgery,
but this time by teleoperating the tools instead of moving them manually.
The Multirobots-Surgery platform is an example of multi-master/multi-slave
(MMMS) bilateral teleoperation system, where two users cooperate on a shared
environment by means of a telerobotic setup. This setup already improves over
standard robot-assisted radical prostatectomies as the assistant surgeon con-
trols a sophisticated system that emulates standard laparoscopy tools and pro-
vides force feedbakc and virtual fixtures to the user. Moreover, the platform
allows to acquire the relevant video and kinematic data from expert operators.
In the second architecture, called the Solo-Surgery platform and the intended
case study for the work of this thesis, the assistant surgeon will be replaced by
the cognitive control architecture controlling the SARAS arms and adapting
to the operator’s actions to provide assistance. This platform is a very sophis-
ticated example of a shared-control system: a surgeon operates remotely a pair
of robotic laparoscopic tools (e.g. the da Vinci® Surgical Platform) and co-
operates with the two novel SARAS autonomous robotic arms inside a shared
environment to perform complex surgical procedures.

Finally, in the Laparo-2.0 platform, the only robot operating next to the pa-
tient is the SARAS assistant robot as the surgeon handles standard laparoscopy
instruments instead of robotic tools. The use of a single robot in the operating
room increases the challenges of controlling the collaborative robot as it intro-

2 Horizon 2020 Grant N. 779813 01/01/2018.
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duces the requirement of visual tracking for all the instruments that, otherwise,
can be achieved by exploiting the robots’ kinematics.

1.3 Thesis contribution and outline

This thesis contributes to the ambitious goal of achieving surgical autonomy.
Starting from the study of the sensors available in robotics, to the calibration of
these with the robot and finally how to reconstruct an unknown environment.
This Section has specified the evolution of autonomy in robotics, what are
the major difficulties, some proposed solutions, and projects I contributed to
during my doctorate.

This thesis focuses on three aspects that are deemed fundamental for an
autonomous surgical robot:

� sensors available in robotics, how they integrate into robotic surgery, their
use and the development of a new endoscope prototype;

� hand-eye calibration between the sensor and the robot itself, developing a
new approach with the aim of improving the accuracy of interaction with
the anatomical environment;

� 3D reconstruction of the anatomical environment, developing a new simul-
taneous localization and mapping (SLAM) algorithm.

The first contribution is the analysis of sensors that can be used in robotic
surgery. Their advantages and disadvantages motivate the need for new tech-
nology to improve the accuracy of the reconstruction of the environment. The
proposed solution is a new type of endoscope, which combine a standard stereo
camera with a Time of Flight(ToF) sensor, in order to obtain an accurate 3D
depth map at a greater distance than standard endoscopes.

The second contribution is the development of a calibration procedure which
is adaptable to all types of sensors and allows better accuracy in the workspace
than state-of-the-art procedures. The experiments for validating the first two
contributions of this thesis are performed on a benchmark training task for
surgeons and to the development of new algorithms to recognize structures
that are present in anatomical environments.

One challenge of autonomous robotic surgery is the unpredictability of the
anatomical environment and its behavior intra-operatively, depending on the
specific patient. Hence, the third contribution brings together the others works
and aims to develop a new SLAM algorithm that adapts to the anatomical
environment. Starting with the registration of the pre-operative images to the
3D reconstruction, then to distinguish dynamic features from static ones to
adapt the algorithm to a dynamic environment.

The experimental setup provided by the ARS and SARAS projects allowed
the entire system to be tested. However, the next chapters will clarify that the
generality and the applicability of the proposed methodologies in this thesis
are preserved.

The remainder of the thesis is organized as follows. First, Chapter 2 de-
scribes all the sensors we used and the endoscope we developed. This chapter
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Fig. 1.2: Organigram of the Chapters.

is useful to clarify the challenges of each type of sensor, their advantages and
disadvantages and and the need to build new technologies to increase accu-
racy in the medical field. In Chapter 3 a new hand-eye calibration procedure is
presented, while chapter 4 describes our benchmark for validating calibration
and algorithms useful for the development of autonomy in surgery. Chapter 5
describes the methods to reconstruct an unknown environment, reviewing the
state of the art of SLAM algorithms. Chapter 6 and 7 describe what modifica-
tions were necessary to use the SLAM in an anatomical environment. Finally,
Chapter 8 summarizes the results of this thesis and proposes future extensions.
Figure 1.2 presents a reading organigram of the Chapters.



2

Sensors

This chapter describes all the sensors available in a robotic system. explaining
first of all how the cameras work and then the differences between the various
sensors. Highlighting what are the strengths and weaknesses of each one up to
the new endoscope model that we developed for Robotic-assisted Minimally
Invasive Surgery (R-MIS).

2.1 Image acquisition

An imaging apparatus works by collecting the light reflected from the objects
in the scene and creating a two-dimensional image. If we want to use the image
to obtain information on the scene, we must study the nature of this process.
The most common types of cameras are shown in 2.1

(a) Monocular (b) Stereo (c) RGB-D

Fig. 2.1: Sensors available.

The simplest geometric model of image formation is the pinhole camera,
represented in figure 2.2. This is the same principle as the Renaissance dark-
room. Let M be a point of the scene, with coordinates (X, Y, Z) and let M ′

be his projection on the image plane, with coordinates (X ′, Y ′, Z ′). If f is the
distance of the projection center from the image plane (focal distance), then
from the similarity of the triangles we obtain:

−X ′

f
=

X

Z
and

−Y ′

f
=

Y

Z
(2.1)

then,



12 2 Sensors

Table 2.1: A comparison of the sensors

Sensor Advantages Drawbacks

Monocular Smallest Scale is unobservable
Lowest power consumption Scale drift

Cheapest 3D only from multi-view
Minimal calibration No mapping under pure rotations

Stereo 3D from one stereo frame More processing per frame
Extrinsic calibration

RGB-D Directly provide dense depth map Active sensor
Dense maps Only indoors

3D metric system Comples calibration
Power consumption

IMU Inter-frame motion estimation Varying sensor biases
Pitch and roll are observable Gravity must be compensated

Observability issues
Visual-inertial calibration

Synchronization

Fig. 2.2: Formation of the image in the pinhole camera.

X ′ =
−fX

Z
Y ′ =

−fY

Z
Z ′ = −f (2.2)

Note that the image is inverted with respect to the scene, both right-left than
above-below, as indicated by the minus sign. These equations define the process
of image formation that takes the name of perspective projection. We can
model the projection perspective by placing the image plane in front of the
projection center, thus eliminating the negative sign. The division by Z is
responsible for the foreshortening effect, so the size of the image of an object
varies according to its distance from the observer.

2.1.1 Lens

Vertebrate eyes, cameras and video cameras use lenses. A lens is able to collect
more light. The downside is that not the whole scene can be in focus at the same
time. The approximation we make for the system’s perspective acquisition,
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which in general is very complex, being constituted from more lenses, is that
of the thin lens. Thin lenses have the following properties:

� the rays parallel to the optical axis incident on the lens are refracted in
order to pass through a point of the optical axis called focus F .

� the rays passing through the center C of the lens are unaffected.

Fig. 2.3: Thin lens

The focus distance F from the center of the lens C is called distance focal
length D (figure 2.3). It depends on the radii of curvature of the two surfaces of
the lens and the refractive index of the constituent material. Given a point of
the scene M it is possible to graphically construct the image M ′ (or conjugate
point) using two particular rays which start from M : the beam parallel to the
optical axis, which after refraction passes through F and the radius that passes
unaltered through C (figure 2.4).

Thanks to this construction and the similarity of the triangles, we obtain
the conjugate point formula (or thin lens equation):

1

Z
+

1

Z ′ =
1

D
(2.3)

The image of a point of the scene distant Z from the lens is produced (in focus)
at a distance from the lens Z ′, which depends on the depth to Z of the point
and the focal distance D of the lens. To focus an objects at different distances,
the eye lenses change focal length deforming as the camera lenses move along
Z. Basically, the image of point M , when it is in focus, is formed on the image
plane in the same point foreseen by the pinhole model with the hole coinciding
with the center of the lens C, in fact the ray passing through C is common
to the two geometric constructions. The other light rays that leave M and are
collected by the lens serve to increase the light reachingM ′. If 2.3 is not verified
you get a blurry image of the point, that is, a circle that takes the name of
a circle of confusion. Plan image is covered by photosensitive elements which
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Fig. 2.4: Construction of the image of a point.

have one dimension small but finished. Until the circle of confusion exceeds
the dimensions of the photosensitive element the image is in focus. So, there
is a depth range for which the points are in focus. This interval is called depth
of field. The depth field is inversely proportional to the diameter of the lens.
Indeed the pinhole camera has an infinite depth of field. The light which is
collected, instead, is directly proportional to the diameter of the lens.

2.2 Monocular camera

Monocular cameras are the most common, we use them every day with our
smartphone and there are many types and resolutions.These cameras are
mainly composed of the image sensor and lens. We assume that the cam-
era can be accurately modeled as a pinhole camera, once lens distortion has
been removed, so that a 3D point Xc ∈ R3 in the camera coordinate reference
system C is projected into 2D pixel coordinates x with the projection function
πm : R3 → R2:

x = πm(Xc) =

[
fx

X
Z
+ cx

fy
Y
Z
+ cy

]
(2.4)

Xc = [X, Y, Z]T , x = [u, v]T

where fx and fy are the horizontal and vertical focal lenghts, and cx and
cy the horizontal and vertical coordinates of the principal point. These are
intrinsic calibration parameters that can be computed from several images of
a known calibration pattern. The camera coordinate system C has its origin
at the optical center and follows the standard directives for its transform: the
Z axis is looking forward, the X axis points to the right and the Y axis points
downwards. The projection function π assumes no distortion introduced by



2.4 RGB-D Camera 15

the lens. Well known software and libraries like Matlab or OpenCV include
toolboxes for camera calibration, including distortion.

2.3 Stereo camera

Stereo cameras are composed of two rigidly connected cameras. Ideally both
cameras are hardware synchronized so that image capturing is triggered at
the same time. Depth can be estimated from just one stereo frame through
the stereopsis, which is the process that allows to obtain information on the
three-dimensional structure from a pair of images, coming from two cameras
that frame a scene from different locations. The distance between both cam-
eras, known as the baseline b, along with focal length and image resolution
will determine the depth range at which depth estimation is accurate. We can
identify two subproblems: computation of correspondences and triangulation.
The first consists in the coupling between points in the two images that they
are projection of the same point of the scene. These points are called conju-
gate points. Notice the couplings between the points of the two images and
note the position reciprocal of the cameras and the intrinsic parameters of the
sensor is It is possible to reconstruct the position in the scene of the points
that are projected on the two images. This triangulation process requires the
calibration of the stereo system, or the calculation of the parameters intrinsic
and the reciprocal position (extrinsic parameters) of the cameras. In order to
facilitate stereo matching, images are typically rectified, removing distortion
and rotating them so that the epipolar lines are horizontal, i.e. the correspon-
dence of a pixel in the left image lies on the same row in the right image. The
projection function for a rectified stereo camera πs : R3 → R3:

x = πs(Xc) =

 fx
X
Z
+ cx

fy
Y
Z
+ cy

fx
X−b
Z

+ cx

 (2.5)

Xc = [X, Y, Z]T , x = [uL, vL, uR]
T

where (uL, vL) are the coordinates in the left image and uR is the horizontal
coordinate in the right image. The vertical coordinates in both images are the
same and we assume that both cameras have the same intrinsic parameters
after rectification.

2.4 RGB-D Camera

RGB-D cameras are the combination of a monocular RGB camera and a depth
sensor, based on structured light or time of flight. The measured depth can
be registered into a depth map with 1 : 1 pixel correspondences to the RGB
image, after the extrinsic calibration between the camera and the depth sensor
The main advantage of this camera is that for every pixel in the image we
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know its depth value without needing to perform a stereo matching as in the
case of the stereo camera. However, their use is restricted to indoors and the
depth range is limited.

2.5 Inertial Measurement Unit (IMU)

Inertial Measurement Units (IMU) are composed of a gyroscope that measures
the angular velocity, and an accelerometer that measures the linear accelera-
tion of the sensor. IMU provides information of self-motion while the vision
camera observes the scene, it can be used to estimate motion between cam-
era frames or to estimate the metric scale and the gravity. The IMU, whose
reference we denote with B, measures the acceleration aB and angular veloc-
ity ωB of the sensor at regular intervals ∆t. The measurements are affected
by sensor noise and by slowly varyng biases ba of the accelerometer and bg of
the gyroscope. Moreover the accelerometer is also subject to gravity gW which
must be subtracted to compute the motion. The discrete evolution in the world
reference W of the IMU orientation RWB ∈ SO(3), position WpB and velocity

WvB, ca be computed as follows:

Rk+1
WB = Rk

WBExp((ωk
B − bkg)∆t) (2.6)

Wvk+1
B =W vkB + gW∆t+Rk

WB(a
k
B − bka)∆t

Wpk+1
B =W pkB +W vkB∆t+

1

2
gW∆t2 +

1

2
Rk

WB(a
k
B − bka)∆t2

where Exp is the exponential map for 3D rotation group SO(3). The calibra-
tion between the IMU sensor and the vision is essential in order to synchronize
with the same clock and without drift. Also the extrinsic calibration is needed
to obtain the transformation TCB = [RCB|CpB] between the reference of the
camera and the IMU sensor.

2.6 Endoscope

An endoscope is a long, thin, flexible or rigid tube that has a light and camera
at one end. Images of the inside of a body are shown on a television screen.
Such a device could provide minimally invasive access to sections which are
accessible only through invasive methods. Conventional endoscopes are highly
flexibile devices for minimally invasive inspection in interior lumens and cav-
ities, such as the stomach, colon, urinary tract, respiratory tract, etc. These
medical imaging devices are available in many sizes to suit different purposes.
Different types of endoscope cameras are used for different areas of the body.
Upper endoscopes, bronchoscopes, colonoscopes, sigmoidoscopes, and many
other endoscopes are named for the areas where they are used. Endoscope
cameras are beneficial pieces of medical equipment. They are versatile enough
to be used as both diagnostic and treatment instruments. These cameras pro-
vide visual imaging as a means of replacing unnecessary or exploratory surgery.
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With the availability of several options, doctors can choose the best endoscope
for each area of the body. The introduction of the stereo endoscope has played
an important role in video 3D laparoscopy system, that provides stereo view to
the surgeon. The simple 3D endoscope consists of two complementary metal-
oxide-semiconductor (CMOS) camera modules that provide real-time stereo
view to the surgeon via the stereo viewer. This helps the Robotic Minimally
Invasive Surgery (R-MIS), which is nowadays a standard for many surgical
procedures, where it demonstrated to provide benefits over traditional laparo-
scopic or open surgery, namely patient’s safety, minimized collateral surgical
trauma and quicker recovery. Currently, all surgical robotic systems on the
market are teleoperated by a main surgeon from a remote console [30, 142,
215], while an assistant surgeon directly operates next to the patient with
laparoscopic tools. This setup helps the main surgeon in smoothing his/her
movements and increase their precision through motion scaling, while also re-
ducing both the required physical and cognitive effort to perform the operation.
On the other hand, having no direct contact with the patient visual perception
of the anatomical environment becomes a crucial point in such systems.

The next step forward in R-MIS is expected to come with an autonomous
robot that can either perform some routine operations by its own or assist the
main surgeon during an intervention [31, 50, 130, 138]. The introduction of
autonomy degrees requires systems with advanced capabilities in perception
as well as in reasoning, motion planning and physical interaction.

As of today, all the systems on the market use endoscopes equipped with
a RGB stereo pair that is able to provide a nice visual representation of the
environment by directly streaming the two channels on a 3D visualization de-
vice. This is a robust solution for teleoperated systems, with extremely limited
delay (no processing of the video streaming is required) and high visual quality.
Nevertheless, building a metric 3D reconstruction of the anatomical structures
with such an instrument is very critical for two main reasons: first, disparity es-
timation in anatomical structures is very challenging due to the poor textures
and the highly deformable nature of the bodies; second, the error in depth
estimation is inversely proportional to the baseline, which must be a small
value for mechanical constraints (i.e. limited by the diameter of the endoscope
itself). Moreover, the depth estimation error grows quadratically with the dis-
tance from the sensor, which translates in a highly variable accuracy between
the near field and the far field views [57]. Therefore, for autonomous surgical
robots the 3D reconstruction provided by traditional stereoscopic endoscopes
is not satisfactory, thus exploring new technologies is deemed of primary im-
portance.

To overcome the limitations of standard endoscopes we used two different
approaches. First approach was to integrate a RealSense sensor to the endo-
scope to provide the 3D reconstruction of the environment.

Therefore, we developed a stop-gap solution to account to this issue: we de-
signed an adapter, shown in Figure 2.6, that attaches rigidly to the da Vinci®

endoscope an “Intel RealSense®” camera. Its technical specifications are re-
ported in Table 3.1.
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Fig. 2.5: The first prototype of the depth stereo endoscope

(a) (b)

Fig. 2.6: The adapter to attach the RealSense to the da Vinci® endoscope.

The positioning of this camera via the adapter, although clearly not viable
to be used internally in its current form, allows the hand-eye calibration proce-
dure to complete successfully, thus it permits the alignment of the pre-operative
and the reconstructed 3D pointclouds. This adapter and camera configuration
allows to maintain separate the point-of-view of the point cloud reconstruction
from the stereoscopic image pair directed to the da Vinci® console. This fact
reduces the overall error since keeping the 3D camera further away from the
target reduced the overall noise and improves distance measurement. The ad-
dition of the separate camera does not hamper the scene seen by the surgeon
nor prevent the calibration procedure of the endoscope arm.

This temporary solution was adopted to test the calibration and recon-
struction algorithms while we were waiting for the manufacturing of the new
endoscope.
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Camera specifications

Resolution 1280× 720

Field of view (FOV) 91◦ × 65◦ × 100◦

Frame rate 90 fps

Baseline 50mm

Z-accuracy ≤ 2% of the working distance

Table 2.2: RealSense d435 specifications

The second approach was to develop the SARAScope, a new model of en-
doscope that combines a Time-of-Flight (ToF) sensor with a RGB stereo pair
towards a high resolution accurate depth estimation combined with color in-
formation. This multimodal acquisition allows us to build an accurate model
of the anatomical structures needed to drive the autonomous robots, while also
streaming high resolution images to the main surgeon visualization device for
teleoperation.

In the following sections we provide a brief excursus on the evolution of
3D endoscopes for MIS and the shortcomings that lead to the novel design.
Then, we present the details of the endoscope design through the mechanical,
optical, and control software specifications and the calibration procedure that
allows to combine the depth and the color information into a high-precision
3D reconstructed image. Finally, we discussed the experimental to draw some
conclusions about the potential of the prototype endoscope.

2.7 Endoscopy Evolution and Applications

The continuous development in endoscopy carries profound implications to the
betterment of care: more advanced endoscopes directly translate into better vi-
sion for the surgeons and thus to improved patient care and reduced costs [191].
In less than 20 years we moved from endoscopes based on optical fibers to con-
vey light to external analogic cameras to the most advanced market-available
endoscopes today, that are chip-on-tip digital stereoscopic endoscopes which
provide exceptional image quality in a very compact packaging. However, this
improvement brings little to no benefit to autonomous R-MIS applications, as
the reduction in endoscope’s size is actually detrimental to stereoscopic 3D
reconstruction.

Many solutions have been devised to overcome this issue, most of them
trying to eliminate the dependency to the stereoscopic camera altogether.
Mahmoud et al . [107] applies the ORB-SLAM algorithm [126] to generate
a 3D reconstruction from a high resolution monocular camera stream. The
primary issue of this technology arises in the restriction imposed to the cam-
era movement by the remote center of motion (RCM) requirement due to the
patient’s safety: this kinematic constraint prevents pure translation in the cam-
era’s point-of-view that induce additional errors in an algorithm designed for
mobile robotic platforms. The few solutions that overcome this constraint pro-
pose mechanical [90] or soft-robotics [35] flexible endoscope tips that intend to
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improve exploratory capabilities for the surgeon; unfortunately, these devices
also introduce position uncertainty in their kinematic chains.

Additional solutions to the small baseline issue in stereoscopic endoscopes
have been investigated by researchers: these include the use of trinocular vi-
sion [24], controlled aberration [214], and monocular shading [23]. These are
all passive technologies that operate at a software level, i.e. image processing,
to improve depth estimation but experimental results showed only a marginal
improvement over traditional triangulation techniques.

Within active technologies, the most studied approach in endoscopic imag-
ing is based on structured light [55, 95, 111, 170]. It consists in the projection of
a pattern by infrared laser light at low intensity that is captured by a special-
ized camera to obtain a 3D map from the deformation of the observed pattern.
Unfortunately, these deformations could interfere with reflections over the il-
luminated surfaces which greatly reduce reliability of depth estimation. At
consumer-level products, the comparison between Structured Light and Time-
of-Flight technologies presented in [15] for the Kinect® camera demonstrated
how the latter produces more precise and stable results.

The integration of visible and depth images has been explored in [85]. In
this paper the authors present a hybrid 3D endoscope that exploits the high-
resolution of a single RGB camera to estimate subpixel motion used as a cue for
super-resolution imaging. The proposed prototype is compact, but it does not
integrate stereoscopic vision and does not provide in output a 3D pointcloud.
Moreover, as acknowledged by the authors, the high computational cost for the
super-resolution makes it unfeasible in real time applications. In this work, we
exploit the depth channel as a prior and a soft-constraint for the estimation of
a 3D pointcloud directly from the stereo camera. As such, we aim at providing
the both the surgeon and autonomous reasoning algorithms with a real-time
3D reconstruction of the anatomical environment.

2.8 Time-of-Flight 3D Stereo Endoscope

In this section we present in details our novel 3D endoscope designed to improve
the view over the operating field by merging a stereoscopic camera with a
Time-of-Flight (ToF) sensor. Both these technologies have been available on
the consumer market for a long period of time, but to the best of our knowledge
this is the first time they are presented in a single package operating as a unit
in endoscopy.

We named the prototype SARAScope, and we will refer to it as such
throughout the thesis, as it has been designed within the EU-funded SARAS
project1. The SARAScope is composed of two RGB cameras rigidly coupled
with a short range ToF depth sensor. The purpose of this endoscope is to
provide a dense 3D point-cloud reconstruction of the anatomical environment
while mounted on a robotic platform that provides accurate positioning, as
well as to present an accurate 3D representation to the main surgeon oper-
ating at the da Vinci® console or wearing a virtual reality device. Standard

1 https://saras-project.eu/

https://saras-project.eu/
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ToF cameras on the market operate within a range starting from 15 cm, which
make them not directly suited for this application. Indeed, the endoscope is
usually placed by the surgeon at a working distance of about 5 to 10 cm from
the main anatomical structures of interest. Fulfilling this requirement has only
recently become possible as more compact ToF cameras started appearing on
the market with increased close-range capabilities compatible with the required
workspace constraints. In the SARAScope the stereo cameras provides the 3D
vision to the main surgeon, with the color information provided by the same
being reprojected back on the 3D reconstructed environment to achieve a setup
similar to larger, high-end ToF cameras such as the Intel® RealSense�. A first
prototype of the SARAScope is shown in Figure 2.5.

The endoscope prototype is made of an aluminium cylinder with a length
of 500mm and outer diameter of 35mm. The inner size of the endoscope is
30mm. The cylinder is waterproof and it contains the two RGB cameras, the
depth sensor and a high brightness white led. Figure 2.7 shows the CAD model
of the endoscope.

(a) (b)

Fig. 2.7: The CAD model of outer part of the endoscope and the stereo vision
system.

The whole vision system is attached to the one of the end of the body,
the RGB cameras are placed co-planar with a baseline of 21.5mm as shown
in Figure 2.8. The technical specifications of the SARAScope are reported in
Table 2.3, while the technical specifications of the vision systems forming the
endoscope are in Table 2.4.

We are aware that the outer diameter (35mm) is too large to be used in R-
MIS (even though single port surgery relies on trocar close to such diameter).
However, this is only a first prototype and we argue that it is valuable as a
proof of concept. As a future work we plan to improve the optomechanical
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design, by miniaturizing the optical components, to further reduce the outer
diameter of the endoscope to 20mm, thus making it suitable for real surgeries.

Characteristic Value

Operating temperature (◦C) 0 to 45

Nominal depth resolution (mm) ≤ 1 % (500-4000),
≤ 2 % (50-1000)

Maximum diameter (mm) 35

Length (mm) 500

Weight (g) ≤ 450

Visible bandwidth light source High brightness white LED

Depth sensor light source VCSEL Classe 1 Laser (850 nm)

Table 2.3: Technical specifications of the SARAScope

Fig. 2.8: A detailed view of the relative position of the RGB cameras and the
depth sensor.

2.8.1 Endoscope characterization

The endoscope has been characterized using a specific target, shown in Fig-
ure 2.9, composed of a set of concentric circles with radius 1.25 cm, 2.5 cm,
5 cm, 8 cm and 11 cm. These radius refers to a FoV of 28 deg2 at the distances
of 5 cm, 10 cm, 20 cm, 30 cm and 40 cm between the endoscope and the target.
Fixing the endoscope over a rail we verified the expected requirements (FoV
and working distance) at each of the fixed distances previously defined. This
analysis permits the identification of issues in the optical design of all cameras
whenever the resulting view presents distortions of the target.

These experiments, a visible representation of which is shown in Figure 2.10,
verify that the optical properties of each single camera unit are generally main-
tained with little to no observable distortion of the characterization target
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Characteristic RGB cameras Depth sensor Endoscope

Horizontal FoV 55 62×45 > 30, > 40

Working distance (mm) 70-Inf 50-4000 70-Inf

Optimal working distance (mm) 70-400 100-4000 70-400

Resolution (pixel) 1280×720 224×171 853×640,145×108

Communication interface USB 2.0 USB 3.0 -

Frame rate (full resolution) 15 FPS 45 FPS 15 FPS

Driver UVC Royale -

Table 2.4: Technical specifications of the vision systems used in the SARAS-
cope.

Fig. 2.9: Example of target used during the experimental characterization of
the endoscope.

through either the RGB or the ToF sensors. Nevertheless, the optical design
does present minimal issues in the distance characterization that require some
adjusting during the calibration phase (which is presented in Section 2.9).
Specifically, both the distances and the relative orientation of the acquired
target plane present measurements errors that can be attributed to the sensi-
tivity of the infrared sensors to the mounted lenses and mirrors that amplify
the noise in the infrared spectrum.

2.8.2 Software design

The endoscope is integrated and controlled in the SARAS platform using the
Robot Operating System2 (ROS) for which we developed a specific ROS pack-
age that provides a driver for all camera units within the sarascope that is in
charge of performing the RGB-depth alignment and publishing the coloured
point cloud. Moreover, it captures the images from the RGB cameras and
makes them ready to be provided to the main surgeon at the dVRK console 3.

2 https://www.ros.org
3 https://github.com/jhu-dvrk/sawIntuitiveResearchKit

https://www.ros.org
https://github.com/jhu-dvrk/sawIntuitiveResearchKit
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The software has been developed as two nodes that act as a foundation for
the communication with the sensors, and a node built on top the previous two
that deals with merging the information coming from the lower driver level.

The RGB driver has the task of instantiating a stream of data coming from
the camera to the PC. The stream takes place via USB serial communication
and contains the frames captured by the camera sensor. These frames are, then,
made available for reading via the standard ROS image transport interface

The node needs the following inputs:

� left id is the identification number of the serial port for the left camera;
� right id is the identification number of the serial port for the right camera;
� cam res is a string of character which indicates if we want the RGB cameras
at high or standard definition. Its value can be “HD” or “SD”;

� calib is a boolean value which indicates if the cameras are calibrated or
not;

� left config file when the calib value is true, this file contains the path to
the configuration file for the left camera. The configuration file is formatted
as yaml and collects the calibration parameters;

� right config file same as left config file, but for the right camera.

The chip-on-tip cameras embedded in the SARAS endoscope provide an
image quality comparable with the current da Vinci® albeit with a reduced
field-of-view (they operate with a pixel resolution of (1280×1024)). The Depth
Driver is the node in charge of managing the data stream from the depth sensor
to the PC. The depth sensor is also connected via standard USB.

The node takes as input the following arguments:

� exposure time which sets the depth sensor exposure time;
� exposure mode which sets the depth sensor exposure mode;
� min filter which sets the minimum distance where to filter out the points;
� max filter which sets the maximum distance where to filter out the points;

The depth driver is open-source software developed by Tom Panzarella,
written in the C++ language and can be downloaded at the prodived link 4.

2.8.3 SARAScope 3D

The SARAScope 3D node takes as inputs the frames of the RGB cameras from
the RGB Driver and the depth image from the Depth driver, and fuses those
information to create a colored point cloud.

The node uses the following parameters estimated using the calibration
procedure described in the Section 2.9:

� left displacement is the displacement between the left camera and the
depth sensor.

� left Euler is the orientation expressed as Euler angles between the left
camera and the depth sensor.

4 https://github.com/ifm/royale-ros

https://github.com/ifm/royale-ros
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� right displacement is the displacement between the right camera and the
depth sensor.

� right Euler is the orientation expressed as Euler angles between the right
camera and the depth sensor.

� cam info subscribers contains the path to the files with the extrinsic
parameters of each camera.

By using the camera matrix and the distortion model, the node projects
the pixels of the camera on the corresponding points of the point cloud. In
order to achieve good results, an accurate and robust calibration is needed.
The projection could be performed by using only one between the left or the
right camera, but, in this case, we could encounter occlusion problems. Thus,
when an object is occluded in the chosen camera, it could still be visible by
the depth camera, resulting in coloration inaccuracies. To address this issue,
we implemented a solution that merges the results from the left and the right
cameras to obtain the correct pixel coloring for the point cloud also in the event
of occlusions of a single perspective. Clearly, the problem could still occur if
the object were to occlude both the left and right camera perspectives, but
this eventuality is deemed unlikely since it implies that also the surgeon’s view
of the scene is occluded.

2.9 Calibration For Surgical Robots

The application to 3D reconstruction of the novel endoscope to surgical
robotics use cases requires to calibrate the pose of the endoscope and its re-
constructed image in a common reference frame. This calibration process is
performed in three steps: the first step involves finding the reconstructed im-
age location with respect to a known position of the endoscope (in our case,
this position is the tooltip of the endoscope); the second step operates the
extrinsics calibration between the RGB cameras and the ToF relative to the
tooltip, which allows to match the visible and infrared images; finally, the last
step is to perform a hand-eye calibration to compute the position of all robots
in the scene relative to the endoscope. The hand-eye calibration also allows to
correctly position every 3D-reconstructed anatomy within a common Cartesian
frame [162, 197].

2.9.1 Tooltip Estimation

As the current endoscope represents a proof-of-concept for future develop-
ments, it requires particular care for every measurement. The ToF camera
location estimate relative to the tooltip has been performed by placing a flat
surface perpendicular to the main axis of the endoscope (in a similar manner
to the characterization in Section 2.8) at various known distances within the
estimated workspace range (i.e. between 40 and 120 mm). We evaluated both
the distance and the orientation, the latter being the angles (in rad) of rotation
along the longitudinal and latitudinal axes, perpendicular to the main axis. We
process the data acquired by the ToF camera through RANSAC [51] to find
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the best fitting plane given the noisy raw measurements. Table 2.5 reports
the estimates of such fit with estimates on the mean and standard deviation
from the ground truth error. We, then, evaluate the distance between the ToF
camera to the tooltip by calculating the average of the difference of each of
the known distances to the three reference measurements. Primarily due to
construction inaccuracies of the prototype, the pose identification required mi-
nor adjustments to both the estimated distance plane orientation. Therefore,
we applied a simple first-order polynomial fit to the position to minimize the
error, which produced the coefficients 0.9587D + 3.3, and we used the aver-
age orientation estimation on the latitude ρ̄ = −0.15 rad and the longitude
θ̄ = −0.016 rad as the relative orientation of the endoscope to the view.

Table 2.5: Overall system accuracy evaluation (in mm and rad)

Measures @ 40mm 80mm 120mm

D̄ 64.99 105.78 141.69
max ϵ 2.57 3.83 3.42
Σ 0.59 0.89 1.04
σ2 0.46 0.65 0.76

ρ (rad) −0.17 −0.15 −0.13
θ (rad) 0.01 −0.04 −0.02

To apply the colour information to the 3D reconstruction we require the ex-
trinsics calibration of the endoscope, thus we adopted the procedure presented
by Zhang [222] We acquired from the depth sensor and from the RGB cameras
a set of images of a checkerboard with a square size of 2mm. Then we perform
the stereo calibration twice: the first time to find the transformation between
the ToF reference frame and the left camera reference frame, the second time
to find the transformation between the ToF and the right camera reference
frame. Figure 2.11 shows an example of the images used during the estimation
of the intrinsic and extrinsic camera parameters.

2.9.2 Hand-eye calibration

To find the transformation between the 3D endoscope and the common ref-
erence frame for all the robots involved in the setup, we slightly modify the
procedure described in [162]. We use the point-cloud generated by the 3D
endoscope, which is a dense point-cloud but limited by the size of the cropped
depth image. The first step of the calibration procedure consists, as before, in
the computation of the rigid transformations Tw

⋆ between the common refer-
ence frame (world) and the base frame of the arms. Instead the estimation
of the transformation T arm

endoscope between the camera reference frame and the
robot’s arm reference frame is based on the points recognition on a new cali-
bration board.

The recognition algorithm is based on the SimpleBlobDetector class of the
OpenCV library. This class implements a simple four-step algorithm to extract
blobs from an image:
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1. Convert the source image to binary images by applying thresholding with
several thresholds, from a minimum (inclusive) to a maximum (exclusive),
with distance between neighboring thresholds.

2. Extract the connected components from every binary image by finding
contours and calculate their centers.

3. Group up the centers extracted from multiple binary images by their co-
ordinates. For each image, the centers that are close enough per group are
fused into a single blob as controlled by the minimum distance between blob
parameter.

4. For each resulting blob groups, estimate the final center points of the blobs
and their radii to return them as locations and sizes of the desired keypoints.

The SimpleBlobDetector also implements several filtering techniques over
the recognized blobs:

� Color: it compares the intensity of a binary image at the center of a blob
to blobColor.

� Area: the extracted blobs have an area between minArea (inclusive) and
maxArea (exclusive).

� Circularity: the extracted blobs have circularity between minCircularity
(inclusive) and maxCircularity (exclusive).

� Ratio of the minimum inertia to maximum inertia: the extracted
blobs have this ratio between minInertiaRatio (inclusive) and maxInertia-
Ratio (exclusive).

� Convexity: the extracted blobs have convexity (area / area of blob convex
hull) between minConvexity (inclusive) and maxConvexity (exclusive).

Since the calibration board is simplified, we only need two filters: area and
circularity. Once we obtain the pixel coordinates of the three blobs in the
image plane, we can map them to the point cloud and consequently to their
poses P in the 3D space.

Once the pose set P is obtained we can proceed with the calibration proce-
dure presented in [162] to find out the best fitting plane and the final Hand-eye
calibration step. Figure 2.12 shows the qualitative results of the calibration by
touching with the instrument one of the reference points used to calibrate the
system.

2.10 Discussion and Conclusions

The calibration of the endoscope allowed to perform a required mapping pro-
cedure to correctly position the camera-wielding robot in the 3D space sur-
rounding the operational scenario. The endoscope did suffer from noisy mea-
surements that induced errors in the camera orientation and, thus in subse-
quent errors in positioning itself in the space, but the adopted procedure with
RANSAC proved robust enough for maintaining the errors manageable. This
is primarily a sign of the prototyping status of the current platform which can
clearly be refined in its overall optical geometry and materials to operate more
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precisely in the infrared spectrum adopted by the ToF sensor and emitter. Nev-
ertheless, if we perform a direct comparison to the technologies available on
the market, it is possible to find solutions that provide a higher visible image
quality, like the current da Vinci® endoscope technology offered to surgeons,
or joint ToF and stereoscopic infrared reconstruction provided by Intel Real-
Sense®. This camera represents an innovative device to combine current and
future surgical robotic applications. Being just a prototype, additional work is
required to reduce the bulky optical solution hardware and the high operation
temperatures that preclude its adoption to minimally-invasive applications.



(a) 5 cm (b) 10 cm

(c) 15 cm (d) 20 cm

(e) 30 cm (f) 40 cm

Fig. 2.10: Endoscope characterization at various working distances. The blue,
yellow and green dotted rectangles are the FoVs for the depth, left and right
camera respectively.



(a) Left camera (b) Tof sensor (c) Right camera

Fig. 2.11: An example of the images used during the calibration procedure

(a) 2D (b) 3D

Fig. 2.12: Qualitative result of the hand-eye calibration: with the instrument we
touch one of the reference points used for the calibration (a) and its respective
3D point cloud with the world reference frame obtained with the calibration
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Camera calibration for robotic surgery

Autonomy requires systems with advanced perception, reasoning and motion
planning, as highlighted in [31, 50]. Specifically, better medical imaging and
vision techniques have significantly improved the performance of robotic sur-
gical systems in a range of clinical scenarios, such as orthopaedics and neu-
rosurgery [1]. Vision systems can retrieve pre and intra operative information
from tomography (CT) [149], magnetic resonance (MR) and ultrasound to
plan toll trajectories and support surgeons’ decision making. However, image-
guided interventions require an accurate calibration to map poses of robots,
instruments and anatomy to a common reference frame.

In order for a robot to use a video camera to estimate the 3D position and
orientation of a part or object relative to its own base within the work volume,
it is necessary to know the relative position and orientation between the hand
and the robot base, between the camera and the hand, and between the object
and the camera. These three tasks require the calibration of robot, robot eye-
to-hand, and camera. These three tasks normally require large-scale nonlinear
optimization, special setup, and expert skills.

3D robotics hand/eye calibration is the task of computing the relative 3D
position and orientation between the camera and the robot gripper in an eye-
on-hand configuration, meaning that the camera is rigidly connected to the
robot gripper. The camera is either grasped by the gripper, or just fastened
to it. More specifically, this is the task of computing the relative rotation and
translation (homogeneous transformation) between two coordinate frames, one
centered at the camera lens center, and the other at the robot gripper. The
gripper coordinate frame is centered on the last link of the robot manipulator
and it must possess enough degrees of freedom so as to be able to rotate the
camera around two different axes while at the same time keeping the camera
focused on a stationary calibration object in order to resolve uniquely the full
3D geometric relationship between the camera and the gripper.

3.1 Theory of calibration

Hand-eye calibration has been widely studied within the robotics litera-
ture [173]. The most common way to describe the hand-eye calibration problem
is using the homogeneous transformation matrix as:
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AX = XB (3.1)

where A and B are known homogeneous matrices, and X is the unknown trans-
formation between the robot coordinate frame and camera coordinate frame.
For each homogeneous matrix, it is in the form of[

R t
0 1

]
(3.2)

where R is a 3×3 rotational matrix, and t is a 3×1 translational vector. Thus,
we can expand (3.1) as[

RA tA
0 1

] [
Rx tx
0 1

]
=

[
Rx tx
0 1

] [
RB tB
0 1

]
(3.3)

where RA, RX and RB are the rotational matrix parts of A,X and B, and tA, tX
and tB are the translational parts, respectively. Equation (3.3) can be further
simplified as: [

RARX RAtX + tA
0 1

]
=

[
RXRB RXtB + tX

0 1

]
(3.4)

The purpose of hand-eye calibration is to find RX and tX given j pair of Ai

and the corresponding Bi, where i = 1, 2 . . . J . The majority of the approaches
regards the rotation estimation decoupled from the translation estimation.
At least two rotations containing motions with nonparallel rotation axes are
required to solve the problem (Tsai and Lenz 1989). Several approaches have
been proposed for the estimation of RX from (3.4): using the rotation axis and
angle [175, 197], quaternions [22] and canonical representation [98].

3.1.1 State of the art

However, the first simultaneous consideration of rotation and translation in a
geometric way was presented by Chen (1991) [18], who first introduced the
screw theory in the hand-eye calibration. Daniilidis introduced the algebraic
entity for a screw: the unit dual quaternion [28].

The dual quaternions approach proves that:

� the hand-eye transformation is independent of the angle and the pitch of
the camera and hand motions, and depends only on the line parameters of
their screw axes.

� the unknown screw parameters, including both rotation and translation,
can be simultaneously recovered using the singular value decomposition
(SVD).

In R-MIS systems, where the patient-side arms are constrained by a Remote
Center of Motion (RCM), it is challenging to obtain the camera motion range
needed to guarantee an accurate calibration. Wang [204] takes advantage of this
constraint by finding a unique relationship between the endoscope and the sur-
gical tool using camera perspective projection geometry. A different approach
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is followed in [141, 224] where the instruments themselves are used as cali-
bration tools. Thus far, several closed-form solutions for 2d images have been
proposed for hand-eye calibration that use linear methods that separate rota-
tions and translations. In [175], the orientation component was derived by uti-
lizing the angle-axis formulation of rotation, then the translational component
was estimated using standard linear systems techniques. Chou and Kamel [22]
introduced quaternions to represent orientation and solved the quaternion co-
efficients as a homogeneous linear least squares problem. A closed form solution
was then derived using the generalized inverse method with singular value de-
composition analysis. Other works [99, 131, 143] used the Kronecker product to
get a homogeneous linear equation for the rotation matrix. However, separating
the rotational and translational components neglects the intrinsic correlation
between them. Working directly in 3D space is then a better solution. In [80]
the authors studied the comparison between hand-eye calibration based on 2D
and 3D images, introducing quantitative 2D and 3D error metrics to assess the
calibration accuracy. They proved that the 3D calibration approach provides
more accurate results on average but requires burdensome manual preparation
and much more computation time than 2D approaches. Kim used 3D mea-
surements at the center of markers for the hand-eye calibration [82]. Fuchs [54]
proposed a solution based on depth measurements instead of 2D images, using
a calibration plane with known position and orientation. The hand-eye cali-
bration was then obtained by estimating the best fitting calibration plane of
the measured depth values.

We propose a novel calibration method for the surgical robotic scenario
using the da Vinci® Research Kit (dVRK) and an RGB-D camera. Differ-
ently from [54], the accuracy and computational time of our method do not
depend on the placement of the calibration board within the workspace. We
perform exhaustive experimental validation on relevant use cases for surgery.
We separate the calibration of the robotic arms (two Patient-Side Manipula-
tors, PSM1 and PSM2, and an Endoscope Camera Manipulator, ECM) from
the hand-eye calibration of the camera. For both calibrations we propose a
three-step method with closed-form solution:

1. touching reference points on a custom calibration board with the end-
effectors of the surgical robot.

2. recognizing the same reference points with the RGB-D camera.
3. mapping the poses reached by the robotic arms in the first step to the 3D

points computed in the second step.

The main advantage of the proposed method is the improved accuracy in a 3D
metric space, which is increased by a factor of four with respect to the state-
of-the-art results with comparable sensors [80]. Moreover, with our method
the camera can be mounted on the moving endoscopic arm of the dVRK,
overcoming the limitations of a fixed camera.

In the following sections we describe our calibration technique and the setup
used to test our method. In Section 3.4 we describe the validation of the
proposed method by evaluating the workspace through simple kinematic tasks.
We also compare our calibration method with Tsai’s [197], which is the gold
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standard for hand-eye calibration, in two different tasks: grasping and camera
projection to 3D space. Finally we present our conclusions and plans for future
works.

3.2 Proposed method

The aim of the calibration procedure is twofold. First, we perform computation
of the rigid transformations Tw

⋆ between the common reference frame (world)
and the base frame of the arms, ⋆ ∈ {ecmb, psm1b, psm2b}. Second, we estimate
the transformation T cam

ecm between the camera reference frame and the ECM
reference frame. The resulting transformation tree is shown in Figure 3.1.

T
ecmb
w

T cam
ecm

T ecm
ecmb

T
psm1b
w

T psm1
psm1b

T
psm2b
w

T psm2
psm2b

world

camera

ECM

ECM base

PSM1 base

PSM1

PSM2 base

PSM2

Fig. 3.1: The reference frames produced by our proposed method (the axes
direction of the reference frames are only for visualisation purpose). The or-
ange transformations are known, whereas the black transformations are to be
estimated.

We use a custom calibration board, shown in Figure 3.2a, with an ArUco
marker in the center of a circumference of 50mm radius, with several reference
dots. We equipped the ECM with a 3D-printed adapter, shown in Figure 3.2b.
The adapter has a smaller tip than the ECM to guarantee precise positioning
on the dots on the board.

The procedure starts by positioning the calibration board in the robot
workspace. We choose a set of reference points P such that each point p ∈ P is
reachable by the three arms and visible from the camera. The points in P must
be symmetric with respect to the center of the board to compute the origin
of the common reference frame; at least three points are needed to estimate
the plane coefficients. The best fitting plane is characterized by the centroid
of the point set P , c, and the normal vector n. Their optimal estimations are
the solution of the optimisation problem
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x
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z

(a) Calibration pattern (b) ECM adapter

Fig. 3.2: The calibration components. a) the calibration board with the marker,
the coloured axes represents the common reference frame directions b) the
adapter for the ECM positioning.

{ĉ, n̂} = argmin
c,|n|2=1

n∑
i=1

((pi − c)Tn)2 (3.5)

As in [58] the centroid is estimated by

ĉ =
1

n

n∑
i=1

pi. (3.6)

The normal vector n is obtained by factorizing the distance matrix A with
Singular Value Decomposition (SVD)

A = USV T =
[
p1 − ĉ, . . .pn − ĉ

]
∈ R3×n (3.7)

and taking the third column of the matrix U =
[
u1 u2 u3

]
, n̂ = u3. To generate

a common reference frame for all the tools we implement the following three
main steps:

(1) Arm calibration
(2) Camera calibration
(3) Hand-eye calibration

3.2.1 Arm calibration

To find the transformation of the arms base frame with respect to the common
reference frame we record the end effector pose of the arms (PSMs and ECM
with adapter) on each point in the set P . In order to obtain the ECM effective
pose, we remove the known rigid transformation between the adapter and the
ECM. On this set we estimate the best fitting plane using (3.5). The set P
is then augmented by adding a point above the calibration board acquired by
moving the arm’s end effector. This last point is used to define the desired
plane normal direction
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nd =
pn+1 − c

|pn+1 − c|2
where pn+1 is the last point in the ordered set P , c is the centroid of P and
| ∗ |2 is the vector norm. For each arm, the homogeneous transformation Tw

⋆ of
the common reference with respect to the arm base frame is defined using the
direction versors

u = sign(n · nd)n

l = u× p1 − c

|p1 − c|2
f = l× u

and the centroid c,

Tw
⋆ =


fx lx ux cx
fy ly uy cy
fz lz uz cz
0 0 0 1


3.2.2 Camera calibration

To find the transformation Tw
cam for the RGB-D camera we first detect the

center of the ArUco marker on the board with respect to the camera frame.
Once we find a camera position that ensures good visibility and a stable pose
of the ArUco marker, we align the pose on the point cloud generated from
the depth map acquired by the RGB-D camera. We use the marker pose and
its known radius to generate the pose of every dot in the set P in the marker
reference frame, as well as the point above the calibration board that is needed
to define the desired plane normal direction.

Once the pose set P is obtained we find the best fitting plane using (3.5)
and then we build the homogeneous transformation Tw

cam between the common
reference frame to the camera base frame by adapting the previous approach
used for the arms.

3.2.3 Hand-eye calibration

The hand-eye calibration problem is formulated using the homogeneous trans-
formation matrices:

AX = XB

where A and B are known homogeneous matrices representing the frames of the
base of the robot and the camera, respectively. The unknown transformation
X is between the robot coordinate frame and the camera coordinate frame.
Given Tw

cam, we can compute X as the relative homogeneous transformation
between the end effector of the ECM and the RGB-D base frame:

T cam
ecm = T cam

w (T ecm
w )−1.
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3.3 Experimental setup

The validation of the proposed method has been carried out with the dVRK
robot shown in Figure 3.3.

Fig. 3.3: The proposed setup for calibration, with the RealSense d435, the
PSMs and the calibration pattern.

The stereo endoscope has been augmented with an Intel RealSense d435
RGB-D camera rigidly attached to the endoscope through a 3D printed adapter
as explained in the previous chapter. The camera specifications are reported
in Table 3.1. The whole calibration method has been implemented in Robot
Operating System (ROS) using the Point Cloud Library (PCL) and OpenCV.
The present setup is not compatible with a surgical scenario. However it is
well possible that in the near future small RGBD cameras could be integrated
within the endoscope.

Table 3.1: RealSense d435 specifications

Camera specifications

Resolution 1280× 720
Field of view (FOV) 91◦ × 65◦ × 100◦

Frame rate 90 fps
Baseline 50mm
Z-accuracy ≤ 2% of the working distance

3.4 Experimental results

To experimentally validate our methodology we compared our calibration with
the Tsai’s method [197] in two benchmark tests for surgical robotics:
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� Localization and grasping of small targets,
� Dual-arm manipulation

Finally we evaluated the accuracy of the projection from 2D camera image
plane to the 3D workspace.

3.4.1 Localization and grasping

In the first scenario (Figure 3.4) the two PSMs must autonomously grasp a
ring placed on the calibration board, in this case on location 2. The RGB-D

Fig. 3.4: Setup for the localization and grasping experiment. The numbers on
calibration board represents the nine locations used during the experiment.
The ring is identified by the camera and then reached by the PSMs.

camera identifies the point cloud corresponding to the ring after color and
shape segmentation, and points are transformed from the camera to the com-
mon reference frame. The ring has a diameter of 15mm, and the target point
for both PSMs is chosen as the center of the ring. The ring is placed in the 9
different locations on the board to cover the full x−y plane, as shown in Figure
3.4. The arms reach the target points ten times, and for each iteration we com-
pute the Euclidean distance between the target and the final positions of the
PSMs. In this way, we estimate the mean accuracy of our calibration procedure
on the x− y plane. The results are reported in Figure 3.5 and compared with
state-of-the-art Tsai’s calibration method [197]. It is worth mentioning that er-
rors are comprehensive of the estimated kinematic accuracy of the da Vinci®:
1.02mm on average when localizing and reaching fiducial markers [65], with a
maximum error of 2.72mm [92].



3.4 Experimental results 39

Table 3.2: A comparison of the error in the localization and grasping test

Max error Mean error Std dev
(mm) (mm) (mm)

Our method 1.07 0.53 0.15
Tsai [197] 3.17 1.83 0.33

Fig. 3.5: The measured 3D positioning errors between the robot end effector
and the grasping point

Table 3.2 shows that our method achieves significantly better accuracy
(0.53mm average error against 1.83mm with Tsai’s calibration). The error
does not depend on the location of the ring on the x− y plane.

3.4.2 Dual arm manipulation

In the second scenario (Figure 3.6) the PSMs start holding the same ring,
and they must execute simultaneous pre-computed circular trajectories with
center on the z axis of the common reference frame (45mm above the cali-
bration board) and radius r ranging from 10mm to 40mm. Circumferences
are first defined in the x − z plane of the common reference frame (normal
to the calibration board), and then replicated in planes rotated around the
z axis with a step of 10 deg. In this way we define a spherical workspace by
interpolation between the recorded trajectories. PSMs are commanded with
the transformed waypoints in their relative frames. This task validates the ac-
curacy of the transformations between the arms computed with the proposed
method. We measure the difference between the trajectories of the two PSMs,
and we consider the standard and the maximum deviations from the mean
for each radius. In absence of calibration and kinematic errors, the difference
between the trajectories would have null standard deviation. Figure 3.7 shows
the absolute error through the workspace for spheres with radii 20mm, 30mm
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Fig. 3.6: Dual arm manipulation experiment. The two arms carries a ring while
performing circular trajectories through the workspace.

and 40mm, by using the Lambert equal-area cylindrical projection [205]. In
Table 3.3 we report the errors for all the spheres. We notice that the mean
error increases with the radius of the sphere, as the PSMs move away from
the calibration plane. The standard deviation of the error increases with the
radius but remains below 0.11mm, hence the overall error does not change
significantly on the surface of the spheres. This ensures good repeatability of
motions in the whole workspace. The accuracy of our calibration method in
3D is compatible with the requirements of surgery (the mean error between
the arms is below 1mm, comparable with the known kinematic accuracy of
the da Vinci®).

Table 3.3: The positioning error between the PSM1 and PSM2 during the dual-
arm manipulation experiment

Radius Max error Mean error Std dev
(mm) (mm) (mm) (mm)

10 0.61 0.11 0.06
20 0.37 0.13 0.08
30 0.51 0.14 0.10
40 0.62 0.16 0.11

3.4.3 2D/3D projection

In the last scenario the PSM1, with a colored marker on its tip, executes
a spiral-shaped trajectory along the entire workspace. The RGB-D camera
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identifies the marker in the image plane, and the corresponding 3D point can
be computed using the depth value. The trajectory starts near the origin of the
common reference frame and then increases in radius and altitude according
to the following parametric equations

x(t) = κt cos(ωt)

y(t) = κt sin(ωt)

z(t) = κt

where ω is the constant angular speed and κ ∈ R is a time-scaling factor.
The orientation of the end effector is kept fixed towards the camera along the
trajectory. We measure the Euclidean error between the points in the trajectory
executed by the arm and the re-projected points from the camera image plane.
Figure 3.8 and Table 3.4 show that the re-projection accuracy with our method
significantly outperforms the one reached with Tsai’s. In fact, the mean error
(4.71mm) and the maximum error (11.76mm) are four and two times smaller
than the one achieved by Tsai’s method. It is important to remark that the
measured error also includes the marker detection accuracy.

Table 3.4: A comparison of the error between the marker tip trajectory and
the measured tip trajectory for the projection test

Max error Mean error Std dev
(mm) (mm) (mm)

Our method 11.76 4.71 0.89
Tsai [197] 20.85 16.41 1.21

Finally Figure 3.9 shows the re-projection of PSMs end effector position
onto the camera image plane with both calibration methods. Our method
achieves a better re-projection better of the 3D instruments.

3.5 Discussion and Conclusions

In this work we proposed a novel 3D calibration procedure for the patient-side
manipulators and the ECM of the da Vinci® surgical robot. Our procedure
exploits an RGB-D Realsense camera. We have validated our calibration pro-
cedure by evaluating the 2D/3D projection errors on two relevant use cases
for surgery localization and grasping of a small object and dual-arm manip-
ulation. Both tasks require an accurate estimation of the transformation tree
connecting the arms and the camera, to guarantee precise positioning and co-
ordination of the PSMs. In our experiments the proposed method outperforms
the state-of-the-art solution proposed by Tsai. Our method reaches an accu-
racy below 1mm on the x−y plane and in the dual arm manipulation scenario,
which is comparable with the intrinsic kinematic precision of the da Vinci®.

The main drawback of our solution is the use of a RGB-D camera, which
limits its actual application in surgery. We think that our methodology can be
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extended to a setup with a standard surgical endoscope. The main issue with
an endoscope is that the small baseline between the stereo cameras introduces
additional complexities in computing depth maps and reduces the depth range
of view. We will address this problem in our future research. Moreover, we
will develop an autonomous procedure for our calibration method, which can
significantly reduce manual errors and simplify its implementation in a surgical
setup.



(a) (b)

(c) (d)
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Fig. 3.7: Absolute error of the dual arm manipulation through the workspace.
The workspace has been projected using the Lambert equal-area cylindrical
projection, the error is reported in mm. a) the workspace surface of the sphere
with radius 10mm, b) the projected surface of the sphere with radius 10mm, c)
the workspace surface of the sphere with radius 20mm, d) the projected surface
of the sphere with radius 20mm, e) the workspace surface of the sphere with
radius 30mm, f) the projected surface of the sphere with radius 30mm, g) the
workspace surface of the sphere with radius 40mm, h) the projected surface
of the sphere with radius 40mm.
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Fig. 3.8: Spiral-shaped trajectory executed by the PSM1 with our method in
(a) and Tsai’s method in (b). The red trajectory represents the kinematics of
the PSM1, while the blue trajectory represents the marker identified in 3D
space.



(a) Our method (b) Tsai’s method

Fig. 3.9: An example of re-projection of da Vinci® surgical instruments by
using kinematic re-projection of the model directly onto camera color image.
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Prerequisites for autonomy in surgery

In the first chapters of this thesis we highlighted the importance of sensors
and theirs calibration with a robot. The computer vision is the process of
extracting information from a scene by analyzing the image. The vision sensors
allow you to measure the environment without contact and in a global way the
ever-increasing speed of computers and the improvement of image analysis
techniques allow high performance even in the case of low-cost cameras.

In this chapter we present the experiments carried out to validate the accu-
racy of the calibration and of the algorithms designed for the development of
autonomous applications in surgery performed on different scenarios, thought
of as necessary prerequisites for autonomy. The first work is a about a bench-
mark training task for surgeons, the ring transfer from Fundamentals of La-
paroscopic Surgery (FLS), consisting in placing rings on same colored pegs and
requiring coordination of multiple actions depending on dynamic environment
conditions. Other works instead address the recognition of features of objects
of interest within the intervention, such as instruments or catheters during
radical prostatectomy procedure, to trigger the state machine that represents
the intervention to move to the next state.

4.1 Peg and ring

This task replicates several challenges of real surgery and is executed with
the research version of the established surgical da Vinci robot, the da Vinci
Research Kit (dVRK). As the original da Vinci system, dVRK consists of a
patient side and a remote control side. The remote control side is equipped
with a console for an expert surgeon. Through the console, the surgeon can
tele-operate the instruments on the patient side, which consists of two cable-
driven robotic arms with 6 degrees of freedom (DOFs), each called Patient-Side
Manipulators (PSMs), and one Endoscopic Camera Manipulator (ECM) with
6 DOFs. The setup for the bimanual ring transfer task with dVRK is shown in
Figure 4.1. The task consists of placing colored rings (4 rings with colors red,
green, blue and yellow) on the same-color pegs. In standard task description
from FLS, each ring is initially placed on a grey peg, and it must be transferred
between arms of dVRK before placing on the corresponding peg. The standard
task definition hence only requires the execution of a pre-defined sequence of
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actions (moving to a ring, grasping it, transferring to the other arm and placing
on the peg) without significant variations in the workflow, except for the failure
condition when a ring may fall during the motion of a PSM.

Fig. 4.1: The setup for the ring transfer task. The red dashed line defines
reachability regions for the two arms.

In order to execute the task autonomously, the robotic system must be
equipped with sensors to deal with the dynamic scenario. Though the endo-
scopic camera could be directly used, the localization accuracy typically suffers
from the small baseline between the stereo cameras. For this reason, in the ex-
periments in this thesis a Realsense D435 RGBD camera is mounted with a
proper adapter on the fixed ECM, as explained in Chapter 2 and shown in Fig-
ure 2.6. The chosen camera has 105mm minimal depth range of view. Before
the task execution begins, the camera and the PSMs must be calibrated, in
order to define a common reference frame (from now on, referred to as world
reference frame) for localization and motion control. Then, an algorithm for
real-time object recognition is executed, to identify and localize rings and pegs.
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Fig. 4.2: Vision Algorithm.

Thanks to the calibration procedure, the poses of the robotic arms as read
from the built-in encoders of the dVRK can be easily transformed in the world
frame, and related to the poses of the point cloud returned by the camera. From
the point cloud, relevant objects in the ring transfer scenario must be identified
using an appropriate 4.2. The algorithm is based on standard methods from
the well-established Point Cloud Library. The point cloud is subsampled in
order to guarantee real-time performance. The base and the pegs are assumed
to be static during the whole execution, and they are identified only at the
beginning of the task. The poses of all rings are retrieved at each time step.
The identification of pegs and rings is performed in two steps. First, color seg-
mentation allows to identify same-colored points. Then, Euclidean clustering
allows to separate the clouds of ring and peg for each color. Finally, Random
Sample Consensus (RANSAC) [51] is used to fit a torus shape on both clusters,
and the best fitting cluster is identified as the ring, while the other as the peg.
The output of 4.2 is the point cloud of rings and pegs (Figure 4.3).

4.2 Perception module

One of the most difficult challenges is to define an architecture to be able
to perform autonomous or semi-autonomous operations. Within the SARAS
project we designed a cognitive architecture (Figure 4.4) to control a surgical
robot, which integrates pre-operative and intra-operative data, manages the
multimodal interaction with the principal surgeon and the environment.

The perception module takes care of understanding the complexity of the
surgical area, by reconstructing, labelling and tracking all its elements as ob-
served by the available sensors (i.e. videos, kinematics and forces). this was a
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great benchmark for testing calibration work and designing new technologies
and making new observations.

The core of the cognitive architecture is the supervisory controller for a sur-
gical semi-autonomous robotic platform, which uses a three-level Hierarchical
Finite State Machine (HFSM) to define all the possible behaviours of the au-
tonomous system. The transitions of the HFSM are triggered by the Observers,
a set of functions fed with the state of the system (robot kinematics, anatom-
ical structures, etc.) that output a logical description of the surgery state. We
tested the supervisory controller performing the “bladder neck incision” phase
of a Radical Prostatectomy (RARP) procedure.

The HFSM has three layers defined as: (1) Procedure, which encompasses
a complete surgical procedure and is composed of a set of surgical phases
and transitions between them; (2) Phase, which defines a complex of surgical
actions with a defined intention or objective having a clear beginning and
end; (3) Action, which defines a simple tool task with a specific objective
and defined as a set of surgemes and their interactions, i.e. the atomic actions
within a surgery that cannot be decomposed further. The medical knowledge
used to define the HFSM is provided by surgeon interviews and literature
review. The control and supervision of the procedure, phases and actions is
conducted by means of finite state machines (FSM). This methodology enables
a strict control of the status of each phase, action and surgeme executed by
each robotic tool during a procedure. The procedure is modelled as a FSM,
where each state represents a phase. Following with the decomposition, each
phase FSM contains an action FSM whose states are surgemes representing
atomic actions performed by a robot or a surgical tool.

The supervisory controller is in charge of providing commands to the robot
controller and to trigger the transitions of the HFSM. Three sub-modules com-
pose the controller: Supervisor uses the knowledge of the surgical procedure
to choose the atomic movement (i.e. surgeme); Observer converts the infor-
mation generated by the perception of the environment to the trigger events
encoded into the surgical procedure; and Dispatcher is in charge of dispatching
the surgeme execution to the lower level robot controller (i.e. the trajectory
reconfiguration and obstacle avoidance modules).

Fig. 4.3: Example of the segmentation of the blue peg and ring.
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Fig. 4.4: Cognitive architecture: Perception blocks highlighted in blue.

Label State description

s1 Move to safe position
s2 Wait until catheter is recognised
s3 Follow the catheter position
s4 Approach the grasping position
s5 Idle, wait in the grasping position
s6 Open the grasper
s7 Reach the grasping position
s8 Close the grasper
s9 Pull up the grasper
s10 Open the grasper

Label Trigger description

t1 Robot tool is in safe position
t2 Catheter has been recognised
t3 Catheter has been pulled-up
t4 Robot tool is ready to start grasping
t5 Robot tool is open
t6 Catheter is on the grasping position
t7 Robot tool is close
r1 Catheter tracking is lost
r2 Reset command by surgeon
r3 Target position not reachable

Table 4.1: Description of the surgemes and triggers generated by the Observer.

The experimental setup consists of a da Vinci® surgical robot controlled
through the da Vinci® Research Kit (dVRK), a SARAS robotic arm [139]
acting as the assistant surgeon.

s1 s2 s3

s4

t1

t2

t3

r1, r2

r1, r2

Fig. 4.5: The finite state machine of the first action (approach catheter) of the
bladder neck incision. Labels si, ri and ti are defined in Table 4.1.
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s5 s6

s7 s8 s9

s10
t4

t5r2

t6 t7

r3

t5

Fig. 4.6: The finite state machine of the second action (grasp catheter) of the
bladder neck incision. Labels si, ri and ti are defined in Table 4.1.

The HFSM used in the experiment is composed of one phase FSM and two
action FSMs shown in Fig. 4.5 (wait until the catheter is detected before moving
SARAS arm towards it) and Fig. 4.6 (grasping and pulling movements). A
detailed description of the surgemes and the transition triggers are presented
in Table 4.1.

4.2.1 Catheter recognition and tracking

Given the registration between the pre-operative data of the patient and the
reconstructed map in a common reference frame we can have an idea where
the urethra is and consequently the static areas of the anatomy. With this
hypothesis we can filter an area of interest in world space and re-project the
points p to create a “bounding box” BB in the image acquired by the endo-
scope and work with a smaller image. The next step is to recognize and to
track the catheter using the algorithm described in Algorithm 1.

Algorithm 1: Catheter Tracking
1 Data: p(n) ∈ BB of the Bounding Box, Tools
2 p′(n) ∈ BB′ ← re-projection 3D to 2D
3 for t = 1 to Inf do
4 if Initialisation then
5 Catheter recognition ← Matching
6 Feature extraction ← GoodFeatureToTrack()

7 else
8 Tracking with optical flow ← calcOpticalFlowPyrLK()
9 p′(n, t) Bounding Box update ← re-projection of the tool

10 Initialisation = false

To recognize the catheter as soon as it is visible in the image we used a
template matching technique. It is a technique for finding areas of an image
that match (i.e. similar) to a template image (patch).

Let I and T be

� Source image (I): endoscope image
� Template image (T): catheter.
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(a) (b)

(c) (d)

Fig. 4.7: The automatic catheter grasping experimental validation. a) the initial
position of the autonomous system, b) the arm starts moving to the catheter,
c) the arm approaches the grasping point, d) once the catheter is grasped the
main surgeon releases it.

We compare the template image against the source image by sliding it, moving
the patch one pixel at a time. At each location, a metric is calculated so it
represents how similar the patch is to that particular area of the source image.
For each location of T over I, the metric is stored within a matrix R. Each
location (x, y) in R contains the match metric. In our experiments we used the
following metric

R(x, y) =

∑
x′,y′(T (x

′, y′) · I(x+ x′, y + y′))√∑
x′,y′ T (x

′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
(4.1)

Once we have a match higher than a pre-defined threshold, the catheter is
found, then good features can be identified and tracked from frame to frame.

To find features we use the method proposed by Shi-Tomasi [174]. The idea
is to find the difference in intensity for a displacement of (u, v) in all directions.

E(u, v) =
∑
x,y

w(x, y)︸ ︷︷ ︸
window function

[I(x+ u, y + v)︸ ︷︷ ︸
shifted intensity

− I(x, y)︸ ︷︷ ︸
intensity

]2 (4.2)

For corner detection we have to maximize the function E(u, v), that means
we have to maximize the second term. Applying Taylor Expansion we get the
final equation as:
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E(u, v) ≈
[
u v

]
M

[
u
v

]
(4.3)

where

M =
∑
x,y

w(x, y)

[
IxIx IxIy
IxIy IyIy

]
(4.4)

Then we need to create a score to determine if a window contains a corner or
not. A scoring function is the Harris Corner Detector given by:

R = det(M)− k(trace(M))2 (4.5)

where det(M) = λ1λ2, trace(M) = λ1 + λ2, with λ1,2 the two eigenvalues of
M . Shi-Tomasi proposed

R = min(λ1, λ2) (4.6)

When its value is greater than a threshold value, it is considered a corner.

Fig. 4.8: Catheter recognition and tracking in both endoscope images

The extracted features are given to the optical flow function frame by frame
to ensure that the same points are being tracked. Optical flow assumes that the
pixel intensities of an object do not change between consecutive frames and the
neighbouring pixels have similar motion. There are many implementations of
sparse optical flow, including the Lucas–Kanade [106] method, Horn–Schunck
[73] method, and Buxton–Buxton [14] method. We used the Lucas-Kanade
method. Starting from the optical flow equation

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (4.7)

by computing the Taylor series approximation of the right-hand side, removing
common terms, and dividing by dt we get the following equation

fxu+ fyv + ft = 0 (4.8)

Lucas-Kanade method takes a 3×3 patch around the point. So all the 9 points
have the same motion. We can find (fx, fy, ft) for these 9 points. So now our
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problem becomes solving 9 equations with two unknown variables which is
over-determined. A better solution is obtained with least square fit method.
The final solution is[

u
v

]
=

[ ∑
i fxi

2 ∑
i fxi

fyi∑
i fxi

fyi
∑

i fyi
2

]−1 [−∑
i fxi

fti
−
∑

i fyifti

]
. (4.9)

The tracking procedure starts when the tool grasps the catheter: then the
bounding box is updated continuously following the instrument within the
video stream. The position and the velocity of the catheter are projected in
3D (using the depth map of the RGBD camera) providing to the supervisory
controller the odometry of the grasping point.

The proposed method, as shown in Fig. 4.7, is able to accomplish the
catheter detection and grasping autonomously. Fig. 4.7a shows the robot in the
initial position, corresponding to the state s1 of the FSM of Fig. 4.5. When the
vision module recognises the catheter, the SARAS tool reaches the approach
grasping position (s4) provided by the features in the 3D system space, as
shown in Fig. 4.7b. The surgeon extracts the catheter with the da Vinci® arm
(PSM) and pulls it up to the desired position, triggering the transition from
state s5 and s6. Therefore, the SARAS tool starts moving towards the grasping
point and can proceed with the grasping action shown in Fig. 4.7c. After that,
the SARAS arm pulls the catheter autonomously as shown in Fig. 4.7d.

4.3 Instrument Tracking

The real-time knowledge of the pose of surgical tools with respect to the endo-
scope and to the underlying anatomy is of paramount importance in computer-
assisted systems. Different approaches for instrumental localisation have been
investigated including electro-magnetic (EM) [53, 93] and optical tracking [43],
robot kinematics [160] and image-based tracking in endoscopic images, ultra-
sound (US) [76] and fluoroscopy [209]. Image-based approaches are highly at-
tractive because they do not require modification to the instrument design or
the operating theatre and they can provide positional and motion informa-
tion directly within the coordinate frame of the images used by the surgeon
to operate. A major challenge for image-based techniques is robustness and in
particular to the diverse range of surgical specialisations and conditions that
may affect image quality and visibility.

In computer vision, the detection of any object can be described quite gen-
erally as a parameter estimation problem over a set of image features. In gen-
eral there are three strategies that have been used to solve the problem. The
first two fit within a more holistic modelling paradigm and are separated into
discriminative methods using discrete classification and generative methods
which aim to regress the desired parameters in a continuous space. The third
strategy encompasses ad-hoc methods that rely on empirical combinations of
simple models for detection. The first step to perform an object detection
consists on compressing the image data into a manageable, low dimensional
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representation in the form of features. The second step is to add prior knowl-
edge and details to increase the detection results. The strategies we evaluated
for the detection of surgical instruments are based on five discriminative se-
lections, namely Feature Representation, Color, Gradient, Texture, and Shape.
In addition to these, the system relies also on the real-time semantic segmen-
tation of the anatomical structures in the scene, which provides the location
of the deformable organs along with a less refined segmentation of the robots’
tools. The combined semantic and discriminative tool detection systems gen-
erate very accurate localization and characterization of them, which, in turns,
unlocks the adaptation of advanced trajectory planning algorithms.

4.3.1 Feature representation

Features computed over the input images and aggregated into specific repre-
sentations serve as a basis for object-specific model learning and classification.
The selection of sufficiently distinguishable natural features is a challenging
aspect for any detection system. One of the most common approaches is to
combine different features to provide a potentially more discriminative feature
space; unfortunately, this requires more computational power and increases
the size of the required training set. In Pezzementi et al. [146], the authors
relied on one of the most popular existing strategies: the Linear Discriminant
Analysis (LDA) [113].

4.3.2 Color

The most common and widespread of the natural features is color. Nearly all
of the existing methods for detecting surgical instruments in images use color
information as the primary or sole visual aid due to its ease of computation
and simplicity. Nevertheless, it is challenging when we need to cope with vi-
sual ambiguities created by shadows and by different lighting conditions. The
RGB colorspace was initially investigated for tool detection as part of the
framework developed by Lee at al [97] in a MIS surgical context. It has been
directly used in [112, 158, 189, 228]. RGB is an additive color model. It means
that different proportions of red, blue and green light can be used to produce
any color. The RGB color model was created specifically for display purposes
and often has been supplanted by the HSV or HSL colorspace, which are more
representative [39, 183]. These colorspaces offer a separation between the chro-
maticity and the luminance component. By decoupling luminosity from other
components, more robust results can be obtained against lighting changes. The
CIELab color space, which is closely modelled on human visual perception, al-
lows a wider range of possible colors than RGB, but each channel is described
by more than 8 bits, which means longer process time [3]. While being rela-
tively simple to compute, color features have significant shortcomings. Despite
the obvious dissimilarity between the red hues of tissue and the monochro-
maticity of instruments, the lighting used in medical environments combined
with the smooth tissue surface causes large specular reflections disrupting the
white and grey appearance of metallic instruments. This leads to particular
challenges when classifying the instruments using color alone.
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4.3.3 Gradient

Gradients is the second most popular feature. Typically, gradients are gener-
ated from color image for example from intensity values or specific colorspace
component (e.g. Saturation). Gradient features can be extracted either through
the computation of image derivatives along x− and y−axis [211] or by per-
forming Sobel filtering [64]. However, such information are not used alone but
they are often the inputs to other more sophisticated functions (e.g. Hough
transform). A more robust representation of gradients is the Histograms of
Oriented Gradients (HOG) [27]. Typically, not all the orientations, or oriented
gradients, are represented but rather a discrete number corresponding to the
amount of bins of the histogram [11]. Variants of the HOG framework have
been preferred in other studies through the use of edges and dominant ori-
entations [160, 188]. In general, those feature representations are useful for
describing the oriented edges and corners but suffer heavily from noise which
is common in medical images.

4.3.4 Texture

More robust representations of gradient features can be achieved by extract-
ing texture information which can be defined as periodically repeated local
patterns in an image. Originally, texture features have been extracted using
filter responses for example through Gabor filtering, via textons [109] or Lo-
cal Binary Patterns (LBP) [137]. A popular strategy for object detection lies
in interest points detection since the emergence of the highly successful SIFT
features [105], which has spawned numerous other attemps [4, 7, 27]. All of
them are based on the principle that creating histograms of gradient orien-
tation around a particular keypoint allows it to be correctly matched when
viewed from a different viewpoint. Despite the popularity of these methods in
other areas of computer vision, they have not been used extensively in the task
of surgical instrument detection. One particularly successful attempt has been
made by Reiter et al. [159], making use of SIFT features learned around the
tip of da Vinci robotic instruments.

4.3.5 Shape

Amongst the least represented categories, surgical tool detectors can utilize
shape features, generally represented as a set of numbers produced to describe
a given shape. Different approach types can be followed such as region-based,
space-domain, and transform-domain shape features [217]. Region moments,
for instance Hu invariant moments, are very popular amongst region-based
shape features. In Voros et al. [200] authors relied on the Otsu’s thresholding
technique to identify the tool-tip location by finding the optimal separation
between instrument and background pixels by computing zeroth-, first-, and
second-order cumulative moments. Region moments are mathematically for-
mulated to offer invariance under translation, scale, and rotation for an aver-
age computational complexity. However, they provide a very limited robust-
ness towards noise, occlusion or non-rigid deformation, for a highly redundant
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information extracted. Within transform-domain shape features, Fourier de-
scriptors have been previously used in Doignon et al. [38] to enable better
classification of regions as instrument or background. As their color-based seg-
mentation methods produce several outliers, they are forced to incorporate the
shape of the region as part of their evaluation. Fourier descriptors describe the
boundary of a region by computing a Fourier component for each pixel in the
boundary. Exploiting the properties of the Fourier transform, this descriptor
can be shown to be invariant to rotation, translation, scaling and origin. By
extracting the outer contour of a region detected by a color classifier and tak-
ing the Euclidean distance between the region’s Fourier descriptors, the most
similar shape in the image is taken as the one with the minimal distance.
The authors also combine the Fourier descriptors with affine invariant region
moments to improve the robustness of their region detection, again using the
Euclidean distance between the moments.

4.3.6 Proposed method

The proposed method is based on a discriminant color feature with robustness
capabilities with respect to intensity variations and specularities. It uses color
and feature approaches to fit the instrument model. The RGB space is the most
well-known color representation since it is useful for data storage. However,
some color image processings such as enhancement and restoration require
that only the luminance component (as the amount of visible light) to be
processed whereas some other applications require color (hue and saturation)
components to be preserved or modified. It is known that the human eye can
detect only in the neighborhood of one or two dozen intensity levels at any
point in a complex image due to brightness adaptation, but it can differentiate
thousands of color shades and intensities. The color saturation seems to be a
discriminant attribute for gray regions segmentation since it is a measure of
the amount of white within the color despite that it maybe affected by surface
reflectance . A low saturation value indicates a low colored pixel and a high
value corresponds to a purely colored pixel. Coordinate systems related to the
psychological perceptual attributes (Hue, Saturation and Intensity—HSI for
short) are more relevant for analyzing colors distribution in the image than
RGB since the chromaticity plane (H and S) is perpendicular to the intensity
axis and furthermore, RGB space brings a non-uniform chromaticity scale.
The standard saturation S related with RGB is obtained from the following
equation:

S = 1− 3
min(R,G,B)

R +G+B
. (4.10)

This definition clearly shows that pixels may have the same saturation what-
ever their brightness or color hue values are (excepted for the singularity lo-
cated at (R = G = B = 0). With the objective of improving the detection of
“dark” regions in the image, we slightly modify the above definition of satu-
ration S ′ as follows:

S ′ = 1− min(R,G,B)

max(R +G+B)
. (4.11)
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This can be thought as a color purity stretching with a simple non-linear point
operation. Compared to the saturation attribute defined in (4.10), this new
color purity attribute is a little bit more sensitive to brightness changes but
mainly for chromatic pixels. Since S ′ rather affects more high values than low
values, it tends to separate more chromatic pixels from achromatic ones. With
this new definition of saturation it is easier to apply a simple color segmentation
on the image to achieve good results. Once we get the color mask, we can filter
out the noise. Noise filtering is commonly used as one of the first operations
applied to digitized images. Non-linear filtering allows to detect lack of spatial
coherence and either replace an inconsistent pixel value by using some or all
pixels in a neighborhood. Such low-level processing is crucial to avoid over-
segmentation results which are very awkward for pixels classification. Some of
non-linear filters have the capabilities to smooth intensity values of pixels in a
given region and to equally preserve the topological properties of edges. The
homogeneity plays a significant role in separating the objects from each other,
usually in separating the region of interest from the background and a very
attractive color segmentation based on homogeneity histogram. Once we have a
first instrument segmentation mask, we refine the output through morphology.
Morphological transformations are some simple operations based on the image
shape. It is normally performed on binary images. It needs two inputs, the first
one is the original image, the second one is called structuring element or kernel
which decides the nature of operation. Two basic morphological operators are
erosion and dilation. The operations we used are called Opening and Closing.
The opening is the erosion followed by dilation: it is useful for removing noise.
The closing operation is the dilation followed by erosion which is useful in
closing small holes inside the foreground objects, or small black points on the
object.

To increase the detection and perform the tracking of the instruments during
the procedure, we run a feature extractor in the image and select only the
features that belong to the segmented mask in the previous step. The extracted
features are given to the optical flow function frame by frame to ensure that the
same points are being tracked. Optical flow assumes that the pixel intensities
of an object do not change between consecutive frames and the neighbouring
pixels have similar motion.

Once we have the instrument mask on the whole procedure (Figure 4.9),
we can compute the corresponding 3D point-cloud using the depth value.

4.4 Discussion and Conclusions

This chapter has reviewed and discussed the experiments for validating the
accuracy of the calibration and algorithms designed for the development of
autonomous applications in surgery. We have shown how the methods devel-
oped so far can be applied to synthetic environments, i.e. the peg and ring test,
and to clinically relevant cases, i.e. a segment of a radical prostatectomy inter-
vention. Different scenarios have been evaluated as prerequisites for autonomy
and various techniques to manage the anatomical environment.
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(a) (b)

Fig. 4.9: A frame acquired during one of the phases of the radical prostatectomy
procedure: (a) shows the RGB image; (b) shows the segmented mask of the
frame

However, if the cases examined in the examples are relevant to the clinical
practice, they are not general enough to include biological motions and the
variability of the anatomy due to an intervention. In the next chapters we will
combine these techniques in a method to be able to reconstruct a more realistic
anatomical environment and interact with it.



5

Simultaneous localization and mapping

This chapter reviews the state of the art in Simultaneous Localization and
Mapping algorithms to obtain the 3D structure of an unknown environment.
In order to clarify the differences between the various approaches, how they
can be adapted in laparoscopy and to motivate the final choice we made.

Fig. 5.1: Example of laparoscopic intervention

5.1 3D reconstruction in surgery

Today, numerous diseases are diagnosed or treated using interventional tech-
niques to access the internal anatomy of the patient. While open surgery in-
volves cutting the skin and dividing the underlying tissues to gain direct access
to the surgical target, minimally invasive surgery (MIS) is performed through
small incisions in order to reduce surgical trauma and morbidity. The term la-
paroscopic surgery refers to MIS performed in the abdominal or pelvic cavities.
The abdomen is usually insufflated with gas to create a working volume (pneu-
moperitoneum) into which surgical instruments can be inserted via ports, as
shown in Figure 5.1. As direct viewing of the surgical target is not possible,
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an endoscopic camera (laparoscope) generates views of the anatomical struc-
tures and of the surgical instruments. In contrast to open surgical procedures,
MIS provides the surgeon with a restricted, smaller view of the surgical field,
which can be difficult to navigate for surgeons only trained in open surgery
techniques. To compound the visual complexity of MIS, laparoscopic instru-
ments are operated under difficult hand-eye ergonomics and usually provide
only four degrees of freedom (DoF) which severely inhibits the dexterity of
tissue manipulation.

Minimally Invasive Surgery (MIS) is an indispensable tool in modern
surgery for the ability of mitigating postoperative infections, but it also nar-
rows the surgical field of view and makes surgeons receive less information.
MIS has introduced significant challenges to surgeons as they are required to
perform the procedures in narrow space with elongated tools without direct
3D vision. To solve this problem, 3D laparoscopy is applied to provide two im-
ages to create an ’imagined 3D model’ for surgeons. Inspired by the fact that
stereo vision can generate shapes for qualitative and quantitative purpose, a
mosaic of all the 3D shape by taking account deformation will make better use
of 3D information. Therefore, it is helpful if a dynamic 3D morphology could
be incrementally generated and rendered for the surgeons intra-operatively
and for future autonomous surgical robots for implementing surgical oper-
ation and navigation [218]. However, the small field of view of the scopes
and the deformation of the soft-tissue limit the feasibility of using traditional
structure-from-motion and image mosaicking methods. Even worse, rigid and
non-rigid movement caused by motion of camera pose, breathing, heartbeat
and instrument interaction increase difficulty in soft-tissue reconstruction and
visualization.

(a) GMapping (b) ORB-SLAM

Fig. 5.2: Example of SLAM algorithms

Simultaneous Localization and Mapping (SLAM) [42] [192] is a technique
used to obtain the 3D structure and for estimating sensor motion of an un-
known environment (Figure 5.2). This technique was originally proposed to
achieve autonomous control of moving robots in static and rigid environments.
Then, SLAM-based applications have widely become broadened such as com-
puter vision-based online 3D modeling, augmented reality (AR)-based visual-
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ization, and self-driving cars [74] [75]. In early SLAM algorithms, many dif-
ferent types of sensors were integrated such as laser range sensors, rotary en-
coders, inertial sensors, GPS, and cameras. Usually, SLAM using cameras is
referred to as visual SLAM (vSLAM) because it is based on visual information
only. vSLAM can be used as a fundamental technology for various types of
applications

SLAM systems have a state xt = (ct,M1, ...,Mn) which describes the cam-
era pose ct = (t, R), consisting of a translation vector t and a rotation matrix
R and a set of n 3D landmarks Mi = (x, y, z) which describe the 3D structure
of the environment at time t. The live camera images are processed individ-
ually to update the state of the system. At each frame, a new camera pose
is estimated, existing landmarks are re-observed and new 3D landmarks are
added to the state. The computational complexity of SLAM is dictated by the
size of the state (i.e. the number of landmarks) and not the number of images
(as in Structure from Motion [198]). This formulation of the problem makes
it computationally feasible to sequentially estimate the camera pose and 3D
structure in real time.

Modeling image noise and uncertainty is a fundamental component of
SLAM. Sequentially updating the state with noisy observations of landmarks
would lead to error propagation and an inconsistent state. Uncertainty in the
state is modeled by a full covariance matrix. The state and covariance ma-
trix are managed and updated using a probabilistic framework where the joint
posterior density of the 3D landmarks and the camera pose is described by
the probability distribution P (xt|Z0 : t, U0 : t, x0) given the observations Zi

of visible landmarks and any control inputs Ui from position sensors on the
camera (e.g. accelerometer) motion model. Motion models comprise a deter-
ministic and a stochastic element. The deterministic part is a prediction based
on a sensor measurement (e.g. Inertial Measurement Unit (IMU)) or on pre-
vious history of camera motion. The stochastic part is a probabilistic model
of the uncertainty in the predicted motion, which may be derived experimen-
tally. Given the predicted new pose of the camera it is possible to project the
3D landmarks into the image in preparation for the measurement and update
steps. The measurement or observation step solves the association problem by
establishing correspondence between 3D landmarks and features in the image
space. In vision SLAM systems, the 3D landmarks may be associated to an
image patch or template. Matching the template in the image provides new
measurements of the location of the 3D landmarks relative to the camera. The
measurement can be made in the image space for monocular cameras or in 3D
for stereo cameras and RGBD sensors. A measurement model is defined which
relates the measurement to the state. Finally, the state is updated using the
predicted model, measurement model and the observed measurements of the
3D landmarks. A wide variety of solutions to the SLAM problem have been
proposed [5].

Therefore, the existing vSLAM algorithms we studied are shown in the
table 5.1 and are categorized according to feature-based, direct, and RGB-D
camera-based approaches.
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Algorithm Method Map density Optimization Loop Closure

MonoSLAM [29]. Feature Sparse no no
PTAM [83] Feature Sparse yes no
ORB-SLAM [127] Feature Sparse yes yes

DTAM [133] Direct Dense no no
LSD-SLAM [45] Direct Semi-dense yes yes

RGB-D Slam [44] RGB-D Dense yes yes
Kinect Fusion [78] RGB-D Dense yes yes
SLAM++ [168] RGB-D Dense yes yes

Table 5.1: List of state-of-the-art algorithms for each type of SLAM

5.2 Elements of vSLAM

The framework is mainly composed of three modules as follows.

� Initialization
� Tracking
� Mapping

To start vSLAM, it is necessary to define a certain coordinate system for
camera pose estimation and 3D reconstruction in an unknown environment.
Therefore, in the initialization, the global coordinate system should first be
defined, and a part of the environment is reconstructed as an initial map in
the global coordinate system. After the initialization, tracking and mapping
are performed to continuously estimate camera poses. In the tracking, the
reconstructed map is tracked in the image to estimate the camera pose of the
image with respect to the map.

In order to do this, 2D-3D correspondences between the image and the
map are first obtained from feature matching or feature tracking in the image.
Then, the camera pose is computed from the correspondences by solving the
Perspective-n-Point (PnP) [157] [135] problem. It should be noted that most
of vSLAM algorithms assumes that intrinsic camera parameters are calibrated
beforehand so that they are known. Therefore, a camera pose is normally
equivalent to extrinsic camera parameters with translation and rotation of the
camera in the global coordinate system. In the mapping, the map is expanded
by computing the 3D structure of an environment when the camera observes
unknown regions where the mapping is not performed before.

The following two additional modules are also included in vSLAM algo-
rithms according to the purposes of applications.

� Relocalization
� Global map optimization

The relocalization is required when tracking fails due to fast camera motion
or disturbances. In this case, it is necessary to compute the camera pose with
respect to the map again. Therefore, this process is called “relocalization.” If
the relocalization is not incorporated into vSLAM systems, the systems do
not work anymore after the tracking is lost and such systems are not practi-
cally useful. Therefore, a fast and efficient method for the relocalization has
been discussed in the literature. Note that this is also referred to as kidnapped



5.2 Elements of vSLAM 65

robot problems in robotics. The other module is global map optimization [89].
The map generally includes accumulative estimation error according to the
distance of camera movement. In order to suppress the error, the global map
optimization is normally performed. In this process, the map is refined by con-
sidering the consistency of whole map information. When a map is revisited
such that a starting region is captured again after some camera movement, ref-
erence information that represents the accumulative error from the beginning
to the present can be computed. Then, a loop constraint from the reference
information is used as a constraint to suppress the error in the global opti-
mization. Loop closing is a technique to acquire the reference information. In
the loop closing, a closed loop is first searched by matching a current image
with previously acquired images. If the loop is detected, it means that the
camera captures one of previously observed views. In this case, the accumula-
tive error occurred during camera movement can be estimated. Note that the
closed-loop detection procedure can be done by using the same techniques as
re-localization. Basically, re-localization is done for recovering a camera pose
and loop detection is done for obtaining geometrically consistent map. Pose-
graph optimization has widely been used to suppress the accumulated error
by optimizing camera poses. In this method, the relationship between camera
poses is represented as a graph and the consistent graph is built to suppress the
error in the optimization. Bundle adjustment (BA) [196] is also used to min-
imize the re-projection error of the map by optimizing both the map and the
camera poses. In large environments, this optimization procedure is employed
to minimize estimation errors efficiently. In small environments, BA may be
performed without loop closing because the accumulated error is small.

5.2.1 Feature-based methods

Fig. 5.3: Timeline of feature based methods

There exist two types of feature-based methods in the literature: filter-based
and BA-based methods.

First monocular vSLAM was developed in 2003 by Davison et al. They
named it MonoSLAM [29]. MonoSLAM is considered as a representative
method in filter-based vSLAM algorithms. In MonoSLAM, camera motion and
3D structure of an unknown environment are simultaneously estimated using
an extended Kalman filter (EKF) [161]. 6 Degree of freedom (DoF) camera
motion and 3D positions of feature points are represented as a state vector in
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EKF. Uniform motion is assumed in a prediction model, and a result of fea-
ture point tracking is used as observation. Depending on camera movement,
new feature points are added to the state vector. Note that the initial map
is created by observing a known object where a global coordinate system is
defined. In summary, MonoSLAM is composed of the following components.

� Map initialization is done by using a known object.
� Camera motion and 3D positions of feature points are estimated using EKF.

The problem of this method is a computational cost that increases in propor-
tion to the size of an environment. In large environments, the size of a state
vector becomes large because the number of feature points is large. In this
case, it is difficult to achieve real-time computation.

To solve the problem of reducing the computational cost in MonoSLAM,
PTAM [83] split the tracking and the mapping into different threads on CPU.
These two threads are executed in parallel so that the computational cost of
the mapping does not affect the tracking. As a result, BA [196] that has a
significant computational cost due to its optimization part, can be used in
the mapping. This means that the tracking estimates camera motion in real-
time, and the mapping estimates accurate 3D positions of feature points with
a lower computational cost. PTAM is the first method which incorporates BA
into the real-time vSLAM algorithms. After publishing PTAM, most vSLAM
algorithms follow this type of multi-threading approaches. In PTAM, the initial
map is reconstructed using the five-point algorithm. In the tracking, mapped
points are projected onto an image to make 2D–3D correspondences using tex-
ture matching. From the correspondences, camera poses can be computed. In
the mapping, 3D positions of new feature points are computed using triangu-
lation at certain frames called keyframes. One of the significant contributions
of PTAM is to introduce this keyframe-based mapping in vSLAM. An input
frame is selected as a keyframe when a large disparity between an input frame
and one of the keyframes is measured. A large disparity is basically required
for accurate triangulation. In contrast to MonoSLAM, 3D coordinates of fea-
ture points are optimized using global BA with some keyframes and global
BA with all keyframes with the map. Also, in the tracking process, the newer
vision of PTAM employs a relocalization algorithm. It uses a randomized tree-
based feature classifier for searching the nearest keyframe of an input frame.
In summary, PTAM is composed of the following four components.

� Map initialization is done by the five-point algorithm [134].
� Camera poses are estimated from matched feature points between map
points and the input image.

� 3D positions of feature points are estimated by triangulation, and estimated
3D positions are optimized by BA.

� The tracking process is recovered by a randomized tree-based searching.

Compared to MonoSLAM, in PTAM, the system can handle thousands of
feature points by splitting the tracking and the mapping into different threads
on CPU. There have been proposed many extended PTAM algorithms. Castle
et al. developed a multiple map version of PTAM. Klein et al. [84] developed
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a mobile phone version of PTAM. In order to run PTAM on mobile phones,
input image resolution, map points, and number of keyframes are reduced.
In addition, they consider rolling shutter distortion in BA to get an accurate
estimation result because a rolling shutter is normally installed in most mobile
phone cameras due to its low cost. Since PTAM can reconstruct a sparse 3D
structure of the environment only, the third thread can be used to reconstruct
a dense 3D structure of the environment.

Geometric consistency of the whole map is maintained by using BA for the
keyframes as explained above. However, in general, BA suffers from a local
minimum problem due to the large number of parameters including camera
poses of the keyframes and points in the map. Pose-graph optimization is
a solution to avoid the problem in the loop closing, camera poses are first
optimized using the loop constraint. After optimizing the camera poses, BA
is performed to optimize both 3D positions of feature points and the camera
poses. For the loop closing, a visual information-based approach is employed.
They used a bag-of-words-based image retrieval technique to detect one of the
keyframes which view is similar with the current view. In a vSLAM system,
a stereo camera is selected as a vision sensor. In this case, the scale of the
coordinate system is fixed and known. However, in monocular vSLAM cases,
there is a scale ambiguity and a scale may change during camera movement if
global BA is not performed. In this case, a scale drift problem occurs and the
scale of the coordinate system at each frame may not be consistent. In order to
correct the scale drift, camera poses should be optimized in 7 DoF. Strasdat et
al. proposed a method for optimizing 7 DoF camera poses based on similarity
transformation. As an extension of PTAM, ORB-SLAM [127] includes BA,
vision-based closed-loop detection, and 7 DoF pose- graph optimization. As
far as we know, ORB-SLAM is the most complete feature-based monocular
vSLAM system. ORB-SLAM is also extended to stereo vSLAM and RGB-D
vSLAM.

5.2.2 Direct methods

In contrast to feature-based methods described in the previous section, direct
methods use an input image without any abstraction derived from handcrafted
feature detectors and descriptors. They are also called feature-less approaches.
In general, photometric consistency is used as an error measurement in direct
methods whereas geometric consistency such as positions of feature points
in an image is used in feature-based methods. LSD-SLAM [45] is a leading
method in direct methods. The core idea of LSD-SLAM follows the idea from
semi- dense Visual Odometry (VO). In this method, reconstruction targets are
limited to areas which have intensity gradient compared to DTAM [133] which
reconstructs full areas. This means that it ignores textureless areas because it is
difficult to estimate accurate depth information from images. In the mapping,
random values are first set as initial depth values for each pixels, and then,
these values are optimized based on photometric consistency. Since this method
does not consider the geometric consistency of the whole map, this method is
called visual odometry. In 2014, semi-dense VO was extended to LSD- SLAM.
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In LSD-SLAM, loop-closure detection and 7 DoF pose-graph optimization are
added to the semi-dense visual odometry algorithm. In summary, LSD-SLAM
is composed of the following four components.

� Random values are set as an initial depth value for each pixel.
� Camera motion is estimated by synthetic view generation from the recon-
structed map.

� Reconstructed areas are limited to high-intensity gradient areas.
� 7 DoF pose-graph optimization is employed to obtain geometrically consis-
tent map.

Basically, these semi-dense approaches can achieve real-time processing with
CPU. In addition, they optimized the LSD-SLAM algorithm for mobile phones
by considering the CPU architecture for them. In the literature, is also evalu-
ated the accuracy of the LSD-SLAM algorithm for low-resolution input images
and is also extended to stereo cameras and omni-directional cameras

5.2.3 RGB-D methods

Recently, structured light-based RGB-D cameras such as Microsoft Kinect or
Intel RealSense become economic and small. Since such cameras provide 3D
information in real-time, these cameras are also used in vSLAM algorithms.
By using RGB-D cameras, 3D structure of the environment with its texture
information can be obtained directly. In addition, in contrast to monocular
vSLAM algorithms, the scale of the coordinate system is known because 3D
structure can be acquired in the metric space. The basic framework of depth
(D)-based vSLAM is as follows. An iterative closest point (ICP) algorithm
have widely been used to estimate camera motion. Then, the 3D structure of
the environment is reconstructed by combining multiple depth maps. In order
to incorporate RGB into depth-based vSLAM, many approaches had been
proposed as explained below. It should be noted that most of consumer depth
cameras are developed for indoor usages. They project IR patterns into an
environment to measure the depth information. It is difficult to detect emitted
IR patterns in outdoor environments. In addition, there is a limitation of a
range of depth measurement such that the RGB-D sensors can capture the
environment.

Salas-Moreno et al. [168] proposed an object level RGB-D vSLAM algo-
rithm. In this method, several 3D objects are registered into the database in
advance, and these objects are recognized in an online process. By recognizing
3D objects, the estimated map is refined, and 3D points are replaced by 3D ob-
jects to reduce the amount of data. Similar algorithm, is proposed in Tateno et
al. consisting of a real- time segmentation method for RGB-D SLAM [44]. Seg-
mented objects are labeled, and then, these objects can be used as recognition
targets.
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5.3 Application to laparoscopy

In MIS, SLAM approaches can be used to localize the pose of the endoscopic
camera and build a 3D model of the tissue surface in vivo while the endoscope is
navigated by the surgeon. The in vivo organ model can be used for registration
to a pre-operative model. A fundamental component of Augmented Reality
(AR) or image guidance is knowing the camera’s pose relative to the object
or organ of interest. Real-time SLAM provides two fundamental components
of computer-assisted surgery (CAS): 3D in vivo tissue model and camera pose
estimation while allowing camera movement.

Burschka et al.[13] proposed using an approach called V-GPS to create long-
term SLAM-style maps/reconstructions for sinus surgery using a monocular
endoscope. A method is proposed for estimating the scale of the 3D recon-
struction which cannot be recovered from a monocular camera. The scaled 3D
reconstruction of the rigid sinus is registered to a pre-operative CT to enable
AR overlay of critical subsurface anatomy. The system was reported to run at
10 Hz with sub-millimeter registration accuracy on phantom data.

An EKF SLAM approach was proposed[124] to build sparse 3D reconstruc-
tions of the abdomen and recover the motion of a stereo laparoscope. With
the addition of an image pre-processing step, the system was used with low
resolution stereo fiber image guides (10,000 fibers)[136] and demonstrated re-
construction accuracy of less than 3 mm of error on phantom data. Monocular
EKF SLAM has also been proposed for MIS[61], combining randomized list
relocalization with RANSAC outlier removal for recovering from tracking fail-
ure. The system reports run times of around 12 Hz. It increases the number
of actively tracked landmarks, creating a denser reconstruction which can be
used for relocalization. In EFK SLAM the reconstructed surface of the tissue
is represented by the set of 3D landmarks. These landmarks can be meshed
and textured with images from the endoscope to create visually more realistic
tissue models [123, 194]. Such models are an approximation of the organ’s sur-
face and may contain inaccuracies. Combining sparse SLAM with dense stereo
techniques [195] creates more comprehensive 3D reconstructions without in-
creasing the computational complexity of SLAM. The models discussed so far
are based on the assumption that the physical world is static. In anatomi-
cal environments such as the nasal passage this assumption holds, however,
in the abdomen, respiration causes tissue motion. In [125] dynamic mapping
is proposed where the tissue model deforms with periodic motion caused by
respiration. The error in the estimated camera position was less than 2 mm
for ex vivo data and the system demonstrated accurate recovery of respiration
models.

In depth evaluation of SLAM systems for MIS remains a challenge for the
community. Optical tracking systems have been used to obtain ground truth
for camera motion, however these are still subject to errors from tracking,
camera calibration and hand-eye calibration [197]. Validation of the 3D recon-
struction can use CT/MRI phantom or ex vivo data for rigid environments and
synthetic data for non-rigid environments. No solutions have been proposed for
validation of in vivo non-rigid tissue. The SLAM systems described above are
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sequential and capable of running in real time at up to 25 Hz, however the
increased complexity of non-rigid modeling, dense surface reconstruction and
recovery from failure introduce additional computational burdens.

5.4 Discussion and Conclusions

SLAM is a mature technology and its use in MIS is attractive due to its
real-time capabilities and integration with existing laparoscopic imaging equip-
ment. The feasibility of SLAM has been demonstrated for the MIS environment
but there remains a number of theoretical and practical research challenges in
transferring this technology to the operating room. A fundamental assumption
in SLAM is the rigid environment. Although this holds for some anatomy, fully
non-rigid tissue motion is regularly observed in cardiac and abdominal soft-
tissue surgery. A theoretical framework must be established for dealing with
deformation caused by respiration, cardiac motion, organ shift and tissue tool
interaction. Periodic biological signals (respiration, cardiac motion) have been
well modeled in the medical imaging community and such models can be incor-
porated into SLAM [124] However, complex tissue tool interaction and organ
shift are likely to require complex biomechanical modeling. Tissue cutting and
removal is an additional complication which remains an open research ques-
tion. SLAM’s real-time capabilities rely on establishing a set of 3D landmarks
which can be repeatably matched in the image over long periods of time. Cor-
rect matching directly affects robustness and reconstruction accuracy. In well
illuminated, well textured MIS environments SLAM has been shown to work
well.

The MIS environment can be challenging and procedure-long tracking is
challenging due to repetitive textures, large changes in lighting conditions,
specular reflections and deformation. Partial occlusion due to tools, blood and
smoke can generally be dealt with by using outlier removal. Tissue surfaces
without texture or detectable features will require additional information from
alternative approaches such as structured light or shape from shading (SfS)
algorithms.

The main aim of this thesis, was to develop a SLAM algorithm capable of
handling the deformable nature of the environment by modifying the standard
algorithm of ORB-SLAM2 [128] which outperforms many SLAM systems such
as Mono-SLAM, PTAM and LSD-SLAM, for the task of monocular endoscopic
camera tracking and mapping. ORB-SLAM2 combines many state-of-the-art
techniques into one SLAM system, such as using an ORB descriptor for track-
ing, local keyframe for mapping, graph-based optimization, the Bag of Words
algorithm for re-localization, and an essential graph for loop closure. Real-time
performance is crucial in time-demanding medical interventions. Since ORB is
a binary feature point descriptor, it is an order of magnitude faster than SURF
and more than two orders faster than SIFT with better accuracy. In addition,
ORB features are invariant to rotation, illumination and scale, which means
that it is capable of dealing with some of the main challenges in MIS scenes
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Fig. 5.4: ORB-SLAM system overview, showing all the steps performed by the
tracking,local mapping and loop closing threads.

including rapid movements of endoscope cameras (rotation and zooming) and
the change of brightness.

A common problem for monocular scene analysis using SLAM is the ini-
tialization, a step required for generating an initial map, because the depth
cannot be recovered from a single image frame. An automatic approach,based
on the estimation of the scaling factor using the inverse of the mean depth of
the scene, is used in ORB–SLAM to calculate homography for planar scenes
and a fundamental matrix for non-planar scenes dynamically. This approach
can greatly increase the success rate of initialization and reduce the time re-
quired for the initialization step. It also facilitates the initialization on an organ
surface or to compute a fundamental matrix when the endoscopic camera is
pointing at complex structures.

Starting from the ORB-SLAM2 architecture, we modified it to make it
suitable for the Robotic Minimally Invasive Surgery (R-MIS). In the following
chapters we face the problems of classic SLAM trying to adapt this technology
in an anatomical environment. First of all by increasing the performance of
the initialization phase and then starting from the diagnostics and the study
of the preoperative images with the registration to the map obtained from the
SLAM. Finally to study how the dynamic features of the tissues evolve.

Figure 5.4 shows the ORB-SLAM system overview, showing all the steps
performed by the tracking, local mapping and loop closing threads. The areas
where we modify the SLAM algorithm are highlighted in the green box in the
figure. After acquiring the image, the feature extraction section takes place,
and the box with label 1 represents the methods where both dynamic and static
features are extracted. Then, we need to find an efficient way to separate the
two types of feature to be able to do an accurate reconstruction using only
the static one. Once, we obtain the map we can work on how to optimize
the reconstruction in the box labelled with 2, developing filters to remove
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those points that represent outliers caused for example by breathing or other
involuntary movements of the human body. In the next Chapter we will show
how these new features are used in an anatomical, dynamic and deformable,
environment and allow to localize the main elements in the field of view.



6

Rigid 3D Registration of Pre-operative

Information for Semi-Autonomous Surgery

In general, a surgical intervention is planned using pre-operative information
about the patient and then the surgeons use this knowledge to decide which
actions to take. The pre-operative assessment is an opportunity to identify
co-morbidities that may lead to patient complications during the anaesthetic,
surgical, or post-operative period. Patients scheduled for elective procedures
will generally attend a pre-operative assessment 2− 4 weeks before the date of
their surgery.

In autonomous systems, the mapping of this planning to the patient
anatomy is not trivial since it has to be updated in real-time during the inter-
vention, based on the actual patient condition. This scenario is further com-
plicated by the fact that the environment is soft, which means that it could
be subjected to deformation and some anatomical structures can be removed
during surgery. Perception of the current surgical environment during robotic
minimally invasive surgery (R-MIS) is usually performed with the stereo en-
doscope that provides visual feedback to the main surgeon. Although it is able
to produce a 3D dense reconstruction of the environment, the main drawback
of a stereo vision system is that the endoscope has to be sufficiently close to
the surface of interest in order to provide a reliable reconstruction. Monocular
vision systems, on the other hand, cannot reconstruct a dense point cloud in
real-time, but exploiting the multi-view approach, can provide sparse 3D re-
construction. In order to apply the multi-view approach the camera must be
moved over time and the scene is in general assumed to be static.

In the previous chapter we presented the Simultaneous localization and
mapping (SLAM) algorithm and, as in recent years, there have been many
efforts done to evaluate the feasibility of applying it in minimally invasive in-
terventions, e.g. laparoscopy and R-MIS, to reconstruct a sparse or even dense
soft-tissue surface [61, 124, 194, 195]. A very popular approach for SLAM in
minimally invasive surgery (MIS) relies on oriented FAST and rotated BRIEF
(ORB) features [127]. Several works have proved that this approach can suc-
cessfully support the process of endoscope localisation by providing the poses
which are necessary to create a quasi-dense map of the environment [181], [108].
When a monocular vision system is used, there is an additional challenge based
on the scale factor estimation. In [13], for example, they retrieve the scale fac-
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Fig. 6.1: The da Vinci robotic tools, the SARAS robotic tools and the phantom
used during the experimental validation.

tor manually through the computed tomography (CT) scan and apply it to
the 3D reconstruction before the registration.

Once the partial intra-operatively reconstruction is available, its correct
registration with the pre-operative information is a fundamental capability to
enable the robot to perform tasks like object detection and recognition, navi-
gation and 3D dense map reconstruction. In the context of autonomous robotic
surgery, this represents an essential step to plan the robot motion. For example,
in [10, 130] a CT scan is used to select the ablation points and the extracted
model is then registered to the phantom using embedded spherical landmarks.
However, from a practical point of view, the use of landmarks is rarely feasible
within a realistic surgical environment. The most popular approach that allows
to rigidly align models when no information about landmarks or correspon-
dences is available is the Iterative Closest Point (ICP). The main drawback of
this method is that the standard implementation does not always guarantee
to find the globally optimal transformation because it can be easily trapped
in local minima [9]. Several advanced implementations of ICP have been pro-
posed to tackle this issue, which either rely on the extraction of robust features
[216] or exploit more efficient ways to search the 3D space [96, 167].

In this work, we propose a SLAM-based rigid 3D registration method for a
semi-autonomous surgical robotic system. The rigid registration allows to pro-
vide target points and the volumes of interest, assuming that the environment
is not subject to deformations. These volumes represent the bounding regions
where the robot has to look to detect the desired target points. In our workflow,
we register the anatomical model extracted from Magnetic Resonance Imaging
(MRI) to its sparse 3D reconstruction obtained by ORB-SLAM. Such regis-
tration is then refined using ICP, which allows to obtain a common reference
frame. The main contributions of the work are the following:
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� a scale factor estimation using the da Vinci® kinematics for monocular
SLAM,

� an accurate registration between the reconstructed sparse point cloud and
a pre-operative model using point-to-plane ICP,

� the integration of the registered 3D anatomical model within the robotic
path planner for executing semi-autonomous surgery.

6.1 Method

In a semi-autonomous intervention the robotic system assists the main surgeon
when performing specific tasks, and it is triggered by an action recognition
system and/or directly by the surgeon. The proposed method aims to register
a pre-operative 3D model with the real anatomical environment in order to
drive the robotic arm holding a laparoscopic tool towards the target points.
The regions of interest are defined on a pre-operative model of the anatomical
structures, extracted from pre-operative images (CT or MRI).

Since the registration is rigid and since the pre-operative model is not de-
formed during the procedure we extract only anatomical information which
can be assumed to be fixed over time or subjected to small deformations. The
surface of the 3D model is registered with the sparse 3D reconstruction of
the environment obtained by SLAM exploiting 3D feature matching and re-
fined using ICP. Once the registration is available the precomputed regions
are transformed into the reference frame of the robot and can be used as a
set of way-points during the surgery. The overall architecture is depicted in
Figure 6.2.

6.1.1 Experimental setup

Figure 6.1 shows the considered semi-autonomous robotic system. It consists
of a da Vinci® robot controlled through the da Vinci® Research Kit (dVRK)
and of two more robotic arms which play the role of the assistant surgeon. In
order to acquire the intra-operative point cloud of the environment, we use only
one channel of the da Vinci® stereo endoscope, thus relying on a monocular
vision system. This choice allows us to reconstruct larger areas with respect
to those that can be obtained with the da Vinci® stereo camera, whose small
baseline (around 5mm) would require the scope to be placed too close to the
surface (approximately 5 cm) in order to achieve a reliable reconstruction.

The most important preliminary step that needs to be performed in order
to guarantee reliable results is the accurate camera calibration. In our setup,
we can measure the pose of both tool manipulators and the endoscope camera
arm. It is then possible to map their poses in a common reference space by
reaching several points on a custom calibration board (Figure 3.2b), presented
in the chapter 3. The overall software architecture is built on top of ROS
Kinetic.
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Fig. 6.2: The proposed software architecture.

6.1.2 Pre-operative model

The pre-operative model used in this work is obtained from an MRI scan
of the anatomical phantom used in our experiments. In particular, the semi-
automatic segmentation approach provided by ITK-SNAP framework [220] is
exploited to extract the structures of interest.

In order to register the pre-operative model (Figure 6.3) to the partial view
provided by the endoscope, we perform an initial step to extract the visible
surface from the complete model, which is the only portion that can be aligned
with the camera view. Removal of occluded and unreachable parts is possible if
an a priori estimation of the ECM pose with respect to the operational area is
available. Since the endoscope movements are restricted by the remote centre
of motion of the camera holder, it is possible to manually select and discard
the parts of the model which cannot be seen.

Once the portion of the MRI used for the registration is defined, as shown
in Figure 6.3b, we used the Poisson surface reconstruction approach [81] to
smooth the artefacts introduced during the segmentation and we recompute
the normal per vertex on the aforementioned surface.

The final 3D pre-operative model is converted in a point cloud representa-
tion discarding the faces from the mesh.

6.1.3 Scaled ORB-SLAM

The most important part of a SLAM system is the initialisation step. It is
necessary to define a coordinate system for camera pose estimation and 3D
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(a) 3D model (b) Point cloud

Fig. 6.3: The anatomical model extracted from the MRI. a) the segmented 3D
model, b) the final point cloud used in the registration phase.

reconstruction in an unknown environment. Therefore, in the initialisation, the
global coordinate system should be first defined, and a part of the environment
is initially reconstructed in the global coordinate system. For monocular SLAM
it is harder, because the depth cannot be recovered from a single image frame.

To initialise the map ORB-SLAM computes two geometrical models: a ho-
mography assuming a planar scene, and a fundamental matrix assuming a
non-planar scene. The map initialisation is done when the two-view config-
uration is safe, detecting low parallax cases and well-known twofold planar
ambiguity [103], otherwise the initialise map would be corrupted.

Once the map initialisation is started the first step of the algorithm consists
in finding the initial correspondences (xc, xr) between the current frame Fc

and the reference frame Fr extracting the ORB (Oriented FAST and Rotated
BRIEF) features, which are rotation invariant and robust against noise. When
there are enough matches, the initialisation procedure starts to compute a
homography Hcr and a fundamental matrix Fcr using the following equations:

xc = Hcrxr xT
c Fcrxr = 0 (6.1)

with the normalised DLT and 8-point algorithms respectively as explained in
[66]. At each iteration it computes a score SM for each model M ∈ {H,F},
H for the homography, F for the fundamental matrix. Afterwards a model is
chosen according to this equation

RH =
SH

SH + SF

(6.2)

where RH is the robust heuristic. If RH > 0.45 the selected model is the
homography, otherwise the fundamental matrix. If the scene is planar it can
be explained by a homography, otherwise it is selected the fundamental matrix.
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Once the model is selected the pose and the motion of the camera has been
estimated and the map reconstruction can be started.

Our method adds to the standard initialisation the kinematic measurements
of the ECM to estimate the scaling factor. During the initialisation phase we
keep track of the real position of the camera with respect to the remote centre
of motion of the ECM. Let Pi and Pf be the homogeneous transformation
of the camera pose, with respect to the ECM base frame, registered at the
beginning and at the end of the correspondence matching of ORB-SLAM. The
first virtual camera pose of the SLAM is no longer the one estimated during
the correspondence matching but is substituted by the relative transformation
of P i

f = P−1
i Pf . Then assuming zero rotation during the initialisation phase

the scaling factor s can be computed as the ratio of the measured translation
tif and the translation t̂f estimated by the SLAM

s =
|tif |
|t̂f |

. (6.3)

The translation vectors tif and t̂f are extracted from the homogeneous matrix

P i
f and P̂f , where P̂f is the position of the virtual camera computed by the

SLAM during the initialisation phase.
Finally, we apply the transformation P i

f and the scaling factor s to the
initial scene reconstruction in order to keep the same relative distance between
the points and the new camera position. The assumption of zero rotation
during the initialisation phase ensures that the relative motion of the 2D ORB
features detected by the correspondence matching is due only to a translational
movement and so Equation 6.3 is the desired scaling factor.

6.1.4 3D model registration

The registration is based on a feature-based initial alignment followed by a
non linear least squares minimisation of the point-to-plane distance between
the two point sets (the SLAM 3D reconstruction and the 3D pre-operative
model). To prevent convergence issues related to the different spatial sampling
we voxelise both the SLAM map and the pre-operative model with the same
step size in order to have the same spatial point density.

Initial alignment

The initial alignment of the two point clouds is required because the ICP
algorithm converges easier to a feasible solution if the input point clouds have
been already partially aligned. The partial alignment is done using a featured
based correspondence grouping which provides an initial transformation matrix
Mg applied later to the source point cloud to increase the robustness of ICP.
From the two point clouds we extract two sets of Intrinsic Shape Signatures
(ISS) [226] key-points,Ks for the source point cloud and Kt for the target
one [225].
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The ISS key-points are local descriptor which are generally used in applica-
tion like registration, object recognition, categorisation and are known to be
stable, repeatable and discriminative. An ISS is obtained counting the weighted
sum of points laying in a local 3D histogram built in a spherical angular space
constructed around each feature point. For each point cloud the initial set of
ISS key-points is encoded in a set of vectors using the Fast Point Feature His-
togram (FPFH) [166] which allows robust multi-dimensional descriptor of the
local geometry around a point.

To estimate Mg, a correspondence set C must be computed. Let C =
⋃

i Ci

where Ci is the correspondences set for each vector fi in the source feature
set. The correspondences set is composed of the nearest neighbours of fi in the
FPFH feature space. The set C is then refined applying a cascade of correspon-
dence rejection methods. First of all we enforce a normal direction matching
and subsequently on the resulting subset we make the correspondence injec-
tive applying a duplication filtering which keeps only the closest neighbour.
Finally C is further refined applying Random Sample Consensus (RANSAC)
to estimate a transformation between the two correspondences set. The elimi-
nation of outlier correspondences is based on the Euclidean distance between
the points once the computed transformation is applied to the source point
cloud. The final transformation Mg is computed on the filtered set C using
SVD.

Iterative closest point

The Iterative Closest Point (ICP) algorithm exploiting the point-to-plane
method provides a more robust and much faster convergence [21] than the
classical position based implementation. It differs from the standard ICP tech-
nique since it minimised the distance between the source point si with the
plane defined by the target point ti and its normal nti

Mopt = arg minM

N∑
i=1

((Msi − di) · nti)
2 (6.4)

where Mopt is the transformation matrices which aligns the source point cloud
to the target one. The source point set si in our method is previously trans-
formed according to the initial alignment procedure using the transformation
matrix Mg.

Given a source, i.e. actually the SLAM output, and a target point cloud, i.e.
the pre-operative model, each iteration of the ICP algorithm establishes a set
of pair-correspondences between points. The output of an ICP iteration is the
3D rigid-body homogeneous transformation M that aligns the source points
to the target point cloud such that the total error between the corresponding
points is minimised. For a rule of thumb in case of registration of dense to
sparse point cloud ICP performs better if the source point cloud is the sparse
one. For the 3D pre-operative model the normal vectors are precomputed;
for the SLAM point cloud the normal vectors are computed just before the
registration routine. The estimation process is also taking into account the
camera position in order to have all the normal vectors pointing towards it.
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Fig. 6.4: The phantom (ACMIT Gmbh, Austria) used during the experiment.
The phantom is composed of bladder (1), rectum (2), urethra (3), prostate (4),
seminal vesicles (5), fat (6).

6.2 Results

The method presented in Section 6.1 has been tested in a surgical simulator
with the aims of performing autonomously one of the phase of a radical prosta-
tectomy. Figure 6.4 shows the phantom of the lower abdominal used in the
experiments. It is composed of the following anatomical structures: bladder,
prostate, seminal vesicles, rectum, urethra and fat. The phantom is developed
by ACMIT Gmbh, Austria.

The 3D model of the phantom obtained from MRI segmentation (Fig-
ure 6.3a) is registered to the SLAM sparse 3D reconstruction. In the following,
we will show a quantitative and qualitative evaluation of our methodology. We
tested the scale estimation method measuring the size of the visible anatomy
both in the 3D reconstruction and in the MRI (assumed to be the ground
truth). We tested the system accuracy comparing the position of a set of
fiducial points in the MRI with the position of the robot end-effector dur-
ing contact. Finally, we execute the bladder pushing task in an autonomous
way.

6.2.1 Scaling evaluation and error bounds

To evaluate the reliability of the autonomous scale estimation we measured the
size of the phantom and we compared it with the same measurement obtained
from the 3D reconstruction. The scale estimation error is the combination of
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(a) (b)

Fig. 6.5: The registration of the pre-operative map. The purple dots are part
of the point cloud obtained by SLAM, the initial map is shown in green.

the 3D reconstruction error and the hand-eye calibration T c
e . The computed

scale error is 4mm.
The system accuracy is evaluated measuring the positioning error ϵ

ϵ =

∥∥∥∥∥∥
xm

ym
zm

−

xr

yr
zr

∥∥∥∥∥∥ (6.5)

where (xm, ym, zm) are the fiducial points selected on the surface of the 3D
model, and (xr, yr, zr) are the corresponding positions of the end-effector. Since
our phantom doesn’t have any specific landmarks in it we selected the corners
along the boundary of the fat as fiducial points. The arm used to perform this
measurement is the patient side manipulator (PSM) of the da Vinci® which
has a positioning error of 1mm with respect the common reference frame
and is assumed to be the ground truth. The overall error, is around 6.7mm,
is estimated as the mean of the error computed on the landmark set. It is
worth remarking that the measured errors reported in Table 6.1 include all the
calibration errors of the system. The 3D reconstruction obtained by the SLAM
is referenced to the camera reference frame and in order to be placed in the
common reference frame (world) we need to traverse multiple transformations,
as shown in Figure 6.6.

The positioning error is the combination of: (i) the shared reference frame
calibration errors T eb

w , T pb
w (which affects the ECM and the PSM1 end effector

position), (ii) the hand-eye calibration T c
e (which affects the positioning of the

endoscope with respect to the ECM end effector), and (iii) the registration
error. An estimation of the registration error is provided by the ICP itself.
The Euclidean norm of the misalignment between the source point cloud (pre-
operative model) and the target point cloud (SLAM model) is of 0.560mm.

6.2.2 Bladder pushing

The task of pushing down the bladder is needed to create the space for the
main surgeon to resect the prostate during the radical prostatectomy proce-



82 6 Rigid 3D Registration of Pre-operative Information for Semi-Autonomous Surgery

T eb
w

T c
e

T e
eb

T pb
w

T p
pb

world

camera

ECM

ECM base

PSM1 base

PSM1

Fig. 6.6: The reference frames involved in the error budget evaluation (the axes
direction of the reference frames are only for visualisation purpose).

Table 6.1: Overall system accuracy evaluation, the position of the points are
expressed in R3.

MRI (xm, ym, zm) Reference (xr, yr, zr) Error ϵ
(mm) (mm) (mm)

6.33, -60.41, 62.99 9.00, -58.00, 59.00 5.4
7.59, 22.05, 48.37 6.00, 29.00, 52.00 8.0

dure. During R-MIS it is performed by the assistant surgeon using standard
laparoscopic tools. In this work we want to execute this task in an autonomous
way just by providing to the control architecture of the autonomous arm the
target points on our 3D model. The task of pushing down the bladder can be
modelled by a finite state machine composed of four states: approaching the
apex of the bladder (S0), push down the bladder (S1), stay still (S2), and leave
movement (S3). The approach point was defined as the highest point of the
bladder with respect to the MRI reference frame. The target position, reached
during the push down motion, is obtained applying a vertical displacement
starting from the approach point. Since in the surgical environment there are
also the da Vinci® instruments, the movement of the assistant robot must
be collision-free. A possible approach tailored to R-MIS has been proposed
in [169]. Figure 6.7 shows a few snapshots taken during the bladder pushing
experiment. The approach point selected by the system is depicted in Fig-
ure 6.7a: after the registration phase, the position is transformed in the robot
reference frame and sent to the robot. As shown in Figure 6.7c the end effector
of the robot is placed nearby the desired point. Once the point on the surface
of the bladder has been reached, the next step of the procedure is to reach a
point placed inside the bladder in order to push it down. The system calcu-
lates that point taking a vertical displacement of 0.045m along the vertical axis
starting from the approach point. Figure 6.7d shows the robot end effector at
the desired target position. Supplementary material includes a video with all
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(a) Selected point (b) Initial pose

(c) Bladder approach (d) Bladder push

Fig. 6.7: An example of the bladder pushing phase. a) the red sphere represents
the point selected directly on the MRI, in this case the apex of the bladder,
b) the robot initial position, c) the robot end effector once it has reached the
approach position over the bladder, d) the robot end effector at the target
position.

the phases of the experimental setup and it shows the bladder pushing phase
with several approaching points.

6.3 Discussion and conclusions

In this work we proved the feasibility of using point cloud based registration in
order to plan the motion of a semi-autonomous system using the pre-operative
data of a patient. We tested our solution in a real environment using the
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da Vinci® endoscope as the video source for the monocular SLAM. A real-
istic phantom has been used to test our method during the initial phase of
a radical prostatectomy (i.e. the scenario at the beginning of the procedure
can be assumed to be motionless). The registration of medical images with the
environment is carried out by aligning a subset of vertices of the 3D anatom-
ical model, extracted from pre-operative images, to the outcome of SLAM. A
refinement of the initial registration is done using ICP. The registration ac-
curacy shown in Table 6.1 allows to perform semi-autonomous tasks. Even if
the experiments are done in a open environment, the movement of the arm
is limited by its remote centre of motion and this lead to a mostly linear tra-
jectories. The robot used in the experiments has 4 degrees of freedom: three
for the positioning of the end effector and one for the rotation of the grasper
along the tool axis. In the future we will investigate the integration of this
methodology within a more complex task where the SLAM algorithm has to
be extended to account for soft tissues deformations. Moreover we plan to
update the pre-operative model with the deformation and perform the regis-
tration online with the extended SLAM. In the next Chapter we will adapt
and use the thery developed here to the specific cases of medical SLAM, where
soft tissues and biological motions will be taken into consideration.
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Medical SLAM

For Minimally Invasive Surgery (MIS), the use of pre- and intra-operative
image guidance has well established benefits. However, its application to pro-
cedures with large tissue deformation, such as those encountered in cardiovas-
cular, gastrointestinal and abdominal surgery, is still limited.

In the previous chapters we established that in order to carry out a 3D
reconstruction it is necessary to have a common reference frame and to have the
pre- and intra-operative information and how we registered this information to
the outcome of the SLAM. The use of fiducial markers and optical tracking, as
well as intra-operative imaging such as ultrasound, MR and x-ray fluoroscope
have been explored extensively. However, the use of vision techniques based
on images from laparoscopes/endoscopes during MIS has clear advantages. It
does not require the introduction of additional equipment to what is already
a very complex surgical setup.

One of the main difficulties to be addressed in soft-tissue MIS is the fast,
accurate and robust acquisition of the anatomy during surgery. For Augmented
Reality (AR) visualization of subsurface anatomical details overlayed on the la-
paroscopic video, intra-operative 3D data has to be registered non-rigidly to 3D
pre-procedural planning images and models [178]. Tomographic intra-operative
imaging modalities, such as ultrasound (US), intra-operative computed tomog-
raphy (CT) and interventional magnetic resonance imaging (iMRI) have been
investigated for acquiring detailed information about the tissue morphology.
However, there are significant technological challenges, costs and risks asso-
ciated with real-time image acquisition in a surgical theatre or interventional
radiology suite with traditional instrumentation while providing images with
acceptable signal-to-noise ratio (SNR) [94].

In MIS, an increasingly attractive approach involves 3D reconstruction of
soft-tissue surfaces using the endoscope itself by interpreting the properties
and geometry of light reflecting off the surfaces at the surgical site [124]. Op-
tical techniques for 3D surface reconstruction can roughly be divided into two
categories [118]: passive methods that only require images, and active meth-
ods that require controlled light to be projected into the environment. Passive
methods include stereoscopy, monocular Shapefrom- X (SfX) and Simultane-
ous Localization and Mapping (SLAM) while the best known active methods
are based on structured light and Time-of-Flight (ToF). Both active and pas-
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sive technologies have found successful applications in a wide spectrum of fields
including domestic and industrial robotics, and the film and games industries.

Reconstruction of the patient anatomy for MIS, however, poses several spe-
cific challenges that have not yet been solved. While many applications focus
on the 3D reconstruction of static scenes, the methods applied in MIS must be
able to cope with a dynamic and deformable environment. Furthermore, tis-
sue may have homogeneous texture making automatic salient feature detection
and matching difficult. The critical nature of surgery means that techniques
must have high accuracy and robustness in order to ensure patient safety.
This is particularly challenging in the presence of specular highlights, smoke,
and blood, all of which occur frequently in laparoscopic interventions. New
technologies in the operating room also require seamless integration into the
clinical workflow with minimum setup and calibration times.

In this chapter, we present how we modified the architecture based on ORB-
SLAM2 presented in the previous chapter to manage some simple deformations
and how to recognize and separate static from dynamic features, following the
scheme shown in the figure 5.4.

7.1 Breathing compensation

One of the most intuitive and natural deformations that the human being has
is breath. Respiratory system modeling has been extensively studied in steady-
state conditions to simulate sleep disorders, to predict its behavior under ven-
tilatory diseases or stimuli and to simulate its interaction with mechanical
ventilation. A typical respiratory cycle is asymmetrically periodic and can be
modeled as:

Yi = C + α sin(ωTi + ϕ) + Ei (7.1)

where C is constant defining a mean level, α is an amplitude for the sine wave,
ω is the frequency, Ti is a time variable, ϕ is the phase, and Ei is the error
sequence in approximating the sequence Yi by the model. This sinusoidal model
can be fit using nonlinear least squares.

To obtain a good fit, nonlinear least squares routines may require good
starting values for the constant, the amplitude, and the frequency. The respi-
ration cycle can be estimated using any point of the surface, assuming it can
be tracked and the motion is along a single axis.

The transformation from the global coordinate system to the respiration
coordinate system is unique to each point. This means that points on the
surface of the surface can move and deform in independent directions but share
the same respiration model. Given a model of respiration, it is therefore possible
to estimate the dynamic tissue motion using the inverse PCA transformation
matrix and a given point in the respiration cycle. The parameters of the (7.1)
are estimated using Levenberg-Marquardt minimization algorithm where the
problem is posed as a least squares curve fitting.

In our framework, we extended the loop closing section of the architecture,
shown in 5.4, by using the g2o [62] library, which provides an implementation
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of the functions needed to estimate the breathing model. Finally, we tested the
outcome of the ORB-SLAM presented in the previous section in a simulated
environment shown in 7.1a.

(a) V-Rep scene

(b) Skin

(c) Setup

Fig. 7.1: Simulation setup of the respiratory cycle during an intervantion: a)
DVRK setup inside V-Rep simulator; b) texture of the skin; c) example of a
fit. The blue points represent the real points of the map created by the SLAM,
the red ones instead the result of the fit.
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Tests were done by using V-Rep [163], which is an open source robotic sys-
tem simulator, made by a company called Coppelia Robotics. It is based on
a distributed control architecture: each object/model can be individually con-
trolled via an embedded script, a plug-in, a Robot Operating System (ROS)
node, a remote Application Programming Interface (API) client, or a custom
solution. V-Rep is a highly customizable simulator, every aspect of a simula-
tion can be customized, also the simulator itself. It can be programmed with
seven different programming languages. V-Rep’s dynamics module currently
supports three different physics engines: the Bullet physics library, the Open
Dynamics Engine (ODE) and the Vortex Dynamics engine.

In our experiments we used ODE engine and the simulated scene represents
the DVRK operating room. To simulate breathing, we have created a script on
a geometric model where we have attached a texture that represents the skin
(Fig. 7.1b). Figure7.1c shows the result of the fit, the blue points represent
the real points of the map created by the SLAM, the red ones instead the
result of the fit. From this graph we can see when the SLAM algorithm closes
the loop through the jumps and optimizes the map. The tests were done only
in simulation and not on a real setup, due to COVID-19 rules to access the
laboratory.

7.2 Dynamic 3D point detection

An important part of this research has been to study dynamic features: it is
necessary to identify and separate the areas that deform from the static ones
to treat them differently. For each frame, we detect if the scene has changed
through the analysis of the histogram between the corresponding frame and
select several keyframes which observe the same scene. Then we calculate the
correlation coefficient between keyframes and current frame. If the correlation
coefficient is less than a threshold K, the scene of current frame has possibily
changed. So, we project the map points in the keyframe to the current frame.
For a 2D feature point p in keyframe, its corresponding 3D point is denoted
as P and its projection in current frame is denoted as p′. We compute the
appearance difference of the patch centred at p in the current frame with
respect to the patch centered at p′ in the keyframe:

D(p) = min
d

∑
a∈B(p)

|Ia − AaIa′+d| (7.2)

where B(p) denotes the image-patch centred at p. We apply an affine warping
Aa as[184] to current patch, because the keyframe is typically a little far from
current frame. Due to the estimation error, the depth of P may deviate from
the true value. So, we violate the epipolar constrains to get a subpixel accurate
feature correspondence (directly add a little translation d to projection position
p′). If the difference D(p) is larger than a threshold, it is very likely that the
point P has changed its position or occluded by other objects.
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7.2.1 A method to distinguish static and dynamic features

Various approaches are used to detect dynamic features in the scene and these
approaches can be roughly classified into three types:

� dynamic features detection depending solely on geometry information
� dynamic features detection depending solely on semantic information
� dynamic features detection through naive combination of the results from
geometry calculation and semantic information in a loosely coupled way.

Most existing works on the geometry of multiple images rely on the assumption
that the observed scene is rigid. The rigidity constraint allows to derive match-
ing relations among two or more images, represented by e.g. the fundamental
matrix or trifocal tensors [68]. These matching tensors encapsulate the motion
and the intrinsic parameters of the cameras which took the underlying images,
and thus all the geometric information needed to perform 3D reconstruction.
Matching tensors for rigid scenes can also be employed for scenes composed of
multiple, independently moving objects, which requires however that enough
features be extracted for each object, making segmentation. On the other hand,
there is a growing body of literature dealing with the case of independently
moving features, often termed as dynamic features. The goal of these works
is to provide algorithms for dynamic structure and motion recovery as well as
matching tensors for images of dynamic features.

Kundu et al. [91] construct the fundamental matrix from robot odometry
to define two geometric constraints, one of which is derived from the epipolar
geometry. According to the epipolar geometry constraint, a matched feature
in the subsequent frame is most likely to be considered as dynamic if it resides
too far from the epipolar line (Figure 7.2a). The key in this kind of method is
the estimation of the fundamental matrix, if a relatively reliable fundamental
matrix can be acquired, then most of the dynamic features can be easily de-
tected. The fundamental matrix can be acquired using purely visual method,
such as the 5-point algorithm or 8-point algorithm [67].

Zou and Tan [229] classify map points as dynamic or static at every frame
by analyzing their triangulation consistency. They project features from the
previous frame into the current frame and measure the reprojection error of the
tracked features. The error should be small if the map point is static, otherwise
the map point is classified as dynamic.

Wang et al. [202] take current RGB image, previous image and current
depth image as input, they firstly cluster the depth image into several objects,
extract features in current RGB image and count the number and percentage of
features on each object. Then features correspondences between current RGB
image and previous RGB image are used to calculate fundamental matrix,
which is subsequently used to filter out outliers, the number and percentage
of remaining inliers on each object are counted again. The remaining inliers
are used to calculate fundamental matrix one more time and the following
procedure is the same as before. At last a moving objects, judgment model is
designed based on the statistical characteristics obtained above, and once an
object is considered as moving, all features on it are eliminated.
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Sun et al. [185] adapt the codebook learning and inference mechanisms
form to deal with the SLAM problem in dynamic environments. Their motion
removal approach consists of two online parallel process : the learning process
that builds and updates the foreground model; the inference process that pixel-
wisely segments the foreground with the built model.

Fan et al. [46] construct a camera motion model for the moving platform,
then decompose the motion model into two parts: translation and rotation. At
last, two constraints are proposed to locate the dynamic regions.

With the quick development of deep learning in recent years, computer
vision tasks such as object detection and semantic segmentation can be solved
excellently and the accuracy can even outperform human. In SLAM system,
when a new frame is coming, by applying advanced CNN architectures like
YOLO [156] , SSD [100] , SegNet [6] , Mask-RCNN [69] , the semantic label

(a) Epipolar constraint

(b) Geometry constraint example on V-Rep scene

Fig. 7.2: A static feature should satisfy epipolar constraint in multiple-view
geometry, while a dynamic feature will violate the standard epipolar constraint.
In the simulated scene (b) we can notice that the closest object has no features
on it, this is because movement was imposed by script.
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of the extracted features can be acquired. Then features lying on semantically
dynamic objects such as people or cars are considered dynamic and removed.

Zhong et al. [223] use object detection network SSD to detect movable ob-
jects, such as people, dog, cat and car. For instance, once a person is detected,
it is regarded as a potentially moving object whether it is walking or standing
and all features belong to this region are removed.

Zhang et al. [221] use YOLO to get semantic message, they consider features
which are always located on the moving objects as unstable and filter them
out.

Wang et al. [203] propose a step-wise approach that consists of object de-
tection and contour extraction to extract semantic information of dynamic
objects in a more computationally efficient way.

Xiao et al. [212] use SSD object detection network running in a separate
thread to get prior knowledge about dynamic objects, and the features on
dynamic objects are then processed through a selective tracking algorithm in
the tracking thread, to significantly reduce the error of pose estimation. Some
recent works combine the dynamic detection results from geometry calculation
and the semantic information.

Yu et al. [219] proposed DS-SLAM A Semantic Visual SLAM towards Dy-
namic Environments, based on ORB-SLAM2. They use SegNet to get pixel-
wise semantic label in a separate thread. If a feature is segmented to be “per-
son”, further moving consistency check is then conducted using epipolar ge-
ometry constraint. If the check result is dynamic, then all features with the se-
mantic label “person” will be classified as dynamic and removed. This method
actually treats features with label “person” as a whole and takes the inter-
sect of two results: only features that are both semantically and geometrically
dynamic are considered as dynamic.

Bescos et al.[8] combine the results of semantic segmentation from Mask
R-CNN and multi-view geometry. They actually take the union of the two
results: features either semantically dynamic or geometrically dynamic are all
considered as dynamic.

Linyan Cui et al.[26] proposed Semantic Optical Flow SLAM (SOF-SLAM),
which is built on ORB-SLAM2. SOF-SLAM fully utilizes the complementary
characteristic of motion prior information from semantic segmentation and
motion detection information from epipolar geometry constraint, while the
existing SLAM systems either depend solely on semantic information or geom-
etry information, or naively combine the results of them to remove dynamic
features.

These works prove that deep learning algorithms have become much better
at modelling complex tasks. This allowed researchers to be able to perform high
quality semantic scene segmentation in many challenging applications, such as
autonomous driving, social scene analysis, etc. A partial reason for this success
is also the huge size of the datasets that have been released in recent years,
e.g. ADE20K [227], Mapillary Vistas [132] and Cityscapes [25]. In this chapter,
we combine the results from geometry calculation and semantic information
extracted from deep learning algorithm to distinguish dynamic features on sur-
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gical tasks from static features by segmenting the surgical instruments and the
anatomy, rejecting the dynamic features as outliers, and using only the static
features to track the endoscope position as well as to complete the subsequent
SLAM process.

7.3 Semantic Registration of CT Scan and
Intra-Operative Anatomical 3D Reconstruction

Considering the specific task of semantic segmentation in a surgical environ-
ment, deep learning algorithms have not been able to provide good enough re-
sults. One main reason for this performance degradation in the case of medical
images is the sheer complexity of the scene. In the scenarios that are normally
contemplated by researchers, objects have a fixed color structure and fixed
shapes. This rigid structure and the spatial dependency between the different
components make them easier to identify. Objects in the images have very
clear boundaries and are all of the component are always connected to each
other. In a surgical environment instead, organs do not hold their shape and
the boundaries between these organs are not very clear. Moreover, the scene in
the surgical cavity keeps changing, due to a number of factors such as bleeding,
presence of smoke, etc. The fact that semantically different organs have similar
color and/or texture makes them even more difficult to differentiate.

All the recent semantic segmentation models are based on encoder-decoder
architecture. Each model contains two submodules: encoder and decoder. En-
coder is used to compress the image information and extract the low dimen-
sional feature representations. Most of the encoder are adapted from the stan-
dard classification CNN architectures, such as, AlexNet [88], Inception archi-
tecture [187], ResNet [70]. Decoder submodule upsamples the features into
original size using deconvolution operation and then uses softmax layer to
produce the class probabilities for each pixel.

Fully Convolutional neural Networks (FCNN) were first introduced in se-
mantic scene segmentation by Long et al. [101]. FCNN networks have a lot
of advantages over traditional Convolutional Neural Networks (CNN). Most
of the parameters of a CNN model are in the fully connected layers [177]. As
FCNNs do not contain any fully connected layer, this type of architectures
have much lower number of parameters. Additionally, FCNN architectures are
scale-independent, i.e. these models can take input images of any size, scale
and aspect ratio in contrast to conventional CNNs which only accept input of
one size. This scale independence makes it convenient to use them for domain
adaptation and fine tuning. This also makes them easier to train on images or
video frames of different size and aspect ratio.

There is a lot of ongoing work on the various aspects of semantic segmenta-
tion modeling. Some papers try to improve quality and accuracy by focusing
on the model architecture [20, 117, 164], while others focus on the loss function
to design a better loss function, which can accurately define the problem of at
hand [102, 213].
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Recently, in particular, a wide range of approaches have been proposed to
improve the performance of FCN models for semantic segmentation. U-Net is
one of the most famous such architectures, and was initially proposed specif-
ically with medical images in mind [164]. This model uses skip connections
between the encoder and decoder layers. Initial layer of the model are encoder
part of the model. These layers reduce the spatial dimension of the features,
pooling layers are place to compress the feature representation. the second part
of the model is decoder, where these reduced features are upsampled again to
have output of same size as input. Deconvolution layer is used to upsample the
features. Additionally, skip connection are used in model to provide the spatial
context from the deeper layers of the model. Another architecture, termed V-
Net, is inspired by U-Net. The V-Net model follows similar a skip connection
approach between the layers but, instead of using 2D images as input, it uses
volumetric data (the 3D volume collecting multiple frames together).

In this work we propose a semantic registration for a semi-autonomous
surgical robotic system by improving the approach presented in the previous
chapter to make use of semantically annotated medical images, such as CT,
MRI, and PET scans, and to improve the reliability of 3D registration in
the non-static conditions of surgical environments. The revised architecture
is shown in Figure 7.3, where we added semantic information to the inputs
(pre-operational images and the camera image).

In our framework, we register the anatomical model extracted from a CT
scan, after applying the semantic information, to its 3D semantic reconstruc-
tion obtained by an RGB-D sensor. We aim to understand the state of the
surgical scene, i.e., the nature of the events taking place there and the current
situation in the surgical cavity. Fully understanding the current scene can help
the different autonomous components during the procedure. We validate the
method proposed within the SARAS project, using the phantom which is used
to perform the Robot-Assisted Radical Prostatectomy (RARP).

7.3.1 Pre-operative model

The pre-operative model used in the experimental validation of this work is
obtained from a CT scan of the anatomical phantom for RARP. In particular,
the semi-automatic segmentation approach provided by Slicer3D is exploited
to extract the structures of interest.

Once the model is extracted, we highlight the structures useful for semantic
registration by encoding them with the same color map used for the segmenta-
tion: for our experiments, the most prominent anatomies are the bladder, the
connective tissue, and the prostate, whenever visible (Figure 7.4).

7.3.2 Semantic Segmentation

We applied the model presented in [77], which is a Generative Adversarial Net-
work (GAN) trained on a few examples of the SARAS phantom setup to in-
clude all the replicated anatomical structures plus the catheter, the da Vinci®,
and the SARAS tools. Compared to other models, this network presents the
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Fig. 7.3: The revised software architecture: the differences from [150] are in
the use of medical images and the real time SLAM preceded by a semantic
segmentation module.

advantage of requiring very few training samples to obtain quality results. In
our tests, only 15 labelled images were ultimately required to obtain the de-
sired segmentation output compared to the thousands usually necessary to
train models like U-NET [165]. It achieves this by adopting a dual network
configuration. A first network, the Generator (G) is trained to produce mul-
tiple samples of the labelled image starting from the input sample image; for
this, the generator is usually a modified u-net structure. The second network,
the Discriminator (D), operates as a loss function to identify whether the gen-
erated image is similar or not to the ground truth (Figure 7.5 presents a simple
schematic of the network).

The result is a pixel-to-pixel mapping model (hence the name pix2pix ) that
passes through only the first network that is now capable of ”fooling” the
best trained discriminator, thus, in this application, it’s capable of segmenting
the input image. However, given the low granularity, pixel-to-pixel nature of
the mapping learned by the model, the output requires some post-processing
to clear out noise, namely a median and a clustering filter to reduce scattered



7.3 Semantic Registration of CT Scan and Intra-Operative Anatomical 3D Reconstruction 95

Fig. 7.4: A pre-operative semantically-segmented model
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Fig. 7.5: GAN schematics for network training: the discriminator D operates
as a loss function for both itself and the generator G.

patches. The critical structures for the semi-autonomous tasks have been color-
coded with the encoding presented in Table 7.1. Figure 7.6 shows two examples
of segmentation of scenes acquired from a RealSense® and a da Vinci® endo-
scope camera perspective (Figures 7.6a and 7.6c respectively). It is possible to
immediately verify the good quality of the segmentation, with the da Vinci®

tool clearly discernible, apart from a few misidentified spots on the upper-left
corner that are outside of the phantom area and, thus, easily ignorable. Most
importantly, the bladder is uniformly colored with the rectum clearly sepa-
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rated (we applied the ”background” label to the rectum as it is not relevant to
prostatectomy operations). Also important are the vas deferns and the seminal
vescicles. As they are semi-transparent they are very difficult to identify but
the model does identify them in an acceptable manner. Finally, the prostate
is also correctly identified as it is not fully covered in fat at the beginning in
this phantom iteration. The main drawback of this family of neural networks
is their tendency to generate multiple false positives depending on the amount
of distinct semantic mappings used for the training stage. This results in the
false identification of anatomical structure in locations where they appear on
average in the training dataset. For instance, the prostate could appear around
the edges of the instruments even if it is still completely covered in fat material
(as it appears slightly in Figure 7.6d) or the ureters appear at the bottom of
the bladder even when not visible. This issue can be easily corrected by pro-
viding just a single new image to the training dataset and training the model,
which is a quick computation given the reduced dataset size.

(a) RealSense® view (b) Segmented image

(c) Endoscope view (d) Segmented image

Fig. 7.6: Examples of real-time semantic segmentation computed over two dif-
ferent cameras.
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Color Semantic Meaning

Background

Da Vinci tools

SARAS tools

Pelvic Bone

Pelvic Floor Muscle

Anterior Prostatic Fat

Vas Deferns and Seminal Vescicles

Ureter

Catheter

Bladder

Bladder Neck

Prostate

Prostate Neck

Urethra

Table 7.1: Semantic Scene Color Encoding

7.3.3 Semantic monocular SLAM

A basic assumption in most current SLAM approaches is that the environment
is static. However, active objects exist in many real-world scenes. In the case
of laparoscopic surgery, the most typical dynamic objects are surgical tool and
the organ or surface being manipulated. To address this issue, identifying the
dynamic objects from the static parts, and then discarding them before pose
estimation is necessary.

Knowing the surgery to be performed, we know which organs could be
moved or the most deformable surfaces and through the use of semantic seg-
mentation we can create a mask around them. Assuming that each input frame
contains dynamic features, a mask is obtained by binary semantic segmentation
calculation. The features obtained by the ORB feature extraction algorithm
in the SLAM system are removed from the feature sequence when they are
located in the mask region, while the features in other regions continue to be
used for subsequent tracking and mapping. By using the mask to limit the
feature detection area and thus prevent the feature points from concentrating
on the dynamic objects, false extraction and matching can be avoided.

As shown in Figure 7.7, the feature point detection on the dynamic objects
is successfully excluded by using the mask. Fig. 7.7b shows an example of
filtering dynamic ORB features by using semantic segmentation results naively
as masks. In Fig.7.7a, the ORB features extracted by the SLAM where we
subtract the mask, which includes the bladder and the instruments.

Compared with the original ORB-SLAM2 algorithm, the feature points on
the surface of dynamic objects are eliminated using semantic segmentation,
and a higher quality of map construction can be obtained. Figure 7.8 shows
an example of the sparse pointcloud obtained after removing the instruments,
with anatomy mapped with semantic colors.
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(a) ORB-SLAM frame

(b) Semantic mask (c) Original frame

Fig. 7.7: SLAM process frame acquisition: (a) ORB feature detection after
applying the semantic mask; (b) the semantic mask of the bladder and instru-
ments; (c) the original RGB frame.

Fig. 7.8: Sparse point cloud encoded with semantic colors
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7.4 Discussion and Conclusions

We validate the method proposed within the SARAS project, using the phan-
tom utilized in perform the Robot-Assisted Radical Prostatectomy (RARP).

RARP is a surgical procedure where the surgeon utilises a robotic manip-
ulator to remove the prostate along with, in some cases, the seminal vesicles
and the pelvic lymph nodes [144]. The procedure is performed for treatment
of prostate cancer. All results of robotic prostatectomy so far indicate the ben-
efits of minimally invasive surgery while also showing encouraging short and
long-term outcomes in terms of continence, potency, and cancer control; it is
regarded as a major innovation in the surgical treatment of prostate cancer.
RARPs are currently performed using either the da Vinci® surgical system or
any comparable robotic platform. Surgeons remotely control the instruments
of the robotic manipulator using two joysticks available on the console. In the
operating room, there must be also an assistant surgeon next to the patient,
helping the main surgeon. This work provides a first step towards the full
automation of the assistant surgeon’s role.

We followed the procedure presented in [139, 172] that bridges the clinical
and engineering requirements to improve the effectiveness of both the sur-
geon, equipped with two da Vinci® instruments and an endoscope, and the
semi-autonomous assistant handling two standard laparoscopy instruments.
At first, the surgeon identifies the proper plane of dissection to operate on the
bladder neck, which is then divided transversely with respect to the urethra,
until he/she identifies the urethral catheter pushed through the prostate. At
this point, the assistant surgeon, using the right laparoscopic tool, mobilizes
the bladder to clear the view, and, with the left laparoscopic tool, raises the
prostate. Once the prostate is suspended anteriorly, the main surgeon grasps
the tip of the catheter and lifts it upwards to increase access to the lower part
of the prostate, including the vas deferens and the seminal vesicles.

After the prostate has been removed, the main surgeon performs the vesi-
courethral anastomosis. During this phase, the activities of the assistant sur-
geon consist of avoiding the bladder inflation by keeping it pushed down and,
once the suture has been completed, cutting the needle’s thread with the scis-
sors [144].

In this work we proved the feasibility of using semantic registration in or-
der to plan the motion of a semi-autonomous system using the pre-operative
data of a patient. We modify the ORB-SLAM2 architecture presented in chap-
ter 6 by incorporating semantic segmentation for minimally invasive surgery
scenarios. The semantic segmentation network was based on the model pre-
sented in [77], which is a Generative Adversarial Network (GAN) trained on
the SARAS phantom setup to include all the replicated anatomical structures
plus the catheter, the da Vinci®, and the SARAS tools. This network presents
the advantage of requiring very few training samples to obtain quality results.
Knowing the type of surgery it was possible to remove the dynamic structures,
such as the bladder and instruments, and thus improve the SLAM system in
order to obtain more accurate mapping results. In the last chapter we will
explain how we are going to further improve this framework.
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Conclusions

This thesis has faced the problem of reaching level 2 of autonomy in robotic
surgery, as of the classification of autonomy levels described in [215].

Specifically, in the first part of the thesis the choice of sensors, a new en-
doscope prototype and the calibration problem has been analyzed, which is
fundamental to obtain an accuracy such as to be able to deal with autonomous
surgical operations.

The proposed framework for autonomous surgical task execution has been
validated through different scenarios. Starting from benchmark training task
for surgeons, then to surgical procedure performed on realistic phantoms
that simulate the the lower abdominal. One challenge of autonomous robotic
surgery is the unpredictability of the anatomical environment and its behavior
intra-operatively, depending on the specific patient. To solve the problem of
non-rigid body a new SLAM algorithm has been proposed, based on ORB-
SLAM2 architecture, which adapts to the anatomical environment by registra-
tion of the pre-operative images to the 3D reconstruction and then to distin-
guish dynamic features from static ones to adapt the algorithm to a dynamic
environment. Finally, for the first time (to the best of the knowledge of the
author) a semantic registration for a semi-autonomous surgical robotic system
has been successfully applied. This proves that it is possible to reconstruct an
anatomical environment in an accurate way and to manage the dynamic parts
separately from the static environment. The experimental setup provided by
the ARS and SARAS projects allowed the entire system to be tested.

8.1 Future works

In the future works, we will focus on upgrading our SLAM algorithm, mainly
in two areas:

� Biomechanical properties to handle tissue deformation;
� Instrument marker-less tracking for an automatic hand-eye calibration.

8.1.1 Biomechanical modeling

While rigid registration algorithms allow computing the pose of internal organ
structures based on surface information, this sparse sensor information is often
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insufficient for compensating soft-tissue deformation inside the organ. In the
context of the sparse data exploration problem [140], accurate non-rigid regis-
tration can be solved by incorporating a priori knowledge about the mechanical
properties of the tissue via biomechanical modeling. Using elasticity theory, the
approach can be formulated as a boundary value problem with displacement
boundary conditions generated from intra-operative sensor data. In general,
the finite element method (FEM) is used to solve the resulting set of partial
differential equations. In several neurosurgical applications, this approach has
been successfully applied to compensate the brain shift with intra-operative
images [19, 116, 180, 210]. In contrast to neurosurgery, there are only a few
studies on abdominal or laparoscopic interventions that adapt this concept to
date [16, 17, 41, 115, 145, 151, 179, 186].

Using biomechanical models for non-rigid registration is challenging as fi-
nite element (FE) models are computationally intensive, but have to be solved
in real time for computer assisted surgery (CAS) while still being robust and
accurate. The application of fast, GPU-based FE solvers in combination with
a reduced model complexity is therefore crucial regarding real-time capability.
Various FE algorithms exist which can be used for hyper-, visco-, and poroe-
lastic models in the field of real-time soft tissue simulation [110, 116]. Both
methods have drawbacks regarding robustness and numerical complexity, es-
pecially in the context of an intra-operative application. Since previous studies
have shown that in this context the material law and its parameterization has
very little impact on the registration accuracy as long as a geometrically non-
linear model is used [116, 210], more efficient models, e.g. the corotated FE
[114, 186], can be used, also taking vascular structures inside the organ into
account [145]. Another aspect that has to be considered are morphological
changes due to cuts which have to be propagated in real time on the FE mesh.
A promising and efficient method for real-time cut simulation is e.g. the ex-
tended finite element method (X-FEM). Several approaches based on X-FEM
can be found in the literature [79, 199].

8.1.2 Instrument hand-eye calibration

In Chapter 3 we have emphasized the importance of calibration in the RMIS
procedure and how very low the calibration error needs to be in order to in-
crease the accuracy in the surgical intervention. So we considered introducing
an automatic calibration procedure using the surgical instruments by exploit-
ing the robot kinematics. we have already evaluated methods of segmentation
of the tools based on standard approaches and on semantic information, but
the estimation of the pose given the images has not yet been addressed in this
thesis.

An efficient method, for tools belonging to the category of robotic devices, is
to use a robot renderer with a CAD model in order to generate tool templates
according to specific kinematic joint configurations [158]. This is desirable be-
cause collecting training data becomes easier if the data come from videos,
thus enabling larger collection with less effort. Advantages of this type of data
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generation have been shown successfully in [176]. However, choosing appro-
priate object parts to model can also prove challenging, particularly due to
occlusion from other instruments, tissue and from the field of view. For surgi-
cal tools, modelling the tip region is the most viable tactic as it is the most
characteristic landmark for tool differentiation and is the most likely compo-
nent to be in view, relative to the tool end or tool body. However, tool tips
can be cumbersome to model when made of many parts, which is the case for
articulated surgical instruments.

By combining the developments presented in Sections 8.1.1 and 8.1.2 we
believe that the anatomical SLAM can be made more robust and could com-
pute the information that a robot would need to move safely in the deformable
and dynamic anatomical environment.
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[45] J. Engel, T. Schöps, and D. Cremers. “LSD-SLAM: Large-scale di-
rect monocular SLAM”. In: European conference on computer vision.
Springer. 2014, pp. 834–849.

[46] Y. Fan, H. Han, Y. Tang, and T. Zhi. “Dynamic objects elimination
in SLAM based on image fusion”. In: Pattern Recognition Letters 127
(2019), pp. 191–201.

[47] L. E. Fernandes, V. Custodio, G. V. Alves, and M. Fisher. “A rational
agent controlling an autonomous vehicle: Implementation and formal
verification”. In: arXiv preprint arXiv:1709.02557 (2017).

[48] F. Ferraguti, N. Preda, G. De Rossi, M. Bonfè, R. Muradore, P. Fior-
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