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Abstract

PORTABLE ROBOTIC NAVIGATION AID FOR THE VISUALLY IMPAIRED

By Lingqiu Jin

A submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2023.

Advisor: Dr. Cang Ye,

Professor, Department of Computer Science

This dissertation aims to address the limitations of existing visual-inertial (VI)

SLAM methods - lack of needed robustness and accuracy - for assistive navigation in

a large indoor space. Several improvements are made to existing SLAM technology,

and the improved methods are used to enable two robotic assistive devices, a robot

cane, and a robotic object manipulation aid, for the visually impaired for assistive

wayfinding and object detection/grasping. First, depth measurements are incorpo-

rated into the optimization process for device pose estimation to improve the success

rate of VI SLAM’s initialization and reduce scale drift. The improved method, called

depth-enhanced visual-inertial odometry (DVIO), initializes itself immediately as the

environment’s metric scale can be derived from the depth data. Second, a hybrid

PnP (perspective n-point) method is introduced for a more accurate estimation of

the pose change between two camera frames by using the 3D data from both frames.

Third, to implement DVIO on a smartphone with variable camera intrinsic parame-

ters (CIP), a method called CIP-VMobile is devised to simultaneously estimate the

intrinsic parameters and motion states of the camera. CIP-VMobile estimates in real

x



time the CIP, which varies with the smartphone’s pose due to the camera’s opti-

cal image stabilization mechanism, resulting in more accurate device pose estimates.

Various experiments are performed to validate the VI-SLAM methods with the two

robotic assistive devices.

Beyond these primary objectives, SM-SLAM is proposed as a potential exten-

sion for the existing SLAM methods in dynamic environments. This forward-looking

exploration is premised on the potential that incorporating dynamic object detection

capabilities in the front-end could improve SLAM’s overall accuracy and robustness.

Various experiments have been conducted to validate the efficacy of this newly pro-

posed method, using both public and self-collected datasets. The results obtained

substantiate the viability of this innovation, leaving a deeper investigation for future

work.

xi



CHAPTER 1

INTRODUCTION

1.1 Background

There are approximately 253 million people with visual impairment worldwide

[1]. Among them, about 36 million are blind. Vision loss limits their mobility and

deteriorates their quality of life. Currently, white cane, a century-old tool, is the

prevailing mobility aid that the blind and visually impaired (BVI) use for their daily

travel. Only about 2% of the BVI use a guide dog for their mobility need. These

people are also white cane users. Compared with the white cane, a guide dog is

costly to train and own and requires the BVI to take care of it. On the other hand,

a white cane is not an effective mobility tool in some cases because it cannot detect

above-the-waist obstacles and lacks a positioning function (locating the user in the

environment). The first shortcoming may cause safety problems for the BVI. The

second shortcoming makes it impossible for the BVI to get to the destination when

navigating indoors, as indoor space is GPS-denied.

As the population continues to age, the number of BVI people will grow [2].

Therefore, there is a dire need to develop new assistive wayfinding technology to help

the BVI with their independent mobility and improve their quality of life. To satisfy

this unmet need, this research aims to develop an assistive navigation tool called

RoboCane (RC) and the enabling technology to allow it for assistive wayfinding.
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1.2 Research Problems, Proposed Solutions, and Contributions

The problem of independent mobility (aka assistive navigation) of a BVI indi-

vidual includes wayfinding and obstacle avoidance. Wayfinding is a global problem

of planning and following a path toward the destination, while obstacle avoidance

is a local problem of taking steps without colliding, tripping, or falling. To provide

wayfinding and obstacle avoidance functions to a BVI traveler at the same time,

the location of the traveler and the 3D map of the surroundings must be accurately

acquired. The technique to address the problem is called simultaneous localization

and mapping (SLAM). In the literature, Visual SLAM and visual-inertial SLAM tech-

niques have been employed for assistive navigation. Visual SLAM estimates the poses

of a moving camera by tracking image features or appearance across image frames.

However, it only works well in a feature-rich environment. Visual-inertial SLAM over-

comes this shortcoming by pairing an inertial measurement unit (IMU) with a visual

camera and estimating the camera’s pose by processing both the visual and inertial

data. Numerous visual-inertial SLAM algorithms have been proposed in the past few

years. Some of them have been validated with remarkable results on public datasets,

such as TUM [3], KITTI [4], and EuRoC [5]. However, adapting these algorithms

to assistive navigation is still an open question. This dissertation aims to improve

the accuracy of visual-inertial SLAM under the condition of limited computing re-

sources. Three state-of-the-art visual-inertial SLAM methods, OKVIS [6], VI-ORB

[7], and VINS-Mono [8], were selected and compared by using data collected from

typical wayfinding scenarios. The results revealed that VINS-Mono outperformed

the other two. Therefore, it was chosen as the foundation of this dissertation, and

two enhancements were made to improve its accuracy for assistive navigation.

The first is to use a depth sensor to improve visual-inertial SLAM. A visual-

2



inertial navigation system (VINS) must be sufficiently excited for its initialization.

However, this requirement may not always be satisfied in a wayfinding scenario. In

addition, a VINS may suffer from scale drift due to the lack of direct measurement of

the scale (the size of the environment). To tackle these problems, a depth-enhanced

visual-inertial odometry (DVIO) method was proposed. DVIO uses an RGB-D cam-

era and an IMU for pose estimation. It uses the RGB-D camera’s depth data to

initialize the system and closely couples the depth data with the VINS-Mono frame-

work to estimate the camera’s pose, resulting in a more accurate and robust SLAM

system. The proposed DVIO was extended into a visual-LiDAR-inertial odometry

(VLIO) on an iPhone-based assistive navigation system, which eliminates the need

for a dedicated sensing and computing platform. The much more accurate and re-

liable depth measurements of the iPhone’s (12 Pro and later) LiDAR result in a

better SLAM system. To support algorithm development, a dataset called ”VCU-

RVI Benchmark” [9] was collected and made available online. The indoor dataset

is particularly designed for the evaluation of VIO and DVIO methods. It consists

of thirty-nine data sequences covering indoor scenarios, such as laboratory, corridor,

stairway, and atrium.

The second is to integrate online camera intrinsic parameters (CIP) estimation

with VIO for a smartphone-based wayfinding system. Modern smartphones use an

optical image stabilization (OIS) mechanism to reduce hand-tremor-induced image

blur. The mechanism, however, does not respond to low-frequency motion and thus

causes CIP variation, which may degrade pose estimation accuracy. To mitigate this

effect, a method called CIP-VMobile was developed to simultaneously estimate CIP

and VIO motion states. The method first uses a linear model that relates CIP with

IMU-measured camera acceleration to determine the initial CIP and then incorpo-

rates the CIP into a graph structure to fine-tune the CIP values and estimate the

3



VIO motion state. CIP-VMobile was validated in terms of VIO (with a smartphone

without a depth camera) and VLIO (with an iPhone with a LiDAR).

In this research, the RoboCane (RC) was used as a main platform to validate the

proposed SLAM methods. Several versions of the RC were fabricated to support the

work. In addition, a wearable device named Wearable Robotic Object Manipulation

Aid (W-ROMA) was developed and used to test the proposed algorithms. W-ROMA

can be viewed as a special assistive navigation device, which assists the user in finding

a collision-free path for the hand to reach and take a hold of the target object.

The dissertation is organized as follows. Chapter 2 provides a thorough litera-

ture review on existing robotic navigation aid (RNA) and visual and visual-inertial

SLAM technology. Chapter 3 introduces the RNAs proposed for this dissertation.

Chapter 4 describes the sensors used on the RNAs. Chapter 5 presents pose change

estimation methods based on visual data and that based on inertial data. Chapter

6 compares several state-of-art visual-inertial SLAM methods to justify the selection

of the method for this research. Chapters 7, 8, and 9 present the proposed DVIO,

VLIO, and CIP-VMobile algorithms, respectively. Finally, Chapter 10 concludes this

dissertation and discusses future research directions.
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CHAPTER 2

LITERATURE REVIEW

2.1 Literature in Robotic Assistive Devices (RAD)

A navigation aid is able to keep the BVI user away from the obstacles in the

path and at the same time make the user aware of their position and orientation.

Ultrasonic sensors are widely used on RNA for obstacle detection. An ultrasonic

sensor measures the distance to an object based on the time-of-flight of the ultrasonic

wave it emitted. A number of cane-shaped RNAs [10], [11], [12], [13], [14], [15] have

been developed using ultrasonic sensors. Other range sensors, including infrared [16],

[17], and laser [18], [19] have also been used in this type of RNAs. Due to the limited

sensing capability, these range sensors can only provide very limited object/obstacle

information. More importantly, they cannot provide device pose information and thus

the location of the BVI for wayfinding. While for most outdoor applications, GPS can

be easily accessed and used for localization, navigation is still a challenging task for

GPS-denied, especially indoor scenarios. Low-energy beacons [20], radio-frequency

identifications [21], and near-field communication tags [22] have been employed for

positioning to assist with wayfinding in indoor environments. However, the approach

requires re-engineering the environment and is thus not practical for most assistive

navigation scenarios.

Recently, cameras have been more commonly used for assistive navigation due

to their low cost and being able to provide rich information about the environment.

In the literature, several RNAs [23], [24], [25], [26], [27], [28], and [29] that use

cameras for assistive navigation of the blind have been introduced. Among these
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RNAs, [23] and [24] use a stereo camera, and [25], [26], [27], [28], and [29] use an

RGB-D camera as the perception sensor. In either case, visual data (or visual +

depth data) are processed to estimate the device’s pose, based on which the user’s

location is determined for wayfinding. A 3D point cloud map can be generated and

used for object/obstacle detection. The technology for pose estimation is called visual

simultaneous localization and mapping (SLAM), or vSLAM in short.

2.2 Literature in vSLAM

In vSLAM, the camera pose change between two image frames can be estimated

by analyzing the disparity between the frames. With a sequence of consecutive image

frames, the estimated pose changes can be translated into camera pose estimates.

The technique is also called visual odometry (VO). As an incremental method, VO

accumulates pose estimation errors over time, and the error may cause the navigation

system to malfunction. Therefore, it is crucial to develop methods to reduce/eliminate

the accumulative pose estimation error.

Based on how the disparity between two images is analyzed, the vSLAM can be

classified as one of the four categories: indirect sparse, direct sparse, indirect dense,

or direct dense methods.

A sparse method extracts and tracks a subset of the image pixels (like corner

points) called visual features (or feature points), while a dense method attempts to

extract information from all image pixels. The former needs a visual feature detector,

such as SIFT [30] or ORB [31], to determine the pixels that are going to be used for

tracking. Feature extraction takes much more time than feature tracking.

Direct or indirect methods can be distinguished by their residual models. Direct

approaches aim to minimize photometric errors, while indirect approaches attempt

to minimize the geometric reprojection errors of visual features. Direct methods

6



track pixels across the frames based on intensity (color, brightness) gradients, while

indirect approaches extract and track features based on their descriptors. In general,

indirect methods are more robust to lighting change but consume more computational

resources, while direct methods are more robust to fast camera motion but more likely

to fail with illumination changes.

2.3 Literature in Visual-Inertial SLAM (VI-SLAM)

In the past decades, many vSLAM methods have been proposed, including ORB-

SLAM (indirect sparse) [32], DSO (direct sparse) [33], Voldor (indirect dense) [34],

and LSD-SLAM (direct dense) [35], each of which is the state-of-the-art technique of

its category. Due to their incremental pose estimation nature, all of these methods

accumulate pose error over time. Although a loop closure, if detected, can be used

to eliminate the error, not all assistive navigation tasks incur a loop closure, or the

accumulative pose estimation error may be too big by the time of a loop closure.

Therefore, it is critical to reduce the speed of error growth in a vSLAM process.

Also, a vSLAM method degrades its accuracy in cases where the environment is not

feature-rich enough. It may fail if the environment is featureless.

To overcome the issue and improve the reliability/accuracy, an inertial measure-

ment unit (IMU) is added to the SLAM system, and both the visual and IMU data

are processed for pose estimation [7], [8], [36], [37], [38], [39]. As IMU can provide

accurate short-term pose change estimation, such a visual-inertial navigation system

(VINS) is more robust to a feature-sparse environment and drastic camera motion.

The method for camera pose estimation of such a VINS is called Visual-Inertial SLAM

(VI-SLAM) or Visual-Inertial Odometry (VIO), which is becoming increasingly pop-

ular in the robotics communities.

Existing VIO methods can be classified into two categories, namely loosely-
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coupled [36], [37], and tightly-coupled [7], [8], [38], [39]. A loosely-coupled method

usually has an independent vision-only pose estimator [32], [33], [34], [35], and a stan-

dalone filtering or batch optimization process to fuse IMU measurements. Weiss et al.

[36] propose to integrate the visual-based and IMU-based pose estimations by using

an extended Kalman filter (EKF), where the pose change estimated by the IMU is

used for state prediction, and the vSLAM-estimated pose is used for state update.

Indelman et al. [37] propose to use a factor graph to integrate the pose estimated

by a vision-only estimator, with that estimated by integrating the IMU data, and

estimate the pose by graph optimization. Such an approach ignores the correlations

between the states of the camera and the IMU, yielding a sub-optimal solution. On

the contrary, a tightly-coupled method jointly estimates the states of all sensors by

using their raw measurements.

Related works on tightly-coupled VIO approaches can be further categorized into

two categories, filter-based [36], [38] and optimization-based (also called smoothing-

based) [7], [8], [39]. MSCKF [38] is an extended Kalman filter (EKF) based VI-SLAM

method. It utilizes IMU measurements to predict the state and compute the predicted

measurements of the visual features, and it uses the actual visual feature measure-

ments to update the state vector. Unlike a traditional EKF, it simultaneously updates

multiple camera poses (each of which is a part of the state vector) using a novel mea-

surement model for the visual features. This model estimates a visual feature’s 3D

location by using its multi-view geometric constraint, computes the feature’s repro-

jection residuals on multiple images, and uses the visual features residuals to update

the state vector. The method adopts a delayed state update strategy to get the most

from the multi-view constraint, i.e., a tracked visual feature is used to update the

state vector only when it is no longer detected. In so doing, it uses much fewer visual

features for state estimation as those features that are currently tracked are not used.
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On the contrary, a smoothing-based VIO method [7], [8], [39] estimates all state

vectors (within a sliding window) by using all visual and inertial measurements re-

lated to the states, achieving a more accurate result in general. For instance, OKVIS

[39] finds an optimal set of state vectors that minimizes a cost function formulated

as the weighted sum of the residuals of the visual features’ reprojections and the in-

ertial measurements. OKVIS performs well on a stereo-camera-based visual-inertial

navigation system (VINS). However, its performance may significantly degrade in

cases where a monocular camera is used. This is because the method lacks a reli-

able approach to accurately estimating the initial values of the state variables (e.g.,

gyroscope bias, metric scale, etc.). Due to the non-convexity of the cost function,

an improper initial state estimate would most likely make the optimization process

converge to a local minimum that may result in an unacceptable pose estimation

error. To mitigate this issue, VI-ORB [7] implements a sophisticated sensor fusion

procedure to bootstrap a monocular VINS with a more accurate initial state esti-

mate, including the pose, velocity, 3D feature locations, gravity vector, metric scale,

gyroscope bias, and accelerometer bias. However, it requires a 15-second process to

collect visual-inertial data with adequate acceleration (IMU excitation). It is inappro-

priate for applications that require an accurate scale estimate right at the beginning.

Qin et al. [8] discover that the metric scale error is linearly dependent upon the ac-

celerometer bias, and it requires a long duration of sensor data collection to estimate

the scale and the accelerometer bias simultaneously. To overcome the problem, they

propose the VINS-Mono [8], where the initialization process is simplified by ignor-

ing the accelerometer bias. The method uses a two-step approach to initializing the

VINS’ motion state. First, it builds a scale-dependent 3D structure with a visual-

only structure-from-motion (SFM) method. Second, it aligns the IMU integration

with the visual-only structure to recover the scale, gravity, velocity, and gyroscope
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bias. This initialization approach converges much faster (in ∼100 ms) with a negligi-

ble accuracy loss, enabling VINS-Mono to perform well even if the VINS starts with

smaller IMU excitation and/or non-trivial initial IMU bias. However, VINS-Mono

[8] still falls short of real-time computing performance on a computer with limited

computing power [40].

Although it was claimed that these state-of-the-art VI-SLAM methods achieved

superior accuracy and robustness, their performances are case/application dependent.

Therefore, it is necessary to investigate their performance in the context of assistive

navigation. To this end, three state-of-the-art graph-based visual-inertial SLAM-

OKVIS [39], VI-ORB [7], and VINS-Mono [8], were further analyzed and compared

for assistive navigation with the RNA (detailed in Chapter 6). Based on the results,

the best method was selected as the framework and was extended by improving its

pose estimation accuracy to meet the need for assistive navigation.

10



CHAPTER 3

ROBOTIC NAVIGATION AID (RNA)

3.1 RoboCane (RC)

Several versions of RoboCane (RC) were fabricated and used during the project

period developed for data collection and algorithm evaluation. In general, an RC

consists of a cane-fitted computer vision system and an active rolling tip (ART) [41].

The former comprises a sensor suite (for SLAM and object/obstacle detection), a

computer, and a power supply (battery), while the latter, if activated, may steer the

RC into the desired direction of travel to guide the movement of the BVI traveler.

3.1.1 RoboCane (RC) using a UP Board

Fig. 1. RC prototype V1 (left) and V2 (right)

As depicted in Figure 1, the first two versions of RC prototypes use a sensor-suite

consisting of an Intel RealSense RGB-D camera and an IMU (VN100 of VectorNav

Technologies), and an Up Board computer to form its navigation system. The first

11



version uses a RealSense R200, and the second version uses a RealSense D435 (which

is more accurate in depth measurement) is used. The camera is mounted on the cane

with a 25◦ tilt-up angle to keep the cane’s body out of the camera’s field of view.

This prototype and its successors use an ART [41] to steer the cane to the desired

direction of travel to guide the BVI user to move toward the destination.

Fig. 2. Active Rolling Tip (ART)

As depicted in Figure 2, the ART consists of a rolling tip, a gear motor, a motor

drive, and a clutch. A custom control board is built to engage and disengage the

clutch. When the clutch is engaged, the motor drives the rolling tip and steers the

cane. When it is disengaged, the rolling tip is disconnected from the gear motor,

and the user can swing the RC just like using a white cane. A UP Board computer

[42] is used to process the RGBD camera’s and IMU’s data and generate navigation

commands to control the ART.

3.1.2 RoboCane (RC) using an iPhone

As depicted in Figure 3, the latest two versions of RCs use an iPhone as its

sensing and computer platform and thus eliminate the need for a dedicated sensor

suite and computer. Images from the rear camera and inertial data from the IMU of

the iPhone are used for perception. Different from the previous versions, the ART

is controlled by the phone via a Bluno Nano board. The iPhone is connected to
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Fig. 3. RC prototype V3 (left) and V4 (right)

the Bluno Nano [43] through Bluetooth. Once Bluno Nano receives a navigation

command from the iPhone, it will send out control signals to ART via its GPIO port

and RS232 port.

3.2 Wearable Robotic Object Manipulation Aid (W-ROMA)

Fig. 4. W-ROMA hardware system

A wearable device namedWearable Robotic Object Manipulation Aid (W-ROMA)

was developed to help the BVI with wayfinding, object detection, and grasping. As

depicted in Figure 4, the W-ROMA comprises two main units: a sensing unit and a

guiding unit. The sensing unit employs an Occipital Structure Core (SC) [44], which
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is connected to and powered by a Google Pixel 3 via a USB-C cable. The SC has

a built-in 6-axis IMU (Bosch BMI055), a color camera, and a stereo IR camera (for

depth measurements from 0.3 to 5m). These sensors form an RGB-D VINS for device

pose estimation, 3D mapping, and target-object detection. The computational tasks

are all performed by the Pixel 3, which is equipped with a Snapdragon 845 processor

and 4 GB RAM [45]. Also, the smartphone powers the whole W-ROMA prototype,

including an SC sensor, a Bluno Nano board [43], and six vibrating motors.

A speech interface (using a Bluetooth headset) is used for human-device interac-

tion. In addition, six vibrating motors, controlled by the Bluno Nano board, are used

to indicate the direction of hand movement to align the hand with the target object.

The guiding unit determines the desired hand movement and generates a proper vi-

bration pattern to guide the user to move their hand to reach the target object. As

shown in Figure 4, the vibrating motors are installed on the surface of W-ROMA and

controlled by the Bluno Nano board (powered by Pixel 3 via a USB-C splitter cable

and communicates with Pixel 3 via Bluetooth). Each vibrating motor indicates one

of the six directions for the desired hand movement: up, down, left, right, backward,

and forward. A combination of two of the four vibrating motors (up, down, left,

right) indicates one of the four diagonal directions of movement: up-right, up-left,

down-right, and down-left. Once Bluno Nano receives a command from Pixel 3, it

generates the corresponding vibrating pattern and retains it for one second. Such

tactile guidance is more natural to follow than the speech command and avoids the

speech message delay.
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CHAPTER 4

SENSORS FOR SLAM

A visual-inertial navigation system (VINS) consists of a visual camera and a 6-axis

IMU. In this dissertation, a depth sensor is also used to enhance the VINS perfor-

mance. The operating principles of these sensors and the characteristics that may

affect SLAM will be detailed in this chapter. Some notions introduced in this chapter

will be used throughout the dissertation.

4.1 Visual Camera

In the literature, two camera models have been introduced. They are the thin-

lens model and the pin-hole model.

4.1.1 Camera Model

In the literature, two camera models have been introduced. They are the thin-

lens model and the pin-hole model. The latter is an ideal form of the former and

is more popularly used in visual SLAM. The pinhole model will be employed in this

thesis.

4.1.1.1 Thin-lens model

Most modern cameras produce the image of a scene by using one or a set of lenses

to focus the light onto the image plane. Rays of light from a surface point (Figure 5)

travel along their paths through the lens and converge at the point on the view plane.

In Figure 5, f denotes the focal length, and Z1 denotes the distance from the center

of the lens to a surface point on an object. The rays from the surface point P are in
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Fig. 5. Illustration of thin-lens model

focus (imaged) on the image plane as p with a distance Z0 from the lens center. Z0

and Z1 satisfy the following thin lens equation:

1

f
=

1

Z0

+
1

Z1

(4.1)

4.1.1.2 Pin-hole model

Fig. 6. Illustration of pin-hole model

A pin-hole camera is an idealization of a thin-lens camera as the aperture shrinks

to zero and f = Z0 in this case. For this model, a point in 3D space P = [X, Y, Z]T
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is projected on image plane as a 2D point p = [u, v]T with:

u =
X · f
Z

+ cx

v =
Y · f
Z

+ cy

(4.2)

where f is the focal length, cx and cy are the coordinates of the principal point.

The principal point pc = [cx, cy]
T is perspective center on image plane. cx, cy and f

form the intrinsic matrix K:

K =





f 0 cx

0 f cy

0 0 1




(4.3)

And Equation 4.2 can be expressed by:

Zp = KP (4.4)

Letting p = [u, v, 1]T denotes the 3D projection on a virtual plane with f = 1 and

cx = cy = 0, we have Zp = P .

In this dissertation, cx, cy, and f are collectively called the camera intrinsic

parameters (CIP). As shown in Equation 4.2, the CIPs are essential in relating a

3D point to its 2D image on the image plane. In cases where CIPs are unknown or

varying, an accurate CIP estimation is critical to the function of the vSLAM system.

The pin-hole camera model is an ideal form of the thin-lens camera model and

is popularly used in visual SLAM. Therefore, it is adopted in this dissertation.

4.2 Depth Sensors

A depth sensor, as known as a range sensor, can provide depth information

about the scene. The techniques for depth measurement can be categorized into
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three types: stereovision, structure light ranging, and Time-of-Flight (ToF). Typical

depth sensors include depth cameras and LiDAR. Depth cameras can be classified d

into three classes: stereo, structured light, and ToF.

4.2.1 Stereo camera

Stereovision uses two cameras to mimic the binocular vision of humans. The

two cameras are fixed rigidly with a known displacement. Depth is triangulated

based on the disparity between the left and right images. Limited by its operating

principle, stereovision does not work well when the environment is not visual-feature-

rich, causing difficulty in stereo matching. Also, the measurement error of a stereo

camera increases quadratically with increasing depth. As a result, it is most suitable

for short-range depth measurement.

4.2.2 Structured light

A structured light depth sensor projects patterned infrared light onto the scene

to ease stereo matching even in a featureless environment. Some structured light

sensors also encode depth information in their lighting patterns, which changes with

the depth. The encoded information facilitates the computation of the depth for each

image pixel. Like stereovision, the depth accuracy of structured light depth sensors

also degrades quadratically with increasing distance.

4.2.3 Time of flight (ToF)

ToF depth sensors (including ToF cameras and LiDAR) use indirect Time of

Flight (iToF) or direct Time of Flight (dToF) ranging techniques to determine the

depth. An iToF depth sensor illuminates the scene by modulated continuous wave

IR light and determines the ToF by measuring the phase shift of the reflected light.

18



Thus, this technique incurs range ambiguity. To overcome the disadvantage, dToF

illuminates the scene with a single laser pulse and determines the depth based on the

time the laser pulse travels.

In this dissertation, a depth sensor is used to improve the performance of a

vSLAM/VI-SLAM system, as it may help determine the metric scale. The related

methods will be discussed in the next few chapters.

4.3 Inertial Measurement Unit (IMU)

The IMU used in this dissertation is MEMS (Micro-electromechanical systems)

IMU, which is composed of a 3-axis gyroscope and a 3-axis accelerometer and can

provide a 6-axis measurement of device movement. The gyroscope measures the

angular rate, and the accelerometer measures the acceleration. As IMU provides

measurements at a much higher rate (above 100 Hz) than a camera or depth sensor,

the measurements must be integrated to produce an IMU-estimated pose change

between two imaging/depth data frames. This means that the estimated pose change

is sensitive to the noise and bias of IMU data, particularly the translation that it is

double integrated from the accelerometer data.

The raw accelerometer measurements â and raw gyroscope measurement ω̂ can

be expressed as:

ât = at + bat +Rt
wg

w + na

ω̂t = ωt + bωt + nω

(4.5)

where bat and bωt stand for the accelerometer and gyro biases, respectively; Rt
w

denotes the rotation from the device coordinate system to the world coordinate system

at time t, and gw denotes the gravity in the world coordinate system {W}. The

white noises in acceleration and rotation measurements are modeled as Gaussian,

na = N (0, σ2
a) and nω = N (0, σ2

ω), respectively, and the derivatives of biases bωt and
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bωt are Gaussian distributed with N

0, σ2

ba


and N


0, σ2

bω


.

During the IMU propagation for pose estimation, the white noises of IMU are

unknown and assumed to be 0. The biases are also unknown and will be estimated

along with other state variables.
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CHAPTER 5

POSE CHANGE ESTIMATION

5.1 Pose Change Estimation with Mono Cameras

The relative movement between two frames can be described as a rotation R

and a translation t. Given two measurements (p1 and p2 on image frames 1 and 2,

respectively) of the same point P with the camera intrinsics K1 and K2, the spatial

relationship can be built as:

P c2 = RP c1 + t (5.1)

where P c1 and P c2 present the position of the 3D point P in the camera’s coordinate

system {C1} and {C2}, respectively.

From Equation 4.4, we have:

Z1p
c1 = K1P

c1

Z2p
c2 = K2P

c2

where pc1 and pc2 represent the projection of P on a virtual image plane with f = 1

in {C1} and {C2}, respectively. By substituting Equation 4.4 into Equation 5.1:

Z2p
c2 = K2P

c2 = K2 (RP c1 + t) (5.2)

pc2 = K−1
2 Z2P

c2 = RK−1
1 Z1p

c1 + Z1t (5.3)

K−1
2 pc2 = RK−1

1 pc1 +
Z1

Z2

t = RK−1
1 pc1 + st (5.4)

where s = Z1

Z2
is the scale. In the case of a monocular camera, Z1 and Z2 are unknown.
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As a result, s is unknown. Let s = 1 for simplicity.

We define the operation t∧ as follow:

t∧ =





0 −t3 t2

t3 0 −t1

−t2 t1 0




(5.5)

By multiplying t∧ on both side of Equation 5.4,

t∧K−1
2 pc2 = t∧RK−1

1 pc1 + t∧t (5.6)

t∧K−1
2 pc2 = t∧RK−1

1 pc1 + 0 = t∧RK−1
1 pc1 (5.7)

By multiplying K−1
2 pc2 on both sides of Equation 5.7, we have:


K2

−1pc2
T

t∧K2
−1pc2 = 0 =


K2

−1pc2
T

t∧RK−1
1 pc1 (5.8)

pc2TK2
−1t∧RK1

−1pc1 = 0 (5.9)

Let x1 = K1
−1pc1 and x2 = K2

−1pc2 , we have:

x2
TEx1 = pc2TFpc1 = 0 (5.10)

where E = t∧R which is known as Essential matrix, and F = K2
−1EK1 which is

known as Fundamental matrix [46].

E is a 3×3 matrix with 9 unknowns which can be solved by at least 8 points, any

four of which are non-coplanar, with the Eight-point algorithm [47]. The rotation R

and t can be recovered by singular value decomposition (SVD) [48].

E = U





a 0 0

0 a 0

0 0 0




VT (5.11)
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where a (a > 0) is the singular value of E, U and V are two orthogonal matrixes.

There are two possible factorizations of E,

E = U





0 −a 0

a 0 0

0 0 0









0 1 0

−1 0 0

0 0 1




VT (5.12)

or

E = U





0 a 0

−a 0 0

0 0 0









0 −1 0

1 0 0

0 0 1




VT (5.13)

The solution for Equation 5.12 is:

R1 = U





0 1 0

−1 0 0

0 0 1




VT , t1 = U





0

0

a




(5.14)

The solution for Equation 5.13 is:

R2 = U





0 −1 0

1 0 0

0 0 1




VT , t2 = U





0

0

−a




(5.15)

Since E = −t∧R also satisfies Equation 5.10, there are two more possible solutions:

R3 = U





0 1 0

−1 0 0

0 0 1




VT , t3 = U





0

0

−a




(5.16)
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or

R4 = U





0 −1 0

1 0 0

0 0 1




VT , t4 = U





0

0

a




(5.17)

Even though there are four possible solutions (Figure 7), only one solution (R1,

t1) is valid because the object must be in front of the image plane.

Fig. 7. Four possible solutions from SVD of E. The blue lines indicate the cameras

with different points of view. The red dots indicate the projections on the

image plane.

According to Equation 5.10, the estimation of the Fundamental matrix F only

depends on the coordinates of the image points. Therefore, this pose estimation

method is also called a 2D-2D method.

5.2 Pose Change Estimation with RGB-D Cameras

5.2.1 Pose Change Estimation with 2D-3D correspondences

Although the rotation between two camera image frames can be estimated with a

single visual (monocular) camera, the translation can only be estimated up to the scale

(i.e., by assuming an arbitrary scale). In other words, the translation is unknown.

By using an RGB-D camera, the scale can be directly computed from the depth data.

As a result, both rotation and translation (the full 6-degree-of-freedom (DoF) pose
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change) can be estimated. An RGB-D camera, consisting of a visual camera and a

depth sensor, produces both image and depth data. A depth data point Zd can be

associated with an image pixel pc by:

P c = ZcKc
−1pc = Rc

dP
d + tcd = Rc

dZ
dKd

−1pd + tcd (5.18)

where Rc
d and tcd are the extrinsics of the camera-depth-sensor suite. Most RGB-D

cameras provide Zc, which is registered with pc and computed with the raw depth

measurements Zd by Equation 5.18. For simplicity, Z denotes the depth measurement

for pc by default.

For 3D point P c1 = [X, Y, Z, 1] in the camera coordinate system {C1} and its

2D projection pc2 = [u, v, 1] at camera coordinate system {C2}, we have::

s





u

v

1




= [R | t]





X

Y

Z

1





=





a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12









X

Y

Z

1





(5.19)

With the depth information from the first frame, the scale (s) can be determined

accordingly. And from Equation 5.19, we have:

u =
a1X + a2Y + a3Z + a4

a9X + a10Y + a11Z + a12

v =
a5X + a6Y + a7Z + a8

a9X + a10Y + a11Z + a12

(5.20)

[R | t] ∈ R3×4 can be solved by Direct Linear Transform (DLT) [49]. At least 6 pairs

of 3D-2D associations (any four of them are non-planar) are required to solve the

problem.
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5.2.2 Pose Change Estimation with 3D-3D correspondences

For the feature points with a depth measurement on both frames, the 6-DoF

pose can also be estimated by ICP [50]. R and t can be solved by minimizing the

reprojection error J for a pair of corresponding 3D point-sets Pi
c1 and Pi

c2 :

min
R,t

J =
1

2

n

i=1

(Pi
c1 − (RPi

c2 + t))2 (5.21)

Let P̄ c1 and P̄ c2 denote the centroids of each point set:

P̄ c1 =
1

n

n

i=1

(Pi
c1) , and P̄ c2 =

1

n

n

i=1

(P c2
i ) (5.22)

J in Equation 5.21 can be derived as:

J =
1

2

n

i=1

Pi
c1 −RPi

c2 − t− P̄ c1 +RP̄ c2 + P̄ c1 −RP̄ c2
2

=
1

2

n

i=1

Pi
c1 − P̄ c1 −R


Pi

c2 − P̄ c2


+

P̄ c1 −RP̄ c2 − t

2

=
1

2

n

i=1

Pi
c1 − P̄ c1 −R


Pi

c2 − P̄ c2
2

+
P̄ c1 −RP̄ c2 − t

2
+

2

Pi

c1 − P̄ c1 −R

Pi

c2 − P̄ c2
T 

P̄ c1 −RP̄ c2 − t


(5.23)

Since
n

i=1


Pi

c1 − P̄ c1 −R

Pi

c2 − P̄ c2


= 0, the equation can be simplified as:

min
R,t

J =
1

2

n

i=1

Pi
c1 − P̄ c1 −R


Pi

c2 − P̄ c2
2

+
P̄ c1 −RP̄ c2 − t

2
(5.24)

The R∗ and t∗ to minimize J can be obtained by solving:

R∗ = argmin
R

1

2

n

i=1

Pi
c1 − P̄ c1 −R


Pi

c2 − P̄ c2
2

t∗ = P̄ c1 −RP̄ c2 − t

(5.25)
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Equation 5.25 can be solved by SVD:

W =
n

i=1


Pi

c1 − P̄ c1
 

Pi
c2 − P̄ c2

T

W = UΣV T

R = UV T

(5.26)

Each point set must contain at least three non-collinear points to solve the pose

change estimation problem.

5.2.3 Hybrid Pose Change Estimation

Each of the above-mentioned methods has its advantages and disadvantage. A

2D-2D method uses all correspondences to compute pose estimate and thus may result

in a smaller pose estimation error. However, it cannot determine the metric scale,

i.e., the translation is estimated by assuming an arbitrary scale. A 3D-2D/3D-3D

method, on the other hand, does not incur the scale problem. But it may not use

all correspondences for pose computation because only some of them have a depth

measurement. This may cause a larger pose estimation error. Usually, a 3D-2D

method has better accuracy than a 3D-3D method because there are more 3D-2D

correspondences than 3D-3D correspondences. As illustrated in Figure 8, there are

9 2D points that are associated between {C1} and {C2}, while only 6 points have

depth measurements on each frame. As a result, there are 6 associations that can be

established if a 3D-2D method is used and only 3 associations if a 3D-3D method is

used. Therefore, a 3D-2D method has better accuracy than a 3D-3D method as it

uses more data points to estimate the pose change. A commercially available RGB-

D camera may incur missing depth data on a dark/reflective surface. In a difficult

case, only a few visual features have a depth measurement. In this scenario, existing
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3D-2D methods may result in a large error in pose change estimation. To mitigate

the issue, a hybrid-perspective-n-point (HPnP) method was proposed in this work.

HPnP decouples the rotation and translation computation, i.e., first computes the

rotation by using all 2D points (visual features) and then determines the translation

using depth measurements from both frames. In this dissertation, the Eight-point

algorithm [47]is used to compute the rotation.

Fig. 8. Point associations between {C1} and {C2}. The red points indicate the points

with a depth measurement, and the blue points indicate the points without a

depth measurement. The points with a depth measurement in both {C1} and

{C2} are highlighted by the red box.

Assuming that there are K 3D points in {C1} and M 3D points in {C2} among

the N associated visual features and that rotationR has been computed, HPnP solves

the translation by using the projection equation. For a 3D point P c1 in {C1} and

the corresponding 2D point pc2 in {C2}:

P c2 = Zc2pc2 = RP c1 + t (5.27)

where P c1 can be calculated with P c1 = Zc1pc1 = [Xc1 , Y c1 , Zc1 ]T . Note that pc2 is

the projection of P c1 onto the image plane with f = 1, i.e., pc2 = [uc2 , vc2 , 1]T in C2.
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i.e.,

row1(R)pc1 + t1 = Zc2uc2

row2(R)pc1 + t2 = Zc2vc2

row3(R)pc1 + t3 = Zc2

(5.28)

where rowi(R) (i = 1,2,3) are the ith row of R and t = [t1, t2, t3]
T , respectively. By

substituting Zc2 in the 3rd row of Equation 5.28 into the other two equations, we

obtain:

t1 − uc2t3 = uc2 row3(R)pc1 − row1(R)pc1

t2 − vc2t3 = vc2 row3(R)pc1 − row1(R)pc1

(5.29)

i.e.,



1 0 −uc2

0 1 −vc2









t1

t2

t3




=




(uc2 row3(R)− row1(R))pc1

(vc2 row3(R)− row2(R))pc1



 (5.30)

For the kth (k = 1, · · · , K) 3D-2D point-pair, we can re-write Equation 5.30 as

M1
kt = b1

k for simplicity.

Similarly, for a 3D point P c2 in {C2} and its projection pc1 in {C1}, we have:




row1(R

T )− uc1 row3(R
T )

row2(R
T )− vc1 row3(R

T )









t1

t2

t3




=






row1(R

T )− uc1 row3(R
T )

pc2


row2(R

T )− vc1 row3(R
T )

pc2





(5.31)

For the mth (m = 1, · · · ,M) 3D-2D point-pair, we can re-write it as M2
mt = b2

m.
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Combining the two point sets, we have:





M1
1

· · ·

M1
K

M2
1

· · ·

M2
M





t =





b1
1

· · ·

b1
K

b2
1

· · ·

b2
M





(5.32)

For the above overdetermined system Mt = b, the solution t that minimizes Mt−

b2 is given by [51]:

t =

MTM

−1
MTb (5.33)

where M can be decomposed as M = UΣVT by SVD [48].

Therefore,

t = VΣ−1UTb (5.34)

To validate the proposed HPnP, simulation was performed by using a virtual

stereo camera (camera intrinsic parameters: cx = 320, cy = 240, fx = fy = 460

pixels, stereo baseline: 50 mm). The camera was simulated with imagery noise nτ ∼

N (0, σ2
τ ) (στ = 0.5 pixel). The depth data of each visual feature was computed from

the image disparity by triangulation.

The simulation compares the performance of HPnP with that of EPnP [52] under

different numbers of visual features with a depth measurement. The percentage of

visual features with a depth measurement changes at an increment of 10%. 1000

iterations were performed for each increment. In each iteration, 40 visual feature

correspondences were randomly created. The depth data for some (40% - 100%) of

the visual features were computed by triangulation. The movement between the two

camera poses was set as 10 degrees around an arbitrary direction and 20 cm along
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(a) Mean translation error

(b) Mean rotation error

(c) Mean execution time

Fig. 9. Transformation error of estimating a random motion of 20 cm translation and

10-degree rotation. HPnP computes the translation using the rotation estimate

from the Eight-point method [47].
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an arbitrary direction. The proposed HPnP is compared with EPnP as EPnP is

regarded as the state-of-the-art closed-form method [53]. The translation estimation

results are depicted in Figure 9 (a). To demonstrate the effect of using depth data from

both frames, HPnP using depth data from only one frame is also plotted. It can be

seen that 1) the translation estimation error of HPnP is consistently lower and much

better than that of EPnP; 2) translation estimation accuracy is improved by using

depth measurements from both frames; 3) as the percentage of visual features with

a depth measurement increase the differences between the three methods’ estimation

errors decrease. Figure 9 (b) compares the rotation estimation error of the eight-

point method with that of EPnP. Apparently, the Eight-point method is much more

accurate, and therefore, it is adopted by the proposed HPnP method as a smaller

rotation estimation error help to improve the accuracy of translation estimation. In

addition, although HPnP introduces more depth information which results in a larger

matrix when solving SVD, the computation growth is relatively slow. The complexity

of computing the SVD of a problem Ax = b , where A is a N×M matrix, is typically,

O(min(N2M,NM2)) + O(min(N,M)) + O(M2N). For translation computation,

M = 3, so, the overall complexity is O(N). As a result, HPnP has an even smaller

execution time than EPnP, as depicted in Figure 9 (c).

5.3 Pose Change Estimation with IMU

Unlike camera-based pose change estimation, IMU measurement can be used

to calculate the device’s 6-DoF poses in the world coordinate. By integrating the

IMU data during time interval [tk, tk+1], device’s Position pwbk+1
, Velocity vwbk+1

, and
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Quaternion qw
bk+1

(PVQ) can be computed as:

pwbk+1
= pwbk + vwbk∆tk +



t∈[k,k+1]

[Rw
t at − gw] dt2

vwbk+1
= vwbk +



t∈[k,k+1]

[Rw
t at − gw] dt

qw
bk+1

= qw
bk
⊗



t∈[k,k+1]

1

2
Ω(ωt)q

bk
t dt

(5.35)

where

Ω(ω) =




−ω∧ ω

−ωT 0



 ,ω∧ =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0




(5.36)

and gw denotes the gravity in the world coordinates.

It can be seen that the IMU state propagation requires the position, velocity,

and rotation of frame bk, and it must be re-computed when the starting state of

frame bk changes. To avoid this state re-propagation and save computational cost,

the pre-integration algorithm [54] is adopted. The method computes the IMU state

in the local frame bk (instead of the world frame), and thus IMU integration can be

performed by:

Rbk
w pwbk+1

= Rbk
w


pwbk + vwbk∆tk −

1

2
gw∆t2k


+ αbk

bk+1

Rbk
w vwbk+1

= Rbk
w


vwbk − gw∆tk


+ βbk

bk+1

qbk
w ⊗ qw

bk+1
= γbk

bk+1

(5.37)

where:

αbk
bk+1

=



t∈[k,k+1]


Rbk

t at


dt2

βbk
bk+1

=



t∈[k,k+1]


Rbk

t at


dt

γbk
bk+1

=



t∈[k,k+1]

1

2
Ω(ωt)γ

bk
t dt

(5.38)
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After considering the acceleration bias nba , gyroscope bias nbω , and additive noise na

and nω, Equation 5.37 is changed to:

αbk
bk+1

=



t∈[k,k+1]


Rbk

t (ât − bat−na)

dt2

βbk
bk+1

=



t∈[k,k+1]


Rbk

t (ât − bat−na)

dt

γbk
bk+1

=



t∈[k,k+1]

1

2
Ω (ω̂t − bωt−nω) γ

bk
t dt

(5.39)

αbk
bk+1

, βbk
bk+1

and γbk
bk+1

can be updated by their first-order approximations with respect

to ba and bω:

αbk
bk+1

≈ α̂bk
bk+1

+ Jαbaδbak + Jαbωδbωk

βbk
bk+1

≈ β̂bk
bk+1

+ Jβbaδbak + Jβbωδbωk

γbk
bk+1

≈ γ̂bk
bk+1

⊗

1

2
Jγbωδbωk


(5.40)

where Jαba ,J
β
ba
, Jγba ,J

α
ωa
,Jβωa

, Jγωa
at bk+1 can be calculated recursively from Jbk = I .

In this dissertation, Mid-point integration [55] is used for discrete-time calculation of

PVQ:

α̂bk
bi+1

= α̂bk
i + β̂bk

i δt+
1

2
ˆ̄aiδt

2

β̂bk
bi+1

= β̂bk
i + ˆ̄aiδt

γ̂bk
bi+1

= γ̂bk
i ⊗ γ̂i

i+1 = γ̂bk
i ⊗




1

1
2
ˆ̄ωiδt





(5.41)

where:

ˆ̄ai =
1

2
[qi (âi − bai) + qi+1 (âi+1 − bai)]

ˆ̄ωi =
1

2
(ω̂i + ω̂i+1)− bωi

(5.42)

δt is the time interval between the ith and (i+ 1)th IMU measurements.
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CHAPTER 6

COMPARISON AND ANALYSIS FOR THE VISUAL-INERTIAL

SLAM METHODS

6.1 Operating Principle of Visual-inertial SLAM

A graph-based visual-inertial SLAM method consists of five essential compo-

nents: initialization, feature tracking, loop detection (or re-localization), IMU pre-

integration, and nonlinear optimization. Initialization strives to estimate the initial

state of a VINS. Due to the nonlinearity, the quality of the initial state estimation may

significantly affect the accuracy of the backend nonlinear optimizer. Feature tracking

extracts visual features from the camera’s current frame and associates them with

that of the previous frames to generate constraints between the corresponding nodes

of the graph for graph optimization. Loop detection identifies a loop closure when the

VINS re-visits the same scene, and the loop-closure is then used to eliminate accu-

mulated pose error and recover the VINS from tracking failure. IMU pre-integration

integrates the readings of IMU between each two camera frames into state changes

(including the changes in pose and velocity, as well as the IMU bias) to create inertial

constraints between the two nodes. The nonlinear optimizer finds the estimate for

the VINS’s current state that minimizes the graph errors that factors the visual and

the inertial constraints. In this Chapter, the operating principles and performances of

several state-of-the-art visual-inertial SLAM methods, including OKVIS [6], VI-ORB

[7], and VINS-Mono [8], are evaluated, and the best one is selected for RC application.

Since these methods use a similar nonlinear optimization method, the strategies used

in the other four components are compared.
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6.1.1 Initialization

Initialization aims to compute the initial estimation for a VINS’s parameters,

such as the initial velocity, gravity direction, visual scale, and the biases of IMU

(gyroscope and accelerometer). Among OKVIS [6], VI-ORB [7], and VINS-Mono [8],

OKVIS adopts the simplest 2-step initialization procedure. First, it computes the

VINS’s attitude by aligning the IMU-measured acceleration with gravity. To make

the gravitational acceleration observable, the initial acceleration and IMU biases are

assumed to be zero. Second, it derives the visual scale by aligning the pose obtained

by visual odometry (VO) and the pose obtained by IMU integration. To calculate

the IMU translation, the initial velocity and the IMU’s initial biases are assumed to

be zero. Unfortunately, these assumptions are not applicable to the RC applications

as the VI user may be walking and swinging the RC. Therefore, OKVIS may incur

an inaccurate initialization, which may degrade the VIO performance.

VI-ORB [7] (Visual-Inertial ORB-SLAM) employs ORB-SLAM [32] to build a

visual structure as well as a local map, which is used to establish visual constraints

between keyframes. The use of a local map allows for re-establishing visual feature

correspondence (i.e., visual constraint) between keyframes if these features move out

of the camera’s FOV and re-enter the FOV. This visual constraint re-establishment

is called local loop-closure in this dissertation. VI-ORB obtains the initial state

estimate, including the scale, IMU bias, and motion state, by aligning the visual

structure with the structure obtained by integrating the IMU measurements. It takes

the method time to build a local map of sufficient size and use it to perform the

initialization process. In some cases, the initialization may take ∼15 seconds [56] to

converge. This is too long for RC when re-localization is needed (e.g., for system

recovery from a failure), making the method unsuitable for RC application.
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Unlike VI-ORB [7] that simultaneously estimation of gyroscope and accelerom-

eter biases, VINS-Mono [8] simplifies and thus speeds up computation by ignoring

accelerometer bias during the initialization step. The rationale is that considering

the large magnitude of the gravity vector, the effect of the accelerometer bias is quite

limited due to the short duration of initialization and low VINS dynamics. Similar

to VI-ORB [7], VINS-mono [8] takes a 2-step approach, building a visual structure

by vision-only SfM (structure from motion) and then aligning this structure with the

pose change estimated by integrating the IMUmeasurements, to recover the gyroscope

bias, visual scale, velocity, and gravity direction. After the initialization, VINS-Mono

boosts a tightly-coupled nonlinear optimization framework that estimates the state

of the VINS, including the inverse depths of the features (when first observed) in

camera coordinate systems, the position, velocity, and orientation of the IMU in the

world coordinate system, and IMU bias in the IMU body coordinate system. VINS-

Mono’s initialization process converges within several camera frames and thus can be

achieved in real-time.

6.1.2 Feature tracking

Feature tracking consists of three steps: first, track the features from the previous

image frame onto the current frame; second, extract more features from the current

frame; third, associate these new features with those from earlier frames (stored

in a local feature map) to create constraints between the current and all previous

frames. VI-ORB, OKVIS, and VINS-Mono have little difference in the first two

steps. However, they use different strategies for the third step, resulting in different

performances.

VI-ORB [7] enforces a strict feature tracking strategy of ORB-SLAM [32]. Specif-

ically, it reprojects the features in a local map onto the current image frame to find
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the matches. If the number of matched features is below a threshold, the tracking pro-

cess fails. Otherwise, a local bundle adjustment is run to refine the matched features’

locations. To keep the computational cost low, the method maintains a covisibility

graph, a graph structure based on the field of view, and uses it to quickly identify

feature matches. This tracking strategy may fail in a feature-sparse area.

Similar to VI-ORB [7], OKVIS [6] uses a local map to find visual feature corre-

spondences between the current and previous keyframe. However, it employs IMU-

integrated pose prediction to aid visual feature association, i.e., pose change predicted

by using IMU data is used to project the keypoints in the local map onto the current

image frame for visual feature association. As IMU data can be used to accurately

estimate pose change in a short period, OKVIS may perform more reliable feature

matching than VI-ORB, which is purely visual based, in some difficult cases (e.g.,

VINS is experiencing an abrupt motion [57]). This capability is essential to RC ap-

plication because RC may incur abrupt motion when the blind user is swinging the

device.

Unlike VI-ORB [7] and OKVIS [6], VINS-Mono [8] does not maintain a local map

for feature associations. Instead, it tracks the visual features between the current and

the previous image frame by simply using the KLT optical flow algorithm [58]. For

simplicity, this type of feature tracking approach is called Simple Match (SM) strategy

in this dissertation. Due to the use of the SM strategy, a visual feature that moves

out of and re-enters the camera’s FOV will create two tracks and thus disconnect the

visual constraints between the nodes of the two separate tracks.

6.1.3 Loop closure detection

Loop closures in the case of RC can be classified into short-term loops (STLs),

which are caused by the periodical swing motion of the cane, and long-term loops
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(LTLs), where the RC revisits the same scene. VINS’ pose uncertainty grows over

time. An LTL, if detected, can be used to eliminate the accumulated pose error.

An LTL can be detected by comparing the appearance of the scenes. VI-ORB [7]

and VINS-Mono [8] detect an LTL by evaluating the similarity of the scenes based

on DBoW [59] and bag-of-word, respectively. However, OKVIS [6] is incapable of

detecting LTL. For STL detection, VI-ORB [7] and OKVIS [6] use a local map to

create feature associations between the current frame and the previous keyframes.

However, VINS-Mono ignores STLs. Since STLs periodically occur when using RC,

the best strategy is to detect and use both short-term and long-term loops.

6.1.4 IMU pre-integration

IMU pre-integration was first proposed by Lupton and Sukkarieh in [60]. It com-

putes IMU pose change between two image frames by integrating IMU measurements

in the body/IMU frame. IMU pre-integration can be performed without the need for a

known VINS state and therefore avoids repeated integration of IMU measurements as

the IMU pose is iteratively updated during the process of VIO computation. Forster

et al. [54] improve the pre-integration theory by using the SO(3) manifold structure

to represent the rotation group and modeling the noise propagation and posterior

bias correction. As compared in [54], the SO(3) manifold-based IMU pre-integration

method outperforms the Euler-forward method. In VI-ORB [7] and VINS-Mono [8],

Forster’s method is used to process IMU’s measurements, while in OKVIS, the Euler-

forward method is used.

6.1.5 Summary

Table 1 summarizes the above comparison of the three VI-SLAMmethods. VINS-

Mono is adopted as the framework for this work as it has the best and fastest ini-
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tialization and uses a manifold structure for IMU preintegration. However, its simple

match strategy results in its incapability of SLC detection. Thus, VINS-Mono may

be enhanced by performing feature matching between several consecutive keyframes

so that it can detect SLCs and incorporate the related constraint into the graph to

improve pose estimation accuracy.

Table 1. Comparison of the VI-SLAM methods.

VI- SLAM Initialization Loop Detection
Feature

Tracking

IMU Pre-

integration

VIORB
Slow,

whole state estimation

Long-term,

Short-term
Local map Manifold

OKVIS
Fast,

only estimate gravity direction
Short-term

Local map,

IMU-aided
Euler Forward

VINS- Mono

Fast,

whole state estimation

(except for acceleration bias)

Long-term Optical Flow Manifold

For each column, the best strategy is bolded.

6.2 Experiments using TUM VI benchmark

To quantitatively compare the performances of the three VI-SLAM methods,

experiments were conducted by running these methods on the TUM VI benchmark

[61]. TUM VI benchmark [61] contains five diverse sets of sequences in various in-

door/outdoor scenarios for evaluating VIO/VI-SLAM. Four indoor settings, including

room, corridor, magistrale, and slides, were used for comparison. For trajectory eval-

uation, the ground truth poses at the start and end points of each sequence are

provided. For the room set, the ground truth is given throughout each trajectory.

VI-ORB [7], OKVIS [6], and VINS-Mono [8] were run on each dataset five times. For

the sake of a fair comparison, all methods were set to monocular (inertial) mode with
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their long-term loop detection modules disabled when running the datasets. Each

time, the estimated trajectory was aligned with the ground truth trajectory by min-

imizing the absolute trajectory error (ATE) in the same way as [61] to compute the

root mean squared error (RMSE). The averaged RMSE of the five runs was then

computed and used as the RMSE of the method for the dataset. The position error

(in the percentage of the trajectory length) was computed as the ratio of the RMSE

to the trajectory length and used as the performance index for comparison. The re-

sults are tabulated in Table 2. It is noted that VI-ORB [7] frequently failed on these

datasets. Its results are therefore not included. It can be observed that VINS-Mono

[8] has a smaller mean position error (over all sequences) than OKVIS [61]. The error

reduction is 45.74%. The experimental results support the selection of VINS-Mono

[8] as the framework for this dissertation.
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Table 2. Position error of the VI-SLAM methods on TUM VI dataset

Sequence Name OKVIS VINS-Mono Length [m]

corridor1 0.227 0.193 305

corridor2 0.273 0.295 322

corridor3 0.199 0.445 300

corridor4 0.257 0.272 114

corridor5 0.181 0.267 270

magistrale1 0.518 0.258 918

magistrale2 1.437 0.558 561

magistrale3 0.269 0.073 566

magistrale4 1.190 0.623 688

magistrale5 0.204 0.175 458

magistrale6 0.934 0.032 771

room1 0.049 0.0507 146

room2 0.0787 0.046 142

room3 0.049 0.090 135

room4 0.058 0.062 68

room5 0.044 0.162 131

room6 0.101 0.104 67

slides1 0.658 0.171 289

slides2 1.525 0.291 299

slides3 0.638 0.385 383

Mean 0.445 0.241 347

Result of the TUM VI benchmark: RMSE in percentage (%) of trajectory length

of the VI-SLAM methods. For each row, the best result is bolded.
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CHAPTER 7

DEPTH ENHANCED VISUAL INERTIAL ODOMETRY

While VINS-Mono [8] is one of the state-of-the-art VI-SLAM methods, it has three

disadvantages that must be addressed before it can be deployed for assistive navi-

gation of the BVI. First, its initialization process requires sufficient VINS excitation

(to estimate the metric scale and IMU biases), a condition that might not always

be satisfied. Second, the metric scale estimated by the method may drift over time.

Third, VINS-Mono requires a large visual parallax for SFM computation, as the vi-

sual features’ depths are determined by triangulation. To overcome these problems,

a new VIO method, called depth-enhanced visual-inertial odometry (DVIO), is pro-

posed for a more accurate and robust SLAM in this Chapter. DVIO is intended for

a VINS that uses a sensor suite consisting of an RGB-D camera and an IMU. It

employs HPnP (see Chapter 5.2.3) to build the visual structure (by using the RGB-

D camera’s depth) in its state initialization and state estimation processes. As the

visual features’ depth data can be provided by the depth camera, and the scale can

be easily determined by the depth measurements, the abovementioned problems are

effectively resolved. The proposed DVIO is employed by the RC and W-ROMA for

device pose estimation. Experimental results with the two assistive devices (using

different R-GDB cameras RealSense D435 and Structure Core) in both laboratory

and real-world scenarios validate the method’s efficacy.

The remainder of this chapter is organized as the following. The first section

gives a brief literature review on the related VIO algorithms. The second section

details the proposed DVIO algorithm. And the third section describes the navigation
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systems of the RC and W-ROMA and presents the experimental results with the two

devices.

7.1 Related Depth-Visual-Inertial Odometry (DVIO) Algorithms

Early research efforts on VIO have been devoted to monocular VINS [8], [62],

[63] and stereo VINS [39], [64], which use a visual (monocular or stereo) camera.

RGB-D-camera-based VIO remains a relatively less-explored area. Existing RGB-

D-camera-based VIO methods can be classified into two types, filtering-based and

smoothing-based. For the first category, an EKF-based VIO method is introduced in

[65] for pose estimation of an RGB-D-camera-based VINS. The method uses the pose

change estimated by IMU preintegration to predict the state and observation and

takes the pose estimated by using the visual-depth data as the actual observation

to update the state. With regard to the second category, dense RGB-D-Inertial

SLAM [66](by Laidlow et al.) estimates the optimal pose by minimizing an error sum

consisting of the errors of photometric per-pixel alignment, geometric (point-to-plane)

alignment, IMU pose measurement. The method is robust to aggressive motions as

well as scenes with low photometric and/or geometric variations. As the method is

computationally expensive, GPU speedup is required. In the case of a platform with

limited computing power, a sparse-feature-based VIO method is preferred due to its

computational efficacy. Taking the method in [67] (by Lin et al.) as an example, it

first computes the camera pose from the 3D point data of ORB features [31] by using

the least square method [50], then computes the VINS’s initial state (including the

IMU’s poses, velocities, bias, and gravity direction) by aligning the visual-odometry-

estimated camera poses with the IMU-estimated poses (i.e., IMU preintegration),

and finally estimates the system’s pose by minimizing the cost that factors in the

residuals of the visual and inertial measurements. This method is extended to an
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RGB-D-camera-based VINS in [68] where a 3D-2D PnP [52] method is employed

to build the visual structure by using corner points [69] as visual features, and the

RGB-D camera’s depth data are used to estimate the motion state via a nonlinear

optimization process (after the system’s initialization). For the work in [67] and [68],

each visual feature tracked over two image frames was assigned, at the time it was

first observed, an inverse depth (obtained from the RGB-D camera), which remains

constant during the iterative pose estimation process. This depth data treatment

scheme ignores the RGB-D camera’s depth measurement characteristics and may

introduce unwanted errors to the VIO computation. As indicated in Chapter 4.2, the

depth measurement error of the RGB-D camera increases with the distance. Certainly,

using inaccurate depth measurements in VIO may degrade the pose change estimation

result. One may prohibit the use of depth measurements beyond a threshold in VIO

computation. However, this reduces the number of feature correspondences with 3D

data, resulting in degraded pose accuracy. To overcome these problems, the proposed

DVIO allows the state estimator to update the inverse depths for the visual features

with depth measurements throughout the optimization process.

7.2 DVIO Algorithm

The proposed DVIO method consists of two components, frontend feature track-

ing, and backend state estimation. The feature tracking component extracts corner

features [69] from an image and tracks them across images by using KLT [58]. A

fundamental-matrix-based RANSAC process is implemented to remove the outliers.

Keyframes are selected based on the average parallax difference and the number of

tracked features, and managed by using a sliding window. The tracked features in all

keyframes within the sliding window are passed to the backend process to estimate

the VINS’s motion state. The backend state estimator starts with a sophisticated ini-
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tialization process and then proceeds with a nonlinear optimization process for state

estimation.

7.2.1 Initialization

The initialization procedure consists of two stages. In the first stage, a visual

structure (including the camera’s poses and the positions of the tracked features)

is built by a vision-only SFM process. To keep the computational cost low, only

keyframes within the sliding window are used, and sparse features extracted from and

tracked over these keyframes are used to build the visual structure. First, the pose

change between each pair of keyframes is computed by using a Perspective-n-Point

(PnP) method. Second, the depths of those visual features (on the two keyframes)

that have no depth data from the RGB-D camera are computed by triangulation

(using the estimated pose change). Third, the camera pose is estimated by using all

visual features from the keyframes within the sliding window. Finally, a global Bundle

Adjustment method is used to compute the poses for all keyframes and the features’

positions by minimizing the total feature reprojection error. Since depth data are

available from the RGB-D camera, a visual structure with a known scale (compared

to an arbitrary scale in [8]) can be obtained. In the second stage, a visual-inertial

alignment pipeline [68] is employed to estimate the VINS’s initial state, including the

IMU’s poses, velocities, and biases.

The pose change estimation (PCE) accuracy in the first stage determines the

position accuracy of the triangulated visual feature points, which affects the visual-

inertial alignment. In other words, the result of the initialization process highly

depends on the PnP method. VINS-RGBD [68] employs the 3D-2D-PnP method [52]

to compute the PCE since depth data are available. This method, however, may

result in inaccurate PCE if the number of visual features with a depth measurement
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is low. To mitigate the issue, HPnP (see Chapter 5.2.3) is used in this work.

7.2.2 State Estimator

The state estimation problem can be illustrated by a factor graph model [37].

A factor graph is a bipartite graph consisting of nodes and edges. There are two

types of nodes: variable nodes and factor nodes. A variable node represents the

random variable to be estimated, while a factor node encodes a measurement model

defined by a probabilistic distribution function (PDF) of the variable. Let the set

of variables up to m nodes denoted by Θm. The factor graph can be denoted by

Gm = (Fm,Θm, Em), where a variable node θi ∈ Θm represents an unknown random

variable to be estimated; a factor node fi ∈ Fm represents the variable’s probabilistic

distribution function; an edge εij ∈ Em indicates the connection/relation between

nodes fi and θj. The joint PDF of the graph Gm is factorized by:

pdf (Gm) =


i

fi (θi) (7.1)

Assuming a Gaussian measurement model, fi can be computed by:

fi (θi) ∝ exp


−1

2
ri2


= exp


−1

2
eTi Σ

−1
i ei


(7.2)

Here, ri2 is the squared Mahalanobis distance of vector ri; ei = hi (θi) − zi is the

residual vector, representing the difference between the estimated measurement hi (θi)

and the actual measurement zi; and Σi is the covariance matrix. ri = Σ
− 1

2
i ei is called

the normalized residual vector (residual hereafter for simplicity). The measurement

model fi represents a constraint for the estimation of θi. The solution to the state

estimation problem is to find the optimal value θ∗m that maximizes pdf(Gm):

θ∗m = argmax
θm



i

fi (θi) (7.3)
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It is equivalent to the following nonlinear least-square (LS) solution:

θ∗m = argmax
Θm


−


log f (θm)

= argmin

θm


m

i=1

ri2


(7.4)

In the proposed DVIO, this state estimation problem is solved by using the

visual, IMU, and depth data associated with the keyframes within a sliding window.

The state vector is defined as χ =

xw
b1
,xw

b2
, . . . ,xw

bn
,λ1,λ2, . . . ,λm


. Here, xw

bi
=


twbi ,v

w
bi
,qw

bi
,ba,bg


is the IMU’s motion state consisting of the translation, velocity,

rotation, accelerometer bias, and gyroscope bias for the ith keyframe. n is the size of

the sliding window, and m is the total number of features inside the sliding window.

It is noted that the latest image frame may not satisfy the keyframe criterion, but

it still is treated as if it were a keyframe and placed into the sliding window as the

nth keyframe. λk (k = 1, . . . ,m) denotes the estimated inverse depth of the kth visual

feature. In the context of this work, visual features are used for graph construction

only if they are tracked across at least two keyframes. The variable nodes of the

factor graph for this problem include the pose node Pi =

twbi ,q

w
bi


, inverse depth

node λk, IMU bias node bi = {ba,bg}, and velocity node vi =

vw
bi


; and the factor

nodes include the marginalization factor, preintegrated IMU factor, visual factor for

a feature with no depth measurement, depth factor for a feature with the depth

measurement at its first observation, depth factor for the feature with the depth

measurement on a subsequent frame. Figure 10 depicts the DVIO’s factor graph.

The residuals related to the factors of marginalization, IMU pre-integration, and

feature reprojection (FR) [65] are denoted by 0r,IMUri,i+1, and
FRrk, respectively,

and the residual for the kth visual feature’s depth measurement at the ith keyframe

(where it was first observed) and that at the jth (subsequent) keyframe are denoted as

Di
rik and Dij

rjk, respectively. The optimal state vector χ∗ for such a state estimation
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Fig. 10. Factor graph structure of DVIO: circle and square stand for variable node and

factor node, respectively.

problem can be obtained by solving the least-square problem:

χ∗ = argmin
χ


0r

2
+


i

IMUri,i+1

2

+


ij

ρ
FRrk

2

+


i

Di

rik


2

+


ij

ρ

Dij

rjk


2
 (7.5)

where ρ(·) is the Cauchy loss function [70].

For the kth visual feature (w/o depth) that was first observed on the ith keyframe

pci
k = [uci

k , v
ci
k , 1]

T and then tracked onto the jth frame as p
cj
k =


u
cj
k , v

cj
k , 1

T
with depth

measurement Z
cj
k , the estimated 3D coordinate can be computed by:

P̂
cj
k =


X̂

cj
k , Ŷ

cj
k , Ẑ

cj
k

T
= Rcj

ci
pci
k /λ̂

ci
k + tcjci (7.6)

where R
cj
ci and t

cj
ci are the rotation matrix and translation vector from {Cj} to {Ci},

respectively.

For the kth visual feature on the ith frame, the feature reprojection residual is
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given by:

FRrk = Σ
− 1

2
c


uk

cj −
Xcj
k

Ẑ
cj
k

, vk
cj −

Y cj
k

Ẑ
cj
k

T

(7.7)

where Σc is the imagery measurement covariance, and it is given by:

Σc = diag

σ2
X , σ

2
Y


(7.8)

with

σX = σY = στ/f (7.9)

where f is the focal length of the visual camera and στ is the imagery noise. Both

RealSense D435 and Structure Core (used in this work) use ”active” stereo vision

technology [71]. Their inverse depth noise obeys Gaussian distribution N (0, σ2
λ), σ

2
λ

is a constant related to the baseline l, IR camera imagery noise σγ, and IR camera’s

focal length fIR.

σλ = σγ/ (fIR · l) (7.10)

For the kth visual feature on the ith frame, the inverse depth residual vector Di
rik

is defined as:

Di

rik =
iek
σλ

=
1

σλ

(
1

Zci
k

− λ̂ci
k ) (7.11)

where 1
Z

ci
k

is the inverse depth measurement at the first observed frame {Ci}, and λ̂ci
k

is the estimated inverse-depth.

Similarly, for the kth visual feature on the jth frame, the residual vector Dij
rjk is

defined as:

Dij

rjk =
jek
σλ

=
1

σλ

(
1

Z
cj
k

− 1

Ẑ
cj
k

) (7.12)

where 1

Z
cj
k

is the inverse depth measurement at the frame {Cj}, and λ̂ci
k is the estimated

inverse-depth computed from Equation 7.6.

From Equation 7.5, it can be seen that DVIO automatically degrades itself into
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VIO if depth data are unavailable.

7.2.3 Marginalization

To restrain the computational complexity, DVIO optimizes the state variables by

maintaining a sliding window with a fixed size, where the same criteria in [8] are used

to determine which nodes are needed or to marginalize. To hand over the uncertainty

of the marginalized node, a marginalization scheme based on Schur complement [72]

is used. For a given information matrix H =




Hmm Hmr

Hrm Hrr



 and the corresponding

residual vector b =




bm

br



, r is the number of remaining nodes, andm is the number

of marginalized nodes.

The marginalization process computes the new information and residuals for the

remaining nodes:

Hnew = Hrr −HrmH
−1
mmHmr

bnew = br −HrmH
−1
mmbm

(7.13)

The new prior is constructed based on the existing prior and all marginalized mea-

surements related to the removed nodes. And the marginalized residual 0r can be

computed respectively.

The residual vector to be marginalized in this work include IMUri,i+1 and FRrk

as well as Di
rik and Dij

rjk if the related depth measurement(s) exists. For Di
rik,

information matrix H is a diagonal matrix in which the diagonal entries as 1/σ2
λ. For

Dij
rjk, the corresponding H and b can be computed from the Jacobian J by:

H = ⊤Σ−1Jδχ,b = −J⊤Σ−1r (7.14)
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where,

J =
∂r

∂χ
=

∂r

∂P
cj
j

·
∂P

cj
j

∂χ
, (7.15)

For Dij
rjk,

∂Dij
rjk

∂P
cj
j

=


0 0 − 1

(Zk
cj )2



∂P
cj
i

∂λ
= −Rc

bR
bj
wR

w
bi
Rb

c

P ci

λ2

(7.16)

where subscript/superscript w, b, and c denote the world, IMU, and camera coordi-

nate systems, respectively.

7.2.4 DVIO Performance Evaluation

7.2.4.1 DVIO Performance Evaluation by using SC

To demonstrate its effectiveness, DVIO was compared with two state-of-the-

art RGB-D-camera-based VIO methods, VINS-Fusion (the RGB-D version) [73] and

VINS-RGBD [68], by using a Structure Core (SC) sensor. The experimental data

were collected by handholding the SC while walking in the laboratory. The ground

truth trajectories of the experiments were obtained by using the OptiTrack Motion

Capture System (MCS) [74]. As shown in Figure 11, the SC sensor was placed into

a 3D-printed bracket with six infrared LEDs (powered by a battery). The MCS uses

these active IR markers to determine the SC’s pose, which is treated as the ground

truth. Five datasets (three short and two long trajectories) were acquired. The root

mean square error (RMSE) of an estimated trajectory was used as the performance

metric. The results are tabulated in Table 4. In each row, the smallest RMSE is

bolded. The results in the table show that DVIO has the smallest RMSE in four of

the five experiments, and its mean RMSE (0.269m) is smaller than that of VINS-

Fusion [73] (0.359m) and VINS-RGBD [68] (0.360m). On average, DVIO reduces the
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RMSE by 25.2% and 25.4%, respectively, when compared to VINS-Fusion [73] and

VINS-RGBD [68]. This demonstrates that DVIO has a more accurate pose estimation

accuracy than the other two methods. In addition, a qualitative result is shown in

Figure 12, where the point cloud map built for dataset 3 by using the DVIO-estimated

poses is rendered, and the trajectories estimated by the three methods are plotted.

The quality of the map reflects the DVIO’s good performance in pose estimation.

Fig. 11. Structure sensor and IR LEDs used for data collection

7.2.4.2 DVIO Performance Evaluation by using the RC

The performance of DVIO is compared with that of VINS-Mono [8] by exper-

imentation with the RC (see Figure 1 right) that uses a sensor suite consisting of

an intel RealSense D435 (camera) and a VN100 (IMU). Datasets were collected by

holding the RC and walking at a speed of ∼0.7 m/s. During each data collection

session, the user swung RC just like using a white cane. The ground truth positions

of the start point and endpoint are [0, 0, 0] and [0, 0, 20m], respectively (see Figure

13). The endpoint position error norm (EPEN) is used as the metric to evaluate pose

estimation accuracy. DVIO’s pose estimation accuracy and computational cost can
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Table 3. RMSE of the estimated trajectory of each method using SC hand-held data

Dataset TL (m) DVIO (m) VINS-Fusion (m) VINS-RGBD (m)

1 15.3 0.134 0.178 0.137

2 23.53 0.12 0.193 0.153

3 22.73 0.174 0.166 0.206

4 65.6 0.43 0.583 0.581

5 84 0.486 0.677 0.725

Mean 42.232 0.269 0.359 0.360

In each row, the best result is bolded. TL - Trajectory Length.

Fig. 12. The point cloud and estimated trajectories for dataset 2 by SC.
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be tuned by adjusting the size of the sliding window. A small window consisting of 4

pose-nodes is used for the sake of real-time computation. And for a fair comparison,

VINS-Mono also uses a 4-node sliding window, and its loop closure function is dis-

abled. To demonstrate that the use of depth data improves pose estimation accuracy,

the pose estimation results of DVIO are compared with that of VINS-Mono in Table

4. On average, it reduced the EPEN by 19%.

Fig. 13. Experiment settings for comparing EPENs of VINS-Mono and DVIO.
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Table 4. Comparison of EPEPs of VINS-Mono and DVIO

Dataset
VINS-Mono DVIO

(%) (m) (%) (m)

D1 1.34 6.7 0.87 4.35

D2 1.16 5.8 0.44 2.2

D3 0.76 3.8 0.57 2.85

D4 1.34 6.7 1.74 8.7

D5 1.21 6.05 1.09 5.45

Mean 1.162 5.81 0.942 4.71

In each row, the best result is bolded.

7.3 Visual Positioning System

7.3.1 Visual Positioning System for RoboCane

7.3.1.1 RoboCane System

A visual positioning system (as depicted in Figure 1) for the RoboCane (RC)

is developed to validate the proposed methods in real-world assistive navigation sce-

narios. The DVIO-estimated pose is used to: 1) generate a 3D point cloud map for

obstacle avoidance and 2) obtain a refined 2D pose on a floor plan map by using the

Particle Filter Localization (PFL) module for wayfinding. DVIO and PFL form a vi-

sual positioning system, based on which an assistive navigation system is created. The

system (as depicted in Figure 14) was developed based on the robot operating system

(ROS) framework. Each ROS node is an independent functional module that commu-

nicates with the others through a messaging mechanism. The Data Acquisition node

acquires and publishes the camera’s and the IMU’s data, which are subscribed by the
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DVIO node for pose estimation. The Terrain Mapping node registers the depth data

captured with different camera poses to form a 3D point cloud map, which is then

reprojected onto the floor plane to create a 2D local grid map for obstacle avoidance

and localization of RC in the 2D floor plan. Based on the RC’s location in the floor

plan, the Path Planning module [27] determines the desired heading to direct RC

toward the next point of Interest (PoI). This information is passed to the Obstacle

Avoidance module [75] to compute the Desired Direction of Travel (DDT) that will

move RC towards the PoI without colliding with the surrounding obstacle(s). Based

on the DDT, the ART Controller steers RC into the DDT, and the speech inter-

face sends audio navigation messages to the blind traveler via the Bluetooth headset.

Both the tactile and audio information will guide the blind traveler to move along

the planned path. The details of the major modules, such as PFL, Path Planning,

Obstacle Avoidance, and ART Control, are described below.

Fig. 14. Software pipeline for the assistive navigation software

7.3.1.2 Particle Filter based Localization

As an incremental state estimation method, DVIO accrues pose errors over time.

When using VIO for navigation in a large space, a loop closure can be used to eliminate

the accumulated pose error. However, if a loop closure cannot be detected or it is

not detected in a timely fashion, the accrued pose error may become big enough to

make the navigation system malfunction. To address the problem, the floor plan
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of the operating environment has been used to reduce accumulative pose errors in

the robotics community. The multimodal Particle Filter (PF) [76], a well-developed

method, has been used for robust pose tracking with a pre-built map. Winterhalter et

al. employ a 6-DOF PFL approach [77] to track the camera pose for a Google Tango

tablet in an indoor environment by using the data from the device’s RGB-D camera

and IMU. The method utilizes the VIO-estimated motion to predict the pose for each

particle. It computes an importance weight for each particle, which is proportional

to the observation likelihood of the measurement given the particle’s state. The

likelihood value is estimated by using the difference between the actual and expected

depth measurement on the floor plan given the predicted pose. A particle survives

with a probability proportional to its importance weight in the re-sampling step. To

adapt this idea to the application with RC, a simplified 3-DOF PFL method with a

reduced particle number is proposed to estimate the RC’s position and orientation

on a 2D floor plan for real-time assistive navigation. The proposed method creates

a local submap by registering 5 frames of depth data and aligns this map with the

floor plan to determine the device pose with respect to the floor plan. As the local

submap was created using multi-frame depth data, it has a higher success rate of

detecting geometrical features, making the localization method more robust to depth

data noise.

The proposed PFL consists of three steps, motion prediction, weight update, and

resampling. First, the RC’s pose change is computed from the DVIO-estimated poses

at time steps t− 1 and t, and it is used to predict the RC’s pose. At time step t, the

predicted pose for particle i is given by xi
t = xi

t−1 + ∆ξw
′

t + n0, where ∆ξw
′

t is the

projected RC pose change on Xw−Zw plane and n0 ∼ N (0,Λ0) is the pose noise with

Λ0 = diag

σ2
x, σ

2
y , σ

2
ψ


, σx = σz = 0.03m and σψ = 3◦. Second, given the pose xi

t and

the floor plan map m, the likelihood of making the measurement zt is computed by
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the sensor model p (zt | xi
t,m) ∝

225
β=−45 p (zt,β | xi

t,m), where p (zt,β | xi
t,m) with

zt,β ∼ N (ẑt,β, σ
2
d) , σd = 0.2m is the measurement model for the pseudo laser scanner

which produces 2D range measurements on m from −45◦ to 225◦ (with 1◦ interval)

at the current RC pose xi
t using depth measurements. The importance weight of

the ith particle is then updated by wi
t = ηwi

t−1p (zt | xi
t,m), where η is a normalizer.

Third, the adaptive strategy [78] is employed for resampling. The effective sample

size Neff = 1/
N

i=1 (w
i
t)

2
is used to evaluate how well the N−particle (N=100) set

represents the target posterior. If Neff < 0.8, a resampling operation is performed.

At time step t, the output of the PF is given by xt =
N

i=1 w
i
tx

i
t.

7.3.1.3 Path Planning

The Point of Interest (PoI) graph method [79] is used for path planning. The

graph’s nodes are the PoIs (hallway junctions, elevators, etc.), and each edge between

two nodes has a weight equal to the distance between them. The A* algorithm is

used to find the shortest path from the starting point to the destination. At each

PoI along the path, a navigational message is generated based on the next PoI. This

message is conveyed to the user by the speech interface. In addition, at each junction

PoI where a turn is required, the needed heading angle change is computed as the

difference between the current heading angle and the angle required to move toward

the next PoI.

7.3.1.4 Obstacle Avoidance

Traversability Field Histogram (TFH) [75] method is employed to determine an

obstacle-free direction for RC. First, a local terrain map surrounding RC is converted

into a Traversability Map (TM). Then, a Polar Traversability Index (PTI) is com-

puted for each 5◦ sector of the TM. The smaller the PTI, the more traversable the
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direction. The PTIs are structured in the form of a histogram. Consecutive sectors

with a low PTI form a histogram valley, indicating a walkable direction to RC. The

valley closest to the RC’s target direction is selected, and the DDT for RC is thus

determined. The steering angle for RC is calculated based on the DDT and the cur-

rent RC heading. The steering angle is then used to control the ART. In addition, a

navigational message is generated based on the next PoI. This message is conveyed

to the user via the speech interface.

7.3.1.5 ART Control

Fig. 15. left: RC swings from A to B, right: computation of θ from the accelerometer

data.

To steer the rolling tip of RC from position A to B and make a heading angle

change ∆ψ (see Figure 15), the required rotation of the motor is computed by ∆µ =

CL∆ψ cos(θ)/r, where C, L, θ, and r are the gearhead reduction ratio, the RC’s

length, the RC’s tilt angle, and the rolling tip’s radius, respectively. This means

that the RC’s turning angle can be accurately controlled by the motor. In other

words, RC may use its motor control system to steer itself in the desired direction

for the user to follow. In this work, C = 16, L = 1.47m, and r = 0.04m. The tilt

angle θ (see Figure 15) is mainly determined by the user’s height. It may undergo a
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small change when the user is walking. An initial value of θ can be estimated at the

beginning of each navigation task (when the user holds the cane steadily) based on

the accelerometer reading. The averaged value of the first 100 IMU readings, denoted

āb =

ābx, ā

b
y, ā

b
z


, is used to estimate the tilt angle by θ =

arctan

āoz/ā

o
y

, where

āoy = āby cosα + ābz sinα and āoz = −āby sinα + ābz cosα. α is the angle between Yb and

the cane body, and it is known a priori.

7.3.1.6 PFL Performance Evaluation with RC

To evaluate RC’s localization performance, experiments are carried out by hold-

ing RC and walking along several different paths on the second floor of the Engineering

East Hall of Virginia Commonwealth University. The floor plan map (as shown in

Figure 16 a ) is created from the architectural floor plan drawing after performing

necessary editing to the doors (to show the geometric shapes of the closed doors along

the paths). The distinctive geometric shapes of the areas around the doors, junctions,

and corners will be used by PFL for RC localization in the floor plan. For each exper-

iment, the target and actual Endpoints of RC were recorded, and their difference is

calculated as the EPEN for performance evaluation. Table 5 summarizes the EPENs

of the experiments. The trajectories estimated by PFL (i.e., DVIO + PF) and that

by DVIO only are compared in Figure 17 to demonstrate the improved localization

accuracy. It can be seen that PFL has a smaller EPEN for each experiment. Its mean

EPEN over all experiments is 0.58%, i.e., 82.5% smaller than that of DVIO, meaning

that the particle filter reduces the DVIO-accrued pose error by 82.5% on average. It

is noted that the use of EPEN in the percentage of path length allows us to compute

the mean value over experiments with different paths for overall performance com-

parison. In principle, PFL eliminates DVIO-accrued pose error whenever RC ”sees”

a geometrically featured region. When RC moves in a corridor (between two featured
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(a) Locations of obstacles and task destinations in the floor plan

(b) Snapshots of the scenes at the start point and Junctions 1, 2

Fig. 16. Experimental settings for localization/wayfinding experiments
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regions), PFL can eliminate the lateral but not the longitudinal position error. As a

result, PFL’s pose error is the PF alignment error plus the uncorrected DVIO pose

error since the last alignment (which occurred at the last geometrically featured re-

gion). This means that the path length does not affect the EPEN of the PFL method.

One can see from Table 5 that the EPEN of data sequence D6/D7 is much smaller

than that of D4 even if its path length is much longer. This is because the endpoint of

D6 locates at junction 1, and the last concave wall of D7 that RC ”saw” is very close

to the endpoint, while the elevator (endpoint for D4) is much farther from junction 3

(the last-seen feature). From the trajectory plots (Figure 17), it can be seen that the

trajectories estimated by DVIO (blue lines) intersect with the walls or doors as the

result caused by the accrued pose error. But the PFL method eliminated the pose

errors from time to time, resulting in much more accurate trajectories (red lines).

Table 5. Comparison of EPENs: meters (% of path-length)

Data Sequence Trajectory Length DVIO DVIO + PF

D1 80 m 3.42(4.28%) 0.45(0.56%)

D2 80 m 2.78(3.48%) 0.85(1.06%)

D3 80 m 1.71(2.14%) 0.78(0.98%)

D4 80 m 3.99(4.99%) 0.50(0.63%)

D5 120 m 3.72(3.10%) 0.58(0.48%)

D6 110 m 1.58(1.44%) 0.17(0.15%)

D7 190 m 7.20(3.79%) 0.32(0.17%)

Mean 3.20% 0.58%

In each row, the best result is bolded.
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Fig. 17. Trajectories estimated by DVIO and PFL (DVIO+PF) over the architectural

floor plan of the Engineering East Hall. The start point and the endpoint for

D6/D7 are the same.

7.3.1.7 Wayfinding Experiments with RC

The practicality of the visual positioning system is tested by performing two

navigation tasks in the Engineering East Hall. Task I is from RM 2264 to RM 2252

(path length: ∼ 35 meters), and task II is from RM 2264 to the elevator (path length:

∼ 80 meters). Two sighted persons (blindfolded) performed these tasks. Each person

conducted two experiments for each task and stopped at the point when RC indicated

that the destination had been reached. The EPENs (in meters) for the experiments

are tabulated in Table 6. Absolute EPEN is used as the performance metric for each

task. The average EPEN for tasks I and II are 0.20 m and 0.45 m, respectively.

Due to the small error, RC successfully guided the users to get to the destinations

in all experiments. Mean EPENs over persons and that over experiments for each

task is close to the overall averaged value (0.20 m or 0.45 m), indicating a consistent
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localization performance.

Table 6. EPENs of Wayfinding Experiments

❛❛❛❛❛❛❛❛❛❛❛❛❛
Task

Person

1 2 Mean

I (35m)
0.20 m 0.30 m 0.25 m

0.10 m 0.20 m 0.15 m

Mean 0.15 m 0.25 m 0.20 m

II (80m)
0.70 m 0.50 m 0.60 m

0.40 m 0.20 m 0.30 m

Mean 0.55 m 0.35 m 0.45 m

In these wayfinding experiments, numerous obstacles are placed along the paths

to test the assistive navigation system’s obstacle avoidance function. The results

show that the obstacle avoidance module functioned well, and the ART successfully

steered RC into an obstacle-free direction toward the destination. Successful obstacle

avoidance reflects accurate pose estimation of PFL from a different aspect.

7.3.2 Visual Positioning System for WROMA

7.3.2.1 W-ROMA System

The proposed DVIO method was validated with W-ROMA (presented in Figure

4). The coordinate systems of W-ROMA are depicted in Figure 18. The IMU (body)

and camera coordinate systems are denoted by {B} /(XbYbZb) and {C} /(XcYcZc),

respectively. The initial {B} is taken as the world coordinate system {W}. The

superscripts b and c indicate a variable in {B} and {C}, respectively. The trans-

formation matrix from {B} and {C} is pre-calibrated and denoted Tb
c =


Rb

c; tbc

,
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Fig. 18. IMU and camera coordinate systems for the W-ROMA

where Rb
c stands for the rotation and tbc the translation. Using SC’s depth data, we

can construct the 3D point cloud, which is denoted by P ck for the kth camera frame.

It can be transformed and described in Cn (i.e., the camera’s coordinate system when

the nth camera frame was captured) by P cn = Tcn
ck
P ck .

The hand coordinate system is denoted by {H} /(XhYhZh) and its origin Oh is

located at the image center as shown in Figure 19. The center point of the target

object expressed in {H} is denoted by P = [Xh, Yh, Zh]
T . If Zh ≤ 0, the ”backward”

command will be generated, indicating that the user should move the hand backward.

Otherwise, the system reports the distance Zh to the user. The projection of P on the

virtual image plane (XhOhY h), denoted p̃, is used to determine the required lateral

hand movement for alignment with the target object and thus the proper navigational

command. For example, if p̃ is in the right green region, the command ”right” will

be generated. If p̃ is in the down-left blue region ([-157.5◦, -112.5◦]), the command

will be ”down left”.

In the real world, object manipulation scenarios can be classified into three cat-

egories: 1) Case I: the target object is close and inside the views of both the color

and depth cameras; 2) Case II: the target object is beyond the SC’s depth range but
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Fig. 19. W-ROMA workflow: (a) Target object (a bowl) detected on an image; (b)

Depth image (texture-mapped); (c) The bowl is not visible on the image

(pixels with depth data are shown in red); (d) Top (XZ) view of the point

cloud data corresponding to (c); (e) The target object’s center projected onto

the virtual image plane of current (the entire point cloud is transformed for

visualization).

inside the color camera’s view; 3) Case III: the target object is outside of both color

cameras’ views, but it was observed and detected earlier. The guidance scheme is

designed and explained as follows.

Case I: At the kth camera frame, the object detection module detects the target

object on the color image and determines the center of the object’s bounding box

denoted P ck . P ck can be transformed into {H} by PHk = TH
c P

ck . Figure 19 shows

an example of this scenario. First, the object detection module recognizes the bowl

and returns the coordinates of a bounding box (Figure 19 (a)). Then, it is checked on

the depth image (Figure 19 (b) ) if there is a sufficient number of data points around

the center of the bounding box (i.e., within the square image patch in green as shown

in Figure 19 (b)). If yes, the center point of the target object is obtained by using

the data points within the patch. The center point is then transformed into {H} to

determine the hand-object misalignment and thus the desired hand movement and
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the navigation command.

Case II: W-ROMA detects the target object on the kth camera image frame. The

desired hand movement is computed based on the location of the object bounding

box’s center point. Since the object is beyond the depth camera’s range, the device

reports to the user that the target object is found but is in a distant place. In this

case, the device will signal the user to walk toward the object. The needed command

to retain hand-object alignment will be computed and conveyed to the user while

s/he is walking toward the target object.

Case III: As the target object was observed and detected earlier, its point cloud

is transformed into the current hand coordinate system to determine the required

hand movement. For example, the user walks away from the target object (bowl)

after it was observed and detected (in Figure 19 (a)), making it afar and become not

visible on the camera’s current image as shown in 19 (c). The center point (i.e., the

center of the green square in Figure 19 (b)) that was computed earlier is transformed

to the current camera coordinate system (see the green dot in Figure 19 (d) ). By

re-projecting the transformed center point onto the virtual image plane (as shown in

Figure 19 (e)), it can be found that the bowl lies in the right sector. Therefore, the

navigation command is ”move right”, and the right vibrating motor will vibrate for

one second, signaling the hand to move right.

In summary, as long as the target has been observed and its point cloud has

been generated, the system can accurately estimate the relative 3D distance and the

misalignment between the target and the hand. The information will then guide

the hand movement to reach the object. W-ROMA’s pose must be accurately and

reliably tracked to achieve this function. This will be achieved by the proposed DVIO

method.
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7.3.2.2 Wayfinding Experiments with W-ROMA

Five sighted volunteers were recruited to test the W-ROMA prototype for object

manipulation. Each of them was asked to perform an object manipulation task five

times with and without the device. The time taken to complete the task was recorded

for each experiment. If a volunteer could not grasp the target object in 2 minutes or

s/he picked up the wrong object, the task was terminated, and this test was considered

unsuccessful. Otherwise, it is a successful one. The number of successful trials (NST)

for each subject was also recorded for comparison.

The volunteers were blindfolded during the five trials. The target object was

a wooden bowl (Figure 19 (a)). At the beginning of each trial, the volunteer stood

in front of the bowl and was asked to move W-ROMA around slowly. This way, the

system can successfully detect and locate the bowl and initialize DVIO for pose track-

ing. Then the volunteer was accompanied by a sighted person and walked to another

place. By making the target object out of the camera’s view, it was intended to test

W-ROMA’s three functions: wayfinding: guiding the user to walk to the vicinity of

the target object; object detection: detecting the target object once it appears in the

camera’s view, and motion guidance: generating effective motion commands to guide

the user’s hand to grasp the target object. If any of these functions fails, the user

may fail to grab the bowl or need more time searching for it. When a subject started

to search the bowl by following the instructions from W-ROMA, the timer was set

to start. W-ROMA sends the volunteers a voice command every two seconds and a

vibration pattern every one second. At the beginning of each W-ROMA-aided test,

the volunteer was guided by a sighted person to touch the bowl and then escorted

to the navigation starting point. Then, s/he started searching for the bowl, and the

timer was set to start.
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Table 7. W-ROMA Humans Subject Test Results

w/ W-ROMA w/o W-ROMA

Subject NST Mean Time (s) NST Mean Time (s)

1 5 15.2 3 39

2 5 13 2 12

3 4 14 2 31

4 5 20 1 30

5 5 12 0 X

Mean 4.8 15.6 1.6 29.1

NST: Number of Successful Trials, X : Failed in all five tests. In each row, the

best result is bolded.

Table 7 summarizes the experimental results. It can be seen that with the as-

sistance of W-ROMA, the total success rate of trials was improved three times, from

32% to 96%. And the average time for task completion was halved, from 29.1s to

15.6 s. The results demonstrate that our W-ROMA can effectively help the person

in wayfinding and object manipulation.
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CHAPTER 8

VISUAL-LIDAR-INERTIAL ODOMETRY: A NEW

VISUAL-INERTIAL SLAM METHOD BASED ON AN IPHONE 12

PRO

Recently, smartphone manufacturers, such as Huawei, Samsung, Xiaomi, and Apple,

integrated depth cameras into their high-end smartphones. The depth cameras are

used to provide 3D point cloud data for facial recognition, enhanced autofocus, and

creating artificial depth of field. In 2014, Google started Project Tango, a proto-

type smartphone called Peanut, which became the first one equipped with a built-in

depth camera. In the same year, HTC released the first commercial smartphone, One

M8, with depth-sensing capability. However, the depth sensors on these devices are

mostly stereovison-based, which can only measure accurately at a very close distance.

In 2018, the iPhone 12 Pro was launched with a LiDAR scanner (LiDAR hereafter)

capable of measuring depth up to 5 meters with a small and relatively constant depth

error. The iPhone 12 Pro’s exceptional computational power and depth-sensing ca-

pability make it possible to form a phone-based DVIO system. In this chapter, a

thorough characterization analysis of the LiDAR on an iPhone was conducted to

evaluate the depth measurement quality. A new Visual-LiDAR-Inertial Odometry

method adapted from DVIO, named VLIO, was proposed to utilize the characteriza-

tion results. To the best of my knowledge, the proposed VLIO is the first of its kind

in the literature. To validate the efficacy of VLIO, five experiments were conducted,

and the pose estimation result of VLIO was compared with the results from Apple

ARKit 4 [80]. The proposed VLIO produces more accurate pose estimations due to
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its better incorporation with LiDAR’s depth data.

The remaining of this chapter is constructed as the following, the first section

will detail the characterization of the iPhone 12 Pro’s IMU and LiDAR, the second

section will present the egomotion analysis, the third section will introduce the VLIO

algorithm, and the last section will present the experimental results. For the rest of

this chapter, ”iPhone” is referred to ”iPhone 12 Pro” for simplicity.

8.1 Characterization of the iPhone’s IMU and LiDAR

Fig. 20. X-ray image of an iPhone 12 Pro

Figure 20 shows an X-ray image [81] of the iPhone. The wide-angle camera

located in the top left corner is used by VLIO. The camera’s and the IMU’s coordinate

systems are {C} /(XcYcZc) and {B} /(XbYbZb), respectively. The image frame rates

of the color camera and LiDAR are 30 Hz and the data update of IMU is 100 Hz.

8.1.1 IMU

The Camera-IMU calibration estimation methods [82], [8] can be used to au-

tomate the estimation of camera-IMU extrinsics. However, the estimation results,
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(a) Allan variance analysis on iPhone 12 Pro Accelerometer

(b) Allan variance analysis on iPhone 12 Pro Gyroscope

Fig. 21. Allan variance analysis on iPhone 12 Pro IMU
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especially translation, may be quite inaccurate due to the interplay between the ex-

trinsics and other parameters, such as IMU noise density, random walk, and camera

intrinsics. In this work, we chose to directly measure the camera-IMU displacement

from the X-ray image. We employed the Allan variance analysis to estimate the sta-

tistical properties of the iPhone’s IMU. The results are reported in Figure 21 and

tabulated in Table 8.

Table 8. Noise and Random Walk Bias of the IMU in iPhone 12 Pro

Noise density Random walk

Accelerometer 5.27× 10−4m
s2

1√
Hz

1.49× 10−5 m
s3

√
Hz

Gyroscope 1.45× 10−4 rad
s

8.50× 10−7 rad
s2

1√
Hz

8.1.2 Visual Camera

The visual camera in use is labeled in Figure 20. It is a rolling-shutter camera

with a 48◦ × 60◦ field of view and it streams color images with a 1440×1920-pixel

resolution at 30 Hz. The images have been undistorted. The Pin-hole model was

used for this camera.

8.1.3 LiDAR

The LiDAR on the iPhone uses the dToF ranging technique that provides depth

data ranging from 0.2 m to 5 m at a resolution of 192×256 points. The depth data

fill rate is > 95%. To model the depth measurement error, the camera(iPhone) was

placed in front of a wall and 400 consecutive data frames were taken at each distance.

The mean error and its standard deviation against the distance (ranging 0.5m -4m)

are plotted in Figure 22 and Figure 23, respectively. The mean is < 2 cm, and the

standard deviation is <1.5 mm.
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Fig. 22. Mean error of depth measurement from iPhone 12 Pro LiDAR vs. true depth

Fig. 23. Standard deviation of depth measurement error from iPhone 12 Pro LiDAR

vs. true depth
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A cubic spline to the data points in Figure 23 was fitted. The resulted spline

function will be used to estimate the mean error for a given depth value. Linear fitting

was used to approximate the relationship between the standard deviation and the

depth. The following equation is the fitting result with the coefficient of determination

R2 = 0.843:

σZ = 3.01× 10−4 × Z + 0.174 (8.1)

Equation 23 will be used to estimate the standard deviation of depth error for a

specific depth Z. It is important to note that the depth measurement error is ap-

proximately Gaussian distributed as the insertion in Figure 23. The Gaussianity

determines the new depth residual formulation, which will be discussed later in this

chapter.

8.2 Egomotion Analysis

HPnP was used to compute the camera egomotion with the raw LiDAR-visual

data. The data were collected from the iPhone installed on a motion table that

produced successive translational (X/Y/Z) movement with a 100-mm step-size or

rotational (roll/pitch/yaw) movement with a 3◦ step-size. The environment consists

of objects at various distances from 0.5 to 4 meters. 400 pairs of data frames were

collected before and after each movement. HPnP extracted corner features[69] from

the 1st image and tracked them onto the 2nd image by using the KLT tracker[58].

The mean and standard deviation of egomotion estimation error are tabulated in

Tables 9 and 10. It can be seen that the rotation estimation has: 1) an extremely

high repeatability (σ ≤ 0.05◦), owing to the LiDAR’s high repeatability in depth

measurement, and 2) a decent accuracy (µ ≤ 0.5◦) except for the yaw estimates in

the first group of Table 9. The error in yaw estimation can be further reduced if the
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Table 9. Measurement Accuracy of Rotation

❛❛❛❛❛❛❛❛❛❛❛❛❛
TV : (φ, θ,ψ)

MV : (µ, σ)

Roll φ (◦) Pitch θ (◦) Yaw ψ (◦) Reprojection Error (pixels )

(3, 0, 0) (0.08, 0.01) (0.01, 0.00) (0.27, 0.00) (0.53, 0.04)

(6, 0, 0) (0.05, 0.01) (0.03, 0.00) (0.44, 0.01) (0.83, 0.06)

(9, 0, 0) (0.05, 0.01) (0.04, 0.01) (0.61, 0.01) (1.14, 0.09)

(12, 0, 0) (0.12, 0.01) (0.04, 0.01) (0.80, 0.01) (1.46, 0.11)

(15, 0, 0) (0.21, 0.02) (0.03, 0.01) (0.97, 0.01) (1.74, 0.15)

(0, 3, 0) (0.04, 0.01) (0.03, 0.00) (0.06, 0.01) (0.83, 0.06)

(0, 6, 0) (0.05, 0.01) (0.01, 0.01) (0.14, 0.01) (1.14, 0.07)

(0, 9, 0) (0.04, 0.02) (0.13, 0.01) (0.21, 0.01) (1.52, 0.11)

(0, 12, 0) (0.03, 0.03) (0.12, 0.02) (0.30, 0.02) (1.95, 0.25)

(0, 15, 0) (0.03, 0.04) (0.07, 0.02) (0.39, 0.02) (2.31, 0.34)

(0, 0, 3) (0.09, 0.01) (0.05, 0.00) (0.23, 0.00) (0.67, 0.11)

(0, 0, 6) (0.16, 0.01) (0.03, 0.01) (0.25, 0.01) (1.05, 0.12)

(0, 0, 9) (0.21, 0.02) (0.04, 0.01) (0.20, 0.01) (1.40, 0.12)

(0, 0, 12) (0.28, 0.03) (0.09, 0.01) (0.24, 0.02) (1.73, 0.13)

(0, 0, 15) (0.33, 0.04) (0.10, 0.02) (0.32, 0.02) (1.93, 0.18)

MV: Measurement Values, TV: True Values, µ: Mean, σ: Standard Deviation.

LiDAR’s angular resolution 0.27◦×0.26◦
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Table 10. Measurement Accuracy of Translation

❛❛❛❛❛❛❛❛❛❛❛❛❛
TV : (X, Y, Z)

MV : (µ, σ)

X (mm) Y (mm) Z (mm) Reprojection Error (pixels)

(100,0,0) (2.31,3.47) (2.64,1.67) (4.37,2.75) (2.26,0.38)

(200,0,0) (3.64,6.21) (3.90,3.76) (5.76,5.64) (4.08,0.57)

(300,0,0) (3.91,4.41) (4.84,4.48) (6.73,4.99) (5.72,0.71)

(400,0,0) (6.00,5.86) (6.34,4.80) (8.13,6.12) (7.58,1.14)

(0,100,0) (3.99,0.37) (0.90,0.22) (1.66,0.43) (0.44,0.10)

(0,200,0) (7.81,0.64) (1.76,0.44) (1.23,0.86) (0.89,0.15)

(0,300,0) (11.32,1.01) (2.60,0.78) (3.61,1.90) (1.88,0.22)

(0,400,0) (14.29,1.63) (3.28,1.14) (4.62,3.27) (3.2,0.26)

MV: Measurement Values, TV: True Values, µ: Mean, σ: Standard Deviation.

LiDAR’s distance accuracy: <20mm

depth bias is compensated by using the mean error and more accurate camera intrinsic

parameters (on both frames) are applied. It can also be observed that both σ and µ for

translation estimations are several millimeters, which conforms to the LiDAR’s small

mean error (as shown in Figure 22). Similar results for movements with combined

rotation and translation were observed. Finally, the smaller the phone movement,

the smaller the egomotion estimation error. Since VLIO uses the reprojection error

of each visual feature in its cost function, the re-projection error was characterized,

and the results were shown in the 5th column of Table 10. It is noted that each

value represents the average overall matched visual features of an image pair. The

characterization results are also useful to some SLAMmethods that require computing

the egomotion between each pair of the pose nodes.
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8.3 Visual-LiDAR-Inertial Odometry (VLIO)

VLIO consists of two components, front-end visual odometry, and back-end state

estimation. The front-end computes the camera’s egomotion and tracks the visual

features for the backend, which closely couples the visual, LiDAR, and IMU data to

determine the optimal motion state that minimizes a cost function. In the front-end

visual odometry, HPnP is used for initial pose estimation. Due to the working princi-

ple of LiDAR, there are mixed pixels that degrade the depth-related pose estimation

results. Thus, a mixed pixels detection and removal module was applied to the raw

depth data before HPnP computation.

8.3.1 Mixed pixels detection and removal

The iPhone’s LiDAR data entail mixed measurements when a data point locates

at the edge of an object. Mixed measurements, also known as mixed pixels, are a well-

known issue with LiDARs in the robotics literature [83], [84]. As shown in Figure 24,

a mixed pixel occurs at an object’s edge because part of the light is reflected from the

front object and part from the background, resulting in a mixed depth measurement

in-between [85]. As a mixed pixel is along the light ray, it satisfies epipolar constraint

and thus cannot be removed by the RANSAC process in HPnP. To deal with the

problem, we developed a filter for mixed pixel removal. The filter first uses a Sobel

edge detector [86] to locate objects’ edges in the depth image. It then detects mixed

pixels along each edge by comparing each edge-point’s depth with that of its lateral

neighbors (i.e. one on each side of the edge). A substantial depth difference with the

neighbors indicates a mixed pixel. The depth value is then replaced by the depth of

the neighbor that is closer. The filtered LiDAR data, after subtracted by the bias

(mean error as shown in Figure 22), are then used by HPnP for egomotion estimation.
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Fig. 24. Mixed pixels in the iPhone’s LiDAR data
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8.3.2 Graph Optimization

Camera egomotion between two consecutive frames is computed by HPnP. An

image frame with sufficient parallax is identified as a keyframe. In this work, ten

keyframes are used to initialize VLIO. A global Bundle Adjustment (BA) method [87]

is used to refine the keyframes’ poses and the related features’ positions (obtained

from the LiDAR data when they were observed the first time) by minimizing the total

feature re-projection error. The visual structure optimized by BA is then aligned

with the IMU-estimated structure [68] to determine the VINS’ initial state. Due to

the small egomotion error and σz values, the initialization process results in a very

accurate initial state in a very short time.

After the initialization, an iterative optimization process is employed to solve the

nonlinear state estimation problem of the VINS by using the keyframes and the asso-

ciated IMU data within a sliding window. Similar to DVIO, the state vector of VLIO

is defined as χ =

xw
b1
,xw

b2
, . . . ,xw

bn
,λ1,λ2, . . . ,λm


. Here, xw

bi
=


twbi ,v

w
bi
,qw

bi
,ba,bg



is the IMU’s motion state consisting of the translation, velocity, rotation, accelerom-

eter bias, and gyroscope bias for the ith keyframe. n is the size of the sliding window,

and m is the total number of features inside the sliding window. λk (k = 1 . . .m)

denotes the estimated inverse depth of the kth visual feature. xw
bi

consists of three

variable nodes: Pi =

twbi ,q

w
bi


, vi =


vw
bi


, and bi = {ba,bg} in the factor graph.

The optimal state vector χ can be solved by the least-squares problem:

χ∗ = argmin
χ


0r

2
+


i

IMUri,i+1

2
+


ij

ρ
FRrk

2


+


i

Di

rik


2

+


ij

ρ

Dij

rjk


2
 (8.2)

where 0r, IMUri,i+1and
FRrk are the normalized residual vectors related to the factors
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of marginalization, pre-integrated IMU, and FR respectively [8]. Subscripts i and j

represent the ith and jth keyframes, respectively. Di
rik and Dij

rjk are the residual of

the kth visual feature’s depth at the keyframe where it was first observed and the

residual of its 3D position in a subsequent keyframe, respectively. ρ(·) is the Cauchy

loss function [70].

For the kth visual feature on the ith keyframe, the residual Di
rk is given by:

Di

rk =
iek
σz

=
1

σz

(Zk −
1

λ̂k

) (8.3)

where Zk is the actual depth measurement provided by the iPhone’s LiDAR, and

λ̂k is the estimated inverse-depth. As the LiDAR’s depth error follows Gaussian

distribution N (0, σ2
z) , where σz is estimated by using Equation 8.1. For the kth

visual feature that was first observed on the ith frame as pci
k = [ui

k, v
i
k, 1]

T
and then

tracked onto the jth frame as p
cj
k =


uj
k, v

j
k, 1

T
with depth measurement Z

cj
k , the

estimated 3D coordinate can be computed by:

P
j

k =

X̂cj , Ŷ cj , Ẑcj

T
= Rcj

ci
pci
k /λ̂

ci
k + tcjci (8.4)

where R
cj
ci and t

cj
ci are the rotation matrix and translation from {Cj} to {Ci}.

With depth estimate Ẑ
cj
k at {Cj}, the residual vector Dij

rjk can be computed

accordingly:

Dij

rjk =
1

σz

(Z
cj
k − Ẑ

cj
k ) (8.5)

8.4 Experiments

The pose estimation results of VLIO under several conditions were compared

to show the usefulness of the characterization results and the mixed pixel removal

method. These conditions include: 1) raw (µ, σ): raw LiDAR data after subtraction

of µ with σ determined by Equation 8.1; 2) filtered (µ): LiDAR data after removal
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of mixed pixels and subtraction of µ, with an arbitrary constant σ (σ = 10cm) ;

3) filtered (µ, σ): the same data as 2 with σ determined by Equation 8.1. The

experimental results (for type 3 data) were also compared with Apple ARkit 4, the

only available benchmark at the time that uses LiDAR data.

The iPhone’s image, LiDAR, and inertial data were collected by an operator

hand-holding it when walking along different trajectories in the laboratory. The

ground truth trajectories of the iPhone were obtained by the OptiTrack Motion Cap-

ture System (MCS)[74]. The Root Mean Square Error (RMSE) of the estimated

trajectories was used to compare the VLIO performance under different conditions.

The results on five of the datasets are shown in Table 11. In each row, the smallest

RMSE is bolded.

Table 11. Means and RMSE of the estimated trajectories under different conditions

Dataset Unit(m) Raw(µ, σ) Filtered(µ) Filtered(µ, σ) ARkit VINS-RGBD

Data 1 Mean 0.107 0.107 0.090 0.187 0.171

18m RMSE 0.117 0.116 0.101 0.204 0.193

Data 2 Mean 0.111 0.111 0.110 0.367 0.228

18m RMSE 0.123 0.124 0.122 0.399 0.252

Data 3 Mean 0.113 0.113 0.112 0.309 0.358

28m RMSE 0.138 0.139 0.138 0.343 0.340

Data 4 Mean 0.111 0.115 0.110 0.137 0.258

37cm RMSE 0.118 0.123 0.118 0.149 0.275

Data 5 Mean 0.230 0.230 0.179 0.332 0.574

39m RMSE 0.297 0.297 0.248 0.344 0.615

Average
Mean 0.50% 0.50% 0.45% 1.07% 1.12%

RMSE 0.57% 0.58% 0.53% 1.16% 1.23%

In each row, the best result is bolded.
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As can be seen, 1) the mixed pixels removal method consistently improves the

result: 6% and 3.5% reduction in mean error and RMSE, respectively (the 5th col-

umn versus the 3rd column); 2) the use of σ computed by Equation 8.1 results in a

similar improvement than the use of an over-estimated σ (σ=10 mm) (the 5th col-

umn versus the 4th column). VLIO performed much better than ARkit 4 in terms

of pose estimation accuracy. Its average mean error and RMSE are less than half of

that of the ARkit 4, and VINS-RGBD [68]. Figure 25 shows the point cloud map

built for dataset 5 and the estimated trajectory by using the VLIO-estimated poses.

The high-quality map and the very small estimation error of the endpoint indicates

that VLIO is very accurate in pose estimation. Among all three trajectories, the one

produced by VLIO is much closer to the ground truth compared to the others.

Fig. 25. The point cloud and estimated trajectories for dataset 5. The ground truth

trajectory begins and ends at the same point.
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CHAPTER 9

CAMERA INTRINSIC PARAMETERS ESTIMATION AIDED

VISUAL-INERTIAL ODOMETRY

In the last chapter, a smartphone-based VLIO was proposed as an extension of DVIO.

Using a smartphone as both the sensing and computing platforms may help to reduce

the size of VINS and result in a more portable navigation aid for the BVI. However,

a modern smartphone’s camera uses optical image stabilization (OIS) mechanism in

its lens to stabilize the image and reduce hand tremor induced image blur. The

OIS mechanism results in varying camera intrinsic parameters (CIP), which, if not

estimated online, may affect pose estimation accuracy. To address this issue, a linear

model is first developed to relate the CIP with the IMU-measured device acceleration.

Based on the model, a new VIO method, called CIP-VMobile, is introduced. CIP-

VMobile treats CIP as the state variables and tightly couples them with other state

variables in a graph optimization process to estimate the optimal state. The method

uses the values determined by the CIP-acceleration model as an initial CIP to speed

up the VIO computation. To simplify the case, the method uses only visual and

inertial data (i.e., no depth data is used). A RoboCane (RC) was fabricated by using

an iPhone 7 (see Figure 3 left) and used for experimental validation of the proposed

method in real-world navigation scenarios.

9.1 Optical Image Stabilization (OIS)

A smartphone’s camera uses a small imaging sensor and therefore requires a long

exposure time. Hand tremors during the exposure time can alter the optical path of
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the object being imaged and results in a blurred image. The OIS mechanism stabilizes

the image by using an actuator to shift the lens barrel to counteract the optical path

movement. Currently, the most widespread actuator is based on the voice coil motor

(VCM)[88], [89], which produces a force by running a current through the coil winding

amid the magnetic field. While it improves the image and video quality, the OIS

mechanism results in varying CIP, which may result in unwanted pose estimation

error if not considered by a SLAM method.

For a VCM-based OIS smartphone camera, the lens is connected to a mechanical

support that is anchored to the chassis by springs. The springs allow for the lens’s

translation and/or rotation, resulting in varying CIP. According to Hooke’s law, the

extension/compression of the springs is linearly proportional to the exerted force. As

the force is linearly related to the acceleration that the accelerometers can measure,

we use a linear model to estimate the CIP based on the accelerometer data. As a

result, the CIP for the kth keyframe is given by:

ηk = L (ak) = 〈α, ak〉+ β (9.1)

where ak is the accelerometer reading, 〈·, ·〉 stands for element-wise multiplication, α

and β are the coefficients whose values are determined by experiment.

9.2 CIP-VMobile Algorithm

The CIP-VMobile method is developed using the framework of VINS-Mobile,

extending it by adding CIP into the state vector for online estimation. Moreover, a

linear model was built to relate the CIP to the accelerations and used to constrain

the solution to the optimization problem. CIP-VMobile has two major modules:

front-end feature tracking and back-end state estimation. The front-end module is

the same as that of VINS-Mobile, while the back-end module is different, and it is
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described as follows.

9.2.1 Factor Graph

CIP-VMobile uses keyframes to estimate the poses by optimizing a factor graph.

At the time when the ith keyframe is captured, the state vector of the VIO problem

is defined as Θk =

xw
b1
,xw

b2
, . . . ,xw

bn
, ζ1, ζ2, . . . , ζn,λ1,λ2, . . . ,λm


. n is number of

keyframes, and m is the total number of features with the sliding window. Here, xw
bi
=


twbi ,v

w
bi
,qw

bi
,ba,bg


is the IMU’s motion state consisting of the translation, velocity,

rotation, accelerometer bias, and gyroscope bias. ζk =

f ci
c , ccix , c

ci
y


is the camera

intrinsic vector including the focal length and principle point for the ith keyframe,

and λk (k = 1, . . . ,m) denotes the estimated inverse depth of the kth visual feature.

xw
bk

consists of four variable nodes: Pi =

twbi ,q

w
bi


, ζi =


f ci
c , ccix , c

ci
y


, vi =


vw
bi


,

and bi = {ba,bg} in the factor graph.

Fig. 26. Factor graph structure of CIP-VMobile: circle and square stand for variable

node and factor node, respectively

Figure 26 depicts the factor graph, and the optimal pose can be obtained by

87



minimizing the residual error of the factor graph:

Θ∗
m = argmin

Θm


0r

2
+


i

IMUri,i+1

2
+


ij

FRrij
2
+



i

CIPrij
2


(9.2)

where 0r, IMUri,i+1,
FRrij and

CIPrij are the normalized residual vectors related to

the factors of marginalization, pre-integrated IMU, feature reprojection (FR), and

CIP prior, respectively.

9.3 Feature reprojection Factor

Let the kth feature point that was first observed at the ith keyframe be denoted as

pci = [uci , vci , 1]T , where (uci , vci) are the feature coordinates in {Ci}. The estimated

inverse depth for the feature point is λ. If the feature point is tracked onto the

jth keyframe as pcj = [ucj , vcj , 1]T , the tracked visual feature from {Ci} to {Cj} is

computed as:

P̂ cj =

X̂cj , Ŷ cj , Ẑcj

T
= Rcj

ci

π−1
i (pci)

λ
+ tcjci (9.3)

where

Rcj
ci
=


Rw

bj
Rb

c

T

Rw
bi
Rb

c, and tcjci =

Rw

bj
Rb

c

T 
Rw

bi
tbc + twbi −Rw

bj
tbc − twbj


(9.4)

π−1
i (pci) denotes the inverse camera perspective transformation of pci that is given

by:

π−1
i (pci) =


(uci − ccix ) /f

ci
c ,


vci − cciy


/f ci

c , 1
T

(9.5)

Then, the residual vector of the FR factor FRrk, can be defined by FRrk = Σ
− 1

2
ij eij.

where:

eij =


π−1
j (pcj)− P̂ cj

Ẑcj



2

(9.6)
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w(·)2 represents the first two entries of the vector. The covariance matrix is defined

as a diagonal matrix:

Σij = diag

σ2
γ/ (f

cj
c )2 , σ2

γ/ (f
cj
c )2


(9.7)

where σγ is the imagery noise. The Jacobians of eij with respect to pose variables Pi

, Pj, and inverse depth λk, (k = 1, .., n) are defined in [8], and the Jacobians with

respect to CIP ζi and ζj are given by:

∂eij
∂ζi

=
∂eij

∂P̂ cj
· ∂P̂ cj

∂(π−1
i (pci))

· ∂(π
−1
i (pci))

∂ζi
(9.8)

where

∂eij
∂ζj

= −




1 0 0

0 1 0









c
cj
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(f
cj
c )

2 − 1

f
cj
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0

c
cj
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2 0 − 1

f
cj
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0 0 0





∂eij
∂p′

j
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1

Ẑcj
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(Ẑcj)
2

0 1
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− Ŷ cj
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∂P̂ cj

∂(π−1
i (pci))

=
R

cj
ci

λ

∂(π−1
i (pci))
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c
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(fci
c )

2 − 1
f
ci
c

0

c
ci
y −vci

(fci
c )

2 0 − 1
f
ci
c

0 0 0





(9.9)

9.4 CIP prior factor

The residual vector of the CIP prior factor is then given by CIPrij = Σ− 1
2ek,

where:

ek = ηk − η̂k (9.10)
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The covariance of the CIP prior factor Σ is a diagonal matrix defined as:

Σ = diag


1

n− 1

n−1

i=1

〈δi, δi〉


(9.11)

where n is the total number of the data points and δi is the fitting error for the ith

data point.

9.5 Experimental results

The camera and IMU of the iPhone 7 were first characterized. Based on the

experimental data, a linear model that relates the CIP to the IMU-measured acceler-

ation of the camera was derived. Both simulations and experiments were conducted to

compare the pose estimation performance of CIP-VMobile with that of VINS-Mobile.

The performance of CIP-VMobile was also evaluated in assisted wayfinding applica-

tions by using the RC (see Figure 3 left) as an experimental platform in real-world

environments.

9.5.1 Calibration

As shown in Figure 27, the iPhone 7 was mounted on a Dynamixel EX-106

servo actuator that rotated the phone around its x, y, and z axes, respectively, from

0 to 210◦ with a step-size of 3◦. At each step, the 3-axis accelerometer reading

a = [ax, ay, az]
T and the camera’s CIP values are obtained. The CIP values were

determined by camera calibration [90]. The acquired data are plotted in Figure 28,

which clearly indicates that the CIP values are linearly related to the acceleration.

During the experiments, the focal lengths along the x axis and y axis are found

to be close to each other. Therefore, the difference in-between was ignored, letting

fc = fx = fy. The coefficients (α,β) of the linear CIP-Acceleration (CIPA) model
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Fig. 27. Data collection setup for iPhone 7

Fig. 28. Parametric fitting for the CIP’s linear model. cx, cy, fc unit: pixel.
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denoted L(a) can be obtained by line-fitting. The resulted model is given by

fc =






−0.6806 · az + 514.7183, az < 0

514.7183, az ≥ 0

cx = −0.8549 · ax + 319.6476

cy = −0.8817 · ay + 235.2553

(9.12)

The line-fitting result also produces the numerical covariance of the CIP prior factor

(see Equation 9.11):

Σ = diag (0.08585, 0.0392, 0.064) (9.13)

9.5.2 Simulation

The open-source code [91] was employed to generate simulated visual-inertial

data for a simulated run of moving the iPhone in an arbitrary trajectory (about

120 meters). The statistical properties of IMU and the values of the CIP are gen-

erated based on the calibration results. Visual features were projected by using a

virtual camera with the corresponding CIP. The standard deviation of a visual fea-

ture measurement σγ is set to 1.5 pixels. We ran CIP-VMobile and VINS-Mobile

on the simulated data. The estimated trajectories are compared against the ground

truth in Figure 29. Clearly, CIP-VMobile demonstrates a superior pose estimation

performance over VINS-Mobile: its trajectory closely tracks the ground truth while

VINS-Mobile diverges quickly from the ground truth.

To demonstrate that the graph optimization process can effectively refine the

CIPA-computed CIP, the CIPA model was purposefully degraded by increasing the

noise 10 times (from 0.3 pixels to 3 pixels) and the accelerometer noise by 3 times.

This significantly decreased the accuracy of the CIP data. CIP-VMobile with/without

CIP optimization was then tested on the simulated data. Figure 30 compares the
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Fig. 29. Trajectory Comparison using simulated data

trajectories generated by the two simulation runs to the ground truth. The CIP-

VMobile-generated trajectory is much closer to the ground truth. This was because

the CIP optimization procedure of CIP-VMobile refined the CIP (as shown in Figure

31) for each keyframe during the graph optimization process, resulting in a more

accurate camera model and thus a more accurate pose estimation result.

Fig. 30. Estimated Translation on x, y and z axis
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Fig. 31. CIP estimation using simulated data

In addition, the simulation results showed that CIP-VMobile resulted in more

significant errors in tracking the intrinsic parameters when the CIPA model was not

used to produce the initial CIP estimates. This was because without using the model,

the method started with some bad CIP values, which increased the chance for the

method to get stuck at the local minimum. The use of the CIPA model can effectively

alleviate the effect of the local minimum and reduce CIP estimation error. It also

reduces the iteration number of the graph optimization procedure and speeds up the

computation.

9.5.3 Experimental Results with Hand-held iPhone

Ten experiments were conducted in the laboratory by an operator hand-holding

the iPhone 7 when walking in a looped trajectory (with the same starting point and

endpoint) at an average walking speed (∼ 0.6 m/s). The length of the trajectory

for each experiment is about 20 meters. At the beginning of each experiment, the

iPhone was rotated significantly to excite the visual-inertial system to allow for a good
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system initialization. The Endpoint Position Error Norm (EPEN) in a percentage

of the path length is used as the metric of pose estimation accuracy. CIP-VMobile

consistently outperformed VINS-Mobile. The results of the experiments are tabulated

in Table 12. On average, CIP-VMobile reduces the EPEN error by 34.6%. Figure 32

compares the trajectories estimated by the two methods against that of the ground

truth trajectory for experiment 1. The CIP-VMobile generated trajectory tracks

the ground truth better than that of VINS-Mobile. The root mean squares of the

point-to-point position errors of CIP-VMobile and VINS-Mobile are 0.109 meters

and 0.148 meters, respectively, indicating that CIP-VMobile has an overall better

pose estimation accuracy.

Table 12. EPENs for experiments with a handheld iPhone

Exp 1 2 3 4 5 6 7 8 9 10 Avg

C 0.89 1.34 0.89 1.11 1.30 0.95 0.53 0.73 1.95 0.89 1.06

V 1.05 3.41 1.37 1.26 1.90 1.29 1.05 0.84 2.42 1.34 1.62

C: CIP-VMobile, V: VINS-Mobile, Exp: Experiment, Avg: Average

9.5.4 Runtime Analysis

CIP-VMobile and VINS-Mobile were deployed on a laptop computer (Intel Core

i7-8550U, 16 GB memory, Ubuntu 16.04 LTS 64-bit OS) for runtime analysis. The

results showed that both methods could compute pose in real-time. Taking the 1st

experiment in Table 12 for instance, the runtimes of the two methods are compared

in Figure 33. It can be seen that the runtime for CIP-VMobile to compute a pose

is larger than that of VINS-Mobile. On average, the runtimes for CIP-VMobile and

VINS-Mobile are 44.0 ms and 32.4 ms, respectively. With respect to the imple-

95



Fig. 32. Trajectory comparison using data by hand-holding an iPhone 7

mentation with a smartphone, VINS-Mobile achieved a real-time pose computation

performance (∼23 per pose computation) on an iPhone 7. Therefore, it is antici-

pated that CIP-VMobile can run in real-time on the same smartphone platform. It is

noted that VINS-Mobile uses simplified linear algebra libraries to save computational

cost when implemented with an iPhone 7, resulting in a faster speed than the laptop

implementation.

9.5.5 Experimental Results with the RC

To validate the CIP-VMobile method in the real world, experiments with the RC

prototype were conducted in the hallways of the Engineering East Building at VCU. In

each experiment, the RC user walked from Room 2264 to the elevator and returned to

the starting point. The user swung the RC when walking to mimic how a blind person

uses a traditional white cane. The results are tabulated in Table 13. It can be seen

that CIP-VMobile has a smaller EPEN than VINS-Mobile in all four experiments.
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Fig. 33. Comparison of the runtimes for CIP-VMobile and VINS-Mobile.

On average, CIP-VMobile reduces the EPEN by ∼ 11%. The trajectories estimated

by the two methods for experiment 3 are compared in Figure 34, from which it can

be observed that CIP-VMobile resulted in a more accurate trajectory than VINS-

Mobile. This is evidenced by that the trajectory of VINS-Mobile collides with the

walls at several locations, but no collision occurs along the CIP-VMobile estimated

trajectory.

Table 13. EPENs for experiments with the RC prototype

Experiment 1 2 3 4 Avg

CIP-VMobile 1.07% 1.57% 1.21% 1.59% 1.46%

VINS-Mobile 1.31% 1.69% 1.38% 1.85% 1.64%
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Fig. 34. Trajectory comparison using data from RC

9.6 Application in VLIO

The proposed online CIP estimation method was incorporated with VLIO and

tested by using the same dataset in Chapter 8.4. The results are tabulated in Table

14. As can be seen, with online CIP estimation the mean and RMSE are reduced

by 28% and 27%, respectively. CIP-VMobile and VINS-Mobile are also compared in

this table. CIP-VMobile reduces the RMSE by 21%.

9.7 Summary

A new VIO method, called CIP-VMobile, was introduced for pose estimation

of a modern smartphone. The proposed method treats the CIPs of the phone’s

camera as state variables. It tightly couples them with the other state variables

(including the camera poses, velocity, and IMU bias) in a graph optimization process
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Table 14. Means and RMSE of the estimated trajectories under different conditions

Dataset Unit(m) VLIO VLIO w/ CIP VINS-Mobile CIP-VMobile

Data1 Mean 0.090 0.079 0.086 0.068

18m RMSE 0.101 0.093 0.100 0.079

Data2 Mean 0.110 0.084 0.078 0.085

18m RMSE 0.122 0.104 0.098 0.102

Data3 Mean 0.112 0.093 0.138 0.110

28m RMSE 0.138 0.121 0.150 0.135

Data4 Mean 0.110 0.065 0.135 0.134

37cm RMSE 0.118 0.072 0.148 0.145

Data5 Mean 0.230 0.117 0.178 0.073

39m RMSE 0.296 0.122 0.239 0.078

Average Mean 0.47% 0.34% 0.44% 0.36%

RMSE 0.55% 0.40% 0.52% 0.41%

The best results are highlighted in blue, and the better result between the

methods with and without CIP estimation is highlighted in bold.

to solve the state estimation problem. As part of the state variables, the CIP values

are re-estimated at each iteration of the VIO process, resulting in a more accurate

pose estimate. A linear model relating the IMU-measured acceleration to the CIP

is created and used to initialize the CIP values for all keyframes. The use of the

initial CIP values speeds up the VIO computation and improves the pose estimation

accuracy. The method was validated to be effective with a robotic navigation aid in

real-world assistive navigation cases. The proposed method is the first of its kind in

the literature.
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CHAPTER 10

SLAM IN DYNAMIC ENVIRONMENTS

This dissertation aims to develop new SLAM techniques that are suitable for im-

plementation on an edge device and can be used to create smartphone applications

that can help the visually impaired in their everyday lives. The depth-enhanced VIO

method and the VIO method capable of online camera intrinsic parameter estimation

can effectively reduce accumulative estimation error of device pose. However, they

are based on an assumption that the scene is static. Such an assumption usually

does not hold in real-world scenarios. For example, indoor environments often have

moving objects (e.g., pedestrians), which will likely cause the VIO methods as well

as existing SLAM methods to malfunction.

Existing SLAM methods [8], [32], [92] use a VO front-end to estimate the pose

change between two image frames. The VO usually uses a PnP RANSAC [93] process

to find a motion consensus for the tracked visual features and remove outliers. It may

obtain an accurate pose estimate when static features in the view are dominant, and

their number is adequate. In this case, the minority dynamic features are identified as

outliers (and removed) and thus have little effect on the pose change estimation result.

However, when the dynamic features (1) are the majority or (2) have a consensus in

motion, existing VIO methods may incur a long RANSAC process to identify inliers

or even fail. In the former case, the low inlier ratio may dramatically increase the

number of iterations of the RANSAC process and thus result in a long computational

time. And in the latter case, the motion consensus falls on the moving object, and

the estimated pose change is therefore incorrect.
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In recent years, researchers have attempted to use deep-learning methods to

segment the scene and use the segmentation result to alleviate the negative impact

of moving objects on the performance of a SLAM method. The most representative

works include DynaSLAM [94] and DS-SLAM [95]. DynaSLAM [94] treats all movable

objects (e.g., people, cars) as moving ones regardless of their actual motion states

and only detects visual features from the regions containing static object(s) and the

background. DynaSLAM achieved good results on TUM dynamic dataset [3], where

two people are moving around in the scene. But its performance on some other

datasets (e.g., KITTI dataset [4]) is even worse than that of the original ORB-SLAM2

[92]. This is because it eliminates visual features on any movable object even if it

is static (e.g., a parked car). These features could otherwise be used for SLAM

computation. DS-SLAM [95], on the other hand, determines the moving features

on each segmented object by a RANSAC process based on the fundamental matrix

(i.e., by checking if each feature satisfies the epipolar constraint). If the number of

moving features is above a threshold, the object is treated as a moving one, and all

visual features on this object are excluded from SLAM computation. In essence, this

approach checks motion consistency between the parts of an object and uses the level

of consistency to speculate if it is moving. It makes sense for certain objects. For

instance, the moving lower-limbs of a person indicate he/she is in motion. Due to

its incapability in detecting the object’s movement relative to the static background,

the result can be erroneous, causing over-removal (false positive) or under-removal

(false negative) of moving features. Neither DynaSLAM [94] nor DS-SLAM [95] can

effectively solve SLAM with dynamic objects because they cannot reliably identify

static visual features in all cases.

To address the problem, I will wrap up this dissertation work by proposing a

semantic-segmentation-aided VIO method, named SM-SLAM, for dynamic environ-
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ments. It combines a deep learning object detection and segmentation method and

a popular SLAM framework (ORB-SLAM2 [92] or VINS-Mono [8]). The proposed

method first detects objects and semantically classifies their motion statuses into three

categories - likely moving (LM), likely static (LS), and dynamic. Then, it attempts

to identify any LS features out of the LM features and use them to increase the inlier

of the LS features, by applying RANSAC to one object after another. The outliers

generated by the RANSAC process are marked as dynamic features. SM-SLAM uses

only static features to estimate the pose change between two image frames.

10.1 Deep-Learning based Semantic Segmentation

In the field of computer vision, semantic segmentation plays a critical role in

understanding the content of images. Several representative approaches to semantic

segmentation are illustrated in Figure 35. The terminologies, Semantic Segmentation,

Instance Segmentation, Panoptic Segmentation, and object detection, are often used

interchangeably in the literature. However, each of them has its unique characteristics

and suitable application domains despite their common ground.

Semantic segmentation classifies each pixel in an image into predefined classes,

without distinguishing different objects of the same class. Instance segmentation, on

the other hand, not only classifies each pixel but also identifies distinct objects of the

same class. Panoptic segmentation combines the characteristics of both semantic and

instance segmentation, providing a comprehensive perspective by delineating every

pixel while also identifying individual objects. Object detection, distinct from the

above-mentioned, locates and identifies objects within an image without classifying

every pixel. Due to the difference in the operating principles, these methods incur

different computational costs. Table 15 shows the computational times of some com-

mon object segmentation/detection methods that I implemented with an iPhone 12
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Fig. 35. Four main classes of problems in detection and segmentation
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Pro smartphone. In these cases, the object detection models have been converted to

the Apple Core ML Model except for Mask-RCNN, which uses an older segmentation

model that cannot be specifically optimized for Apple devices.

Table 15. Computation time of object detection and segmentation methods

Name Task Speed

YOLOv8n-obj Object Detection 7.46 ms

YOLOv3 Object Detection 29.94 ms

DeepLabV3 Semantic segmentation 29.07 ms

SegNet Semantic segmentation 31.22 ms

Mask-RCNN Instance Segmentation 610.6 ms

YOLOv8x-inst Panoptic Segmentation 66.53 ms

Panoptic-FPN Panoptic Segmentation 71.88 ms

YOLOv8n-obj is the smallest and fastest variant of YOLOv8, while

YOLOv8x-inst is the full panoptic segmentation model of YOLOv8.

Recently, substantial advancements have been made in object segmentation and

object detection. The representative works include SegNet [96] and DeepLabV3 [97]

for semantic segmentation, Mask R-CNN [98] for instance segmentation, Panoptic-

FPN [99]and UPSNet [100] for panoptic segmentation, and YOLO [101] for object

detection. There have been attempts to integrate object segmentation/detection with

existing SLAM frameworks as this may allow a SLAMmethod to understand the scene

semantically and use the semantic object information to improve SLAM performance

in the presence of dynamic objects. For example, DynaSLAM [94] uses Mask R-

CNN [98] to provide instance labels with object semantic information. DS-SLAM

[95] employs SegNet [96] to serve a similar purpose (without instance information).

While these object segmentation methods provide highly accurate and comprehensive
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segmentation results, they do this at a significant computational overhead. This poses

challenges to their real-time implementation on a mobile device.

In contrast, object detection methods such as YOLO [101] can effectively detect

many common indoor objects (e.g., people, furniture, etc.) with a substantially lower

computational cost. Instead of segmenting objects in a scene, these methods identify

objects in terms of class and instance and label each of them by a bounding box. Even

though no object boundaries information is provided, the object detection result can

be used to analyze each object’s motion for dynamic SLAM.

Recently, YOLOv8 [102] is proposed as a state-of-the-art (SOTA) model for

object detection. It builds upon the success of previous YOLO versions [101] and

includes some new functions, such as instance segmentation. In this work, YOLOv8

is used to extract semantic information (including instance ID, object class, object

region, and detection probability) for the proposed SM-SLAM methods. In the rest

of this chapter, YOLOv8-obj stands for the YOLOv8 variant with object detection

function, while YOLOv8-inst refers to the YOLOv8 variant with both object detection

and object segmentation functions. As can be seen from Table 15 that YOLOv8-obj

is very computationally efficient in object detection. Despite object regions (given by

the bounding boxes) that it produces being less accurate than that of a segmentation

method (e.g., YOLOv8-inst), it provides a more time-efficient solution for dynamic

SLAM. It is noted that given the much lower number of visual features in each

object region (compared to the entire image) the inaccurate object boundary will not

increase the computational cost in object motion analysis too much. In this Chapter,

the results of both SM-SLAM using YOLOv8-obj(mAP val = 37.3%) and SM-SLAM

using YOLOv8-inst(mAP val = 53.9%) are reported for comparative analysis.
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10.2 Extended Semantic Information of Object/Feature

A segmented object’s semantic information is extended by adding its motion

status to form a so-called Extended Semantic Information (ESI). Harris corners are

extracted from the scene’s image and clustered using the segmentation result. Each

feature on the same object inherits the ESI of that object. When an object is first

detected/segmented, its initial motion status is determined as Likely Moving (LM) or

Likely Static (LS) based on prior knowledge about the object (e.g., a piece of furniture

is LS while a person is LM). Its subsequent motion status will be determined based

on the ratio of its LS features. The background is regarded as a special object with

LS as its initial motion status.

10.3 Object Association and Semantic Information Update of Visual Fea-

tures

Visual features are tracked across image frames by using optical flow. If IMU

data is available, IMU-measured camera velocity is then used to facilitate feature

tracking. Otherwise, a constant camera velocity is used. Feature tracking result is

used to determine if an object in the previous frame is tracked onto the current frame.

If the majority of features (60% in this work) are tracked, then an object association

is established, i.e., the object on the previous frame is tracked onto the current frame.

For a tracked object, its semantic information is determined/updated as follows:

1. If the associated object in the current frame is a front object that is detected as

one of a different class, the object detection probability scores on both frames

are then compared. The object with the higher score is the winner, and its

semantic information will be used to replace that of the object with the lower

score. The associated visual features’ semantic information is then updated
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accordingly.

2. If the associated object in the current frame is a background object (i.e., a

previously detected object is not detected as a front object in the current frame),

object association fails. In this case, the tracked features in the current frame

will inherit the semantic information from those features in the previous frame.

10.4 Dynamic Feature Identification and Rejection

Assuming that the majority of features are static, the VO solution is to find a

consensus of motion model (static in this case), with which the majority of features

satisfy. This is performed by a RANSAC process based on the fundamental matrix:

Eight pairs of features are randomly selected and used to compute the fundamental

matrix F (by using the Eight-point method [47]) and the epipolar distance for each

feature pair (pprevi , pcuri ) on the current frame is computed as depi =
|pcuri Fpprevi |√

a2+b2
, based

on which (pprevi , pcuri ) is identified as an inlier if depi is below a threshold, or outlier

otherwise. The total number of inliers is recorded for this F . To find the maximum

number of inliers, this process needs to be iterated k times:

k =
log(1− p)

log (1− wn)
(10.1)

where w is the inlier ratio, n = 8, and p = 95% in this work. When there are

dynamic objects, the inlier ratio can be very low (i.e., w is very small), resulting in a

very large k and prolonged computation time. To avoid this, k is estimated by using

an estimated value of w, which is computed as the ratio of the total LS features to all

visual features in the entire image. This is equivalent to assuming that all LS features

are static. If k is smaller than 100 (i.e., w ≥ 65%), the above-mentioned RANSAC

process will be applied to the entire image to identify the total static features, which
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are then used to compute the pose change between the two frames. Otherwise, the

following steps will be performed:

1. For each LS object, a RANSAC using only its LS features is applied to find the

inliers. If the inlier ratio is below a threshold value, this object is determined

as a dynamic one, and all of its features are excluded from further processing.

Otherwise, the inliers are added into an LS feature set. This step repeats until

all LS objects are processed.

2. Merge the resulted set of LS features with the features of an LM object one by

one, starting from the one with the smallest number of LM features. Apply a

RANSAC process to the new set of features to find the inliers.

(a) If the number of inliers does not increase, the LM object is determined as

a dynamic one. All features on the dynamic objects will be excluded for

the next step.

(b) Otherwise, check the LS features ratio of this LM object. If the ratio is

above a threshold, all LS features of this object are then merged with the

LS feature set. Otherwise, all features on this object will be excluded for

the next step. If the LS feature ratio is above the threshold for three

consecutive frames, this object’s motion status is then changed to LS.

Otherwise, it remains LM.

Repeat step 2 until all LM objects are processed.

After the above processing, the resulted LS features are forwarded to the SLAM

backend for pose estimation.
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10.5 Experimental Results: SM-DVO on TUM Dataset

The TUM dataset is used to evaluate the performance of the proposal SM-SLAM

approach. Since the TUM dataset was collected by using an RGB-D camera, a RGB-

D-camera-based SM-SLAM variant, called SM-DVO, was developed by using the

framework of ORB-SLAM2 [92]. Two object detection methods, namely YOLOv8-

obj (YOLOv8 with object detection function) and YOLOv8-inst (YOLOv8 with both

object detection and segmentation functions), were employed to investigate the im-

pact of object segmentation (i.e., how much performance improvement can be made in

dynamic SLAM by having accurate object boundary). The results of the SM-SLAM

methods are compared with that of DynaSLAM [94] and DS-SLAM [95].

Table 16. RMSE of the Estimated Trajectories on TUM Dataset

ORB-SLAM2 DynaSLAM DS-SLAM SM-DVO-inst SM-DVO-obj

fr3 walking static 0.390 m 0.006 m 0.008 m 0.011 m 0.007 m

fr3 walking rpy 0.871 m 0.035 m 0.444 m 0.061 m 0.076 m

fr3 walking xyz 0.752 m 0.015 m 0.025 m 0.010 m 0.011 m

fr3 walking half 0.486 m 0.025 m 0.030 m 0.017 m 0.021 m

fr3 sitting half 0.020 m 0.017 m 0.015 m 0.014 m 0.013 m

fr3 sitting xyz 0.009 m 0.015 m 0.010 m 0.007 m 0.008 m

The best results are highlighted in bold.

As shown in 16, SM-DVO outperforms DS-SLAM[95] in most sequences due to

its proficiency in incorporating additional static features from LM objects. Despite

this, DynaSLAM[94] remains superior in terms of accuracy for fr3 walking static

and fr3 walking rpy, both representing imaging data sequences with high dynam-

ics. This is because that DynaSLAM [94] uses an aggressive approach to removing

dynamic features (removing any features fall within a movable object regardless of
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its actual motion status), of which some are challenging for SM-DVO to identify by

using epipolar constraint (e.g., if they are moving along the epipolar line). In other

words, SM-DVO [95] may potentially have more unidentified dynamic features than

DynaSLAM [94] if the detected objects are moving. resulting in a larger pose es-

timation error. However, if the detected objects are actually static, DynaSLAM’s

aggressive approach may cause over removal of the statics visual features on these ob-

jects, resulting in a subpar performance in pose estimation for environments with low

dynamics. Taking dataset fr3 sitting xyz for instance, DynaSLAM [94] overlooks

the visual features of a seated person even though most of them are static.

10.6 Experimental Results: SM-DVIO on Datasets

Table 17. RMSE of the Estimated Trajectories on VCU-RVI Dataset

Data Sequence Mono RGBD DVIO SM-DVIO-obj SM-DVIO-inst

lab-dynamic1 0.39 m 0.22 m 0.21 m 0.14 m 0.12 m

lab-dynamic2 0.62 m X 0.54 m 0.19 m 0.18 m

lab-dynamic3 X 0.56 m 0.47 m 0.35 m 0.35 m

lab-dynamic4 X X X 0.58m 0.55 m

lab-dynamic5 0.75 m X 0.31 m 0.15 m 0.14 m

The best results are highlighted in bold.

X means that the method fails to generate a trajectory.

To test the proposed SM-SLAM in scenarios where inertial (IMU) data are avail-

able, SM-DVO is extended by using the same backend methodology in Chapter 7.

The extended variant is called SM-DVIO. A dataset called the VCU-RVI dataset,

collected at VCU by our team is used to evaluate the SM-SLAM approach with the

availability of IMU data. The VCU-RVI dataset, comprising dynamic sequences, was
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acquired by using a hand-held Structure Core sensor in a lab environment where the

WROMA was mostly used. The dynamic elements include people, chairs, a wheeled

robot, and a rollator. SM-DVIO was run on the datasets, and the results are com-

pared with that of other methods including VINS-Mono, VINS-RGBD, and DVIO,

and tabulated in Tables 17. As can be seen, SM-DVIO outperforms the other methods

and is the only method that produces a correct trajectory on sequence 4.
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CHAPTER 11

CONCLUSION AND FUTURE WORK

This dissertation work aims to improve SLAM techniques for assistive navigation.

HPnP was first proposed as a pose change estimation method for RGB-D cameras. It

decouples the estimation of rotation and translation and improves translation estima-

tion accuracy by using visual features with a depth measurement from both frames.

With HPnP in the visual front-end, DVIO was introduced as a depth-enhanced visual-

inertial odometry to overcome the drawbacks of existing VIO methods in initialization

and scale estimation. Experiments demonstrate that DVIO produces a smaller accu-

mulative error and can be used for accurate pose estimation for two robotics assistive

devices, RoboCane and W-ROMA. To migrate DVIO from a dedicated onboard com-

puter to a mobile device, CIP-VMobile and VLIO were developed. CIP-VMobile

incorporates online CIP estimation into its VIO process while VLIO focuses itself

on the usage of iPhone’s Lidar data. Finally, SM-SLAM is attempted as a possible

solution for SLAM in dynamic environments. It extends existing SLAM methods,

ORB-SLAM2 and DVIO, by incorporating dynamic object detection capabilities in

the front-end. Initial experiments with the public TUM Dataset and our VCU-RVI

dataset have confirmed its viability. The findings reveal that SM-SLAM outperforms

several state-of-the-art techniques in most sequence comparisons. Nonetheless, I ac-

knowledge that there is room for refining SM-SLAM. Future research will therefore

aim at further optimizing SM-SLAM performance and exploring potential areas of

improvement, with the ultimate goal of advancing the robustness and efficiency of

SLAM technologies.
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Appendix A

ABBREVIATIONS

AR Augmented Reality

ART Active Rolling Tip

BLE Bluetooth Low Energy

BVI Visually Impaired

CIP Camera Intrinsic Parameters

DDT Desired Direction of Travel

DoF Degree of Freedom

EKF Extended Kalman Filter

EPEN Endpoint Position Error Norm

GPS Global Positioning System

HPnP Hybrid Perspective-n-Point

IB Initial Background

IF Initial Feature

II Initial Inlier

IMU Inertial Measurement unit

LM Likely Moving

LS Likely Static

MCS Motion Capture System

NST Number of Successful Trials

OIS Optical Image Stabilization

PCE Pose Change Estimation
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PAD Portable Assistive Device

PND Portable Navigation Device

PnP Perspective-n-Point

PVQ Position, Velocity, and Quaternion

RAD Robotic Assistive Devices

RANSAC Random Sample Consensus

RCC RNA Control circuit

RNA Robotic Navigation Aid

RVA Richmond Virginia

SC Structure Core

SLAM Simultaneous Localization and Mapping

ToF Time-of-Flight

VCM Voice Coil Motor

VCU Virginia Commonwealth University

VINS Visual-Inertial Navigation System

VIO Visual Inertial Odometry

VLIO Visual-LiDAR-Inertial Odometry

VO Visual Odometry

VR Virtual Reality

W-ROMA Wearable Robotic Object Manipulation Aid
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[68] Zeyong Shan, Ruijian Li, and Sören Schwertfeger. “Rgbd-inertial trajectory

estimation and mapping for ground robots”. In: Sensors 19.10 (2019), p. 2251.

[69] Jianbo Shi et al. “Good features to track”. In: 1994 Proceedings of IEEE

conference on computer vision and pattern recognition. IEEE. 1994, pp. 593–

600.

[70] Xuelong Li et al. “Robust subspace clustering by cauchy loss function”. In:

IEEE transactions on neural networks and learning systems 30.7 (2018),

pp. 2067–2078.

[71] Anders Grunnet-Jepsen et al. “Projectors for intel R© realsense depth cameras

d4xx”. In: Intel Support, Interl Corporation: Santa Clara, CA, USA (2018).

123



[72] Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. “Sliding window filter

with application to planetary landing”. In: Journal of Field Robotics 27.5

(2010), pp. 587–608.

[73] Manii Xu. VINS-Fusion RGBD. 2022. url: https://github.com/ManiiXu/

VINS-Fusion-RGBD.

[74] OptiTrack - Motion Capture Systems. url: https://optitrack.com.

[75] C Ye and J Borenstein. “T-transformation: a new traversability analysis method

for terrain navigation”. In: Proc. of the SPIE Defense and Security Sympo-

sium, Orlando, USA. 2004.

[76] Sepideh Seifzadeh, Bahador Khaleghi, and Fakhri Karray. “Distributed soft-

data-constrained multi-model particle filter”. In: IEEE Transactions on Cy-

bernetics 45.3 (2014), pp. 384–394.

[77] Wera Winterhalter et al. “Accurate indoor localization for RGB-D smart-

phones and tablets given 2D floor plans”. In: 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE. 2015, pp. 3138–

3143.

[78] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. “Improved tech-

niques for grid mapping with rao-blackwellized particle filters”. In: IEEE

transactions on Robotics 23.1 (2007), pp. 34–46.

[79] He Zhang and Cang Ye. “An indoor wayfinding system based on geometric

features aided graph SLAM for the visually impaired”. In: IEEE Transactions

on Neural Systems and Rehabilitation Engineering 25.9 (2017), pp. 1592–1604.

[80] ARKit 4. url: https : / / developer . apple . com / augmented - reality /

arkit/.

124

https://github.com/ManiiXu/VINS-Fusion-RGBD
https://optitrack.com
https://developer.apple.com/augmented-reality/arkit/


[81] iPhone 12 Teardown X-ray Images. url: https://creativeelectron.com/

apple-iphone-12-teardown-x-ray-images/.

[82] Joern Rehder et al. “Extending kalibr: Calibrating the extrinsics of multiple

IMUs and of individual axes”. In: 2016 IEEE International Conference on

Robotics and Automation (ICRA). IEEE. 2016, pp. 4304–4311.

[83] Cang Ye and Johann Borenstein. “Characterization of a 2D laser scanner for

mobile robot obstacle negotiation”. In: Proceedings 2002 IEEE International

Conference on Robotics and Automation (Cat. No. 02CH37292). Vol. 3. IEEE.

2002, pp. 2512–2518.

[84] Yoichi Okubo, Cang Ye, and Johann Borenstein. “Characterization of the

Hokuyo URG-04LX laser rangefinder for mobile robot obstacle negotiation”.

In: Unmanned Systems Technology XI. Vol. 7332. SPIE. 2009, pp. 279–288.

[85] Cang Ye. “Mixed pixels removal of a laser rangefinder for mobile robot 3-

d terrain mapping”. In: 2008 International Conference on Information and

Automation. IEEE. 2008, pp. 1153–1158.

[86] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. “Design of an

image edge detection filter using the Sobel operator”. In: IEEE Journal of

solid-state circuits 23.2 (1988), pp. 358–367.

[87] Bill Triggs et al. “Bundle adjustmenta modern synthesis”. In: International

workshop on vision algorithms. Springer. 1999, pp. 298–372.

[88] Richard J Topliss. VCM OIS actuator module. US Patent 9,134,503. Sept.

2015.

[89] Richard J Topliss et al. Voice coil motor optical image stabilization wires. US

Patent 10,063,752. Aug. 2018.

125

https://creativeelectron.com/apple-iphone-12-teardown-x-ray-images/


[90] Zhengyou Zhang. “A flexible new technique for camera calibration”. In: IEEE

Transactions on pattern analysis and machine intelligence 22.11 (2000), pp. 1330–

1334.

[91] Yijia He. vio data simulation. 2022. url: https://github.com/HeYijia/

vio_data_simulation.

[92] Raul Mur-Artal and Juan D Tardós. “Orb-slam2: An open-source slam system

for monocular, stereo, and rgb-d cameras”. In: IEEE transactions on robotics

33.5 (2017), pp. 1255–1262.

[93] Martin A Fischler and Robert C Bolles. “Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartog-

raphy”. In: Communications of the ACM 24.6 (1981), pp. 381–395.

[94] Berta Bescos et al. “DynaSLAM: Tracking, mapping, and inpainting in dy-

namic scenes”. In: IEEE Robotics and Automation Letters 3.4 (2018), pp. 4076–

4083.

[95] Chao Yu et al. “DS-SLAM: A semantic visual SLAM towards dynamic envi-

ronments”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE. 2018, pp. 1168–1174.

[96] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep

convolutional encoder-decoder architecture for image segmentation”. In: IEEE

transactions on pattern analysis and machine intelligence 39.12 (2017), pp. 2481–

2495.

[97] Liang-Chieh Chen et al. “Deeplab: Semantic image segmentation with deep

convolutional nets, atrous convolution, and fully connected crfs”. In: IEEE

126

https://github.com/HeYijia/vio_data_simulation


transactions on pattern analysis and machine intelligence 40.4 (2017), pp. 834–

848.

[98] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE international

conference on computer vision. 2017, pp. 2961–2969.

[99] Alexander Kirillov et al. “Panoptic feature pyramid networks”. In: Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recognition.

2019, pp. 6399–6408.

[100] Yuwen Xiong et al. “Upsnet: A unified panoptic segmentation network”. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2019, pp. 8818–8826.

[101] Joseph Redmon et al. “You only look once: Unified, real-time object detec-

tion”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2016, pp. 779–788.

[102] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by Ultralytics. Ver-

sion 8.0.0. Jan. 2023. url: https://github.com/ultralytics/ultralytics.

127

https://github.com/ultralytics/ultralytics


VITA

Lingqiu Jin was born on September 6, 1992, in Wuxi, China. He received his Bachelor

of Science in Electrical Engineering from The Pennsylvania State University in 2015.

He received a Master of Science in the Department of Electrical Engineering from

Columbia University in 2016. He started the doctoral program at the University of

Arkansas and joined the Department of Computer Science at Virginia Commonwealth

University in 2017.

128


	Portable Robotic Navigation Aid for the Visually Impaired
	Downloaded from

	tmp.1691432990.pdf.Q_jmx

