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Abstract

The main focus of this thesis lies on image-based rendering (IBR) techniques designed to
operate in real-world environments and special attention is paid to the state-of-the-art
end-to-end pipelines used to create and display virtual reality (VR) of 360° real-world
environments.
Head-mounted displays (HMDs) enable users to experience virtual environments freely, but
the creation of real-world VR experiences remains a challenging interdisciplinary research
problem.

VR experiences can greatly differ depending on the used underlying scene representation
and the meaning of real-world VR heavily depends on the context, i.e., the system or format
at hand. Terminology and fundamental concepts are introduced which are needed to
understand related IBR and learned IBR (neural) approaches, which are categorically
surveyed in the context of end-to-end pipelines to create real-world IBR experiences.
The applicability of the discussed approaches to create real-world VR applications is
categorised into practical aspects covering capture, reconstruction, representation, and
rendering, which yields a fairly good overview of the research landscape to which this thesis
contributes.

The life cycle of immersive media production depends on computer vision and computer
graphics problems and describes, in its whole, end-to-end pipelines for creating 3D
photography used to render high-quality real-world VR experiences.
Vision is needed to obtain viewpoint and scene information to create scene representations,
i.e., 3D photographs, and computer graphics is needed for creating high-quality novel
viewpoints, for instance by applying IBR techniques to the reconstructed scene
representation.

Lack of widely available immersive real-world VR content which suits current generations
of HMDs motivates research in casual 3D photography. Furthermore, augmenting widely
available real-world VR formats, e.g., omnidirectional stereo (ODS), seems intriguing in
order to increase the immersion of currently available real-world VR experiences.

This thesis contributes three end-to-end IBR pipelines for the creation and display of
immersive 360° VR experiences, all outperforming the current de-facto standard (ODS)
while only relying on moderate computational resources which are commonly available to
casual consumers, and one learned IBR approach based on conditional adversarial nets that
takes a casually captured video sweep as input to perform high-quality video extrapolation.

The ability to casually capture 3D photography might have a profound impact on the way
consumers capture, edit, share, and re-live personal experiences in a near foreseeable future.





To my parents and siblings
The Bertels: Erwin, Helga, Susanne and Thomas.

To the lovely people that gave me my first home abroad
The Davys: Luke, Tim, Simon, Alex, Caroline and Jonathan †.

To all the people that supported me throughout the last five
years, in particular,

The Stimpsons: Lauren, Freya and Hugh,
who greatly helped me to make it to the end in one piece.

And Srinivas Rao †,
whose tragical fate will always remind me that mental health
MUST come before anything else.

I thank you, this is for all of us.

Ich danke euch, dies ist für alle von uns.





Acknowledgments

I want to thank everybody who helped me to make my studies an enjoyable experience.
First and foremost, I want to thank Dr Christian Richardt for giving me the chance of
working with him on very exciting topics over the last years. I want to thank two of his
group members, Mingze Yuan and Reuben Lindroos, who made the OmniPhotos project
possible in its scale.
Great thanks go to Moritz Muehlhausen, Paul Bittner, and Susanna Castillo with whom I
worked very intensively for a few months on the ODS2DASP project which arose from a
visit at Prof. Dr Marcus Magnor’s research group at the Technische Universität
Braunschweig. Our common work was great fun and very interesting.
Further thanks go to Rodrigo Ortiz-Cayon, Srinivas Rao†, Yusuke Tomoto, and Stefan
Holzer from Fyusion Inc., with whom I closely worked over several months. A uniquely
inspiring life experience which I will never forget.
I know that I am lucky that I got the chance to work with various top-class researchers and
engineers throughout my PhD studies and I am very grateful for that.

Lots of appreciation goes to all people at the University of Bath who were always up for a
chat or discussion, and who rarely denied to go for a drink, in particular I want to thank Dr
Youssef Alami Mejjati, Adam Hartshorne, Thu Nguyen-Phuoc, Dr Ander Biguri, Dr
Matthew Thompson and Dr Daniel Finnegan without whom this whole experience would
not have been nearly as good.
The University of Bath, together with the European Union, in particular Marie Curie Actions
(Horizon 2020), made my PhD experience possible, and I want to acknowledge that. I want
to thank explicitly: Dr Neill Campbell, Dr Kwang In Kim, Prof. Dr Darren Cosker, Dr
Yong-Liang Yang (Mac), Dr James Laird, Prof. Dr Peter Hall, and Sarah Parry, who all
played crucial roles to create a curious, motivating, and professional work atmosphere.

Beyond Bath, it has been vital for me to communicate with other researchers to find a
fruitful way through my studies. Dr Thomas Leimkühler and Prof. Dr Tobias Ritschel helped
to clarify ideas, which created important momentum in early stages of my studies.

To all my friends, I thank you so much: Gero Willi, Johannes Bachmann, Philipp Diel,
Isabelle Allenfort, Jonas Farokhnia, Peter Kempf, Benjamin Kirsch, Stefan Schimpf, Anne
Kany, Anja Robert, Angela Weber, Jil Rösner, Alexander Bartosch, Kai Hardt, Ramon
Thomé, Jérôme Fery, Vero Kapella, Stefan Zins, Falk Kuckert, Matthew Hamilton, Robin
Child, Ximena Loredo Diaz, Sascha Brandt, Norman Knauer, Horst Schiffmann, Kurt † and
Ilse Hoffmann †, as well as Hertha Schiffmann †.

Special thanks go to Dr Christian Richardt and Dr Thomas Leimkühler for giving feedback
on my thesis. Thanks for being around while I was writing it down.





Contents

Contributions

Outline

1 Introduction 1

1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Virtual reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Degrees of freedom (DoF) . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 3D photography . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 15

2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Camera pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Homographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Epipolar geometry . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.4 Stereoscopic setup . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Sparse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



2.5.2 Camera motions . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 Dense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.4 Practical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Image-based rendering (IBR) . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.1 The four main stages of end-to-end IBR pipelines . . . . . . . 43

2.6.2 Plenoptic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6.3 Implicit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6.4 Explicit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.6.5 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.7 Learned image-based rendering (LIBR) . . . . . . . . . . . . . . . . . 81

2.7.1 Image-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.7.2 Plane-sweep volumes (PSVs) . . . . . . . . . . . . . . . . . . . 89

2.7.3 Volumetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.7.4 Proxy-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.8 Real-world VR research landscape . . . . . . . . . . . . . . . . . . . . 93

2.8.1 Comparing IBR and LIBR end-to-end . . . . . . . . . . . . . . 94

2.9 Summary and contributions . . . . . . . . . . . . . . . . . . . . . . . . 100

3 ODS2DASP 123

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.2.1 Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.2.2 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.2.3 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.2.4 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.3 Evaluation and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4 MegaParallax 147

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3 Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.4.1 Reconstruction of camera geometry . . . . . . . . . . . . . . . 151

4.4.2 Trajectory registration . . . . . . . . . . . . . . . . . . . . . . . 152

4.4.3 Camera sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.4.4 Optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.5 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.5.1 Novel-view synthesis from two cameras . . . . . . . . . . . . . 153

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.6.1 Viewing area analysis . . . . . . . . . . . . . . . . . . . . . . . 159

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5 OmniPhotos 167

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.2 OmniPhotos pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2.1 Casual capture of 360° VR photographs . . . . . . . . . . . . . 170

5.2.2 Preprocessing of 360° VR photographs . . . . . . . . . . . . . 172

5.2.3 Optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.2.4 Proxy fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.2.5 Scene-adaptive deformable proxy fitting . . . . . . . . . . . . . 175

5.3 Results and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.3.1 Comparative evaluation . . . . . . . . . . . . . . . . . . . . . . 178

5.3.2 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . . 178

5.3.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.4.1 Limitations and future work . . . . . . . . . . . . . . . . . . . . 184

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



6 DNR4VE 193

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.2 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.3.1 Training and testing . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.4.1 Generator input . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.4.2 Dataset items . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.4.3 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.4.4 Training logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.4.5 Guided augmentation . . . . . . . . . . . . . . . . . . . . . . . 202

6.4.6 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.4.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7 Conclusion 209

7.1 Application scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.3 Closing thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221



Contributions

Table 1 lists all conference contributions for which I am the first author. All of these works are
discussed in this thesis. All papers and posters can be freely downloaded from my homepage.
Code for OmniPhotos can be accessed via github here. It is hosted by Dr. Christian Richardt
at the University of Bath. Corresponding datasets can be found here.

Table 1: Conference contributions with first authorships which are discussed in this thesis.

Title Reference Chapter Link

Depth Augmented Omnidirectional Stereo for 6-DoF VR Photographya [Bertel et al., 2020a] 3 (web)

MegaParallax: Casual 360° Panoramas with Motion Parallaxb [Bertel et al., 2019] 4 (web)

OmniPhotos: Casual 360° VR Photographyc [Bertel et al., 2020d] 5 (web)

Deferred Neural Rendering for View Extrapolationd [Bertel et al., 2020b] 6 (web)

aContribution to conference IEEE VR: poster
bContribution to conference IEEE VR: journal paper
cContribution to conference SIGGRAPH Asia: journal paper
dContribution to conference SIGGRAPH Asia: poster

Table 2 lists all my other contributions, e.g., earlier work on MegaParallax and a book
chapter.

Table 2: Other contributions, follow the links for additional information.

Title Reference Link

Casual Real-World VR using Light Fieldsa [Tomoto et al., 2020] (web)

Free-Viewpoint Facial Re-Enactment from a Casual Captureb [Rao et al., 2020] (web)

Image-Based Scene Representations for Head-Motion Parallax in 360° Panoramasc [Bertel et al., 2020c] (web)

MegaParallax: 360° Panoramas with Motion Parallaxd % (web)

MegaParallax: 360° Panoramas with Motion Parallaxe [Bertel and Richardt, 2018] (web)

aContribution to conference SIGGRAPH Asia: poster
bContribution to conference SIGGRAPH Asia: poster
cContribution to book Real VR – Immersive Digital Reality: chapter
dContrinbution to conference CVMP: short paper
eContribution to conference SIGGRAPH: poster

http://www.tobias-bertel.com
https://github.com/cr333/OmniPhotos
richardt.name
https://www.bath.ac.uk/
https://researchdata.bath.ac.uk/922/
https://tobias-bertel.com/ods2dasp
https://tobias-bertel.com/megaparallax
https://tobias-bertel.com/omniphotos
https://tobias-bertel.com/dnr4ve
https://tobias-bertel.com/llff4vr
https://tobias-bertel.com/holobot
https://tobias-bertel.com/real-world-vr-book-chapter
https://tobias-bertel.com/towards-megaparallax-ii
https://tobias-bertel.com/towards-megaparallax-i




Outline

Chapter 1, Introduction:
New visual media formats, i.e., formats used to encode 3D photography, receive a steadily
growing interest in research. One consequence of that is that more and more immersive
visual media arise, which support the positional and rotational degrees-of-freedom (DoF)
provided by head-mounted displays (HMDs). The design space of end-to-end pipelines for
3D photography is motivated, with a focus on practical design decisions such as: Capture,
reconstruction, representation, and rendering. The main intention of this is to identify
methods that are suitable for casual consumers, e.g., only require a smartphone to capture
datasets, a common Desktop PC for processing a dataset within a reasonable amount of time,
and a modern VR headset that supports 6-DoF viewing experiences. The main challenges of
real-world VR, inherited by real-world IBR, e.g., imperfect data and challenging camera
motions, are central to this thesis and further motivated and discussed in later chapters.

Chapter 2, Background:
Fundamental concepts and the descriptive mathematical formalism are introduced in the
beginning. The intention for this is to make this thesis as accessible as possible, especially
for people outside of the field. To motivate the task of image-based rendering (IBR) in real
world environments, the most important works related to my main chapters are presented
and discussed.
The main contribution of this chapter is a table that compares 39 related methods, in terms
of their overall performance “end-to-end“ to create real-world IBR applications. Methods
suitable for real-world VR are naturally a subset of those, i.e., VR requires novel stereo-views
instead of only monocular views.

Chapter 3, Depth Augmented ODS for 6-DoF VR Photography (ODS2DASP):
Given a ODS panorama pair and a small set of intuitive assumptions, explicit geometry can
be reconstructed through triangulation of image correspondences obtained by dense optical
flow. Depth-augmented stereo panoramas (DASPs) can be created as soon a point cloud is
reconstructed from the input image pair, representing the known scene geometry encoded in
the ODS viewing circle, leading to greater immersion (5-DoF) than the standard ODS format
(1-DoF).
This chapter exists because of collaborative work with Moritz Mühlhausen1, co-first-authorship
with equal contributions, and colleagues while visiting Prof. Dr Marcus Magnor’s group at
the Technical University in Brunswick2 in 2019. Our common work has been published as a
poster at IEEE VR 2020 [Bertel et al., 2020a].
My main contribution to this project was its initialisation and leadership, next to developing

1https://graphics.tu-bs.de/people/muhlhausen
2https://graphics.tu-bs.de/people/magnor



main parts of the code which were used to create the presented results in the poster.
The discussions with the team, but in particular with Moritz, have been a great experience.
Paul Bittner made it possible to let us experience a reconstructed point cloud from the
ODS panoramas within VR using an interactive renderer which sparked our motivation to
proceed. The senior leadership of Susanna Castillo has held us together and kept us focussed,
especially as we were coming closer to the submission deadline. Overall, the collaboration
with Prof. Magnor and his group was a very delightful and refreshing experience during my
PhD studies.

For this thesis, I have further completed our common project and will present the solution of
this, instead of showing the former version which has been published [Bertel et al., 2020a].
The main contributions of this work were, (1) to complete the DASP rendering procedure,
in particular adding hypothesis-merging [Thatte et al., 2016a], and (2), showing results for
ODS viewing circles captured from different sources, e.g., casually captured with varying
consumer cameras [Richardt et al., 2013].

Chapter 4, MegaParallax: Casual 360° Panoramas with Motion Parallax:
The same capturing procedure as the state-of-the-art for casually creating ODS using hand-
held consumer cameras is used [Richardt et al., 2013]. But instead of stitching the input video
into left and right eye multi-perspective panoramas, the individual frames are used for IBR
using implicit scene geometry, i.e., dense image correspondences obtained via optical flow,
leading to a scene representation that offers a 3-DoF stereoscopic action space that supports
motion parallax. Technically, our method is heavily inspired by former image stitching
techniques used to create ODS.
This chapter would not exist without Dr Neill D F Campbell3 and Dr Christian Richardt4,
my supervisors to that time. Our work has been published over several iterations, first as
a poster at SIGGRAPH [Bertel and Richardt, 2018], then as a short paper at CVMP, and
finally as a Journal paper at IEEE VR [Bertel et al., 2019].
My main scientific contributions were the adjustment of motion-compensated flow-based
blending [Richardt et al., 2013] into view-dependent flow-based blending, running all experi-
ments, performing the viewing area analysis, as well as recognising and steering the right
pitch for submission.
The project would not have been possible without Dr Christian Richardt, since he suggested
to go into this research direction due to his own practical experience with image stitching.
His intuition told him that there was more in the circular video sweep suitable for VR,
more than just ODS, and we both have found it together, technically a circular light field
whose sampling density is reduced by motion-compensated flow-based blending between
adjacent narrow-baseline camera pairs. Optical flow tackles dynamic scene content more
faithfully than ordinary linear blending between viewpoints, motion compensation based on
dense correspondences can be used to reduce ghosting [Shum and Szeliski, 1998] via local
alignments.

Chapter 5, OmniPhotos: Casual 360° VR Photographs:
Conceptually, OmniPhotos is an extension of MegaParallax and their main differences are as
follows: (1) a 360° single shot consumer camera is used instead of narrower field-of-view
cameras leading to much more robust viewpoint and scene reconstruction using SLAM

3Neill’s homepage
4Christian’s homepage

https://ndfcampbell.org/
https://richardt.name/


techniques, and (2), a scene-adaptive proxy geometry is created to replace the trivial planar
(very coarse) proxy used in previous work to alleviate vertical distortion [Shum and He,
1999], a visual artefact occuring when re-projecting viewpoints via coarse geometry.
This work exists due to my collaboration with Dr Mingze Yuan and Reuben Lindroos,the
team formed around my supervisor Dr Christian Richardt5. Our work has been published as
a Journal paper at SIGGRAPH Asia [Bertel et al., 2020d].
My technical contributions are based on the work mainly conducted on MegaParallax, the
published code for OmniPhotos comes from its codebase that I built up during my studies. I
added the support to render 360° equirectangular images, and added Ceres support6 used to
deform spheres into scene-adaptive scene geometries.
My scientific contributions focussed on team discussions, the pitch of the paper, and ’making
it work’ towards the end, e.g., running comparisons with competitors [Serrano et al., 2019]
as required by the rebuttal.
Christian wrote the code which is used in the paper to create the scene-adaptive proxy
geometries, he captured all datasets used in the submission (and more), and conducted all
quantitative experiments, as well as most of the qualitative evaluation.
OmniPhotos was a very nice team effort, built upon the fruits stemming from MegaParallax,
dedication, and last but not least, hard work by all of us. As first author, I am just taking
responsibility for it.

Chapter 6, Deferred Neural Rendering for View Extrapolation (DNR4VE):
In contrast to the other main contributions, the approach presented in this chapter is based on
a machine learning approach based on conditional generative adversarial networks (GANs),
namely Deferred Neural Rendering (DNR) [Thies et al., 2019], which focuses on real-
time novel-view synthesis, i.e., neural rendering, that compensates for imperfect proxy
geometries, as reconstructions from real-world multi-view datasets will never be perfect, e.g.,
compared to a synthetic environment in which ground truth information is generally available.
Conceptually, this method learns a parametrisation of a surface light field over imperfect
geometry. The proposed extensions lead to improved quality of extrapolated viewpoints
which is demonstrated in a view-dependent video extrapolation example.
This project was collaborative work with Fyusion7: Yusuke Tomoto, Srinivas Rao †, Dr
Rodrigo Ortiz-Cayon, Dr Stefan Holzer, and Dr Christian Richardt.
My scientific contributions to this project were the identification of DNR, among other
learned methods, to be the most suitable method for the desired task, namely view-dependent
video re-rendering. My extensions lead to smoother extrapolation results.
This project would not have been possible without Srinivas. His steady help, e.g., to setup
my learning environment, or regular discussions about our individual and common projects,
greatly helped me to build up better and deeper understanding about machine learning in
practice, which in turn led to this publication.

Chapter 7, Conclusion:
The thesis concludes by highlighting its main contributions once more and points to interest-
ing future work for casual real-world VR applications.

5Christian’s homepage
6Thanks to Adam Hartshorne for giving me a helping hand there.
7Fyusion’s homepage

https://richardt.name/
https://fyusion.com/




Chapter 1

Introduction

"The beginning seems to be more than half of the
whole."

Aristotle

People are able to capture images and videos very easily nowadays, e.g., using their smart-
phones, in order to share visual experiences, or to collect memories, made in the real world.
Millions of images and days of video material are uploaded to internet platforms every day.
In 2018, Facebook reported to receive more than 300 million photos a day, uploaded by their
community1. In May 2019, youtube received 500 hours of video every 5 minutes2.

What impact could it have, if one could actually change the perspectives depicted in these
images or videos, after they have been captured?

Approaches addressing this question commonly need to solve a variety of visual computing
problems, i.e., a mixture of computer vision and computer graphics problems. Viewpoint
information and scene structure need to be estimated from sets of images or image sequences
obtained by video, and synthesising high-quality novel viewpoints yields new perspectives.
Vision techniques are used to create a scene representation, often referred to as a 3D photo-
graph in this thesis, and graphics techniques are needed to display a 3D photograph. Scene
representations for 3D photography have a great impact on the level of immersion a user can
potentially experience when using a VR head-mounted device (HMD). In the simplest case
conceptually, a 3D photograph can be a represented by a scene mesh, reconstructed from
the input images and thus multi-view consistent, implying that there are many reasonable
perspectives from which the mesh can be looked at. In this case, the view synthesis or
graphics part would only consist of rasterisation and texture mapping, which can be handled
very fast by GPUs.

Intuitively, if a scene or an object is supposed to be seen from different angles, at least two
images with different perspectives depicting the object should be captured. Every image pair
with sufficient visual overlap can be combined into a range of novel viewpoints, e.g., by

1Forbes: Image uploads to Facebook every day in 2018
2Statista: 500 Hours of video uploaded to youtube every minute in May 2019. This is almost like two (1.7)

years of video per day

1

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=1564e94f60ba
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/


Figure 1.1: Camera rigs used for Google Jump VR (left) and Facebook360 surround (right).
The standard output format of commercial camera rigs is currently omni-directional stereo
(ODS).

using their viewpoint information and additional estimated scene information like 2D or 3D
correspondences (if required), used for interpolating novel viewpoints in between.

IBR approaches can be seen as a collection of tools created to transform a set of multi-
perspective images into some sort of continuous scene representation from which novel-
viewpoints can be rendered smoothly. Scene representations essentially bound the capabilities
of an IBR application with their degrees of freedom (DoF) (see Section 1.1.2) that describes
the actual action space which can be experienced in VR, technically the space or volume in
which novel views can be rendered with high quality. The level of immersion and presence
a user can experience increases significantly if free head-motion (6-DoF) is supported, for
example when navigating virtually free within a real-world environment.

1.1 Problem
The main goal of my doctoral studies is to investigate possibilities to casually generate and
render VR content, i.e., immersive visual media like 3D photographs (see Section 1.1.3),
which is suitable for high-quality virtual reality (VR) experiences (see Section 1.1.1).
Peleg et al.’s work about omnidirectional stereo (ODS) [2001], based on previous work in
robot navigation [Ishiguro et al., 1992], which became the de-facto industrial standard for
real-world VR formats today [Richardt et al., 2013, Anderson et al., 2016], describes the
desired properties which a VR experience should offer. Two factors are identified as most
important. A scene representation becomes suitable for VR in the presence of:

1. binocular disparity, implying different viewpoints for the left and right eye of a (VR)
user, and

2. support for head motion, e.g., a 360° rotation along the equator of a panoramic image,
whose up-direction is usually approximately orthogonal to the ground.

Commercial solutions to generate VR experiences exist [Anderson et al., 2016, Facebook,
2016] in which multi-camera rigs consisting of several outward-facing cameras mounted
along an equatorial ring are used to create ODS content (see Figure 1.1).

The video streams captured by the individual cameras are stitched into ODS panoramas
[Peleg et al., 2001, Richardt et al., 2013, Anderson et al., 2016, Schroers et al., 2018], which
allows for stereoscopic viewing of cylindrical panoramic (360°) environments. Stereoscopic
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Overbeck et al. [2018] Parra Pozo et al. [2019] Broxton et al. [2020]

Figure 1.2: Camera rigs used for 6-DoF VR photography (left) and video (middle and right).
All rigs distribute viewpoints (cameras) over a spherical surface.

viewing itself can be achieved using a head-mounted device (HMD)3, or more casually via
Google cardboard4 using only a smartphone, or single image stereo formats [Sanders and
McAllister, 2003] that can be viewed using anaglyph goggles.

However, today’s de-facto standard for real-world VR technology, i.e., ODS, does not seem
powerful enough to be further developed5 due to certain limitations of the format:

• the lack of motion parallax breaks the immersion in virtual environments [Slater
et al., 1994, Slater and Wilbur, 1997, Thatte et al., 2016a, Hedman et al., 2017, Luo
et al., 2018, Serrano et al., 2019], as head-motion and its induced motion parallax is
considered to be an element of early (human) vision [Adelson and Bergen, 1991].

• only providing binocular disparity along the equatorial camera plane causes scene-
dependent discomfort, for instance by imposed unnatural head motion, i.e., the stereo-
scopic action space has only one rotational DoF, and

• vertically distorted perspectives for nearby scene objects are a result of using a constant
depth approximation when re-projecting captured viewpoints [Shum and He, 1999].
As observed in image stitching techniques [Szeliski, 2006], parallax removal of nearby
scene objects via local alignment is necessary to overcome the large parallax (disparity)
of close-by scene objects required for seamless stitching [Shum and Szeliski, 1998].

Furthermore, ODS-based VR content is still scarce because it needs special equipment
to obtain high-quality content reliably [Anderson et al., 2016, Schroers et al., 2018] (see
Figure 1.1). An exception to that is proposed by Richardt et al.’s Megastereo approach
[2013] (see Section 2.6.3.2) which demonstrates how to casually create high-quality ODS
panoramas from a variety of consumer cameras.

ODS was absolutely outstanding for a real-world VR format in the year 2001 and it is
still the de-facto industrial standard today, but its inherent limitations restrict its potential

3Oculus Rift, S, Quest 2, HTC Vive, Windows mixed reality, etc.
4Google: get cardboard
5Google Jump shut down
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for truly immersive real-world VR experiences. Modern real-world VR research instead is
usually based on non-casual capture using multi-camera rigs while targeting 6-DoF scene
representations [Overbeck et al., 2018, Pozo et al., 2019, Broxton et al., 2020] (see Figure 1.2)
to support free head movement in 3D space.

"The goal of this thesis is to present my research conducted to create real-world VR ex-
periences end-to-end", mostly by using casually created multi-view datasets with narrow
baselines as input. Note that all datasets shown in the main chapters of this thesis consist
of viewpoints distributed along circular trajectories, e.g., a 360° “inside-out“ video sweep
for panoramic image stitching [Szeliski, 2006], or “outside-in“ for creating novel-views of a
single object.

Casually creating high-quality VR experiences poses many challenges (see Section 1.1.3), e.g.
the complexity of the real-world addressed by standard techniques usually leads to imperfect
reconstructions [Hedman et al., 2017], and often restrictive action spaces [Richardt et al.,
2013].

End-to-end pipelines should consist of simple, fast and reliable pipeline stages, while visual
feedback of the captured 3D photograph should be available as fast as possible. I thus
consider the most desirable property any 3D photography pipeline should minimise – the
round-trip time from capture to visual feedback.
Issues are ideally detected as early as possible such that satisfying results can be expected
before the captured images are submitted for high-quality reconstruction (e.g., [Broxton
et al., 2020]).

The goal of the following sections (see Sections 1.1.1 to 1.1.3) is to motivate the current
landscape of real-world VR research to illustrate the relevance of my thesis.

1.1.1 Virtual reality
What does virtual reality (VR) actually mean?

The short answer is: It depends. VR experiences can immerse users visually into virtual or
real-world environments. Assuming that the public might connect VR as technology mostly
for gaming and thus synthetic worlds so far, it is important to stress that (almost) all methods
discussed in this thesis (see Sections 2.6 and 2.7 and Chapters 3 to 6) are designed to operate
in real-world environments instead of synthetic virtual worlds.

Re-directing the human vision into other environments using HMDs creates a sense of
presence and immersion for the user [Slater et al., 1994, Slater and Wilbur, 1997]. A VR
experience itself is usually encoded within some sort of image-based scene representation
[Shum et al., 2007] (see Section 2.6).

For real-world scenarios, the main research focus lies currently on how to come up with
scene representations to provide high-quality VR view-synthesis [Richardt et al., 2020]. View
synthesis for VR in computer-generated environments has led to a different strain of research,
e.g., [Reinert et al., 2016, Koniaris et al., 2017, Hladky et al., 2019], in which access to
ground truth information is usually available allowing to focus on different problems. As
an example, head boxes are expected to be bigger in synthetic environments since scene
information is available everywhere whenever scene representations are created. This is in
contrast to real-world environments in which only a small subset of the scene is captured
using a finite set of viewpoints and then processed into a scene representation that encodes
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Figure 1.3: VR can visually immerse users into scenes which can be virtual, real, or something
in between (augmented reality). HMDs allow to look around freely within a scene, instead of
only looking at a static image, displayed on a stationary screen. Here an example of a 3D
photograph as suggested in OmniPhotos (see Chapter 5). This is an animated figure, try
Adobe Reader if it is not playing.

one particular VR experience. Intuitively, capturing and representing high-quality action
spaces (or head boxes) for VR is technically more feasible over smaller areas as it is over
larger areas. This thesis shows several approaches which are built upon user-centric capturing
procedures which can lead to high-quality VR experiences (see an example of OmniPhotos
in Figure 1.3, which is discussed in Chapter 5).

Head-motion leading to undersampled or unknown scene perspectives can cause rendering
artefacts, e.g., holes. It can be a design decision in the representation, the view synthesis
(rendering), or in both, to deal with missing scene information, e.g., by using a layered scene
representation [Shade et al., 1998, Shih et al., 2020] or using inpainting strategies [Gortler
et al., 1996, Thatte et al., 2016a].

VR can trigger different expectations if the technology is encountered in different contexts,
e.g., synthetic versus real-world environments. Important visual cues, all part of early vision
[Adelson and Bergen, 1991], are:

1. 3D depth perception, i.e., achieved with stereoscopic viewpoints (binocular disparity),

2. motion parallax, i.e., perceived as a relative motion between scene objects when
changing viewpoints, and

3. free head orientation.
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Figure 1.4: Illustration for different degrees of freedom (DoF) used to describe monoscopic
action spaces (or head boxes) of IBR scene representations. For VR experiences, IBR scene
representations are required that provide stereoscopic action spaces. See detailed description
in text.

It is assumed that approaches are able to render correct perspectives with high-quality.
Interestingly, this assumption is notoriously violated in the current de-facto standard ODS.
Scene-dependent vertical distortion is not acceptable in VR environments with closeby scene
objects, i.e., the ones causing most motion parallax.

Understanding of the human visual system (HVS) [Palmer, 1999] in a computational context,
helps to motivate the challenges of designing VR experiences, made to please the HVS.
Adelson and Bergen point to the elements of early vision which introduces a periodic table of
visual elements [1991] which are important to the HVS to understand shapes and geometry.
For example, a mismatch of physically, and visually perceived speed, can cause discomfort
like motion sickness. Not perceiving motion parallax at all, especially if occlusions indicate
close-by objects, can cause discomfort to the visual system. A extensive survey about VR
sickness is provided by Chang et al. [2020].

Despite the interesting related work regarding VR videography [Serrano et al., 2019, Pozo
et al., 2019, Attal et al., 2020, Broxton et al., 2020], the focus of this thesis is on still VR
experiences which can be encoded in 3D photographs (Section 1.1.3).

1.1.2 Degrees of freedom (DoF)
The degrees of freedom (DoF) describe the action space (or head box) in which a scene rep-
resentation provides novel viewpoints needed for interactive visual applications. Increasing
the DoF of visual media leads to a better perception of presence within an environment as it
provides more natural scene explorations. This is in particular true for head motions (see
Figure 1.4) which are the focus of user-centric VR applications as emphasised in this thesis,
i.e., VR experiences are assumed to be enjoyed stationary, e.g., while seated or standing.

Extrinsic action spaces are usually specified by 1-6 DoF (see Figure 1.4):

(a) 0-DoF: single viewpoint V (black dot), central ray (black arrow).

(b) 1,2,3-DoF: viewing direction can change in one dimension, namely the angle θ

(1-DoF) (orange circle), e.g., 360° stereo panoramas [Peleg et al., 2001, Richardt
et al., 2013] (see Section 2.6.2.4 and Section 2.6.3.2). Viewpoints can be additionally
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translated within a disk (X ,Z,θ ) which is a subset of the 2D camera plane which often
serves as embedding capturing manifold, leading to 3-DoF in total, as demonstrated in
Rendering with Concentric Mosaics [Shum and He, 1999] (see Section 2.6.2.2).

(c) 2,3,4,5,6-DoF: The viewing direction can vary in three dimensions rotationally, θ ,ϕ,ψ
(3-DoF) as well as spatially (X ,Y,Z) within a spherical region (2-DoF + roll Ψ) leading
to a total of 6-DoF.

Extrinsic 6-DoF spaces can be reliably tracked by modern consumer HMDs (fixed focus
near-eye displays). Note that the DoF do not describe more eye-specific intrinsic properties,
e.g., (fixed) focus cues causing discomfort in VR [Thatte et al., 2016b]. Focus-tunable optics
like varifocal near-eye displays [Rathinavel et al., 2019], in particular suitable for augmented
reality (AR) applications, are designed to provide these intrinsic DoF.

The configuration of a camera when taking images, in particular its movement and orienta-
tion in space (see extrinsics in Section 2.3) during capture, leads naturally to the concept of
camera motion (see Section 2.5.2). Note that the shape of the action space is usually closely
connected to the camera path (or trajectory or motion) used to capture a real-world dataset
(see Section 2.5.2), e.g., circles [Peleg et al., 2001, Richardt et al., 2013, Anderson et al.,
2016, Schroers et al., 2018, Serrano et al., 2019], or spheres [Overbeck et al., 2018, Pozo
et al., 2019, Broxton et al., 2020].
The scene representation and employed rendering technique determine together the mag-
nitudes of individual DoF. For an example, the rotational DoF of ODS has a maximal
magnitude, namely 360°. In practice, translational DoF are essential due to their implying
motion parallax, which is an important cue of early human vision.

1.1.3 3D photography
The term 3D photography is ambiguous. It can be understood as a stereoscopic image
pair (see Figure 4.9, ideally with anaglyph glasses) in which two images, representing the
viewpoints for the left and right eyes respectively, are baked into a single image, e.g., by using
an anaglyph colour coding. Note that left and right viewpoints are shown individually in VR
headsets. This technology will be referred to as stereo photography (0-DoF) to emphasise
the difference to modern 3D photography (up to 6-DoF), which has its roots in image-based
rendering (IBR).

In the context of this thesis, 3D photography in its whole, connects the inter-dependent
tasks of capturing, reconstructing, representing and rendering data formats that can immerse
people (visually) into real-world environments by using IBR techniques (see Section 2.6)6.

In this thesis, any image-based scene representation that provides real-world IBR experiences
with translational action spaces, e.g., [Hedman et al., 2016, 2017, Serrano et al., 2019,
Broxton et al., 2020], is considered to be a 3D photograph. According to this definition, ODS
[Peleg et al., 2001, Richardt et al., 2013] is still considered to be a VR format because it
supports binocular disparity (in a 360° environment), but it does not qualify for 3D (or VR)
photography due to its lack of translational DoF.
Furthermore, the term VR photography is identified with 3D photography.

3D photographs and their underlying IBR scene representations can for instance consist of:

6IBR has been explored very eagerly in the 90s and led to two consecutive SIGGRAPH courses at the end of
the last millenium [Curless et al., 1999, 2000].
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1. a diffuse 3D geometry like a mesh alone, for example, 3D photography can be rep-
resented as a 3D mesh with a diffuse colour texture [Hedman et al., 2017] (see
Section 2.6.4.4). In that sense, all voxel colouring approaches (e.g. [Seitz and Dyer,
1999]) can be considered 3D photographs. A recent SIGGRAPH course [Richardt
et al., 2019] outlines the steps to go from VR photography to VR video. ,

2. at least two multi-perspective colour images with calibrated viewpoints (see Sec-
tion 2.4) with method-dependent viewpoint and/or scene information, e.g., image
correspondences [Chen and Williams, 1993, McMillan and Bishop, 1995], or 3D
geometry [Debevec et al., 1996, Shade et al., 1998, Buehler et al., 2001], or

3. a dense set of posed images [Levoy and Hanrahan, 1996, Shum and He, 1999, Davis
et al., 2012].

The corresponding action spaces to all these examples exhibit non-zero translational DoF, in
contrast to stereo photography.

1.2 Relevance
Real-world VR could be used in applications like e-commerce, e.g., providing 3D pho-
tographs of objects to be sold on ebay or online shopping platforms like Amazon, photo-
tourism, e.g., travelling visually to far away places from the comfort of your home, or
free-viewpoint event broadcasting, e.g., experiencing concerts and sport events like a ghost
hovering over crowds and pitches.
Companies (e.g., Oculus, HTC, Sony, Microsoft, ..) invest millions of dollars into headset
technology that enables immersive visual experiences in 6-DoF7, but a breakthrough, or
often announced VR revolution for the masses, could not be observed so far. “The combined
augmented reality and virtual reality markets were worth $12 billion in 2020 with a massive
annual growth rate of 54%, resulting in a projected valuation of $72.8 billion by 2024 (IDC,
2020)“8.

Most popular VR applications nowadays are games (67% in the Oculus store in 20209) which
are conventionally made up of synthetic worlds. Developers need to trade visual quality with
speed, in order to keep framerates suitable for VR, e.g., 90 Hz stereo (single eye 180 Hz) are
supported by the Oculus Quest 2. 6-DoF come for free, since the geometry of the virtual
scene is perfectly known.

How the first casually captured real-world VR applications could look like is up to us.
Experiences that rely on a capture rig are publicly available [Overbeck et al., 2018, Broxton
et al., 2020].
For instance, imagine a VR holiday experience with in-app bookings for the actual stay, or a
movie in which the user turns takes on the role of one of the actors. Personally, I assume
that people will stay interested in capturing and recording the places that are important to
them, and instead of sharing a picture or a video, why not sharing actual 3D spaces, i.e., 3D
photography?
Why this is not happening already is a main motivation for this thesis.

7In 2020, investments in augmented and virtual reality (AR/VR) technology have been surveyed and projected
to the year 2024: link to Statista

8link to financesonline
9Oculus Store: Distribution of apps
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3D photography, as in the focus of this thesis, is not available widely, as identified as largest
hindering factor of VR tech with 27%10, followed by unsatisfying user experiences 19%.
Facebook’s 2D to 3D image conversion is a noteable exception to that [Kopf et al., 2020,
Shih et al., 2020].

Against intuition at first, not much attention has been spent on casual 3D photography over
the last five years. When trying to explain it, I believe that this is mostly because of the need
of high-quality scene reconstructions used to create high-quality novel views [Debevec et al.,
1996, Pulli et al., 1997, Debevec, 1998, Buehler et al., 2001, Shum et al., 2007].
In particular, if the aspired action space is high-dimensional (ideally 6-DoF) with reason-
able magnitudes (not just millimetres) in each dimension, without resorting to light field
approaches [Levoy and Hanrahan, 1996, Davis et al., 2012] that require lots of memory and
support only non-panoramic action spaces, there was no technology that could be applied in
a general sense allowing for high-quality scene reconstructions from casual input.

Machine learning techniques, and in particular deep neural networks and generative adver-
sarial nets have changed the game and opened up new applications previously considered
impossible, e.g., space-time navigation of a casual camera sweep using a per-view monocular
depth estimation [Yoon et al., 2020], domain transformations from satellite into street-view
imagery [Lu et al., 2020], creating photo-realistic novel-views using imperfect geometry
[Hedman et al., 2018, Thies et al., 2019], or solely via posed images without any requirement
to reconstruct any further scene information [Sitzmann et al., 2019a, Mildenhall et al., 2019,
2020].

3D photography has virtually unlimited practical applications, e.g., in e-commerce, adver-
tisements, 3D photo tourism, travel agencies, architecture, and so forth.
Most of the scene representations proposed in recent end-to-end VR pipelines are based on
multi-camera rigs [Overbeck et al., 2018, Pozo et al., 2019, Broxton et al., 2020]. All these
methods support 6-DoF from very high to excellent (state-of-the-art) visual quality.
Nevertheless, handling the captured data and actually processing it requires massive com-
putational resources which hinders casual access, or contribution, to modern immersive
media production, e.g., suitable for hobbyists, students, engineers and researchers at the
same time. This motivates many application-oriented approaches that rely solely on casual
capturing procedures using hand-held consumer camera [Davis et al., 2012, Richardt et al.,
2013, Hedman et al., 2017, Hedman and Kopf, 2018, Mildenhall et al., 2019].

If casual users, e.g., artists, hobbyists, kids and creative people in general, could contribute
and manipulate content, ideally while only relying on their smartphones for capturing, and
modest hardware requirements for processing, e.g., a common Desktop PC, or a web server,
a new exciting era of immersive visual media might not be far away.

1.3 Difficulties
3D photography can be represented in different ways (Section 1.1.3). In this thesis, it refers
to all IBR methods with translational action spaces that induce motion parallax, in contrast to
(omnidirectional-) stereo-photography, which lacks any translational DoF (see Section 1.1.2).
Single object 3D photography underlies different challenges then 360° (scene, or multi-
object) 3D photography:

10link to financesonline
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• While single objects have been captured and represented well with light field (LF)
techniques before, it is not practical to support larger rotational magnitudes to increase
the action space due to prohibitive memory requirements.

• The camera motion used to capture a photograph changes. From single-object outside-
in, to inside-out for multiple objects. This subtle change has a profound impact
on the quality of scene reconstruction (or vision) machinery. The visual overlap of
neighbouring viewpoints will decrease while their respective optical axes further
diverge11.

Nevertheless, 3D photography in general shares the same difficulties as IBR approaches:

• High-quality scene geometry is hard to obtain in general scenes, in particular using
casual captures.

• Common scene assumptions, like diffuse surfaces and static scene geometry, will
reduce the chance of making IBR systems reliably working in arbitrary environments,
especially outdoors.
Vegetation is a well known issue for many IBR methods since geometric reconstruction
often suffers from inaccurate and incomplete geometry, which needs to be accounted
for [Chaurasia et al., 2013, Lipski et al., 2014].

It feels intuitive that camera motions, and thus capturing strategies and further scene represen-
tations, become more sophisticated the more degrees of freedom, and the larger magnitudes
within each degree, are anticipated. To give an example, ODS [Peleg et al., 2001], which
can be created from a circular video sweep, provides 1-DoF with full magnitude (360°),
technically within the plane which embeds the camera circle.

ODS can be generated casually [Richardt et al., 2013] 12 years later, and it is still the de-facto
standard to represent real-world VR experiences today. It is further conceptually easier to
create 3 or 5-DoF 360° VR experiences based on a circular trajectory [Shum and He, 1999,
Serrano et al., 2019], compared to creating 6-DoF experiences [Hedman et al., 2017, Luo
et al., 2018, Pozo et al., 2019, Broxton et al., 2020] which rely on a volumetric (usually
spherical) distribution of camera viewpoints.

The last 4-5 years have shown a steadily rising interest in creating immersive 6-DoF VR
experiences, particularly within 360° environments.
The trade-offs between casual capture, reasonable processing times, robust reconstructions
and plausible hallucinations (needed because of missing data) together with a clever view-
point blending to obtain high visual quality within truly immersive action spaces, are spanning
an exciting research landscape surrounding this thesis (see Sections 2.8 and 2.8.1).

In my opinion, a 3D photograph should have (ideally) the following properties:

• Casual: easy and quick to capture with consumer cameras, ideally a smartphone.

• Short round-trip: possible to produce novel views reliably within minutes, ideally
seconds, after capture. In consequence, fast previews could help “to fill the gaps“ from
an incomplete capture.

11Consider a stereo setup for which optical axes are parallel in Section 2.4.4. Rays converge at finite depths in
front of the stereo pair. Diverging optical axes imply fewer ray intersections leading to fewer feature points and
thus to less robust matching and bundle adjustment.
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• Action space: underlying IBR representation provides sufficient DoF, in particular
translation, to support “natural“ head movements in a seated position, ideally non-
seated.

• Visual quality: the final output must support “free“ head movements, while showing
correct perspectives and motion parallax. Note that the action space and visual quality
are the main limitations of ODS [Peleg et al., 2001, Richardt et al., 2013, Anderson
et al., 2016].

• Speed: needs to be fast, casual HMDs like the Oculus Quest 2, run on 90-120 Hz,
i.e., between 11.11 ms and 8.33 ms to render a stereoscopic view on a resolution of
1,280-by-1,440 per-eye.

As a researcher in the field and a user of VR technology today, I imagine round-trip time
“the key“ for developments of casual VR systems. Small round-trips while only requiring
modest computational requirements. As a consequence, short round-trips [Davis et al., 2012,
Serrano et al., 2019, Mildenhall et al., 2019, Tomoto et al., 2020] give fast previews by
design, which can be very helpful to determine the quality of a freshly captured dataset. The
current state-of-the-art [Overbeck et al., 2018, Broxton et al., 2020] can take days to compute
the underlying learned scene representation [Zhou et al., 2018, Flynn et al., 2019], before
further processing can be done needed to enable real-time rendering in VR.

Estimating extrinsic viewpoint information and metric reconstructions from a set of input
images [Koch et al., 1999, Heigl et al., 1999, Pollefeys et al., 2004, Ballan et al., 2010,
Schönberger and Frahm, 2016, Saputra et al., 2018, Sumikura et al., 2019] and reconstructing
dense 3D scene geometry [Furukawa and Hernández, 2015] are very complex procedures
and essential to many IBR approaches (see Section 2.6).
Since estimating the extrinsics of the viewpoints can already fail, depending on the chosen
camera and camera motion (see Section 2.5.2), the interest arose in purely image-based,
so called plenoptic, scene representations (see Section 2.6.2) which do not rely on any
reconstructed explicit 3D geometry like point clouds, depth maps or scene meshes.
Only camera calibrations are needed which can be obtained by using specialised hardware
equipment, e.g. a gantry used to capture light fields (LFs) [Levoy and Hanrahan, 1996] (see
Section 2.6.2.1), or other ways of controlling the camera motion for instance to capture
concentric mosaics [Shum and He, 1999] (see Section 2.6.2.2).
Non-plenoptic approaches rely on some sort of viewpoint correspondences (see Section 2.4.1),
which often cannot be obtained reliably in practice, especially considering arbitrary scenes,
particularly outdoors, view-dependent (specular) scene objects, and various camera motions.

In the last decade, implicit IBR methods, e.g., casual ODS presented as Megastereo [Richardt
et al., 2013], or rig-based ODS [Anderson et al., 2016], have been deemed unsuitable to
create high-quality immersive real-world VR experiences because of its limitations [Thatte
et al., 2016a, Hedman et al., 2017, Luo et al., 2018, Serrano et al., 2019].
To overcome these limitations, explicit [Hedman et al., 2016, 2017, Serrano et al., 2019,
Broxton et al., 2020], hybrid [Debevec et al., 1996, Zitnick et al., 2004, Chaurasia et al.,
2013, Lipski et al., 2014, Prakash et al., 2021], and learned [Sitzmann et al., 2019a, Thies
et al., 2019, Flynn et al., 2019, Mildenhall et al., 2019, 2020, Aliev et al., 2020, Kopanas
et al., 2021] IBR methods have been suggested.

Note that the current state-of-the-art involves learning a machine learning model first which is
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then converted into a (layered) mesh representation suitable for high-quality view-dependent
texture mapping [Broxton et al., 2020, Tomoto et al., 2020].

Task-specific challenges Unfortunately, it is not expected to obtain highly accurate
scene information capturing real-world environments, in particularly outdoors [Chaurasia
et al., 2013, Hedman et al., 2017], and even harder, omnidirectionally (360°). The choice of
the used optics for capturing has a tremendous impact on the range of reasonable camera
motions (see Section 2.5.2).

IBR scene representations suitable to serve as a backbone of an end-to-end real-world VR
pipeline can be hard to identify (see Table 2.4 for an overview). The problem of scene
reconstruction is harder for wide-baseline multi-view datasets, e.g., as used in [Chaurasia
et al., 2013, Penner and Zhang, 2017, Hedman et al., 2017], than it is for narrow-baseline
imagery, in particular for linear paths [Bolles et al., 1987], or outside-in camera motions
[Pollefeys et al., 2004, Kim et al., 2013].
Inside-out camera paths become harder to calibrate due to reduced visual overlap of consecu-
tive images and a rotation-dominant motion [Sweeney et al., 2019, Baker et al., 2020].

Wide-baseline imagery along inside-out camera paths is only reasonable using lenses with
wide field of views, e.g., fisheye lenses [Hedman et al., 2017].
Narrow-baseline imagery can be processed locally more accurately, e.g., between the frames,
but it is generally more costly to run global alignment procedures (like bundle adjustment),
in particularly if only narrow lenses are available for capture, as it is often the case with
common consumer hardware built into smartphones used to capture videos.

High-quality novel views have been presented by plenoptic approaches, which seem like a
natural way out of the requirement of reconstructing accurate scene geometry. Unfortunately,
IBR using imperfect scene geometry will cause rendering artefacts which need to be allevi-
ated and minimised, at any cost for the final version, in order to enable visually compelling
and immersive VR experiences.

1.4 Contributions
The very core of this thesis is to share my insights and perspectives, including my main
technical contributions on this exciting research field of 360° real-world VR.

The primary subjectives of this thesis are two-fold:
First, inform the reader about the research field overall by giving background about related
work and discussing the needed tools and concepts which are important to understand the
current state-of-the-art for creating and displaying real-world VR experiences (see Chapter 2).
This includes a summary of related work in the field of image-based rendering (IBR) (see
Section 2.6) and learned view synthesis (see Section 2.7).
Second, highlight the scientific contributions (see Chapters 3 to 6) that I made as first author
during my PhD programme at the University of Bath under the supervision of Dr Christian
Richardt.

The main theoretical, technical, and systematic contributions of this thesis are five-fold (see
Table 1):
First, a survey (systematic/technical) of approaches in the context of image-based rendering
for real-world environments is presented (see Sections 2.6 and 2.7). Multiple tables sum-
marise all discussed methods (and more) according to the metrics that I deemed as important
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for the landscape of (casual) real-world VR approaches, i.e., capture, reconstruction, repre-
sentation, and rendering (see Tables 2.4, 2.5 and 7.2).
The survey serves to motivate the following main chapters (see Section 2.9) of this thesis.

Second, an approach (see Chapter 3, technical) for transforming (ODS) [Ishiguro et al., 1992,
Peleg et al., 2001] into depth augmented stereo panoramas (DASP) [Thatte et al., 2016a],
technically turning ODS into 5-DoF VR photography (ODS2DASP), without requiring any
additional input than the left and right panoramas for each eye representing an ODS viewing
circle.
Note that this can be applied to already widely available footage and that VR or 3D photogra-
phy (see Section 1.1.3) provides a much higher level of immersion than ODS. Nevertheless,
without further treatment, e.g., by providing more information about the scene, for instance
by inpainting the reconstructed representation [Shih et al., 2020], only tiny action spaces can
be rendered in high-quality (without holes due to disocclusions).

Third, an implicit IBR approach for casually creating 360° VR experiences with motion
parallax, namely MegaParallax [Bertel et al., 2019] (see Chapter 4, theoretical/technical)
which is strongly inspired by Megastereo [Richardt et al., 2013], the state-of-the-art for
casually capturing and creating high-resolution stereo panoramas in the ODS format (see
Section 2.6.3.2).
The main contribution here is to provide motion parallax (see Section 2.4) in 360° real-world
environments via view-dependent flow-based blending (VDFBB).

Fourth, an hybrid IBR approach which is currently state-of-the-art for casually creating
360° VR experiences with motion parallax without using accurate explicit geometry, namely
OmniPhotos [Bertel et al., 2020d] (see Chapter 5, systematic/technical) which extends
MegaParallax in several ways. Note that OmniPhotos currently demonstrate the fastest
capturing procedure in the field.
We use a 360° ”single-shot” camera as input and present a robust and reliable pipeline for
high-quality VR experiences for a large variety of scenes while additionally exceeding the
commonly available action spaces (in magnitude) offered by competitors.

Fifth, a learned IBR approach [Bertel et al., 2020b] (see Chapter 6, systematical/technical)
which extends deferred neural rendering by Thies et al. [2019] (see Section 2.7.4.1). The
proposed extensions lead to smoother view-extrapolation compared to the baseline which is
demonstrated by stabilising a camera path captured around a shiny object (view-dependent
appearance) like a car.

The background chapter (see Chapter 2) introduces concepts and assumptions necessary to
understand the current state-of-the-art of end-to-end pipelines for real-world 3D photography
(see Sections 2.1 to 2.4).

The main chapters (see Chapters 3 to 6) discuss the main contributions I have made during
my PhD studies (see second to fifth above).

The thesis concludes in Chapter 7 by comparing my work with others in Table 7.2, as well as
giving examples for VR application scenarios for which each of the presented main methods
could be used in. Further improvements are outlined that could naturally lead to future work.
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Chapter 2

Background

"Don’t re-invent the wheel, just re-align it."

Anthony J. D’Angelo

This chapter introduces fundamental concepts to understand the discussed methods in this
thesis. Readers familiar with some visual computing background should find it straight
forward to grasp the ideas of the main chapters without reading the background. Nevertheless,
my goal is to provide enough information to understand the most important principles at any
time.

Assumptions as well as mathematical concepts and terminology which are used throughout
this thesis are introduced in Sections 2.1 to 2.4 respectively. Section 2.5 motivates the
computer vision tasks related to the reconstruction of viewpoint and scene information.
Section 2.6 demonstrates a set of various approaches designed to create new scene viewpoints
from a given set of input images, for instance [Levoy and Hanrahan, 1996, Shade et al., 1998,
Shum and He, 1999, Buehler et al., 2001, Shum et al., 2007].
In particular, methods designed to work in real-world environments, suitable for VR, are
investigated with great interest [Peleg et al., 2001, Richardt et al., 2013, Anderson et al., 2016,
Thatte et al., 2016a, Hedman et al., 2016, Matzen et al., 2017, Hedman et al., 2017, Hedman
and Kopf, 2018, Schroers et al., 2018, Luo et al., 2018, Serrano et al., 2019]. Section 2.7
motivates the recent and ongoing roaring success of machine learning techniques to create
high-quality novel views [Mildenhall et al., 2019, 2020, Broxton et al., 2020, Tomoto et al.,
2020].

Three main chapters of this thesis (see Chapters 3 to 5) are end-to-end approaches for
real-world 360° VR applications with motion parallax. Many of the referenced methods
throughout this thesis can be found in the survey-part of this chapter (see Sections 2.5
to 2.7). Note that many figures in this chapter are either from the original papers and properly
referenced as such, or inspired by existing work and created from scratch. In these cases,
inspired by is referenced.

My contributions to the field (see Chapters 3 to 6) are mainly of a systematic nature, but
their significance has been recognised by top- and second-tier conferences. Everything
discussed in this chapter, especially in the beginning (see Sections 2.1 to 2.4), will help to
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understand the real-world VR research environment which is highly relevant to the context
and motivation of this thesis.

2.1 Assumptions
End-to-end pipelines for creating and displaying real-world VR employ methods and con-
cepts from scene reconstruction (see Section 2.5), image-based rendering (see Section 2.6),
as well as deep learning (see Section 2.7), to create high-quality VR experiences. All methods
except some of the learned ones rely on at least two or more viewpoints as input, for instance
for gaining viewpoint information and thus scene understanding (see Section 2.4).

It is important to understand the underlying assumptions and limitations inherited by using
vision and graphics methods when building end-to-end pipelines.

In the context of image-based rendering and modeling [Shum et al., 2007], assumptions are
commonly taken implicitly on

1. the scene type for which new methods are demonstrated e.g., usually diffuse, static and
rigid [Chen and Williams, 1993, McMillan and Bishop, 1995, Buehler et al., 2001].

2. the way how to calibrate captured viewpoints, in particular their extrinsic parameters,
which depends on the chosen camera motion [Bolles et al., 1987, Levoy and Hanrahan,
1996, Shum and He, 1999], and camera intrinsics1,

3. how the viewpoints are encoded, e.g., with a light field (LF) [Levoy and Hanrahan,
1996] or with a diffuse [Seitz and Dyer, 1999], or texture mapped [Debevec et al.,
1998, Buehler et al., 2001] mesh, and

4. what type of additional viewpoint or scene information is available for novel-view
synthesis.

These assumptions are usually active when searching for correspondences in 2D [Lucas
and Kanade, 1981, Horn and Schunck, 1981, Huang et al., 2006, Szeliski, 2006] or in 3D
[Furukawa and Hernández, 2015, Schönberger and Frahm, 2016] in many different contexts.
Relaxing these assumptions, at least partially, is ongoing active research [Furukawa and
Hernández, 2015, Saputra et al., 2018].

The following assumptions hold throughout the thesis2 unless explicitly stated otherwise.

Scene Scene environments are always assumed to be static, i.e., there are no dynamic
changes in geometry or lighting in the input viewpoints. This can still lead to exposure
differences in colour images which usually need compensation before further processing,
e.g., stitching or blending [Szeliski, 2006].
All introduced methods working with correspondences among input images assume a rigid
scene, implying that features change affinely (only rotate and translate) over multiple view-
points.
Furthermore, it is expected that scene materials are mostly diffuse. Otherwise, the correspon-
dence problem could not be addressed solely on a per-pixel basis anymore (see Section 2.4.1).
Note that there will be no special treatment for specular or dynamic scene objects at any
time.

1Unconstrained [Pollefeys, 1999], or using calibration objects like a checker board [Shu et al., 2003].
2Note that these assumptions are usually violated when casually capturing outdoor environments.
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Calibration It is assumed that the intrinsics of viewpoints, i.e., the focal length and
principal points, within an image sequence are constant and determined as an offline-
procedure, e.g., by capturing a checkerboard from multiple perspectives [Shu et al., 2003].
Choosing the right strategy for extrinsic viewpoint calibration depends on the camera motion
(see Section 2.5.2) and the available equipment used to record a dataset. Different lens types,
e.g., narrow field-of-view versus 360° one shot consumer cameras, can strongly influence
the reconstruction strategy.

Most related work use some form of Structure-from-Motion (SfM) [Schönberger and Frahm,
2016] (see Section 2.5.1.1) or simultaneous localization and mapping (SLAM) techniques
[Saputra et al., 2018, Sumikura et al., 2019] (see Section 2.5.1.2) to estimate the calibration
(or “poses“) of all input views. Notable exceptions are presented by Perazzi et al. [2015]
who are able to stitch panoramic viewpoints by aligning input images on a projection surface
without taking extrinsic viewpoint information into account, and by Hedman and Kopf [2018]
who demonstrate how to obtain extrinsics by jointly aligning and refining coarse per-view
depth, which is captured by a dual camera phone, with the extrinsic camera parameters.

Viewpoints The most essential elements of many image-based rendering methods are
fully calibrated viewpoints [Hartley and Zisserman, 2004], and in particular, pairs or sets
(multiple pairs) of viewpoints. A viewpoint V is represented as a pair consisting of a camera
projection matrix P and a colour image I. V = (P, I).

This thesis will make use of many concepts from [Hartley and Zisserman, 2004], e.g., the
pinhole camera model, 2D projective transformations a.k.a. homographies, epipolar geome-
try, and image rectification, without formally deriving them3.
The most important ingredients to get an overview of vision tasks related to novel-view
synthesis are: global projection, correspondences, epipolar geometry and homographies (see
Sections 2.3 and 2.4).
From a graphics side, the task is to create new viewpoints from estimated viewpoint cali-
brations and further scene information e.g., 2D or 3D correspondences (see Sections 2.4.1
and 2.5), e.g., interpolation[Levoy and Hanrahan, 1996], morphing [Seitz and Dyer, 1996],
re-projecting and texture-mapping [Shashua, 1993, Chen and Williams, 1993, Debevec et al.,
1996, 1998, Buehler et al., 2001], blending [Szeliski, 2006, Richardt et al., 2013, Anderson
et al., 2016, Schroers et al., 2018], and inpainting [Shade et al., 1998, Zheng et al., 2007,
Zhou et al., 2018, Serrano et al., 2019, Shih et al., 2020].

2.2 Coordinate systems
Coordinate systems are used to describe functions in different (coordinate) spaces, e.g.,
real-world 3D objects. Circular, cylindrical, as well as spherical coordinate systems play an
important role in this thesis.
Every presented approach in the main chapters uses viewpoints distributed along a circle,
i.e., every dataset discussed was originally created by at least one circular camera motion,
which is the minimal requirement to record the full 360° of a environment. Directional
parametrisations are useful if the captured camera manifold can be registered to a geometric
shape like a circle or a sphere [Shum and He, 1999, Peleg et al., 2001, Richardt et al., 2013,
Luo et al., 2018, Overbeck et al., 2018, Pozo et al., 2019, Broxton et al., 2020].

3However, sufficient formalism, illustrations and references should be given at any point to understand the
concepts without knowing the rigorous mathematical foundations of projective geometry [Hartley and Zisserman,
2004].
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Figure 2.1: Coordinate systems with shared origins (black dot): a) 3D Euclidean (X ,Y,Z), b)
cylindrical (Θ,h,R), and c) spherical (Θ,ϕ,r), both used in panoramic image stitching. See
more detailed description in text.

For any point X in euclidean 3D space, it is desirable sometimes to write this point in a
different coordinate space more suitable to the task at hand. Transformation of a Euclidean
point cloud, for instance into a cylindrical or spherical coordinates, requires a basis in 3D
Euclidean space first, to define the orientation of a cylinder, or a sphere, respectively.

Consider Figure 2.1, and let (X ,Y,Z) be a orthogonal basis of 3D Euclidean as depicted:
Circular (Polar): Given (θ , R) and (X ,Z) = X:

X = R · cos(θ), θ = arctan(Z/X). (2.1)

Z = R · sin(θ), R =
√

X2 +Z2. (2.2)

Cylindrical (b): Given (θ , h, R) and (X ,Y ,Z) = X:

X = R · cos(θ), θ = arctan(Z/X). (2.3)

Y = h, h = Y. (2.4)

Z = R · sin(θ), R =
√

X2 +Z2. (2.5)

Spherical (c): Given (θ , φ , r) and (X ,Y ,Z) = X:

X = r · sin(θ) · cos(φ), θ = arctan(Z/X). (2.6)

Y = r · sin(φ), φ = arcsin(Y/r). (2.7)

Z = r · cos(θ) · sin(φ), r =
√

X2 +Y 2 +Z2. (2.8)

If ‖X‖2 = 1, R and r can be neglected in b) and c) respectively leading to 2D coordinate
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Figure 2.2: Pinhole camera model. See detailled description in text. Inspired by Hartley and
Zisserman [2004].

spaces.

2.3 Pinhole camera model
Camera models (see Chapter 6 in Hartley and Zisserman’s book4[2004]) describe optical
systems which determine how points in Euclidean 3D space are projected onto images (finite
2D planes). The main chapters of this thesis and most of the discussed methods follow
this formalism (if applicable). Camera models are represented as matrices P ∈ R4×4 (in
homogeneous 3D space, i.e., 3+ 1 = 4D space) to model projective transformations. For
example a point X in 3D can project into a camera, e.g., if the point lies in the camera’s field
of view (or viewing frustum). The point technically projects onto a pixel x of the camera’s
image sensor (the image) I (see Figure 2.2 a) ).

Homogeneous coordinates Homogeneous coordinates embed linear mappings, e.g.,
rotations, scalings, or shearings, into a more expressive space (higher dimensional, but still
linear), which allows to conveniently express affine and projective mappings as well in one
common space, i.e., translations, and homographies respectively.
A point X ∈ R3, e.g., in 3D Euclidean space, is represented as X̃ = (X,1) ∈ R4 in 4D
homogeneous space, while a direction v ∈ R3, is represented as ṽ = (v,0) ∈ R4. Note that
the subtraction of two points in homogeneous coordinates yields a direction (vector) which
complies with standard vector calculus.

Central projection Consider the central projection5 of 3D Euclidean points to the optical
centre of the viewpoint C passing the image plane I (see Figure 2.2 a) and b) ). The camera
is aligned with the world coordinate system looking down the Z-axis.
Connecting X with C results in a (dashed) line whose intersection with the image plane
determines the projected image pixel’s position x in camera space (see Figure 2.3 a) ).
A world point X = (X ,Y,Z) in Euclidean world-space is projected to an image pixel x using
a homogeneous mapping a.k.a. camera projection matrix P ∈ R3×4, which is embedded in
R4×4 for practical computational reasons (see below).

Intuitively, the orientation and the position of a camera, i.e., its extrinsic parameters, deter-
mine the angle and the physical distance to imaged scene objects. Note that if the camera has
no translational offset from the world space, there is no need for homogeneous coordinates

4Multi-view geometry in computer vision is a mathematically rigorous compendium of projective geometry
and its applications.

5I am following the example in Chapter 6 of H&Z’s book [Hartley and Zisserman, 2004].
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[Hartley and Zisserman, 2004], which are only needed to express non-linear mappings.
Technically, non-linear Euclidean mappings, e.g., translations and homographies, are turned
into linear homogeneous mappings.

Intrinsic camera parameters like focal length f , and principal point p, influence how points
in camera space (X′ = RX+ t) are mapped to their corresponding image pixels x on the
image plane. I assume that the focal length is equal in both image space dimensions, i.e.,
fu = fv = f .

b) Once X is transformed into camera space (X′), and the image plane is set to Z = f ,
perspective division is applied to clip the camera’s viewing frustum. For simplicitiy of
notation, I assume X = X′. For arbitrary camera orientations, world points X are first
transformed into camera space X′, before central projection (see Figure 2.2 c).

X = (X ,Y,Z) projects to ( f X/Z, fY/Z), which only depends on focal length f and distance
Z of the scene point to the optical centre. ( f X/Z, fY/Z) = x = (xu,xv), correspond to image
space (pixel) coordinates (see bottom left image basis Figure 2.3 a) ) without offset of the
principal point.
It is often assumed that the principal axis of the camera coincides with the viewing direction
v of the camera and that the principal point lies in the centre of the image plane: (x =
(xu,xv) = ( f X/Z + pu, fY/Z + pv) (see central image basis Figure 2.3 a) ).

Camera projection matrix The intrinsics are encoded in a 3x3 matrix:

K =

 f 0 px

0 f py

0 0 1


Note that the focal length (in pixels [px]) is directly connected to the field-of-view (in degrees
[°]) of a camera. For example, the horizontal field of view of a pinhole camera, encoded
by angle Θ, can be determined knowing the focal length f , and the width w of the image
I(compare to Figure 2.2 b)):

tan
(

Θ

2

)
=

w
2 · f

Θ = 2 · arctan
(

w
2 · f

)

The extrinsics of a camera (see E further below), i.e., optical centre C, and rotation R, define
a coordinate system (camera space) (see Figure 2.3 a) ), in which Xcam denotes the camera’s
left direction (l in blue), Ycam the camera’s up direction (u in green) and Z the camera’s
viewing direction (v). Note that Xcam goes to the right, since the image is considered to be
looked at from the scene point6 X.
R = [l|u|v]T ∈ SO(3), or explicitly:

R =

 lx ux vx

ly uy vy

lz uz vz

T

=

 lx ly lz
ux uy uz

vx vy vz


6It is common in graphics to consider image spaces from the optical centre C of the desired viewpoint instead,

which can lead to confusion.
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Figure 2.3: Image space transformations. See more detailed description in text. Inspired by
Hartley and Zisserman [2004].

Note that l = u×v.

It is common to encode the translation t instead of the optical centre C for mathematical
convenience, the world point is translated into camera space simply via: X′ = RX+ t. Note
that the translation t is defined with respect to the camera coordinate frame (camera space),
i.e., the translation points from the optical centre C towards the origin of the world coordinate
space.

Given a calibrated viewpoint, the projection of Euclidean scene points X in 3D onto the
image plane I in 2D yielding image projections x is given by:

x = PX
x = K[R|t]X
x = K[I|0]X′

(2.9)

To make the handling of the camera projection matrix P more practical, K, R, and t, are
embedded into 4x4 matrices:

K′ =
[

K 0
0 1

]
,E =

[
R t
0 1

]
∈ R4×4

Finally, given the homogeneous coordinate X̃ (in 4D) of a scene point (in Euclidean 3D
space), the corresponding pixel coordinate in camera space is obtained via:

x = (K′E)X̃ = PX̃

After central projection, normalised device coordinates (NDCs) are obtained by dividing the
components of x by the width of w and the height h of the image at hand7. For instance, an
image with a resolution of w× h yields normalized device coordinates by xu/w and xv/h.
Note that P has 9 degrees of freedom8, 3 for K, 3 for R and 3 for t.

Images Images are formed by projecting scene points, or more precisely the reflected
radiance that bounces off from scene points, depending on the used camera model [Kajiya,
1986]. A pixel x of an image I, is uniquely mapped to a camera ray rx (see Figure 2.2 c)).
In other words, each image pixel encodes a single direction with respect to the camera’s
calibration, in particular its optical centre C. For example, after world points X have been

7Note that the image space (in pixels) is offset by the principal point and the image plane itself is discretised
via pixels

811 degrees of freedom if pixels are not square.
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transformed into camera space X′, the camera ray rx which is defined by the projection of X
onto the image plane I, can be interpreted as a direction. Note that equirectangular images
for instance encode spherical spaces (see Section 2.2) by stitched 360° panoramas which can
be used as a single omnidirectional viewpoint.

Generally, pixels can be conveniently re-interpreted by transforming them into different
image spaces. Consider Figure 2.3:
a) The pixel x in camera space expressed in terms of the camera’s orientation, in particular
its left and up directions9 in blue and green respectively.
b) Then, each pixel is transformed into normalized device coordinates by dividing the image
coordinates by the dimensions .
c) Finally, pixels are often transformed into a texture space which is used to actually access
the pixels, e.g., writing when acquiring images, or reading (sampling) when looking up
colour values to texture 3D objects for instance.

Note that the choice of the image space origins in b) and c) is technically free and is basically
up to the developer. It is important to be aware of these relations in order to write consistent
code.

2.4 Camera pairs
Many concepts and ideas presented in this thesis can be motivated and illustrated when
considering pinhole camera pairs, e.g., image correspondences (see Section 2.4.1), disparity
and motion parallax (see Section 2.4.4), multi-view scene reconstructions (Section 2.5),
optical flow (Section 2.4.1.1), image stitching (Section 2.6.3.1) and image-based rendering
(Section 2.6).

Note that the approaches presented in Chapters 4 to 6 are based on casually captured
monocular video sweeps for which each consecutive pair of video frames (in time and space
due to smooth camera motions) can be considered as a camera pair.

2.4.1 Correspondences
Given an arbitrary pair of images (Ii, I j), a pixel xi in image Ii corresponds to pixel x j in
image I j if there exists a displacement vector ∆i j ∈ R2 such that:

Ii(xi) = I j(xi +∆i j = I j(x j) (2.10)

This equation only holds true for diffuse scene features and is known as photometric con-
sistency [Horn and Schunck, 1981]. Computing ∆i j for all x ∈ Ii yields a so called motion
field between the pixels of the input images. The shape of this motion is influenced by the
similarity or difference of two input images. The motion between two identical images is
zero.

Once the motion field is known, triangulation techniques can be used to create 3D scene
geometry, i.e., point clouds (see Triangulation in Section 2.4.4 below).
Viewpoint changes and object movements can lead to visibility changes in which scene
features represented with a pixel colour become occluded. The feature cannot be mapped to
a corresponding pixel in the other image.

Finding correspondences between similar or different image pairs leads to various techniques:

9Look at the image from the scene point X and not from the optical centre C.
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Figure 2.4: Example for optical flow using the Sintel dataset [Butler et al., 2012]: Overlayed
pairs of images (first row) with significant camera (or scene) motion. Note the blurry and
duplication (ghosting) artefacts, caused by image misalignment. Dense 2D displacements
(second row) are encoding the difference between the overlayed images and can be used
for motion-compensation, often used in image stitching [Shum and Szeliski, 1998, Szeliski,
2006], or view-interpolation [Richardt et al., 2013]. Image credits Ilg et al. [2017].

On one hand, if camera pairs have similar orientations and narrow baselines, direct methods
[Lucas and Kanade, 1981, Horn and Schunck, 1981, Huang et al., 2006, Fortun et al., 2015]
are interesting, since viewpoints overlap heavily without strong perspective changes. On the
other hand, if the camera pairs have varying orientations and wide baselines, direct methods
cannot be used anymore, e.g., due to varying perspectives and thus way less visual overlap,
which motivates indirect methods, as for instance used in image stitching [Szeliski, 2006,
Perazzi et al., 2015].

2.4.1.1 Direct methods

The dense motion field of similar images can be addressed by direct methods, e.g., optical
flow [Fortun et al., 2015], and block matching algorithms [Huang et al., 2006]. High-quality
dense correspondences are useful for view synthesis tasks like interpolation, morphing, and
blending [Chen and Williams, 1993, McMillan and Bishop, 1995, Seitz and Dyer, 1996,
Eisemann et al., 2008, Richardt et al., 2013, Lipski et al., 2014, Anderson et al., 2016].

Direct methods aspire to align every pixel xi of a image Ii with a pixel x j = xi+∆i j in another
image I j. The least squares solution for this is given by:

ESSD(∆) = ∑
i

[
(I j(xi +∆i j)− Ii(xi)

]2
= ∑

i
e2

i . (2.11)

Optical flow For any given pair of images Ii, I j captured under small camera motion10, i.e.,
close-by images in space, optical flow algorithms can establish dense pixel correspondences
in form of 2D displacements ∆i j (see Figure 2.4). These displacements can be used for image
registration [Lucas and Kanade, 1981] and stitching [Szeliski, 2006] tasks.
A great body of literature around optical flow has evolved which uses variational methods to
mathematically model the problem [Horn and Schunck, 1981] which are often called energy
minimisations in vision communities. The term in the sum of Equation 2.11 is commonly
referred to as the data term in variational formulations to model optical flow [Horn and
Schunck, 1981], in which ‖∆‖ is supposed to be small.

10Equivalent to a stationary camera capturing small scene motions between consecutive frames.
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A energy minimisation looks usually like this:

min
∆

E = min
∆

(ED +λES) (2.12)

E and ∆ depend heavily on the problem at hand. In the context of optical flow [Horn and
Schunck, 1981], ∆ models all motion fields which lead to corresponding pixels. The data
term ED can be formulated as a per-pixel correspondence which is based on photometric
measurements or pixel intensities:

ED =
∥∥Ii(xi)− I j(x j +∆i j(xi))

∥∥2
2 (2.13)

The smoothness term ES is often formulated as a spatial loss within a pixel neighbourhood
N enforcing similar colours of neighbouring pixels:

ES =
1
N ∑

y∈Nx

‖I(y)− I(x)‖2
2 . (2.14)

Note that the smoothness of the computed solution can be controlled by a positive scalar
λ . Furthermore, a often desired side-effect of variational methods is a smooth inpainting of
pixels for which actually no “correct“ pixel correpondence could be established.

Energy minimisations are very popular because of their transparent modelling. Depending
on the used data and smoothness term, minimising an energy comes down to solving a
non-linear problem in general. Iterative algorithms based on gradient descent optimisation
like Levenberg-Marquardt (see [Hartley and Zisserman, 2004] A6.2(p600)) and efficient
solvers [Agarwal et al., 2010] exist.

The concept of energy minimisations is a universal tool to describe very interesting pro-
cedures used in visual computing. To give an example, Lee et al. deform a sphere in 3D
into a more suitable composition surface for spherical 360° (video) stitching [2016]. A
structured (box-shaped) rig consisting of 6 cameras provides the input images per time step.
The data term models the distances between sphere vertices and reconstructed scene points,
and the smoothness term enforces low curvatures in the resulting composition surface (see
Section 2.6.4.3 for more details).

Block matching Another family of methods to estimate correspondences directly are
block matching algorithms (BMA) [Huang et al., 2006]. BMAs are fast and thus often used
in video compression techniques. Instead of treating pixels independently, pairs of images
are split into overlapping blocks of size N×N. Matching itself is done by measuring the
sum of differences between blocks, e.g., in terms of a photometric distance. Each block Bi in
image i, is compared with all candidate blocks B j in image j. So the difference d between
blocks can be expressed as:

d(Bi,B j) =
1

N2 ∑
l∈Bi

∥∥Bi(l)−B j(l)
∥∥2

2 (2.15)

Blocks allow to map more meaningful image structures like edges or corners more consis-
tently over multiple frames. It is convenient to explicitly detect that a block has gone missing
when using BMA, e.g., if no suitable candidate block could be identified as a reliable match.
An optical flow method based on a variational formulation [Horn and Schunck, 1981] on the
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Figure 2.5: Example of a homogeneous 3D homography: Re-mapping of 2D pixels in image
space to remove the perspective distortion of a planar scene object, e.g., a house wall, which
can be done by synthesising a orthographic frontal view from the perspective input image.
Inspired by: [Hartley and Zisserman, 2004].

other hand will suggest or smoothly fill in (or inpaint) missing information.

2.4.1.2 Indirect methods

In case that viewpoints exhibit less visual overlap, image correspondences cannot be esti-
mated directly (per-pixel) anymore. Intuitively, it is not reasonable to expect that there is a
corresponding pixel for each pixel in the input images.
Indirect in this context means that image correspondences are found by matching a sparse
set of feature descriptors [Lowe, 2004], e.g., when working with unstructured multi-view
datasets [Buehler et al., 2001, Chaurasia et al., 2013]. As feature points serve semantically
important scene and image features, e.g., corners [Adelson and Bergen, 1991], which can
be used for image alignment and stitching methods [Brown et al., 2005, Szeliski, 2006].
Indirect methods are used in state-of-the-art scene reconstruction approaches [Furukawa and
Hernández, 2015, Schönberger and Frahm, 2016, Saputra et al., 2018] and the only option
when working with multi-view datasets with wide baselines.

Instead of aligning keypoints like corners directly, neighbourhood information in form of
descriptors can be used to increase the robustness of matching keypoints, similar as in
BMAs. Additional neighbourhood information used by the descriptors increase the matching
performance, in particular for varying perspectives (geometric changes) and illumination
changes (photometric changes), e.g., as demonstrated with scale invariant feature transforms
(SIFT) [Lowe, 2004], multi-scale patches [Brown et al., 2005], feature matching and multi-
view stereo algorithms have been thoroughly surveyed [Scharstein and Szeliski, 2002, Seitz
et al., 2006].
Note that sparse high-quality correspondences can be used to derive interesting properties
of camera pairs, e.g., the fundamental matrix F which is essential to describe epipolar
geometry (see Section 2.4.3), or homographies H often used to align and re-project images
(see Section 2.4.2).

2.4.2 Homographies
A homography is a projective transformation that relates one plane observed from two
different viewpoints with each other (see Section 2.4.2, and [Hartley and Zisserman, 2004]
Part 1, Chapter 2.3). Given a pair of images I, I′, i.e., two image planes, a homography H
relates image pixels x and x′ in homogeneous 3D space:

x′ = Hx.
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Figure 2.6: Epipolar geometry: The 2D image correspondence of a projected world point
X can be determined by using the epipolar geometry of the camera pair. Epipolar lines Γ

reduce the complexity of the search space from 2D to 1D. A second epipolar plane induced
by scene points (X) varying in Y (X̂) is illustrated on the right.

Note that a homography H ∈R3×3 has 9 entries, but only 8 degrees of freedom. The missing
degree is caused by solutions up to scale, i.e., it is possible to scale every solution uniformly
without changing the transformation. This means one can set h3,3 = 1, without loss of
generality, leaving 8 entries free.

For example, orthographic viewpoints can be synthesised from a planar scene object, e.g., a
house wall, depicted in a perspective image, given 4 co-planar point correspondences. (see
Figure 2.5). The synthesised image is obtained by inverting H and performing a backward-
warping for each pixel x′ in the target image x = H−1 ·x′. Note that I′(x′) = I(x).

Note that all projective transforms preserve collinearity, meaning that lines in one image are
transformed into lines in the other image (see [Hartley and Zisserman, 2004] Table 2.1), as
illustrated in Figure 2.5.

2.4.3 Epipolar geometry
Consider Hartley and Zisserman’s book [2004] (see Part II, Chapter 9) for formal background
of this section. I choose to identify both viewpoints with a left, and a right view, to stress the
conceptual importance of camera pairs in general, and in particular for this thesis.
Epipolar geometry consists of three components (see Figure 2.6):

1. The epipolar plane π , which is defined with respect to a scene point X, obtained by
connecting X to the optical centres of both viewpoints ,CL and CR respectively, and
connecting both optical centres forming a baseline.

2. Epipolar lines Γ are obtained by intersecting π with the image planes IL, IR reducing
the search space for image correspondences from 2D (within the image) to 1D (along
the epipolar line). Another way to think about it: The camera ray rxL = X−CL is
intersected with IR.

3. Epipoles (e) are determined by projecting the optical centre of one viewpoint into the
other and vice versa. Epipolar lines connect epipoles with the image projection x of a
scene point X and thus help to limit the search along the epipolar lines.

For example, to triangulate a scene point X in 3D (see Section 2.4.4) from a given calibrated
camera pair with optical centres CL,CR, pixel-wise correspondences between the images
must be established which can be done by using the epipolar geometry of the camera pair.
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Figure 2.7: Illustration of a Stereo setup consisting of a pair of viewpoints with parallel
image planes. See detailed description in text.

Epipolar geometry allows to efficiently search for image features within pairs of cameras.
Note that the visibility of scene objects can cause occlusions in the scene that can lead to
undefined correspondences.

Fundamental Matrix The fundamental matrix F [Luong and Faugeras, 1995] relates
any pair of image correspondences xL and xR via epipolar geometry:

xT
RFxL = 0 (2.16)

While F can be computed directly given the camera matrices PL and PR ([Hartley and
Zisserman, 2004] Part II, 9.2.4 (p246)), it can be shown that a minimum of 7 correspondences
are needed to approximate F solely from image correspondences (see [Hartley and Zisserman,
2004] Chapter 10 and 11).
Note that the quality of F is greatly influenced by the choice of correspondences, and that
the stability heavily depends on the relative orientation of the two viewpoints. For instance,
degenerate cases (see [Hartley and Zisserman, 2004] Section 11.9) can occur for very small
baselines between the viewpoint pairs, when optical centers overlap in the extreme case and
the epipolar plane degenerates into a line.

2.4.4 Stereoscopic setup

Two calibrated viewpoints VL and VR (w.l.o.g.: left in blue, and right in orange) with identical
orientations (RL = RR) captured with a translation parallel to the image plane as camera
motion, form a stereo camera pair (see Figure 2.7). In this situation, epipolar lines Γ become
horizontal, and epipoles are at infinity, since the baseline of the camera pair is parallel to the
image planes.
In the context of this thesis, stereo setups play a major role when looking at operations
performed on camera pairs. For example, creating a novel view for VR applications, comes
down to rendering a stereoscopic camera pair depending on the tracked position of a HMD,
assuming the average (human) interpupillary distance (IPD) as baseline.
Scene depth is measured with respect to the baseline B connecting the optical centres of the
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a) Input image pair b) Rectified image pair

Figure 2.8: Image rectification: Given the fundamental matrix F of a given input viewpoint
pair (a), it is possible to rectify the images (b) such that they form a stereo pair in which
epipolar lines are horizontal. Image credits: Hartley and Zisserman [2004] Figure 11.11 .

cameras. The disparity of image pixels, expressed as relative distance in image space on the
right, depends on the depth of the scene point X. Note that (1) disparity is proportional to
inverse depth, e.g., small depth leads to large disparity, and (2), scene points infinitely far
away project to the principal points p of each camera, assumed to be in the centre of the
image plane (in red).

It is interesting that feature matching procedures can be greatly improved, not just in the
case of stereo pairs, but for arbitrary camera pairs, as soon the epipolar geometry is known.
Given the fundamental matrix F of an arbitrary pair of viewpoints, the viewpoints can be
rectified which technically transforms them into a stereo setup (see Figure 2.8 [Hartley and
Zisserman, 2004] Section 11.12).

Disparity Consider Figure 2.7: Disparity dp is measured as a pixel-displacement, e.g.,
∆ in optical flow, describing a mapping per-pixel between source and target images (see
Section 2.4.1) which depends on the relative orientation of the camera pair at hand. Given
two calibrated viewpoints VL,VR, projecting X into both yields pixel coordinates xL,xR in
the left and right images respectively. Disparity dp is the distance between both pixels in
a common image frame (top right). It is assumed that X is in front of the camera pair, and
that dp = 0 for infinitely far away scene points X (see top right of Figure 2.7). Binocular
disparity is of great importance for VR since it has been identified as an element of early
vision in order to understand our surroundings [Adelson and Bergen, 1991], i.e. the scenery
where we are.

Disparity is the magnitude of the 1D displacement vector dp. Note that dp is only one
dimensional as long epipolar lines are either horizontal as in the stereo setup, or vertical as
in the case when mounting two 360° cameras with a vertical offset [Thatte et al., 2016a].

In the case of scene points X with finite depth, principal axes will converge (toe-in) at the
depth of that point (see Figure 2.7). Interestingly, the sign of the disparities of objects in
front of the point will be different than beyond this point. The sign will flip exactly at that
point [Adelson and Bergen, 1991]. The direction of the sign flip depends on how we want to
orient the disparity, e.g., whether image pixels are considered from the scene point, or from
the optical centre (see Section 2.3, in particular Figures 2.2 and 2.3).

Motion Parallax Motion Parallax (MP) is an important monocular depth queue for human
visual perception [Howard and Rogers, 2008] and crucial for feeling immersed in VR [Slater
and Wilbur, 1997]. MP is perceived for translational viewpoint changes (see Section 1.1.2).
The phenomenon can be naturally motivated by the disparity of scene objects observed in
a stereo setup (see Section 2.4.4). Whenever we move our head, scene points will cause
motion parallax between the viewpoints proportionally to the points’ disparities perceived
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Figure 2.9: Triangulation: The scene point X can be reconstructed by inverting the central
projection (see Figure 2.2 b)).

with our eyes. View-dependent visibility leading to object occlusions is everything we need
to estimate relative distances among scene objects. Objects that move faster relatively to
others, are closer to us.

Note that VR experiences without motion parallax are the current de-facto industrial standard,
e.g., when camera rigs are used [Anderson et al., 2016, Facebook, 2016] (see Figure 1.1) to
stitch omnidirectional stereo [Peleg et al., 2001] (see Section 2.6.2.4). The lack of motion
parallax causes discomfort for the HVS as it is an early element of vision as well [Adelson
and Bergen, 1991].

Triangulation

Given a stereo camera setup with 2D image correspondences, the depth Z of a scene point X
can be obtained via inverting the central projection of image pixels x (see Figure 2.9).

Assume w.l.o.g., that the world space is aligned with the left viewpoint VL, i.e., the origin is
identified with the left viewpoint centre CL. Stereo viewpoints share the same focal length f ,
and depth is inverse proportional to disparity, e.g., dp ∝

1
depth (see Figure 2.7).

A point X′ in camera space can be triangulated (reconstructed) by computing its depth Z′

with respect to VL. Once the depth is known, the point in global space X can be obtained in
different ways (see below).
In combination with the baseline B = CR−CL, and its length b = |B|, Z′ is obtained using
central projection (see Section 2.3):

dpRL = (uR−uL) ∝
b · f
Z′

Z′ ∝
b · f
dpRL

(2.17)

After computation of Z′, inverting the central projection yields the corresponding X ′ and Y ′

coordinates:

X ′ =
xu ·Z′

f

Y ′ =
xv ·Z′

f

(2.18)

The point X′, which was reconstructed in camera space, is then transformed into world space
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(X) by using the extrinsics of the left view:

X′ = RLX+ tL

X = RT
L X′−RT tL

X = RT
L X′+CL

(2.19)

Alternatively, the camera ray rx corresponding to the central projection x of the scene point
X (see Figure 2.9 b)) can be used for forward projection:

X = rx(Z′)

rx(Z′) = C+Z′ ·dx
(2.20)

where dx is the direction between the scene point and the camera in world space.
An elegant closed-form solution for finite cameras (including the pinhole camera) to generate
pixel-dependent camera rays rx from a given camera matrix P is discussed in Section 6.2.2
of Hartley and Zisserman’s multi-view geometry book 2004.

2.5 Reconstruction
The task of 3D scene reconstruction can be separated in two stages: sparse and dense
reconstruction. The sparse reconstruction receives a set of images, extracts and matches
features, in order to estimate the viewpoint calibration jointly with a sparse scene point cloud
in 3D using bundle adjustment. The dense reconstruction refines the sparse reconstruction to
obtain high-quality local geometry like depth maps or global geometry like a scene mesh.

The current state-of-the-art in sparsely reconstructing monoscopic colour images are either
based on structure-from-motion (SfM) [Schönberger and Frahm, 2016] or simultaneous
localization and mapping (SLAM) [Sumikura et al., 2019] approaches.

2.5.1 Sparse
The sparse reconstruction establishes viewpoint information of the given images by determin-
ing intrinsic and extrinsic camera parameters (see Section 2.3). It is commonly assumed that
the intrinsics of viewpoints are known: each dataset is captured with one camera, intrinsically
fixed per dataset, such that only the task of estimating the extrinsic parameters remains.
In practice, fast algorithms11 to intrinsically calibrate cameras by using checkerboard pat-
terns exist [Shu et al., 2003]. For further reading about self-calibrating techniques of image
sets containing varying viewpoint intrinsics, consider Marc Pollefeys’ PhD thesis [Pollefeys,
1999]. In the following, SfM and SLAM techniques are introduced to estimate the extrinsic
parameters of input viewpoints12.

The quality of estimated extrinsics depends heavily on:

1. the camera motion or the distribution of viewpoints (see Section 2.5.2),

2. intrinsic parameters, in particular their fields of view or focal lengths (see Section 2.3),
and

3. combinations of both, e.g., visual overlap (see Section 2.4).

11OpenCV Python tutorials "camera calibration"
12Consider Pollefeys et al. [2004] to see the state-of-the-art of this field 17 years ago.
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Figure 2.10: Incremental Structure-from-Motion pipeline. See detailed description in text.
Image credits: Schönberger and Frahm [2016].

2.5.1.1 Structure from motion (SfM)

Structure from motion (SfM) is motivated by reconstructing arbitrary camera motions,
potentially over a large physical domain (see Phototourism [Snavely et al., 2006]). When
dealing with many unordered viewpoints, it is important to reconstruct incrementally (see
Figure 2.10), instead of attempting to solve for all viewpoint calibrations at once.

Main principle The proposed pipeline is split into two main parts, namely correspondence
search and incremental reconstruction. Note that the task of feature extraction and matching
has been investigated in detail by image stitching literature [Szeliski, 2006, Perazzi et al.,
2015]. Assume image features are extracted and matched from all input images already. Note
that a matched pixel implies that a corresponding scene point X has at least two observations.

The idea of matching points over several views leads to feature tracks T (see Figure 2.11).
For each pixel x in an image I which is considered to be matching with a pixel x′ in another
image I′, there exists a feature track of size 2. All images J which contain pixels j which
correspond to x (or x′ by transitivity), are registered in the same feature track T.
Feature tracks are an essential tool for reconstructing scene points X from at least two image
observations.

The incremental reconstruction stage consists of 4 individual stages (see Figure 2.10):

1. Initialisation: a carefully chosen image pair with a two-view reconstruction is used
to initialise the whole reconstruction process.

2. Image registration: starting from a formerly computed metric reconstruction, new
images can be registered to the current model by using feature correspondences to
triangulated points in already registered images (2D-3D correspondences).

3. Triangulation: a newly registered image must observe existing scene points. In ad-
dition, it may also increase the scene coverage by extending the set of reconstructed
points obtained by previous triangulations.

4. Bundle adjustment: estimating the extrinsics can be done locally e.g., using a two-
view consistency (like epipolar geometry), and globally, e.g., re-projecting scene points
into input viewpoints using world geometry, e.g., a point cloud (see Figure 2.11).

Initialisation The seed location for the incremental reconstruction can direct the recon-
struction into two extreme cases. First, initialising within dense image sets increases the
robustness, accuracy and performance of the algorithm. Second, initialising within sparse
image sets leads to faster runtime since bundle adjustments deal overall with sparser problems
accumulated over the whole reconstruction. The whole reconstruction starts with exactly one
image pair which forms the initial reconstruction model.
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Image registration The reconstruction proceeds by adding images to the already existing
metric model. The next best image is determined over a loss which minimizes the introduced
reconstruction error when the image was potentially added to the existing model. The
objective is to maximize the support of measurements conforming with a well-conditioned
two-view triangulations:

Xab ≈ τ(x̃a, x̃b,Pa,Pb),a 6= b (2.21)

where τ is any chosen triangulation method, x̃a, x̃b represent normalized image observations
from a track T . T consists of a set of measurements {T1, ..,Tn} with an a priori unknown
ratio ε of inliers (see Figure 2.11).

Note that a single bad decision may lead to a cascade of camera mis-registrations and faulty
triangulations. The key idea is to prioritise adding images that already see reconstructed
scene points. For each pixel which sees a reconstructed scene point, there is a 2D-3D
correspondence via the appearence descriptor, e.g., a matched feature x j within a viewpoint
already used in the reconstruction. Furthermore, additional information is utilised and
maintained in a scene graph G which contributes to score the candidates for the next best
image to expand the reconstruction. G maintains all feature tracks of reconstructed points
and provides information to guide the overall reconstruction process.

Geometric verification The output of the correspondence or image registration stage is
a scene graph G, in which images are the nodes and edges represent a geometrically verified
pair of visually overlapping images. After features got extracted and matched purely based on
appearance in earlier stages (see Section 2.4.1), geometric verification is performed by either
pairwise image homographies (see Section 2.4.2) or epipolar geometries (see Section 2.4.3).
If a valid transformation maps a sufficient number of features between the images correctly,
they are considered geometrically verified. The geometric verification augments the scene
graph G with additional information like epipolar geometries and homographies.

Triangulation The key is to exploit a richer feature track obtained from scene graph
augmentation to take good decisions while the reconstructed scene model grows. The feature
track contains a set of measurements which in turn store an normalized observation point
x̃i and the associated camera projection matrix Pi. Outlier contamination is addressed by
formulating the problem of multi-view triangulation (see Figure 2.11) using RANSAC
[Fischler and Bolles, 1981]. RANSAC is applied recursively to remove outliers over all
measurements of a feature track.

Other triangulation models (see Equation 2.21) can be used where a well-conditioned model
satisfies two constraints: First, a sufficient triangulation angle. Second, positive depths da

and db w.r.t. the views Pa and Pb (cheirality constraint). Note that the triangulation angle
of a two-view configuration is determined by their relative orientation and their baseline
which are both inherent properties of the actual set of input viewpoints and their relative
camera motions. Sufficiently large baselines and triangulation angles are required for a robust
calibration of extrinsic camera parameters.

Bundle adjustment Finding extrinsic parameters R, t for each viewpoint V (see Sec-
tion 2.3) can be done solving a so called bundle-adjustment (BA) problem [Furukawa and
Hernández, 2015, Schönberger and Frahm, 2016, Saputra et al., 2018, Sumikura et al., 2019].
The task of bundle adjustment is to estimate camera projection matrices Pj for each image
I j, given feature correspondences e.g., x0,x1,x2, which can be used to triangulate Xk (see
Figure 2.11).
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Figure 2.11: Bundle adjustment or multi-view triangulation in the context of SfM [Schön-
berger and Frahm, 2016]. Note that the two-view relation between I0 and I2 is not depicted
to keep the figure simple. See more detailed description in text.

Feature tracks exist for each (potentially, and actually reconstructed) scene point X. Each
track maintains a list of viewpoints Vj with features correspondences x j, corresponding to X.
BA is used to minimise the re-projection error of k reconstructed scene points X in 3D with
respect to all viewpoints in correspondence. For example, j corresponding features x j in 2D
form a feature track for a scene point X (see Figure 2.11 in which j ∈ {0,1,2}).

BA is a non-linear optimisation that minimises the re-projected error between triangulated
points Xk in 3D and image correspondences x j in 2D:

E = ∑
j

ρ j
∥∥PjXk−x j

∥∥2
2 (2.22)

ρ is some loss function to penalise outliers. Note that a triangulated point Xk becomes more
accurate the stronger its support by the corresponding features x j is, e.g., the longer its
feature track is. Interestingly, longer feature tracks can cause an erosion (or rounding) of
geometry edges [Hedman et al., 2016].

Local and global bundle adjustments are performed during reconstruction. Local bundle
adjustment starts with exactly two viewpoints and then proceeds incrementally. The global
bundle adjustment is only triggered if the total model size has grown a certain percentage.
After global adjustment, some triangulation models will not be conform anymore and thus
need to be filtered out. Re-triangulation is needed to continue unfinished tracks and if possible,
tracks get merged to increase redundancy and thus robustness for the overall triangulation
procedure.

Key contributions One key contribution in my opinion are augmented scene graphs,
which are utilised to compute more robust feature tracks. Experimental results show that their
approach is more robust and creates more accurate reconstructions than existing approaches.

Limitations Good 2D correspondences are essential for an accurate and reliable scene
reconstruction. Epipolar geometry and homography-based verification procedures only work
reliably if the considered scene contains mostly diffuse and static (rigid) scene objects. See
Jensen et al. [2020] for benchmarks of non-rigid SfM.
Short feature tracks, e.g., 2 views as a minimal case (and used for initialisation), lead to less
accurate reconstructions.
Errors accumulate over time (drift) in that case, particularly noticeable in image sequences,
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Figure 2.12: Loop closure of camera path estimated by recording a video while moving
around a building. Image credits: Sumikura et al. [2019].

e.g., observed as loop-closure problem (see Figure 2.12), for instance when stitching 360°
content [Sweeney et al., 2019, Baker et al., 2020].
The reconstruction time depends on the number of images and their density. SfM is a off-line
process which can take hours depending on the dataset at hand.

2.5.1.2 Simultaneous localization and mapping (SLAM)

Simultaneous localisation and mapping (SLAM) essentially shares the same task as SfM
[Schönberger and Frahm, 2016], namely estimating the calibration of input viewpoints,
but SLAM systems are motivated by robotic applications in which on-line processing of
viewpoints (usually in forms of video frames) is necessary for localisation and navigation
tasks [Saputra et al., 2018].

Main principle Compared to SfM (see Section 2.5.1.1), there are two key differences in
SLAM systems:

1. SLAM approaches expect consecutive video frames as input which is exploited to gen-
erate more efficient algorithms for specific use cases. Differences between consecutive
frames, a.k.a. motion fields, can be assumed small (in magnitude) as long the framerate
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is kept sufficiently high while the scene is static and the robot moves sufficiently slow.

2. SLAM usually operates online often motivated by real-time robotic tasks which leads
to a different way of system design design, in particular data processing. Similarly
as bundle adjustment is performed locally and globally in SfM, SLAM systems are
usually split into local and global operations. For instance, it is more important that a
robot knows exactly what is going on around itself locally before sending data to a
server in order to update a global map of its environment.

A recent survey [Saputra et al., 2018] summarises the principles used by the current state-
of-the-art of SLAM and SfM techniques and has a focus on dynamic environments. The
taxonomy of existing approaches is split into: (1) Robust visual SLAM, (2) dynamic object
segmentation and 3D tracking, and (3) joint motion segmentation and reconstruction. Only
(1) is relevant for the scope of this thesis (previously made assumptions are not being relaxed
(see Section 2.1)).
Speed is key for online approaches, i.e., systems that give immediate feedback, in particular
interesting for interactive applications such as robot navigation or dataset capturing [Davis
et al., 2012, Mildenhall et al., 2019, Tomoto et al., 2020]. Keypoint detection and matching
have to be very fast such that the whole system can run in real-time, whereas SfM methods
can spend more computational effort for such tasks.
In consequence, instead of using one global reconstruction model as in SfM (see Sec-
tion 2.5.1.1), two models are used, a global and a local model. The global high-quality model
is comparable to the results of a incremental structure-from-motion approach, but it is only
updated every k frames to enable real-time computation of the local model.

2.5.2 Camera motions

When processing image sets for reconstructing explicit geometry, e.g., point clouds obtained
via triangulation (see Section 2.4.4), one fundamental aspect that influences the design
space of reconstruction algorithms is the camera motion between the captured viewpoints.
Ideally, the camera motion could be determined for each pair of input images directly and
independently, e.g., via image correspondences (see Section 2.4.1), but this is only possible
if the input images contain a sufficient amount of visual overlap.
Note that this is theoretically13 only possible when using 360° one shot cameras. Furthermore,
sufficiently similar pairs of viewpoints can be rectified by estimating their epipolar geometry
which leads to idealised conditions for triangulations, namely a stereo setup with purely
horizontal disparities. It feels intuitive that increased visual overlap between captured input
frames, leads to a better chance of obtaining high-quality reconstructions. Visual overlap
decreases when capturing inside-out, in particular when using lenses with narrow fields of
view.

Accumulating camera motions of consecutive images, e.g., coming from a video input
with a smoothly moving camera, lead to camera paths in 3D. These paths (or motions), in
combination with the employed camera lens [Sawhney and Kumar, 1999, Szeliski, 2006],
the recording framerate, the capturing speed (each results in varying baselines), and scene
geometry itself (causing occlusions), contribute all to the visual overlap between arbitrary
pairs of images [Brown and Lowe, 2003].

13In practice, it is never full 360° because the capturer itself, or the camera-holder, e.g., a rotary stick, or a
drone, or a bicycle helmet etc., will always cover some directions that become unreliable for reconstruction.
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Figure 2.13: Camera motion: The challenges of correspondence estimation vary with the
camera motion of a captured dataset. Note that casual captures produce non-ideal camera
paths (in blue, ideal paths in red), e.g., caused by subtle hand movements (jitter). See more
detailed description in text.

The problem of image alignment, in particular of unordered sets of input images is, called
panorama recognition in image stitching literature [Brown and Lowe, 2003, Szeliski, 2006],
which faces a subset of the problems dealt with in 3D reconstruction as well 14. Image
stitching usually does not comply with a desired (target) viewpoint as in IBR (see Section 2.6),
but rather aims to produce seamless, smooth, and artefact-free ”panoramic” views [Perazzi
et al., 2015].
Image alignment implies camera motion. Methods for computing direct correspondences
(see Section 2.4.1) such as optical flow, e.g., [Lucas and Kanade, 1981, Horn and Schunck,
1981], are a classic way to approach image alignment problems on narrow-baseline imagery.
When operating on wide-baseline imagery, indirect feature-based methods are the only
reasonable way [Brown and Lowe, 2003, Szeliski, 2006, Schönberger and Frahm, 2016].

In the following, I assume a intrinsically fixed camera with finite field of view, and de-
fine common camera motions which are often used in real-world IBR applications (see
Figure 2.13) motivating their influence to design spaces of IBR methods:

• Outside-in (a,b) camera motions exhibit the best visual coverage (pair-wise overlap)
when capturing a single object [Eisemann et al., 2008, Davis et al., 2012, Furukawa
and Hernández, 2015].

• Linear and planar (c,d) viewpoint distributions along a line or a plane exhibit less
visual coverage than outside-in captures. Note that planar camera motions are classi-
cally used in the context of light field research [Levoy and Hanrahan, 1996, Gortler
et al., 1996, Mildenhall et al., 2019].

• Inside-out (e,f, in red) camera paths on the other hand are very hard to reconstruct,
since the visual overlap of images decreases further [Shum and He, 1999, Peleg et al.,
2001, Zheng et al., 2007, Richardt et al., 2013, Hedman et al., 2016, 2017]. Rotation-
dominant motion is problematic, since disparity is measured as a function between the
baseline of a camera pair and the distance to scene geometry15.

14Note that image stitching and novel-view synthesis come together when stitching ODS, i.e., a desired
(stereo-) camera model is created by stitching video input captured along a circular trajectory [Peleg et al., 2001]
(see Section 2.6.2.4).

15The baseline is ideally horizontal an in a ideal Stereo setup to simplify triangulation or the interpretation and
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Motion-specific applications If the input camera motion is known to be purely trans-
lational, and orthogonal to the viewing direction, e.g., as given in a stereo camera pair (see
Section 2.4.4), specific techniques, e.g., epipolar plane analysis, can be applied to extract
explicit geometry from the viewpoints [Bolles et al., 1987]. More recent work shows high-
quality reconstruction results on casually captured linear and outside-in camera motions
[Kim and Hilton, 2013] which the authors call 3D light fields.

Single object reconstructions are usually captured using outside-in motions and scenes, e.g.,
360° panoramas using inside-out camera motions.

Actively guiding the capturing procedure, e.g., using augmented reality (AR) tools via a
smartphone app during capture [Davis et al., 2012, Mildenhall et al., 2019] or using markers
[Gortler et al., 1996], greatly improves calibration procedures. The logical extreme of
guidance is to capture using a stationary multi-camera rig [Anderson et al., 2016, Schroers
et al., 2018, Pozo et al., 2019, Broxton et al., 2020], in which viewpoints need to be calibrated
once before capturing, using standard methods.

Motion-specific challenges Sparsely reconstructing inside-out camera motions reli-
ably, in particular with a narrow field of view camera, has received some attention recently
[Ventura, 2016, Sweeney et al., 2019, Baker et al., 2020]. These camera motions16 are
essential for the creation of 360° real-world VR formats like ODS panoramas [Peleg et al.,
2001, Richardt et al., 2013] providing a 1-DoF action space (see Section 1.1.2), or 360° IBR
methods with 3-DoF [Shum and He, 1999], or 5-DoF IBR [Zheng et al., 2007], since they all
rely on estimated extrinsic parameters for all input images, technically creating viewpoints.

Several challenges specific to inside-out camera motions are:

1. Less visual overlap between consecutive video frames leads to fewer features for
matching.

2. The camera motion is dominated by rotation which makes it harder to interpret
computed pixel displacements. Disparity is a quantity relating a translational camera
motion between a pair of cameras (see Stereo setup Section 2.4.4, not a rotation
resulting in an arc.

3. Narrow baselines lead to ill-conditioned triangulation (see Section 2.4.4). Disparity can
literally vanish numerically, since it is hard to measure reliably if disparities change
within a fine range, requiring sub-pixel accuracy for instance.

Note that subsampling the input frames to obtain larger baselines is not an option if cameras
with rather narrow fields of view are used.

In general, casual captures will always involve some form of unwanted or accidental motion,
for instance occurring when capturing a hand-held video with (never perfectly) fixed position.
Interestingly, this motion can be used to estimate per-view depth maps with reasonable
quality [Yu and Gallup, 2014].

further processing of measured disparities (see Section 2.4, in particular Triangulation)
16Ego-centric scene understanding, e.g., useful for robot navigation, or AR applications, is and will be

determined by these types of camera motions.
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Volume scalar-field reconstruction

Point cloud reconstruction Mesh reconstruction

Depth map reconstruction

Figure 2.14: Common outputs from MVS algorithms: per-Image depth maps, point cloud
of global geometry, volumetric and mesh reconstructions. Image credits: Furukawa and
Hernández [2015].

2.5.3 Dense
Algorithms to densely reconstruct 3D geometry of a multi-view dataset, e.g., per-view depth
maps, or globally consistent scene meshes, rely on a sparsely reconstructed model of a scene
as input, which can be obtained via SfM [Schönberger and Frahm, 2016] for instance.

2.5.3.1 Multi-view stereo (MVS)

Multi-view stereo (MVS) can be seen as an extension of two-view stereo (see Section 2.4.4).
Scene geometry itself can be represented in different ways, e.g., per-view depth maps, point
clouds and meshes, which are all relevant to this thesis (see Figure 2.14 for examples).
Furukawa and Hernández provide an excellent hands-on tutorial [2015] of the research field.

Main principle Sparsely reconstructing geometry, i.e., calibration and point cloud relat-
ing to bundle adjustment, yield models which are densified by MVS approaches.
In the landscape of real-world VR, the most important structures for dense geometry recon-
structions are plane-sweep volumes (PSVs) [Zheng et al., 2007, Hedman et al., 2017], and in
particular learned PSVs. PSVs are used in state-of-the-art scene representations for excellent
quality real-world IBR [Mildenhall et al., 2019, Flynn et al., 2019], and VR [Broxton et al.,
2020].

Plane sweep volumes PSVs were firstly motivated by disparity space images (DSIs)
[Intille and Bobick, 1994], in order to address stereo problems with large occlusions, e.g.,
large baselines. Instead of searching for correspondences per pixel, per feature, or per block
(see Section 2.4.1), plane sweep algorithms consider a space of candidate disparities within a
pre-defined 2.5D volume (0.5D because of sampling volume with a finite number of planes).
The distance between planes is usually chosen according to inverse disparity, basically
distributing more planes for closer and fewer for farther away objects.

Disparities implicitly define planes17 in 3D which can be used to re-project the stereo
viewpoints using homographies (see Section 2.4.2). By solving for the optimal disparities,
for instance by using dynamic programming [Intille and Bobick, 1994], a piece-wise planar
scene representation is obtained that minimises the re-projection error over all input images
(see bundle adjustment with known calibration Figure 2.11). Other ways for solving have
been suggested, e.g., via a Markov-Random-Field (MRF) [Hedman et al., 2017], or via
learning multi-plane images [Zhou et al., 2018, Flynn et al., 2019, Mildenhall et al., 2019,
Broxton et al., 2020].

17Which can be seen as proxy geometry and thus as a distance to objects in space.
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Figure 2.15: Open problems in multi-view stereo research. Image credits: Furukawa and
Hernández [2015].

2.5.4 Practical aspects

3D reconstruction is fundamentally based on triangulation (see Section 2.4.4) which relies
on image correspondences (see Section 2.4.1), or disparity in the context of stereo camera
pairs (see Section 2.4.4).
Image correspondences are hard to establish in general, and the quality of estimated corre-
spondences depends mostly on the overlap of images and the amount of useful signal within
the overlapping area, which can depend on the scene itself, e.g., view-dependent objects in
the scene may break multi-view assumptions like photo-consistency.
Knowing the epipolar geometry of a camera pair, the pair itself can be rectified, which allows
for more efficient ways to densify sparse correspondences.
Temporal subsampling yields consecutive camera pairs with larger baselines along a camera
path, advantageous for triangulation and bundle adjustment [Pollefeys, 1999]. Spatially
downsampling input images reduces reconstruction time over all and is highly recommended
when reconstructing a dataset for the first time without knowing whether the reconstruction
will succeed satisfyingly or not.

SfM aims for estimating (mainly) extrinsic and (potentially varying) intrinsic camera pa-
rameters from an unstructured collection of images [Pollefeys et al., 2004, Schönberger and
Frahm, 2016]. Note that these images are assumed to have only a small pair-wise overlap,
e.g., depicting the same object from different perspectives, in which cases feature descriptors
[Lowe, 2004, Szeliski, 2006] or oriented patches [Brown et al., 2005] are often used (see
Section 2.4.1.2).
Interestingly, Schönberger and Frahm’s SfM approach [2016] is based on a incremental
procedure (see Figure 2.10), which is intialised with a suitable pair of input images to start
the overall reconstruction (see Section 2.5.1.1).

SLAM is designed to work on image sequences in which intrinsic parameters vary only
smoothly (if at all). SLAM techniques often assume sufficiently small and smooth camera
motions which enable the use of direct methods (see Section 2.4.1.1) in order to align input
images. Nevertheless, the state-of-the-art uses indirect methods (see Section 2.4.1.2) to
further increase speed and robustness.

MVS’s adoption of neural networks recently [Zhou et al., 2018, Mildenhall et al., 2019,
Flynn et al., 2019] to obtain more accurate explicit geometry [Broxton et al., 2020], led to
a new level of visual quality of real-world IBR and VR applications. This superior quality
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and graceful handling of violating common reconstruction assumptions (see Section 2.1) is
traded-off by heavy computational costs [Broxton et al., 2020]. Conceptually, the success
of these methods is based on generating high-quality plane-sweep volumes by solving their
corresponding disparity space images (DSIs) [Zheng et al., 2007, Hedman et al., 2017]. Note
that recent work relevant to 360° real-world IBR and VR uses cylindrical [Zheng et al., 2007,
Hedman et al., 2017], or spherical [Attal et al., 2020, Broxton et al., 2020] sweep volumes.

In the context of 3D videography18 [Serrano et al., 2019, Pozo et al., 2019, Attal et al.,
2020, Broxton et al., 2020], multi-camera rigs often apply MVS principles per time-frame.
Temporal consistency of multi-frame geometry needs to be enforced explicitly, either in case
of 3D geometry like depth [Serrano et al., 2019, Pozo et al., 2019, Broxton et al., 2020], or
2D geometry like optical flow [Anderson et al., 2016, Schroers et al., 2018].

Common limitations The fundamental limitations of any procedures based on estimat-
ing image correspondences, e.g., SfM, SLAM, and MVS, are in summary:

1. Ambiguities in case of (1) lack of texture (no discriminative feature points extractable),
e.g., along 1D structures (aperture problem) [Shimojo et al., 1989], or (2), repeti-
tive texture, i.e., features of a brick wall for instance can cause confusion19 during
matching,

2. thin structures are not represented over reasonable image space areas (represented only
in sub-pixel domain, resolution- and scene-dependent), and

3. non-lambertian surfaces violate common photo-consistency measures (view-dependent
appearance).

The camera motion (see Section 2.5.2) and the intrinsic properties (see Section 2.3) of the
viewpoints, in particular the visual overlap between many viewpoints, e.g., important for
image stitching [Brown and Lowe, 2003, Perazzi et al., 2015], heavily influence the quality
of any scene reconstruction. Unreliable 2D information cannot lead to high-quality models
in 3D.

If the visual overlap of an image pair contains similar features, e.g., from a repetitive
texture, or much worse no features at all, e.g., when considering an uniform area, image
correspondences cannot be solved uniquely on a per-pixel level.
To address such situations, the fusion of recognition, segmentation and reconstruction has
grown in interest [Ulusoy et al., 2017] (see a recent survey [Li et al., 2018]) in order to make
correspondence estimation more robust for such challenging situations.
Another common case in which pixels cannot be brought into correspondence is due to
geometry and view-dependent occlusions.
Generally, image areas with only few features can be augmented with semantic information
of certain scene objects [Ulusoy et al., 2017, Li et al., 2018] to make the estimation of
correspondences more robust. Note that semantics of objects are domain- and context-specific,
e.g., [Lin et al., 2015]. As a consequence, general solutions in arbitrary environments remain
challenging.

18Challenges in VR videography are not relevant to this thesis, but intuitively, considering a video as a
sequence of photographs, 3D photography plays a major role for 3D videography.

19The ambiguity is maximised by taking a frontal shot of the wall, i.e., the principal axis is the inverse of the
wall’s normal direction
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Holes in the 3D reconstruction stem from inaccurate image correspondences, non-covered
angles from the input capture, or simply noise. Intuitively, capturing inside-out and stepping
in any direction (technically leaving the centre of an idealised circle or sphere etc.) will
expose holes in the reconstruction, technically parts of the scene which were not captured by
any viewpoint in the dataset.
Current state-of-the-art for single-shot 3D photography [Shih et al., 2020] (see Section 2.7.1.2)
predicts a layered geometry and inpaints a background layer to account for these unknown
scene areas.

Dynamic objects in video sequences cause issues since features might not be valid globally
in time any more, which is explicitly addressed in recent SLAM [Saputra et al., 2018] and
SfM [Jensen et al., 2020] research.

The quality of the approximated calibrations and 3D reconstructions can easily incorporate
dozens of parameters which can be tweaked with prior knowledge about camera motion
[Ventura, 2016, Sweeney et al., 2019, Baker et al., 2020], and scene types [Schönberger and
Frahm, 2016, Hedman et al., 2017].

There is no known end-to-end system that can guarantee to find a calibration for arbitrary
sets of viewpoints without any user intervention or prior knowledge. The task of fully
automated panorama stitching [Brown and Lowe, 2003, Szeliski, 2006, Perazzi et al., 2015]
is very related, and thus instructive to mention in the context of 3D reconstructions in general.

2.6 Image-based rendering (IBR)
One of the objectives of this thesis is to investigate and categorise end-to-end pipelines for
real-world VR experiences according to their four main pipeline stages. Before a real-world
VR environment can be experienced, e.g., by rendering it to a head-mounted device (HMD)
according to orientation and position (6-DoF) (see Section 1.1.2), it is necessary to capture,
reconstruct and represent this environment first.
All recent IBR scene representations used to create real-world VR experiences are based on
real-world imagery, e.g., photographs taken with a hand-held camera [Davis et al., 2012,
Hedman et al., 2017] eventually with additional depth information [Hedman et al., 2016,
Hedman and Kopf, 2018], or multiple synchronised video streams recorded with a camera
rig [Anderson et al., 2016, Facebook, 2016, Matzen et al., 2017, Schroers et al., 2018, Pozo
et al., 2019, Broxton et al., 2020].
Other interesting representations for real-world VR, especially in the context of this thesis,
start with a single continuous circular video sweep, e.g., used for creating (stitching) om-
nidirectional stereo (ODS) [Peleg et al., 2001] content (see Section 2.6.2.4). ODS can be
captured casually using various hand-held consumer cameras [Richardt et al., 2013, Baker
et al., 2020].
It has been shown, that a hand-held 360° video, recorded with linear camera motion, can be
augmented with explicit geometry from a SfM approach, which is then used to render 6-DoF
VR experiences [Huang et al., 2017]. The quality of the approach is mainly determined
by the quality of explicit geometry and is restricted to very small action spaces without
an explicit handling of disocclusion artefacts. Serrano et al. demonstrate how to convert
360° rgbd video, usually obtained using a camera rig [Anderson et al., 2016], into a 6-DoF
VR scene representation [2019] based on multiple geometric layers (see Section 2.6.4.5) to
inpaint disoccluded areas in an offline preprocessing step, leading to much more pleasing
visual results.
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Figure 2.16: "The plenoptic function describes the information available to an observer at
any point in space and time." Two punctuate pupils, illustrating the human eyes, gathering
pencils of light rays from their surroundings. Plenoptic samples encode incident light rays
over various directions, which can be used to form novel viewpoints, e.g., via a re-sampling
operation [Levoy and Hanrahan, 1996]. Image credits: Adelson and Bergen [1991].

The only way to render photorealistic content into HMDs nowadays is by using image-based
rendering (IBR) techniques [Shum et al., 2007]: Instead of synthesising all output images
from scratch on demand, which is costly if photorealism is required, several photographs are
captured and represented in a way, such that viewpoints can be continuously sampled from
the representation using some sort of view interpolation.
Chen and Williams see two main advantages in the idea of IBR [1993]: "First, the 3D
representation of the scene may be replaced with images. Second, the image synthesis time is
independent of the scene complexity."

How important it is that image synthesis can be done independently of scene complexity
becomes clear after taking a class about photorealistic rendering and light transport [Pharr and
Humphreys, 2010]. The time to render a scene in synthetic contexts, heavily depends on the
actual scene content, in particular on materials and illumination, which are all continuously
interacting to a certain extent.

Furthermore, in the context of this thesis, 3D photography shall allow to re-visit real environ-
ments in VR, ideally without the need of a high-quality 3D scene reconstruction which is
hard to obtain in general cases [Furukawa and Hernández, 2015, Schönberger and Frahm,
2016, Pozo et al., 2019, Broxton et al., 2020].

The rest of this section motivates the plenoptic function as the fundamental concept to
understand image-based rendering approaches, followed by an overview of how different
end-to-end real-world IBR approaches address the 4 main stages of capture, reconstruction,
representation and rendering. An overview of all IBR and learned methods discussed in this
thesis is given at the end of this section in Table 2.1 and Table 2.2 respectively.
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The plenoptic function and the elements of early vision [Adelson and
Bergen, 1991]
"If one takes locally weighted first and second derivatives along various axes in plenoptic
space, a full range of elemental visual measurements emerges, including all of the familiar
measurements of early vision. ... such as orientation, color, motion, and binocular disparity."

The plenoptic function P(X,θ ,ϕ,λ , t) is a 7D function that maps a colour value (1D range
of wavelengths λ ) to a direction (2D, range of angles(θ ,ϕ)), incident to a point in 3D, i.e.,
the optical centre of a camera C = X (see central projection in Section 2.3), at a specific
point in time t (1D).
It is often assumed that time stands still, t = const, implying a static scene environment (see
Section 2.1), necessary if a scene is captured with a single camera [McMillan and Bishop,
1995, Levoy and Hanrahan, 1996, Gortler et al., 1996, Shum and He, 1999], and wavelength
(λ ) is discretised, e.g., using channels for red, blue, and green, turning P into a 5D function.

For the context of this thesis, it is useful to be aware of the following arguments:

1. Any possible image produced by various camera models, e.g., a pinhole model (Sec-
tion 2.3), can be considered as a sample of P . The horizontal and vertical field of
view, determined by the focal length f of the view and the physical image dimensions
(in pixels), determine two angular ranges that encode directions measured from the
centre of a sphere, i.e., azimuth θ , and elevation ϕ . The centre itself serves as optical
centre (see Figure 2.1).

2. Scene reconstruction aims to estimate P distributed over the scene geometry, which
is unknown a-priori, given a set of captured images. Practically, the first step to
create action spaces in IBR is to find suitable information to blend between a pair of
viewpoints, e.g., 2D correspondences or a 3D scene mesh (see Section 2.4). If geometry,
incident radiance, and reflectance properties are known, surface light fields (SLFs)
[Wood et al., 2000] can be used to create new plenoptic samples, i.e., viewpoints.

Fully plenoptic IBR uses many samples instead, such that high-quality blending of
image pairs comes down to linear interpolation. Note that this is only possible, if
the scene is static, and the plenoptic samples are sufficiently close and thus densely
captured.

3. The scene representation provides a continuous approximation to P . The choices
of the scene representation, and the used camera motion of a multi-view dataset,
both imply a action space in which P can be queried reliably for high-quality novel
viewpoints.

4. Rendering novel viewpoints can be seen as a re-sampling operation, given a finite
number of plenoptic samples as input, and a viewpoint description of the desired
viewpoint to control the output [Chen and Williams, 1993, McMillan and Bishop,
1995]. Historically, light fields (LFs) [Levoy and Hanrahan, 1996] are a common
example for fully plenoptic IBR approaches, in which no scene reconstruction is
needed at all.

2.6.1 The four main stages of end-to-end IBR pipelines
To compare various IBR methods (see Table 2.1), it is instructive to categorise them into
their four main pipeline stages: capture, reconstruction, representation, and rendering.
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2.6.1.1 Capture

VR photography aims to capture a scene and its appearance, ideally with high visual fidelity
using one or more cameras (see Section 1.1.3). It is common that input viewpoints are
captured inside-out to provide a user-centric scene representation (see Section 2.5.2).
Several casual techniques require only a single camera that is moved in a sweeping 1D
motion inside-out to capture a scene [Shum and He, 1999, Peleg et al., 2001, Richardt et al.,
2013, Hedman et al., 2017], sometimes with support of per-view depth information [Hedman
and Kopf, 2018]. Other approaches capture and render real-world indoor environments
inside-out [Hedman et al., 2016], combining high resolution colour images from a DSLR
with low resolution RGBD video using a consumer depth sensor20.

Multi-camera rigs capture multiple video streams simultaneously that can be stitched into
monoscopic panoramic [Perazzi et al., 2015], or spherical 360° [Lee et al., 2016] video,
omnidirectional stereo (ODS) video [Anderson et al., 2016, Matzen et al., 2017, Schroers
et al., 2018], or even 6-DoF video [Pozo et al., 2019, Broxton et al., 2020].
The desired output format has a strong impact on the chosen rig, in particular the anticipated
action space and the supported DoF with respect to the rig’s physical dimension and its
camera alignment (viewpoint distribution) [Anderson et al., 2016, Pozo et al., 2019]. Note that
the same restrictions apply to action spaces created from casual captures. Idealised camera
motions, e.g., circles, or spheres, cannot be perfectly captured hand-held (see Section 2.5.2),
imposing potentially issues for further processing.

Rotating camera rigs [Overbeck et al., 2018] and robot arms [Luo et al., 2018] capture
scenes with a viewpoint density only known from light fields ([Levoy and Hanrahan, 1996,
Gortler et al., 1996]) leading to an expensive processing and long round-trip time, as well as
prohibitive storage requirements which can be reduced using compression techniques.
Live streaming ODS video has been demonstrated by using a rotating pair of line cameras
[Konrad et al., 2017].

Casually captured VR experiences can be recorded only using a hand-held consumer camera
[Hedman et al., 2017, Hedman and Kopf, 2018].
Other camera trajectories are commonly used as well, e.g., along a 1-D trajectory in 3D
space captured by a 360° camera [Huang et al., 2017], or 2D outside-in technically sampling
a sphere around an object [Davis et al., 2012], or along a plane [Levoy and Hanrahan, 1996,
Gortler et al., 1996, Mildenhall et al., 2019]. Some methods guide the user through the
capturing process greatly simplifying the task of acquiring the right viewpoints to create the
scene representation efficiently [Davis et al., 2012, Mildenhall et al., 2019].

2.6.1.2 Reconstruction

Multi-view datasets, usually consisting of colour images captured either unstructured, or
using a specific camera motion (see Section 2.6.1.1), e.g., using a rig, need to be reconstructed
and converted into a scene representation that enables high-quality novel-view synthesis.

As a first step, the calibration of the input images needs to be estimated, i.e. the camera
projection matrix P of each viewpoint needs to be determined (see Section 2.3).
Many approaches use SfM techniques [Schönberger and Frahm, 2016], which is designed to
handle unstructured camera motions.
For more structured input like video, e.g., continuous video sweeps captured by a moving

20Kinect Microsoft developer link.
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camera, SLAM [Saputra et al., 2018, Sumikura et al., 2019] can be used.
Note that SfM (see Section 2.5.1.1) approaches usually yield reconstructions of higher
quality, while the design space for SLAM (see Section 2.5.1.2) approaches focusses on
real-time applications which forces to maintain two reconstruction models, one is fast and
local, e.g., only considering the last t frames from the input to reconstruct a scene, and a
higher quality global model which is only updated every k frames for instance.

After input images are calibrated and thus turned into viewpoints, more scene information
can be inferred by recovering implicit geometry of the scene, i.e., by computing 2D image
correspondences between pairs of images with a reasonable visual overlap (see Section 2.4.1).
If images only overlap slightly, indirect methods are applied which establish correspondences
only over feature points and not over all the image pixels, commonly done in image stitching
to find image alignments, e.g., for panorama recognition [Brown and Lowe, 2003, Szeliski,
2006, Perazzi et al., 2015]. Note that indirect methods are heavily used by SfM and SLAM
to find feature matches in wide-baseline datasets which are then used in bundle adjustment
to estimate camera poses (see Figure 2.11).
If the overlap becomes larger, direct methods can be used to determine dense (per-pixel)
image motion fields, e.g., by using optical flow methods [Lucas and Kanade, 1981, Horn
and Schunck, 1981], which is commonly done in ODS approaches [Richardt et al., 2013,
Anderson et al., 2016, Schroers et al., 2018].
Dense correspondences are used in various IBR methods to either render novel viewpoints
directly [Chen and Williams, 1993, McMillan and Bishop, 1995, Seitz and Dyer, 1996], or
to compensate for inaccurate scene geometry [Eisemann et al., 2008, Lipski et al., 2014, Luo
et al., 2018].

Explicit geometry, e.g., per-view depth maps, point clouds, or scene meshes, can be ob-
tained using multi-view stereo (MVS) techniques [Furukawa and Hernández, 2015] (see
Section 2.5.3.1).
Sparse depth information is usually obtained via triangulation of reliable feature matches
which requires at least two21 input images [Scharstein and Szeliski, 2002, Seitz et al., 2006]
(see Sections 2.4 and 2.4.4). A certain degree of multi-view consistency of depth maps is
important such that they can be re-projected for novel-views. Note that a sparse model from
SfM or SLAM holds the poses of input images, and is thus multi-view consistent by design.
Interestingly, high-quality results are obtained with local geometry, since global multi-view
consistency leads to eroded geometries, in particular along strong curvatures like corners
[Hedman et al., 2016].

Poses and depth maps can be used to create 3D scene flow, i.e., 3D instead of 2D displace-
ments of a pixel, which leads to view morphing techniques [Chen and Williams, 1993]. Some
3D reconstruction approaches compute stereo matching and 3D scene flow jointly obtaining
interesting results for challenging scenes [Pons et al., 2005, 2007].
Depth maps22 of multiple viewpoints can be combined (re-projected) to create a view-
dependent geometry [Shade et al., 1998, Zheng et al., 2007, Lipski et al., 2014, Hedman
et al., 2016, Thatte et al., 2016a, Penner and Zhang, 2017], or to guide a shape-preserving
warp of a viewpoint [Chaurasia et al., 2013] to account for uncertainties in the geometry

21Unless machine learning techniques are involved [Li and Snavely, 2018, Ranftl et al., 2020, Wang et al.,
2020].

22Learning-based approaches become very attractive for obtaining depth for simple 2D images [Li and Snavely,
2018, Ranftl et al., 2020, Wang et al., 2020].
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Figure 2.17: Spectrum of image-based rendering approaches, defined by the needed geometry
to synthesise novel views. Implicit geometry refers to correspondences (see Section 2.4.1)
and explicit geometry to 3D geometry like point clouds, depth maps and scene meshes (see
Section 2.5). Image credits: Shum et al. [2007].

estimate.
Mesh representations [Debevec et al., 1996, 1998, Buehler et al., 2001] are globally consis-
tent for all input views which makes re-projection into other viewpoints simple [Furukawa
and Hernández, 2015].
Multi-layered semi-transparent meshes can be used to address disocclusions by making the
layer transparency view-dependent such that inpainted areas are only revealed if the novel
viewpoint requires it [Serrano et al., 2019].

Real-world reconstructions will never be perfect, which is particularly true for casually
captured multi-view datasets of arbitrary environments. How to deal with these imperfections,
in particular, how to alleviate artefacts caused by rendering with coarse proxy geometry, is a
design decision for the representation and its rendering.

2.6.1.3 Representation

IBR scene representations suitable for real-world VR experiences should provide high quality
viewpoints with motion parallax in real-time, ideally in large23 6-DoF action spaces (see
Section 1.1.1). Shum et al. classifies IBR approaches on a spectrum [2007] according to
how much geometry, e.g., feature or pixel correspondences, depth maps or meshes, their
representation requires to be working as intended (see Figure 2.17).
Images, panoramas [Szeliski, 2006, Perazzi et al., 2015, Lee et al., 2016], and light fields
(LFs) [Levoy and Hanrahan, 1996, Gortler et al., 1996, Davis et al., 2012] represent scenes
without geometry and are thus purely image-based. Nevertheless, image-alignment requires
(at least sparse) image correspondences, which can be seen as implicit geometry of the scene.
Note that this is the reason why image stitching is classified as implicit IBR in this thesis.

Omnidirectional stereo (ODS) [Ishiguro et al., 1992, Peleg et al., 2001] is based on mosaick-
ing multi-perspective panoramas ([Wood et al., 1997, Seitz and Kim, 2002]) which does not
require estimating any scene geometry in a traditional sense, since specialised hardware is
used for capturing.
Mosaicking requires a very high angular resolution, i.e., a large number of images to resolve
radial directions finely. ODS is based on the idea of arranging slit-images, e.g., vertical
image strips with 1 pixel width, from several different viewing positions distributed over a

23In terms of the magnitudes of each individual degree of freedom (see Section 1.1.2).
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so called viewing circle.
The angular resolution constraint needs to be relaxed for practical purposes, e.g., the number
of required input images needs to be reduced. If the angular resolution is low, images need
to be aligned more carefully for stitching, e.g., local and global adjustments need to be
done to obtain seamless stitching results [Szeliski, 2006]. Methods exist that stitch ODS
from casual captures consisting of hundreds of images [Richardt et al., 2013], from camera
rigs [Anderson et al., 2016, Facebook, 2016, Schroers et al., 2018] using 16 equiangularly
distributed cameras, or a low-cost two-camera setup [Matzen et al., 2017].
The current industrial de-facto standard for real-world VR is based on the ODS format
[Anderson et al., 2016, Matzen et al., 2017, Schroers et al., 2018]. One chapter of this thesis
augments it (see Chapter 3), and another is based on the same casual capturing procedure,
but turning it into a 3-DoF action space24 (see Chapter 4).
ODS has some fundamental drawbacks which hinder its potential for real-world VR applica-
tions:

1. Based on ideas in image stitching [Szeliski, 2006], it cannot cope well with close-by
scene objects which are depicted as vertically distorted in output viewpoints [Shum
and He, 1999], practically not providing linear perspectives (see Section 2.3): Straight
lines appear bent (see Figure 4.9).

2. ODS only provides 1 rotational stereoscopic DoF25 (see Section 1.1.2), without any
translation and thus no motion parallax (see Section 2.4), which breaks the sense of
immersion in VR quickly. Note that binocular disparity is only provided when looking
along the equator, viewing directions with non-zero elevation lose disparity and cause
additional view-dependent distortion [Anderson et al., 2016].

Nevertheless, ODS offers several attractive advantages as well:

1. The representation can be obtained without reconstructing any explicit scene geometry,
which makes it robust to capture, even casually [Richardt et al., 2013, Baker et al.,
2020].

2. The memory footprint is minimal: Two multi-perspective viewpoints encoding left and
right eye respectively, in order to provide binocular disparity.

3. Rendering comes down to a simple texture lookup per pixel of the desired viewpoint
(see Section 2.6.2.4).

4. Practically, the format is a great fit for already existing handling of visual media
formats like images and video. From a transmission point of view, nothing changes
since both viewpoints can be encoded into one image (see Section 2.6.2.4, in particular
Figure 2.24).

Recent research suggests to leave ODS behind and focus on explicit IBR representations that
support 6-DoF VR with motion parallax [Overbeck et al., 2018, Pozo et al., 2019, Broxton
et al., 2020].
The current state-of-the-art [Broxton et al., 2020] relies on a learned reconstruction stage to
obtain high-quality layered and RGBA-textured scene geometry, extracted from a multi-plane
image (MPI) [Zhou et al., 2018, Mildenhall et al., 2019, Flynn et al., 2019]. MPIs are very

24Note that this action space is shared by Shum and He’s rendering with concentric mosaics approach [1999].
25Note that modern HMDs support 6-DoF tracking.
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close in spirit to layered scene representations used in IBR [Shade et al., 1998, Zheng et al.,
2007, Thatte et al., 2016a, Hedman et al., 2017, Hedman and Kopf, 2018, Serrano et al.,
2019], and plane-sweep algorithms [Scharstein and Szeliski, 2002, Seitz et al., 2006, Zheng
et al., 2007] in the context of MVS [Furukawa and Hernández, 2015] (see Section 2.5.3.1).

Using calibrated viewpoints and pair-wise dense correspondences between viewpoints, e.g.,
via optical flow, enables 5-DoF real-world VR with motion parallax [Luo et al., 2018]. The
lack of explicit geometry requires to capture thousands of input views causing a prohibitively
large memory footprint, which is a common problem of implicit IBR methods.

Attempts to augment ODS panoramas have been proposed, e.g., depth augmented stereo
panoramas [Thatte et al., 2016b], or stacked ODS [Thatte et al., 2017], which encode a 6-DoF
action space based on a ODS stitch and additional knowledge of explicit scene geometry.
The main difference to ordinary ODS is that a viewing disc is used instead of a circle, which
is able to represent user-centric 5-DoF information by mapping the elevation angle of the
sphere into concentric circles with varying radii. Compared to ODS, the memory footprint
only increases by 33% when storing additional depth information using 8-Bit, but it requires
additional knowledge about the scene geometry to produce a high-quality representation.

Moreover, high-quality VR experiences can be simply represented using textured meshes.
Statically textured meshes [Hedman et al., 2017, Hedman and Kopf, 2018, Serrano et al.,
2019] work well with mostly view-independent (diffuse) scene appearance and are simple to
render.

Volumetric scene representations [Seitz and Dyer, 1999] traditionally assume diffuse scene
objects whose geometry can be approximated by a discretised voxel grid in which each
voxel can either be empty (transparent), or coloured (opaque). Note that it is possible to
express uncertainty by considering the 6 sides of a voxel separately in terms of a photometric
inconsistency, or adjust the transparency of a voxel in case of occlusions. Volumetric grids
are mainly limited by their memory consumption.
Recent learning-based volumetric approaches achieve state-of-the-art output quality [Milden-
hall et al., 2020] and have a surprisingly small footprint of only 5 MB per dataset, representing
the learned neural network per dataset which is embedded in a continuous volumetric grid. A
key contribution of work is that it learns a continuous volume without using a discretised
(memory-prohibitive) grid as in previous work [Sitzmann et al., 2019a]. Nevertheless, the
inference time is generally offline, particularly for high-resolution imagery needed for VR,
and thus not applicable to interactive applications as-is. Extensions have been proposed
to speed up the inference to enable interaction [Liu et al., 2020], but real-time rendering
required for VR has not been shown yet.

To make VR technology available to a wider audience, it would be beneficial if the required
scene representation could be captured casually [Davis et al., 2012, Richardt et al., 2013,
Hedman et al., 2017, Hedman and Kopf, 2018]. Casual means using a hand-held consumer
camera, inpedendent whether the camera motion is free-form, or in any type desired, e.g.,
following a line, an arc, a circle, or other curves in 3D.
Furthermore, the round-trip time should be kept as short as possible, i.e., the time spent
on capturing the input images, reconstructing viewpoint and scene information, further
processing into a scene representation until novel views can be finally rendered. High-quality
pipelines can have round trip times of hours or days [Overbeck et al., 2018, Pozo et al., 2019,
Broxton et al., 2020] if only a single desktop PC would be used. Note that learned pipelines
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can generate novel-views after capturing in less than 30 minutes [Mildenhall et al., 2019],
which is possible by inferring a high-quality multi-plane image scene representation for each
input viewpoint, and using these for novel-view synthesis. A drawback of this approach is
the memory consumption of inferred MPIs which limits the number of input images a dataset
can have for further processing.

2.6.1.4 Rendering

Rendering strategies depend heavily on the used scene representation. View synthesis algo-
rithms must be fast in producing high quality (and high-resolution) output to be suitable for
VR.

On one end of the IBR spectrum (see Figure 2.17), plenoptic approaches like LFs [Levoy and
Hanrahan, 1996, Gortler et al., 1996], or concentric mosaics (a 3D subset of the LF) [Shum
and He, 1999] do not rely on any geometry. Instead, novel viewpoints are synthesised by
looking up suitable pixels in the input images. Nevertheless, Gortler et al. [1996] point out
that a proxy helps to improve the rendering quality, Shum and He [1999] mitigate vertical
distortion with scene depth assumptions (geometry).
On the other end of the spectrum are view-dependent texture mapping (VDTM) approaches
that can rely on creating view-dependent explicit scene geometry, e.g., local view geometry
to render a desired novel viewpoint [Shade et al., 1998, Zheng et al., 2007, Hedman et al.,
2016, Huang et al., 2017, Overbeck et al., 2018, Pozo et al., 2019, Broxton et al., 2020],
or define local shape-preserving image warps from the input viewpoints into the desired
viewpoint [Chaurasia et al., 2013], or use global scene geometry like a mesh [Debevec et al.,
1996, 1998, Buehler et al., 2001, Eisemann et al., 2008].
Static diffuse meshes [Hedman et al., 2017, Hedman and Kopf, 2018] are represented with
their geometric description, i.e., vertices and faces, and a texture atlas for looking up view-
independent appearance that can be quickly rendered using rasterisation. Multi-layered
meshes with view-dependent layer-transparency can be used to address disocclusions (holes)
by accessing precomputed inpainting layers [Serrano et al., 2019].

Hybrid IBR approaches [Debevec et al., 1996, Zitnick et al., 2004, Lipski et al., 2014]
combine several quantities to enable high quality view synthesis. Debevec et al. present
VDTM [1996] and create simple models to describe architecture depicted in input images.
Furthermore, a model-based stereo technique is presented which can be used to improve
initial correspondences obtained using imperfect proxy geometries. Zitnick et al. blend
viewpoints using a two-layer scene representation [2004] consisting of depth, and an alpha
matte focusing on occlusion boundaries within the scene, i.e., the transitions between fore-
ground and background, to account for uncertainty within the depth map estimate. Lipski
et al. combine depth maps, image correspondences and 3D scene motion in a plausible way
[2014], which is particularly interesting for areas of uncertain or completely unknown scene
information.

Note that the quality of visual output tends to degrade if only coarse proxy geometry
is available [Buehler et al., 2001]. Measures to account for imperfect proxies have been
proposed, e.g., correcting misalignments between reprojected viewpoints with respect to a
common viewpoint [Eisemann et al., 2008], or shape-preserving warping [Chaurasia et al.,
2013]], or joint optimisation of plausible corrrespondences for free-viewpoint video [Lipski
et al., 2014].
Deep learning techniques have been suggested designed to learn the needed corrections in
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Table 2.1: Overview of relevant traditonal real-world IBR methods (most relevant in orange)
based on plenoptic, implicit, or explicit scene representations. Note that the pdf version links
methods to their corresponding sections in the background chapter (in orange).

Plenoptic
(Section 2.6.2)

Implicit
(Section 2.6.3)

Explicit
(Section 2.6.4)

Omnidirectional stereo

[Ishiguro et al., 1992]

(Section 2.6.2.3)

Plenoptic modeling

[McMillan and Bishop, 1995]

Layered depth images

(LDI)

[Shade et al., 1998]

Depth-augmented

stereo panorama

(DASP)

[Thatte et al., 2016a]

(Section 2.6.4.2)

Light fields

[Levoy and Hanrahan, 1996]

(Section 2.6.2.1)

View morphing

[Seitz and Dyer, 1996]

Efficient view-dependent IBR

with projective texture mapping

[Debevec et al., 1998]

Rich360

[Lee et al., 2016]

(Section 2.6.4.3)

The lumigraph

[Gortler et al., 1996]

Image stitching:

A tutorial

[Szeliski, 2006]

(Section 2.6.3.1)

Unstructured

lumigraph rendering

(ULR)

[Buehler et al., 2001]

(Section 2.6.4.1)

Soft 3D reconstruction

for view synthesis

[Penner and Zhang, 2017]

Rendering with

concentric mosaics

[Shum and He, 1999]

(Section 2.6.2.2)

Megastereo

[Richardt et al., 2013]

(Section 2.6.3.2)

Layered depth panoramas

(LDP)

[Zheng et al., 2007]

Casual 3D

photography

[Hedman et al., 2017]

(Section 2.6.4.4)

Omnistereo

(ODS)

[Peleg et al., 2001]

(Section 2.6.2.4)

Panoramic video from

unstructured camera arrays

[Perazzi et al., 2015]

Depth synthesis and

local warps for plausible

image-based navigation

[Chaurasia et al., 2013]

Instant 3D

photography

[Hedman and Kopf, 2018]

Unstructured

light fields

[Davis et al., 2012]

Jump

[Anderson et al., 2016]

Scalable inside-out

IBR

[Hedman et al., 2016]

Motion parallax for

360° RGBD video

[Serrano et al., 2019]

(Section 2.6.4.5)

An omnistereoscopic video

pipeline for capture and

display of real-world VR

[Schroers et al., 2018]

Parallax360

[Luo et al., 2018]

(Section 2.6.3.3)

order to create high-quality output imagery [Hedman et al., 2018, Thies et al., 2019].

Overview of real-world IBR
Consider Table 2.1 (compare to Shum et al.’s IBR spectrum [2007], see Figure 2.17): The
approaches in orange form the most important related work of the (rather traditional) main
chapters (Chapters 3 to 5) and are discussed in the rest of this chapter. Other methods contain
key ideas relevant to the context of this thesis.

All methods relevant to this thesis (except image stitching) require posed (calibrated) input
viewpoints. Plenoptic methods solely use a dense set of views as input, take LFs for instance.
Non-casual capture, small action spaces and large memory footprints are disadvantages, while
high visual quality and efficient rendering are clear advantages. Implicit methods rely on local
viewpoint correspondences, e.g. sparse or dense pixel correspondences, often used to stitch
panoramic images and ODS respectively. Stitching monoscopic 360° or ODS (stereoscopic
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Table 2.2: Overview of relevant modern real-world IBR methods based on hybrid or learned
(neural) scene representations.

Hybrid
(Section 2.6.5)

Learned
(Section 2.7)

View interpolation

for view synthesis

[Chen and Williams, 1993]

Correspondence and depth-image

based rendering

[Lipski et al., 2014]

Image-to-image translation

with conditional

adversarial networks

[Isola et al., 2017]

(Section 2.7.1.1)

Local light field

fusion

[Mildenhall et al., 2019]

Modeling and rendering

architecture from photographs

[Debevec et al., 1996]

Stereo magnification

[Zhou et al., 2018]

Neural radiance fields

(NeRF)

[Mildenhall et al., 2020]

High quality video interpolation

using a layered representation

[Zitnick et al., 2004]

Deep blending

[Hedman et al., 2018]

DeepView

[Flynn et al., 2019]

Floating textures

[Eisemann et al., 2008]

Deferred Neural rendering

(DNR)

[Isola et al., 2017]

(Section 2.7.4.1)

Immersive LF video

with a layered

mesh representation

[Broxton et al., 2020]

360°), removes parallax from nearby images. The action spaces of such representations
are usually not immersive, since they are solely rotational. Explicit methods rely on local
viewpoint geometry in terms of at least per-view depth maps, or even a global scene proxy.
Accurate reconstructions are very challenging to obtain in general situations.

Consider Table 2.2:
Hybrid methods address shortcomings of using imperfect correspondences for IBR.
Learned methods can circumvent any explicit geometry reconstruction. Popular methods,
e.g. NeRF, use only posed views as input to train a network that learns to infer high-quality
novel views. Note that the inference of learned methods is usually too slow to be used for VR
applications as is. Any conversion between scene representations, for instance from learned
to hybrid or more traditional IBR methods, might introduce errors.

This overview of methods is by far not complete. It is rather highlighting the methods that
had the greatest impact on my PhD studies, in particular implicit IBR and the ODS VR
format.
Understanding the design of end-to-end pipelines will be crucial to identify IBR (and/or
neural) representations suitable for truly casual 3D photography26.
Scene representations require dedicated capturing and reconstruction procedures which are
often not practical and thus not available to casual consumers. Non-commodity hardware, e.g.
camera rigs or high-perfomance computing clusters, are not interesting for casual consumers.

This chapter proceeds by discussing all orange methods (see Tables 2.1 and 2.2) on 1-2 pages
each. The main motivation for this is to share my perspective on the recent IBR and neural
rendering landscapes and especially how they are enabling real-world VR technology today,
in particular in terms of scene representations.
All methods are compared in Tables 2.4 and 2.5 regarding end-to-end real-world IBR systems.

26I believe that practical systems should provide high visual quality within rich action spaces (degree and
magnitude), but capturing needs to underlie casual conditions, e.g. via a single hand-held consumer camera
within seconds. Users should be given feedback about their capture as fast as possible (short round-trip).
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Figure 2.18: a) Light slab (uvst), b) camera (uv) and focal plane (st), c) capturing setup
(gantry), d) pre-filtered view interpolation using an aperture. See more detailed description
in text. Inspired by: Levoy and Hanrahan [1996].

2.6.2 Plenoptic
Plenoptic IBR approaches, e.g., light fields [Levoy and Hanrahan, 1996], concentric mosaics
[Shum and He, 1999], omnidirectional stereo [Ishiguro et al., 1992, Peleg et al., 2001], or
unstructured light fields [Davis et al., 2012], only require calibrated viewpoints to run (see
Section 2.3).

2.6.2.1 Light fields [Levoy and Hanrahan, 1996]

"In this paper, we describe a simple and robust method for generating new views from arbi-
trary camera positions without depth information or feature matching, simply by combining
and resampling the available images. The key to this technique lies in interpreting the input
images as 2D slices of a 4D function - the light field."

Main principle Light fields (LFs) encode a 5D-subset of the plenoptic function [Adelson
and Bergen, 1991], e.g., position (X) and orientation (θ ,ϕ), using a 4D scene representation
consisting of two planes (see Figure 2.18 a)). Note that two planes are sufficient to describe
the directions needed to sample radiance L(u,v,s, t) only if empty-space is assumed, i.e.,
objects cannot occlude the rays between the desired camera (u,v), and the captured object
(s, t).

Capture The camera plane is captured with a gantry. All input viewpoints converge to the
same focal plane, i.e., each input image covers the whole focal plane.

Representation Consider Figure 2.18:
a) The two-plane parametrisation is called a light slab. A light slab supports a 6-DoF action
space for novel-view synthesis and consists of a camera plane (uv) with input images and a
focal plane (st) to increase visual fidelity of rendered imagery.
b) The camera plane is captured using a gantry (c) and consists of images with planar camera
motion. The camera plane (uv) consists of hundreds of input images depicting the same
object from different angles captured using a gantry (c). The focal plane (st) contains as
many images as there are pixels of a single input image on the camera plane27.
All captured images share the same focal plane (st) which is set to pass the object centrally
and (optionally) obtained by re-sampling the input images.

27For example, if the camera plane consists of 16x16 images, 256x256 pixels each, the focal plane consists of
256x256 images in which each image consists of 16x16 pixels.
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Figure 2.19: a) Construction of a concentric mosaic. b) Rendering with concentric mosaics.
Image credits: Shum and He [1999].

Rendering Viewpoints are rendered by taking a 2D slice (xy) from the light-slab (uvst)
(see Figure 2.18 a) and d) ).
A view is rendered in two steps:
(1) a camera ray is traced along the image plane (xy) and intersected with the camera (uv)
and focal (st) plane.
(2) the colour for the corresponding pixel is determined by either just looking up the uv pixel
(no interpolation), interpolating pixels just on the uv or st plane (linear interpolation), or
performing the interpolation on both planes uvst (quadrilinear interpolation) giving the best
results.

Visual results are improved when multiple images are pre-filtered using an aperture (see
Figure 2.18 d) ).
The transformations between the pixel coordinates on the planes, i.e., the pair-wise homogra-
phies (see Section 2.4.2) from (x,y) to (u,v) and to (s, t), can be efficiently implemented via
texture mapping operations.

Limitations Light fields need a controlled capturing environment. The lumigraph [Gortler
et al., 1996] uses markers around captured objects to keep the step of extrinsic calibration
casual and reports visual improvements by using explicit scene geometry. The memory
footprint is large and the represented action space is limited by the frustum formed by camera
and focal plane.

2.6.2.2 Rendering with concentric mosaics [Shum and He, 1999]

"Like panoramas, concentric mosaics do not require recovering geometric and photometric
scene models. Moreover, concentric mosaics provide a much richer user experience by
allowing the user to move freely in a circular region and observe significant parallax and
lighting changes."

Main principle Concentric mosaics represent a 3D subspace of the 5D28 plenoptic func-
tion constrained by 1D rotation and 2D translation. Viewpoints within a 2D plane are sampled
over varying positions, i.e., distributed over multiple concentric circles Ck (see Figure 2.19
a)), which are sampled to create novel viewpoints (see Figure 2.19 b)).

Capture A stepping motor is used to move a slit camera along several concentric circles
Ck, looking tangential to the circular trajectory (see V Figure 2.19 a) ). This process is
repeated for several circles with different radii (see Ci in Figure 2.19 b) ). All captured circles
share the same capture plane.

28Fixed time and discretised wavelength.
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Figure 2.20: Left: Viewpoint from captured mosaic DCM surrounded by two novel viewpoints
Dnew and D′new. Right: Rays off the plane which lie around DCM cause vertical distortion.
When the slit L j captured in CM is mapped into novel viewpoints, it is getting compressed
or stretched, for Dnew and D′new respectively. Image credits: Shum and He [1999].

Additional mosaics CM′k (not depicted) corresponding to viewpoints V ′j are captured which
share the same position as Vj but are rotated by 180°, i.e., both tangential directions are
captured29.

Representation Each camera position (or implied orientation) Vj on a circle Ck yields a
single slit image L j in the respective viewpoint mosaic CMk (see Figure 2.19 a) ). Every slit
image can be represented in polar coordinates (see circular coordinates in Section 2.2).

Concentric mosaics support 3-DoF: 1 rotational and 2 translational degrees, i.e., rotating
and translating within the camera plane. The memory footprint is way more compact than
other plenoptic approaches [Levoy and Hanrahan, 1996, Gortler et al., 1996], since only slit
images are stored instead of ordinary full-frame (non-slit) images.

Rendering Consider Figure 2.19: b) Given a collection of concentric mosaics, novel
views can be synthesised in the capture plane. Rendering a novel view D30 (bottom right)
with a collection of mosaics CM (top right) is done by mapping the direction of a desired ray
to a pixel x ∈ I j ∈CM j ∈ CM which can be looked up efficiently in a ray database (CM).

Limitations Taking rays outside the capturing circle, causes vertical distortion (see
Figure 2.20, note that a circle is naturally embedded within a plane).
The slit image is pasted into the output image without further treatment which implicitly
assumes that desired and mosaic rays are parallel, or the object which reflected radiance was
captured, is located at infinity.
Knowing the geometry of the environment could be used to re-project the mosaics onto
the scene geometry [Heckbert, 1989, Shashua, 1993, Chen and Williams, 1993, Debevec
et al., 1998, Buehler et al., 2001], but obtaining geometry from inside-out camera motions is
challenging (see Section 2.5).
The capturing procedure is not practical for real-world captures and since the scene’s depth

29This can be technically realised by mounting two cameras on a ring. The cameras share the same principal
axes (ideally), but look in opposite directions.

30The original text uses "P" instead of "D" for the desired novel viewpoint.
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Figure 2.21: a) An omnidirectional view, i.e., a cylindrical 360° panorama, is generated by
consecutive slit images of a centrally rotating camera. b) Omnidirectional stereo views are
generated from double-slit images of a off-centrally rotating camera. c) Omnidirectional
stereo allows to estimate coarse depth information L of a scene point X by finding the angular
disparity θ of feature points (see Equation 2.23). d) Two panoramic views can be used to
estimate a scene point more accurately using omnidirectional binocular stereo, resulting in a
local map (see their paper, Chapter 4, Section B). Image credits: Ishiguro et al. [1992].

variation is not known a priori, it is unclear how many mosaics (circles) need to be recorded
to provide high-quality renderings.

2.6.2.3 Omnidirectional stereo [Ishiguro et al., 1992]

"A single camera swivelling about the vertical axis takes consecutive images and arranges
them into a panoramic representation .. .. two panoramic views and a modified binocular
stereo method lead to a more precise geometry with direction-dependent uncertainty .. "

Main Principle A robot is equipped with a camera that can be swivelled off-central around
the vertical axis (see Figure 2.21 b)) and moves in a plane XY parallel to the ground31.

The authors present two very interesting concepts:
First, using a double slit on the captured frames, it is possible to estimate the depth L of
feature points (see 2θ in Figure 2.21 c) ), which is used to give the robot a coarse32 idea of
its environment after first capture.

31Z goes up, i.e., is the normal of the ground plane.
32Reliable ranges for depth estimation depend on the angular resolution when detecting (sharp) edges, and the

length of the used baseline. Uncertainty increases for distances that cause only small disparities, or if the angular
sampling is chosen too coarsely.
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Second, central single-slits, omnidirectional panoramic views, i.e., cylindrical 360° panora-
mas, can be created by mosaicking (see Figure 2.21 a), which can be used for omnidirectinal
binocular stereo (see Figure 2.21 d)) to generate more accurate local maps that are then
fused into a more accurate global map of the environment.

Capture and Reconstruction Consecutive images are mosaicked into a omnidirec-
tional stereo viewpoint (see Figure 2.21 c) ). By measuring the angle 2θ of a rotated feature
point, observed between two slits, the range L can be determined as:

L =
Rsinϕ

sin(ϕ−θ)
(2.23)

where ϕ is half of the view angle of the two slits per captured image. The vertical slits are
placed l = 200 pixels away from the image centre, f = 600 pixels and R = 0.2 m

Consider Figure 2.21 d) ): After two omnidirectional viewpoints (see Figure 2.21 a) ) O1,O2
have been captured, a local map is created. Many local maps are used to refine a global map.
The Cartesian coordinate system is assumed to be aligned with two viewpoints. The baseline
B is aligned with the global X-axis, and θ = 90 with the Y-axis. A scene point X = (X ,Y,Z)
is observed at θ1 and θ2 in both viewpoints O1 and O2 (or images I0 and I1) respectively.
The position of X is estimated as follows:

X =
cosθ1 sinθ2

sin(θ2−θ1)
·B, Y =

sinθ1 sinθ2

sin(θ2−θ1)
·B (2.24)

where the length of the baseline B needs to be estimated33. Compare with the paragraph
about triangulation using a stereo camera setup in Section 2.4.4. Note that the global Y and
Z axes are swapped.
The angular disparity α = θ2−θ1 > 0 replaces the standard disparity dp in stereo setups.
The sinθ2 measures deviation from the perfect stereo setup (the object lies at infinity if
θ2 = θ1 = π/2+kπ). Actual correspondences of the input images are computed by scanning
epipolar curves using a dynamic programming algorithm.

Representation A global map is formed by the initial viewpoint (double-slits, omni-
directional stereo) and refined by several local maps (single central slits, omnidirectional
binocular stereo).
The estimate of the baseline B from the step-motor is not reliable and causes uncertainty
in further local map generations. Instead, an active vision method is used to keep certain
azimuth angles of consecutive viewpoints invariant.
While the robot is exploring a path, it can check new panoramic views with reference views
to derive deviations, basically to adjust the next planning step to obtain a more suitable and
certain relative orientation to a reference view.

Limitations There is uncertainty in the double-slit depth estimate L caused by the strategy
to localise image edges [Dhond and Aggarwal, 1989], which worsens the farther the object,
the smaller the swivel radius R, and the coarser the angular resolution is.
Scene objects that align with the camera motion of an omnidirectional stereo viewpoint have
the highest direction-dependent error. Such objects need to be captured from different angles
and influence the motion planning of the robot.

33This is called dead reckoning in the context of navigation of ships, aircrafts, or robots. The task is to
determine the position of a moving object without actively sensing the environment.
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Figure 2.22: Central panorama versus circular projections. a) Central panoramas are created
by mosaicing vertical image strips, a.k.a. slit-images, of neighbouring input viewpoints.
Projection lines are perpendicular to the cylindrical imaging surface in this case, or radial
w.r.t. the used circle. Viewing circles encode left- (b) and right-eye (c) panoramas in the
omnidirectional stereo (ODS) format. Stereo viewpoints can be synthesised by looking up
corresponding parts in both eye-panoramas. Projection lines are tangential to the viewing
circle.

2.6.2.4 Omnistereo: panoramic stereo imaging [Peleg et al., 2001]

"The ultimate immersive visual environment should provide three elements: 1) Stereo vision,
where each eye gets a different image appropriate to its location in space, 2) a complete
360 degrees view, allowing the viewer to look in any desired direction, and 3) allow free
movement."

Main principle The key concept of Omnistereo is to obtain a stereo format with omnidi-
rectional (360°) surround viewing experience, based on concepts presented in omnidirectional
stereo (ODS) [Ishiguro et al., 1992]. Peleg et al. swivel a camera, however instead of cap-
turing a central panorama, the camera is rotated off-centrally (see Figure 2.21 a) and b)
respectively.) and mosaic two panoramic viewpoints (eyes) that provide binocular disparity
[2001].

From the rgb video, a viewing circle (see Figure 2.22) is mosaicked which lies inside the
camera capturing circle34 (see red circle in Figure 2.22 b,c) ). The diameter of the viewing
circle is set to the interpupillary distance (IPD) to represent the average baseline length for
human eyes (∼6.4 cm [Dodgson, 2004]).
A consumer camera is used and suitable slits are extracted from the input images as vertical
image strips (see Figure 2.23). Assuming the pinhole camera model (see Section 2.3), vertical
image strips can be extracted and treated as they were captured with a double-slit camera
which leads to left and right eye panoramas. Every slit corresponds to a camera position and
orientation along the viewing circle (see Equation 2.26).

Note that the origins of omnidirectional stereo (ODS) as a VR scene representation today,
as popularised by this paper, lie in robotics and vision research [Ishiguro et al., 1992]. The
similarity to concentric mosaics [Shum and He, 1999] is important to understand shared
limitations, e.g., vertical distortion (see Figure 2.20).

34Or cylindrical image surface
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Figure 2.23: Left and right ODS panoramas, VL and VR respectively, are connected to a
viewing circle and created by mosaicing vertical image strips from pinhole images distributed
over a cylindrical image surface. See more detailed description in text. The figure is inspired
by Peleg et al. [2001] and the used images are extracted video frames from the "’Rooftop’"
dataset [Richardt et al., 2013]. Inspired by: Ishiguro et al. [1992] and Peleg et al. [2001].

Capture A camera is mounted on a rotary stage which avoids the need for calibration. The
strategy is very similar to the concentric mosaic approach [Shum and He, 1999], however,
[Peleg et al., 2001] use a camera looking radially outward instead of tangentially along the
circular camera path, and rather approximates tangential directions needed to describe the
eye panoramas.

Rotating a single camera implies that the scene needs to be static to make the strip pasting
(mosaicing) work seamlessly without any need for image correspondences.

Reconstruction Consider Figure 2.23: Since the camera describes a rotation, the recorded
slit images project on a cylindrical surface which is used to sample left- and right-eye panora-
mas. For panorama construction, the image surface can be considered a composition surface
in which new viewpoints are sampled and stitched [Szeliski, 2006].
If the strips are all taken from the centre of the images (central strips), an ordinary panorama
is created.
The vertical strips, e.g., double-slits, are extracted from the input images and mosaicked into
a cylindrical panorama (see Figure 2.23).
The right eye panorama is created by taking image strips to the left (in orange), and the left
eye panorama by taking strips to the right (in blue).

Representation Circular projections (see Figure 2.22) are used to mosaic a viewing
circle from a continuous circular video sweep. The ODS representation consists of two
viewing circles, one for the left and one for the right eye, which provide stereo viewpoints in
360° environments and thus one stereoscopic degree of freedom (see Section 1.1.2), namely
rotation within the captured camera plane.

To create more comfortable viewing experiences, the point of fixation can be varied for
different viewing directions θ . The point of fixation changes with the distance of the vertical
strips for left- and right eye (see Figure 9 in their paper), which implicitly changes their
disparity, and should be set close to the middle of the depth range at the viewing direction.
Note that this adjustment, i.e. disparity control, needs to be set per scene and is not necessary
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Figure 2.24: Rendering ODS content: a) A eye panorama is usually described by the azimuth
θ and the height of cylindrical surface [Ishiguro et al., 1992]. b) ϕ is used to model non-zero
elevation angles which can be represented, but stereo disparity fades the bigger the magnitude
of ϕ gets. A direction vθϕ has two non-zero angles. For example, vθ assumes implicitly
ϕ = 0, i.e., rotation along the equator. c) A stereo pair can be encoded in a single colour
image, for example by stacking left and right eye panoramas vertically. d) Each pixel in a eye
panorama corresponds to a direction in spherical coordinates (θ ,ϕ). Image credits: Google
[2015].

to provide binocular disparity, it is however very handy to adjust stereo 3D perception for
different viewing directions within the scene.

Rendering A single eye viewpoint is determined by a single polar angle θ in circular
coordinates [Google, 2015] and a focal length f which controls how much of the area around
the central ray is contributing to the viewpoint. Angles are translated into image pixels as
follows:

θ = x ·2 ·π−π φ = π/2− y ·π (2.25)

For each pixel x in the eye-panorama, the origin Cx of the camera ray and its direction dx

can be computed as:

Cx =±R · (cos(θx),0,sin(θx))
>, (2.26)

dx = (sin(θx)cos(ϕx),sin(ϕx),−cos(θx)cos(ϕx))
>. (2.27)

The sign of R = IPD
2 is a negative 1 for the left eye and a positive 1 for the right eye. Note

that the directions for left and right eye are always parallel and thus the same. However, the
ray origin changes for the left and right viewpoint (see Figure 2.24 a) ).

A viewpoint (eye) is mosaicked from the input images using a cylindrical composition
surface with a large radius assuming the plane at infinity as scene geometry. Note that this
approach is feasible since the captured camera motion consists of small baselines and nearby
scene objects are avoided.

Limitations A rotary stage is needed for capturing and a purely rotational action space (1-
DoF) implies no motion parallax which can quickly break the immersion of a VR experience
(see Section 1.1.1), in particular due to close-by scene objects with large disparities which
cause the most motion parallax.
Using a cylinder as projection surface (constant depth assumption along θ ) causes vertical
distortion [Shum and He, 1999], which gets worse the bigger the mismatch. Assuming
infinite depth causes the most issues for objects very close to the camera.
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a) Multi-perspective input images b) Stitched result
Figure 2.25: An example of fusing multi-perspective images a) into one stitched result b).
Correspondences need to be established among all input images, such that they can be aligned
for seamless stitching. Image credits: Brown et al. [2005].

2.6.3 Implicit
IBR approaches that utilise solely sparse [Szeliski, 2006, Perazzi et al., 2015] or dense
[McMillan and Bishop, 1995, Seitz and Dyer, 1996, Richardt et al., 2013, Anderson et al.,
2016, Schroers et al., 2018, Luo et al., 2018] 2D correspondences (see Section 2.4.1) for novel
view synthesis are called implicit (compare to the centre of the IBR spectrum in Figure 2.17).
The terminology makes sense since 2D correspondences, (dense) per-pixel, or (indirect)
feature-based, describe camera motion (see Section 2.5.2) in (static environments) needed
to stitch panoramic viewpoints [Shum and Szeliski, 1998, Brown and Lowe, 2003, Brown
et al., 2005, Szeliski, 2006, Perazzi et al., 2015], in particular the ODS format [Richardt
et al., 2013, Anderson et al., 2016, Schroers et al., 2018].

2.6.3.1 Image alignment and stitching: a tutorial [Szeliski, 2006]

"This tutorial reviews the basic motion models underlying alignment and stitching algo-
rithms, describes effective direct (pixel-based) and feature-based alignment algorithms, and
describes blending algorithms used to produce seamless mosaics."

Main Principle The goal of image stitching [Szeliski, 2006] is to combine multiple
images into a new one, for instance with a greater (more panoramic) field of view (see
Figure 2.25). Algorithms for image stitching can be found on every smartphone nowadays.

Szeliski’s image stitching tutorial [2006] provides a extensive survey and required maths to
describe and handle image stitching problems.
The notion of motion models is introduced as possible pixel transformations between views
of a multi-view dataset, i.e., projective transformations [Hartley and Zisserman, 2004].
Direct and indirect methods for obtaining correspondences (see Section 2.4.1) are explained,
error metrics motivated, and solving strategies introduced.
The notion of a composition surface is introduced on which all individual images are stitched
together, e.g., a plane for panoramas, or a cylinder or a sphere for 360° panoramas. In IBR
applications, the surface of a 3D proxy can be identified with this. Stitching assumes infinitely
far away scene geometry when using trivial composition surfaces. Note that far away is a
property of the lens and the employed baseline (see Section 2.4.4, in particular Figure 2.9).
Stitching seamlessly is important to generate high-quality panoramas: (1) blur and ghosting
are common visual artefacts, especially in the presence of parallax [Kumar et al., 1995]. (2)
Lens distortions and exposure differences from different cameras can lead to seams.

Image stitching itself can be seen as implicit image-based rendering, consisting of a mixture
of global and local image adjustments to create seamless panoramic mosaics [Shum and
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Szeliski, 1998]: Input images are combined into novel viewpoints with greater field of
view, e.g., panoramic [Perazzi et al., 2015], 360° [Lee et al., 2016], or converted into 360°
ODS [Richardt et al., 2013] (see Section 2.6.3.2) panoramas. An example can be seen in
Figure 2.25.
In order to stitch images, it is vital to find a pair-wise image alignment [Lucas and Kanade,
1981] which can be used to actually determine the image motion (camera motion if the scene
is static) between different reference viewpoints. The term panorama recognition [Brown
and Lowe, 2003] is commonly used to describe this process [Szeliski, 2006, Perazzi et al.,
2015]. It is common to use sparse correspondences obtained by matching features [Lowe,
2004], or patches [Brown et al., 2005], since features are more robust to perspective changes
(if parallax is present) and faster than using dense correspondences [Saputra et al., 2018].

If multi-perspective images with parallax need to be stitched, parallax removal is required,
i.e., local adjustments to compensate for mis-registrations (ghosting), which further reduces
the global alignment error as well:
For all pairs of images that should be stitched into one, dense correspondences can be used
for motion-compensation, i.e., reducing the difference of motions between input images, by
averaging the motion estimates (see Equations 63 and 64 in Shum and Szeliski [1998]), or by
linearly interpolating them according to a linear (1D viewing direction, azimuth θ ) blending
weight (see Equation 3 in Richardt et al. [2013]).

Limitations Developing fully automated (and robust) stitching pipelines for arbitrary
camera motions35 and lens models is challenging due to finding correspondences (see
Section 2.4.1).
All assumptions made for this thesis (see Section 2.1) are true for image stitching as well.
Specifically for image stitching, it is commonly assumed that scene objects are sufficiently
far away such that parallax removal is feasible using solely 2D-based techniques and simple
composition surfaces, e.g., planes, cylinders, or spheres. If there is too much parallax between
adjacent input images, which depends on baselines, the lens, and the scene objects, stitching
artefacts like blur and ghosting can be mitigated by using a more suitable composition surface,
e.g., a geometric 3D proxy of the scene [Lee et al., 2016]. Note that dense correspondences
are used in IBR to compensate for coarse proxy geometry [Eisemann et al., 2008, Lipski
et al., 2014, Luo et al., 2018].
Exposure differences and small scene motions need to be compensated and extreme cases are
tough [Szeliski, 2006]. Over- and underexposed images do not contain meaningful features
and quick scene motions can be hard to detect automatically.

2.6.3.2 Megastereo [Richardt et al., 2013]

".. our contributions allow the generation of stereoscopic panoramas at high output res-
olutions that are virtually free of artefacts such as seams, stereo discontinuities, vertical
parallax and other mono-/stereoscopic shape distortions."

Main Principle Megastereo presents a state-of-the-art end-to-end pipeline to casually
capture and produce high-quality omnidirectional (360°) stereo panoramas (ODS) [Peleg
et al., 2001] which are currently de-facto standard to represent real-world VR experiences
[Anderson et al., 2016, Matzen et al., 2017, Schroers et al., 2018] (see Sections 1.1 and 1.1.1).
Note that this is the first approach that generates high-resolution ODS panoramas in a
fully casual manner, i.e., it is captured with a continuous video sweep of various hand-held

35Image stitching for general cases has no prior assumption on the camera motion.
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Figure 2.26: Overview: Megastereo is an end-to-end pipeline for casually capturing and
generating omnidirectional stereo (ODS) content. a) Input images are undistorted to obtain
pinhole viewpoints b), e.g., the hand rail is straight now instead of curved, i.e., the image
depicts a linear perspective without lens distortion. c) Fit circle (in red) to optical centres
(black dots), and d) stabilise viewpoints to reduce geometric distortions between multi-
perspective images. e) Use cylindrical composition surface to reduce vertical parallax. f)
Stitch ODS panorama using flow-based blending of vertical image strips. Note that the
viewing circle is indicated as dashed red circle within the imaging surface. See more detailed
description in text, particularly in Reconstruction.

consumer cameras.
While the original ODS work requires a controlled setup on which a camera is moved along
a circular trajectory, with constant speed while taking slit-images radially outwards [Ishiguro
et al., 1992], the input to the Megastereo pipeline is a shaky camera path with usually
distorted input images caused by the camera’s optical system. Furthermore, Ishiguro et al.
are interested in reconstructing 3D geometry [1992], instead of creating formats suitable
for VR [Peleg et al., 2001], but both of these methods, same as Megastereo, swivel a single
camera off-centrally to reason about stereo viewpoints (see Sections 2.6.2.3 and 2.6.2.4).

The primary objective of the demonstrated pipeline (see Figure 2.26) is to idealise the
casually captured video, e.g., removing lens and shape distortions (see Figure 2.26 a), d), and
e) ) before the actual eye-panoramas can be stitched visually artefact free using flow-based
blending (see Figure 2.27). A key factor to compensate for scene motion and inaccurate
calibrations is flow-based motion compensation [Shum and Szeliski, 1998], which is applied
here to remove ghosting artefacts.

Capture

A dataset consists usually of hundreds of viewpoint captured along at least one continuous
360° inside-out video sweep. At least one circle with a small overlap needs to be captured to
create a full 360° panorama without seams. Capturing is demonstrated using a motorised
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rotary stage and using various hand-held consumer cameras like a GoPro HD Hero2.

Reconstruction

An overview of the end-to-end pipeline is given in Figure 2.26:
a) A distorted input frame is undistorted to obtain pinhole images using a radial lens model.
The intrinsic calibration is obtained offline. Note that the undistorted viewpoint is slightly
zoomed in (uses a larger focal length than the input viewpoint) to crop unknown pixels.
b) SfM is used to reconstruct the camera motion (viewpoint extrinsics). Note that inside-out
camera motions are generally hard to reconstruct (see Section 2.5.2). The authors observe
that SfM produces more accurate extrinsic estimates (lower global reprojection error) when
using pinhole images instead of distorted images.
c) A circle (in red) is fitted to a point cloud consisting of optical centres (black dots) which
are encoded in the extrinsics. The circle represents the image surface as described in previous
work [Peleg et al., 2001] which spans a cylindrical coordinate space. The actual viewing
circle which lies within the image surface (see Figure 2.22 b) and c) ) is not depicted. Note
since the viewing circle lies within the image surface, stitched multi-perspective panoramas
contain vertical distortion (see Section 2.6.2.2, in particular Figure 2.20).
d) Each optical centre is identified with a polar angle ϕ with respect to the fitted circle and is
thus registered with it.
e) A stabilised input view (green) aligns with the ideal radial direction derived from a polar
angle connecting to the fitted circle. Stabilising viewpoints, i.e. by applying a homography
with shared optical centres (see Section 2.4.2), reduces the perspective distortion between
neighbouring viewpoints. The stabilised images are projected onto a common cylindrical
(composition) surface (in blue) for stitching which reduces vertical parallax.
f) Instead of mosaicking image slits, strongly overlapping viewpoints (consecutive video
frames) are used to synthesise the needed slits from overlapping image strips [Peleg et al.,
2001] by using flow-based blending, i.e. compensating potential scene motion and non-ideal
camera motion used during capture. Every image covers a angular range [ϕmin,ϕmax] on the
cylindrical composition surface, determined by the field of view of a stabilised viewpoint.
Stitching itself is illustrated in Figure 2.27 d).

Any deviation from the ideal assumptions (circular trajectory and radial principle axes)
leads to visible shape distortions and vertical parallax.

Representation The preprocessing finishes by writing all reconstructed data, in particu-
lar stabilised viewpoints and dense flow fields, into a suitable cache format which is used for
stitching the output panoramas. The cache consists of:

1. A (fitted) camera circle,

2. projection matrices for all stabilised viewpoints (registered with the circle),

3. the stabilized images themselves, and

4. bi-directional flow for each neighbouring pair of stabilised viewpoints.

The final representation consists of two stitched eye-panoramas (see Figure 2.22 b)-c) ).

Instead of repeating the authors’ method for seamless stitching, which is crucial in the context
of this thesis to create smooth novel views for real-world VR applications (see Chapters 4
and 5), I try to clarify some confusion in this paper.
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Clarifications As stated by the authors (Section 5.2, Flow-based blending): “.. . For a
simplified notation, we describe the flow-based ray upsampling using the corrected images
(Section 4). However, the flow can be computed directly on the input images and undergo
the same correction transformations.“
I disagree with that statement, since pixels are (scalar) intensities and flow fields contain
vectors encoding scene geometry implicitly. Direction and magnitude should be affected to
be consistent with corrected image pixels, when computed on non-corrected images.

An important aspect to understand this paper is to understand the global re-projection of
image pixels via pair-wise homographies. Pairs of neighbouring images are aligned via
a homography H induced by the plane facing the radial directions halfway between two
consecutive views. Note that a concentric cylinder to which viewpoints are radially aligned
with, induces exactly these planes, assuming the cylinder radius is sufficiently large, i.e.
infinity with respect to the baseline of a pair of consecutive viewpoints (compare to Stereo
setups in Section 2.4.4, in particular Figure 2.7).
A output pixel x can thus be mapped into arbitrary images by concatenating multiple
homographies: A0→kx = Ak · · ·A1A0x.

The authors state as well: "Let us denote the flow fields between any pair of adjacent images
k and l by Fk→ l , where both images and the flow field are defined on the same pixel grid.
However, this assumption is violated by our alignment strategy (Section 4.4) which aligns all
images to the same global coordinate frame, with a different pixel grid for each image.“
First, it is shown that every pixel in any image can be re-mapped to any input view using
pair-wise homographies A, e.g., A0→k to go from image 0 to image k (see Reconstruction
above and Section 4.4 in [Richardt et al., 2013]). A0→k transforms from global coordinates
into the image coordinates of image Ik.

Ik(x)≈ Il(x+Fk→ l(x))

The authors further state: "First, the flow field Fk→ l is defined on the pixel grid of Ik, and
consequently it needs to be sampled in the coordinate frame of image k, at xk = A0→k, where
A0→k transforms from global coordinates to the local coordinate system of Ik. Secondly,
the flow field also encompasses the Euclidean motion which is already accounted for by
aligning the images in global space. This motion is given by A0→l−A0→k, which leads to
the definition of the motion-compensated net flow as:”

F∗k→l(x) = Fk→l(A0→kx)− (A0→lx−A0→kx)

Note that it is conceptually much easier to assume that image pixels were already projected
into the corrected images, instead of re-mapping them via pair-wise homographies:

F∗k→l(x) = Fk→l(xk)− (xl−xk)

A output pixel x corresponds to a surface point X (see P in Figure 2.27 d) ) of the cylindrical
composition surface. P projects into enclosing viewpoints k and l as xk and xl respectively.

Rendering The synthesis is defined by a backward warping, for each column (slit) of the
cylindrical composition surface R (the final output image), map into pairs of stabilised input
images to synthesise vertical image strips (see Section 2.6.2.4, in particular Figure 2.23). If
scene objects are farther away than the composition surface (see the strip EG in Figure 2.27
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Figure 2.27: a) Rays needed to create stereo panoramas. b) The deviation angles β are defined
as the angular difference between the ideal ray and the ray that is used for stitching. c) Linear
view interpolation can lead to duplication and truncation as soon the actual scene object’s
depth deviates from the cylinder radius. d) To synthesise a column in the output panorama,
motion-compensation via optical flow is used to locally align images before blending vertical
image strips that form a multi-perspective panorama. Image credits: Richardt et al. [2013].

c) ), image content will be duplicated in the output image. Because of that, the radius is set
sufficiently large such that all scene objects are closer than the chosen cylinder36. Potential
misalignment (ghosting) can be compensated using the computed flow information which
encodes information of closeby scene objects, instead of far away objects.
Duplicates in the background cannot be compensated via optical flow since disparities (and
thus vector magnitudes of flow) become smaller (zero at infinity). Note that the choice of
cylinder radius in Figure 2.27 c) and d) is confusing, and is not describing the actual situation
as described in the paper. A correct illustration is given later in this thesis (see Figure 4.6), in
which the correct relation of the composition surface and scene geometry is assumed. Flow
cannot help to compensate motion in the background since (1) there is not much motion in
the background in general, and (2), motion is measured for close-by objects.

A flow-based blending is used which applies local alignments to the image pair, practically
removing parallax (to avoid mis-alignments) needed to create seamless panoramas [Shum
and Szeliski, 1998, Szeliski, 2006]. For each scene point X and its corresponding radial
direction r, there exists exactly one camera pair enclosing this point (see Figure 2.27 d)). Each
camera of the pair has an observation of X, i.e., x′ and X′′ which are the image projections of
X The colour of r, corresponding to x̃, is determined by a motion-compensated flow-based
blending of rk and rl .

SFlow
k (x) = (1−η) · Ik(A0→kx+η ·F∗k→lx)

+η · Il(A0→lx+(1−η) ·F∗l→kx)

SFlow
k (x) stands for the final output colour of pixel x using the bi-directional flow from

images k and l. η ∈ [0,1] is a weight used for interpolating viewpoints, describing the
relative transition from one view (at 0) to the other view (at 1).
F∗k→l(x) is used to compensate for local misalignments [Shum and Szeliski, 1998].
Again, it is easier to assume that input images have been corrected globally before optical

36The authors state that the radius is set to salient objects in the scene which works well, but it cannot, because
of the nature of motion-compensation addressing parallax removal of foreground objects.
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Figure 2.28: The proposed capturing scheme and scene representation: a) key frames on the
sampling sphere (orange), b) relative frames on a sampling circle (blue) and c) key frame Ik
(orange) and its six relative frames (blue). d) 6 relative frames r1, ..,r6 from a key frame Ik, e)
corresponding motion fields f 1, .., f 6, from Ik to ri, f) motion fields are encoded in disparity
motion curves for each patch P ∈ Ik. Image credits: Luo et al. [2018].

flow is computed and that a scene point X can be identified with the cylinder’s surface. For
instance, X projects into each image Ik as xk.

SFlow
kl (x) = (1−η) · Ik(xk +η ·F∗k→lx)

+η · Il(xl +(1−η) ·F∗l→kx)

Skl makes it more explicit that the colour is obtained via a blending of pixels from Ik and Il .

Limitations Sparse reconstructions for inside-out camera paths with narrow-baseline and
narrow-lens viewpoints are challenging (see Section 2.5.2).
Flow-guided image blending creates visually artefact free ODS panoramas in the context of
image stitching, however, vertical distortion (see Figure 2.20) is introduced when mosaicking
with a constant depth approximation as composition surface [Shum and He, 1999] (see
Section 2.6.2.2), e.g., a cylinder, in the context of IBR.
ODS does not support motion parallax, as other image stitching methods, it removes parallax
from the input images by design [Szeliski, 2006, Perazzi et al., 2015].

2.6.3.3 Parallax360: stereoscopic 360° scene representation for head-motion
parallax [Luo et al., 2018]

"We present an end-to-end system that captures real scenes with a robotic camera arm,
processes the recorded data, and finally renders the scene in a head-mounted display in real
time (more than 40 Hz). Our approach is the first to support head-motion parallax when
viewing real 360° scenes."

Main Principle A 360° environment is captured by using a robot arm that samples
thousands of viewpoints over a spherical surface. At every position, the robot captures a
central viewpoint called a keyframe and six neighbouring viewpoints distributed over a circle,
called relative frames (see Figure 2.28 a)-c) ).
Optical flow is computed between each key frame and its six relative frames yielding disparity
motion fields (see Figure 2.29 a) ). For increased robustness, flow fields are represented by
disparity motion curves (see Figure 2.29 b) ).
Desired images ID of novel viewpoints VD = (PD, ID) are rendered using the spherical surface
as proxy, i.e. in radial direction, and then warped into the desired viewpoint inside 37 the

37I disagree to that, since the directional parametrisation implicitly generates viewpoints on the surface of the
sphere. Only the principal axis (or viewing direction of target frame vt in Figure 2.29 b) ) is needed to describe a
novel viewpoint.
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Figure 2.29: Motion field interpolation using the disparity motion curves: (a) Motion encoding
of sampling circle with six relative frames ri and the target viewpoint rt . (key frame Ik in
orange). (b) Vectors of patch Q in the six relative frames vi

Q and in the target frame t(vt
P) are

encoded as elliptical motion fields. Novel-view synthesis using two key frames: (c) input key
frames I1 and I2 and their dense motion field f1→2, (d) intermediate interpolated images It

1
and It

2 and flow field between them f t
1→2, and finally (e) a novel view It . Image credits: Luo

et al. [2018].

sphere. The system provides motion parallax in 360° environments in real-time, since only
texture lookups to pre-computed flows are needed for smoothly synthesising novel views.

Capture The capturing procedure takes 72×8 = 576 key frames plus 576×6 = 3,456
relative frames. The whole procedure takes less than 2 hours.

Reconstruction To obtain initial disparity motion fields, image correspondences be-
tween the keyframes and its surrounding relative frames are established by computing optical
flow. For efficiency, motion vectors of individual pixels x are aggregated into non-overlapping
image patches Q of size 8×8 by averaging them without noticeable degradation of synthe-
sised output.
The individual motion vectors of relative frames are merged into a single disparity motion
field by using a curve-based motion representation. An Ellipse CP is fitted to the endpoints
of x after applying all six motion vectors (see Figure 2.29 a)-b) ).
For a given pixel x in the keyframe, each reference frame is queried for the stored motion
vector in the patch Q containing x. Note that the initial motion fields are computed from key
frame to reference frame.

The parameters for the ellipses CP and motion directions θ i
P, technically the directions of

the motion vectors encoded in an elliptic coordinate space, define the final disparity motion
fields which are stored in the scene representation.
Computing all flow fields takes about one day on a quad core CPU. Faster flow methods
could be used which might degrade the output quality.

Representation The scene representation is purely implicit, no explicit geometry is used.
Only a sphere with infinite radius as proxy is implicitly used to determine radial directions.
The representation of this method consists of key- and relative frames and their corresponding
disparity motion fields.
Each disparity motion field is transformed into a curve-based (elliptical) motion encoding
(see Figure 2.29 a) and b) ) which increases the overall efficiency of the flow-encoding, e.g.,
making it more robust and reducing the memory footprint.
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The authors state that the suggested representation supports 360° 6-DoF38 stereoscopic action
spaces.
In the proposed curve-based motion representation, the final disparity motion fields en-
code the changes of the visual environment around a keyframe in terms of ellipses. Novel
viewpoints can then be computed by interpolating motion vectors represented by these
ellipses.

Rendering For rendering, a set of closest viewpoints VS surrounding the desired viewpoint
VD is determined which are warped and blended using motion fields (see Figure 2.29 c)-e) ).
Given a desired target viewpoint on the sphere rt , the viewpoint direction is always radially
outwards, the direction towards rt can be expressed as linear interpolation of the directions
to the closest reference frames r1 and r2 using a blending weight α . α is then applied to v1

P
and v2

P in the elliptic representation to get the motion vector which needs to be applied to
patch Q in Ik for synthesizing the novel view.
For a target viewpoint, the k-nearest key frames are determined, ordered by distance. Each
key frame Ik is used to synthesize a target image It

k using its pre-computed motion field. All
synthesized target images are then blended into the final target view.

Limitations The scene representation is computationally expensive to obtain and requires
special hardware. Capturing and reconstruction (estimating flow fields and forming elliptic
motion curves) takes more than 24 hours.
Viewpoint- instead of per-pixel interpolation (see Section 2.6.3.2) leads to a degenerated
forward-backward motion which is compensated (or hacked) by scaling the desired image
up or down.
Moving straight forward will always produce the same view on the spherical surface since it
is determined only by its central ray. Because of this, the representation does only provide
5-DoF with motion parallax (see Section 1.1.2) in my opinion.
If more than two reference viewpoints for blending are used, it is not clear how the blending
would affect the output quality and how it affects the speed of the approach. It is suggestged
that target views can be synthesized by the k nearest key frames, but it is unclear how this
would work in practice.

2.6.4 Explicit

This section addresses IBR techniques that rely on explicit geometry to perform view-
dependent texture mapping, e.g., per-view depth maps to create view-dependent geometry
[Debevec et al., 1996, Shade et al., 1998, Zheng et al., 2007, Chaurasia et al., 2013, Thatte
et al., 2016a, Overbeck et al., 2018, Pozo et al., 2019], or piece-wise planar proxy scene
geometry [Heckbert, 1989, Buehler et al., 2001, Lee et al., 2016, Hedman et al., 2017,
Hedman and Kopf, 2018, Serrano et al., 2019]. Note that motion parallax is caused by the
relative depth variation of scene objects and is thus coming for free when working with
explicit geometry.

2.6.4.1 Unstructured lumigraph rendering [Buehler et al., 2001]

"We describe an image based rendering approach that generalizes many image based
rendering algorithms currently in use including light field rendering and view-dependent
texture mapping."

38See limitations why it is only 5-DoF in my opinion.
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Figure 2.30: Blending heuristics for view-dependent texture mapping: a) Proxy, Ci represent
input viewpoints. b) Epipole consistency, c) Resolution sensitivity, d) Equivalent ray con-
sistency, and e) Minimal angular deviation. See a more detailed description in text. Image
credits: Buehler et al. [2001].

Main Principle Depending on the camera motion (see Section 2.5.2) of the input views
and available proxy 3D geometry (see Section 2.5.3.1), unstructured lumigraph rendering
(ULR) motivates two logical extremes for IBR approaches:
(1) If views are distributed regularly over a plane and only poor proxy information is available,
e.g., assuming a constant depth using a plane, ULR reproduces rendering with a light field
[Levoy and Hanrahan, 1996], or with an idealised lumigraph39 [Gortler et al., 1996].
(2) In the case of unstructured input views and a highly accurate scene proxy-geometry,
ULR reproduces view-dependent texture mapping approaches [Debevec et al., 1996, Pulli
et al., 1997, Debevec et al., 1998]. Note that Heigl et al. propose to represent a lumigraph
only with local geometry information, e.g., piece-wise planes, using a hand-held camera,
structure-from-motion and stereo techniques [1999].

The core contribution of this paper is the articulation of desirable properties every IBR
method should have, i.e., heuristics (guidelines) to reconstruct desired camera rays associated
to each pixel of a desired view (see rx in Figure 2.9 b) ).

Consider Figure 2.30:
a) (Proxy): Geometry should be used, if available, to assist ray reconstruction which is called
depth correction in previous work [Gortler et al., 1996, Shum and He, 1999],
b) (Epipole consistency): For a ray passing through the optical centre of a viewpoint, the
colour should be determined by a simple lookup in a ray database, e.g., the input image.
c) (Resolution sensitivity): Pixels are not measures of a single ray but an integral over a
set of rays. The angular extent should be considered in a rendering algorithm. The effect is
mostly noticeable if the surface is far away from the observer camera. This is very similar to
the splatting size used in layered depth images [Shade et al., 1998] which compensates for
differences between sampled and synthesised angular resolutions.
d) (Equivalent ray consistency): In free space, the ray along a given line-of-sight should be
reconstructed consistently, regardless of the viewpoint position unless dictated by resolution
sensitivity or visibility.
e) (Minimum angular deviation): Plausible measures of closeness should be used to adjust
the weighting of viewpoints, e.g., angular weighting of orientation similarity Debevec et al.
[1996].

39A lumigraph describes exactly the same 4D plenoptic subspace as light fields, although differing significantly
in the way datasets are captured, e.g., casually (hand-held) with scene markers (lumigraph), or using a camera
gantry (light field). The non-regular views of the lumigraph require a rebinning operation to mimic a regular grid
which has a great impact on the underlying representation.
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Figure 2.31: Novel views D are generated by texture mapping the input viewpoints on a
triangulated image plane ID. a) Per pixel blending weights for each pixel, determined as
combination of exactly 3 reference viewpoints. b) If scene geometry is available, project it
into I to refine the triangulation. c) Camera blending weights with respect to the computed
triangulation (overlayed). Image credits: Buehler et al. [2001].

Not depicted is (continuity): neighbouring camera rays should have similar colour values,
e.g., at viewpoint transitions, while following epipolar consistency. Note that the articulated
desired goals in this paper are still widely referred to in recent research [Penner and Zhang,
2017, Hedman et al., 2018, Mildenhall et al., 2019].

Capture and Representation Calibrated viewpoints serve as scene representation and
explicit scene geometry is optional: The geometry can be just a plane, e.g., analogue to the
focal plane used in LFs [Levoy and Hanrahan, 1996], or it can be a high-quality mesh used
for view-dependent texture mapping [Heckbert, 1989, Debevec et al., 1998].

Rendering The view synthesis of image ID of a desired viewpoint D is formulated as a
weighted combination of all viewpoints in the neighbourhood of D (see Figure 2.30).

ID(x) =
1
N ∑

k∈N
α̃k · Ik(P̃kX), α̃k =

αk

∑k∈N αk
(2.28)

α̃k is a normalised blending weight used to form a convex combination of all neighbouring
viewpoints N for ray reconstruction (|N |= N). αk denotes a view-dependent weight which
is obtained by combining all the blending heuristics that differ for each pair of desired
viewpoint VD and any input viewpoint Vi. Note that N depends on how many viewpoints
actually see the scene point X as intersected by the desired pixel’s camera ray rx in the
desired view. P̃k transforms the world point (homogeneous 4D) into image coordinates of the
input viewpoint for a simple lookup of pixel values.

View-dependent camera blending weights α̃k are computed in image space: A regular grid
provides vertices for a Delaunay triangulation. A set of cameras and their corresponding
blending weights are stored per vertex. The areas are barycentrically interpolated using the
camera blending weights at the vertices (see Figure 2.31 a) ). A mesh is projected into the
image plane (if available) to constrain the triangulation procedure (see Figure 2.31 b,c) ).

Limitations The quality of novel viewpoints depends on the number of input images
versus the quality of the reconstructed 3D geometry [Gortler et al., 1996] and inaccurate
proxies cause disturbing ghosting artefacts.
Stereo consistent perspectives are guaranteed by using a mesh, but other appearance effects,
e.g., specular highlights, might lead to unwanted consistencies showing as artefacts.
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Figure 2.32: A ODS viewing circle (red), encoding left (blue) and right (orange) eye panora-
mas, and a reconstructed point cloud of the scene, can be processed into a depth augmented
stereo panorama (DASP), enabling 5-DoF stereo action spaces with motion parallax for
cinematic VR applications. See detailed description in text. Image credits: Peleg et al. [2001],
Thatte et al. [2016a].

2.6.4.2 Depth augmented stereo panoramas for cinematic virtual reality with
head-motion parallax [Thatte et al., 2016a]

"Current cinematic VR systems employ omnidirectional stereo videos from a fixed position,
and therefore do not address head-motion parallax, which is an important cue for depth
perception. We propose a new 3D video representation, referred to as depth augmented
stereo panorama (DASP), to address this issue."

Main principle Viewpoints in omnidirectional stereo (ODS) [Peleg et al., 2001] (see
Section 2.6.2.4) are defined by a circular projection (see Figure 2.22) which is used to form
a viewing circle from a continuous inside-out video sweep. The viewing circle represents
360° stereo viewpoints in the shape of left- and right-eye multi-perspective panoramas.
Depth augmented stereo panoramas (DASPs) generalise the ODS viewing circle by introduc-
ing a viewing disk. The disk represents a scene point cloud which is used to synthesise correct
(linear) perspectives, i.e., without vertical distortion [Shum and He, 1999] (see Figure 2.20)
and with motion parallax.

The stereoscopic action space for rendering novel views is defined by this disk. Novel
views are created by splatting and blending left and right eye panoramas on view-dependent
geometry encoded in the viewing disk, enabling 360° 6-DoF40 with motion parallax.

Capture The generation of a DASP requires a left- and right-eye panorama representing
the viewing circle of an ODS stitch, as well as explicit geometry in form of a scene point
cloud or a mesh which is centred around the ODS viewing circle (see Figure 2.32 on the right).
Special equipment for simplifying the reconstruction of geometry is presented consisting of
two 360° cameras with a vertical offset in between.

40Note that the magnitude of vertical translation is tiny.
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Figure 2.33: a) DASP scene representation as used throughout the thesis. b) Schematic
novel-view synthesis. DASP depth is forward projected into 3D space creating a point cloud,
which is then projected into the desired viewport. c) Output for left-right head translation,
8 cm on the left and 4 cm on the right. The red line tracks a near object. Note its horizontal
displacement in corresponding views. The green line tracks a far object and thus exhibits
much less horizontal displacement (motion parallax). Image credits: Thatte et al. [2016a].

Reconstruction The epipolar lines (see Section 2.4.3) of a vertical 360° stereo pair
become columns in the equirectangular image domain. This enables comfortable and robust
feature image matching needed for high-quality triangulation, and thus the generation of a
3D scene point cloud needed to sample depth-augmented depth maps.
The DASP representation is sampled as follows (compare to Figure 2.32): For each scene
point X, two eye positions (denoted as A and B) are chosen by drawing tangents to the
viewing circle according to X’s elevation ϕ . The intersections of these tangents with the
spherical imaging surface41 yield image points L and R which belong to the left- and right-
eye panoramas respectively.
The DASP-specific depth maps store the lengths

−→
AX and

−→
BX for left and right eye respectively,

which are used to create view-dependent geometry during rendering.

Representation A DASP consists of a pair of ODS eye-panoramas and a pair of depth-
maps specific to the representation, i.e., the viewing disk. The authors suggest that non-trivial
re-sampling of complete scene information is preferred for reducing the risk of extrapolating
missing information badly. Ego-centric (a.k.a. user-centric) VR experiences must yield
high-quality stereo views at real-time framerates.
The radius of the viewing disk encodes the geometry of the viewing circle (ODS) (see
Figure 2.32 in red) corresponding to viewing directions with zero elevation (ϕ = 0), i.e.,
looking along the equator. Note that the radius of the action space is always larger than
the radius of the viewing circle, e.g., if an action space of 24 cm with an IPD of 6 cm is
anticipated, the radius of the viewing disk is set to 30 cm.
The encoding of geometry using the viewing disk gives a very compact user-centric represen-
tation of scene geometry, only two additional augmented depth maps are needed in addition
to the left and right eye panoramas, enabling a 5-DoF action space with motion parallax.

41In analogy to the composition surface used in image stitching literature [Szeliski, 2006].
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Rendering Let D denote a depth map and I denote an image, both associated to the
same eye-panorama, e.g., (IL,DL) denotes the left eye-panorama and augmented depth map
respectively. The view synthesis is done in five steps:
(1) Define desired viewpoint: Given a translated eye-position, e.g., anywhere within the
predefined action space, and a viewing direction vD, a desired image plane ID is chosen to be
perpendicular to vD facing the new viewpoint.
(2) Create view-dependent geometry via forward-projecting depth (as described in detail
below): Depth for the desired viewpoint VD is obtained by projecting the previously recon-
structed point cloud to the image plane ID using CD as centre of projection using bilinear
interpolation at half-pixel accuracy [Kirkland, 2010, Fisher, 2014] resulting in DD.
The reconstruction of the 3D point cloud involves decoding the augmented depth maps to
create view-dependent geometry [Thatte et al., 2016a]: Only the synthesis of the left eye
is explained, but the procedure for the right eye works analogously. Every pixel (h,w) ∈ D
maps to a vector ~rX corresponding to scene point X in world space. The world space origin
O is the centre of the DASP viewing disk, DASP imaging sphere and ODS viewing circle
at the same time. Let Rs and Rd be the radii of the imaging sphere and the viewing disk
respectively. Let L = (Rs,θL,ϕL) and A= (Rd cosϕL,θA,0) be the corresponding image point
and eye position respectively, as depicted in Figure 2.32, where [θL,ϕL] = L(h,w) with L
being the mapping from equirectangular pixel coordinates to polar image coordinates (see
Section 2.2).
cosθL is used to account for the shrinking viewing disk radius when considering points
with non-zero elevation. By construction, it holds that ~OA · ~AL = 0 (see Reconstruction
above) leading to θA = θL± cos−1(Rd/Rs) which is positive for the left, and thus nega-
tive for the right eye. Furthermore, A,L and X are collinear and | ~AX |= d where d is
the augmented depth value corresponding to pixel (h,w), i.e., d = D(L(h,w)). Finally,
~rX = ~OA+ ~AX = ~OA+(d/

∣∣∣ ~AL
∣∣∣) · ~AL which can be computed since d,A and L are known

and hence X can be recovered knowing (h,w,d).

(3) Map texture (colour) via backward warping from the desired viewpoint’s geometry:
Knowing the viewpoint depth, the texture is determined by looking up the ODS eye panora-
mas using bicubic interpolation. Note that depth warping is source-to-target (forward)
whereas image warping is target-to-source (backward).
(4) Merge texture hypotheses (one per eye): VD is obtained by warping and merging two
texture hypotheses, each created from a different ODS eye. If a pixel is missing in one
hypothesis, e.g., due to occlusion, it is filled by the other hypothesis. If both contain a pixel,
a simple depth test decides which one is used for the final viewpoint. The authors report that
the majority of holes are filled using this procedure.

(5) Fill remaining holes: For each of the remaining holes (if any), a vector pointing in the
direction of the background is identified using depth information surrounding the hole. The
background pixel values are then propagated into the area of missing pixel information.

Limitations The main limitation is the size of the action space which scales with the
quality and completeness of the scene point cloud. Single-layer geometry only makes sense
for scenes in which depth is distributed with low variance. Scenes with more complicated
depth distributions need more mechanisms to deal with occlusions adequately, for instance by
inpainting techniques [Serrano et al., 2019, Shih et al., 2020] (see Sections 2.6.4.5 and 2.7.1.2
respectively).

73



a) b)

Figure 2.34: Choice of composition surface when stitching 360° panoramas using a structured
rig: a) Stitching the views over a spherical composition surface causes ghosting due to
parallax between the input images. b) Using the deformed surface to compose the 360° image
compensates for this. Right: sparse sampling can cause tearing. Image credits: Lee et al.
[2016].

2.6.4.3 Rich360: optimized spherical representation from structured pano-
ramic camera arrays [Lee et al., 2016]

"This paper presents .. a novel system for creating and viewing a 360° panoramic video
obtained from multiple cameras placed on a structured rig. .. resolving two issues that occur
in the existing pipeline. .. a deformable spherical projection surface is utilized to minimize
the parallax from multiple cameras. .. a non-uniform spherical ray sampling is performed.
The density of the sampling varies depending on the importance of the image region."

Main Principle This paper addresses creation and transmission of monoscopic (spherical)
360° video captured by using a structured rig. Since cameras do not share the same optical
centre, seamless stitching requires to remove parallax (of sufficiently close objects) from the
input views [Shum and Szeliski, 1998, Szeliski, 2006].
Instead of using a sphere with infinite radius as composition surface as commonly done in
image stitching, which is only valid for shared optical centres, or if scene objects are suffi-
ciently far away, a spherical mesh is deformed to fit a reconstructed point cloud obtained in
overlapping image regions to improve image alignments (reduce ghosting) (see Figure 2.34).
The encoding of 360° content, in particular the equirectangular image projection, suffers
from non-uniform angular sampling which can lead to compression artefacts. A non-uniform
angular sampling is suggested which focuses on preserving important scene content, e.g.,
image gradients, saliency, and a face detector are used.

Capture and Reconstruction A structured rig consisting of 6 GoPro cameras mounted
in a cubical alignment is used, each camera looks along the normal of each side of the
cube. A set of 3D points Pt is reconstructed in pair-wise overlapping image regions using
optical flow [Brox et al., 2004] as disparity (scene motion) estimate followed by linear
triangulation [Hartley and Zisserman, 2004] for each time frame t. The reprojection error
between viewpoints is constrained by moving vertices in spherical coordinates only by
scaling (via λi) their radii ri with the following data term:

Ep = ∑
k

∥∥∥∥∥∥ ∑
i∈ f (pt

k)

λ
t
i rt

i − r(pt
k)

∥∥∥∥∥∥
2

(2.29)
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Figure 2.35: Limitations: a) erroneous calibration leads to visible seams and ghosting. b)
sparse sampling can cause tearing. Image credits: Lee et al. [2016].

The mesh vertices are written in terms of spherical coordinates: vi = (θi,ϕi,ri), and the
k-th triangulated 3D point at time t is written as pt

k ∈ Pt . f (pt
k) returns the indices of the

vertices of the triangle which is radially intersected by pt
k. Note that each point and thus each

vertex of the mesh can be identified with spherical coordinates (θ ,ϕ) turning this intersection
practically into a lookup operation.
λ t

i are barycentric weights associated to each triangle of the spherical mesh, effectively
re-scaling the vertices vi to minimise the distance to the reconstructed 3D points of that time
step Pt .
Laplacian smoothing is used to avoid high frequencies in the 3D shape of the deformed mesh
leading to smoother results of rt

i in non-overlapping regions using the following smoothness
term:

Es1 = ∑
i

∥∥∥∥∥rt
i −

1
|N(i)| ∑

j∈N(i)
rt

j

∥∥∥∥∥
2

(2.30)

N(i) denotes the indices of the 4-neighbourhood of the j-th vertex and |N(i)|= 4. Further
energy terms are added to obtain smooth first order spatial derivatives. This is particularly
important for scene regions which do not contain many scene points to guide the deformation
process (see Figure 2.34), effectively reducing high-frequency artefacts. Furthermore, a term
for temporal smoothness is added to enforce deformations to be smooth between consecutive
time steps (t→ t +1).

The 360° panorama projection is augmented using a ray-mesh grid based on a non-uniform
re-sampling of directions with the goal to assign more area (image pixels) to important scene
content. Intuitively, if scene content is deemed important, more pixels should be spend in the
target image (representation) to represent it.

Representation and Rendering The stitching of each individual frame is done on
a per ray basis. Each point on the spherical surface corresponds to a camera ray of the
input cameras. Seamless stitching is obtained by using the deformed sphere as composition
surface. Importance maps are used to optimise for the ray-mesh grid to distribute image
content in (spherical) output panorama in a resolution-sensitive manner. Important regions
can be manually selected, provided by object detectors, saliency maps etc. The resulting 360°
panorama is intentionally distorted to encode the non-linear sampling which is mapped back
into a standard parametrisation when displayed.
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Figure 2.36: 3D photo reconstruction: (a) capture and preprocessing, (b) sparse reconstruction,
(c) dense reconstruction, (d) warping into a central panorama, (e) parallax-tolerant stitching,
and (f) two layer fusion. See more detailed description in text. Image credits: Hedman et al.
[2017].

Limitations The stitching performance of the deformed sphere depends on the quality and
density of triangulated points established by the rig calibration and optical flow computation.
Using optical flow directly does not respect epipolar geometries between the cameras which
is only acceptable as long as the scene geometry is sufficiently far away. Flow does not
help to align far away objects, in such a situation, inaccurate calibration leads to seams and
ghosting (see Figure 2.35 a) ).
Furthermore, underconstrained scene directions can exhibit tearing artefacts since the defor-
mation procedure was ill-conditioned in that area (see Figure 2.35 b) ).

2.6.4.4 Casual 3D photography [Hedman et al., 2017]

"Given a set of input photos captured with a hand-held cell phone or DSLR camera, our
algorithm reconstructs a 3D photo, a central panoramic, textured, normal mapped, multi-
layered geometric mesh representation."

Main Principle An end-to-end pipeline is presented (see Figure 2.36) that transforms a
set of casually captured input viewpoints into a 3D photo which is technically a static and
diffuse high quality mesh, extracted from a multi-layered geometric representation.
One major contribution is a depth-refinement procedure which produces a so-called near
envelope which helps to suppress erroneous values obtained from MVS, e.g., the initial
disparity space image (DSI) obtained via plane-sweep stereo.
Once the mesh is reconstructed, it can be rendered in real-time using the standard rasterisation
pipeline.

Capture A DSLR with a fish-eye lens is moved inside-out along two circles which are
vertically offset, to create a 5D plenoptic volume (6-DoF stereo action space).

Reconstruction Consider Figure 2.36: (a): capture see above.
(b): a sparse reconstruction, i.e., estimating extrinsic camera parameters via bundle adjustment
and its corresponding sparse point cloud, is obtained using SfM (Colmap) [Schönberger and
Frahm, 2016] (see Section 2.5.1.1).
(c): a dense reconstruction is needed to reconstruct explicit geometry like a mesh [Furukawa
and Hernández, 2015], but the capturing procedure inside-out (see Section 2.5.2), leads to
ill-conditioned situations for SfM and MVS (see Section 2.1), in particular narrow baselines
make it harder to triangulate farther away scene points reliably. Note that inside-out captures
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Figure 2.37: The near envelope: its construction starts with a winner-takes-all (WTA) strategy
which gets a upsampled version of the MRF estimated disparity space image (DSI) [Intille and
Bobick, 1994, Zheng et al., 2007]. It further proceeds in multiple steps prune erroneous and
propogate confident depth values (anchor depths). Its main purpose is too discard erroneous
depth hypothesis and spread confidence during its creation. Image credits: Hedman et al.
[2017].

imply less visual overlap than any other capturing style, which encourages narrow baselines
to increase the visual overlap. Unfortunately, small baselines increase uncertainty in the
triangulation of farther away scene points [Dhond and Aggarwal, 1989, Ishiguro et al., 1992].
Without using a fish-eye lens, the number of images needed to reconstruct a 360° environment
would be much larger, which would consequently lead to smaller baselines.

The reconstruction process is guided by a novel near envelope as prior (see Figure 2.37):
The near envelope is used to propagate a lower depth bound from confident to less confident
pixels.

“The prior effectively discards a large fraction of erroneous near-depth hypotheses from
the cost volume and causes the optimiser to reach a better solution.“ Depth estimation is
treated as an energy minimisation problem as done in previous related work [Zheng et al.,
2007]. Potential labels for depths are discretised and a plane-sweep stereo algorithm is used
[Scharstein and Szeliski, 2002, Seitz et al., 2006, Furukawa and Hernández, 2015] to create a
cost volume with 220 depth hypotheses per pixel. The cost volume is downscaled and solved
using a Markov random field (MRF).
Scene-independent thresholds and tricks are used to get a tight lower bound for the estimated
scene depth. To finally compute the near envelope, pixels with reliable depth estimates
(5+ depth maps agree) are identified and denoted as depth anchors. Depth is propagated to
remaining pixels using a colour affinity smoothness term. Adapted plane-sweep MVS and
the envelope produce high accurate depth maps per image (see Figure 2.37).

(d)-(e): All depth maps are warped into the panoramic domain and stitched into a front
and back surface. Each depth map is warped into the panoramic domain by triangulating
it into a grid mesh and rendering it via rasterisation, keeping the closest depth per pixel.
When stitching front surfaces, depth consistency over many views is preferred which ensures
smooth geometry. The depth in the front stitch is used as lower bound for the depth of the
back stitch. Then finally, front and back panorama are stitched into a single two-layered
(panoramic) mesh.
(f): The two-layer panorama is represented by a graph (see Figure 2.38). Each pixel in the
panorama has up to two nodes that represent the foreground and background layers. Each
node has a depth value and a foreground/background label.
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Figure 2.38: Two-layer fusion: the diagrams show the front (yellow) and back (purple) nodes
for the highlighted scanline. Nodes with hallucinateed depth and colour are outlined. Image
credits: Hedman et al. [2017].

Representation and Rendering The two-layered panoramic layers are fused into a
single high-quality statically textured mesh which supports a 6-DoF stereo action space by
design.

Limitations The reconstruction procedure is costly computationally and is limited by the
same factors as SfM and MVS.
A full 3D photo must be captured using a DSLR with a fisheye lens which is not ideal for
truly casual capturing scenarios.
Artefacts at occlusion boundaries or textureless regions (holes) become more noticable as
the user translates away from the centre of the setup. Technically, areas which are free of
depth anchors might exhibit holes since no confident depth could be propagated.

2.6.4.5 Motion parallax for 360° rgbd video [Serrano et al., 2019]

"We present a method for adding parallax and real-time playback of 360° videos in Virtual
Reality headsets. .. We rely on a three-layer scene representation, made up of a foreground
layer and two static background layers, .."

Main Principle A 360° RGBD video is transformed into a 6-DoF42 VR experience with
motion parallax by creating a multi-layered scene geometry per frame. The presented scene
representation consists of three spherical layers which are designed to tackle disocclusions

42I tend to consider it 5.5 DoF since the resolution of the equirectangular representation of the 360° colour
and depth images is increased along the equator (zero elevation) relevant for horizontal translations, as needed to
stereoscopic viewpoints for instance. Vertical translations can degenerate quickly, in particular when used for
scenes with complex scene geometry rather distributed around the poles.
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a) b) c)
Figure 2.39: Left: The proposed scene representation allows novel translational viewpoints
that cause motion parallax. Mid and right: Warping depth naively leads to distortion and
warping artefacts. The proposed representation yields plausible high-quality results in these
cases. Image credits: Serrano et al. [2019].

and distortion artefacts (see Figure 2.39 in the middle and right). A foreground, extrapolated
and an inpainted layer are constructed (see Figure 2.40) which have view-dependent trans-
parencies, technically revealing layers which are not foreground when translating within a
6-DoF action space.
A user study confirms that the proposed representation increases immersion in VR signifi-
cantly compared to 1-DoF ODS [Peleg et al., 2001] without motion parallax.

Capture A monoscopic 360° RGBD video can be created using commercial camera rigs
[Anderson et al., 2016]. Neural networks to estimate depth for mono 360° images exist
[Wang et al., 2020, Ranftl et al., 2020], but they are challenged when used in arbitrary
environments, in particular outdoors.

Reconstruction Consider Figure 2.40: The foreground layer is dynamic and is computed
directly from the rgbd video. It fades out when the user moves away from the centre to reveal
layers beneath (c,d). This layer is connected to disocclusion boundaries which are identified
as surfaces on the foreground mesh whose normals are almost perpendicular with respect to
a radial direction of the spherical setup.
Storing the angles between surface normals and viewing directions yields an initial opacity
map, which is computed for every frame separately. The angular condition does not address
foreshortening and quantisation artefacts, which is addressed by a morphological operation
to de-noise the given input depth estimates.

The extrapolated layer is static and reflects the scene with removed dynamic objects. It is
computed by considering the n (=15 in all experiments) largest depth values of surrounding
foreground frames to obtain the median depth, and a conservative estimate for the maximal
depth. The extrapolated layer’s depth is initialised with the maximal depth to ensure that the
layer remains behind the foreground layer at all times. The opacity values are computed anal-
ogously as in the foreground layer, but the extrapolation mesh is used to identify disocclusion
boundaries.

The inpainted layer is also static and contains inpainted regions which become visible
when static scene objects turn disoccluded (visible). A PDE-based approach is preferred
over patch-based approaches since the former produces smooth results while the latter can
cause strong artifacts particularly disturbing when observed in video playback. Note that the
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Figure 2.40: a) Subset of 360° image with layered geometry depicted in the top left corner. b)
The foreground layer (orange) is a mesh representing dynamic objects of a video sequence,
e.g., a person. c) The extrapolated layer (green) is used to address disocclusions from the
dynamic foreground object, needed whenever moving off-central. d) The inpainted layer
(purple) accounts for disocclusions caused by static scene objects, e.g. the wall. Image credits:
Serrano et al. [2019].

parameters for creating the (per-frame) opacity maps (foreground and extrapolation layers)
are heuristically determined, but kept constant for all input videos and different stitching
methods.

To obtain crisp disocclusion boundaries and object silhouettes, a depth-refinement procedure
is formulated via energy minimisation over all pixels of a single frame at time t. Most
depth maps obtained from computer vision algorithms are not optimised for re-projection
[Waechter et al., 2017]. Errors in the silhouette depth cause strong rendering artefacts, for
instance misalignment of image and depth edges [Chaurasia et al., 2013, Hedman et al.,
2016] which should be kept minimal as well as temporally smooth. The refinement itself is
formulated as an energy minimisation consisting of four different terms:
First, a data term is used to force the new depth values to stay close to the initial ones.
Second, an edge-preserving filtering is applied to obtain smoother depth values.
Third, a spatial smoothness term is enforced over a 3× 3 neighbourhood of each pixel.
Note that the weight decreases with the variance in the neighbourhood to avoid accidentally
smoothing over occlusion edges.
Lastly, a temporal consistency term is used between two consecutive frames. The depth from
the previous frame t−1 is warped into the current frame t and the difference is weighted by
the length of the flow vector around pixel i.

Representation The input video is converted into three spherical layers that are used as
scene representation, consisting of one dynamic foreground layer, one static extrapolated
background layer, and a static inpainted layer (see Figure 2.40).
The spherical layers are used to handle disocclusions whenever the user moves out of the
centre of the sphere, i.e., the optical centre of the 360° panorama.

As example, the extrapolated layer is used whenever disocclusions with respect to the
dynamic foreground object occur, and the inpainting layer handles disocclusions with respect
to the static background. Technically, there are two levels of disocclusion-handling before
visually unacceptable artefacts arise. All layers are computed per frame off-line separately
but with spatio-temporal smoothness and consistency.
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Rendering The foreground and extrapolated meshes have opacity values at their vertices
which turn to zero at disocclusion boundaries, technically to make the layer beneath become
visible, depending on the distance between the desired viewpoint and the centre of the 360°
panorama (see top left of Figure 2.40).

Limitations The presented 3-layer strategy is designed to support only small action spaces.
The suggested depth refinement only works well if high-accurate depth maps, in particular
along occlusion edges, are available. Without access to high-accurate depth stitched by a
camera rig, learning-based approaches can be used. Nevertheless, these networks are often
trained on indoor or urban environments, which often leads to rather moderate results for
other environments like outdoors in general.
Determining the appropriate number of layers depends on scene complexity, and would
cause additional computational and memory requirements. More layers might only make
more sense, if more than just a single layer of 360° depth was available, e.g., a high-fidelity
point cloud from the scene in which the footage was captured [Thatte et al., 2016a].
The method cannot be applied as-is to footage which was captured by a moving (non-
stationary) camera rig. The extrapolated layer represents scene areas which can be occluded
by a dynamic object in one frame, but be visible in another. Creating this layer for a non-
stationary rig would be conceptually much harder.

2.6.5 Hybrid
Hybrid IBR approaches utilise different types of geometry, e.g., 3D morph maps43 [Chen
and Williams, 1993], CAD models combined with IBR to render architecture [Debevec et al.,
1996], depth and alpha matting for free-viewpoint video [Zitnick et al., 2004], or optical flow
and a proxy mesh [Eisemann et al., 2008], to produce high-quality novel viewpoints.
Hybrid methods try to account for data imperfections which can be expected in real-world
environments.

2.7 Learned image-based rendering (LIBR)
Machine learning methods have been successfully applied to computer vision and computer
graphics tasks over recent years. This section introduces the most relevant related work of
real-world IBR approaches which utilise deep learning, or machine learning concepts in
general, to either learn novel-view synthesis (or a subset of it) end-to-end, or by replacing
only certain components of the stages required to create and display real-world content:
namely capture, reconstruction, representation, and rendering (see Section 2.6.1). Note
that generative adversarial networks (GANs) [Goodfellow et al., 2014], and in particular
conditional GANs [Isola et al., 2017], are important to understand a main chapter of this
thesis (see Chapter 6).
The main objective of this section is to motivate the variety of scene representations and their
properties in the context of novel-view synthesis for real-world IBR. Consider Tewari et al.
[2020] for a recent survey on neural rendering44.

The methods (see Table 2.2 and Table 2.5) are grouped according to the employed scene
representation, similar as Shum et al.’s continuum of IBR methods [2007] (see Figure 2.17).
Note that many presented methods are not directly applicable for the display of VR content,
but instead, they are used to create the actual scene representation.

43Also known as scene flow in vision literature [Vedula et al., 2005, Pons et al., 2005] describing the 3D
motion of pixels.

44General term used when machine learning techniques are employed for rendering novel views.
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On a long term perspective, ML techniques will rather support, enrich, edit, and complete
existing physically-motivated concepts and systems, instead of fully replacing them by a
black box (see Chapter 6 in [Bronstein et al., 2021] to get an overview of geometric deep
learning applications).

Four categories are considered: Image-based, plane-sweep volumes (PSVs), volumetric, and
proxy-based. All categories rely on posed viewpoints similarly to plenoptic IBR approaches
(see Section 2.6.2), with a few exceptions in purely image-based related work (see below).

Image-based (2D) Learned image-based methods can transform a single 2D colour
image either into a different domain, e.g., by performing image-to-image translation [Isola
et al., 2017]), or it can be turned into a 3D photograph by adding missing scene content, e.g.,
geometry and colour, in background layers to handle disocclusions [Shih et al., 2020, Kopf
et al., 2020].
Mejjati et al. reduce artefacts in background areas of translated images by using percep-
tionally motivated attention-mechanisms which are integrated directly into generator and
discriminator of a GAN [2018], in a fully unsupervised manner.
Furthermore, 3D representations can be learned solely using 2D images of an object, i.e.,
without any further viewpoint information like poses in a fully unsupervised manner [Nguyen-
Phuoc et al., 2019, 2020], or from posed 2D images [Sitzmann et al., 2019b]. While these
methods strive to find 3D representations that encode the different layers and semantics of
novel-view synthesis, e.g., pose, shape, and appearance, within learned 3D structure-aware
spaces, build solely from input images45. Despite of the potentially exciting applications
indicated by such work 46, current results are not of sufficient quality to be used in VR
applications.

Other learned, purely image-based scene representations are able to interpolate between
views, light (illumination) and time [Bemana et al., 2020], e.g., by capturing images under
varying conditions, and feeding them into a neural network forming a so called X-Field.
The network is being taught the “basic tricks“ of graphics, e.g., lighting, 3D projection, and
visibility, within a differentiable domain [Leimkühler et al., 2018] which enables real-time
navigation and editing of scenes over multi-dimensional parameter spaces [Leimkühler et al.,
2017, 2018].

Plane-sweep volumes (2.5D) Well-known from conventional MVS (see Section 2.5.3.1)
to estimate disparities for a set of images, plane sweep volumes (PSVs)[Scharstein and
Szeliski, 2002, Seitz et al., 2006, Zheng et al., 2007, Furukawa and Hernández, 2015, Hed-
man et al., 2017] received a lot of attention in learning-based IBR recently. One key idea
are multi-plane images (MPIs), introduced by [Zhou et al., 2018] as a way of extrapolating
narrow baseline stereo views, e.g., obtained using a dual lens phone (baseline ∼1.4 cm),
to allow VR display which requires a IPD, or baseline, of about ∼6.3 cm. Note that this
corresponds to a baseline magnification of 4.5x (times) the input baseline.
Zhou et al.’s work 2018 offers many interesting ideas, but one concept is particularly im-
portant: A disparity space [Intille and Bobick, 1994] describes a 2.5D scene geometry that
minimises the reprojection error (loss) between input viewpoints.
Instead of solely optimising the disparity space, a MPI is trained for novel-view synthesis

45One input image without pose is enough to use a trained HoloGAN [Nguyen-Phuoc et al., 2019] model.
46Neural networks have been demonstrated to be excellent universal function approximators, which have been

shown learn first and second order derivatives of natural signals [Sitzmann et al., 2019b].
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end-to-end leading to crisp occlusion boundaries as well as support for specular and refractive
materials [Mildenhall et al., 2019]. Edges in the transparency maps (alpha-channels) of the
planes encode scene occlusions which is modelled using a view-dependent mask of alpha
values per layer.

Novel views can be easily generated by sampling different layers, relative to each other. A
major drawback is the memory footprint of MPIs and the time to train them.
The current state-of-the-art for 360° real-world VR [Broxton et al., 2020] relies on a MPI-
based scene reconstruction procedure [Flynn et al., 2019] in which planes are replaced by
concentric spheres (coined ”shells”). It has been shown that MPIs yield excellent visual
quality, even when the input views are captured casually [Mildenhall et al., 2019, Tomoto
et al., 2020], e.g., using a smartphone.

Volumetric (3D) Voxel-representations [Seitz and Dyer, 1999, Zheng et al., 2007] used
for 3D reconstruction, e.g., optimising disparity space images discretised on a regular (or
cylindrical) 3D grid, are usually only applicable to solely diffuse scenes which is an inherited
assumption of MVS: matching is purely based on photometric constancy, i.e., scene objects
(features) have a view-independent appearance (see Section 2.1).
. Sitzmann et al. learn a consistent feature embedding in 3D [2019a] Given a set of calibrated
views, visibility is learned over a voxel grid, consisting of so called DeepVoxels, using an
occlusion-aware projection operation, i.e., the feature grid (3D volume) is re-sampled into
a canonical volume and a occlusion network predicts soft-visibility per-pixel, before the
novel view is created. Learning the voxels in a canonical occlusion-aware manner imposes a
multi-view consistency leading to smooth interpolation of the training corpus47.

Another volumetric representation has been presented lately, a so called neural radiance
field (NeRF) [Mildenhall et al., 2020], which represents each continuous point in a 3D space
(volume) as a 5D plenoptic sample with view-dependent opacity and outgoing radiance48.
Novel views are created by ray marching which is naturally differentiable yielding state-of-
the-art visual quality, however computationally expensive and thus rather slow. Follow up
work49 addresses (for instance) the time-complexity and learns several NeRFs for a sparse
set of voxels separately [Liu et al., 2020] reporting interactive speed with very high visual
quality.

Proxy-based (3D) IBR approaches that rely on high-quality 3D proxies like meshes
[Debevec et al., 1998, Buehler et al., 2001] suffer from data imperfections caused by chal-
lenging scenes and inaccurate reconstructions. Several IBR approaches address challenges
of imperfect scene geometry whose limitations in quality are inherited from MVS [Debevec
et al., 1996, Zitnick et al., 2004, Eisemann et al., 2008, Chaurasia et al., 2013, Lipski et al.,
2014].

The following learned methods address these issues and are thus particularly important in
the context of this thesis:
Hedman et al. presents a network that learns blending weights to minimise the reprojection
loss for novel-view synthesis [2018] using a set of ranked mosaics from suitable input views

47Test views are interpolations of the views within the corpus which were actually not in the corpus directly.
48There is a subtle difference to the plenoptic function which describes the incident radiance of the desired

view’s optical centre instead [Adelson and Bergen, 1991].
49At the time of writing this thesis, NeRF has already produced more than 45 follow-up papers:Link to:

Awesome Neural Radiance Fields
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and a reference view. The reference view is produced using the global mesh estimate (called
a reference frame) (see the input of a training iteration in [Hedman et al., 2018] Fig. 10).
Refining the given scene geometry yields high-quality per-view depth maps which are
aligned to image intensity edges to improve reprojection performance [Chaurasia et al., 2013,
Hedman et al., 2016].

Thies et al. learn a surface light field (SLF) representation [Wood et al., 2000] on imperfect
geometry given a set of views surrounding the object (2D outside-in) by using deferred
neural rendering (DNR) [2019]. The method extends the deferred shading pipeline [Deering
et al., 1988, Ritschel et al., 2012], designed for high-performance rendering, yielding a neural
rendering approach that could be rendered in VR as-is.
Visibility and other view-dependent effects, e.g., specular reflections, are encoded by a
lookup into a view-dependent neural texture which learns a diffuse and glossy appearance of
the target object.

Park et al. demonstrate an end-to-end pipeline that estimates a scene configuration from
a given a set of rgbd images by jointly optimising for ".. the dual problems of novel view
synthesis and environment reconstruction from hand-held rgbd sensors." [2020]. The abil-
ity to cast observations into a global learned rendering pipeline allows for extrapolating
viewpoints with state-of-the-art visual quality. Lastly, point-based methods [Aliev et al.,
2020] excel in situations in which no reasonable mesh geometry is available, e.g., for very
complex geometry, fine edges, many occlusions, etc. Kopanas et al. build upon inaccurate
data obtained by SfM and MVS methods and add neural refinement and rendering strategies
which significantly increases visual quality [2021].

2.7.1 Image-based
In this section, the focus is on methods that only take a single source image I without
calibration P as input. The image is either translated into a different domain, e.g., from
segmentation to colour image [Isola et al., 2017], or horse to zebra [Mejjati et al., 2018], or
the image is converted from a 2D colour space into 3D, i.e., colour, depth, and inpainted
layers [Kopf et al., 2020, Shih et al., 2020].

2.7.1.1 Image-to-image translation [Isola et al., 2017]

"We investigate conditional adversarial networks as a general-purpose solution to image-to-
image translation problems. .. These networks not only learn the mapping from input image
to output image, but also learn a loss function to train this mapping. .. As a community, we
no longer hand-engineer our mapping functions, and this work suggests we can achieve
reasonable results without hand-engineering our loss functions either."

Main Principle Conditional GANs (cGANs) are a powerful tool for image-to-image
translation (and other) tasks, e.g., transforming maps into aerial images, or predicting a photo
from a segmentation mask (see Figure 2.41).

A key contribution is that the presented work50 based on conditional GANs (cGANs) aims
to generalise many different applications into the same framework which leads to one simple
architecture with the same loss function to solve different tasks, in comparison to related
work that requires tweaking losses manually. The authors motivate this as follows: "Coming
up with loss functions that force the CNN to do what we really want – e.g., output sharp,
realistic images – is an open problem and generally requires expert knowledge. It would be

50Github: pix2pix
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Figure 2.41: Image-to-image translations using conditional generative adversarial networks
can be used for a variety of applications. The shown results were all produced with the
identical architecture but using different training data. Image credits: [Isola et al., 2017].

highly desirable if we could instead specify only a high-level goal, like “make the output
indistinguishable from reality”, and then automatically learn a loss function appropriate for
satisfying this goal." (see Representation below for a more technical perspective).

All results have been produced with the same network architecture and the same loss functions,
which are often hand-engineered to specific image translation tasks. This means that the
used training procedure not only learns domain-specific mappings between images, but it
is actually able to learn how to map in general (over any domain), in a adversarial (self-
supervised) sense.

Capture The presented cGAN architecture is trained over different datasets (see Fig-
ure 2.41 for examples), e.g., (1) Semantic labels↔ photo, (2) Architectural labels↔ photo
(Facades: 400 image pairs), (3) Map ↔ aerial photo, (4) Black-White ↔ colour photo,
(5) Edges↔ photo, (6) Sketch↔ photo, (7) Day↔ night (91 image pairs from different
webcams). The references to the individual datasets can be found in the paper.

Representation It is possible to learn general pixel-to-pixel mappings by using gener-
ative adversarial networks (GANs) [Goodfellow et al., 2014] (see Figure 2.41). The idea
of GANs is to learn the distributions of input data, such that more examples from the same
distributions can be synthesised, ideally smoothly in high-dimensional parameter spaces
[Karras et al., 2019].

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(x,G(z)))] (2.31)

The goal is to train G to minimise log(1−D(x,G(z))), whose minimum is obtained at
D(x,G(z)) = 0.5 (Nash equilibrium [Goodfellow et al., 2014]). During training, G learns to
turn a random noise vector z, defined over noise priors z∼ pz(z) into an observation of the
data distribution pdata, i.e., pG(x) ∝ pdata(x) with pG(x) being the distribution learned by the
generator.
The key principle of cGANs is illustrated in Figure 2.42. The underlying min-max game
finishes if the discriminator D scores generator output as 50% real and 50% fake, i.e.,
D(x,G(z)) = 0.5. If D lost the ability to distinguish between training and generated images,
the generator creates data that appears to come from the distribution of the learned dataset
pdata (see Figure 2.42).
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Figure 2.42: Example of training a conditional GAN to predict aerial photos from maps. a)
Positive example: A real image is classified as real. b) Negative example: The generator G
synthesises a (fake) image y trying to fool D such that it believes is real. In principle, if G
produces images that D cannot distinguish as being real or fake anymore (50% chance for
each), G produces high-quality output images which match the distribution of the training
corpus. Image credits: [Isola et al., 2017].

The loss function changes as follows (see GAN loss in Equation 2.31 as comparison):

LcGAN(G,D) = Ex,y∼pdata(x,y)[logD(x,y)]+Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x,z)))] (2.32)

where x models a conditioning input for the generator and y = G(x,z) the output of the
generator, i.e., a generated (fake) image. The pair x,y is distributed over its dataset pdata(x,y)
(see Capture below, x and y denote the same perspective in different domains). Note that in
comparison to the unconditioned GAN, there are now pairs of images in the input dataset.
Mixing the GAN loss with a more traditional loss, e.g., L1 or L2, has been found beneficial
by other authors.

LL1(G,D) = Ex,y∼pdata(x,y),z∼pz(z)[‖y−G(x,z)‖1] (2.33)

The final objective for the generator is:

G∗ = argmin
G

max
D

LcGAN(G,D)+λLL1(G,D) (2.34)

It is interesting to see that conditioning the generator G with x improves the visual output
quality of encoder-decoder architectures significantly, particularly compared to solely using
a L1 loss (see Figure 2.43).

A UNet [Ronneberger et al., 2015] with skip connections is used as generator and it is
demonstrated that skip connections improve visual results compared to encoder-decoder
architectures without skips (see Figure 2.43). Furthermore, combining the adversarial loss
with an L1 loss (see Equation 2.34) leads to the best results.

A Markovian discriminator, a so called PatchGAN, is used since global L1 or L2 losses lead
to blurry results when used on their own.
L1 on its own is already good in learning low frequencies, so the GAN discriminator should
focus on high frequencies and structural details which can be naturally found in image
patches.
Conceptually, each input image is split into N×N patches which the discriminator classifies
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Figure 2.43: Top row: A UNet is a encoder-decoder with skip connections. Bottom row:
Adding skip connections to a UNet when training conditional GANs increases visual quality
significantly. The bottom right result is obtained by training a model following Equation 2.34.
Only using the L1 (see Equation 2.33) loss blurs output, but skip connections encourage to
learn (or at least identify) significantly more structure. Image credits: [Isola et al., 2017].

all individually as real or fake. N can be much smaller than the input image size which
implies fewer parameters, faster runtimes and it can be applied to arbitrary images.
The PatchGAN basically assumes a Markov random field between pixels separated by more
than a window diameter, i.e., independence between patches. Note that smaller patch sizes
lead to blurrier results since less structure information contributes to whether a patch is
considered real or fake (see Figure 6 in [Isola et al., 2017]).

Training Consider Figure 2.42: For each given application scenario which is modelled by
a different training dataset (see Capturing above), the GAN architecture is conditioned with
an input image x of one class to predict the other one y.
Note that the authors report that decent results can be often maintained with small datasets
already. The Facade training data consists of 400 image pairs and the day to night dataset
only 91.

Testing As discussed in the original GAN paper [Goodfellow et al., 2014], testing comes
down to outputting a learned approximate by just running a forward-pass of the generator G
with some input vector z, conditioned with an image x to produce a new output y = G(x,z).

Limitations A general problem when working with deep learning methods is the tweaking
of networks to perform just a few percent better, e.g., producing results which are more
pleasing to the human eye, but this is a non-trivial task that requires expert knowledge, and
is not a limitation of this paper directly.
GANs have no explicit representation of a learned generator distribution pG(x), which can be
advantageous when attempting to learn high-frequency signals. Methods based on Markov
chains for instance tend to produce blurrier output [Goodfellow et al., 2014].

2.7.1.2 3D photography using context-aware layered depth inpainting [Shih
et al., 2020]

"We propose a method for converting a single RGB-D input image into a 3D photo — a
multi-layer representation for novel view synthesis that contains hallucinated color and
depth structures in regions occluded in the original view."
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Figure 2.44: 3D Photography using a single RGB-D image: a) naive depth-warping ap-
proaches produce holes, b) or stretches geometry. c) diffusion-based inpainting causes blurry
non-foreground layers. d) the proposed approach inpaints colour and depth semantically
more meaningful leading to much more details in inpainted areas (disocclusion holes). Image
credits: Shih et al. [2020].

Main Principle The authors convert a rgbd input image into a layered depth image (LDI)
[Shade et al., 1998] (see Figure 2.44)51. The depth map is split into several layers according
to discontinuities (occlusion boundaries), corresponding to edges in the depth map (see
Figure 2.45). Once all important layers are identified, each layer is inpainted in a context-
aware manner yielding way more detailed results than previous work [Kopf et al., 2020], in
particular when performing more extreme view extrapolation, i.e., accessing larger inpainted
areas due to disocclusions. The individual layers of the LDI can be considered as ordinary
images and thus suit common image-based CNN architectures.
Three queues are used to guide the inpainting: Colour, depth [Liu et al., 2018], and edge
predictions [Nazeri et al., 2019], all accounting for the proposed context-aware inpainting
procedure.

Capture Whether a single rgbd image taken from a dual lens phone is used, or colour
images with predicted depth maps (or any depth that aligns well with occlusion edges
[Chaurasia et al., 2013, Hedman et al., 2016, Serrano et al., 2019]), it is possible to reliably
create high-quality 3D photographs.

Representation The LDI has a conceptual function to describe the process to go from
rgbd to 3D photograph with meaningful disocclusion handling. A LDI stores (zero to n)
entries of colour and depth along each ray of the LDI camera. The authors propose to maintain
local connectivities between pixels in their four cardinal direction (left, right, top, bottom)
while being disconnected at depth discontinuities which are used to define spatially adaptive
context regions. Remarkably: ".. ,CNN-based methods have received considerable attention
due to their ability to predict semantically meaningful contents that are not available in the
known regions." ([Liu et al., 2018, Nazeri et al., 2019]).

LDIs are great to model 3D photography because they are designed to scale well with
increasing depth variance in the scene while being sparse, e.g., the number of layers in
complex scene grows (locally) per pixel and not per viewpoint (all pixels).

Training For training the inpainting model, edge and depth generator models are trained
by using the dataset for context-synthesis regions from MS-COCO [Lin et al., 2015] for 5
epochs. The colour generator is trained for 10 epochs. The COCO dataset consists of 118k

51Github: project
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Figure 2.45: Illustration of the context-aware inpainting per layer: a) Initially, the whole
image is represented with one fully connected depth map. An occlusion edge is depicted
in grey. b) Separate layer into two along the discontinuity, yielding a foreground (green)
and background silhouette (red). c) For the background, a context-area is chosen (blue) to
synthesise disoccluded scene content or LDI pixels (red). d) The hallucinated LDI pixels
(red) are then merged with background silhouette (red). Image credits: Shih et al. [2020].

images which are all used for training. At least 3 forms of regions are selected per image to
form the context-synthesis pool. During training, one pair of regions per image is used and
augmented by potentially enlarging it by a factor of 1.3 .

Rendering Once all the depth layers have been iteratively inpainted in a context-aware
manner, a textured mesh is extracted from the LDI pixels which can be rendered using
standard rasterisation.

Limitations Depth maps tend to be too smooth to model certain objects, e.g., the fur of a
dog appears flat. Colour and depth are not enough to support non-diffuse materials like glass.
Repetitive textures or texture-less areas can lead to inpainting artefacts. The provided action
space is rather small, however it provides a 6-DoF52 stereoscopic action space with motion
parallax.

2.7.2 Plane-sweep volumes (PSVs)
This section introduces methods which utilise plane-sweep volumes (PSVs), e.g., as used
in [Zheng et al., 2007, Furukawa and Hernández, 2015, Hedman et al., 2017], to learn
novel-view synthesis via a set of fronto-parallel planes. By learning how to reproject input
viewpoints over the planes of a PSV which are usually linearly separated in disparity (inverse
depth), novel views are created by composing the planes back-to-front with some sort of
over operation [Porter and Duff, 1984], i.e., a homography warp with per-pixel confidence.
Per-pixel confidence can be expressed for instance as inverse variance of a distribution
around a point in the PSV [Flynn et al., 2016]53, or with a alpha value (transparency) [Zhou
et al., 2018].

The reconstruction stage of the current state-of-the-art end-to-end pipeline for real-world 6-
DoF VR video [Broxton et al., 2020] is based on predicting a spherical sweep volume (SSV).
Once predicted, a process that takes days to compute in the cloud, the SSV is transformed
into high-quality layered meshes per viewpoint, textured with RGBα which can be rendered
efficiently.

2.7.3 Volumetric
The key idea is to learn a volume, i.e., a global scene geometry, to register and represent
a set of calibrated (posed) input images. These images are usually captured 2D outside-in
around an object. Compared to purely image-based learning approaches [Isola et al., 2017],

52Note that the action space is rather small in magnitude.
53Note that this is the first deep learning model for real-world novel-view synthesis of natural scenes
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scene-embedding in a volume yields smooth and consistent view interpolations of the training
corpus [Sitzmann et al., 2019a, Mildenhall et al., 2020].
An intrinsic limitation of discretising volumes via grid structures is its memory inefficiency
[Sitzmann et al., 2019a]. To tackle this issue, Mildenhall et al. [2020] train a multilayer
perceptron (MLP) over a continuous volume that maps (5D plenoptic) training samples into
a higher-dimensional latent space using an positional encoding. This encoding lifts the 5D
input samples to a higher dimensional space to better catch high-frequencies like specular
reflections, since learning the appearance over a lower-dimensional space would likely tend
to blur high frequencies.

2.7.4 Proxy-based

In practice, real-world IBR approaches that rely on proxy information of the scene geometry,
e.g., a mesh, will usually create artefacts when working on coarse estimates [Buehler et al.,
2001]. Several attempts have been made to compensate for inaccurate scene information
in IBR, with respect to proxy meshes [Eisemann et al., 2008], or with respect to per-view
depth [Zitnick et al., 2004, Chaurasia et al., 2013, Lipski et al., 2014] to create some sort
of view-dependent geometry. While visual artefacts are steadily reduced in follow up work,
some issues, inherent to uncertainty in the calibration or estimated correspondences (2D or
3D) [Lipski et al., 2014], still remain.

The motivation for the methods presented in this section is that they explicitly address the
fact that the used proxy geometry will be imperfect in real-world scenarios.
In particular, Hedman et al. learn to compensate with a imperfect proxy by learning adjusted
blending weights [2018] applied to image pixels which are warped into the desired output
view [Flynn et al., 2016]. The input proxy is processed to improve local geometry (depth
maps), extending concepts of previous work [Hedman et al., 2016]. This makes it more feasi-
ble for the employed network to find suitable blending weights, which need to compensate
for wrong visibility induced by the coarse proxy.

Thies et al. extend the deferred rendering pipeline [Deering et al., 1988, Ritschel et al., 2012]
with learnable components, e.g., a neural texture, which conceptually encodes a learned
surface light field (SLF) representation [Wood et al., 2000] over imperfect geometry [2019].
The neural texture is decoded by a neural renderer that acts as a generator of a conditional
GAN. Combining the power of adversarial nets with the efficiency of the deferred neural
rendering pipeline yields the first learned model which can be used for real-time inference
(as-is).

Park et al. present an end-to-end pipeline consisting of a learned scene graph [2020] which
are often used to implement rendering pipelines in computer graphics [Pharr and Humphreys,
2010]. The authors show how to convert a set of casually captured rgbd images into a learned
scene description following physically-motivated principles for estimating materials and
illumination leading to state-of-the art view extrapolation results in the context of learned
IBR methods.

Note that most learning-based methods focus only on the interpolation of a training corpus
which leads to artefacts when extrapolating, although exceptions exist [Zhou et al., 2018,
Choi et al., 2019].
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a) UV-map
b) Neural texture

c) Sampled texture d) Neural renderer e) Output image ) Target image

Figure 2.46: Overview: The uv-map of a rasterised viewpoint (a) is used to lookup a neural
texture atlas (b). A sampled texture (c), sampled from the atlas, is decoded by the neural
renderer (d) which produces an output image (e). During training, this image is presented to
the discriminator together with the ground truth or target image (f), as done in previous work
on cGANs [Isola et al., 2017]. Image credits: Thies et al. [2019].

2.7.4.1 Deferred neural rendering [Thies et al., 2019]

".. we introduce Deferred Neural Rendering which makes a step towards a learnable render-
ing pipeline, combining learned Neural Textures with the traditional graphics pipeline. .. the
core idea behind neural textures is that they are composed of a set of optimal feature maps,
rather than simple RGB values, that are learned during the scene capture process. The rich
signal stored in these high-dimensional neural textures encodes a high-level description of
the surface appearance, and can be interpreted by our new deferred neural renderer."

Main Principle Given a set of calibrated viewpoints, often describing a 2D outside-in
camera motion during capture (see Section 2.5.2), together with a proxy geometry of a
single object, and a suitable texture map, enables DNR to learn a surface light field(SLM)
representation [Wood et al., 2000], even if the proxy is imperfect or coarse like a bounding
box as its logical extreme (see their submission video).

The core idea is to learn a high-dimensional feature map, i.e., a neural texture which
encodes view-dependent surface appearance via a conditional GAN [Isola et al., 2017]54 with
respect to rasterised surface points (see comparison to pix2pix in Figure 2.47 a) ). Instead
of mapping solely RGB colour on the proxy’s surface as in traditional texture mapping
approaches [Heckbert, 1989, Debevec et al., 1996, 1998], a neural feature map is decoded in
a view-dependent manner per pixel.
Neural features are decoded from the neural texture and interpreted by the GAN’s generator
G which acts as neural renderer. The decoding requires a pose (viewing direction) and a
uv-mapping (from rasterisation).

The method produces excellent results on high-resolution and gradually degrades when
working with imperfect geometry, e.g., reflections become blurry, but the geometric shape
stays crisp. Note the related work by the same authors, IGNOR [Thies et al., 2020]55, is
interestingly outperformed by DNR (see Figure 2.48), although a conceptually simpler
architecture is used.

Capture The authors work mostly with 2D outside in camera motions (800+) as for
instance presented in other related work [Sitzmann et al., 2019a]. Since viewpoints are
sampled over a hemisphere, the authors report angular resolutions for different datasets
which directly connects to the used number of images and the distance to the object.

54Note that this is not clear from the formulation in the paper. It is mentioned though in Appendix A that the
architecture is adopted from pix2pix,

55This paper has been uploaded the first time to arXiv in 2018: IGNOR v1.
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Figure 2.47: a) Pix2Pix [Isola et al., 2017] produces blurrier results than DNR which is
close to ground truth. b) A UNet with skip connections serves as GAN generator. The neural
texture encodes 16 floats per texel. The number of output features of each layer is denoted in
orange. See more detailed description in text. Image credits Thies et al. [2019].

For the facial re-enactment use case, the camera pose is static, but the scene object, i.e., a
human face is depicted in a video (∼650 images for training).

Representation The colour texture lookup of the deferred rendering pipeline takes a
detour over a learnable neural texture that encodes neural features than are interpreted by the
generator of a conditional GAN. The generator is a U-Net with 5 layers and skip connections
(see Figure 2.47 b) ), the discriminator is a Patch-GAN as presented in previous work
[Isola et al., 2017]. The neural texture stores a view-independent diffuse colour (rgb) and a
view-dependent specular colour encoded in a neural feature consisting of nine dimensions
(channel 3-11). Each dimension resembles a component of the first two bands of a spherical
harmonics encoding56. The viewing direction (3D vector) of the desired pose is turned into
the corresponding coefficients of the harmonics which is then used to decode a sampled
neural feature (see Figure 2.46 c) ). Various texture levels are needed to resolve minification
and magnification issues of far or close scene objects respectively. Note that the neural
renderer and the neural texture atlas are trained end-to-end, forcing the network to learn how
to sample the texture atlas to avoid anti-aliasing artefacts in the output views.

Mathematically, the goal is to find a combination of neural texture T and neural renderer R
that minimizes the image re-rendering loss L over the training dataset D of M posed images
D = {Ik, pk}M

k=1 created from our capture. Ik is the k-th image of the training dataset and its
corresponding camera pose pk, i.e. viewing direction v and optical centre C. The optimal
neural texture T∗ and renderer R∗ are obtained by solving:

T∗,R∗ = argmin
T,R

∑
d∈D

L(A(d) | Fd(T),Gd(R)). (2.35)

Generator architecture Each layer of the encoder uses instance normalization and a
leaky ReLU activation (negative slope of 0.2). The kernel size of each convolutional layer is
4, with a stride of 2. The number of output features grows from 64 for the first layer to 128,
256, 512 and 512 for each consecutive level down the encoder.
The decoder mirrors the encoder, compare the number of per-layer output features (see

56Wikipedia: Spherical harmonics.
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Figure 2.48: DNR reproduces better specular highlights compared to previous work [Thies
et al., 2020]. Image credits Thies et al. [2019].

numbers in orange in Figure 2.47 b) ). Again, a kernel size of 4 and stride 2 is used. A tanh
activation is used for the the final output layer, as in previous work [Isola et al., 2017, Thies
et al., 2019].

Training A re-rendering loss is defined via binary cross entropy (BCE). Random crops
and resize operations between 1.0x and 0.75x of the original image are used to prevent
overfitting.
The same neural renderer can be re-used to render various neural textures which reduces the
training time of new objects. Training a renderer and texture from scratch takes only a few
hours using a recent consumer NVIDIA GPU.

Testing A viewpoint can be generated in real-time since it requires solely looking up
the neural texture according to the rasterised output view followed by decoding the view-
dependent part related to the viewpoint’s pose.

Limitations As in many other neural scene representations, e.g., deep voxels [Sitzmann
et al., 2019a], local light fields [Mildenhall et al., 2019], or neural radiance fields [Mildenhall
et al., 2020], novel views can only be inferred of excellent quality when interpolating the
training corpus. View extrapolation, as requirement to support subtle head movements in
VR, leads to noisy values when decoding the neural texture.

2.8 Real-world VR research landscape
It is not an easy task to decide which IBR method might fit best for a specific use case. For
real-world VR, one might ask whether the image quality is good enough, e.g., output can be
rendered in high resolution and without any disturbing artefacts caused by imperfect scene
reconstructions or trade-offs made in the scene representation, while maintaining real-time
framerates for stereoscopic rendering into a HMD.
The trade-off between quality and speed during rendering is well known and discussed in
many Graphics papers. When working with real-world scenes, the trade-off between round
trip time and rendering quality is a very important practical aspect.
For example, decisions during capturing, e.g., the chosen camera motion (see Section 2.5.2),
the used lenses and their fields of view (see Section 2.3), and the actual scene that is captured
(see assumptions in Section 2.1), all impact the “right“ choice to find suitable methods for
reconstruction (see Section 2.5).
Real-world scenes pose additional challenges due to imperfect reconstructed data, which
need to be handled by more robust IBR methods, for instance by learning to compensate for
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inaccurate proxy geometry [Hedman et al., 2018, Thies et al., 2019].

Since the work of Flynn et al. [2016] and others, deeply learned neural networks in combi-
nation with well known principles from vision, e.g., plane-sweep volumes (PSVs) used in
multi-view stereo (MVS) [Scharstein and Szeliski, 2002, Seitz et al., 2006, Zheng et al., 2007,
Furukawa and Hernández, 2015], in combination with “standard“ graphics techniques like
re-projection [Shashua, 1993, Chen and Williams, 1993, Seitz and Dyer, 1996], and blending
[Porter and Duff, 1984], are steadily receiving more attention because of astonishing results
which could not be produced by traditional IBR methods so far without learned components
[Zhou et al., 2018, Mildenhall et al., 2019, Flynn et al., 2019, Broxton et al., 2020].

In the context of end-to-end IBR pipelines, working with neural networks can be either
end-to-end, or stage-based (see Section 2.7). Networks can be used to replace or support a
pipeline stage like reconstruction, representation, or rendering. Many methods can only be
applied to a certain family of camera motions, and/or scene types, or are simply not working
well for arbitrary scenarios in practice. In my opinion, “practical“ pipelines do not only
trade-off speed and quality for view synthesis, but for the whole instead, end-to-end.

2.8.1 Comparing IBR and LIBR end-to-end
To the best of my knowledge, nobody has compared traditional and learned IBR methods so
far in terms of their all-around performance expressed in the four main stages for end-to-end
IBR pipelines (see Section 2.6.1) to create real-world IBR experiences. The IBR stages
themselves have been identified in previous work [Richardt et al., 2020].
Note that all stages except capturing, can be replaced by a neural network, e.g., end-to-end
[Flynn et al., 2016, Isola et al., 2017], or stage-based [Park et al., 2020]. Furthermore,
reconstructing and representing scenes via learned plane sweep volumes (PSVs) [Zhou et al.,
2018, Flynn et al., 2019, Mildenhall et al., 2019] have been used recently, eventually to
transform into layered mesh representations for high-performance (and high-resolution)
rendering [Broxton et al., 2020, Tomoto et al., 2020].

In the context of this thesis, the focus lies on capturing and displaying 360° real-world
scenes. Detailed descriptions of computationally heavy approaches (e.g. [Broxton et al.,
2020]) are out of scope for this thesis.

Legend for IBR Consider the legend in Table 2.3 for the real-world IBR table (see
Tables 2.4 and 7.2). Note that following entries are either omitted in the legend to save some
space or they need further descriptions, e.g., for special cases:

Capture: comprises everything related to recording multi-view datasets.
Equipment: If camera sweeps are captured casually, i.e. hand-held57, the resulting camera
motion will not be ideal (e.g. perfectly circular).
CG: In order to increase the quality of casual captures58, an AR app can be used to actively
guide the capturing process. Note that active guidance only reduces the deviation from the
ideal trajectory, it does not circumvent it completely.
CU: Without using guidance at all the camera motion will become less ideal, e.g. a horizontal
line or a circle embedded in a plane become practically impossible to obtain hand-held.

I consider capturing procedures as casual if they only rely on one hand-held consumer

57”Casual capture” implies using one hand-held consumer camera for me, instead of using a tripod, or a
multi-camera rig.

58It is desirable to keep the camera motion close to some idealised trajectory or surface.
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camera. It is irrelevant whether the hand-held process is guided or unguided, it is still casual
in both cases. Note that ideal trajectories are very desirable for further processing.

Camera motions (see Section 2.5.2) (CM): (1-3)-T, and (1-3)-R, stand for 1-3 dimensional
Translation, or Rotation, respectively. P, stands for Planar.
# of images (N): can contain two numbers if texture and depth images are both captured as
input, e.g. [Hedman et al., 2016, Hedman and Kopf, 2018]. If the same number of colour
and depth images is used, this is indicated by writing “CD50+“, meaning at least 50 rgbd
(Colour + Depth) images. Note that these can be of different resolutions in practice [Hedman
et al., 2016].

Reconstruction: deals with everything needed to create an IBR scene presentation from the
input viewpoints (see Section 2.5), or training a model when using a learned approach (see
Section 2.7).
Viewpoints (V): Slit-images (S), and OmniDirectional Stereo (ODS).

Geometry (G): 3Dense, e.g., (3D) morph maps [Chen and Williams, 1993], Volumetric, and
Plane Sweep Volume (PSV).

Representation: describes the format that is employed (and thus used) for rendering.
Degrees of freedom (DoF) (see Section 1.1.2): DoF are usually specified for monoscopic
novel-view synthesis, i.e., they describe the action space of a single-eye. Writing S-DoF,
implies that the considered method is expected to deliver a high-quality Stereoscopic action
space59, which is essential in the context of VR.

For example, ODS [Peleg et al., 2001] (see Section 2.6.2.4) has only one rotational degree of
freedom (1R) that provides meaningful binocular disparity (along the equator), and thus the
DoF of it is: “S-1R“. For concentric mosaics [Shum and He, 1999], it is “S-(1R+2T)“. “S-6“
stands for full-head motion, i.e., six stereoscopic60 degrees-of-freedom.

Stereo consistency (SC) can be violated for instance by methods that use view-dependent
geometry in the context of monoscopic IBR, e.g., [Chaurasia et al., 2013, Lipski et al.,
2014]. Note that SC is always fulfilled when diffuse global geometry can be used as scene
representation [Shade et al., 1998, Zheng et al., 2007, Hedman et al., 2017, Serrano et al.,
2019].

In case of Free-Viewpoint Video (FVV) applications, the focus lies on linearly interpolating
viewpoints in space and time [Zitnick et al., 2004, Lipski et al., 2014]. These methods are
optimised for monoscopic output and do not necessarily perform well out of the box for VR
applications.

Round-trip (RT): specifies the overall time needed to create an IBR or VR application
end-to-end, from capturing images, to rendering novel views. From a practical point of
view, methods with shorter round trips are more suitable for casual applications and allow to
conduct interesting research without relying on tremendous computational resources.

Rendering: creates novel views from a desired viewpoint description.
Quality (Q): The visual quality of a IBR method is hard to assess if no ground-truth data is

59Stereoscopic action spaces are assumed to be consistent in terms of geometry, not necessarily in terms of
appearance.

60I find it instructive to make this distinction, since high-quality VR is not necessarily implied by high-quality
single eye IBR automatically, it practically depends on the used IBR representation and rendering strategy.
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Table 2.3: Legend for real-world IBR tables (see Tables 2.4 and 7.2). See more detailed
description in text.

E
Equipment

R
Rig

CG
Casually Guided

CU
Casually Unguided

O
Other

S
Synthetic

CM
Camera Motion

1D-OI
1D Outside-In

1D-L
1D Linear

1D-IO
1D Inside-Out

2D-OI
2D Outside-in

2D-IO
2D Inside-out

N
# of images

N
> 60

N
> 20

N
≤ 20

N
exactly N

N+
at least N

L
Lens (FoV)

S
Slit (< 1°)

N
Narrow (< 90°)

W
Wide (< 150°)

F
Fisheye (≥ 150°)

S
Speed

S
Slow (≥ 1 h)

M
Moderate (> 10 min)

F
Fast (< 10 min)

VF
Very fast (< 1 min)

V
Viewpoints

P
Pinhole

D
Distorted

C360
Cylindrical 360

S360
Spherical 360

S360-OS
360 one shot

C
Calibration

SfM SLAM
F

Fundamental Matrix
R

Rig
O

Other

G
Geometry

2S, 2D
2D Sparse
2D Dense

D
Depth

P
Point cloud

M
Mesh

V
Volume

S
Speed

S
Slow (≥ 1 h)

M
Moderate (> 10 min)

F
Fast (< 10 min)

VF
Very fast (< 1 min)

T
Type

P
Plenoptic

I
Implicit

E
Explicit

H
Hybrid

L
Learned

DoF
Degrees-of-Freedom

FVV
Free-viewpoint video

1-3R
rotational DoF

1-3T
translational DoF

(S-)6
(stereo) six DoF

MP
Motion Parallax

7

No
3

Yes

Mem
Memory

L
Large (≥ 150 MB)

M
Medium (< 150 MB)

S
Small (< 10 MB)

RT
Round Trip

L
Long (≥ 2 h)

M
Moderate (< 2 h)

S
Short (< 1 h)

VS
Very Short (< 30 min)

Q
Quality

L
Low

M
Medium

H
High

VH
Very high

E
Excellent

S
Speed

O
Offline (≥ 1 s)

I
Interactive (< 1 s)

R
Real-time (< 20 ms)

VR
Virtual Reality (∼5 ms)

available which is the case for almost all real-world multi-view datasets. A notable exception
are the datasets presented by T.Schöps et al. [2019] which has very accurate labels.
In the context of real-world VR, high-quality has been defined via ODS [Peleg et al., 2001,
Richardt et al., 2013, Anderson et al., 2016] for almost two decades, but its underlying action
space (S-1R) is not suitable for modern 6-DoF VR [Thatte et al., 2016a, Hedman et al., 2017,
Serrano et al., 2019, Pozo et al., 2019, Broxton et al., 2020] (see Section 1.1.1).
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Table 2.4: Real-world IBR methods (see legend in Table 2.3), excluding neural methods.

Method: Capture Reconstruction Representation Rendering
E CM N L S V C G S T AS MP Mem RT Q S

[Ishiguro et al., 1992]

(Section 2.6.2.3)
O

1D-IO

2D-T
900+ N M

ODS

C360
O 2S, P S H % % M M % %

[Chen and Williams, 1993] S
2D-OI

1D-T
2+ N VF P O 3D VF H 2R+2T 3 M VS H R

[McMillan and Bishop, 1995] O
2D-T

1D-R
2 N F C360 F 2S+2D S I

1R+2T

360°
3 S M L R

[Levoy and Hanrahan, 1996]

(Section 2.6.2.1)
O

3D-T

3D-R
256+ N S P O 7 3 P S-6 3 L L VH VR

[Seitz and Dyer, 1996] 3 3 2 N 3 P F 2D M I morph 3 S M H VR
[Debevec et al., 1996] CU 2D-OI 5+ N F P O M,D M H S-6 3 M M H R

[Shade et al., 1998]
S

O
2D-OI 2+ N VF P

GT

SfM
D

VF

M
E S-6 3 S VS H I

[Shum and He, 1999]

(Section 2.6.2.2)
O

2D-T

1D-R
1351 S VF S O 7 3 P

S-(1R+2T)

360°
3 M S M VR

[Peleg et al., 2001]

(Section 2.6.2.4)
O 1D-IO 1000+ N S P 7 7 3 P

S-1R

360°
7 S M M VR

[Buehler et al., 2001]

(Section 2.6.4.1)
CU 3 36+ N VF P SfM M S E S-6 3 M L H VR

[Zitnick et al., 2004] R 1D-OI 8 N VF P R D+α S H FVV 3 M L VH I

[Szeliski, 2006] CU 1D-IO 2+ 3 VF 3 7 2S+2D S I
3R

360°
7 S L H VR

[Zheng et al., 2007] CU 1D-IO ∼20 N VF P SfM PSV,D S E S-6 3 S L VH I

[Eisemann et al., 2008] CU 1D-OI 8+ N VF P
SfM

R, O

2D

M
S H 6 3 M M H I

[Davis et al., 2012] CG 2D-OI 48+ N
VF

S
P SLAM

P

D,M

VF

S
E 6 3

S

L

VS

L

H

VH
R

[Chaurasia et al., 2013] CU
1D-L

1D-OI
36+ N VF P SfM D+ S E 6 3 M L H R

[Richardt et al., 2013]

(Section 2.6.3.2)
CU 1D-IO 100+

N

W
VF P SfM 2D S I

S-1R

360°
7 L L M VR

[Lipski et al., 2014] CU 1D-OI 4+ N F P SfM
P

D, 2D
S H FVV 3 L L H I

[Perazzi et al., 2015] R 2D-IO 5,14 W VF D 7 2S+2D F I 3R 7 S VS M VR

[Anderson et al., 2016] R 1D-IO 16 W VF D R 2D VF I
S-1R

360°
7 S VS M VR

[Thatte et al., 2016a]

(Section 2.6.4.2)
O 1D-IO 2 7 M ODS O P S E

S-6

360°
3 S L H VR

[Hedman et al., 2016]

Inside-out IBR
CU 3

C150+

D150+

W

N
M

P

D
SfM

D

M
S E

S-6

360°
3 L L VH R

[Lee et al., 2016]

(Section 2.6.4.3)
R 2D-IO 6 W VF D R P VF E

3R

360°
7 S VS M VR

[Penner and Zhang, 2017] 3 3 4+ N VF P SfM D VF E 6 3 L VS H R

[Hedman et al., 2017]

(Section 2.6.4.4)
CU 2D-IO ∼50 F F D SfM

PSV

D,M
F E

S-6

360°
3 S L VH VR

[Hedman and Kopf, 2018] CU 2D-IO CD20+ N F P O M VF E
S-6

360°
3 S S VH VR

[Schroers et al., 2018] R 1D-IO 16 W VF D R 2D M I
S-(1R(+2T))

360°
(3)

S

L
M M VR

[Luo et al., 2018]

(Section 2.6.3.3)
O 2D-IO 4032 N S P O 2D S I

S-(3R+2T)

360°
3 L L H R

[Overbeck et al., 2018] R 2D-IO 916+ W M D O
D

M
S E

S-6

360°
3 L L VH VR

[Serrano et al., 2019]

(Section 2.6.4.5)

R

O
1D-IO

C1+

D1+
F VF S360 R D F E

S-6

360°
3 S S H VR

[Pozo et al., 2019] R 2D-IO 16 W VF D R D F E
S-6

360°
3 M S VH VR
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Legend for LIBR Learned image-based rendering (LIBR) can differ from traditional IBR
in many different ways. In its logical extremes, machine learning methods can be either used
to improve IBR stages [Park et al., 2020], e.g., reconstruction, representation, or rendering,
or end-to-end [Flynn et al., 2016, Isola et al., 2017]. The goal is to compare LIBR with IBR
methods in terms of end-to-end pipelines for creating real-world VR experiences.

Capture (Dataset):
The Number of images (N) has two entries, the first one stands for the number of datasets
used for training, and the second one for the cardinality of the smallest one. Note that
methods which mix Synthetic and Real-world data [Hedman et al., 2018, Mildenhall et al.,
2019], are specified as those with a S and R respectively.

As an example, in the special case of image-to-image translation [Isola et al., 2017] which
trains on image-pairs, the smallest dataset contains 378 (∼ 400) training pairs. In the more
general case of view synthesis [Flynn et al., 2016], the smallest training dataset consists of
20k images extracted from KITTI [Geiger et al., 2012].

A Σ is used when training a model with images from multiple datasets, e.g., as done in Deep
Blending [Hedman et al., 2018]. It denotes the total number of images, from which training
and validation sets can be created.
For instance, Deep Blending uses 2630 images in total (Σ2630), 90% for training, and 10%
for validation. The split into training and validation sets is not represented in Table 2.5. If
existing models are refined, this is indicated with a ”+” and the number of additional images,
e.g., Σ7+3Mio in the case of Tomoto et al. [2020].

Reconstruction (Training): leads to a scene representation which can be covered completely
by training a model [Sitzmann et al., 2019a, Mildenhall et al., 2019, 2020].

Viewpoints (V): contains two entries here, the first is the number of views on which the
network is trained per iteration, the second entry specifies the viewpoint type. Note that it
is common to design training iterations consisting of a number of views from which one is
held-out [Waechter et al., 2017], and the others are used to synthesise the held-out one. For
instance, sets of 5 = 4+1 views are often used [Flynn et al., 2016, Mildenhall et al., 2019].

Geometry (G): exposes further information if PSVs or MPIs are used, i.e., the used number
of layers used for training. As example, Flynn et al. use a PSV with 96 layers [2016] which
is written as PSV-96.
Note that the number of layers for training and testing can be made different by choosing
a suitable network architecture [Flynn et al., 2019]. In such cases, the entry contains two
numbers that indicate the used planes during Training (Tr) and Testing (Te).

Speed (S): per dataset for reconstruction is now the speed to train a model and shows a
second entry stating the total number of training iterations. Note that each training iteration
takes as many images under consideration as specified under Viewpoints. Representation
(Model):Action spaces in LIBR are usually restricted to interpolate the viewpoints of the
training corpus [Sitzmann et al., 2019a, Thies et al., 2019, Mildenhall et al., 2020, Bemana
et al., 2020] with excellent quality.
Extrapolation: Learned models notoriously struggle to extrapolate viewpoints which is
addressed explicitly in recent research [Zhou et al., 2018, Choi et al., 2019, Park et al.,
2020]. Rendering stereoscopic views for 6-DoF VR will always require a certain degree
of view extrapolation since it is not practical to capture very dense and thus large datasets.
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Table 2.5: Learned IBR methods (see IBR legend in Table 2.3 and adjustments in text):

Method:
Capture
(Dataset)

Reconstruction
(Training)

Representation
(Model)

Rendering
(Testing)

E CM N L S V C G S T AS MP Mem RT Q S

[Flynn et al., 2016] R P
2R

∼20k+
N,W S

4+1

P,D

SfM

SLAM
PSV-96

S

1 Mio.
L inter 3 L L H O

[Isola et al., 2017]

(Section 2.7.1.1)
% 7

7R

400+
N S

1

P
7 7

S

40k+
L 7 7 L L L I

[Hedman et al., 2018]

Deep Blending
CU

2D-IO

1D-T

19R

Σ2630
N M

4+1

P
SfM D, M

S

%
L,E

6

360°
3 M L H I

[Zhou et al., 2018] O 1D-L
7000

Σ750k
N S

2+1

P
SLAM PSV-32

S

600k
L,E 1-T 3 L L VH VR

[Flynn et al., 2019] R P
100

Σ16k
N S

misc.

P
SfM

PSV-X

Tr64,Te80

S

100k+
L,E 6 3 L L E R

[Mildenhall et al., 2019]

LLFF
CG P

24R, S+

20+,Σ7 Mio.
N VF

5+1

P

ARKit

SfM
MPI-64

S

610k
L,H 6 3 M VS E R

[Sitzmann et al., 2019a]

Deep Voxels (DV)

CU

S
2D-OI

5R, S+

393+,479+
N M

1

P
BA V

S

%
L,E inter 3 L L VH I

[Thies et al., 2019]

(Section 2.7.4.1)

CU

S,O

2D-OI

%

2, S

800+,1000
N F

1

P
SfM, O M

S

%
L,E inter 3 M L E VR

[Broxton et al., 2020] R 2D-IO
130

46
N S P SfM

MSI-160

LM

S

%
L,E

S-6

360°
3 M L E VR

[Shih et al., 2020]

(Section 2.7.1.2)
CU 7

COCO

CD Σ118k
N VF

1

P
7 D

S

20 Mio.
L,E S-6 3 S S H VR

[Tomoto et al., 2020] CG 1D-OI
LLFF+RW

Σ7+3 Mio
N VF P

ARKit

SfM

MPI-64

M

S

%
L,E S-6 3 M VS VH VR

[Mildenhall et al., 2020]
CU

S
2D-OI

DV,8S,8R

479+,100,20+
N F P

ARKit

SfM
V

S

100k+
L inter 3 S L E O

[Park et al., 2020] CU
1D-OI

2D-OI

10

CD1500+
N F P SLAM D,M

S

173k
L,E S-6 3 M L E I

Extrapolation is particularly important for VR video since the captured action space is
physically restricted to the dimensions of the camera rig [Overbeck et al., 2018, Serrano
et al., 2019, Pozo et al., 2019, Broxton et al., 2020] for instance.

Round-trip (RT) time: of learned approaches is measured differently compared to traditional
IBR approaches (see Section 2.6). Once a model for view-synthesis has been trained, only
capturing is required to create a new dataset, which is then used by the model to create novel
views. Tomoto et al. are able to produce high-quality VR experiences end-to-end in just
1-2 minutes [2020]. Such a RT is not feasible in IBR approaches if dense reconstruction of
any kind is required for rendering which can take several hours hours to compute for each
captured dataset.

Rendering (Testing): by using machine learning techniques is performed by testing or
inferring a trained model (see [Goodfellow et al., 2014] Table 2).

Speed (S): is the time needed to infer the model, unless other intermediate representations
are used, e.g., layered geometry [Broxton et al., 2020, Tomoto et al., 2020].

Output image resolutions: are important for our human visual system [Adelson and Bergen,
1991], but are not considered when comparing IBR methods in this thesis. Learned volumetric
approaches report a high computational cost per-pixel [Mildenhall et al., 2020] which limits
the creation of high-resolution output needed for VR.
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2.9 Summary and contributions
The thesis emphasises on IBR representations suitable for immersive real-world VR (see
Sections 1.1 to 1.3) which can be casually captured, i.e. with a hand-held consumer camera,
that all share the same basic assumptions (see Section 2.1) about the captured scene, for
instance it is commonly assumed that the scene is mostly diffuse61 and static62.
This chapter has introduced fundamental concepts (see Sections 2.1 to 2.5) and a wide
range of methods designed to perform novel-view synthesis in the context of real-world
environments (see Sections 2.6 and 2.7). These sections help to understand common chal-
lenges faced throughout different 3D photography approaches, e.g., capturing procedures,
estimating correspondences, creating representations, or rendering novel views within some
action space, namely the space provided by the scene representation in which a user can
virtually move.
Application-specific constraints lead to different design decisions when developing real-
world VR pipelines end-to-end (see Section 2.6.1). An overview of the research landscape
relevant to real-world VR is presented in Section 2.8.

Traditional IBR methods, i.e. methods that do not contain neural components are compared
in Table 2.4. Learning-based, neural, or data-driven methods are compared in Table 2.5
respectively. How the main chapters fit into this landscape is shown in Table 7.2, and
explicitly stated at the beginning of each main chapter (see Chapters 3 to 6).
It is interesting that the tables do not show many methods that are casual to capture while
providing rich action spaces suitable for modern VR at the same time. Great examples are
presented by Hedman et al. [2017] and Hedman and Kopf [2018], whose work show very
high visual quality due to an excellent proxy reconstruction, however the captures take time,
in particular for 360° environments, and Mildenhall et al. [2019] show excellent visuals 63 ,
but the method cannot be used to model 360° environments due to the memory-demanding
MPI-based scene representation which further determines supported camera motions, e.g.,
linear [Zhou et al., 2018], planar [Mildenhall et al., 2019], or circular outside-in [Tomoto
et al., 2020].
Traditional IBR is notoriously limited by the quality of correspondences available to create a
scene representation. Imperfect correspondences, or practically all reconstructed data which
contributes to parts of the end-to-end pipeline, can have a negative impact on visual quality
when left without further attention or treatment.

Practical systems must provide immersive action spaces of sufficient visual quality, are
ideally casual to capture and process and applicable to a large variety of scene types, e.g.,
urban areas, outdoor landscapes, and indoor environments.

1. Casual capture of various scene types within seconds,

2. processing on commodity hardware within a reasonable amount of time,

3. providing immersive action spaces, i.e. enabling motion parallax and stereo views,
and

4. rendering novel-views with high output resolution and low latency.

61Multi-view consistency (view-independence) is required for reliably estimating correspondences.
62Objects stay at the same position in global 3D space during the whole capturing process.
63Note that the round-trip time for neural methods is usually dominated by learning a model, not applying the

model to new data (e.g. [Mildenhall et al., 2019, Tomoto et al., 2020]).
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For the rest of this section, I will motivate the VR landscape once more that inspired the
projects during my PhD studies. The problem definition of this thesis and fundamental
motivation to VR can be found in Section 1.1 and Section 1.1.1 respectively.

This thesis is based on a mix consisting of IBR, image stitching, correspondence estimation,
and last but not least neural rendering, all in the context of practically creating immersive
real-world VR applications.

Modern VR In this thesis, I identify modern VR with 3D photography that provides
immersive action spaces (see Section 1.1.3), in particular scene representations that provide
novel viewpoints with (up-to) 6-DoF (see Section 1.1.2) which can be reliably tracked by
modern head-mounted displays (HMDs).

Take the Oculus Quest 2 for instance, it operates with up to a resolution of 4 MP per eye on a
90Hz stereo frame rate which requires fast rendering procedures, that output high-resolution
imagery. Note that 90 Hz stereo implies 180 Hz for a single view, if treated independently,
which comes down to a time budget of approximately 6 ms for a single frame.
Large spatial resolution and sufficient temporal resolution which are both are important to
the human visual system (HVS) (see Section 2.6, enable visual immersion and smooth head
motions).

The quality of a novel view can be interpreted from different aspects, e.g., (1) physical
correctness of a viewpoint which might be violated due to imperfect correspondences64,
compared to (2) high-resolution output which constrains the complexity of operations that
can be performed per-pixel of the desired output view.
While learning-based approaches yield state-of-the-art visual quality, e.g. NeRF [Mildenhall
et al., 2020], the workload per pixel is too much to render high output resolutions in reason-
able times. In practice, neural methods are often used to infer a scene representation which is
then converted into an explicit or hybrid IBR approach to meet VR runtime requirements
[Broxton et al., 2020, Tomoto et al., 2020].

I believe that we need to find practical solutions to make new technology available to
casual consumers, even if those solutions might not offer state-of-the-art visual quality. If a
representation can provide fast previews that give a good idea about the captured scene, it
seems reasonable to invest more computing time to obtain a high-quality result.
In other words, always using the expensive system might be an overkill, in particular if these
systems can still fail and, not to forget, what if the capture itself was not good in the first
place, e.g., the scene is actually boring, or something happened during capture which might
break components further down the pipeline?

Compare this to casually capturing 2D images with a hand-held consumer camera, users do
not keep every picture they take, but only the good ones. Why should there be any difference
for 3D photography?
My guess is that reducing the round-trip time between capturing and rendering novel-views
(exploration) should be as short as possible to satisfy the expectations of casual end-users.

De-facto standard ODS As any IBR method is limited by reconstructed correspon-
dences, the de-facto standard for real-world VR is based on image stitching, i.e. ODS, which
has several benefits and limitations (see below). The main advantage is that no explicit

64For example vertical distortion caused by a constant depth assumption (see Figure 2.20), or a hole arising
for dis-occlusions of uncaptured (or unmodelled) parts of the scene (see Figure 3.17).
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geometry is required to produce it.
Note that stitching ODS can be considered either as plenoptic IBR method, i.e. if a controlled
capture is performed (see Section 2.6.2.4), or as implicit IBR method, i.e. if image corre-
spondences are used to cope with non-ideal camera and scene motion (see Section 2.6.3.2).

It is instructive to think of ODS as bridging the worlds of image stitching65 and IBR, because
ODS describes a desired viewpoint (see circular projection in Section 2.6.2.4, in particular
Figure 2.22), compared to classic image stitching approaches (see Section 2.6.3.1) that
create panoramic imagery without introducing a camera model of the desired view. However,
assumptions about the scene geometry are modelled with the composition surface, i.e., a
plane (at infinity), a cylinder, or a sphere (with infinite radii).
Note that most IBR methods assume a pinhole camera model (see Section 2.3) when
describing the perspective of a desired novel viewpoint, and reconstruction algorithms are
explained simplest using pinhole images (see Section 2.5).

ODS has several advantages and disadvantages which must be seen in the context of time.
To give a few examples:

1. Stitching ODS does not rely on explicit geometry, but viewpoints are vertically dis-
torted66 (see Section 2.6.2.2, in particular Figure 2.20).

2. The ODS format is minimal for stereoscopic viewing in 360°, but the associated action
space is not immersive since it does not support motion parallax.

More recent real-world VR approaches distanced themselves from ODS, e.g. explicit IBR
methods (see Sections 2.6.4.4 and 2.6.4.5) because of its very restrictive action space. Implicit
IBR methods operate on coarse proxy geometry (see Parallax360 in Section 2.6.3.3), e.g.
a sphere, but require a vast amount of images and image correspondences, to provide an
immersive action space with high-visual quality. Parallax360 motivates the obtained action
space by comparing it to ODS, which is not immersive since it lacks motion parallax, i.e. no
translational DoF.

It is important to be aware of the motivation, properties, and limitations of ODS to fully ap-
preciate the contributions made in this thesis. While still being the current de-facto industrial
standard for VR, ODS is not rich enough (no translational DoF) to be considered immersive
in the context of modern HMDs (6-DoF).
Furthermore, user expectations for real-world VR are based on previous experiences made
in other more common VR experiences that often do not look photorealistic, but therefore
usually offering much bigger action spaces in terms of translational magnitudes. However,
the current state-of-the-art for real-world VR [Overbeck et al., 2018, Broxton et al., 2020]
reports that users complain about small action spaces. Note that ODS has by design a purely
rotational (1-DoF) action space.
Intuitively, if real-world VR experiences offer much smaller action spaces than non-photorealistic
ones, the visual quality is probably the decisive factor to justify that. Non-stationary real-
world VR, e.g. for room-scale experiences, is still rather uncommon (e.g. [Hedman et al.,

65Consider Perazzi et al. [2015] as a recent relevant contribution to the image stitching literature, in particular
their patch-based and parallax-sensitive error analysis could be very useful to employ when measuring re-
projection based errors over 3D scene geometries if highly overlapping input views are available.

66Vertical distortion is an artefact depending on the mismatch of real and proxy scene geometry and gets worst
for nearby scene objects if far away geometry is assumed.
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2016] as an exception) and high-quality results require a sufficient amount of input views
which directly impact rendering speed. Current state-of-the-art is based on data captured
with stationary camera rigs with circular or spherical camera distributions [Serrano et al.,
2019, Pozo et al., 2019, Broxton et al., 2020] (see Figure 1.1 and Figure 1.2 respectively).

From a historic point of view and considering its relevance as current commercial standard, it
makes very much sense to me trying to enrich existing ODS data to make it more immersive
(see DASP in Section 2.6.4.2). Turning monoscopic 360° into VR experiences [Huang
et al., 2017, Serrano et al., 2019] (see the latter in Section 2.6.4.5), are great examples how
enriching common image format can lead to immersive real-world VR experiences.

The first main chapter (see Chapter 3) demonstrates an end-to-end system that lifts a ODS
viewing circle (left- and right-eye panorama) into a DASP. The DASP is a 5-DoF VR scene
representation that supports only a tiny action space due to incomplete scene information.
Furthermore, the following two chapters (see Chapters 4 and 5) are motivated by creating
immersive action spaces while sharing practical design decisions that encourage casual
creation of VR content like ODS (see Section 2.6.3.2), i.e. employing a capturing procedure
based on a single circular camera sweep using hand-held consumer cameras.

Correspondence estimation As has been motivated in the section about geometry
reconstruction (see Section 2.5), procedures to estimate correspondences (see Section 2.4.1)
heavily rely on how viewpoints are captured, e.g., in terms of the chosen camera path (see
Section 2.5.2), and the chosen lens.
To capture 360° environments using finite field-of-view cameras, circular camera motions
are needed. Note that associated camera motions, i.e. inside-out and outside-in, impact all
following stages of an end-to-end IBR pipeline (see Section 2.6.1).

It is helpful to memorise the implications of 360° camera motions (see Figure 2.13) regarding
3D reconstruction:

• Outside-in captures are often used to capture a single object. Such captures enable
the reconstruction of high quality geometry, e.g., depth maps, or a polygonal mesh
(see Section 2.5.3). Since the object is seen from many perspectives, features can be
tracked over many nearby frames.

• Inside-out captures usually capture an environment, i.e. a set of objects, instead of
just one. 3D reconstruction becomes harder since diverging optical axes cause lower
visual overlap.

Furthermore, rectifying views from inside-out camera motions, i.e. for more efficient corre-
spondence estimation (see Section 2.4.4), will lead to larger disparities which are harder to
measure compared to small ones (see Section 2.4.1).
Intuitively, features are seen less in input views and are thus leading to less accurate recon-
structions67.
Independent from the camera motion and the used optical system, various scene properties
can further lead to more challenging reconstruction problems (see assumptions in Section 2.1).

67Depending on the scene as well, not just the camera motion and used lens, 3D reconstruction can often fail
in practice (see Section 2.5.1), making many IBR methods not feasible for inside-out camera motions, or other
application scenarios that rely on a very accurate 3D scene geometry, explicit IBR methods for instance, in turn
motivating implicit and hybrid IBR, as well as neural rendering methods that account for incorrect geometry
estimates by design.
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Figure 2.49: Challenging scene properties: a) non-diffuse materials, b) non-static scene
objects, and c) fine geometry. See more description in text. Image credits: see individual
images.

Consider Figure 2.49:

(a) Non-diffuse materials violate the photoconsistency assumption which is fundamental
to correspondence estimation.

(b) If objects move in time (3+1=4D scene), their features will be at different locations
for different points in time, consequently making feature matching significantly more
challenging.

(c) Fine geometry like vegetation can be very hard to reconstruct since individual geomet-
ric features often project only into sub-pixel ranges, while multiple features might not
be very distinctive, i.e. features can be are easier to confuse.

Feature points of specular, moving, or highly complex scene objects cannot be used for
bundle-adjustment (see Section 2.5). Note that such scene content left untreated induces
uncertainty in the reconstruction process since underlying algorithms assume different scene
types.

Data imperfection When designing real-world IBR approaches, it is important to be
aware that no perfect correspondences can be computed, only estimations that might be
sufficiently good, or technically feasible, for the actual task at hand. Even in outside-in
capturing scenarios as often motivated in MVS literature, the quality of the reconstruction
will degrade as soon as the scene is not diffuse, not static, or contains very fine geometry
(see Figure 2.49.
Note that computationally heavy solutions exist that provide high-quality 3D geometry (e.g.
[Broxton et al., 2020]), but they are out of range to be used by casual users who need to
reconstruct their captured images into 3D photography using just commodity hardware.

Several hybrid IBR methods addressed the challenges of imperfect proxy geometry in
previous work [Zitnick et al., 2004, Chaurasia et al., 2013, Lipski et al., 2014, Prakash et al.,
2021].
Neural methods have been proposed that do not require any pre-computed correspondences
except calibration information (posed views) for learning the view-dependent appearance of
a single object [Mildenhall et al., 2020].
Neural rendering can be designed efficiently by embedding learnable components into
the deferred rendering pipeline (see Section 2.7.4.1), which requires a uv-mapped proxy
geometry of a single object. Note that the imperfections of the proxy geometry can be
compensated to a certain degree, by using a neural texture and a GAN for training.
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In general, explicit geometry is hard to obtain in arbitrary application scenarios, e.g. for
scene types that violate common assumptions (see above and Section 2.1). Even if the scene
does not contain challenging objects, the potential to obtain high quality correspondences
does still depend on the used camera motion and optical system.

In consequence, there exist many contexts for which high-quality geometry cannot be
reconstructed reliably. In such cases, alternative approaches are useful to still support difficult
scene elements and capturing conditions.
Several main chapters in this thesis present such alternative approaches, all based on a flow-
based blending (FBB) procedure (see Chapter 4, in particular Section 4.5.1) that alleviates
visual artefacts arising from imperfect proxy geometry.

Outlook Consider different VR representations depending on the required camera motion
to capture their required input:

1. single (mono) shot, e.g. 3D photography using context-aware layered depth inpainting
[Shih et al., 2020] (see Section 2.7.1.2),

2. single stereo shot, e.g. Stereo Magnification [Zhou et al., 2018],

3. linear camera motions, e.g. Megastereo [Richardt et al., 2013] (see Section 2.6.3.2),

4. circular camera motions, e.g., Rendering with concentric mosaics [Shum and He,
1999] (see Section 2.6.2.2), ODS [Peleg et al., 2001, Richardt et al., 2013, Anderson
et al., 2016, Schroers et al., 2018], and DASP [Thatte et al., 2016a] (see Section 2.6.4.2),
and finally

5. surface-based camera motions, e.g., Casual 3D Photography [Hedman et al., 2017]
(see Section 2.6.4.4), Parallax360 [Luo et al., 2018] (see Section 2.6.3.3), or methods
using spherical camera rigs [Pozo et al., 2019, Broxton et al., 2020].

Note that all approaches from the main chapters consider 360° captures (or circular camera
motions), either inside-out to capture 360° environments (ODS2DASP, MegaParallax, Om-
niPhotos, see Chapters 3 to 5 respectively), or outside-in to capture a single object (DNR4VE,
see Chapter 6), e.g. a shiny car.

The focus on a swift capturing procedure is essential for the application-contexts of the
presented approaches, i.e. only one circular camera sweep is required that can be captured
within seconds. Note that this constraint is satisfied for all main chapters of this thesis.
One result of this decision is a loss of expressiveness regarding the action space, i.e. the
ability to perform meaningful vertical translations is sacrificed68. This seems justifiable
though, particularly in the context of stationary, i.e. seated or standing, VR experiences
which are in the focus of this thesis69.
Nevertheless, at least small vertical translations outside of the plane (view extrapolation)
must be provided for immersive VR applications since natural head movements rarely follow
a perfectly horizontal path, even if the user is stationary.
For example, consider a roll of a user’s head that practically moves both eyes away from the
camera plane, one eye lies below, the other one above (see rotation around Ψ in Figure 1.4

68Circular camera motions are naturally embedded in a plane, so the action space cannot be expected to be
volumetric without additional treatment.

69Chapter 6 is an exception since the user is supposed ”to walk” around an object, i.e. not being stationary,
and not ”to look” around.
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c), imagine two black dots (eyes) instead of one). For these scenarios, explicit geometry
reconstructed from a circular camera motion can be sufficient in practice (see Chapters 3, 5
and 6).

Apart from the complexity of the action space (ideally 6-DoF), competitive VR approaches
must yield a sufficiently good visual quality. Visual artefacts will always break the immersion
which VR could yield ideally. Note that there is a trade-off between visual quality of a scene
representation and its costs to produce it, e.g. the quality of reconstructed correspondences.

In order to keep real-world VR pipelines feasible for casual consumers, the computational
complexity and hardware costs must be limited, motivating the use of smaller datasets70, or
the requirement to alleviate artefacts arising from imperfect correspondences, e.g., physically
non-plausible viewpoints (vertical distortion), duplication artefacts (ghosting), or holes (due
to incomplete geometry).

The main chapters of this thesis have several properties in common. All of them:

1. face challenges due to imperfect (or incomplete) geometry which causes visual arte-
facts and show ways to alleviate them,

2. work on circular camera sweeps as input, or build upon a VR representation (ODS)
that is stitched from a circular (inside-out) camera motion,

3. provide immersive VR experiences suitable for using modern (6-DoF) HMDs,

4. describe pipelines that could be actually used by casual consumers, i.e., the capturing
procedures do not require expensive hardware but only consumer cameras, and the
processing of input can be done by commodity hardware within a reasonable amount
of time.

Here a quick outlook to the main contributions of each chapter:
Chapter 3 (ODS2DASP) extends ODS to DASP by interpreting optical flow between left-
and right-eye panoramas as angular disparity, technically increasing a 1-DoF action space
(ODS) to 5-DoF (DASP).

Chapter 4 (MegaParallax) presents an end-to-end pipeline to casually create 360° real-world
VR experiences with motion parallax. We start with the same capturing and processing
assumptions as in previous work in image stitching (see Megastereo in Section 2.6.3.2).
In a nutshell, MegaParallax interprets the input views as circular LF and performs implicit
IBR employing view-dependent flow-based blending (VDFBB). A planar proxy geometry
is used for on-the-fly view synthesis leading to motion parallax and thus an immersive
VR experience with 3-DoF, instead of stitching the ODS format (Megastereo) which only
provides 1-DoF without being immersive at all.
Due to the coarse proxy geometry, novel views suffer from vertical distortion.
Flow-based blending (FBB) is used to alleviate ghosting artefacts (see Megastereo in Sec-
tion 2.6.3.2) arising because of the coarse proxy. Note that this trick only works for sufficiently
dense input captures for which optical flow can be computed reliably, i.e. one can assume
only small disparities (motion) between images.

Chapter 5 (OmniPhotos) follows up from MegaParallax and technically suggests two essential
changes: (1) as input serve 360° images instead of finite field-of-view pinhole images,

70Fewer viewpoints mean faster reconstructions Section 2.5.
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increasing the robustness of the reconstruction and the translational magnitude of the action
space (see analysis in Section 4.6.1), and (2), using a deformed sphere as proxy geometry
instead of a plane, reduces vertical distortion significantly, while still causing artefacts when
changing viewpoints (see swimming artefacts in Figure 5.6).
The principle of VDFBB simply applies to the 360° images represented in the equirectangular
domain. Wrap-arounds need to be considered additionally though, for instance, images are
extended and cropped before and after flow computations.
OmniPhotos can be captured within seconds and reliably processed in less than one hour.
The resulting action space has a state-of-the-art translational magnitude (see Section 1.1.2),
although not providing high visual quality due to a very smooth proxy geometry.

Chapter 6 (DNR4VE) investigates ways to mitigate artefacts when extrapolating a learned
SLF using deferred neural rendering (see Section 2.7.4.1). Improved performance compared
to the baseline is obtained by extending the baseline in various ways, e.g., per-crop viewing
directions are used for data augmentation, and optical centres are added to the generator
input. Adding noise to the generator input, in particular to the per-crop viewing direction,
reduces artefacts during extrapolation while leading to less crisp (smoother) results when
interpolating (or actually memorising) the training corpus.

Finally, each chapter will start by stating properties of the presented approach, these are:

• Input (a casually captured video sweep, i.e. hand-held with a consumer camera, or an
existing VR format like ODS).

• Output (a IBR or neural scene representation that can be used for VR applications in
principle, see Section 1.3).

• Assumptions (approach-specific, all methods follow general assumptions: see Sec-
tion 2.1).

• Limitations (approach-specific).

• Contributions (to state of the art, namely ODS for real-world VR. See Section 1.1.1).

• Comparisons (to other relevant main chapters, i.e. serving the same use-case or
application context).

A list of application scenarios is presented in the conclusion (see Section 7.1).
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Chapter 3

Depth-Augmented Omnidirectional
Stereo for 6-DoF VR Photography

“The value of an idea lies in the using of it.“

Thomas Edison

This chapter assumes that the reader is familiar with the concepts of the omnidirectional
stereo (ODS) format [Peleg et al., 2001] (see Section 2.6.2.4), as well as the depth-augmented
stereo panorama (DASP) format [Thatte et al., 2016a] (see Section 2.6.4.2).

A recap of some major limitations of ODS (see Section 1.1.1 as well):
Firstly, missing native support for motion parallax (see Section 2.4.4) leads to a flat appear-
ance. Secondly, close-by objects exhibit vertical distortion (see Section 2.6.2.2, in particular
Figure 2.20). Thirdly, viewing directions with non-zero elevation, i.e., not along the equator,
lead to incorrect stereo parallax.
These limitations motivate the investigation of more powerful scene representations which
can provide more immersive VR experiences, for instance DASP.

The presented approach can be categorised as follows:
Input: ODS left- and right-eye panoramas (see Section 2.6.2.4, in particular Figure 2.22).
Output: DASP, depth-augmented ODS (see Section 2.6.4.2, in particular Figure 2.32).

Assumptions: IPD of 6.4 cm, angular disparities θmin = 0.1°, and θmax = 2.9°, corresponding
to depths dmax = 36.67 m and dmin = 1.26 m respectively. No vergence accommodation (see
Section 2.6.2.4, particularly as depicted in Figure 2.23, the offsets of left- and right image
strips are constant over all directions.).

Limitations: Small action space in magnitude and lack of quantitative analysis.
Contributions: Creation of immersive 5-DoF VR space, only using a ODS stitch (1-DoF)
as input and commodity hardware. Interpreting optical flow of ODS panoramas as angular
disparity.

Comparisons: Shared use-cases with MegaParallax (see Chapter 4) and OmniPhotos (see
Chapter 5). The magnitude of the action space is much smaller in ODS2DASP though.
However, it still improves 3D photography based on ODS significantly.

123



R

B

L

X

DASP 
viewing circles

Spherical imaging 
surface

Scene point

Action space
radius

A

ODS viewing circle

panoramas

Scene point cloud

X
DASP Point cloud

Desired
Viewport

Forward
projection

Back (Re-)
projection

Final 
Output

Compositing

Origin

IL IR

DL DR

a) Capture c) Rendering

Depth augmented stereo panoramas

b) Representation

Figure 3.1: Overview of depth augmented stereo panoramas: a) As input serve left- and
right eye panoramas associated to a ODS viewing circle, together with a 3D point cloud
centred to it (see Section 2.6.2.4). The capture thus involves any process that yields a ODS
stereo pair. b) A DASP encodes multiple elevation-dependent (ϕ) viewing circles that form
a viewing disc which is used to generate view-dependent geometry at runtime with 6-DoF
(see Section 2.6.4.2). c) We follow the rendering strategy introduced by Thatte et al. [2016a],
namely we warp depth and texture according to a description of a novel view.

3.1 Introduction
The recent technological evolution of head-mounted displays allows for experiencing new
types of digital media at previously unprecedented levels of immersion [Koulieris et al.,
2019]. While rendering synthetic geometry only requires few adjustments in the classical
rendering pipeline, providing real-world content in virtual reality (VR) remains a challenging
research problem.

Omnidirectional stereo (ODS) [Ishiguro et al., 1992, Peleg et al., 2001] is the de-facto
industry standard for real-world VR experiences. An ODS scene representation consists of
two panoramas, one for the left and one for the right eye encoded in spherical coordinates
[Google, 2015] (see Section 2.2). A depth sensation is experienced when watching the stereo
content [Peleg et al., 2001], which is a requirement to create high-quality VR experiences
[Richardt et al., 2013, Anderson et al., 2016, Schroers et al., 2018].
While this sense of depth allows for a more immersive experience than watching monoscopic
panoramas, the lack of motion parallax breaks the feeling of being present in the environment
quickly. Even small rotations with a virtually fixed head position, i.e., keeping the neck
fixed, undergo translations of the viewer’s eyes and thus cause motion parallax which is not
supported by the ODS format [Thatte et al., 2016a, Hedman et al., 2017, Padmanaban et al.,
2018, Thatte and Girod, 2018].
Note that this shortcoming comes by design and is motivated by parallax removal which is
commonly used to stitch seamless panoramas [Szeliski, 2006, Richardt et al., 2013].

The limitations of ODS are scene-dependent, e.g., vertical distortion and lack of motion
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parallax become more perceivable and noticeable for nearby scene objects, and can quickly
lead to discomfort in VR experiences.

DASPs (see Figure 3.1 and Figure 3.2 b) ) represent a spherical stereoscopic action space
with 6-DoF (see Section 1.1.2). Like conventional ODS representations, a DASP consists
of a separate panorama for each eye, but additionally stores direction-dependent depth
information for each eye. Using per-view depth of the input images to create view-dependent
geometry (see Sections 2.6.4 and 2.6.5) for desired viewpoints leads to head-motion parallax
and correct perspectives without vertical distortion. In other words, a DASP can be seen as a
single layer depth representation which is able to fill holes, due to limited field of view of
both viewpoints, incomplete geometry or extreme view interpolations, by combining warped
versions of the left and right viewpoints, in spirit very similar to layered depth images [Shade
et al., 1998, Zheng et al., 2007].

In real-world scenarios, dedicated hardware is commonly used during the ODS capturing
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process to simplify the reconstruction process of a 3D point cloud of the scene (Section 2.5)
which is needed to generate a DASP [Thatte et al., 2017, Thatte and Girod, 2018].

Our baseline approach estimates depth for both ODS panoramas by utilising the angular
disparity [Ishiguro et al., 1992] (see Section 2.6.2.3) from the (omnidirectional) stereo
parallax obtained via optical flow. In contrast to previous approaches that require a customised
capturing setup and access to raw input imagery [Thatte et al., 2016a, Luo et al., 2018,
Overbeck et al., 2018], our approach operates directly on already stitched ODS data without
any further information which makes it very attractive for wider audiences since it can be
applied to an already commercially used (de-facto standard) data format for real-world VR.

Our approach can be summarised in the following key aspects:

1. We obtain explicit geometry for the DASP generation, e.g., point clouds, by simply
triangulating stereo viewpoints encoded in the viewing circle (see Figure 3.1 a) ). We
interpret optical flow vectors as angular disparities.

2. Our method is directly applicable to any ODS stitch without any additional knowledge
how the stitch was actually created, we always assume an interpupillay distance (IPD)
of 6.4 cm without loss of generality.

3. We show that the explicit geometry, solely reconstructed from the ODS viewing circle,
is enough for a meaningful DASP generation, i.e., it improves the overall impression
of the scene significantly.

4. Our approach enables only a tiny action space, but it practically creates a 5-DoF stereo
action space that reduces several limitations of ODS, in particular the DASP creates
far less vertical distortion [Shum and He, 1999] (see Section 2.6.2.2, in particular
Figure 2.20), and motion parallax.

3.2 Method
This section describes our end-to-end pipeline to transform an ODS panorama pair into a
DASP representation. According to the IPD and image correspondences, per-view depth
maps are computed by applying and extending Wegner et al.’s previous work regarding ODS
depth reconstruction [2018] (Section 3.2.2). Disparity information is then transformed into a
3D point cloud by forward projecting depth (inverse disparity) from camera into world space
(Section 2.4.4).
Technically, depth-augmentation enriches the action space from 1-DoF (one degree of
freedom) to 6-DoF (see Figure 3.1).

Notation We follow the notation introduced in [Google, 2015], e.g., we use θ ∈ [−π,π]
as the azimuth angle and ϕ ∈ [−π

2 ,
π

2 ] as the elevation angle (see Figure 2.24). We further
assume that θ = −π corresponds to the left edge and ϕ = π

2 to the top edge of the ODS
panoramas.
For simplicity, we discuss only operations which go from the left- to the right-eye ODS
panorama. Right- to left-eye operations are performed analogously, only θ changes its sign
[Google, 2015] (see Figure 2.24), practically switching between position of the left and right
eye on the viewing circle, practically keeping viewing directions constant for both eyes.

Main principle Based on a left and right eye panorama pair from the ODS representation
[Peleg et al., 2001, Richardt et al., 2013, Anderson et al., 2016, Schroers et al., 2018] (see in
particular Section 2.6.2.4), we start by estimating the disparities (inverse depth) from the left
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Figure 3.3: Datasets introduced in previous work [Bertel et al., 2020]. Note that only left
eye ODS panoramas are shown. Blue areas in the “known disparity“ row are set to minimal
disparity (maximal depth). Augmented depth looks identical to ordinary depth. Note that we
merge the reconstructed point clouds of both eyes potentially leading to duplicated geometry.

to the right view and vice versa, via dense optical flow [Ilg et al., 2017] (see Figure 2.4 for
exemplary performance of the method) and threshold meaningful displacements.
We then calculate a dense high-quality 3D point cloud by triangulating (see Section 2.4.4)
both viewpoints which encode the viewing circle associated to the ODS representation and
transform the ODS into a depth augmented stereo panorama (DASP) (see Figure 3.2).

The viewing experience is significantly improved compared to standard ODS (see Sec-
tions 1.1.1 and 3.3) while the memory footprint of the DASP, is only 33% larger. (2× 24 =
48)-Bits for two rgb images with common 8-Bits per channel, versus (2× 32 = 64)-Bit
assuming to store additional depth with a 8-Bit encoding [Google, 2014]. Note that related
work dealing with monoscopic 360° colour “plus“ depth [Serrano et al., 2019] encodes depth
with 8-Bit by default, too.

I have added more evaluation to our publication [Bertel et al., 2020] and new ways to
improve the quality of novel viewpoints, e.g., I compare to a more complete DASP rendering
procedure including hypothesis-merging [Thatte et al., 2016a] (see Section 2.6.4.2), instead
of solely using the left ODS texture to synthesise novel views (see Figure 3.9). Furthermore,
I show a way to alleviate artefacts caused by the reconstructed point cloud by using motion-
compensated flow-based blending [Shum and Szeliski, 1998, Szeliski, 2006, Richardt et al.,
2013, Bertel et al., 2019] (see results in Figure 3.10).

3.2.1 Capture
The input to our approach is an ODS panorama pair along with the interpupillary distance
(IPD) which maps to the diameter of the viewing circle [Peleg et al., 2001]. In case the IPD
is not explicitly given, we assume a default IPD of 6.4 cm [Dodgson, 2004]. We operate on
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with 6 fisheye lenses, each having 200° fov, a focal length f = 10.57 mm and an aperture
opening of F2.4. The red inner circle represents the ODS viewing circle. c) Stitched ODS
panoramas for left and right eye. Different sources of viewing circles, e.g., from casual video
capture [Richardt et al., 2013], are explored as well (see Section 3.3 and Figure 3.16).

ODS stitches produced by a commercially available multi-camera rig (Insta360 Pro1) (see
Figure 3.4).

Furthermore, I show results of our method applied on ODS viewing circles coming from a
different source, i.e., our pipeline is applied to cylindrical ODS panoramas casually captured
with different consumer cameras [Richardt et al., 2013] (see Figure 3.16).

3.2.2 Reconstruction
This section describes how a 3D point cloud is reconstructed from a pair of ODS panoramas.
Most approaches using camera rigs for producing ODS footage utilise flow-based stitching
([Anderson et al., 2016, Schroers et al., 2018]) to support dynamic scenes [Peleg et al.,
2001], and to perform parallax removal to obtain seamless mosaics in the context of image
stitching [Szeliski, 2006, Richardt et al., 2013] (see Section 2.6.3.2). Although this enables
well-understood ODS generation from conventional camera rigs, the generated panorama
pair does not necessarily satisfy all ODS disparity constraints accurately, i.e., in terms of
epipolar geometry of multi-perspective images [Seitz and Kim, 2002]. In particular, the
underlying camera geometry of the viewing circle might be violated due to the employed
capturing and stitching procedure.

For reliable triangulation of a stereo pair, it is assumed that corresponding scene points
project to the same horizontal scanline (see Section 2.4.4, in particular Figure 2.8), and
that all disparities share the same orientation [Wegner et al., 2018], for instance all valid
disparities must be positive. Note that if the vergence2 is set to vary over directions θ , i.e., to
increase the stereoscopic viewing comfort, decided when stitching the ODS viewing circle
[Peleg et al., 2001] (see Section 2.6.2.4), the sign of disparities change before and beyond
the scene depth which is implicitly encoded with the change of sign of varying disparities
[Adelson and Bergen, 1991] (see Figure 3.11).

Note that in the baseline and the additional work presented in this chapter, we create the
DASP by providing a point cloud which is obtained by “merging“ the point clouds of both

1https://www.insta360.com/product/insta360-pro
2Vergence is determined by the depth (or disparity) of the scene object for which binocular disparity should

be perceived (see Figure 2.21 d) ) and is directly related to (angular) disparity.
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a) b) c)

Figure 3.5: Using optical flow to estimate disparity: a) left (top) and right (bottom) input
ODS panoramas. b) optical flow field from left-to-right (top) and vice versa (bottom). Note
the colour wheel in the top left encoding direction and magnitude of displacement vectors.
Smaller magnitudes become lighter. Note that intuitively foreground objects cause the largest
displacements, i.e., cause more parallax, compared to background objects. c) we only use
meaningful displacements (green). Vectors with non-zero y components are thresholded
(red). Reversed directions (blue) are detected mainly in dark textureless areas.

ODS panoramas without any further alignment. This strategy yields better results than
generating the DASP using separate geometries for the left and right view (see Figure 3.12).

Disparity estimation

The very first step of our end-to-end pipeline is to estimate dense (per-pixel) image corre-
spondences (see Section 2.4.1) which can be interpreted as angular disparities (see ∆θ in
Figure 3.6) since individual columns of an ODS panorama represent different angles (or
viewing directions) of the ODS viewing circle.

Block matching approaches, e.g., standard methods offered by OpenCV3, struggle not only
because of the imperfect viewing circle geometry (caused by stitching), but further due to
the equirectangular image format and the circular projection described by Peleg et al. [2001],
which can both lead to distorted shapes between the viewpoints, i.e., blocks are harder to
match, in particular for objects projected near the poles (direction-dependent) or close to the
viewpoint (depth-dependent). We ran a few experiments and observed very noisy results.
Instead, we use optical flow, in particular FlowNet2.0 [Ilg et al., 2017, Reda et al., 2017]
with default parameters for which some example results are shown in Figure 3.5 b).

Sanity check To obtain valid disparities for the ODS representation, we filter the result-
ing optical flow F = {Fx,Fy} and keep only the horizontal component as estimated disparity.
If a pixel’s flow vector contains non-zero y-components4 a certain threshold is applied to
discard non-horizontal displacements:
If the overall magnitude of the flow vector is less than 0.1° measured in image columns, i.e.,
the width of the image represents 360°, the disparity is clamped to 0.1°, which corresponds
to a scene depth of 36.67 m (see Figure 3.7).
Note that tiny disparities (zero at the limit) physically model infinite depth, but algorith-
mically, they can mean as well that a surface in the scene is uniform, i.e., without texture,

3github: openCV_contrib
4Vertical displacement should be small, ideally zero (see Figure 2.7), which can be achieved when knowing

the epipolar geometry, i.e., by rectifying viewpoint pairs (see Figure 2.8).
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leading to a non-existent (zero) brightness gradient [Horn and Schunck, 1981].

We test for correct orientations. Since we know that image projections of scene objects move
the opposite way when moving our head (see Figure 2.7), e.g., when moving your head from
left-to-right while keeping the eyes straight forward, scene objects move from right-to-left,
and vice versa.

We threshold the disparities encoded in the x-component of the flow vectors between 0.1°
and 2.9°. Note that the baseline sets disparity to zero if their disparity is below 1° instead, and
a maximal disparity is not thresholded or clamped at all. According to the formulas that we
use for depth estimation (see Equations 3.1 and 3.2), the chosen thresholds, corresponding to
36.67m and 1.26m respectively, are illustrated in Figure 3.7.

The pixel colour is interpolated according to the orientation of the pixel, e.g., starting with
green or blue, i.e., from correct and incorrect directions respectively, towards red according
to the magnitude of Fy. The final pixel colour for flow visualisation (see Figure 3.5 c) )
is obtained by dividing the magnitude of the flow with the median magnitude of all valid
vectors.

Depth estimation

Given the estimated disparity maps, depth values can be computed for both views (see
Section 2.4.4). Unlike Wegner et al. [2018], we do not compute the depth Z from the centre
of the ODS viewing centre. Instead, we compute the depth from the left and right camera
centres, CL and CR respectively, encoded in the viewing circle as shown in Figure 3.6:

Z =
R

sin
(

∆θ

2

) and thus Z′ =
√

Z2−R2. (3.1)

Here, R = 3.2 cm is the radius of the viewing circle and ∆θ the angular disparity.
So far, the depth value Z′ is only considering horizontal distance and is not accounting for
the elevation of the point X. We correct the used elevation angle ϕ which is assumed to be
the same for both eyes:

D =
Z′

cos(ϕ)
. (3.2)

All obtained valid depth values are directly determined by linearly interpolating minimal and
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Figure 3.7: Given the ODS viewing circle, we can directly connect the angular disparity
∆θ (x-axis) with the depth R(∆θ/2) of a scene object (y-axis). We threshold minimal and
maximal disparities at 0.1° and 2.9° respectively, mapping to a maximal and minimal depth
of 36.67 m and 1.26 m respectively.

maximal disparities set as above according to the relative disparity per pixel.

There are several differences to the original version (poster submission) which I want to
mention explicitly:
The baseline used a clamping to a maximal depth of 50 m and a minimal depth of 2.2 m,
leading to a flattening of nearby scene objects. One reason for scale differences in the baseline
was that we assumed to operate on the “rig“ radius of R = 7.3 cm accidentally and not on the
viewing circle’s radius which is half the IPD (R = 3.2 cm).
I use a radius of only 0.5 m for the spherical imaging surface, while the baseline and the
DASP paper use 1.9 m. Thatte et al. [2016a] give an example of an action space of 24 cm
outside of the 6 cm viewing circle, thus 30 cm in total, and we only aim for 8 cm in total. It
felt intuitive to reduce this radius given that we operate with tiny action spaces, although the
influence of these parameters is not further examined in our work and left for future work.

The closest scene objects cannot be closer than 1.26 m, due to the clamping of disparities (see
Figure 3.7), and thus we obtain a gap of 76 cm between the imaging surface and scene objects
with minimal depth. This gap is important to ensure that that L and R do not degenerate into
a single point, which would be the case for a scene point X residing within the spherical
imaging surface, i.e., ‖X‖2 ≤ 1.26 m. We ignore invalid disparities and do not create depth
for them.

Point cloud reconstruction

To reconstruct the point cloud needed for DASP creation (see Section 2.6.4.2) from the
ODS + depth representation, we map every pixel for both views to a scene point X. Because
estimated depth maps contain the distance to a scene point X from the optical centres CL

and CR of virtual slit images, the reconstruction is straightforward (see Figure 3.6).
Note that this situation resembles a stereo camera setup (see Section 2.4.4) in which the
directions d correspond to the camera rays rx, one from each camera, which intersect at the
scene point X. The corresponding camera position Cx and view direction dx are computed
for every pixel xL and xR in the left and right views (see Equation 2.26):

Cx =±R · (cos(θx),0,sin(θx))
>, (3.3)

dx = (sin(θx)cos(ϕx),sin(ϕx),−cos(θx)cos(ϕx))
>. (3.4)

Then, a scene point X is reconstructed by following the camera rays (associated to image
pixels) of the ODS viewpoint, technically forward-warping depth from 2D image space into
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3D world space using (see Section 2.4.4):

X = CX +Z′ ·dx. (3.5)

Note that the point clouds created by this procedure, one for each eye, are obviously far from
being complete. Nevertheless they perform surprisingly well in a small action space around
the ODS viewing circle, especially within (see Figures 3.8 and 3.9).

3.2.3 Representation
Since the individual point clouds are just describing the left and right eye panoramas, we
decided to fuse them before DASP creation to have more geometry from which the DASP
can be generated from.

We create the DASP representation as suggested by Thatte et al. [2016b] (see Section 2.6.4.2)
and work with a radius of 0.5 m for the imaging surface and a radius of 1 cm for the
extrapolation radius (action space) which is added to the viewing circle radius R = 3.2 cm
summing up to a total radius of 4.2 cm.
The DASP depth maps are encoded using inverse depth following a Google article and use
the “RangeInverse“ version with 8-Bit encoding [Google, 2014].

We further re-utilise the optical flow computed to estimate per-view geometry during render-
ing (flow-based blending) to increase the visual quality of nearby scene objects which comes
without any additional computational cost (see Figure 3.10).

Overall, the DASP offers 6-DoF with motion parallax. Note that vertical translations are very
limited (the DoF is small in magnitude) which is addressed in follow up work by vertically
stacking multiple viewing disks [Thatte et al., 2017].

3.2.4 Rendering
The DASP view synthesis in a nutshell (see Figure 3.1): Augmented depth D is (forward-)
warped to the image plane ID of the desired viewport VD, followed by a backward warp
from ID to eye image IL or IR for left or right eye panoramas respectively. A more detailed
description is given in Section 2.6.4.2.
I found it instructive to show the impact of hypothesis merging [Thatte et al., 2016a],
compared to just using one eye for view synthesis (see Figure 3.9). Hypothesis merging
closes many holes as reported by the authors.

Furthermore, I add flow-based blending to account for misaligned geometry [Bertel et al.,
2019] which improves visual quality (see Figure 3.10) compared to without using it (standard
DASP).
The view-dependent weight (see α in Figure 4.7) is replaced by the desired camera position
C, measured relatively within the viewing disk. For example, α is 0 for views on the far left,
i.e., CX ≤−42 mm, and analogously 1 for 42mm≤ CX .

3.3 Evaluation and discussion
We create DASPs for ODS images captured and stitched using the Insta360 Pro camera rig
(see Figure 3.4) and show qualitative results for a set of real-world datasets (see Figures 3.8
to 3.10). An overview of used datasets is given in Figures 3.3 and 3.15. The DASP method
does not use hole-filling unless stated explicitly otherwise.
I define the predefined motion range as the radius of the viewing circle plus 1 cm (compare
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Figure 3.8: Comparing three orientations with solely rotation and zero translation on the
”Ship Bridge” dataset. Note the strong vertical distortion in ODS viewpoints, compared to
correct perspectives produced by the DASP.

to the gray disk in Figure 3.2, Representation) and set the imaging sphere radius to 0.5 m in
all our experiments.

Since we estimate the point cloud, and thus depth, only by using the ODS panoramas, the
reconstructed DASPs do not support large action spaces. Nevertheless, there is sufficient
evidence (see below) that our approach transforms ODS into a useful DASP reliably.
We use the same parameters and merge per-eye point clouds to generate the DASPs the same
way in all our experiments.

We start our evaluation by comparing translations, which induce motion parallax, within the
action space between the baseline5 against a full DASP implementation including hypothesis
merging (Figure 3.9), and compare DASP with a procedure based on VDFBB [Bertel et al.,
2019] (see Chapter 4) followed by holefilling (see Figure 3.10), on the ”Ship Bridge” dataset.
Rotation results are given in Figure 3.8, to show how geometry can be used to reduce vertical
distortion of the ODS format, particularly severe for nearby scene objects.

Motion parallax Consider Figure 3.9:

We translate through the viewing disk from left to right. Observe the scene content moving
next to the vertical line. The supported head-motion is limited due to the small motion-range
chosen to avoid excessive view extrapolation.

Consider Figure 3.10: Applying view-dependent flow-based blending [Bertel et al., 2019] (see
Chapter 4) to foreground objects (≤ 3.5 m) leads to improved alignment at coarse geometries,

5The poster submission only used one hypothesis for rendering. This should have caused more holes in novel
views, but a bug in the geometry reconstruction made the action space appear bigger than it actually was.
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Figure 3.9: Comparing baseline (poster publication) and DASP on the ”Ship Bridge” dataset
while translating within action space sideways from -42 mm to 42 mm (top to bottom) in
equidistant steps. Note that ODS does not support motion parallax at all. The hypothesis
merging of the DASP fills in holes and creates high-quality viewpoints.

e.g., the corner of the table (in pink squares). Note that the same flow information is used
for initial reconstruction and blending and thus comes without any additional computational
cost.

As reported in previous related work, motion-compensated flow-based blending helps to
make transitions between viewpoints smoother and improves the perception of motion
parallax.

Vertical distortion Consider Figure 3.8: By performing image-based rendering with
point clouds, the DASP representation produces results with correct perspective (compare
ODS projection with baseline and full DASP). ODS viewpoints exhibit vertical distortion
[Shum and He, 1999, Anderson et al., 2016] (see Section 2.6.2.2, in particular Figure 2.20).
Using geometry removes vertical distortion, e.g., strongly distorted scene objects close to the
capturing rig. Incomplete geometry leads to holes.

The DASP fixes most of the holes by merging the viewpoint hypotheses of both eyes warped
into the desired novel viewpoint. Note that the DASP results are produced without hole
filling here since the geometry suffices for novel views in the centre of the viewing centre
(zero translation).
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Figure 3.10: Comparing DASP and flow in foreground on the ”Ship Bridge” dataset for
supported viewpoints minimal to the left (−42 mm) and maximal to the right (42 mm).
Background objects (in red and orange squares) are identical since flow is only applied to
foreground objects.

c) Geometry

Person

Screen

Vergence points 
[Peleg et al. 2001]

a) b)

Figure 3.11: a) Novel view using flow in fore- and background using the ”Ship Bridge”
dataset. b) Novel view when only using valid flow vectors in the background. c) Illustration
why certain areas in the captured scene, e.g. corners, lead to a flipped orientation of flow
vectors which are interpreted as disparities. Scene objects further away than the adjusted
vergence distance for improving the viewing comfort of ODS viewing experiences [Peleg
et al., 2001] (see disparity control in Section 2.6.2.4), cause a sign change in disparity
[Adelson and Bergen, 1991]. Foreground objects can still produce invalid flow vectors for
instance if objects are poorly textured, in other words, appear uniform.

Invalid flow vectors Consider Figure 3.11: Flow vectors become invalid (see Sec-
tion 3.2.2) along occlusion edges which can be actually used to detect them [Holynski and
Kopf, 2018].

Furthermore, corners of captured spaces can lead to flipped viewing rays for left and right
eye, e.g., the right viewing ray intersects the geometry farther to the left than the left viewing
ray (red dots before or behind actual scene geometry).
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Figure 3.12: Using merged vs. unmerged clouds. Merging the clouds before DASP generation
generally improves the visual quality of novel viewpoints. Holes (red pixels) in the flow
versions arises when at least one of the candidate pixels (one for each eye) is deemed invalid.
A forward warped pixel (from any eye) is considered valid if its associated depth and weight
is greater than zero. We see more artefacts at disocclusion boundaries when using flow, since
both candidate pixels need to be valid to apply flow-based blending.

Adelson and Bergen mention a sign change in disparity according to the vergence im-
plied by stereoscopic vision [1991]. Vergence accommodation used in ODS stitching (see
Section 2.6.2.4) can lead to this change of sign.

In stereo setups, the central rays of the viewpoints are parallel for objects at infinity (zero
disparity), and converge for objects at finite depth Z′ (see Figure 2.7).

Merged vs. unmerged point clouds Consider Figure 3.12: Since the geometry for
DASP generation is global and identical for both viewpoints, holes in novel views are present
over smaller areas. Applying optical flow aligns texture on top of imperfect geometry and
thus improves visual quality in all cases.

Additional results An overview of all datasets used in our poster submission is given in
Figure 3.3. Additional datasets from different viewing circles are shown in Figure 3.15.

The results shown here did not make it in that form into the poster submission. The main
performance of the DASP in our application scenario is illustrated using the ”Ship Bridge”
dataset (see Figures 3.8 to 3.10), results on more datasets are shown here, i.e., ”Boat”, ”Cave”,
”Grottenblitz”, and ”Art”. Consider Figures 3.13 and 3.14 and see an overview of computed
flows for the shown datasets in Figures 3.3 and 3.15:
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Figure 3.13: Applying the improved pipeline to four datasets introduced in the baseline,
“Boat“, “Cave“. See “Grottenblitz“ and “Art“ in Figure 3.14. See more discussion in text.

The novel views of the “Boat“ dataset show plausible motion-parallax, but the object in front
suffers from varying distortion while translating.

The “Cave“ dataset shows reasonable motion parallax in the zoomed in area, but the person
at the border does not move at all due to lack of reasonable depth information. The person is
technically part of the background, e.g., somewhere towards max depth, which depends on
the dataset and the clamping according to the disparity thresholds (see Figure 3.7).

In “Grottenblitz“, only very nearby objects show motion-parallax, and the surrounding
geometry of the tunnel moves, but the people do not.

The “Art“ dataset clearly shows that complex geometry with shiny surfaces is a challenge for
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Figure 3.14: Applying the improved pipeline to four datasets introduced in the baseline,
“Grottenblitz“, and “Art“. See “Boat“ and “Cave“ in Figure 3.13, See more discussion in text.
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Figure 3.15: Datasets introduced in Megastereo [Richardt et al., 2013] and used in this
chapter. Note that only left eye ODS panoramas are shown.

our approach based on finding dense image correspondences. Nevertheless, the novel views
seem plausible, but obviously contain spurious artefacts.
I observed that applying flow deteriorates the novel views in the Art dataset (not shown)
which makes sense intuitively, due to plenty of occlusions and view-dependent appearance
changes, flow vectors become very unreliable to use.

Sources of viewing circles Consider Figure 3.16: Shown results are rendered with a
small focal length and are centrally cropped as well as magnified6.
The translation results seem plausible, there is obviously motion parallax in the results (see
Figure 3.16), but this observation can be misleading.
In this work, I assume that the chosen vergence of the ODS eyes (see Figure 3.11 c) ),
which is adjustable when stitching the ODS viewing circle [Peleg et al., 2001, Richardt et al.,
2013] (see Section 2.6.2.4), can lead to this non-plausible distribution of disparities and thus
induces physically incorrect motion parallax.
Further analysis to understand this effect is left for future work. Remarkably, scene objects
move not always plausibly in terms of their magnitudes. In other words, fore- and background
seems to be not physically plausible, probably due to vergence accommodation used when
stitching the ODS format (see Sections 2.6.2.4 and 2.6.3.2).

The used ODS input panoramas have been resampled from cylindrical into spherical projec-

6Due to using lower resolution panoramas, not due to the original datasets introduced in MegaParallax. There
is a texture size restriction when using FlowNet2.0 [Reda et al., 2017] with docker, which is why the original
panoramas had to be downsampled.
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Figure 3.16: Our pipeline applied to three datasets from Megastereo [Richardt et al., 2013],
“Rooftop“, “Street“, and “Mountain“. The last three columns show the DASP with hypothesis
merging. Nearby objects are expected to move faster when the viewpoint translates through
the viewing circle due to motion parallax. In the case of the Rooftop dataset, the tower in
the background and the ledge in the foreground induce a similar motion parallax which
is physically wrong. I speculate that this is due to a non-constant (direction-dependent)
vergence accommodation. See more description in text.

tion (see Section 2.2) and only operate on small image resolution. The cylindrical composition
surface is assumed to have a radius of 20 m and the spherical surface assumed to lie at about
16 m.
When transferring from cylinder to sphere, an assumption needs to be made about the vertical
field-of-view inherited in the cylindrical panorama. I chose to consider the cylinder height
horizontally aligned with the equator of the sphere. The height of the cylinder translated into
the elevation of the sphere. For the Rooftop and Street dataset, the vertical field of view is
assumed to be about 100° while the Mountain dataset assumes only 90°, due to the narrower
lens used to capture the dataset [Richardt et al., 2013] (see Section 2.6.3.2).
The ODS viewing circles are assumed to match the IPD of 6.4 cm, but were captured using a
larger camera circle, i.e., assuming a stretched arm’s length (mytilde 0.8 m) as radius, and
way more input viewpoints (100s), compared to the ODS captured with a rig.

Performance In a prototype implementation, the described approach creates a DASP
from a high-resolution ODS panorama pair (7680×3840 pixels) and precomputed optical
flow end-to-end in about ten minutes using a desktop PC with an Intel i7 quad core CPU and
32 GB RAM. Novel views take 10 s on a resolution of 1024x1024, since there is no GPU
accelerated version yet.
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Figure 3.17: Extreme view extrapolations shown for two datasets, Cave and Grottenblitz.
Cave: The area with the crystals is moving plausibly. Background objects start tearing,
technically showing holes (in red). Grottenblitz: Only the very nearby scene region is
represented well geometrically. Holes appear at plsauible locations. The tunnel “bends“ in
extreme views indicating the area for which max depth is assigned.

Limitations We solely use the viewing circle for geometry reconstruction which leads
to holes in the scene geometry and have not worked on explicit geometry inpainting, e.g.
[Serrano et al., 2019, Shih et al., 2020], helpful when extrapolating viewpoints. Thus, only
tiny action spaces are feasible, i.e., smoothly within the viewing circle and cautiously leaving
it, but holes increase the further we go away from the centre of the viewing circle (see
Figure 3.17).
We cannot provide quantitative evaluation of our procedure since we only worked on real-
world content without considering synthetic ground truth.

The extensions and improvements added in this chapter7 improve the quality of the obtained
novel views.
Using flow-based blending increases the memory footprint for a single ODS frame consid-
erably, but in case of VR photography (not videography), I do not consider this a major
limiting factor.

Transforming cylindrical panoramas into spherical panoramas depending on the used pa-
rameters for stitching the ODS, e.g., adjusting the vergence (see Figure 2.23), might cause
non-plausible disparity distributions.
For instance, geometry farther away can actually exhibit larger disparities than objects closer
(see Figure 3.16, in particular the rail in the Rooftop dataset).

7In comparison to the baseline/poster submission referred to throughout the chapter, e.g. DASP left-eye
without hypothesis merging.
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3.4 Conclusion
ODS panoramas [Peleg et al., 2001, Richardt et al., 2013, Anderson et al., 2016] are con-
strained by a single viewing circle allowing only for head rotations around a fixed point
while only providing correct binocular disparity when looking along the equator (one rota-
tional stereo-DoF). ODS panoramas can deliver real-world VR experiences, but immersion
can break quickly if users move their heads only slightly since the ODS cannot provide a
corresponding viewpoint to that action.

We have shown a way of transforming ODS into a DASP and shown results of several
real-world datasets. Our constructed DASPs provide viewpoints with 6-DoF head-motion
parallax within a small motion range. The results indicate that our method can enrich existing
ODS footage in order to create and provide more immersive real-world VR applications
compared to ODS.

Compelling vertical translation requires several stacked viewing disks [Thatte and Girod,
2018]. Vertical translation using only a single viewing disk is not supported well, i.e., the
magnitude of the vertical DoF is very tiny, so it would be only fair to call the standard DASP
representation to be 5-DoF, instead of 6.

Recent research in the field of VR videography abandoned the ODS format8 and focuses
on IBR with explicit geometry, e.g., per-view depth maps [Pozo et al., 2019], or per-view
layered mesh geometry [Broxton et al., 2020] extracted from a learned neural representation
per scene.

Future work Our approach and the produced DASP representation need to be investigated
in more detail, in particular quantitatively using ground truth data, and for casually captured
real-world ODS stitches that potentially have direction-dependent vergence accommodation
encoded [Peleg et al., 2001] (see Section 2.6.2.4). The quality of the DASP should be further
assessed qualitatively by running an interactive VR user study.

The DASP representation and its standard view synthesis is not designed to work for large
action spaces, in particular within scenes with a large depth variation. This could be addressed
with a layered approach, e.g. by storing multiple depth values in the DASP depth maps and
creating novel-views by composing multiple layers from back-to-front [Shade et al., 1998,
Zheng et al., 2007, Zhou et al., 2018, Mildenhall et al., 2019, Broxton et al., 2020].
Note that layered approaches enable the support of larger action spaces since they are
designed to handle (dis-) occlusions explicitly, however they only make sense if sufficient
input geometry is available, for instance a dense 3D point cloud reconstructed from many
viewpoints.

It would be interesting to look into: 3D inpainting techniques which alleviate disocclusion
artefacts [Serrano et al., 2019] (see Section 2.6.4.5), inpainting geometry [Shih et al., 2020]
(see Section 2.7.1.2), incorporating 3D semantics to complete partially reconstructed room
layouts [Chen et al., 2014], multi-view reconstruction [Ulusoy et al., 2017], or implicit
methods that can produce 3D geometry from single images [Kohli et al., 2021].

Since it is possible to casually capture ODS [Richardt et al., 2013] (see Section 2.6.3.2),
it is possible to casually capture and create a DASP. The success of this traditional IBR
representation depends on the quality of reconstructed scene geometry.

8Google Jump project stopped
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360-degree video. pages 2945–2948, 2018. doi: 10.1109/ICIP.2018.8451452.

K. C. Zheng, S. B. Kang, M. F. Cohen, and R. Szeliski. Layered depth panoramas. June
2007. doi: 10.1109/CVPR.2007.383295.

T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo magnification: Learning view
synthesis using multiplane images. 37(4):65:1–12, August 2018. doi: 10.1145/3197517.
3201323.

145

https://doi.org/10.1023/A:1014851111084
http://webdiis.unizar.es/~aserrano/projects/VR-6dof.html
http://webdiis.unizar.es/~aserrano/projects/VR-6dof.html


146



Chapter 4

MegaParallax: Casual 360° Panora-
mas with Motion Parallax

“Innovation is taking two things that exist and putting
them together in a new way.“

Tom Freston
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Figure 4.1: The rise of consumer cameras enabled ubiquitous capture of 360° panoramas as
users want to share and relive experiences. However, existing projection techniques flatten
the panorama and remove motion parallax – an important depth cue for the human visual
system. We present a new method that provides high-quality parallax rendering that restores
this depth cue and allows the viewer to explore static scenes with translation as well as
rotation. Our method is able to correctly occlude the cars as the viewer translates to the right
(orange box), and improves rendering quality over previous techniques (blue box).
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This chapter assumes that the reader is familiar with the concepts of the omnidirectional
stereo (ODS) format [Peleg et al., 2001] (see Section 2.6.2.4), in particular when captured
casually [Richardt et al., 2013] (see Section 2.6.3.2), as well as image-based rendering
techniques based on explicit [Buehler et al., 2001] (see Section 2.6.4.1), as well as implicit
geometry [Luo et al., 2018] (see Section 2.6.3.3).

Motivated by the limitations of ODS (see Section 1.1.1 and Chapter 3), MegaParallax
provides motion-parallax in 360° environments, relying on the identical input as comparable
approaches that produce ODS [Richardt et al., 2013].

The presented approach can be categorised as follows:
Input: Set of images casually captured (hand-held) with consumer cameras following one
circular (inside-out) camera motion per scene.
Output: Immersive 3-DoF VR representation, that is 1-DoF rotation and 2-DoF translation
enabling motion parallax.

Assumptions: Angular resolution of input frames sufficiently low for flow-based blending
(see Section 2.6.3.2, in particular Figure 2.27).

Limitations: Severe vertical distortion (see Section 2.6.2.2, in particular Figure 2.20) caused
by using a plane (constant depth) as proxy geometry. Action space does not support elevation
nor roll, purely pan (in-plane rotation) similarly as ODS. Prohibitive memory footprint, not
suitable as is for streaming application.
Contributions: More immersive 360° VR experiences with 3-DoF instead of 1-DoF (ODS),
only relying on a casual capturing and a round-trip of just a few hours. View-dependent
flow-based blending (VDFBB) to mitigate ghosting artefacts during view synthesis.

Comparisons: While being a IBR scene representation dedicated to real-world VR experi-
ences (same as Chapters 3 and 5). It is the least expressive action space, ODS2DASP (see
Chapter 3) provides 5-DoF without vertical distortion instead of vertically distorted 3-DoF.
However, MegaParallax’s action space has a larger translational magnitude than DASPs.
Vertical distortion is perceived strongest here since all other methods use more accurate
scene geometry (ODS2DASP, OmniPhotos), or learn the appearance on imperfect geometry
(DNR4VE).

4.1 Introduction
Capturing 360° panoramas has become straightforward as this functionality is implemented
on every phone. However, standard (monoscopic) panoramas appear flat when viewed in
virtual reality headsets. This is because panoramas do not provide important depth cues
such as binocular disparity (different views for our left and right eyes), or motion parallax
(different views as the viewpoint changes) (see Section 2.4.4).
Binocular disparity and motion parallax are important cues for correctly perceiving depth
[Howard and Rogers, 2008] and feeling presence in virtual environments [Slater et al.,
1994]. We propose a new approach for capturing largely static real-world environments and
rendering high-quality, immersive 360° panoramas that provide both binocular disparity and
motion parallax (see Figure 4.1).

Most techniques for capturing panoramas for virtual reality build on omnidirectional stereo
[Peleg et al., 2001, Richardt et al., 2013, Anderson et al., 2016, Schroers et al., 2018]. These
approaches either stitch multiple views of a moving camera, or from a multi-camera rig, into
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separate left- and right-eye panoramas. This way, omnidirectional stereo provides different
views for each eye (binocular disparity), but it cannot provide any motion parallax to a viewer
(see Section 2.6.2.4).
Moreover, the rendered views exhibit vertical distortion [Shum and He, 1999] (see Sec-
tion 2.6.2.2, in particular Figure 2.20) resulting in curved lines, most notably for nearby
scene objects.

Huang et al. introduce parallax into a 360° image using depth-based warping [2017]; however,
the visual quality of their results is limited by easily visible warping artefacts.
Luo et al. propose another 360° scene representation with motion parallax based on image
warping, but motion parallax is only achieved near the captured viewpoints, and they require
thousands of input images captured with a robotic arm, which prevents casual capture [2018]
(see Section 2.6.3.3).
Hedman et al. instead reconstruct diffuse textured 3D geometry [2017] that provides motion
parallax directly (see Section 2.6.4.4). Their approach strongly relies on dense depth esti-
mation, which suffers from reconstruction errors in traditionally challenging cases such as
uniformly coloured regions or highly detailed geometry.

We introduce an end-to-end pipeline and specifically tailored techniques for turning a casually
captured monoscopic video into an enriched 360° panoramic experience with motion parallax
that can be explored in real-time.
Our new approach generalises omnidirectional stereo techniques to free-viewpoint image-
based rendering. Specifically, our implicit IBR approach (Section 4.5) computes each pixel’s
colour based on its optimal pair of input images, which are then combined using view-
dependent flow-based blending. These contributions make it possible for casual consumers
to capture and view high-quality 360° panoramas with motion parallax in real-time.

4.2 Overview
Our approach can generate 360° datasets containing motion parallax from hand-held (casual)
video input without active guidance. We employ image-based novel-view synthesis that
produces high-quality, high-resolution views with motion parallax in real time. Our approach
does not rely on any explicit scene geometry apart from a very coarse scene proxy such as a
plane or a cylinder. This positions our method naturally between plenoptic and explicit image-
based rendering approaches (see Section 2.6). We next outline the steps of our approach (see
also Figure 4.2) and give details in Sections 4.3 to 4.5.

Main principle Consider Figure 4.2: Our approach starts from videos that are casually
captured with consumer cameras on approximately circular paths1. We process this footage
to generate multi-perspective panoramic datasets that can be viewed with binocular disparity
and motion parallax with high-quality, thanks to real-time implicit IBR.

Capture (Section 4.3) To capture sufficient motion parallax within 360° panoramas, we
assume a sweeping camera motion on a roughly circular trajectory with radially outward-
looking viewing directions. We also assume the scene is static. Such videos can be captured
casually by end-users, and we show results for datasets we captured with different consumer
cameras like a GoPro Hero 4 and an Insta360 One.

1Note that the capture is casual since it is performed hand-held with a consumer camera (see Section 2.8.1).
The user is supposed to approximately follow a circular camera motion to make further processing simple,
for instance circle fitting and viewpoint registration. If capturing cannot be done technically with a hand-held
consumer camera, it is not casual.
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Figure 4.2: Overview of MegaParallax. Capture: We acquire an input video with a hand-held
consumer camera (Section 4.3). Preprocessing: Compute per-frame camera poses using
SfM in a two-step reconstruction procedure (Section 4.4.1). The views are registered to an
ideal circular camera trajectory (Section 4.4.2) and sampled for uniform angular spacing
(Section 4.4.3). We then compute optical flow between each pair of adjacent cameras to
establish dense correspondences (Section 4.4.4). Rendering: The rendering is formulated
per pixel using a novel two-view view-synthesis approach that uses flow-based blending
(Section 4.5).

Preprocessing (Reconstruction) (Section 4.4) We first reconstruct camera poses
for all video frames using SfM [Schönberger and Frahm, 2016] (see Section 2.5.1.1). We
manually select a single captured ring of reconstructed cameras and register them to an ideal
circular trajectory. This imposes an ordering on the cameras that facilitates the identification
of neighbouring viewpoints. We finally compute bidirectional optical flow [Brox et al.,
2004] between each pair of adjacent cameras, which will enable live view synthesis during
rendering.

Representation Our representation consists of two major components. First, a set of
fully calibrated viewpoints distributed on a circular trajectory, all looking inside-out (see
“2D-IO“ in Section 2.5.2), as common for casually capturing panoramic environments [Shum
and He, 1999, Peleg et al., 2001, Richardt et al., 2013].

Rendering (Section 4.5) At runtime, our approach performs on-the-fly view synthesis
in real-time. First, for every pixel, we identify the optimal pair of camera views given the
ray from the target viewpoint to the pixel. Then, each pixel’s colour is interpolated from its
pair of optimal views, depending on both the ray through the pixel and the position of the
desired view. For this interpolation, we propose a novel view-dependent flow-based blending
technique tailored for our image-based rendering method.

4.3 Capture
The starting point of our approach is the capture of a single input video, which is recorded
with a moving consumer camera. For 360° omnidirectional stereo panoramas, the ideal
camera trajectory has been shown to be a circle with cameras pointing radially outwards
[Peleg et al., 2001]; the same applies to our panoramas with motion parallax. We assume the
camera to be calibrated intrinsically, but we need to estimate camera poses for the moving
camera to accurately synthesise novel views in subsequent stages of our approach.

In theory, the camera poses can be obtained using off-the-shelf techniques like SLAM
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(e.g. [Mur-Artal et al., 2015, Mur-Artal and Tardós, 2017]) or structure-from-motion (e.g.
[Schönberger and Frahm, 2016]).
However, for the inside-out camera configuration we are using, these techniques face two
main problems:

1. pairwise camera baselines are small compared to scene depth, which results in ill-posed
triangulations that lead to tracking failures, and

2. most cameras have no pairwise overlap as they are pointing in opposite directions,
which often leads to loop closure problems.

In addition, it is difficult to produce perfectly closing video loops with hand-held cameras
because of natural variability in camera pose over time.
For these reasons, camera geometry cannot always be reconstructed reliably and we only
show results for which the reconstruction in Section 4.4.1 succeeded.

A detailed examination of the influence of camera paths (see Section 2.5.2), camera intrinsics
and scene characteristics on reconstructibility is beyond the scope of this paper, but motivated
in the background chapter (see Chapter 2, in particular Section 2.5).
Hedman et al. [2017] report success with fish-eye lenses that increase the overlap between
views, but such lenses are not usually found on most consumer cameras.

Nonetheless, we believe that additional work on 3D reconstruction from narrow-baseline
inside-out imagery is required for creating casual user-centric VR and AR experiences more
reliably.

4.4 Preprocessing
In this section, we take as input a video captured using the capturing process described in
the previous section, and prepare it for our real-time image-based rendering technique in
Section 4.5. We prepare a 360° dataset with motion parallax via the following steps:

1. Reconstruction of camera geometry (Section 4.4.1).

2. Registration of cameras to the ideal trajectory (Section 4.4.2).

3. Sampling of cameras based on the ideal trajectory (Section 4.4.3).

4. Computation of optical flow between cameras (Section 4.4.4).

4.4.1 Reconstruction of camera geometry
We obtain the sparse reconstruction of scene geometry and camera poses using COLMAP
[Schönberger and Frahm, 2016], assuming fixed camera intrinsics. Because of small camera
baselines and limited overlap between most views, we perform reconstruction in two stages.

First, we perform a reconstruction from only a set of keyframes, for example every tenth
frame of the input video (depending on capturing speed and circle radius), which yields
sufficiently large camera baselines to increase the robustness of the reconstruction procedure2.
In a second stage, we then register all video frames to the existing scene model, followed by
bundle adjustment.

This improves the conditioning of the pose estimation of the densely sampled video frames,

2A strategy like this has been already suggested in Marc Pollefeys PhD thesis [Pollefeys, 1999].
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Dense point cloud Reconstructed mesh

Figure 4.3: The dense reconstruction result obtained from our Jaman dataset using COLMAP
[Schönberger and Frahm, 2016] is unsuitable for view synthesis as-is. For example, in-
completeness would lead to holes during rendering. Natural outdoor datasets remain very
challenging to reconstruct reliably.

resulting in more consistent reconstructions. We then undistort the input video frames using
the known intrinsic calibration parameters, giving us fully-calibrated pinhole viewpoints.

4.4.2 Trajectory registration
We next register the reconstructed camera poses to an idealised continuous camera trajectory
(see Section 2.5.2), in our case a circle. This imposes an ordering on the cameras, making it
easy to find adjacent cameras and to index them linearly using the polar angle ϕ∈ [0,360).
We show results for circular trajectories, but more general paths are possible as well.
We use the centroid of all camera centres as the centre of the circle and origin of our
coordinate system. The circle radius r is set to the average distance of camera centres from
the origin. We rescale our dataset to match the real physical set-up when the radius is known,
and use r=0.8 m for hand-held datasets.
We next fit a plane to the camera centres to obtain the normal direction n of the circle. We
compute the polar angle ϕi for each camera i by first projecting the camera centre Ci and the
x-axis onto the plane of the circle:

C∗i = Ci−n · (Ci ·n) (4.1)

x∗ = [1,0,0]>−n · ([1,0,0]> ·n) (4.2)

and then obtain the signed angle between their directions using

ϕi = atan2
(
(x∗×C∗i ) ·n, x∗ ·C∗i

)
. (4.3)

4.4.3 Camera sampling
Given the registered and parametrised camera trajectory, we next sample a subset of cameras
that are approximately uniformly spaced in parametric space. This ensures that input views
sample the entire environment as uniformly as possible, regardless of the speed at which the
camera was moving during the capture process. For our datasets, we use an angular baseline
β of one to two degrees, corresponding to about 180 to 360 camera viewpoints per circle.

We found empirically that the depth structure and scene appearance of the captured environ-
ment have a great influence on the minimum required sampling frequency. For example, a
low sampling frequency is sufficient for textureless or distant regions, such as a blue sky or
distant mountains, as motion parallax will be imperceptible and view synthesis can still be
reliably performed on wider baselines. On the other hand, the appearance of thin and nearby
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Linear blending Flow-based blending

Figure 4.4: Linear blending often results in ghosting artefacts (see red arrows), which are
reduced with our view-dependent flow-based blending.

objects is improved by increasing the sampling frequency. This suggests that an adaptive,
scene-dependent sampling strategy would be a useful extension.

4.4.4 Optical flow
In our image-based novel-view synthesis (see Section 4.5), each pixel’s colour is computed
from a pair of adjacent cameras. We use the trajectory’s parametrisation (ϕi) to identify all
pairs of adjacent cameras, and then compute dense correspondences between each pair of
images using bidirectional optical flow [Brox et al., 2004].

We precompute the optical flow fields to minimise computation requirements at runtime
during the rendering. To reduce computation times during preprocessing, as well as memory
usage and disk bandwidth during rendering, we compute the flow at half the image resolution.
This produces visual results comparable to full-resolution flows but is significantly more
efficient.

4.5 Rendering
The goal of the final rendering stage is to synthesise novel views in real time within a viewing
area inside the circle of captured views. We first present our new per-pixel image-based
rendering technique that exploits known camera geometry and dense correspondences to
interpolate views from a pair of cameras (Section 4.5.1). We then describe how to find the
optimal camera pair for view synthesis within the hundreds of cameras of typical panoramic
datasets (Section 4.5.1). We analyse the maximum size of the viewing area supported by our
view-synthesis approach in Section 4.6.1.

4.5.1 Novel-view synthesis from two cameras
In this section, we introduce the core building block of our image-based rendering approach:
novel-view synthesis from two input views using view-dependent flow-based blending. We
assume that the pair of closest cameras is given in this section, and discuss the selection of
the camera pair in Section 4.5.1.

We assume that we are given the two input images IL and IR, corresponding to the left and
right cameras of the camera pair, and we want to synthesise the image ID of the desired
camera view. As illustrated in Figure 4.5, these cameras are defined by their camera centres
CL, CR and CD, and their orientations.

Linear blending We synthesise the novel view ID per pixel, so that it can be efficiently
computed in parallel on the GPU. In our approach, we use a planar proxy geometry that is
fixed at a given distance in front of the desired camera, and we thus do not require accurately
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rD

Figure 4.5: Camera geometry for two-view novel-view synthesis of the novel view (green)
using the left (blue) and the right views (orange). The desired ray rD from the camera
centre CD through the pixel xD intersects the proxy geometry at a point X. This point is then
projected into the left and right cameras, yielding pixels for blending (xL and xR, respectively).
Note that a novel view can be composed by many different camera pairs as indicated by the
gray view on the right: A part of the novel view (on the far right) is better reconstructed by
the orange-gray camera pair, instead of the blue-orange one. The number of contributing
camera pairs grows with the field of view of the novel view, as well as actual distance to the
input images (camera plane from capturing).

estimated scene depth.
To compute the colour of a pixel xD in the desired view, we first obtain the world point X
on the proxy geometry that projects to xD in the desired camera (see diagram in Figure 4.5)
by rasterising the proxy geometry using OpenGL. The world point X projects to xL and xR

in the left and right cameras, respectively. For a baseline linear blending, we combine the
colours sampled from the left and right images, IL and IR, at xL and xR, respectively, using a
convex combination:

ID(xD) = (1−α) · IL(xL)+α · IR(xR), (4.4)

where α∈ [0,1] is the blending weight between the views for pixel xD, which we define in
Section 4.5.1. This simple linear blending baseline often results in ghosting artefacts, as
shown in Figure 4.4.

View-dependent flow-based blending Coarse proxy geometry generally causes large
re-projection errors that lead to blurry images [Buehler et al., 2001, Eisemann et al., 2008].
Richardt et al. use a flow-based ray interpolation to overcome this problem and synthesise
high-quality panoramas on a cylindrical imaging surface [2013]. We extend their approach
to synthesise novel views for desired viewpoints that are not constrained to the predefined
viewing circle of ODS, nor the camera circle (sphere in 3D) [Luo et al., 2018].
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Figure 4.6: View-dependent flow-based blending (for α = 0.5). Left: A scene point Z (black
circle)is imaged at xD (green filled circle) and approximated by X (grey outline circle).
X projects onto xL and xR (filled squares). Note that, in practice, scene points and proxy
are much further away (several metres) compared to the camera baseline (a few cm) than
shown. Right: Image plane of the novel view. Optical flow FLR (upper red arrow) is used to
account for wrongly re-projected pixels, e.g. xL (FRL analogously). Blending is performed
with flow-adjusted pixels x∗L and x∗R. Note that we assume to look at the images from behind
the cameras and not from the scene (see Section 2.3).

To this end, we exploit the camera geometry and the precomputed dense optical flow (Sec-
tion 4.4.4) to determine view-dependent image coordinates x∗L and x∗R, at which to sample the
left and right images (see Figure 4.6 and compare to Equation 4.4):

ID(xD) = (1−α) · IL(x∗L)+α · IR(x∗R). (4.5)

We use precomputed optical flow (Section 4.4.4) to compensate for the depth mismatch
between an imaged scene point Z and its approximation by the proxy point X, which is
particularly large for nearby objects.
This scenario is illustrated in Figure 4.6. Specifically, we use the plane-induced displacement
between the projections xL and xR:

vLR = xR−xL and vRL = xL−xR, (4.6)

which are shown in grey, and the optical flow fields FLR and FRL (in red), to compute a local
flow displacement (in green):

F∗LR(xL) = vLR−FLR(xL) and (4.7)

F∗RL(xR) = vRL−FRL(xR). (4.8)

By scaling these displacements with the view-dependent blending weight α ∈ [0,1] that
accounts for the pose of the desired camera, we compute image coordinates that effectively
compensate for the depth mismatch between scene and proxy geometry (black arrows):

x∗L = xL +α ∗F∗LR(xL) and (4.9)

x∗R = xR +(1−α)∗F∗RL(xR). (4.10)

The magnitude of the local flow displacements F∗LR and F∗RL provides an indication of the
distance of scene points: small displacements indicate that scene points are close to the proxy
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Figure 4.7: Computation of the blending weight α using angles between rays. Note that our
blending weight is derived almost identically as in previous work [Debevec et al., 1996], in
particular Figure 12. We were not aware of this while working on this project.

geometry, while large displacements generally indicate nearby scene objects.
Note that we assume to be located behind the cameras (see Figure 4.6 on the left) and not
from the scene (see Section 2.3, in particular Figure 2.3) being in front of the cameras3.
Figure 4.4 shows the benefit of our view-dependent flow-based blending approach. Note that
ghosting artefacts occur more frequently in image areas with higher re-projection errors.

Finding the best camera pair Our panoramic datasets comprise hundreds of input
views. Instead of computing the convex combination of potentially hundreds of views, as in
unstructured lumigraph rendering [Buehler et al., 2001] (see Section 2.6.4.1), we identify the
best pair of adjacent cameras L and R to synthesise each pixel xD of the novel view D.
For this purpose, we consider the angles between the ray rD to be synthesised and the rays
rL and rR to the left and right cameras, CL and CR, all of which are starting at the centre of
the desired camera, CD.
Consider the diagram in Figure 4.7 for illustration. We first project all rays into the plane of
the camera trajectory using Equation 4.1, and obtain the rays r∗D, r∗L and r∗R. Next, we iterate
over all pairs of adjacent cameras, L and R, and compute the signed angles between the left
camera and the desired direction, αLD = ∠(r∗L,r∗D), as well as between the right camera and
the desired direction, αRD = ∠(r∗R,r∗D).
We have found the optimal camera pair if rays r∗L and r∗R (1) lie on either side of r∗D, i.e.
αLD·αRD 6 0, and (2) are in the hemisphere centred on r∗D, i.e. |αLD| , |αRD|< π

2 . We then use
the identified cameras to synthesise the colour of the pixel xD as described in Section 4.5.1.
To compute the blending weight α , we consider the ratio of angles between r∗D, r∗L and r∗R.
Specifically, we compute α using

α =
αLD

αLR
=

∠(r∗L,r∗D)
∠(r∗L,r∗R)

. (4.11)

3As consequence, all orientations of the displacements (depicted on the right) will flip as soon this assumption
is flipped as well. Note that the ordering of viewpoints, i.e., which one is left or right, can have the same effect.
Technically, two hidden assumptions might just cancel each other out.
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Figure 4.8: Results on the Jaman dataset. We translate the novel view and compare our
results with ULR [Buehler et al., 2001] and Megastereo [Richardt et al., 2013]. Our results
show high visual fidelity and plausible motion parallax (see crops). Note that Megastereo is
basically a casual ODS approach, and as such, does not support motion parallax at all.

Note that if a desired ray r∗D passes through an input camera, it is collinear4 with either r∗L or
r∗R, resulting in a blending weight of α∈{0,1}.

4.6 Results
In Figures 4.8, 4.10 and 4.11 and our supplemental video, we show novel views synthesised
by our approach for multiple panoramic datasets and compare them to Megastereo [Richardt
et al., 2013], a state-of-the-art omnidirectional stereo technique that is most closely related
to our desired capturing setup. We also compare to unstructured lumigraph rendering (ULR)
[Buehler et al., 2001] as a baseline proxy-based image-based rendering technique.
While ULR (using the four nearest cameras) generates views with motion parallax, they
suffer from severe ghosting due to texture misalignment. Megastereo generates sharp views
but without any motion parallax.

4The ray’s colour will thus be entirely determined by the camera through which it passes satisfying the
epipole consistency [Buehler et al., 2001] (see Section 2.6.4.1, in particular Figure 2.30 b) ).
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Figure 4.9: Red-cyan anaglyph stereo views generated by our approach for two views with
significant motion parallax. Dataset by Richardt et al. [2013].

Our results simultaneously exhibit high visual fidelity and motion parallax.

This is best seen in the supplemental video (see webpage), where we show circular cam-
era paths and a forward–backward translation to demonstrate that our approach produces
plausible motion parallax in this case as well.

We can easily render stereoscopic images using our approach, which we show using red-cyan
anaglyph stereo images in Figure 4.9. Note that our approach delivers both binocular disparity
and motion parallax.

As demonstrated by Hedman et al. [2017], even state-of-the-art 3D reconstruction techniques
still produce patchy reconstructions with many holes, e.g. for the sky, which make them
unsuitable for novel-view synthesis. We show such an example in Figure 4.3.
The related approaches of Hedman et al. [2017] and Luo et al. [2018] are not designed to
work on our input data, as they assume a different capture strategy: sparse fisheye views
and capturing 4,032 images with a robotic arm on a sphere, respectively. Conversely, their
sparse input views do not sample viewing directions sufficiently densely for our approach
(image-heavy implicit IBR) to work well.
However, in our supplemental video, we compare the core view synthesis approach of Luo
et al. [2018] to ours. The former uses the desired camera’s viewing direction instead of the
per-pixel ray direction rD in our case. This results in a synthesised image on the camera
circle as a mixture of its two neighbouring cameras.

Datasets The datasets we show were captured with a range of different cameras and cap-
ture strategies, see Table 4.1 for a complete list, including their main parameters (illustrated
in Figure 4.12).
”Rooftop”, ”Street” and ”BBQ” were captured with a single circular sweep using a GoPro 2.
”Office” was captured with a single circular sweep using a Samsung Galaxy S9+.

Table 4.1: Datasets shown in our paper.

Dataset Capture Images (N) Radius r β γ

Jaman manual 275 0.80 m 1.3° 120.0°

Rooftop (Richardt et al. [2013]) rig 360 1.22 m 1.0° 87.66°

Street (Richardt et al. [2013]) manual 180 0.80 m 2.0° 87.66°

Office manual 200 0.80 m 1.8° 39.99°

Lake rig 360 0.84 m 1.0° 120.0°

BBQ manual 144 0.80 m 2.5° 87.66°
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Figure 4.10: Comparison of synthesised views between ULR [Buehler et al., 2001],
Megastereo [Richardt et al., 2013] and our approach. Datasets (from top to bottom): Rooftop,
Street. See Figure 4.11 for Office, Campus, and BBQ. Our results have high visual fidelity and
produce motion parallax (see crops), which reveals occluded objects such as cars occluded
by the roof (top row) or the cars parked behind the black car (second row).

”Campus” and ”Jaman” were captured with a single circular sweep using an Insta360 One
360° camera. From the stitched equirectangular video, we extracted perspective views with a
field of view of 120°×120° for use with our approach. The wider field-of-view makes the
reconstruction of camera geometry more reliable in practice.

Runtimes Our preprocessing takes about 4 hours for 400 images with a resolution of
1440×1920 pixels on an Intel i7-7700K quad-core CPU with 32 GB RAM and an NVIDIA
GTX 1080 GPU. The computational bottleneck of the preprocessing is structure-from-
motion.
Peak rendering time for a one-megapixel image is 5 ms, resulting in a frame rate of 200 fps,
which is suitable for VR head-mounted displays.

4.6.1 Viewing area analysis

Based on the assumption of an ideal circular camera configuration (illustrated in Figure 4.12)
with a radius r, angular baseline β and (horizontal) field of view of γ , we now derive an
analytical upper bound for the the supported viewing area size and verify it experimentally.
For a derivation of the minimum visible depth, we refer the reader to Schroers et al.’s
Appendix C [Schroers et al., 2018].

The range of supported views is constrained by the reconstructed camera geometry to an
approximately circular viewing area that is concentric with the camera circle. This generalizes
the viewing circle commonly used in omnidirectional stereo approaches [Ishiguro et al.,
1992, Peleg et al., 2001, Richardt et al., 2013, Anderson et al., 2016, Schroers et al., 2018] or
the viewing sphere used by Luo et al. [2018].

For a fixed viewpoint, such as C0 in Figure 4.13, the quality of the synthesised ray depends
on the degree of overlap between the field-of-views of the enclosing camera pair (light blue
and orange). If both cameras overlap, the ray’s colour is synthesised as a mixture of the two
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Megastereo MegaParallax
Left Central Right

ULR
Left Central Right Left Central Right

Figure 4.11: Comparison of synthesised views between ULR [Buehler et al., 2001],
Megastereo [Richardt et al., 2013] and our approach. Datasets (from top to bottom): Office,
Campus and BBQ. See Figure 4.10 for Rooftop and Jaman.

cameras (green error band at top of figure). If they do not overlap, the colour mixture fades
to black, as one camera’s view is out-of-bounds and its contribution is thus zero or black
(yellow error band).

Specifically, let’s consider a viewpoint such as C1 or C2 in Figure 4.13, which is translated
horizontally away from C0 by a distance x while keeping the viewing direction the same. To
compute an upper bound on the maximum viewing area, we assume that the cameras are
sampled densely on the camera circle, i.e. β → 0°. Under this assumption, the viewing rays
from Ci intersect the camera circle exactly at a camera, indicated by a dark green circle. For
view synthesis to succeed, the viewing ray needs to fall within the camera’s field of view.
In other words, the angle δi between the viewing ray and the dark green camera’s viewing
direction vϕi needs to be less than half the field of view γ , i.e. δ < γ

2 . We can express the
angle δ using δ = arcsin x

r and then solve for x to obtain

x < r · sin
γ

2
. (4.12)

Equation 4.12 provides an upper bound on the radius of the maximum viewing area, depend-
ing only on the radius r of the camera circle and the camera’s field-of-view γ . Leaving the
viewing area produces artefacts as in Figure 4.15.

Experimental validation In practice, imprecise capture and narrow-field-of-view con-
sumer cameras often reduce the available viewing area compared to the theoretical bound.
We measure the actual size of the viewing area for different datasets in Figure 4.14. The
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Figure 4.12: Idealised dataset geometry. The angular baseline β represents the spacing
of views on the camera circle (in red) with radius r. The angle γ denotes the horizontal
field-of-view of the input camera. Compare β with α in Figure 2.21 c). β is nothing but the
angular disparity of an observed viewpoint at distance L [Ishiguro et al., 1992]. Note that we
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Figure 4.13: Viewing area analysis. Left: The desired camera is at the centre of the camera
circle. The error bar indicates blending performance depending on X and the desired view
(CD,rD). Right: The desired camera is translated from C0 to C1 and C2, while keeping the
viewing direction rD fixed. The angle δi (for i∈{0,1,2}) restricts the viewing area.

datasets vary in terms of their radius r∈ [0.8,1.22] and field of view γ∈ [40,120], but also by
scene type, e.g. indoors (Office) vs outdoors (Lake).

The left-most set of bars in Figure 4.14 show the theoretical upper bound of the viewing
area according to Equation 4.12, and the following sets of bars show the observed size
for different angular baselines β ∈ [1,24]. The desired camera is translated until the view
synthesis breaks (see Figure 4.15). We do this in both directions and average both distances
to estimate the radius of the actual viewing area.
Our method relies on β ≤ 2° for best results while the viewing area shrinks quickly for
β > 6 °. Rooftop and Lake come close to the theoretical limit, since the rig capture yields
nearly ideal camera paths. Hand-held datasets, such as Jaman, Street and Office, show much
smaller viewing areas due to less precise capturing.
Five out of our six datasets support a viewing area with a diameter of 50 cm or more, and up
to 1.5 m for the Rooftop, which would be sufficient for exploration in virtual reality while
seated.
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Figure 4.14: Viewing area comparison: theory versus practice for different angular baselines
β (i.e. subsampled datasets). Note that datasets are only tested for β larger than in Table 4.1,
i.e. if there are enough views.

4.7 Discussion
The sampling density of views needed to create high-quality immersive experiences is
scene-dependent and needs to be sufficiently high for visually optimal results. Better scene
understanding would help to identify critical areas and could lead to more reliable recon-
structions.

The data we precompute in Section 4.4 could be efficiently encoded into the input video.
The optical flow fields, for example, are high-quality versions of standard motion estimation
as employed in video codecs. Camera calibration data and trajectory information could be
stored in the metadata. This would result in an augmented video file that is only a small
fraction larger than a standard video.

Limitations Our two-view synthesis approach relies on the pair of cameras actually
seeing the proxy point X determined by the desired ray. This assumption may be violated
if input views are slanted away from the radially-outwards direction (see increasing δ in
Figure 4.13 and example in Figure 4.15). This issue can be ameliorated using wide-angle
optics to increase the input camera’s field of view.
The viewing area is currently limited to a roughly circular region in the 2D plane (see
Section 4.6.1), which prevents out-of-plane motions.

Our approach treats the desired camera like a perspective camera during synthesis, but as
each pixel is potentially synthesised from a different pair of input views, the synthesised
image combines the perspectives of multiple views. This may result in distorted scene objects
in novel viewpoints due to a constant-depth assumption of scene geometry (see handrail in
Figure 4.9).
Vertical distortion is known from state-of-the-art omnidirectional techniques [Anderson
et al., 2016, Schroers et al., 2018] and is most noticeable for nearby scene objects, and when
synthesising wide field-of-views.
This naturally leads to the question of what influence vertical distortion has on the user’s
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Start central Translate left Further translate left

Figure 4.15: Limitation: our two-view novel-view synthesis fails if the synthesised rays do
not reproject into the input camera views (see red areas in Figure 4.13).

viewing comfort, which requires further study in a perceptual experiment. In addition, as our
approach is purely image-based, the captured scene cannot be edited, but is reproduced as is.

4.8 Conclusion
We presented a new solution for generating and displaying high-quality 360° panoramas with
motion parallax in real time from just a single input video. Our method produces convincing,
high-quality results despite not using any explicitly reconstructed proxy geometry.

However, our approach would benefit from the availability of more accurate proxy geometry,
which would help reduce vertical distortion and increase the viewing area to support a 6-DoF
action space.

A computational bottleneck of our approach is the reconstruction of extrinsic camera geome-
try, which appears to be particularly difficult for inside-out captures like ours.

Future work The approach presented in the next chapter, namely OmniPhotos, reduces
vertical distortion, increases the action space from 3 to 5-DoF and reduces the memory
footprint of the scene representation created for casual real-world VR end-to-end.
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Chapter 5

OmniPhotos: Casual 360° VR Pho-
tography

Do not go where the path may lead, go instead where
there is no path and leave a trail.

Ralph Waldo Emerson

This chapter assumes that the reader is familiar with the MegaParallax [Bertel et al., 2019]
(see Chapter 4), as well as image-based rendering techniques based on explicit [Hedman
et al., 2017, Serrano et al., 2019] (see Section 2.6.4.4 and Section 2.6.4.5), and implicit
geometry [Luo et al., 2018] (see Section 2.6.3.3).
Motivated by limitations of previous work (see Chapter 4), e.g., a limited action space due to
viewpoints with narrow field of view, and vertical distortion caused by using trivial (planar)
scene geometry as proxy, OmniPhotos takes monoscopic 360° video as input and deforms a
sphere into a sparse point cloud obtained via SLAM.

Abstract Virtual reality headsets are becoming increasingly popular, yet it remains diffi-
cult for casual users to capture immersive 360° VR panoramas. State-of-the-art approaches
require capture times of usually far more than a minute and are often limited in their sup-
ported range of head motion. We introduce OmniPhotos, a novel approach for quickly and
casually capturing high-quality 360° panoramas with motion parallax. Our approach requires
a single sweep with a consumer 360° video camera as input, which takes less than 3 seconds
to capture with a rotating selfie stick or 10 seconds handheld. This is the fastest capture time
for any VR photography approach supporting motion parallax by an order of magnitude. We
improve the visual rendering quality of our OmniPhotos by alleviating vertical distortion
using a novel deformable proxy geometry, which we fit to a sparse 3D reconstruction of
captured scenes. In addition, the 360° input views significantly expand the available viewing
area, and thus the range of motion, compared to previous approaches. We have captured
more than 50 OmniPhotos and show video results for a large variety of scenes. Our code is
available1.

The presented approach can be categorised as follows:
Input: Set of 360° images captured with circular camera motion. The 360° camera consists

1Github: OmniPhotos
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Figure 5.1: OmniPhotos are casually captured 360° VR photographs that can be captured in
a single 360° video sweep. Capturing only takes 3–10 seconds and, once processed into a
scene representation for hybrid IBR with optical flow and scene-adaptive proxy geometry,
OmniPhotos can be viewed freely in VR headsets. Please note: this figure and others in this
chapter are animated; should they not be playing automatically, please consider viewing
with Adobe Reader.

of two opposing fisheye lenses, where one faces outward2, following a inside-out camera
motion.
Output: Immersive 5-DoF VR experience with reasonable quality and short round-trip time.

Assumptions: Angular resolution of frames sufficiently high for creating an environment
suitable for applying (view-dependent) flow-based blending (see Chapter 4).

Limitations: A set of continuously rendered novel views seem to swim, even when trans-
lating the desired camera in straight lines. This is very likely caused by vertical distortion
caused by the inaccurate scene geometry.
Contributions: Fastest casual capturing procedure (< 10 s) for creating immersive 5-DoF
VR experiences.

Comparisons: OmniPhotos share the same use-cases as ODS2DASP (see Chapter 3) and
MegaParallax, whereby it provides the largest action space in terms of magnitudes and the
shortest capturing time. Deformable scene geometry helps to reduce vertical distortion and
overall memory footprint compared to MegaParallax.

5.1 Introduction
The latest virtual reality (VR) head-mounted displays (HMDs) enable breathtaking immer-
sion thanks to recent technological advances in near-eye display and tracking technologies
[Koulieris et al., 2019]. However, capturing VR photographs that exploit the full immersive
potential of VR, in particular including depth cues like motion parallax, is currently beyond
most casual users [Richardt et al., 2019].

State-of-the-art 360° VR photography relies on panoramic light fields [Overbeck et al., 2018],
which require the time-consuming capture and processing of more than a thousand input
photos. This is clearly beyond the reach of casual end users. Hedman and Kopf’s Instant
3D Photography approach [2018] reconstructs high-quality textured meshes from dozens of
captured colour+depth images, with full 360° VR photographs requiring more than a minute

2Note that the negative hemisphere, regarding the radial (outward) direction of the circle, could be theoretically
ignored computationally for the rendering part, but is likely useful to obtain reconstructions in a more robust
manner.
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Figure 5.2: Overview of the main algorithm stages and their outputs, from capture, over
reconstruction, optical flow and proxy fitting, to rendering.

of capture time. In addition, 3D reconstruction remains fragile and prone to artefacts, e.g. for
thin or distant objects in a scene, such as trees. The MegaParallax approach [Bertel et al.,
2019] overcomes this limitation using hybrid IBR with view-dependent flow-based blending.
However, the supported action space is limited by the field of view of the used camera, and
visual distortions are introduced by the basic proxy geometry.

No current 360° VR photography approach simultaneously supports:

1. Quick and easy capture in under 10 seconds,

2. real-time VR rendering of 360° environments with

3. high-quality motion parallax within

4. a action volume with 1 m diameter.

We introduce OmniPhotos to fill this gap – a new approach for casual 360° VR photography
using a consumer 360° video camera. By attaching the 360° camera to a rotating selfie stick,
as shown in Figure 5.1, we can significantly reduce the core capture time to less than 3
seconds, which enables rapid, casual and robust 360° VR photography.

Static scenes work best, although the fast capture time reduces artefacts caused by movement
in the scene.
The omnidirectional view of 360° cameras also unlocks a significantly enlarged head box
compared to other methods, which is ideal for seated VR experiences. We further improve
the visual fidelity of the VR viewing experience by automatically and robustly reconstructing
a scene-adaptive proxy geometry that reduces vertical distortions during image-based view
synthesis.
We demonstrate the robustness and quality of our OmniPhotos approach on dozens of 360°
VR photographs captured in seven countries across Europe and Asia. We further perform
extensive ablation studies as well as quantitative and qualitative comparisons to the state-of-
the-art.

5.2 OmniPhotos pipeline
Our goal is to enable casual 360° VR photography of mostly static environments that is fast
(less than 10 seconds), easy and robust. Our approach follows the general structure of the
VR capture pipeline [Richardt et al., 2020] in terms of capture (Section 5.2.1), preprocessing
(Section 5.2.2) and real-time rendering (Section 5.2.4.1). We specifically tailor the pipeline
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stages to optimise for casual 360° VR photography:

1. We propose the fastest capturing procedure so far (Section 5.2.1) by using a con-
sumer 360° video camera on a rotating selfie stick (although handheld capture is also
possible).

2. We introduce a scene-adaptive deformable proxy geometry fitting step in Section 5.2.5,
which visibly reduces vertical distortion [Shum and He, 1999, Anderson et al., 2016]
in our results (see Section 2.6.2.2, in particular Figure 2.20).

Capture We use a monoscopic 360° camera, e.g., the Insta360 camera, either mounted on
a self-rotary stick (see Figure 5.1), which allows to capture a single circle made of viewpoints
in less than 3 s, or hand-held which can be done usually within 10 s. We show results for 30
datasets (see Figure 5.3 for an overview).

Representation We built upon exactly the same representation as suggested in Mega-
Parallax [Bertel et al., 2019]) (see Chapter 4), but change two components:
First, we use monoscopic 360° video as input instead of narrow field-of-view viewpoints as
captured by ordinary cameras, and second, we employ a scene-adaptive proxy geometry (see
Section 5.2.5) that alleviates vertical distortion compared to using a simple plane as proxy.

Reconstruction and rendering The reconstruction procedure is the main contribution
of OmniPhotos and is discussed in the next section (see Section 5.2.2). The rendering follows
exactly the procedure introduced in MegaParallax, apart from using 360° viewpoints instead
of pinhole images, and is summarised in Section 5.2.4.1.

5.2.1 Casual capture of 360° VR photographs
The input to our approach is a single 360° video that is captured by a consumer 360° camera
moving on a roughly circular path (see Figure 5.2). Specifically, we ensure that one of
the fisheye lenses of the 360° camera is pointing radially outward, as this avoids potential
stitching artefacts within the outward view.

While the camera path is similar to earlier work [Peleg et al., 2001, Richardt et al., 2013,
Bertel et al., 2019], there are several advantages arising by using a 360° camera instead of
a normal perspective camera. Most importantly, thanks to the omnidirectional 360° views,
most of the scene is visible in all video frames, which enables more robust camera pose
estimation and scene reconstruction [Hedman et al., 2017] (see Section 2.6.4.4), as inside-out
camera motions are challenging to reconstruct (see Section 2.5.2) with off-the-shelf SfM
tools [Bertel et al., 2019].
One direct consequence of using 360° views is that the increased field of view significantly
expands the supported action space (see viewing area in Figure 4.13 and set γ = 180°,
considering only directions in front of the camera along its principal axis.).

The 360° camera can be handheld, on a stretched arm, with the person rotating on the spot
to capture the full 360° environment with motion parallax from multiple perspectives. This
process usually takes about 10 seconds for a full rotation. We found that we can further speed
up this capture process using a rotating selfie stick, to about 1.7 seconds per revolution on
average. In addition, the rotating selfie stick ensures a smoother, more repeatable camera
motion that is closer to an ideal circle, which reduces view interpolation artefacts in the final
results.
Our input video swings have an average length of 14.1±5.6 seconds, which includes set-up
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ALLEY (89 images) BALLINTOY (94 images) BEIHAI PARK (80 images)

CATHEDRAL (84 images) CIRCUS (113 images) CIRCUS TREES (94 images)

COAST (84 images) CRESCENT (85 images) DARK HEDGES (116 images)

FIELD (80 images) GREEN (82 images) HILLSIDE (95 images)

HILLTOP (126 images) JINGQINGZHAI (87 images) KRÄMERBRÜCKE (57 images)

MURA DEL PRATO (98 images) NUNOBIKI 1 (72 images) NUNOBIKI 2 (81 images)

PARADE GARDENS (88 images) SECRET GARDEN 1 (77 images) SECRET GARDEN 2 (95 images)

SHIP (71 images) SHRINES 1 (91 images) SHRINES 2 (118 images)

SQUARE 1 (74 images) SQUARE 2 (73 images) TEMPLE 1 (90 images)

TEMPLE 2 (86 images) TEMPLE 3 (72 images) WULONGTING (96 images)

Figure 5.3: Datasets shown in our paper and supplemental material as 360° images. Check
this link to browse through the different datasets.
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time, rotation speed-up, 3–5 revolutions, slow down and stopping the recording. Both capture
approaches are suitable for casual users with little experience, as they are easily learned and
quickly performed.

We use an ‘Insta360 ONE X’3 360° camera for most of our results. We captured most videos
at 4K (3820×1920) resolution at 50 Hz, and some videos at 3K (3008×1504) at 100 Hz
or 5.7K (5760×2440) at 30 Hz to compare the trade-off between spatial resolution and the
number of images per camera circle.
The 4K 360° video has a resolution of 10.6 ppd (pixel per degree), which approximately
matches the angular resolution of current-generation VR head-mounted displays at 11–14 ppd
(e.g. Oculus Rift S, VIVE Pro); 5.7K 360° video at 16 ppd slightly exceeds current VR HMDs.
We generally use an exposure time of 1/2000 seconds, or less, to minimise motion blur4 and
rolling shutter artefacts. We use automatic white-balance and an ISO level of 6400 to reduce
noise. We observed no colour shifts due to automatic white-balancing.

5.2.2 Preprocessing of 360° VR photographs
The 360° video captured by the user in the previous section now needs to be preprocessed to
enable the real-time VR rendering described in Section 5.2.4.1. This process starts with 360°
video stitching and stabilisation, followed by camera reconstruction, loop selection, frame
sampling, optical flow computation, and finally reconstructing our novel scene-adaptive
proxy geometry.

5.2.2.1 360° video stitching

Most consumer 360° cameras record videos on-device in a proprietary format that combines
the fisheye videos, audio track(s) and some metadata, such as data from built-in IMUs
(inertial measurement units). These proprietary videos can then be stitched [Szeliski, 2006,
Perazzi et al., 2015, Lee et al., 2016] (see Section 2.6.3.1) using vendor-specific software to
produce 360° videos with equirectangular projection, the most common monoscopic 360°
video format.
Working directly with stitched 360° videos means that our approach in principle supports
videos stitched in any way, by any software, making it independent from any specific vendor
and thus more accessible to casual users.
The stitching software we use also offers a stabilised stitching option5 that removes almost
all rotational camera motion while keeping vertical lines upright, presumably using IMU
data recorded by the camera. This stabilisation significantly reduces the average motion
magnitude between video frames, which is beneficial for tracking and optical flow estimation,
as argued by Schroers et al. [2018].

5.2.2.2 Camera reconstruction

We estimate camera poses for each frame of the stitched 360° video, and reconstruct a sparse
3D point cloud of the scene using OpenVSLAM [Sumikura et al., 2019], an open-source vi-
sual SLAM approach that natively supports equirectangular 360° video (see Section 2.5.1.2).
Features are tracked in an omnidirectional fashion, which helps overcome reconstruction
challenges related to small-baseline normal field-of-view inside-out video inputs [Ventura,

3https://www.insta360.com/product/insta360-onex (last accessed 6 May 2020)
4Horizontal motion blur can be approximated using image-width×exposure-time

rotation-time , which is about one pixel for a
4K video with 1/2000 s exposure time and 2 s rotation time. Slower rotations, e.g., handheld, allow for increased
exposure times at the same level of blur.

5Insta360 Studio 2019 calls this mode FlowState™ stabilisation. We use version 3.4.2.
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2016, Hedman et al., 2017, Sweeney et al., 2019, Baker et al., 2020].

We perform the camera reconstruction in two passes: we first track the complete video to
obtain a globally consistent 3D point cloud, and then localise all video frames with respect
to the global 3D point cloud in a second pass, to obtain a globally consistent reconstruction
of camera poses (see Figure 5.2).

5.2.2.3 Loop selection

We manually select a looping sub-clip of the video that jointly optimises the following
criteria:

1. Smooth camera motion over time to avoid artefacts caused by jerky motion;

2. as-continuous-as-possible looping, i.e. smooth camera motion across the cut, to prevent
a visible seam in the result; and

3. if a seam is unavoidable, it should be as hidden as possible to minimise its impact, e.g.,
in a less interesting direction of the scene (far away or uniform textures), not ‘cutting’
through people.

The first two criteria could be optimised automatically, but we found that the last criterion
still requires manual input, so we perform the loop selection manually. Finally, we scale the
global coordinate system such that the radius of the camera circle matches the measured or
estimated real-world dimensions, and centre the circle at the origin without loss of generality.

5.2.2.4 Frame sampling

We observed that videos captured at 50 Hz with the rotating selfie stick produce loops of
84±14 frames (averaged over 38 videos). However, our handheld videos produce loops
of 300–500 frames, depending on frame rate, as the photographer is rotating moderately
slowly (~10 s per loop). To reduce space requirements and computation time in these cases,
we select a subset of around 90 frames with approximately uniform angular spacing. We
evaluate the impact of further downsampling to 45, 30 or 15 frames in Table 5.1.

5.2.3 Optical flow

Our view synthesis approach in Section 5.2.4.1 relies on optical flow between pairs of
neighbouring images. We precompute optical flow fields using FlowNet2 [Ilg et al., 2017]
and DIS flow [Kroeger et al., 2016] directly on the stitched equirectangular images. Note
that these methods were designed for perspective images.
They work well on the pseudo-perspective equatorial region of equirectangular images, but
degrade near the poles due to the severe distortions. To ensure consistent optical flow across
the azimuth wrap-around, we repeat a vertical strip of the image just beyond the left and
right edges of the equirectangular projection, and crop the computed flow fields back to the
original size.
In practice, we find that flow fields at half the image resolution are sufficient for high-quality
view synthesis at runtime using view-dependent flow-based blending [Bertel et al., 2019]
(see Section 4.4.4). Our approach is agnostic to the specific optical flow technique that is
used, and thus automatically benefits from future improvements in optical flow computation
techniques.
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Figure 5.4: Illustration of our rendering approach using equirectangular input images (shown
in blue and orange). (a) Each pixel xD of the desired image (in green) is computed using a
view-dependent blending of two reprojected pixel coordinates (small coloured circles) in the
nearest two viewpoints. (b) We compute flow-adjusted pixel coordinates using equirectan-
gular optical flow (small coloured squares), conceptually “identical“ to MegaParallax (see
Chapter 4, in particular Section 4.5).

5.2.4 Proxy fitting

We compute a scene-adaptive proxy geometry by fitting a deformable spherical mesh to the
reconstructed 3D world points in Section 5.2.5. This approach is inspired by Lee et al.’s
Rich360 video stitching method [2016], which was previously used to reduce ghosting when
stitching 360° using a structured rig (see Section 2.6.4.3).

Our proxy fitting technique is specifically tailored for our casually captured OmniPhotos,
and robustly produces scene-adaptive proxy geometry that more accurately represents the
geometry of the captured scene than the simple planar or cylindrical proxy used before
[Levoy and Hanrahan, 1996, Shum and He, 1999, Peleg et al., 2001, Richardt et al., 2013,
Bertel et al., 2019].
This step noticeably reduces vertical distortion [Shum and He, 1999] (see Section 2.6.2.2,
in particular Figure 2.20), which is an artefacts caused by re-projecting multi-perspective
viewpoints via coarse proxy geometry, as shown in our results.

5.2.4.1 Rendering 360° VR photographs

Our 360° VR photography viewer generates new viewpoints in real time given the location
and orientation of the user’s headset. Our rendering approach strictly follows the implicit
IBR method from previous [Bertel et al., 2019] (see Section 4.5), but we extended it to
support equirectangular images (see Figure 5.4 a) ) and handle the azimuth wrap-around.
Each desired new view ID is rendered by first rasterising the proxy geometry6, yielding scene
points X, and then computing the colour of each pixel xD independently and in parallel.
Specifically, we use the direction of each pixel’s camera ray rD in the desired output view to
find the optimal input camera pair to colour the pixel, and then project the proxy 3D point X
into both cameras using equirectangular projection giving image projections xL and xR for
the left and right view, respectively.
Finally, we apply MegaParallax’s view-dependent flow-based blending (see Figure 5.4 b))

6Because we actively reconstruct 3D geometry, OmniPhotos is a hybrid IBR approach, compared to Mega-
Parallax which uses a planar proxy and (reconstructed) 2D image correspondences.
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using the precomputed optical flow fields, F̂LR and F̂RL, while explicitly handling the azimuth
wrap-around in the flow-based blending computations.

We implement our VR photography viewer using OpenVR, which at the time of writing
supported a variety of consumer headsets based on SteamVR, Oculus and Windows Mixed
Reality VR, with the same code base. We render stereoscopic views using the eye trans-
formation matrices provided by OpenVR, which encode the camera poses for the left- and
right-eye cameras.

5.2.5 Scene-adaptive deformable proxy fitting
Our approach to reconstruct the scene-adaptive proxy is strongly inspired by the work of Lee
et al. [2016] (see Section 2.6.4.3) which suggest to deform a sphere according to a sparse
point cloud and use this deformed sphere as composition surface needed to alleviate ghosting
when stitching multiple images into one [Szeliski, 2006] (see Section 2.6.3.1).

We represent the sphere mesh S= (V,F) in terms of vertices V and triangle faces F . Given
the spherical nature of the mesh, vertices are naturally defined in spherical coordinates
(θ ,ϕ,r) (see Section 2.2). We initialise the vertices V in a regular grid configuration of
size m×n, i.e. V = {vi}m×n

i=1 , with uniform spacing along the azimuth and polar angles, and
regularly tessellated triangle faces F .

In the following, we formulate an energy minimisation that deforms this sphere mesh
by adjusting the vertex radii, while keeping their angular coordinates and their triangle
connectivities fixed to ensure the problem is well-conditioned and edges are not collapsing.
Lee et al. [2016] found that optimising vertex radii directly may lead to unstable results with
negative or very large values, which they address using additional 1D partial derivative terms.
Instead, we parametrise our optimisation in terms of inverse depth, d(p) = 1/‖p‖, which
helps regularise the scale of variables in the optimisation [Im et al., 2016], particularly for
far-away points [Civera et al., 2008].

Our energy formulation consists of four terms:

argmin
V

Edata(P,V )+Esmooth(V )+Epole(V )+Eprior(V ), (5.1)

where P is the set of reconstructed 3D world points, and V the vertices of the sphere mesh.

va

vc

vb

p̂
p

o

Data term We would like to deform the sphere mesh to optimally
approximate the set P of 3D points, which means minimising the
distance between points and triangles. By construction, as the mesh
is centred at the origin, the ray from the origin through any point p
intersects one or more triangles7, which can be identified based on the
spherical coordinates of the point p and the grid of vertices V .

Let us denote the intersected triangle using f (p) = {va,vb,vc} and
the intersection point as p̂, expressed in barycentric coordinates with respect to the triangle
vertices, so we can minimise the distance between all points p and their triangle intersections
p̂:

7If the ray intersects an edge or a vertex, we can pick any adjacent triangle, as the resulting energy formulation
is practically identical: one or two vertices will have barycentric coordinates of zero and thus not contribute to
the energy.
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Edata(P,V ) =
λdata

|P| ∑
p∈P

ρ


∥∥∥∥∥∥∥d(p)−d

 p̂

∑
v∈ f (p)

b(p,v)v


∥∥∥∥∥∥∥

2 , (5.2)

where b(p,v) is the barycentric coordinate of p with respect to the vertex v∈ f (p), computed
in terms of the spherical angles (θ ,ϕ), such that p̂ = ∑v∈ f (p) b(p,v)v, and λdata is the weight
of the data term.
In addition, we introduce a robust loss function ρ(x) to make the optimisation more robust
to outlier 3D points, which are unavoidable in current SLAM techniques. Specifically, we
use a scaled Huber loss (with scale factor σ ):

ρ(x) =

{
x x 6 σ2

2σ
√

x−σ2 x > σ2 (5.3)

Smoothness term We use a Laplacian smoothness term to encourage smoothly varying
radii within the mesh:

Esmooth(V ) =
λsmooth

|V | ∑
v∈V

∥∥∥∥∥d(v)− ∑
w∈N(v)

d(w)

|N(v)|

∥∥∥∥∥
2

, (5.4)

where N(v) denotes the set of vertices neighbouring v: (1) non-polar vertices have four
neighbours, along their azimuth/polar angle isocontours, and (2) polar vertices have two
non-polar neighbours, on opposite sides of the sphere (same elevation, with ∆azimuth = π).
This results in 2D Laplacian losses everywhere outside the poles, and 1D Laplacian losses
across both poles.

Pole term In our sphere mesh representation, we have multiple vertices at the pole (the
first and last ‘row’ of vertices correspond to the North and South pole, respectively). We
constrain a pole vertex v and its right neighbour v to be close to each other using

Epole(V ) =
λsmooth

|V | ∑
v∈Vpoles

‖d(v)−d(v)‖2 . (5.5)

Prior term To handle large regions of the mesh without any 3D points, we add a weak
prior term that attracts each vertex towards the mean inverse depth dprior of all points P:

Eprior(V ) =
λprior

|V | ∑
v∈V

∥∥d(v)−dprior
∥∥2 . (5.6)

Implementation In practice, we replace each residual ‖a−b‖ in Equations 5.2 and (5.4)
to (5.6) with a normalised residual ∥∥∥∥a−b

a+b

∥∥∥∥ (5.7)
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Parallax360
[Luo et al., 2018]
(Section 2.6.3.3)

MegaParallax
[Bertel et al., 2019]

(Chapter 4)
OmniPhotos

Figure 5.5: Comparison of image-based 360° VR photography techniques for a virtual camera
moving on a circular path. Our result reduces vertical distortion visibly, as can be seen in the
table benches in the top row. This is an animated figure, please view with Adobe Reader
if it does not play. Parallax360 [Luo et al., 2018] interpolates views on the capture circle,
but not inside of it for the virtual camera path. MegaParallax [Bertel et al., 2019] generates
views that suffer from vertical distortion, which distorts motion parallax. Our results show
clear improvements in the quality of view synthesis and motion parallax.

that cancels out any global scale factor, as (ka)−(kb)
(ka)+(kb) =

a−b
a+b . This ensures that the same globally

optimal solution is found regardless of different scale factors due to varying units of length.

We implement this optimisation using the Ceres non-linear least squares solver [Agarwal
et al., 2010], and choose the sparse Cholesky solver to exploit the sparse structure of the
energy with thousands of points. The optimisation stops when |∆cost|/cost < 10−6, or after
100 iterations.
For the initial solution, we set all vertices to the mean inverse depth of all points; more
sophisticated schemes like a hemisphere with a ground plane are possible. We evaluate a
range of parameter values in Figure 5.7 and Table 5.1, and use the following parameter values
for all our results: m = 160, n = 80, λdata = 1, σ = 0.1, λsmooth = 100, λprior = 0.001.

5.3 Results and evaluation
Figure 5.3 shows 30 OmniPhotos we captured and processed using our approach. Three of
these were taken handheld (CATHEDRAL, SHRINES 1+2), with the majority (90%) captured
using our rotating selfie stick with an average loop length of 1.2–1.8 seconds. The selfie
stick is telescopic, which allows for capture radii between 33 and 100 cm, with about 63% at
55 cm and 27% at 78 cm.

In this section, we show qualitative results and comparisons, perform quantitative evaluation
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and ablation studies, and finally discuss the computational performance of our approach.
Our results are best appreciated and evaluated in motion, which gives a better impression of
the visual experience. We further include extensive visual results and comparisons in our
supplemental material and video (see videos on the web8).

5.3.1 Comparative evaluation

The approaches closest to ours, Bertel et al.’s MegaParallax [2019] (see Chapter 4]) and
Luo et al.’s Parallax360 [2018] (see Section 2.6.3.3), also use implicit IBR, i.e., flow-based
blending to synthesise novel views in real-time. However, they utilise very simple and thus
coarse proxy geometry which causes vertical distortion artefacts (see Section 2.6.2.2, in
particular Figure 2.20), especially perceivable in nearby scene regions.
Our scene-adaptive deformable proxy geometry deforms to fit the scene more closely,
which greatly reduces these vertical distortion artefacts, as visible in Figure 5.5 and our
supplemental material.

We next compare to Casual 3D Photography Hedman et al. [2017] (see Section 2.6.4.4).
Their 360° 3D photos were reconstructed from around 50 fisheye DSLR photos, which take
about one minute to capture, an order of magnitude slower than our approach. Their 3D
reconstruction approach works well for textured scenes, but fails for fine geometry like tree
branches, or uniformly coloured regions like the sky, for which accurate depth estimation
and 3D reconstruction remain open problems.
As their implementation is not available but their datasets are, we process one of their two
camera circles (about 25 images) with our approach. To adapt their fisheye images to our
approach, we first undistort them to equirectangular images and then stabilise the views by
rotating them inversely to the camera orientations. Figure 5.6 shows that our hybrid IBR
approach does not require a highly accurate 3D reconstruction for convincing view synthesis
from the same input.

Monocular 3D photography approaches Kopf et al. [2019], Shih et al. [2020] (see Sec-
tion 2.7.1.2) also tend to fail for complex geometry, as shown in Figure 5.8. Our OmniPhotos
achieve better visual results thanks to multi-view input and the combination of scene-adaptive
proxy geometry and flow-based blending for aligning texture details.

Our next comparison is to Serrano et al.’s approach for adding motion parallax to 360° videos
captured with a static camera [2019] (see Section 2.6.4.5). As their approach takes as input a
360° RGBD video, we render an equirectangular image and depth map from Hedman et al.’s
datasets using Blender and repeat this 360° rgbd frame to create a (static) 360° rgbd video.
The resulting static scene does not play to their method’s strength of propagating background
information behind dynamic objects. Please see Figure 5.6 and our supplemental video.

5.3.2 Quantitative evaluation

We quantitatively evaluate and compare our OmniPhotos approach to the most closely-related
baseline methods [Luo et al., 2018, Bertel et al., 2019], and validate our design choices and
parameters using an extensive ablation study in Table 5.1. We perform this evaluation in the
spirit of virtual rephotography [Waechter et al., 2017] on a synthetic test set of five scenes
(APARTMENT0, HOTEL0, OFFICE0, ROOM0, ROOM1) from the Replica dataset [Straub
et al., 2019].

8OmniPhotos webpage
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Table 5.1: Quantitative comparison of baseline methods (top) and ablated versions of our
approach (bottom). Numbers are mean±standard error; ‘N’ means higher is better, ‘H’ means
lower is better. ‘GT’ indicates ground truth, and ‘*’ a modified proxy geometry. Please see
Section 5.3.2 for a detailed description.

Baseline/Ablation Model Images Proxy LPIPSH SSIMN PSNRN

MegaParallax Bertel et al. [2019] 90 cylinder 0.169±0.002 0.750±0.003 21.83±0.12

MegaParallax Bertel et al. [2019] 90 plane 0.181±0.002 0.737±0.003 21.45±0.12

Parallax360 Luo et al. [2018] 90 cylinder 0.207±0.003 0.711±0.003 20.75±0.11

Our complete method 90 ours 0.059±0.001 0.867±0.002 28.02±0.09

0) Our method (ground-truth inputs) 90 GT 0.041±0.000 0.905±0.001 30.08±0.11

1) No robust data term 90 ours* 0.062±0.001 0.859±0.002 27.64±0.10

2) No normalised residuals 90 ours* 0.072±0.001 0.854±0.002 27.30±0.10

3) Optimising depth + no normalised residuals 90 ours* 0.073±0.001 0.853±0.002 27.28±0.10

4) Optimising depth (not inverse) 90 ours* 0.059±0.001 0.867±0.002 28.01±0.10

5) DIS flow Kroeger et al. [2016] 90 ours 0.060±0.001 0.865±0.002 27.98±0.09

6) No flow (linear blending) 90 ours 0.059±0.001 0.868±0.002 28.03±0.09

7a) Low-resolution proxy (m=80, n=40) 90 ours* 0.067±0.001 0.843±0.002 27.07±0.09

7b) High-resolution proxy (m=240, n=120) 90 ours* 0.064±0.001 0.867±0.002 27.78±0.10

8a) Less smooth (λsmooth =10) 90 ours* 0.068±0.001 0.866±0.002 27.70±0.10

8b) More smooth (λsmooth =1000) 90 ours* 0.064±0.001 0.849±0.002 27.31±0.09

9a) Fewer images (1 view per 8°) 45 ours 0.061±0.001 0.864±0.002 27.96±0.09

9b) Fewer images (1 view per 12°) 30 ours 0.063±0.001 0.862±0.002 27.90±0.09

9c) Fewer images (1 view per 24°) 15 ours 0.071±0.001 0.855±0.002 27.44±0.09
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Casual 3D Photography
[Hedman et al., 2017]

(Section 2.6.4.4)

360° Motion Parallax
[Serrano et al., 2019]

(Section 2.6.4.5)
OmniPhotos

Figure 5.6: Comparison to Hedman et al.’s Casual 3D Photography [2017] and Serrano
et al.’s Motion Parallax for 360° RGBD Video [2019] on two datasets from Hedman et al.
[2017]. 3D reconstruction works well for the highly textured LIBRARY scene (top), but
struggles with the thin tree branches and distant clouds in the BOATSHED scene (bottom).
Green regions are holes in the textured mesh. For Serrano et al.’s approach, we use colour and
depth from Hedman et al.’s results, which works well for foreground objects with accurate
depth, but not for occluded regions that are challenging to fill from the monocular 360° input.
Our approach works well for both datasets, but shows some flow warping artefacts due to the
undersampled input views (only 25 views).

Specifically, we render synthetic equirectangular images on a camera circle with a radius of
0.5 m as input for the various methods, and we evaluate cubemap views generated by each
baseline/ablation at 69 locations inside the capture circle, on a 10 cm Cartesian grid.
We do not evaluate the up/down views to focus our evaluation on the region near the equator,
where viewers tend to fixate when exploring panoramas [Sitzmann, Serrano et al. 2018]. For
each location, we render 512×512 cube maps, and compare the generated view to the ground
truth using structural similarity index (SSIM; Wang et al., 2004), peak signal-to-noise ratio
(PSNR), and the LPIPS perceptual similarity measure [Zhang et al., 2018]. We report the
maximum value within a shiftable window of ±1 pixel.
Note that this evaluation uses indoor spaces whereas our real OmniPhotos were all captured
outdoors (see Figure 5.3).
Our OmniPhotos quantitatively outperform MegaParallax and Parallax360 by a large margin,
in addition to the clear qualitative improvement visible in Figure 5.5 and our supplemental
material.

Consider Table 5.1: we next evaluate our method on ground-truth camera poses and proxy
geometry (0) to test the upper limit of our approach. In the next rows, we replace our robust
data term with a plain L2 loss (1), remove our normalised residuals (2), and use depth instead
of inverse depth (4), each of which reduces performance. Using depth instead of inverse
depth (3), DIS flow (5) or no flow (6), achieves comparable performance to our approach.
Row 3 shows that depth and inverse depth perform similarly when using normalised residuals.
This suggests that using inverse depth and using normalised residuals are complimentary
techniques for regularising the scale of variables during the optimisation.
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Figure 5.7: Evaluation of robustness and parameter choices for different versions of our scene-
adaptive deformable proxy fitting on five ground-truth scenes (APARTMENT0, HOTEL0,
OFFICE0, ROOM0, ROOM1) from Replica [Straub et al., 2019]. We measure reconstruction
accuracy using RMSE in cm, see Section 5.3.2 for details. The shaded areas indicate the
standard error of the mean. We compare Huber versus L2 data loss (see Equation 5.2),
optimisation in terms of depth or inverse depth (disparity), and standard residuals (‘sres.’)
versus our normalised residuals (‘nres.’, Equation 5.7). Left: Our proxy fitting technique
(dark green line) is the most robust to an increasing number of outlier 3D points. The
arrow indicates the level of outliers we assume for the following comparisons. Centre and
right: Our chosen smoothness weight of λsmooth = 100 and robust loss scale factor σ = 0.1
(indicated by arrows) are close to the global minimum reconstruction errors, and empirically
work better for outdoor scenes that have more depth complexity than the indoor rooms of
Replica. The light green line shows that standard residuals do work in practice, but the
optimal value of the robust loss scale factor σ will depend on the scale of the scene.

The normalised residuals have the additional benefit that one set of parameter values works
for both depth and inverse depth, despite their scale differences.
Changing the resolution (7) or smoothness (8) of the proxy geometry results in a drop in
performance.
Reducing the number of input views (9) steadily reduces performance, with 45 input images
almost matching the performance of 90 input views.

Proxy accuracy In addition to the visual quality of generated views, we also evaluate
the accuracy of our deformable proxy fitting in Figure 5.7.

This experiment evaluates the robustness and parameter choices for different versions of our
scene-adaptive deformable proxy fitting on five ground-truth scenes from the Replica dataset
Straub et al. [2019].
We render 1920×960 synthetic equirectangular depth maps and downsample them using area
averaging to 80×40 = 3200 3D points, to approximately match the number of 3D points
we usually obtain from OpenVSLAM [Sumikura et al., 2019]. To simulate typical SLAM
noise and outliers, we add ±2 cm uniform noise to all 3D point locations, and add 25%=800
outlier points sampled from a 10-metre cube centred on the scene.
We measure the reconstruction quality of the proxy geometry using RMSE per vertex of the
spherical depth map, in cm, averaged over 10 runs for each of the five scenes.

Figure 5.7 shows that our proposed approach, with robust Huber data loss on inverse depth
and normalised residuals, performs best with increasing number of outliers.
Our default parameter values, which we use for all our OmniPhotos, can also be seen to
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3D photography using context-aware
layered depth inpainting

Shih et al. [2020]
(Section 2.7.1.2)

OmniPhotos

Figure 5.8: Current 3D photography approaches, such as Shih et al.’s, struggle with fine
geometry, such as the thin tree branches in this example. Our approach succeeds due to our
image-based rendering approach. Please see the animated figure for full effect.

produce results close to the global minimum, in terms of reconstruction error, within the
explored design space.
We also observed that the quality of the proxy geometry increases with the number of
(inlier) scene points that can be used to guide the deformation process, for example using
sparse COLMAP reconstructions [Schönberger and Frahm, 2016] or dense multi-view stereo
reconstructions [Pozo et al., 2019].

5.3.3 Performance
Freshly captured OmniPhotos can be processed in about 30–40 minutes on a standard
computer (3 GHz 8-core CPU, 16 GB RAM, NVIDIA GeForce RTX 2060). For a typical
9-second 360° video with 3840×1920 at 50 Hz (450 frames total, 90 frame loop), these are
the major preprocessing steps:

• Stabilised 360° video stitching with CUDA: ~12 seconds

• Two-pass OpenVSLAM reconstruction: ~3 minutes

• Blender visualisation import: ~15 minutes

• Manual loop selection: ~5 minutes
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• Reading images & other IO: ~20 seconds

• Scene-adaptive proxy fitting: ~10 seconds

• FlowNet2 / DIS flow: ~10 minutes / ~20 seconds

Importantly, the reconstruction with OpenVSLAM is about two orders of magnitude faster
than with COLMAP.
The unoptimised size of preprocessed OmniPhotos is dominated by the precomputed optical
flow fields (14 MB/frame), followed by the input images (~2 MB/frame) and the proxy
geometry (0.8 MB). For a typical dataset with 90 frames, this sums up to about 1.4 GB all-in.
Our viewer loads such a dataset from SSD into GPU memory in about 20 seconds.
Rendering of 1920×1080 views consistently takes less than 4.16 ms (240 Hz), and VR
rendering is performed at the 80 Hz display rate of an Oculus Rift S HMD, for a smooth and
immersive VR experience.

5.4 Discussion
Applications OmniPhotos are a great new way to reliably capture immersive 3D envi-
ronments for casual to ambitious consumers as well as professional users. OmniPhotos can
capture personal memories, for example on holidays, or group photos on family occasions.
It would be interesting to see how people could create stories by concatenating multiple
OmniPhotos. In terms of professional applications, OmniPhotos are ideal for virtual tourism,
which lets people explore far-away places from the comfort of their own home. OmniPhotos
would also be useful for real estate scenarios to capture outdoor spaces or individual rooms.

Resolution vs frame rate As discussed in Section 5.2.1, we captured input videos with
different resolutions and frame rates to evaluate the trade-off between spatial resolution and
the number of images per camera circle. We were originally aiming to capture more than
100 views per camera circle, but our new scene-adaptive proxy geometry has significantly
reduced the number of required input views from 200–400 Bertel et al. [2019] to 50–100
for our approach (see Table 5.1, row 9). Note that the improved proxy alleviates vertical
distortion in comparison to MegaParallax, while flow-based blending reduces ghosting, in
both cases.

Visually, the 5.7K videos produce the highest-fidelity VR photos, even when downsampled
to 4K. The native 4K resolution tends to be slightly blurry, as it is the result of stitching two
2K×2K fisheye images into a 4K×2K equirectangular image. Finally, the 3K videos look
noticeably blurry in the final result.

Action space analysis Our rendering approach is modelled after MegaParallax [Bertel
et al., 2019] (see Section 4.6.1) and we can therefore benefit from their theoretical analysis
of the supported action space. They showed that the horizontal translation x is limited to
x < r sin γ

2 for a given camera circle radius r and camera field of view γ .
The field of view of our cameras is effectively γ = π , as they capture the complete outward-
facing hemisphere. This yields the radius of the camera circle as the upper limit of the
viewing space radius.
Experiments verify this behaviour, our synthesis works anywhere inside the camera circle,
i.e., most of our OmniPhotos provide action spaces of one metre in diameter (capture radius:
55 cm).
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Schroers et al. also analysed the minimum visible depth observed by two cameras in a
circular configuration [2018]. Their formula is expressed in terms of the field of view γ = π

and the angle θ between optical axes of adjacent cameras (θ ≈ 2π

N for N cameras):

d = r
sin(π− γ/2)
sin(γ/2−θ)

=
r

cos
(2π

N

) . (5.8)

For N = 90 cameras, like in our case, this evaluates to 0.24% of the capture circle radius, or
1.3 mm for r = 55 cm, which is negligible.

Compression OmniPhotos can be compressed from 1.4 GB to a more reasonable 0.25 GB
(18%) using off-the-shelf 7-Zip. A further 0.07 GB can be saved if optical flow fields are not
transmitted and instead computed on the local machine (final size: 0.18 GB or 13%).

5.4.1 Limitations and future work
All approaches have limitations; we discuss the most important ones here and use them to
motivate directions for future work.

Proxy geometry While deforming a sphere mesh to fit into the reconstructed point cloud
usually works well in practice (see Figure 5.5), it clearly has its limitations. Its fixed topology
combined with the enforced smoothness produces a very smooth proxy geometry, which can
cause warping artefacts in areas with large depth differences, in particular, vertical distortion
is still present, but alleviated compared to previous work.
Object boundaries of nearby objects, essential for (dis-)occlusion effects, cannot be fitted
tightly enough, leading to warping artefacts that tend to change as the viewpoint changes
(see Figure 5.9).
These issues could potentially be overcome in different ways:

1. Mesh vertices could be moved more freely, not just radially, e.g., to align to depth
edges.

2. Multi-view stereo, especially for 360° input [Im et al., 2016, Pathak et al., 2016], or
optical flow correspondences would provide more scene points that can make the
proxy geometry more accurate and detailed.

3. Learned methods like monocular depth estimation [Wang et al., 2020, Ranftl et al.,
2020], or implicit [Mildenhall et al., 2019] scene representations, could be used to
densify sparse reconstructions, especially in texture-less regions.

As demonstrated by the ground-truth proxy experiment in Table 5.1, better proxy geometry
improves visual results, as expected.

Optical flow Even though the quantitative evaluation in Table 5.1 may suggest otherwise,
flow-based blending helps reduce ghosting artefacts when the scene proxy does not fit the
real scene geometry tightly. Examples for this include detailed geometry, like fences or thin
tree branches (see Figure 5.8), or reflections, for which there is a mismatch between the real
and apparent depth.
In some cases, we observed that FlowNet2 predicted incorrect flow near strong edges, e.g., a
ship vs the blue sky (see Figure 5.9), which results in view interpolation artefacts. In these
cases, we fall back to DIS flow.

Stitching artefacts We observed minor to moderate stitching artefacts being introduced
in some videos, particularly those captured at 3K/100 Hz. These artefacts are not limited to
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Figure 5.9: Remaining visual artefacts in our results. Examples of different artefacts from left
to right: Proxy warping, Flow warping, and stitching. Errors in the proxy geometry or optical
flow may produce warping artefacts. We observed proxy warping artefacts primarily at large
depth discontinuities, while most flow warping artefacts affect objects adjacent to a uniform
region like the sky. A stitching bug in the Insta360 Studio software causes a ‘swimming’
artefact.

the overlap region between the two fisheye lenses and appear to be caused by warping parts
of the video frame incorrectly, probably due to a software bug.9

Since the artefacts are not consistent over time, they can cause ‘swimming’ during rendering,
as shown in Figure 5.9. We found these only in the stabilised stitch not the standard stitch.
However, we consider the benefits of the stabilised stitch (improved camera reconstruction
and flow computation) to outweigh these usually minor artefacts in some of our OmniPhotos.

Vertical motion Our approach provides compelling 5-DoF view synthesis by supporting
arbitrary head rotations (3D) as well as translations in the plane (2D) of the capture circle
(see Figure 5.2). The missing DoF is vertical translation as our capture approach deliberately
captures viewpoints at roughly the same height and thus cannot plausibly synthesise new
viewpoints from a different height.
In practice, this is not a problem for seated VR experiences, where users naturally keep their
heads at a consistent height. Capturing camera views on a sphere instead of a circle can
overcome this limitation Luo et al. [2018], Overbeck et al. [2018].

Note that leaving the camera plane is possible already in the current version, but there are no
high-quality viewpoints to be expected which is why we do not count that DoF to the overall
capacity of our hybrid scene representation.

Memory footprint Our uncompressed OmniPhotos require more than one GB of memory,
which is manageable for a 360° VR photo experience, but cannot be easily extended to 360°
VR video.
By far the largest contributor to this memory footprint are the precomputed optical flow
fields. Reducing the number of input views can reduce the memory footprint, and so can
discarding the inward-facing hemisphere of the input images and their flow fields. Note that
increasing the baselines decreases the quality of dense correspondences, e.g., optical flow.

In many cases, the proxy geometry aligns the input views sufficiently well without optical
flow. In these regions, no flow needs to be stored, which could lead to a more compact
scene-dependent flow storage format.

9This bug in the proprietary software Insta360 Studio 3.4.2 has been fixed in v3.4.10.
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Note that close-by scene objects, represented with our (smooth) scene-adaptive proxy, will
suffer from vertical distortion and ghosting. Vertical distortion is only reduced by improving
geometry (or capturing more viewpoints) (see Figure 2.20), and de-ghosting only works if
the flow is of sufficient quality, which can only be expected if images have small baselines,
or scene objects can be considered as infinitely far away [Szeliski, 2006].

Editing Our OmniPhotos are currently limited to reproducing the scenes that were cap-
tured as is. Virtual objects, such as digital humans, can easily be rendered on top, but the
quality of occlusions by scene geometry, such as trees or buildings, is limited by the detail
of the proxy geometry. Relighting the captured scene, adding new objects with consistent
lighting, or removing captured objects are interesting directions for future work.

Combination of proxy and flow For future work, we would like to investigate the
design space of camera poses, proxy geometry and optical flow with respect to the observed
visual artefacts in the rendered results, in the context of 6-DoF VR. Previous work on
free-viewpoint video [Lipski et al., 2014] could be a good starting point. Extending their
view-dependent geometry into a panoramic space in order to be be used for both views of a
stereoscopic view, should alleviate geometry-related inconsistencies.

Eisemann et al.’s floating textures could be used to adjust the currently used flow [2008].
Assuming a static scene, all corrected flow fields can be precomputed, although leading to
quality drop compared to computing flow on-the-fly for each desired viewpoint from scratch.
Note that only close-by objects need to be correct by flow, assuming sufficiently narrow
baseline dataset for which background objects only exhibit small disparities, if any at all.
Nevertheless, the authors report that a sufficiently good proxy is required, technically to keep
displacements in the reprojected views small.
It is further not clear how the method would perform for inside-out camera motions, and
how to formulate a pixel-based (instead of view-based) version to allow the rendering of
panoramic output images needed for VR.

Another promising direction might be a differentiable renderer for jointly optimising scene
and camera geometry as well as flows to maximise the quality of synthesised views. A
learned version of model-based stereo [Debevec et al., 1996] could be interesting.
I think that flow could help initialising a trivial scene proxy like a plane into something
more reasonable. Note that bi-directional flow fields encode scene occlusions [Holynski and
Kopf, 2018]. Keeping geometry edges consistent with image intensity edges is important for
explicit IBR approaches [Chaurasia et al., 2013, Hedman et al., 2016]. Furthermore, instead
of using classic epipolar geometry, light field approaches could be employed which create
highly accurate local geometry [Kim and Hilton, 2013], or other (fast) local methods [Penner
and Zhang, 2017].
Extracting a scene model [Park et al., 2020], or explicit geometry for VR [Hedman et al.,
2017, Broxton et al., 2020, Tomoto et al., 2020], would definitely add to the field, in particular
if we could get high-quality results while keeping the overall round-trip short.

Finally, extending McMillan and Bishop’s plenoptic modeling framework into real-world
IBR feels like an intriguing project. Pair-wise correspondences of spherical 360° images
can be computed in high quality [Pathak et al., 2016, Im et al., 2016]. Furthermore, there
are no implicit assumptions on camera motions (apart from being sparse enough to obtain
well-conditioned epipolar geometry), since the approach is formulated with solely one pair
of omnidirectional (cylindrical) viewpoints.
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5.5 Conclusion
We presented OmniPhotos, a new type of 360° VR photography that enables fast, casual
and robust capture of immersive real-world VR experiences. The key to the fast capture of
OmniPhotos is to rotate a consumer 360° video camera mounted on a rotary selfie stick,
which takes less than 3 seconds per loop or 10 seconds overall, and is currently the fastest
approach for capturing immersive 360° VR photos.
The visual quality of our novel view rendering is significantly improved by the automatic
reconstruction of a scene-adaptive deformable proxy geometry, which reduces the number of
required input views by a factor of 4 and strongly reduces vertical distortion compared to
the state-of-the-art in casual 360° VR with motion parallax, based on implicit IBR, namely
MegaParallax.

Our approach robustly creates OmniPhotos across a wide range of outdoor scenes, as demon-
strated in our results and supplemental material. We will publicly release our OmniPhotos
implementation in the hope of enabling casual consumers and professional users to create
and experience their own OmniPhotos.
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G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richardt. Near-eye
display and tracking technologies for virtual and augmented reality. 38(2):493–519, May
2019. ISSN 1467-8659. doi: 10.1111/cgf.13654. URL https://richardt.name/nedtt/.

T. Kroeger, R. Timofte, D. Dai, and L. Van Gool. Fast optical flow using dense inverse
search. pages 471–488, 2016. URL https://arxiv.org/abs/1603.03590.

J. Lee, B. Kim, K. Kim, Y. Kim, and J. Noh. Rich360: Optimized spherical representation
from structured panoramic camera arrays. 35(4):63:1–11, July 2016. doi: 10.1145/
2897824.2925983.

M. Levoy and P. Hanrahan. Light field rendering. pages 31–42, August 1996. doi: 10.1145/
237170.237199.

C. Lipski, F. Klose, and M. Magnor. Correspondence and depth-image based rendering
a hybrid approach for free-viewpoint video. 24(6):942–951, June 2014. doi: 10.1109/
TCSVT.2014.2302379.

B. Luo, F. Xu, C. Richardt, and J. Yong. Parallax360: Stereoscopic 360° scene representation
for head-motion parallax. 24(4):1545–1553, April 2018. doi: 10.1109/TVCG.2018.
2794071.

L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system. pages
39–46, 1995. doi: 10.1145/218380.218398.

B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoorthi, R. Ng,
and A. Kar. Local light field fusion: Practical view synthesis with prescriptive sampling
guidelines. CoRR, abs/1905.00889, 2019. URL http://arxiv.org/abs/1905.00889.

R. S. Overbeck, D. Erickson, D. Evangelakos, M. Pharr, and P. Debevec. A system for
acquiring, compressing, and rendering panoramic light field stills for virtual reality. 37
(6):197:1–15, 2018. doi: 10.1145/3272127.3275031. URL https://ai.google/research/
pubs/pub47489.

190

https://richardt.name/nedtt/
https://arxiv.org/abs/1603.03590
http://arxiv.org/abs/1905.00889
https://ai.google/research/pubs/pub47489
https://ai.google/research/pubs/pub47489


J. J. Park, A. Holynski, and S. Seitz. Seeing the world in a bag of chips, 2020.

S. Pathak, A. Moro, A. Yamashita, and H. Asama. Dense 3d reconstruction from two
spherical images via optical flow-based equirectangular epipolar rectification. In 2016
IEEE International Conference on Imaging Systems and Techniques (IST), pages 140–145,
2016.

S. Peleg, M. Ben-Ezra, and Y. Pritch. Omnistereo: Panoramic stereo imaging. 23(3):279–290,
2001. doi: 10.1109/34.910880.

E. Penner and L. Zhang. Soft 3D reconstruction for view synthesis. 36(6):235:1–11,
November 2017. doi: 10.1145/3130800.3130855.

F. Perazzi, A. Sorkine-Hornung, H. Zimmer, P. Kaufmann, O. Wang, S. Watson, and M. Gross.
Panoramic video from unstructured camera arrays. 34(2):57–68, May 2015. doi: 10.1111/
cgf.12541.

A. Parra Pozo, M. Toksvig, T. F. Schrager, J. Hsu, U. Mathur, A. Sorkine-Hornung,
R. Szeliski, and B. Cabral. An integrated 6DoF video camera and system design. 38(6):
216:1–16, November 2019. doi: 10.1145/3355089.3356555. URL https://github.com/
facebook/facebook360_dep.

R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 2020.

C. Richardt, Y. Pritch, H. Zimmer, and A. Sorkine-Hornung. Megastereo: Constructing high-
resolution stereo panoramas. pages 1256–1263, June 2013. doi: 10.1109/CVPR.2013.166.

C. Richardt, P. Hedman, R. S. Overbeck, B. Cabral, R. Konrad, and S. Sullivan. Capture4VR:
From VR photography to VR video. In SIGGRAPH Courses, 2019. ISBN 978-1-4503-
6307-5. doi: 10.1145/3305366.3328028. URL https://richardt.name/Capture4VR/.

C. Richardt, J. Tompkin, and G. Wetzstein. Capture, reconstruction, and representation of
the visual real world for virtual reality. In Real VR – Immersive Digital Reality: How
to Import the Real World into Head-Mounted Immersive Displays, pages 3–32. Springer,
2020. doi: 10.1007/978-3-030-41816-8_1.

J. L. Schönberger and J. Frahm. Structure-from-motion revisited. pages 4104–4113, 2016.
doi: 10.1109/CVPR.2016.445.

C. Schroers, J. Bazin, and A. Sorkine-Hornung. An omnistereoscopic video pipeline for
capture and display of real-world VR. ACM Transactions on Graphics, 37(3):37:1–13,
August 2018. doi: 10.1145/3225150.

A. Serrano, I. Kim, Z. Chen, S. DiVerdi, D. Gutierrez, A. Hertzmann, and B. Masia. Motion
parallax for 360◦ rgbd video. IEEE Transactions on Visualization and Computer Graphics,
2019. doi: 10.1109/TVCG.2019.2898757. URL http://webdiis.unizar.es/~aserrano/
projects/VR-6dof.html.

M. Shih, S. Su, J. Kopf, and J. Huang. 3D photography using context-aware layered depth
inpainting. 2020. doi: 10.1109/CVPR42600.2020.00805.

191

https://github.com/facebook/facebook360_dep
https://github.com/facebook/facebook360_dep
https://richardt.name/Capture4VR/
http://webdiis.unizar.es/~aserrano/projects/VR-6dof.html
http://webdiis.unizar.es/~aserrano/projects/VR-6dof.html


H. Shum and L. He. Rendering with concentric mosaics. pages 299–306, August 1999. doi:
10.1145/311535.311573.

V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Masia, and G. Wetzstein.
How do people explore virtual environments? 24(4):1633–1642, 2018. doi: 10.1109/
TVCG.2018.2793599. URL https://arxiv.org/abs/1612.04335.

J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel, R. Mur-Artal,
C. Ren, S. Verma, A. Clarkson, M. Yan, B. Budge, Y. Yan, X. Pan, J. Y., Y. Zou, K. Leon,
N. Carter, J. Briales, T. Gillingham, E. Mueggler, L. Pesqueira, M. Savva, D. Batra, H. M.
Strasdat, R. De Nardi, M. Goesele, S. Lovegrove, and R. Newcombe. The Replica dataset:
A digital replica of indoor spaces. arXiv:1906.05797, 2019. URL https://github.com/
facebookresearch/Replica-Dataset.

S. Sumikura, M. Shibuya, and K. Sakurada. OpenVSLAM: a versatile visual SLAM frame-
work. 2019. doi: 10.1145/3343031.3350539. URL https://github.com/xdspacelab/
openvslam.

C. Sweeney, A. Holynski, B. Curless, and S. M. Seitz. Structure from motion for panorama-
style videos. CoRR, abs/1906.03539, 2019. URL http://arxiv.org/abs/1906.03539.

R. Szeliski. Image alignment and stitching: a tutorial. Foundations and Trends in Computer
Graphics and Vision, 2(1):1–104, January 2006. doi: 10.1561/0600000009.

Y. Tomoto, S. Rao, T. Bertel, K. Chande, C. Richardt, S. Holzer, and R. Ortiz-Cayon. Casual
real-world vr using light fields. In SIGGRAPH Asia 2020 Posters, SA ’20 Posters, New
York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450381130.
doi: 10.1145/3415264.3425452. URL https://doi.org/10.1145/3415264.3425452.

J. Ventura. Structure from motion on a sphere. pages 53–68, 2016. ISBN 978-3-319-46487-9.
doi: 10.1007/978-3-319-46487-9_4.

M. Waechter, M. Beljan, S. Fuhrmann, N. Moehrle, J. Kopf, and M. Goesele. Virtual
rephotography: Novel view prediction error for 3D reconstruction. ACM Transactions on
Graphics, 36(1):8:1–11, January 2017. doi: 10.1145/2999533.

F. Wang, Y. Yeh, M. Sun, W. Chiu, and Y. Tsai. BiFuse: Monocular 360 depth estimation via
bi-projection fusion. pages 462–471, 2020. doi: 10.1109/CVPR42600.2020.00054.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from
error visibility to structural similarity. 13(4):600–612, 2004. doi: 10.1109/TIP.2003.
819861.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness
of deep features as a perceptual metric. 2018. doi: 10.1109/CVPR.2018.00068. URL
https://richzhang.github.io/PerceptualSimilarity/.

192

https://arxiv.org/abs/1612.04335
https://arxiv.org/abs/1906.05797
https://github.com/facebookresearch/Replica-Dataset
https://github.com/facebookresearch/Replica-Dataset
https://github.com/xdspacelab/openvslam
https://github.com/xdspacelab/openvslam
http://arxiv.org/abs/1906.03539
https://doi.org/10.1145/3415264.3425452
https://richzhang.github.io/PerceptualSimilarity/


Chapter 6

Deferred Neural Rendering for View
Extrapolation

"It had long since come to my attention that people of
accomplishment rarely sat back and let things happen
to them. They went out and happened to things."

Leonardo Da Vinci

This chapter assumes that the reader is familiar with generative adversarial networks (GANs)
[Goodfellow et al., 2014]. The baseline used in this paper, i.e., Deferred Neural Rendering
(DNR) [Thies et al., 2019] (see Section 2.7.4.1), builds upon conditional GANs [Isola et al.,
2017] (see Section 2.7.1.1).

The main goal of this project was to find a learning method which could be used as is, i.e., for
rendering in VR without any need to re-sample or convert the model into a more traditional
geometry-based representation (see Sections 2.6.4 and 2.6.5) as suggested by current state-
of-the-art methods for high quality VR experiences [Broxton et al., 2020, Tomoto et al.,
2020].

Learned representations that offer high-quality visual results, including view-dependent
effects like specular reflections (or even refractions), can often not be inferred fast enough
to be used in real-time environments (e.g. [Mildenhall et al., 2020]). Methods that can be
inferred in real-time (e.g. [Mildenhall et al., 2019]) are confined to small scenes due to using
a memory-heavy scene representation.

In the following, an approach is described that takes a casually captured video around a single
object, e.g., a car, as input, and outputs a stabilised version of it. The stabilisation requires
the learned model to extrapolate the given training corpus in order to obtain a smoother
(idealised) output camera path (see Section 2.5.2).

The presented approach can be categorised as follows:
Input: A video, or a set of images that are turned into viewpoints, captured casually (hand-
held) following a circular camera motion, orienting the lens outside-in (see Figure 2.13 a),
namely around a single object). A coarse mesh and a corresponding uv-map for object of
interest, for instance a car.
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a) b)

Object

Figure 6.1: Capturing a dataset: a) A video is captured while walking around an object. b) The
ideal circular trajectory (in red) is impossible to obtain using casual captures. Ideal camera
paths lead to smoother viewpoint transitions). Small jitter in the frames due to hand-held
capture lead to unwanted inter-frame blending.

Output: Re-rendered (extrapolated) video with stabilised (ideally circular) camera path.

Assumptions: Circular camera sweep is casual, meaning hand-held and not actively guided
by an AR app for instance (see Section 2.8.1). The available proxy mesh is likely to be
imperfect, and thus fore- and background segmentations are not reliable.

Limitations: Qualitatively, our extensions improve extrapolation performance, although at
the cost of introducing blur for non-extrapolation tasks like memorisation and interpolation.
Quantitatively, we lack quantitative analysis, in particular the ablation study which would
indicate which extensions are most significant.
Contributions: We suggest to use a refined per-crop viewing direction during data augmen-
tation with decaying noise, which in combination lead to improved (less noisy) extrapolation
performance (ablation necessary). We work with a minimal training corpus to make capturing
as fast and thus practical as possible1.

Comparisons: Only method with a 360° outside-in camera motion, thus representing a
single object, not a scene. DNR (see Section 2.7.4.1) is not designed for VR, but for real-time
monoscopic neural rendering. All other methods are dedicated to VR experiences. Round-trip
time is largest, but visual quality is best.

Abstract
IBR methods that support visually pleasing specular surface reflections require accurate
surface geometry and a large number of input images. Recent advances in LIBR show
excellent visual quality while requiring only imperfect mesh proxies or no surface-based
proxies at all. While providing state-of-the-art visual quality, the inference time of learned
models is usually too slow for interactive applications. While using a casually captured
circular video sweep as input, we extend DNR to extrapolate smooth viewpoints around
specular objects like a car.

1Many practical applications require dealing with simple camera motions. We cannot afford spending much
time with capture, in particular outdoors. In other words, capturing in naturally dynamic environments can
only make 3D reconstructions more fragile and less accurate. Best results can be obtained in fully controlled
environments.
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6.1 Introduction
Free novel-view synthesis (see 6-DoF Section 1.1.2, and IBR Section 2.6) around shiny
real-world objects is a very challenging problem. The reconstruction quality of casually
captured data and the chosen scene representation constrain the development of interactive
visual experiences, in particular in real-world environments.

Traditionally, view synthesis of real-world environments is performed via image-based
rendering (IBR) (see Section 2.6), whose quality is mostly limited by the accuracy of
the available scene proxy geometry. If rgbd video is available, Park et al. show how to
estimate scene properties like object materials and an environment map, and use a physically
motivated neural renderer for compositing high-quality viewpoints with Fresnel effects and
interreflections [2020]. Since their method learns a full scene model, it is capable of plausibly
extrapolating the training corpus.

I present a coarse overview on LIBR (see Section 2.7) that do not rely on explicit geometry,
i.e., methods that take only posed images as input, or which address the usage of imperfect
proxy geometry:
Volumetric scene representations, e.g., NeRF [Mildenhall et al., 2020], register all input
viewpoints within a learned semi-transparent volume. While the results are state-of-the-
art visually, the inference time of the trained models is prohibitively slow for interactive
applications. Liu et al. recently presented a sparse neural voxel representation suitable for
indoor environments that renders 1–2 fps [2020].
Image translation methods used for image synthesis [Isola et al., 2017] (see Section 2.7.1.1),
based on conditional GANs, exhibit temporal artefacts when changing viewpoints since there
is no global registration, which could impose inter-view consistency. Furthermore, image
translation alone cannot be expected to work well for non-diffuse scene objects.
Hedman et al. use an imperfect proxy geometry and learn how to blend multiple images
[2018] (e.g. learning good blending weights for a given IBR methods, for instance ULR
[Buehler et al., 2001], Section 2.6.4.1) to mitigate rendering artefacts.

Our idea is to extend DNR [Thies et al., 2019] (see Section 2.7.4.1), a proxy-based learned
IBR method, to enable (smoother) extrapolation of a learned surface representation (neural
texture + generator).
The generator of DNR is designed to linearly interpolate a training corpus and actually
encoding the view-dependent appearance in a neural texture. Since the rendering is done in a
deferred fashion, it is possible to infer the representation (trained model) on high-resolutions
and high framerates suitable for real-time rendering.

6.2 Our approach
We start by giving a recap of DNR. Our extensions are built around it, we usually use the
same components and settings as the baseline, unless stated explicitly otherwise.
Note that the baseline, similar to most learning-based techniques, is designed to only interpo-
late the training corpus2.

Main principle Consider Figure 6.2: The baseline of our system trains a conditional GAN
(cGAN) [Isola et al., 2017] (see Section 2.7.1.1) to learn a mapping from view-dependent
neural features to object appearance (DNR).

2See comparisons between IBR and LIBR in Section 2.8, and methods whose action space is marked as
”inter” in Table 2.5.
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Deferred Neural Rendering [Thies et al. 2019]

Conditional Generative Adversarial Network (cGAN)

Optimize
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Discriminator (D) Input

Generator (G)
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Figure 6.2: We capture an input video with a consumer camera, estimate camera poses,
reconstruct a mesh and uv-map it. Our goal is to extend DNR [Thies et al., 2019] (see Sec-
tion 2.7.4.1) for view-dependent video extrapolation which is based on a popular architecture
for conditional GANs [Isola et al., 2017] (see Section 2.7.1.1). See more description in text.

DNR is motivated by adding learnable components to the deferred rendering pipeline
[Ritschel et al., 2012]. Learned features are sampled from the neural texture and interpreted
by the generator3 The proposed system allows for interactive applications due to its deferred
nature and is thus of highest importance to this community.

An overview of the baseline and our extensions is given in Figure 6.3.

Mathematically, the goal is to find a combination of neural texture T and neural renderer R
that minimises the image re-rendering loss L over the training dataset D of M posed images
D = {Ik, pk}M

k=1 created from our capture.
Ik is the k-th image of the training dataset and its corresponding camera pose pk, namely
viewing direction v and optical centre C. The optimal neural texture T∗ and renderer R∗ are
obtained by solving:

T∗,R∗ = argmin
T,R

∑
d∈D

L(A(d) | Fd(T),Gd(R)). (6.1)

The baseline is obtained by setting Fd(·) = Gd(·) = id. The augmentation operator A(·)
returns crops during training, and just the input during testing (full resolution, no cropping).

Our extensions address:

1. adding inputs to the renderer R (see Section 6.4.1), and

2. augmenting (see Section 6.4.5) training samples d ∈D which varies over the course of
training (see Sections 6.4.3 and 6.4.4),

3. injecting noise (see Section 6.4.6) into the view- and thus dataset-dependent feature
generation F(·), or the generator guides G(·).

3In principle, neural texture and renderer encode a learned surface light field (SLF) [Wood et al., 2000].
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Note that Fd(·) and Gd(·) are potentially treated differently for each dataset item d ∈ D, e.g.,
if each viewpoint uses a different crop (location) within one epoch.

Capture and reconstruction A set of viewpoints around an object is casually captured
using a consumer camera, for instance a smartphone (see Figure 6.1). A Structure-from-
motion (SfM) approach is used to estimate the extrinsic parameters of the viewpoints (see
Section 2.5.1). The intrinsics are constant during the capture.

A mesh representation is reconstructed from the input views which is needed to rasterise
individual input viewpoints (accessing texture via uv-map).

Representation We follow a proxy-based neural scene representation (see Section 2.7),
namely DNR, and add extensions to its training procedure to improve extrapolation perfor-
mance.

Rendering Neural rendering using cGAN comes down to simply run a ”Forward Pass” of
the learned model (see Section 6.3.1.1). This is a very appealing aspect of using GANs (see
Table 2 in [Goodfellow et al., 2014]): after training, only the generator (forward-inference of
the model) is needed to produce high-quality output by design.

Technically, the neural generator blends an eroded background image with an inferred fore-
ground image. The foreground image, which is created by decoding a view-dependent feature
sampled from the neural texture, is composited with the background, by the generator (neural
renderer) (see Figure 6.3).
Note that this process is significantly harder to learn if no correct fore-/background segmen-
tations are available, for instance by having a high-fidelity scene geometry.

Due to only light-weight operation per pixel, i.e., sampling neural feature from the atlas and
decoding it, the generator is able to infer high output resolution in real-time. All needed
operations (rasterisation, texture lookup, low-dimensional convolution, and finally interpreta-
tion/colour generation) are performed in parallel.
Note that the maximal high-quality output resolution will depend on the dominating crop
size during training4.

6.3 Architecture
The architecture of DNR is inherited from “Pix2Pix“ [Isola et al., 2017] (see Section 2.7.1.1)
which uses a U-Net [Ronneberger et al., 2015] with skip connections as generator (see
Figure 2.47 b) ). The encoder and decoder stages are described in the baseline in more detail
(see Representation in Section 2.7.4.1) and I focus on the extensions in this chapter.
A 3-layered Patch-GAN serves as discriminator [Isola et al., 2017].

6.3.1 Training and testing
We train with two different parameter configurations for the model (see Section 6.4.3) used
to produce the car renderings. We use 711 images for training which would imply an angular
resolution of ∼0.5°, i.e., almost 2 images per degree.

Since our task is to extrapolate viewpoints, we do not exclude any training samples for
validation, but use all5 of them. Note that we thus rather show ”memorisation” instead of

4It does not work to train only on small patches, if high-quality inference is supposed to be high-resolution
[Isola et al., 2017].

5It would be beneficial to keep at least a small subset of the available input images for validation, which
would help to assess the training performance quantitatively.
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Figure 6.3: Overview of our baseline approach (blue) and our proposed extensions (orange).
Note that guided augmentation and the used training logic are not depicted. See more detailed
description in the text.

”interpolation” results (see video on webpage and Figure 6.7).
We test the trained model by inferring the images corresponding to the viewpoints of the
idealised camera motion (see Figure 6.1) and inspect the result manually. We stopped training
after the re-rendering loss flattened out during training (not shown).
All images we use for training have a resolution of 1024x576.

6.3.1.1 Forward pass

Consider (0–6) in Figure 6.3. Per data item d ∈ D:

0. Rasterize a viewpoint and obtain uv-map (deferred rendering).

1. Use uv-map to look up texture atlas T.

2. Retrieve neural features f , 16-D texels, from T.
The first 3 channels are regressed with the training image (see 8 in backpropagation
Section 6.3.1.2). The viewing direction v∈ p∈ d is converted into spherical harmonics.
The first 2 bands are used, i.e., 9 coefficients, which are multiplied with the neural
texel channels 3–11 of fi.

3. Create background by eroding the uv-map from the training image I.

4. Encode generator input and decode it to produce output image (5). Note that the
generator interprets the feature encoding used in (2).

5. Generate output, and

6. feed output with the target image into the discriminator.

6.3.1.2 Backpropagation

Backpropagation is used to optimise (7), or update, model parameters. Consider (8–10) in
Figure 6.3 for more detail.

8. Update texture atlas T. The loss aims to keep view-dependent (specular) texels on
finer levels, while encouraging view-independent (diffuse) texels to settle over coarser
levels.
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9. Update generator via loss between the generated output O and data item image I.

10. Update discriminator.

Note that when updating the texture atlas T (see (8) above), the neural feature channels 0-2
(diffuse rgb) are regressed with the (target) training image I. The motivation here is to get an
estimate of the diffuse color of the surface6.

6.4 Extensions
A subset of our extensions, e.g. additional guides and injecting decaying noise, is depicted
with orange annotations in Figure 6.3. Overall, the baseline is extended in four ways in order
to perform better on the problem of view extrapolation:

1. Additional viewpoint information is added to the generator input (see Section 6.4.1),
specifically optical centres, positions and normals.

2. Noise is added to viewing directions v, and the newly added guidance signal of the
generator input Gd (see Section 6.4.6). Note that noise added to the viewing directions
v reduces extrapolation artefacts significantly, but adding too much leads to excessive
blur (as to be expected).

3. A guided augmentation procedure A(·) is introduced that focuses on poorly inferred
image regions when fetching dataset items d leading to more efficient training (see
Figure 6.6). SSIM is used to determine these image regions.

4. We incorporate a training logic (see Section 6.4.4) which connects to the used aug-
mentation strategy (see Section 6.4.5). The overall anticipated number of training
epochs is split into cycles in which we change the range of crop sizes during guided
augmentation.
We use the baseline augmentation strategy (larger crops at random) for a few epochs
at the end of each cycle (see Figure 6.5).

6.4.1 Generator input
Consider Figure 6.3: The input of the generator consists of:

1. features that are created by looking up the neural texture T and multiplying (non-
diffuse) channels 3–11 with the spherical harmonics coefficients of the viewing direc-
tion v,

2. the background of the target image obtained by eroding it with the foreground mask
a.k.a. uv-map (derived from the mesh reconstruction, see Figure 6.4), and

3. additional guidance in form of optical centres, as well as screen space positions and
normals.

Technically, we stack neighbourhood information, derived from screen space data of each
viewpoint around each pixel x, into a 1-D vector. The idea is to guide the generator by
showing it not just a single surface point X, but a small 4-pixel neighbourhood as well (see
Figure 6.3), leading to better extrapolation performance as soon as optical centres were
explicitly added (rigorous ablation is missing).

6Note that strongly specular surface areas, depending on the whole scene configuration, tend to whiten up he
diffuse texture. Increasing the diffuse weight worsens this situation.
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Figure 6.4: An overview of the components used during a training iteration. Generator and
discriminator are not depicted (see Figure 6.3). See more detailed description in text.

More importantly, by having optical centres available per dataset item d, it became possible to
compute per-crop viewing directions during augmentation. The viewing direction is needed
when decoding neural features retrieved from a texture lookup.

Note that the chosen erosion factor has a big effect on the quantitative error metric (see
Figure 6.4). This is because the network does not only learn to infer the view-dependent
appearance of an object, it further inpaints the eroded (background-) region between uv-map
and background.
The neural renderer ultimately learns to blend the inferred foreground appearance with the
eroded background image to synthesise novel viewpoints.

6.4.2 Dataset items

Training items (bins), need to match the input interface of the generator. We add several
guides to each pixel of the baseline generator input to give the network more information
when taking decisions per pixel.
Technically, for each pixel x in the training image I, we collect information over a small
5-neighbourhood, e.g., all 4 cardinal directions and the central pixel x, around the surface
point X encoded in the position maps (see ”Neighbourhood” in Figure 6.3).

Posed viewpoints imply access to projection matrices P and optical centres C, which allows
us to compute the direction of each camera ray r per pixel x = PX: rx = X−C.

While the colour images are encoded with 8 bit per channel, it is important to use greater
precision for the uv-map and the additional guides like optical centre, surface positions and
normals, which we encode using 16 bit per channel.
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6.4.3 Model training

Instead of using a single set of parameters over the whole training procedure, we use two,
one main step followed by some fine-tuning.

Consider a training iteration and the elements involved in it (see Figure 6.4):
The target image is turned into a background and uv-map according to the available proxy
geometry and its induced segmentation mask.
The viewing direction v is used to encode the view-dependent appearance7 which is not part
of the (per-pixel) L1-regularised diffuse map.
The generator (not depicted) accesses a patch of neural features (via the uv-map), consisting
of view-independent diffuse and view-dependent specular part to form a new image (fake)
(see generator input Section 6.4.1).
The generated fake image only depicts the foreground (dilated into the background) which
helps to accelerate training.

We are first and foremost interested to obtain pleasing view extrapolations of the foreground
object. Technically, complex background and imperfect geometry cause trouble for the
system. We observed this behaviour and decided to go for grey background after first
experiments with guiding the augmentation to pick poorly reconstructed image regions (see
Section 6.4.5).

A L1 loss is used for the diffuse part of the neural texture LGd , Binary-Cross-Entropy (BCE)
is used for the view-dependent (specular) part LGs .
A regularisation loss LT is used to push high-frequency details into higher resolutions of the
neural texture, while low-frequencies (for instance the diffuse texture) are encouraged to
settle at lower resolutions.
The discriminator always uses a BCE loss LD. Let w∗ be the weights for the corresponding
losses. wD = 1 in all experiments.

A summary of our training procedure where we set the minimal crop dimension for guided
augmentation to 64 for all steps:

1. We start training over 350 epochs. We set wGd = 10, wGs = 3, and wT = 2.
Every 15 cycles, we update the guided augmentation buffer and determine the order of
currently poorest inferred image regions.
We add decaying noise to the viewing directions for the first 3 epochs of each cycle,
and to the guides for 1 epoch of each cycle.
We further add a SSIM loss to specular generator loss (LGs) and use a learning rate
r = 10−4.

2. We continue training (fine-tune) for 2 more epochs (350-352) following the training
procedure suggested in DNR, i.e., removing the SSIM loss from the generator, and
turning guided augmentation off, but still using crops of minimal 75% of the original
size.
We set wGd = 5, wGs = 1, and wT = 1, stop injecting any noise, and reduce the learning
rate r = 10−5.
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Figure 6.5: We use training stages in order to vary the amount of noise we inject into the
training samples and to increase the variance of crop sizes during training, in particular to
focus more on high-frequency details, especially when considering smaller crop sizes. See
more description in text.

6.4.4 Training logic
We split the whole training into several stages following a pyramidal scheme:
We initialise the model with high-resolution crops following the baseline, then gradually
reducing the returned crop resolution and applying our extensions in a cyclic manner.
We bottom up after 3 levels of refinement and mirror the process while going up.

We finalise each cycle by running about the last 10% of each with the baseline augmentation,
i.e., randomly located crops between 75-100% of the input image resolution.

My intuition behind these stages and their varying crop sizes is that high-frequency details
might not be efficiently penalised when embedded in a rather large surrounding patch (or
crop).
Specular highlights on an otherwise uniform surface will be harder to learn for the model on
larger patches because the model might perform very well when just outputting the uniform
colour since it matches more than (maybe) 90% of the observed surface. If the specular
reflection was focussed, assume only (maybe) 10% of the observed surface is uniform, only
outputting the uniform colour of the surrounding patch will cause large errors.

We further reduce the magnitude of injected noise on the viewing direction according to
the crop size of the current training cycle (see Section 6.4.4). There is zero noise when
considering minimal crop sizes (64×64 in all our experiments), which should intuitively
help the model to understand details (no quantitative evidence, for instance ablation).
Basically, if the model learned uniform on a coarse level, it might be helpful to challenge
this by looking at smaller patch sizes during training as well.

6.4.5 Guided augmentation
Guided augmentation (GA) directs the generator to image areas during training which cause
the largest reconstruction errors.

During training, after the end of each cycle, the order of image patches is recomputed
(see Figure 6.6). The size of the patches is depending on the current training stage (see
Section 6.4.4).
Within one cycle, the training item iterates through a buffer which is sorted ascendingly
according to SSIM (the larger, the better. Worst reconstructions first). Figure 6.6 d) shows
some regions causing large errors during.

7High-frequency specularities are in finer (higher-resolution) levels of the neural texture atlas T.
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Figure 6.6: Guided augmentation to prioritise regions during data augmentation. a) Target
(ground truth) image, b) Generated (fake) image, c) fake image split in patches, and d),
patches sorted ascending according to SSIM (the higher the better). It feels intuitive that
patches with high-frequencies like edges, as part of the geometry or effect of the scene
illumination, cause the largest reconstruction errors during training.

The generated patches are non-overlapping8.

Guided augmentation increases the efficiency of the learned model in terms of the needed
training iterations to obtain smooth (extrapolated) novel views.
Without providing the quantitative evidence for it, the training required less epochs to cause
a flattening of the loss.

The guided augmentation helps to identify image regions that are problematic to the model,
it struggles to infer high-quality output.

6.4.6 Noise
In general, all noise is injected in cycles which are determined by the current training stage
(see Section 6.4.4). At the beginning of each cycle, we inject the maximum amount of noise
and decay exponentially towards the end of the cycle. At the end of each cycle, we fall back
to the augmentation strategy of the baseline.
We observed higher visual quality by doing this, in comparison to train solely on low-
resolution crops and then gradually using larger crops towards the end of the training.

Noise is added to the viewing direction whenever crops are chosen during augmentation.
Note that we compute a per-crop viewing direction, instead of re-using the viewing direction
from the full-resolution viewpoint as done in the baseline.

8Note that this leads to a checkerboard pattern in the results after the first training stage (350 epochs). They
can be still seen in the results sometimes, in particular along the occlusion boundary between the car and its
background.
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Figure 6.7: Results between the baseline and our extensions. The interpolation result looks
similar, while our approach tends to produce a smoother surface appearance than the baseline.
Our extrapolation result looks clearly smoother than the baseline. This is best seen in our
submission video My homepage. Note that we technically ”memorise” and not ”interpolate”
the training corpus, since we use all input images (hand-held video) for training to perform
extrapolation (idealised circular camera motion).

The amount of noise is adjusted to the used crop size. The smaller the crop size, the less
noise is injected.

We found that adding noise to the input of the discriminator, i.e., the target or generated
image, did not help in any of the conducted experiments.

We hypothesise that injecting noise is useful in the beginning, because the network is forced
to ‘learn a way through the noise‘ instead of just memorising input data (overfitting). We
could not observe improvement of extrapolation performance without adding noise to the
viewing direction.

6.4.7 Limitations
The approach was not evaluated thoroughly because of space and time constraints for the
poster submission. Because of that, in particular because of missing ablation studies, it is
very hard to say how much impact our individual extensions have on the overall quality of
extrapolated views.
What is clear though, is that the system in its current state is not good enough in terms of
visual quality to be used for high-quality VR, at least not using a 1D-OI camera motion as
training corpus.

We found that adding screen space positions and normals did not help much when we worked
with inaccurate real-world proxy geometry, e.g., the car dataset presented in this chapter (see
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Figure 6.7).
Nevertheless, adding the optical centres to the generator input for each viewpoint, and
computing per-crop viewing directions, in combination with noise injections adaptive to
the crop size and guided augmentation, our extensions lead to improved extrapolation
performance, but at the cost of more blur when interpolating (or actually memorising)
unfortunately as well.

Using an imperfect proxy geometry causes uncertainty between fore- and background. This
technically implies that parts of the object (foreground) might be considered as background
in case the mesh is under-reconstructed (smaller) than the real object. In case the mesh is
over-reconstructed (bigger), parts of the background turn into foreground and the network is
implicitly forced to learn some sort of transparency.
Our guided augmentation helps to focus on disocclusion boundaries, as we focus on the
foreground object by setting the background to a uniform colour (see Figure 6.4). Artefacts
are generally more noticeable around occlusion edges, in particular when working with
imperfect proxy geometry and cluttered backgrounds, as well as specular surfaces.

View extrapolation can lead to temporal inconsistencies and flickering in the baseline and in
our method as well, however, our extensions enable smoother extrapolation and in total far
less flickering artefacts, but in turn lead to blurred specular reflections even when memorising
the training corpus.

There is a lack of editing capabilities, e.g., there is no obvious way to initialise the neural
textures more reasonable, for instance to reduce temporal flickering when extrapolating
viewpoints.

Temporal flickering could be reduced in principle by: (i) providing a more accurate proxy
geometry, (ii) increasing the image density of the training corpus, and (iii), staying closer to
the input viewpoints.
There is zero flickering as long the training corpus is only interpolated, nevertheless reflec-
tions are slightly blurred (see Figure 6.7).

Note that we observed that the weights for the GAN losses (see Section 6.4.3) have a great
impact, i.e., in overall model performance, qualitatively as well as quantitatively.

6.5 Conclusion
DNR was designed to interpolate a training corpus that is registered to a uv-mapped proxy
geometry. Since its inference time is solely determined by decoding a single target image
consisting of neural features per pixel, it is suitable for interactive applications.

Our extensions mitigate artefacts when extrapolating viewpoints, i.e., by trading noise with
blur, while improving training performance overall compared to the baseline. We are aware
though that it is dangerous to interpret our observations too much without conducting
extensive ablation studies. We did not pursue this so far since our extensions did not yield
the desired performance, and the scope of this project was just not long enough for further
investigations.

While the baseline method is designed to interpolate the training corpus, similarly to many
other neural scene representations, e.g., NeRF [Mildenhall et al., 2020], extrapolation causes
uncertainty and thus noise and rendering artefacts, particularly noticeable when rendering
image sequences.
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Artefacts arise since the representation has not been trained to cover the queried (requested)
data points. The added extensions have the purpose to make the gaps between known data
points smaller, i.e., by blurring these, which makes transitions between them smoother.
Per-view crop directions enable the network to learn more high-frequency details, which
seems beneficial for model training.

Future work Incorporating dense correspondences to guide the view synthesis, in partic-
ular when working with imperfect proxy geometry, could yield a simple way of increasing
visual quality for the cost of larger memory footprints.
Correspondences, e.g., optical flow, could be used to detect occlusion edges more accurately
[Holynski and Kopf, 2018] (yielding better foreground segmentations), and tracking specular
reflections.
Note that the neural renderer can only compensate inaccurate geometry and segmentations
to a certain degree. It will in doubt produce artefacts in difficult environments and for very
complex objects, geometrically and photometrically.

It might be interesting to train a generator on several high-quality synthetic datasets (each
encoded in its own neural texture) and see how such a model could be adjusted to still
perform well on imperfect real-world data.
As mentioned several times before, inaccurate proxies cause more issues in cluttered back-
grounds, since the renderer/generator needs to inpaint eroded background information.

Dynamic environments require a more general approach to scene reconstruction and model-
ing, for instance if an object cannot be captured in isolation, or there are other scene objects
moving during capture. Learned per-view geometry can greatly help to separate fore-/and
background as well as static and dynamic objects [Yoon et al., 2020].
AR-related research to obtain depth from motion [Valentin et al., 2018] could be used to
improve per-view scene information, e.g., depth and segmentations.

It might be interesting to train over short sequences of viewpoints instead of individual
viewpoints independently to potentially improve temporal smoothness of extrapolated views.

Editing the learned neural texture and renderer would be very handy. An easy way to initialise
the neural texture and renderer to show view-dependent default colours instead of rendering
artefacts when accessing non-initialised configurations9 since they were not covered during
training.

Stereo-consistency should work geometrically and speed should not be a problem, but
viewpoint-specific appearances might be. Arising artefacts might require stereo-specific
training procedures.
In general, optimising for high-quality monoscopic view synthesis does not necessarily imply
consistent stereo rendering. If a model or general IBR scene representation produces images
with a view-dependent error, it is unlikely that these errors are consistent in multiple views.
In consequence, it is possible that an error in a monoscopic evaluation is acceptable, while
the same error in a stereoscopic evaluation might be acceptable if consistent, or unacceptable
if its inconsistent.
Ideally, the learned scene representation should be multi-view consistent, not only geometri-
cally, but in terms of appearance as well.

9A configuration means here any combination between Renderer, Texture, viewing direction, optical centre,
rasterised viewpoint (varying intrinsics with constant extrinsics and vice versa), and eventually crop size.
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Chapter 7

Conclusion

"There is nothing like a dream to create the future."

Victor Hugo

One of the main goals of this thesis was for me personally1 to motivate from where I have
started my journey into casual real-world VR, namely MegaParallax (Chapter 4) and thus
Megastereo (Section 2.6.3.2), too.

This thesis presents and discusses four methods which connect to image-based rendering
of real environments for virtual reality, the title2 of this thesis. They all share the goal of
rendering novel viewpoints in real-world environments, based on some sort of IBR or neural
scene description, able to represent indoor and outdoor environments.

Different ways of creating new VR representations or enriching existing media formats are
offered throughout the thesis, e.g., transforming ODS into DASP (Chapter 3), technically
lifting a 1-DoF stereo action space into 6-DoF, or creating a 3-DoF stereo action space
with motion parallax in 360° environments (MegaParallax) sharing the same capturing
assumptions made in previous work addressing casual ODS [Richardt et al., 2013] (see
Section 2.6.3.2), namely a single casually captured circular video sweep.

Challenges One of the biggest challenges within computer vision (arguably) is estimating
correspondences for a set of input images. Correspondence is the essence3 for any traditional
IBR method.
Learning correspondences is possible nowadays and can yield outstanding results, but it
works best with single objects for which lots of high-quality data is available to train a model.
However, these methods usually do not fit many-objects (e.g. a scene) well, often recorded
with barely overlapping4 input images.

1I hope that you enjoyed reading my thesis so far, thanks for your interest in any way. We are almost there.
2The title of my thesis could have been: ”From image stitching to immersive real-world VR”, without

DNR4VE (Chapter 6).
3One can consider correspondences as some sort of magic sauce which makes every IBR method classifiable,

for instance according to the IBR spectrum introduced by Shum et al. [2007], see Figure 2.17
4Visual overlap is reduced when capturing inside-out camera motions or employing a narrower lens while

keeping the image sampling density constant.
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Any IBR method is restricted by its employed scene representation. For instance, any non-
plenoptic IBR approach has to deal with incomplete and inaccurate correspondences due to
challenged reconstruction algorithms that are responsible for producing estimates.
Poses can be challenging to estimate (correspondence problem) depending on the used
camera motion and optical system as well as the captured scene itself (e.g. specular or
dynamic objects). The problem gets harder if a input video is captured casually, meaning
hand-held using a consumer camera.
In consequence, high-quality IBR approaches that can be robustly captured and represented,
as a requirement for high-quality rendering in VR, must account for these imprecisions:
ODS2DASP, MegaParallax, and OmniPhotos are designed in the context of real-world
VR (see Chapters 3 to 5 respectively), and ’DNR4VE’ (see Chapter 6) was chosen to be
applicable in VR as is.

Fundamental design decisions In order to support a casual capturing and a robust
scene representation, we cannot rely on high-quality 3D geometry for all infinitely many
possible scene types. Textureless regions, fine and repetitive geometry, dynamics or specular-
ities, will render most traditional feature-based 3D reconstruction helpless.
Neural methods show an excellent ability to learn correspondences solely from posed input
images, but they are usually applied to single objects instead of scenes5. Training is often very
expensive, particularly in terms of time if there is no access to high-performance computing
facilities, and inferring novel views in high-resolution and in framerates suitable for VR, are
under continuous investigation.
Note that neural methods can still produce artefacts6, at least in edge or dataset-specific
cases, even if they were trained for days7.

If we cannot expect perfect geometry, we should eventually start with the simplest geometry
we can think of, e.g. a plane assuming that the scene is at a constant-depth (works if scene
objects are all infinitely far away), and find out how much geometry we actually need to
create a high-quality VR representation. This argument is reasonable if we accept to use
more images for our scene representation (see IBR spectrum in Figure 2.17), leading to
increased memory demands.

I believe that there are different ideal scene descriptions for different scene types and
application scenarios. There will probably be no single method that can be casual, high-
quality, quick, memory-efficient, working in- and outdoors, supporting dynamic objects and
specular materials, while running on every phone, all at the same time.

To give an example, the desired DoF magnitudes (see more discussion below) required for
a certain use case will have a great impact to the method choice. Large magnitudes with
highest visual quality will be very costly, since it is already for very small magnitudes, for
instance representing a single object.

5I want to mention that I always refer to inside-out camera motions when talking about 360° environments.
I noticed a more common use of 360° in the context of single object outside-in camera motions recently, for
instance as discussed in DNR4VE. Some terminology in the field is used in multiple contexts and can mean very
different things.

6It seems essential to provide high-quality segmentation masks for model training. Letting the model focus
on the object, and not its background, will reduce model-related artefacts and significantly reduce the number of
training iterations to obtain smooth results of the foreground, or the object.

7How disappointing is that? It is a no go for commercial media production pipelines, but especially not
acceptable for casual real-world VR use cases, too.
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Table 7.1: A brief overview of the most significant properties of the presented methods in
the context of this thesis. First, we see that a variety of different IBR scene representations
have been used, all leading to different action spaces, different round-trip times, and varying
visual quality. Second, all methods can be used as is to deliver real-world VR experiences.

Method Name Type
Action space(Translational

magnitude
) Round-trip Quality

[Richardt et al., 2013]
(Section 2.6.3.2)

Megastereo
Implicit
(ODS)

S-1R
(0)

3-4 hours Medium

[Thatte et al., 2016]
(Section 2.6.4.2)

DASP
Explicit

(Augm. ODS)
S-(3R+2T)

15 cm radius
5-6 hours High

[Bertel et al., 2020a]
(Chapter 3)

ODS2DASP Explicit
S-(3R+2T)

(0.04 m radius)
< 10 minutes High

[Bertel et al., 2019]
(Chapter 4)

MegaParallax Implicit
S-(1R+2T)

(0.35 m radius)
3-4 hours Medium

[Bertel et al., 2020c]
(Chapter 5)

OmniPhotos Hybrid
S-(3R+2T)

(0.5 m radius)
30-40 minutes High

[Thies et al., 2019]
(Section 2.7.4.1)

DNR Neural ”inter”
use case

dependent
Excellent

[Bertel et al., 2020b]
(Chapter 6)

DNR4VE Neural
”inter”
”extra”

< 4 hours Very high

[Broxton et al., 2020]
Immersive
LF video

Neural
Explicit

S-6
(0.46 m radius)

(0.3 m in results)
> 1 day Excellent

[Shih et al., 2020]
(Section 2.7.1.2)

Single-image
3D photography

Neural
Explicit

S-6
(∼0.01 m radius)

< 1 minute Very high

There must be a choice and I am repeating myself here consciously: ”One should not always
use the biggest (most expensive) tool to solve a problem.” I want a fast-preview, and an
option to submit my capture to high-quality reconstruction. The thing I have to avoid at any
cost is waiting for my high-quality reconstruction for days, which is already a cost in itself,
and on reception not necessarily being able to use the result immediately as is, for instance
to actually use it as scene geometry within a VR experience.

Before comparing the presented methods with many competitors in the field (see Table 7.2),
it seems instructive to state some important properties of these methods in comparison
Table 7.1.

For the rest of this chapter I want to conclude this thesis by pointing to the (at least for
me) most important design aspects of end-to-end real-world VR pipelines, e.g., contrasting
the used scene representations and their associated action spaces, DoF magnitudes, and
visual quality for instance (see Table 7.1).
From a more practical point of view, it is important to keep the actual capturing time short,
furthermore, visual feedback should be given ideally instantaneously8.

Flow-based blending (FBB), as presented in this thesis (see Chapter 4), originally used to
alleviate ghosting artefacts in image stitching (e.g. motion compensation as a pre-aligment
of frames before blending into a more panoramic image [Shum and Szeliski, 1998, Szeliski,
2006]), proved very useful to alleviate rendering artefacts caused by inaccurate proxy
geometries.

8Minimise round-trip time (see Section 2.8.1, from capturing input images to rendering novel views in VR
(see Section 2.6.1).
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Nevertheless, artefacts remain, in particular not aligning scene geometry with depth edges
or at least any intensity edges in the input images leads to a direction-dependent vertical
distortion (OmniPhotos). This effect makes it not straight forward to judge correct absolute
distances in VR, but moving within the environment feels comfortable since distances seem
to be plausible relatively.

Regarding end-to-end pipelines to casually create real-time IBR applications, I want to
emphasise on the main contributions that this thesis makes once more, and give contextual
information about the current state-of-the-art in the field (see Table 7.2).
How my contributions fit into this table is discussed in the rest of this chapter.

VR action spaces Counting the DoF of methods is usually very instructive, but it can
be very frustrating at times, too. Since IBR methods should always aim for ”S-6” scene
representations (Stereo with 6-DoF, see Section 2.8.1) when addressing VR, some methods
either tend to overclaim the capabilities of the demonstrated action space, or a different
definition of DoF might be used (see Section 1.1.2).
I like to identify the action space with the DoF in which high-quality novel views can be
expected. For example, this thesis suggests that ODS has only 1-DoF (S-1R) for instance,
and MegaParallax has 3-DoF, i.e. (S-(1R+2T)), which is identical to the action space of
Shum and He’s work on concentric mosaics [1999] (see Section 2.6.2.2).

Furthermore, ”colour + depth” representations that are introduced employing linear or
planar camera motions [Zheng et al., 2007, Thatte et al., 2016, Serrano et al., 2019] can
be considererd ”S-6”, but nobody expects anything meaningful when the desired camera
translates vertically away from the input images. Assume a camera plane [Peleg et al., 2001]
(see Section 2.6.2.4) for instance which embeds viewpoints originating from a circular video
sweep (camera motion).
Any deviations from an ideal capturing area (or volume) will cause challenges that need to
be addressed [Serrano et al., 2019] (see Section 2.6.4.5).
Novel views deteriorate quickly when leaving the captured camera plane, which is addressed
separately by stacking several 2D planes into a cylindrical scene representation with truly
”S-6”, for instance vertically stacked viewing disks (DASPs) [Thatte and Girod, 2018].

Lastly, Parallax360 [Luo et al., 2018] (see Section 2.6.3.3) is considered to provide a 6-
DoF action space, but the presented forward-backward motion (translation) is not directly
supported by the rendering procedure. The mismatch is compensated with a heuristic re-
scaling which will not work convincingly for scene types with lots of motion parallax.
Since there is an issue with one of the DoF, I would prefer to consider this method as 5-DoF.
Even if the system has some response to the user’s action, it should be expected that the
response is correct. If this is not the case, the method should state this explicitly in its action
space.
Note that DASPs faced a similar issue in the beginning: The initial paper [Thatte et al., 2016]
(see Section 2.6.4.2) stated a 6-DoF action space but admitted that vertical translation is
negligible because of the design of the viewing disk, which is a generalisation of the viewing
circle [Peleg et al., 2001] (see Section 2.6.2.4). In following work (e.g. [Thatte and Girod,
2018]), it is suggested to stack several viewing disks vertically to create a reasonable 6-DoF
action space. From that point of view, I consider one viewing disk (default DASP) to provide
5-DoF.
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DoF magnitudes The translational magnitude (in [cm] or [m], see Section 4.6.1, in
particular Figure 4.13 and Figure 4.14) of the obtained stereoscopic (horizontal) action
spaces (planes defined by circle radii) varies significantly over the presented methods:

• ODS2DASP has 6-DoF with small9 magnitude in 5-DoF, i.e., 8.4 cm disk-diameter,
and a tiny magnitude in vertical translation (see above). Extrapolations are supported,
but are not expected to be artefact-free.

• MegaParallax has 3-DoF with reasonable magnitude, i.e., between 0.1−0.8 m circle-
diameters, depending on the used camera’s field of view during capture, the environ-
ment, and the speed of capture itself, leading to varying numbers of frames used for
processing, representing, and finally rendering.

• OmniPhotos offer 5-DoF state-of-the-art translational magnitude (of about 1 m), due
to the capturing procedure involving a wide lens (360°) consumer camera, and using
the scene-adaptive proxy geometry.

• DNR4VE offers 6-DoF in principle10, but in the chosen context of circular camera
motions and due to discussed limitations, I would not categorise this method as a
”VR-method” as is, nor a method for free (single-) viewpoint synthesis, but rather for
video extrapolation.

Note that action spaces in MegaParallax and OmniPhotos can have reasonable sizes, but it
is very likely that the actual 3D perception of the scene, assuming having better (and more
complete) scene geometry, looks very different. Since I operated mainly with real-world data
while working on these projects11

Related work based on camera rigs provide 6-DoF, but report smaller magnitudes, depending
on the physical size of the used camera rig12:
Overbeck et al. use different capturing rigs [2018], they capture (spherical) viewing volumes
with over a 1 m diameter using 2 DSLR cameras, or a rig capturing a 70 cm sphere in diameter
leading to an actual viewing volume of about 60 cm.
Pozo et al. use a rig of 1 m diameter [2019] and report a reasonable action space (volume). Due
to their global background estimate, stepping out of the diameter, technically extrapolating
the viewing volume, becomes much more comfortable.
Broxton et al.’s rig has a diameter of 0.92 m [2020], and they show results along a 60 cm
baseline.

Capturing The majority of methods, e.g., MegaParallax, OmniPhotos, and DNR4VE,
take a casually captured continuous video sweep as input, which is captured with consumer
cameras, comfortably in less than 30 seconds. The input for all methods can be created using
casual capturing procedures.
Note that the ODS2DASP is the only method that was mainly evaluated with ODS stitches
whose input images stem from a multi-camera rig, but this thesis adds results for other
sources of the viewing circles (see Figure 3.16).

9And a tiny magnitude in vertical translation which is why I consider the method 5-DoF, not 6-DoF.
10Depends strongly on the training corpus.
11Note that this was a terrible mistake. One to learn from for a brighter future. I barely performed any

comparisons with ground truth data. Synthetic data was only used in early stages when working on ODS2DASP
and DNR4VE.

12Casual captures allow for larger capturing radii.
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Data imperfection Working with real-world data implies that all information known
about the scene, e.g., viewpoint calibrations and image correspondences, in particular every-
thing that follows from that like a mesh reconstruction (explicit geometry), will be imperfect.
All discussed methods have to deal with the imperfections of (often limited) available data,
for instance when working with casually captured real-world data.

Coarse (imperfect) geometry can be obtained more easily, but usually causes artefacts during
rendering, e.g., vertical distortion (see Chapters 4 and 5), holes (see Chapter 3), or flickering
and other noise-related artefacts (see Chapter 6).

View-dependent flow-based blending Applying view-dependent (essentialy motion-
compensated) flow-based blending (VDFBB) increases the quality of novel views in the
presence of imperfect geometry.
It is noteworthy that this ”trick” can be applied easily in scenarios in which the desired pixel
colour is determined by blending contributions of exactly two input viewpoints, however the
viewpoints need to be sufficiently close such that dense correspondences can be computed
accurately (see Section 2.4.1).

Approaches that cover a volumetric action space, e.g. a sphere, need many images and thus
struggle with large memory requirements (e.g. [Luo et al., 2018], see Section 2.6.3.3).
Even non-volumetric action spaces following this spirit exhibit huge memory requirements
(MegaParallax), however the requirements can be alleviated by using a more accurate proxy
and viewpoints with wider fields of view (OmniPhotos).
It is worth noting that flow-based blending seems to be a reasonable way to alleviate artefacts
in the context of casual 3D ”photography” (indicated by OmniPhotos), but applying it to
”videography” naively seems prohibitive due to memory requirements.

Note that the VDFBB in ODS2DASP was added when revisiting the method while I was
writing up the thesis. I just could not resist to run a few experiments. Furthermore, the only
main chapter that does not use implicit geometry in the end-to-end pipeline is DNR4VE.

Quality The visual quality of the presented approaches ranges from medium (MegaParal-
lax), high (OmniPhotos and ODS2DASP), to very high (DNR4VE).

Imperfect geometry is simpler to obtain, but usually causes artefacts during rendering, e.g.,
vertical distortion (MegaParallax, OmniPhotos), or flickering and other noise-related artefacts
(DNR4VE). Incomplete geometry leads to holes in the rendering (ODS2DASP).

The trade-off seems obvious: Faster round-trip times and casual capture generally lead to
less accurate (and often less complete) reconstructions. Note that reconstruction becomes
particularly challenging for inside-out camera paths (see Section 2.5.2), especially if a narrow
field of view lens is used for capturing.

For me personally, I would appreciate some sort of fast preview to explore my casually
captured 3D photographs first, before submitting them into a process for hours to obtain a
high-quality version of it. Note that these high-quality approaches might not find perfect
solutions for all different kinds of scene types after all, so they cannot be the general way
forward in the context of casual real-world VR.

All presented methods show fair results on high resolution if desired, although the quantitative
assessment performed in OmniPhotos (see Section 5.3, in particular Table 5.1), suggests
that OmniPhotos are close to ground truth. The problem however is that the reconstruction
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of novel views is not evenly spread throughout the action space, but actually centred in a
10× 10 cm plane13, which is not really representative for the overall performance of the
method.
To measure the magnitudes of VR action spaces properly, i.e. each DoF individually, it is
absolutely inevitable to work with virtually perfect ground truth scene data, either from a
synthetic origin, or high-quality reconstructions, and further design at least a few experiments
that make presented methods fail explicitly (I will remember this insight for future work).

Quality in any real-world IBR or neural method is view-dependent. Deviation from input
views (e.g. view extrapolation) is most difficult. Capturing many views to keep transitions
small leads to simple methods, but not necessarily the highest quality ones (e.g. MegaParallax
and OmniPhotos).
Nevertheless, the quality is competitive with the state of the art, without requiring as much
compute. Opportunities to further exploit casually captured video input more for 3D photog-
raphy seem manifold, as my thesis already suggests and further clearly indicates.

Round trip The round-trip for 3D photography of all presented methods , i.e., the time
to capture, reconstruct (or train), represent, and rendering novel views (see 4 main stages
of IBR end-to-end in Section 2.6.1), is in the range from minutes to a few hours, solely
requiring a single Desktop machine.

A lot of processing time14 is spent on sparse reconstruction, e.g. viewpoint calibrations via
SfM used in MegaParallax.

The optical flow computation takes a considerable amount of time in MegaParallax and
OmniPhotos, depending on the density of viewpoints and their spatial resolution.
ODS2DASP processes a high resolution ODS panorama pair (7680x3840 for each eye), e.g.
a single ODS frame (one viewing circle for each eye), in less then 2 minutes assuming that
optical flow is already precomputed.

Contributions in comparison Table 7.2 shows that my approaches are ”competitive”
with the state of the art in terms of quality, while usually being magnitudes simpler.

Note that some action spaces are stated to be 6-DoF, e.g. ”S-6” for DASP [Thatte et al., 2016],
since I do not want to diminish the work of the authors. For this reason, the ODS2DASP
work is listed as ”S-6” as well, whereby I am arguably in favour to call it just ”S-5”.

I further struggle to consider 360° colour + depth representations truly 6-DoF as well, since
artefacts will show up more frequently as soon the virtual camera leaves the camera ring15

for instance.

13Rendering will deteriorate when approaching the camera circle, in other words, when leaving the centre of
the camera circle. Specifying a 50 cm translational magnitude while only evaluating the first (easiest) 20% of it,
does not seem meaningful.

14For instance in OmniPhotos: Loading reconstructions into Blender and picking loops manually show
straightforward opportunities to further reduce the round-trip time.

15Standard 360° (equirectangular) formats might support viewing directions with non-zero elevation in
principle, but the non-uniform discretisation of directions might lead to heavy undersampling of interesting scene
areas [Lee et al., 2016]. All 360° formats are designed to work best along the equator, or even guaranteed to
work at allsolely along the equator (ODS).
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Table 7.2: Most relevant related real-world IBR methods (see legend in Table 2.3) and further
discussion how to compare IBR and LIBR end-to-end in Section 2.8.

Method:
Capture
(Dataset)

Reconstruction
(Training)

Representation
(Model)

Rendering
(Testing)

E CM N L S V C G S T AS MP Mem RT Q S

[Levoy and Hanrahan, 1996]

(Section 2.6.2.1)
O

3D-T

3D-R
256+ N S P O 7 3 P S-6 3 L L VH VR

[Shum and He, 1999]

(Section 2.6.2.2)
O

2D-T

1D-R
1351 S VF S O 7 3 P

S-(1R+2T)

360°
3 M S M VR

[Peleg et al., 2001]

(Section 2.6.2.4)
O 1D-IO 1000+ N S P 7 7 3 P

S-1R

360°
7 S M M VR

[Buehler et al., 2001]

(Section 2.6.4.1)
CU 3 36+ N VF P SfM M S E S-6 3 M L H VR

[Zheng et al., 2007] CU 1D-IO ∼20 N VF P SfM PSV,D S E S-6 3 S L VH I

[Davis et al., 2012] CG 2D-OI 48+ N
VF

S
P SLAM

P

D,M

VF

S
E 6 3

S

L

VS

L

H

VH
R

[Chaurasia et al., 2013] CU
1D-L

1D-OI
36+ N VF P SfM D+ S E 6 3 M L H R

[Richardt et al., 2013]

(Section 2.6.3.2)
CU 1D-IO 100+

N

W
VF P SfM 2D S I

S-1R

360°
7 L L M VR

[Thatte et al., 2016]

(Section 2.6.4.2)
O 1D-IO 2 7 M ODS O P S E

S-6

360°
3 S L H VR

[Hedman et al., 2016]

Inside-out IBR
CU 3

C150+

D150+

W

N
M

P

D
SfM

D

M
S E

S-6

360°
3 L L VH R

[Lee et al., 2016]

(Section 2.6.4.3)
R 2D-IO 6 W VF D R P VF E

3R

360°
7 S VS M VR

[Hedman et al., 2017]

(Section 2.6.4.4)
CU 2D-IO ∼50 F F D SfM

PSV

D,M
F E

S-6

360°
3 S L VH VR

[Isola et al., 2017]

(Section 2.7.1.1)
3 7

7R

400+
N S

1

P
7 7

S

40k+
L 7 7 L VS L I

[Hedman and Kopf, 2018] CU 2D-IO CD20+ N F P O M VF E
S-6

360°
3 S S VH VR

[Overbeck et al., 2018] R 2D-IO 916+ W M D O
D

M
S E

S-6

360°
3 L L VH VR

[Schroers et al., 2018] R 1D-IO 16 W VF D R 2D M I
S-(1R(+2T))

360°
(3)

S

L
M M VR

[Luo et al., 2018]

(Section 2.6.3.3)
O 2D-IO 4032 N S P O 2D S I

S-(3R+2T)

360°
3 L L H R

[Hedman et al., 2018]

Deep Blending
CU

2D-IO

1D-T

19R

Σ2630
N M

4+1

P
SfM D, M

S

%
L,E

6

360°
3 M L H I

[Bertel et al., 2019]

(Chapter 4)
CU 1D-IO 144+ W VF P SfM 2D S I

S-(1R+2T)

360°
3 L L M VR

[Serrano et al., 2019]

(Section 2.6.4.5)

R

O
1D-IO

C1+

D1+
F VF S360 R D F E

S-6

360°
3 S S H VR

[Pozo et al., 2019] R 2D-IO 16 W VF D R D F E
S-6

360°
3 M S VH VR

[Thies et al., 2019]

(Section 2.7.4.1)

CU

S,O

2D-OI

%

2, S

800+,1000
N F

1

P
SfM, O M

S

%
L,E inter 3 M L E VR

[Bertel et al., 2020a]

(Chapter 3)

CU

Rig
7 2 7 VF ODS SfM 2D,P M H

S-6

360°
3 M S H O

[Bertel et al., 2020c]

(Chapter 5)

CU

O

1D-IO

%
∼90 360° VF S360-OS SLAM 2D,M M H

S-(3R+2T)

360°
3 L S H VR

[Bertel et al., 2020b]

(Chapter 6)
CU

1D-OI

%

1R

711
N VF P SfM M

S

250k
L,E

inter

extra
3 M L

VH

H
VR

[Broxton et al., 2020] R 2D-IO
130

46
N S P SfM

MSI-160
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7.1 Application scenarios
The presented approaches are designed for different use cases (or application scenarios)
which should help to judge their usefulness in the context of practical end-to-end pipelines
for real-world VR experiences.
For me, it makes sense to distinguish two major use cases according to camera motion (see
Section 2.5.2): First, single-object captures (360° outside-in), and second, many-object or
scene captures (360° inside-out).

360° inside-out versus outside-in Representing 360° environments for VR can be
(for me) intuitively split into two application scenarios: First, inside-out, where the goal
is to represent a scene (collection of objects), and second, outside-in, where the goal is to
represent a single object, from a given set of observations (viewpoints, images) available as
input.

Inside-out All inside-out methods presented in this thesis (see Chapters 3 to 5) are
suitable for casually creating real-world VR experiences, end-to-end, without any need for
expensive (non-consumer) cameras or other hardware. Furthermore, all these methods beat
the current de-facto industrial standard for real-world VR, i.e. ODS, in terms of immersion
due to available motion parallax and thus more natural viewpoint changes.

1. ODS2DASP (see Chapter 3) can be used to enrich existing ODS, technically trans-
forming it into a DASP, with minimal assumptions.

2. MegaParallax (see Chapter 4) allows for casually creating 3-DoF VR, although coming
with a huge memory footprints and strong vertical distortion in novel views (worst for
objects close to the camera).

3. OmniPhotos (see Chapter 5) allows to process 5-DoF VR end-to-end in a very robust
manner and mitigated visual artefacts compared to previous work (MegaParallax).

All these methods are suitable for stationary VR experiences, meaning users are not supposed
”to walk”, but only ”to look” around in the scene, which requires head movements, but no
significant lower body movements.

The magnitudes of action spaces differ significantly in the presented approaches. ODS2DASP
only acts within an action space of a few centimetres in diameter per scene, while OmniPhotos
provide more than one metre.

Unfortunately, the quality of these approaches is most likely not sufficient for many profes-
sional applications. Nevertheless, the most pressing future work here is (1) to improve the
scene geometry of OmniPhotos, and (2) add disocclusion-handling for ODS2DASP.
There is plenty of meaningful things to do in future work.

A set of potential use cases for OmniPhotos are listed in Section 5.4, for instance virtual
tourism and real-estate. I want to explicitly add 3D commercials, screen savers for stereo-
scopic and light field displays, in general, casual generation of immersive visual content.
The DASP can be used for the same use cases than OmniPhotos, but the expected transla-
tional magnitude is expected to be much smaller, although both methods provide arguably
(the same) 5-DoF.

Outside-in This thesis only contains one outside-in method, namely DNR4VE (see
Chapter 6), in which a user is supposed to walk around a car. We identified the baseline
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method as only neural approach that could be used for VR applications as is, mainly in terms
of visual quality and speed requirements (see Section 1.1.1).

Real-world scenarios challenge traditional IBR approaches because of imperfect correspon-
dences and 3D geometry (see Sections 2.5 and 2.6). Neural methods (see Section 2.7) are the
most promising way of addressing these imperfections, being able to produce artefact-free
view-interpolation.
However, I was not able to find a sufficiently good way of enabling artefact-free view ex-
trapolations that are essential when working on 1D camera motions, for instance a circular
camera sweep.

All use cases for such an approach orbit around single objects, ideally observed from many
different angles and distances. To make such methods works reliably, it is very important to
find accurate segmentation masks that separate the foreground (object of interest) from the
background.
Complex (and cluttered) backgrounds will usually lead to inaccurate correspondence estima-
tion leading to imperfect data which potentially blurs objects contours or scene disocclusions,
or eventually leads to pooping artefacts [Davis et al., 2012].
Such methods could change the way we shop online, on a screen or potentially using a VR
headset, allowing to see the product of interest from arbitrary angles and ideally distances as
well.

Wild thoughts Furthermore, I can see great potential in watching the news or speeches
in VR. In both cases, the focus is on a single object, i.e. a human, that is looking towards one
camera, or at least in a predefined set of directions (a set of cameras).
Capturing speakers in 3D and providing VR television (VR channels as a product), could be
a use case for outside-in VR: another human is in the centre of the user’s attention.
For the actual news content, i.e. clips of up to several minutes, ODS or DASP could be
suitable for a stationary VR experience, for instance a user sitting in a chair. This could be
achieved reliably recording new clips with a multi-camera rig to stitch ODS and further
augmenting this with explicit scene geometry (DASP).

Real-world VR cinematography is obviously very interesting as well, but it is widely unclear
how a story must be designed to make it work in VR. Furthermore, it is not clear how action
spaces would need to be defined to allow for immersive and interactive VR experiences.
Once users become part of a movie, they want interaction to some extent, for instance by
actively taking decisions about how the movie shall progress along the main narrative of the
story.

7.2 Future work
Casual real-world VR might lead us to a new era of visual media. We are finally seeing
reliable methods that suggest end-to-end pipelines for truly immersive VR content [Hedman
et al., 2016, 2017, Overbeck et al., 2018, Serrano et al., 2019, Pozo et al., 2019, Broxton
et al., 2020, Tomoto et al., 2020], but none of them is perfect, and suitable for arbitrary
scenarios.

In the context of real-world VR, e.g., 3D photography as the immersive medium of the near
future, I personally see great potential in the following key areas:

Hybrid scene representations Hybrid scene representations that use view-dependent
geometry seem promising in many ways, e.g., addressing incomplete geometry in a plausible
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manner [Chaurasia et al., 2013] if realistic data is not available due to shortcomings of 3D
reconstructions, or combining explicit with implicit geometry [Eisemann et al., 2008, Lipski
et al., 2014] to account for inaccuracies in proxy and pose estimates, or actually combining
multiple methods into one [Prakash et al., 2021].
In case of view-dependent geometry, which is known to be more accurate than global
geometry [Hedman et al., 2016, Overbeck et al., 2018, Broxton et al., 2020], inconsistencies
can arise in stereo views since the geometries used to render each view are usually created
independently. Note that stereo consistency in a geometrical sense is not a problem as long a
global scene geometry is used which is valid for all used input viewpoints [Hedman et al.,
2017, Hedman and Kopf, 2018] (multi-view consistency). However, this is generally not true
considering appearance though. Even if global geometry is used, view-dependent texture
mapping [Debevec et al., 1996, 1998, Buehler et al., 2001] does not guarantee consistent
appearances for stereo views, unless the scene is perfectly diffuse, since view-dependent
blending weights are used for each view in isolation16.

One-shot 3D photography Single image 3D photography [Shih et al., 2020] is amazing,
but it does not provide much translational magnitude, which is required for impressive stereo
action spaces, needed to create truly immersive VR experiences. While being state-of-the-art
in terms of visual quality in 360° environments, some of Google’s work [Overbeck et al.,
2018, Broxton et al., 2020] report that users tend to be disappointed about too small action
spaces.
Obvious future work is to combine several single image 3D photographs into one, at least
sharing underlying structures and embedding them into a larger (global) space.

View extrapolation View extrapolation is inevitable to support immersive VR since
even very small head-movements imply changes in perspective, 3D perception (binocular
disparity), and motion parallax. The general goal should be to address extrapolation captured
multi-view datasets to freely explore them, particularly far away from input views [Chaurasia
et al., 2013], and not just the interpolation of them [Hedman et al., 2016, Penner and
Zhang, 2017, Hedman et al., 2017]. For casual real-world VR, plausible extrapolation would
reduce the required number of input views required to create immersive action spaces, in
consequence leading to faster capturing procedures.
The simplest way of improving extrapolation performance would be to embed the imperfect
and incomplete scene into a global scene environment, which could match the captured
dataset semantically, and then use deep learning to complete some missing pieces.

Democratisation of technology Public availability of immersive real-world VR data
is low. Commercial formats, based on ODS [Peleg et al., 2001, Richardt et al., 2013, Anderson
et al., 2016, Schroers et al., 2018], cannot qualify for a modern VR format (see Section 1.1.1).

Note that ODS2DASP can be used to enrich existing ODS17 OmniPhotos captured with a
smartphone should be possible, for instance MegaParallax with high-quality proxy geometry.

Active user guidance User-guidance via AR during capture leads to more accurate
camera paths and has shown its potential in previous work [Davis et al., 2012, Mildenhall
et al., 2019]. It is a great way of democratising new exciting technology, basically to enable
casual consumers to actively contribute to it.

16Spurious artefacts can be seen in Broxton et al.’s shared VR experiences [2020]. I spotted them only when
watching the videos in VR.

17Although it needs 1-2 iterations from its current state to be taken seriously.

219



Camera motions The camera motion plays an important role when picking a IBR
method which can be reliably reconstructed while representing the input data with high
visual fidelity. Prior assumptions on the camera trajectory has great benefits for further
processing [Sweeney et al., 2019, Baker et al., 2020].
It might be interesting to search for a camera motion that can be captured quickly in
practice, and which leads to high-quality action spaces, which do not necessarily need to be
omnidirectional (360°).

Fast previews or minimal round-trip time Fast previews of captured scenes might
be a core aspect of every scene representation that has the potential to find applications
in practice. While users capture images (2D photographs) ubiquitously without spending
perceivable time during capture, it usually comes down to a simple button press and the
phone does the rest.
I imagine that practical systems should not depend on capturing complex camera paths which
is an argument made for single image 3D photography [Kopf et al., 2020, Shih et al., 2020].
In a casual context, fast previews [Davis et al., 2012] enable users to be spontaneous with
their capturing as they are used to from capturing 2D photos, and receive active feedback of
their current dataset capture.

Dynamic scenes 3D photography in common capturing scenarios like outdoors, indoors,
in urban environments, in the woods, etc., never comes without motion. Recognising non-
rigid scene objects and predicting motion-models for each dynamic object in the scene, could
be a very interesting topic for future work.
Seen from a different perspective, making captures for 3D photography more robust, it
is important to detect dynamic objects from the input footage to increase the chances of
successful and high-quality 3D reconstructions.

General thoughts My guess for a practical representation for 3D photography is a
layered scene representation which is built back-to-front (2-3 layers as in [Zheng et al.,
2007]), with view-dependent neural layer (at the front only) to support complex appearances
and to alleviate artefacts.

When building up from a video sweep, why not subsample frames and build back-layers
from lower angular resolutions, for instance one viewpoint for each 8° or 16° , and then add
frames again when the disparities are to large to measure or when they disappear.
If the uncertainty is tracked during reconstruction, in particular if it is evident which scene
areas caused adding more images to increase the angular resolution, in other words which
areas caused high reconstruction errors, it might be illuminating to investigate the large over
multiple scales18.

Finally, one learns a neural sugar coating over the first layer (similar to the near envelope
[Hedman et al., 2017] (see Section 2.6.4.4, in particular Figure 2.37)) at the end using DNR.
The sugar coating idea might be close in principle to recent related work [Kopanas et al.,
2021]).

18If the error is persistent over all scales, the scene geometry is either too close to the camera indicating
insufficient angular resolution, or the scene appearance is uniform or does not contain distinguishable features,
for instance repetitive texture.
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7.3 Closing thoughts
Practically speaking, I believe that simplicity will beat the highest visual quality as long the
VR experiences immerse their users. Nevertheless, the visual quality is obviously very impor-
tant for many use cases, but the question whether always the most expensive reconstruction
is necessary to provide an experience with sufficient quality, is still widely unknown from
my perspective.

In my opinion, OmniPhotos is a promising VR representation because of its simplicity.
Capturing datasets for new OmniPhotos is useful today, and will be useful in the future when
more accurate scene geometries from the dense circular video input have been engineered.
The lack of reasonable vertical translation is acceptable for stationary (e.g. seated) VR
experiences.

I could say the same thing about ODS2DASP, its main selling point is its simplicity. Its main
limitation is its action space, but one last time, it significantly improves over the current
de-facto standard ODS.
I reckon that it could find numerous application scenarios, in particular for a swift and
light-weight casual 3D photography approach. For instance one could start by producing
ODS, which can then be sent to the user after capture as soon as possible. The bottleneck
here is sparse reconstruction and optical flow computation.
Then a high-quality scene reconstruction is started producing the point cloud needed to create
the DASP.
Practically, the quality of the ODS viewing circle could be traded to obtain fast previews of
the captured environment.

Dear reader, I hope you found (at least some) interesting insights while reading (or skimming)
through this thesis. It took me much longer than expected to write it up.

I am glad for the experience, but so unbelievably relieved that it is finally done.

I have to thank my new and old friends as well as my family once more for their continuous
support over the last 5 years:
Ich danke euch, dies ist für alle von uns.
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