170 research outputs found

    Backscattering UWB/UHF hybrid solutions for multi-reader multi-tag passive RFID systems

    Get PDF
    Ultra-wideband (UWB) technology is foreseen as a promising solution to overcome the limits of ultra-high frequency (UHF) techniques toward the development of green radio frequency identification (RFID) systems with low energy consumption and localization capabilities. While UWB techniques have been already employed for active tags, passive tags solutions are more appealing also due to their lower cost. With the fundamental requirement of maintaining backward compatibility in the RFID domain, we propose a hybrid UWB/UHF architecture to improve passive tag identification both in single-reader and multi-reader scenarios. We then develop two hybrid algorithms: the first one exploits the UWB signal to improve ISO/IEC 18000-6C UHF standard, while the other one exploits UWB to enhance a compressive sensing (CS) technique for tag identification in the multi-reader, multi-tag scenario. Both solutions are able to improve success rate and reading speed in the tag identification process and reduce the energy consumption. The multi-reader version of the proposed approaches is based on a cooperative scheme in order to manage reader-tag collisions and reader-reader collisions besides the typical tag-tag collisions. Furthermore, timing synchronization non-idealities are analyzed for the proposed solutions and simulation results reveal the effectiveness of the developed schemes

    Performance evaluation of non-persistent CSMA as anti-collision protocol for active RFID tags.

    Get PDF
    In this paper we propose the use of non-persistent CSMA as an anti-collision procedure for RFID active tags. Current proposals for both passive and active tags are based on the framed slotted ALOHA protocol, which does not scale well requiring additional procedures for frame length adaptation. However, active RFID devices already include carrier sense capabilities with no additional cost and, thus, CSMA may be employed seamlessly. Nevertheless, selecting the contention micro-slots of CSMA in the classical way (i.e., with a uniform distribution and an exponential back-off algorithm) does not result in an efficient identification process, as we will demonstrate. Fortunately, better choices can be found. Recently, an optimal distribution for the selection of micro-slots for event-driven sensor networks has been computed, as well as a practical implementation: the Sift distribution. In this work we propose the application of the quasi-optimal Sift distribution along with CSMA for active tag identification. By means of an analytical study, we evaluate the average time needed for identification with this mechanism and compare it with the current ISO 18000-7 and EPC “Gen 2” standard. The results reveal that the Sift-based non-persistent CSMA outperforms both of them. Moreover, it also scales much better, without the need for further adaptation mechanismsThis work has been funded by the Spanish Ministerio de Educación y Ciencia with the projects DEP2006-56158-C03-03/EQUI and m:ciudad (FIT-330503- 2006-2, partially funded by ERDF) and by the Spanish Research Council with the ARPaq project (TEC2004-05622-C04-02/TCM)

    A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends

    Get PDF
    The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed

    Contributions to the development of active RFID systems at the 433 MHz band

    Get PDF
    Donat el potencial de la tecnologia RFID activa, aquesta tesi contribueix al seu desenvolupament centrant-se en les capes més baixes de la pila de protocols, és a dir, la capa física i la capa d'enllaç de dades. Aquestes capes determinen l'abast de la comunicació entre l'interrogador i les etiquetes, el nombre d'etiquetes que un interrogador pot llegir per segon i el consum d'energia que utilitzen les etiquetes en el procés, que en són els paràmetres de rendiment clau. A la capa física la tesi avalua els aspectes de propagació de la banda 433 MHz en diferents entorns i els compara amb la banda 2.4 GHz. Els resultats demostren que, per a la mateixa potència de transmissió, els sistemes RFID actius que funcionen a la banda 433 MHz aconsegueixen un millor abast de comunicació gràcies a unes millors característiques de propagació. A la capa d'enllaç de dades la tesi proposa LPDQ (Low-Power Distributed Queuing), un nou protocol d'accés al medi, i el compara amb FSA (Frame Slotted ALOHA). LPDQ combina LPL (Low-Power Listening) per a la sincronització de xarxa i DQ (Distributed Queuing) per a la transmissió de dades. En comparació amb el cas òptim de FSA, LPDQ aconsegueix un rendiment proper al màxim teòric (99.5%) independentment del nombre d'etiquetes i redueix el consum d'energia de les etiquetes en més d'un 10%.Dado el potencial de la tecnología RFID activa, esta tesis contribuye a su desarrollo centrándose en las capas más bajas de la pila de protocolos, es decir, la capa física y la capa de enlace de datos. Estas capas determinan el alcance de la comunicación entre el interrogador y las etiquetas, el número de etiquetas que un interrogador puede leer por segundo y el consumo de energía que utilizan las etiquetas en el proceso, que son los parámetros de rendimiento clave. En la capa física la tesis evalúa los aspectos de propagación de la banda 433 MHz en diferentes entornos y los compara con la banda 2.4 GHz. Los resultados demuestran que, para la misma potencia de transmisión, los sistemas RFID activos que funcionan en la banda 433 MHz consiguen un mejor alcance de comunicación gracias a unas mejores características de propagación. En la capa de enlace de datos la tesis propone LPDQ (Low-Power Distributed Queuing), un nuevo protocolo de acceso al medio, y lo compara con FSA (Frame Slotted ALOHA). LPDQ combina LPL (Low-Power Listening) para la sincronización de red y DQ (Distributed Queuing) para la transmisión de datos. En comparación con el caso óptimo de FSA, LPDQ consigue un rendimiento cercano al máximo teórico (99.5%) independientemente del número de etiquetas y reduce el consumo de energía de las etiquetas en más de un 10%.Given the potential of active RFID technology, this thesis contributes to its development by focusing on the lowest layers of the stack, that is, the physical and data-link layers. These layers determine the tag communication range, packet throughput and energy consumption, which are key performance parameters. At the physical layer, the thesis studies propagation aspects of the 433 MHz band in different environments and compares it to the 2.4 GHz band, which is also used in active RFID systems. The results demonstrate that active RFID systems operating at the 433 MHz band can achieve a better communication range at the same transmit power due to better propagation characteristics. At the data-link layer, the thesis proposes LPDQ (Low-Power Distributed Queuing), a new MAC (media access control) protocol, and compares it to FSA (Frame Slotted ALOHA). LPDQ combines LPL (Low-Power Listening) for network synchronization and DQ (Distributed Queuing) for data transmission. Compared to the optimal FSA case, LPDQ can achieve a performance close to the theoretical maximum (99.5%), regardless of the number of tags, and reduces tag energy consumption by more than 10%

    A Systematic Framework for Radio Frequency Identification (RFID) Hazard Mitigation in the Blood Transfusion Supply Chain from Donation to Distribution

    Get PDF
    The RFID Consortium is developing what will be the first FDA-approved use of radio frequency identification (RFID) technology to identify, track, manage, and monitor blood throughout the entire blood transfusion supply chain. The iTraceTM is an innovative technological system designed to optimize the procedures currently employed when tracing blood from the donor to the recipient. With all novel technologies it is essential to consider not only the advantages, but also the potential harms that may come about from using the system. The deployment of the iTraceTM consists of two phases: 1) Phase One - application of the iTraceTM from the donor to blood center distribution, and 2) Phase Two - application of the iTraceTM from blood center distribution to transfusion. This dissertation seeks to identify the possible hazards that may occur when utilizing the iTraceTM during Phase One, and to assess the mitigation and correction processes to combat these hazards. A thorough examination of verification and validation tests, as well as of the system design, requirements, and standard operating procedures was performed to qualify and quantify each hazard into specific categories of severity and likelihood. A traceability matrix was also established to link each hazard with its associated tests and/or features. Furthermore, a series of analyses were conducted to determine whether the benefits of implementing the iTraceTM outweighed the risks and whether the mitigation and correction strategies of the hazards were effective. Ultimately, this dissertation serves as a usable, generalizable framework for the management of RFID-related hazards in the blood transfusion supply chain from donor to blood center distribution

    On the Optimal Identification of Tag Sets in Time-Constrained RFID Configurations

    Get PDF
    In Radio Frequency Identification facilities the identification delay of a set of tags is mainly caused by the random access nature of the reading protocol, yielding a random identification time of the set of tags. In this paper, the cumulative distribution function of the identification time is evaluated using a discrete time Markov chain for single-set time-constrained passive RFID systems, namely those ones where a single group of tags is assumed to be in the reading area and only for a bounded time (sojourn time) before leaving. In these scenarios some tags in a set may leave the reader coverage area unidentified. The probability of this event is obtained from the cumulative distribution function of the identification time as a function of the sojourn time. This result provides a suitable criterion to minimize the probability of losing tags. Besides, an identification strategy based on splitting the set of tags in smaller subsets is also considered. Results demonstrate that there are optimal splitting configurations that reduce the overall identification time while keeping the same probability of losing tags

    Energy Efficient Protocols for Active RFID

    Get PDF
    Radio frequency identification (RFID) systems come in different flavours; passive, active, semi-passive, or semi-active. Those different types of RFID are supported by different, internationally accepted protocol standards as well as by several accepted proprietary protocols. Even though the diversity is large between the flavours and between the standards, the RFID technology has evolved to be a mature technology, which is ready to be used in a large variety of applications. This thesis explores active RFID technology and how to develop and apply data communication protocols that are energy efficient and which comply with the different application constraints. The use of RFID technology is growing rapidly, and today mostly “passive” RFID systems are used because no onboard energy source is needed on the transponder (tag). However, the use of “active” RFID-tags with onboard power sources adds a range of opportunities not possible with passive tags. Besides that Active RFID offers increased working distance between the interrogator (RFID-reader) and tags, the onboard power source also enables the tags to do sensor measurements, calculations and storage even when no RFID-reader is in the vicinity of the tags. To obtain energy efficiency in an Active RFID system the communication protocol to be used should be carefully designed. This thesis describes how energy consumption can be calculated, to be used in protocol definition, and how evaluation of protocols in this respect can be made. The performance of such a new protocol, in terms of energy efficiency, aggregated throughput, delay, and number of collisions in the radio channel is evaluated and compared to an existing, commercially available protocol for Active RFID, as well as to the IEEE standard 802.15.4 (used, e.g., in the Zigbee medium-access layer). Simulations show that, by acknowledging the payload and using deep sleep mode on the tag, the lifetime of a tag is increased. For all types of protocols using a radio channel, when arbitrating information, it is obvious that the utilization of that channel is maximized when no collisions occur. To avoid and minimize collisions in the media it is possible to intercept channel interference by using carrier sense technology. The knowledge that the channel is occupied should result in a back-off and a later retry, instead of persistently listening to the channel which would require constant energy consumption. We study the effect on tag energy cost and packet delay incurred by some typical back-off algorithms (constant, linear, and exponential) used in a contention based CSMA/CA (Carrier Sense Multiple Access/ Collision Avoidance) protocol for Active RFID communication. The study shows that, by selecting the proper back-off algorithm coefficients (based on the number of tags and the application constraints), i.e., the initial contention window size and back-off interval coefficient, the tag energy consumption and read-out delays can be significantly lowered. The initial communication between reader and tag, on a control channel, establishes those important protocol parameters in the tag so that it tries to deliver its information according to the current application scenario in an energy efficient way. The decision making involved in calculating the protocol parameters is conducted in the local RFID-reader for highest efficiency. This can be done by using local statistics or based on knowledge provided by the logistic backbone databases. As the CMOS circuit technology evolves, new possibilities arise for mass production of low price and long life active tags. The use of wake-up radio technology makes it possible for active tags to react on an RFID-reader at any time, in contrast to tags with cyclic wake-up behaviour. The two main drawbacks with an additional wake-up circuit in a tag are the added die area and the added energy consumption. Within this project the solution is a complete wake-up radio transceiver consisting of only one hi-frequency very low power, and small area oscillator. To support this tag topology we propose and investigate a novel reader-tag communication protocol, the frequency binary tree protocol
    corecore