144 research outputs found

    Linked Open Data - Creating Knowledge Out of Interlinked Data: Results of the LOD2 Project

    Get PDF
    Database Management; Artificial Intelligence (incl. Robotics); Information Systems and Communication Servic

    Semantically-Enabled Sensor Plug & Play for the Sensor Web

    Get PDF
    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research

    WSMO-Lite and hRESTS: lightweight semantic annotations for Web services and RESTful APIs

    Get PDF
    Service-oriented computing has brought special attention to service description, especially in connection with semantic technologies. The expected proliferation of publicly accessible services can benefit greatly from tool support and automation, both of which are the focus of Semantic Web Service (SWS) frameworks that especially address service discovery, composition and execution. As the first SWS standard, in 2007 the World Wide Web Consortium produced a lightweight bottom-up specification called SAWSDL for adding semantic annotations to WSDL service descriptions. Building on SAWSDL, this article presents WSMO-Lite, a lightweight ontology of Web service semantics that distinguishes four semantic aspects of services: function, behavior, information model, and nonfunctional properties, which together form a basis for semantic automation. With the WSMO-Lite ontology, SAWSDL descriptions enable semantic automation beyond simple input/output matchmaking that is supported by SAWSDL itself. Further, to broaden the reach of WSMO-Lite and SAWSDL tools to the increasingly common RESTful services, the article adds hRESTS and MicroWSMO, two HTML microformats that mirror WSDL and SAWSDL in the documentation of RESTful services, enabling combining RESTful services with WSDL-based ones in a single semantic framework. To demonstrate the feasibility and versatility of this approach, the article presents common algorithms for Web service discovery and composition adapted to WSMO-Lite

    Building web service ontologies

    Get PDF
    Harmelen, F.A.H. van [Promotor]Stuckenschmidt, H. [Copromotor

    Deployment and Operation of Complex Software in Heterogeneous Execution Environments

    Get PDF
    This open access book provides an overview of the work developed within the SODALITE project, which aims at facilitating the deployment and operation of distributed software on top of heterogeneous infrastructures, including cloud, HPC and edge resources. The experts participating in the project describe how SODALITE works and how it can be exploited by end users. While multiple languages and tools are available in the literature to support DevOps teams in the automation of deployment and operation steps, still these activities require specific know-how and skills that cannot be found in average teams. The SODALITE framework tackles this problem by offering modelling and smart editing features to allow those we call Application Ops Experts to work without knowing low level details about the adopted, potentially heterogeneous, infrastructures. The framework offers also mechanisms to verify the quality of the defined models, generate the corresponding executable infrastructural code, automatically wrap application components within proper execution containers, orchestrate all activities concerned with deployment and operation of all system components, and support on-the-fly self-adaptation and refactoring

    Cross-formalism resource discovery in smart environments

    Get PDF
    Nowadays, the Internet of Things (IoT) is becoming progressively colloquial to media. However, when there are trillions of resources out there, how can we spontaneously specify the resource we need? Therefore, one of the main research questions is the device and service discovery. Many standard web services descriptions are used to describe not only web services but also physical devices. These devices are encapsulated under the web service communication layer to make them available on the Internet. This technique enables automatic discovery, configuration, and execution of resources in dynamic environments. Thus, we focus on the resource description language that allows semantic annotation. Nevertheless, there is no single standard formalism to describe resources. It is more tactful to handle multiple description formalisms simultaneously. This thesis presents a cross-formalism resource discovery technique which utilizes the user context and resources context to improve the recommendation of resources. The discovery process should not be restricted to single resource description formalism. Moreover, the matching algorithm should be user-aware and environmentally adaptive, i.e. depending on the users current situation, rather than limit to keyword-based search. This thesis explains the implementation detail and shows the evaluation of each implemented module. We aimed to prove that the quality of the result is improved significantly compared to conventional discovery techniques. To demonstrate the usability of the proposed method, we deploy it in MERCURY. MERCURY is a platform that allows both businesses to engage with their customers and end users to create custom-made applications. Within the context of MERCURY, registration, assembling, and execution of resources need the automatic resource discovery. Since the implementation of this work is designed to be a standalone service, there is no restriction to use it under the domain of MERCURY

    Modeling and Selection of Software Service Variants

    Get PDF
    Providers and consumers have to deal with variants, meaning alternative instances of a service?s design, implementation, deployment, or operation, when developing or delivering software services. This work presents service feature modeling to deal with associated challenges, comprising a language to represent software service variants and a set of methods for modeling and subsequent variant selection. This work?s evaluation includes a POC implementation and two real-life use cases

    Enhancement of the usability of SOA services for novice users

    Get PDF
    Recently, the automation of service integration has provided a significant advantage in delivering services to novice users. This art of integrating various services is known as Service Composition and its main purpose is to simplify the development process for web applications and facilitates reuse of services. It is one of the paradigms that enables services to end-users (i.e.service provisioning) through the outsourcing of web contents and it requires users to share and reuse services in more collaborative ways. Most service composers are effective at enabling integration of web contents, but they do not enable universal access across different groups of users. This is because, the currently existing content aggregators require complex interactions in order to create web applications (e.g., Web Service Business Process Execution Language (WS-BPEL)) as a result not all users are able to use such web tools. This trend demands changes in the web tools that end-users use to gain and share information, hence this research uses Mashups as a service composition technique to allow novice users to integrate publicly available Service Oriented Architecture (SOA) services, where there is a minimal active web application development. Mashups being the platforms that integrate disparate web Application Programming Interfaces (APIs) to create user defined web applications; presents a great opportunity for service provisioning. However, their usability for novice users remains invalidated since Mashup tools are not easy to use they require basic programming skills which makes the process of designing and creating Mashups difficult. This is because Mashup tools access heterogeneous web contents using public web APIs and the process of integrating them become complex since web APIs are tailored by different vendors. Moreover, the design of Mashup editors is unnecessary complex; as a result, users do not know where to start when creating Mashups. This research address the gap between Mashup tools and usability by the designing and implementing a semantically enriched Mashup tool to discover, annotate and compose APIs to improve the utilization of SOA services by novice users. The researchers conducted an analysis of the already existing Mashup tools to identify challenges and weaknesses experienced by novice Mashup users. The findings from the requirement analysis formulated the system usability requirements that informed the design and implementation of the proposed Mashup tool. The proposed architecture addressed three layers: composition, annotation and discovery. The researchers developed a simple Mashup tool referred to as soa-Services Provisioner (SerPro) that allowed novice users to create web application flexibly. Its usability and effectiveness was validated. The proposed Mashup tool enhanced the usability of SOA services, since data analysis and results showed that it was usable to novice users by scoring a System Usability Scale (SUS) score of 72.08. Furthermore, this research discusses the research limitations and future work for further improvements
    corecore