
Building Web Service Ontologies

Marta Sabou

SIKS Dissertation Series No. 2006-4.

The research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Graduate School for Information and Knowledge Systems.

Promotiecommissie:
prof.dr. F.A.H. van Harmelen (promotor)
prof.dr. H. Stuckenschmidt (copromotor, University of Mannheim, Germany)
prof.dr. F.M.T. Brazier (Vrije Universiteit Amsterdam)
dr. J. Domingue (The Open University, UK)
dr. N. Guarino (Laboratory for Applied Ontology, ISTC-CNR, Italy)
prof.dr. M. de Rijke (Universiteit van Amsterdam)
prof.dr. A.Th. Schreiber (Vrije Universiteit Amsterdam)

ISBN 90-9018400-7

Copyright c© 2006 by Marta Sabou

VRIJE UNIVERSITEIT

Building Web Service Ontologies

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op donderdag 27 april 2006 om 13.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Reka Marta Sabou

geboren te Turda, Roemenië

promotor: prof.dr. F.A.H. van Harmelen
copromotor: prof.dr. H. Stuckenschmidt

Preface

One of my favorite metaphors about life is the one that compares it to an ever more
challenging expedition. According to this metaphor each challenge or task in our life
is a mountain that we climb. At its time, each mountain seams the most important and
the hardest to conquer, however, when we rich its top we realize that there are so many
even higher mountains to climb ahead. This thesis is the result of a four years effort to
climb probably the hardest mountain in my life so far. Reaching its peak has given me the
possibility to engage in even higher challenges. There are many ahead. At the same time,
looking back to all this journey I realize that I could have never completed it without the
help of so many people. This is the time to thank them all!

My supervisors, Frank and Heiner, have undoubtedly played a central role in this
four year apprenticeship in research. It is thanks to Frank that I have enrolled for a PhD
position on the first place. After supervising my master’s thesis, he considered that I had
the potential to become a researcher and offered me a PhD position in his group (and
convinced me to accept it). I am grateful that Frank and Heiner have supported me in
pursuing a rather risky topic that was quite distant from their expertise. Even so, they
have managed to steer my work in a successful direction. Besides technical content, by
working with them, I had the opportunity to learn several of the skills that are essential
for research, from writing papers to reviewing the work of fellow researchers. However,
the hardest part of their role, much harder than overviewing the technical content or pro-
viding me with the actual tools to perform research, was that of “teaching” me the right
attitude towards research. Through their passion for science, optimism and incredible
dedication to their work they have inspired and motivated me every single day of these
four years.

Because the topic of my thesis has been novel to the core expertise of the KR&R
group, I have performed much of the work in cooperation with several researchers from
different research groups. Already during my master thesis, and then all along these four
years, I have often cooperated with the Dutch research company Aduna and its expe-
rienced staff (the late Jos van der Meer, Arjohn Kampman, Christiaan Fluit, Herko ter
Horst, Jeen Broekstra, Jeroen Wester and Hilde Bleeker). My first papers were written in
cooperation with the members of the IIDS group, Sander van Splunter and Frances Bra-
zier, and with Debbie Richards from Macquarie University in Sydney who was visiting
the group at that time. Most of the work presented in this thesis has been accomplished
in the framework of the WonderWeb European project. This project gave me the op-
portunity to perform joint work with Daniel Oberle from the University of Karlsruhe,
my colleague Peter Mika and Aldo Gangemi from ISTC Rome. I have also benefitted
of important help in a crucial stage of my work from several researchers at the Univer-

siteit van Amsterdam, namely Maarten de Rijke, Gilad Mishne and Valentin Jijkoun. Yet
another European project, Knowledge Web, gave me the opportunity to spend five very
productive and motivating weeks in Sheffield with the GATE group (Kalina Bontcheva,
Diana Maynard, Hamish Cunningham, Valentin Tablan, Niraj Aswani). The work done
in Sheffield helped me to finalize my most important case study in cooperation with
Carole Goble and Chris Wroe from the University of Manchester. I would like to ac-
knowledge and thank the contribution that all these people have brought to the thesis.

Besides the many people with which I have closely cooperated, I have enjoyed the
support of an even larger number of colleagues and friends. I owe special thanks to
Mar Marcos, my first room mate who also became a dear friend. I remember with great
pleasure the cooperation with Jeen Broekstra (my part-time roommate), Michel Klein
and Jacco van Ossenbruggen from CWI on teaching the Web-based Knowledge Repre-
sentation course at the VU. All other colleagues, both from the AI and the BI groups,
(Annette, Borys, Gusz, Holger, Laura, Maksym, Mark, Peter, Radu, Stefen, Zharko,
Zhisheng, Wouter) have contributed to a pleasant and motivating environment as well
as several interesting lunch-time discussions (especially Ronny, Chide and Ziv). I owe
thanks and an Italian dinner to Mark van Assen who has translated the summary of the
thesis in Dutch. I would also like to thank the members of the reading committee for
their insightful and constructive comments on this thesis. Thanks also to Harriett Cor-
nish from KMi who helped me with the cover design. Finally, all my special thanks to
my friends in Amsterdam - Alessandro, Cecile, Dirk, Federico, Peter, Raquel, Natalia
and Yulia. I hope that distance will not break our friendships.

Even with the help of so many friends, colleagues and fellow researchers, I could
have never completed this thesis without the help of my family. Its been thanks to their
uncounted sacrifices and unlimited love that I had the opportunity to follow a higher
education, to finalize my studies abroad and to finish this thesis. My uncle Zoltan from
Australia provided the financial means that allowed me to go to university. But more than
that, he has always been a raw model for daring and using ones talents to the maximum.
It would take more pages than those of this thesis to describe all the hardships that my
mother has endured through the last 18 years since I first left home in the interest of
education. I want to thank her for all those years, for her immense love that helped her
through them and for teaching me that humans can endure infinitely when they truly
believe in something. My sister, also, has supported me in these years through her love
and wisdom of life which compensates my own, often brittle, personality. Unfortunately,
four of my family members, my three grandparents and my father, have not lived to
rejoice with me on this day. Their dear memory and joy of life live on with me every day.

I am extremely fortunate that I could share the joy and the pain of the last three years
with my dear husband, Giovanni. He has been by my side during hard times and taught
me how to truly celebrate success. I am grateful for his deep love, endless optimism,
jokes, his wonderfully interesting stories about history and politics that have turned me
into a news-eater from a total ignorant, for teaching me obvious things about life that I
have somehow ignored with all that schooling and for his cooking that forces me on a
permanent diet. I also thank his family, Rossana, Massimo and Maurizio, for all their
support and for regarding me as a true member of thefamiglia even if my Italian is not
yet perfect.Grazie a tutti!

Contents

1 Introduction 1
1.1 Research Questions .3
1.2 Contributions . 4
1.3 Structure of the Thesis . 5
1.4 Publications . 6

I Context and Related Work 9

2 Semantic Web Services 11
2.1 The Changing World Wide Web .11
2.2 Semantic Web .12

2.2.1 Ontologies . 14
2.2.2 Ontology Languages for the Semantic Web17

2.3 Web Services .17
2.4 Semantic Web Services .20

2.4.1 Generic Web Service Ontologies21
2.4.2 Web Service Domain Ontologies25

2.5 Requirements for Web Service Ontologies26
2.5.1 Requirements for Generic Web Service Ontologies26
2.5.2 Requirements for Web Service Domain Ontologies28

2.6 Summary .28

3 Related Work 31
3.1 Introduction . 31
3.2 Acquisition of Software Semantics .32
3.3 Formal Ontology based Methods .33
3.4 Ontology Learning .33

3.4.1 Ontology Learning Approaches34
3.4.2 Methods for Text Based Ontology Learning35
3.4.3 Ontology Learning Tools .35
3.4.4 Major Issues in Ontology Learning36

3.5 Summary .38

ii Contents

II Enhancing Generic Web Service Ontologies 39

4 Improving DAML-S 41
4.1 Introduction . 41
4.2 The Web Services .42
4.3 Modelling a Simple Service - Bib2Rdf44
4.4 Modelling a Service with Multiple Interfaces - SIA45

4.4.1 Top-Down Design of SIA1 . 46
4.4.2 Bottom-Up Modelling of SIA2 47
4.4.3 Composite Process Approach in SIA348
4.4.4 Final Model in SIA4 . 49

4.5 Modelling a Complex Service - Sesame50
4.5.1 Description . 51
4.5.2 Modelling Requirements .52
4.5.3 Specifying Service Semantics52
4.5.4 Input/Output Specification .56

4.6 Conclusions .59
4.7 Summary .61

5 Adapting OWL-S to Generic Software Entities 63
5.1 Introduction . 63
5.2 Motivation . 64

5.2.1 Application Server for the Semantic Web64
5.2.2 Scenarios .65
5.2.3 Requirements .66

5.3 Ontology Design .67
5.3.1 Overview . 67
5.3.2 The sub-ontologies .70

5.4 Ontology Deployment .76
5.4.1 An Example Component Description76
5.4.2 Using Component Descriptions79

5.5 Related Work .79
5.6 Summary .80

6 Aligning OWL-S to a Foundational Ontology 81
6.1 Introduction . 81
6.2 Related Work .82
6.3 Problematic Aspects of OWL-S .83

6.3.1 Conceptual Ambiguity . 83
6.3.2 Poor Axiomatization . 84
6.3.3 Loose Design .84
6.3.4 Narrow Scope .86

6.4 Alignment . 86
6.4.1 DOLCE . 87
6.4.2 Descriptions & Situations .88
6.4.3 A Core Ontology of Services89
6.4.4 Aligning OWL-S to the Core Ontology of Services92
6.4.5 Summary .94

Contents iii

6.5 Suggestions for Improvement .95
6.5.1 Conceptual Disambiguations95
6.5.2 Increased Axiomatization .95
6.5.3 Improved Design .96
6.5.4 Wider scope .96

6.6 Conclusion .98
6.7 Summary .99

III Learning Web Service Domain Ontologies 101

7 A Framework for Learning Web Service Domain Ontologies 103
7.1 Introduction .103
7.2 The Problem of Building Web Service Domain Ontologies104

7.2.1 Case Study 1: WonderWeb RDF(S) Storage Tools105
7.2.2 Case Study 2:myGrid Bioinformatics Services106
7.2.3 Conclusions .108

7.3 Requirements for an Ontology Learning Solution109
7.3.1 Dealing with Low Grammatical Quality109
7.3.2 Dealing with Sublanguage Characteristics110
7.3.3 Learning Ontologies of Procedural Knowledge111

7.4 A Framework for Learning Web Service Domain Ontologies111
7.4.1 Overview of the Framework112
7.4.2 Step1: Term Extraction .113
7.4.3 Step2: Ontology Building .117
7.4.4 Step3: Ontology Pruning .118
7.4.5 Possible Extensions of the Framework119

7.5 Implementation Details .120
7.5.1 The GATE Framework .121
7.5.2 Two Concrete Implementations123
7.5.3 Visual Support for Ontology Learning124

7.6 Summary .128

8 Evaluation 129
8.1 Introduction .129
8.2 Ontology Learning Evaluation Practices130
8.3 Chosen Evaluation Criteria .131

8.3.1 Term Extraction .131
8.3.2 Expert Evaluation .132
8.3.3 Ontology Comparison .133

8.4 Experimental Corpora .134
8.5 Results .134

8.5.1 Term Extraction .135
8.5.2 Expert Evaluation .135
8.5.3 Ontology Comparison .138
8.5.4 Comparison with Other Ontology Learning Tools140

8.6 Discussion .141

iv Contents

9 Conclusions and Future Work 145
9.1 Conclusions and Contributions .145

9.1.1 Requirements for Web Service Ontologies146
9.1.2 Enhancing Generic Web Service Ontologies146
9.1.3 Learning Web Service Domain Ontologies147
9.1.4 A Note on the Generality of our Results148

9.2 Future Work .149
9.2.1 Semantic Web Services .150
9.2.2 Semantic Web Enabled Software Engineering152
9.2.3 Ontology Learning .153

A DOLCE+’s Synchro-task in OWL Abstract Syntax 155

Samenvatting 157

Bibliography 161

SIKS Dissertation Series 173

Chapter 1

Introduction

The World Wide Web (Berners-Lee, 1999) granted uniform access to heterogeneous data
sources residing anywhere on the Internet. However, the tremendous success of the Web
lead to its explosive increase to levels where finding the right information becomes a non
trivial task. As a response to these limitations, in the last few years the Web encountered
two revolutionary changes which aim to transform it from a static document collection
in an intelligent and dynamic data integration environment.

The first innovative technology, theWeb servicetechnology, allows uniform access
via Web standards to software components residing on various platforms and written in
different programming languages. As a result, software components providing a variety
of functionalities (ranging from currency conversion to flight booking) are now accessible
via the Web. Indeed, Web service technology has introduced a new abstraction layer
over and a radically new architecture for software. From a business perspective, Web
services often correspond to business services and thus the compositionality paradigm
that underlies the Web service technology allows composing existing business services
into new and more complex services.

The second novel Web technology, theSemantic Web(Berners-Lee et al., 2001),
develops techniques for augmenting existing Web data with logics based formal descrip-
tions of their meaning. In this thesis we are concerned with the annotation of semi-
structured data. The semantic markup is machine processable and therefore facilitates
access and integration of the vast amount of Web data. Core to the Semantic Web tech-
nology areontologies(Gruber, 1993). An ontology is a formal representation of consen-
sual world knowledge and it provides the elements for building semantic descriptions.

A major limitation of the Web services technology is that finding and composing
services still requires manual effort. This becomes a serious burden with the increasing
number of Web services (over 1000 services exist in bioinformatics alone (Lord et al.,
2005)). To address this problem, semantic Web researchers proposed to augment Web
services with a semantic description of their functionality in order to facilitate their dis-
covery and integration. This technology, combining Web services and Semantic Web
techniques, is referred to assemantic Web services(McIlraith et al., 2001).

Semantic Web service descriptions rely on two kinds of ontologies. First, ageneric
Web service ontologyspecifies the main aspects used to describe Web services regardless
of the domain in which they operate. For example, such an ontology provides the vocab-

2 Introduction

ulary to describe Web services inputs, outputs and complex internal data flows. Second,
a domain ontologyprovides concepts from the domain of the Web service to populate
the generic description template built with the concepts of the generic ontology. These
concepts denote entities in the domain of the Web service (e.g.,Food, Hotel) as well as
functionalities that can be performed by services in the given domain (e.g.,OrderFood,
BookHotel). We collectively refer to generic and domain ontologies employed for Web
service descriptions asWeb service ontologies.

A majorproblem of the semantic Web services technology, which we address in this
thesis, is thatbuilding Web service ontologies is a time consuming and complex task.
This constitutes a major bottleneck in the development of the semantic Web service tech-
nology. The ontology building process is different for generic and domain ontologies.
A generic ontology is typically developed by a group of experts but intended for a large
user base. A good example is OWL-S (Martin et al., 2003) which is developed by a com-
mittee of experts with less than 20 members but which is already used by many research
projects which adopt it as a standard for structuring their Web service descriptions. Typi-
cally, experts reside all over the world and the development process is mainly conducted
through virtual environments (i.e., email, phone conferences). Eventual feedback from
the users influences the further development of the standard by the committee. In contrast
with generic ontologies, there is little research focusing on building Web service domain
ontologies (i.e., domain ontologies used in a Web service context). Domain experts must
reuse an existing ontology or build their own ontology if an appropriate ontology does
not exist already. However, despite their importance, few domain ontologies exist for
describing Web services thus often requiring the building of a new ontology.

We are not aware of any research in the field of semantic Web services that aims to
qualitatively improve Web service ontologies or to facilitate the process of building these
ontologies. However, previous research performed in the context of software engineering
and ontology engineering is relevant when considering the problem of building Web
service ontologies.

The more generic problem of acquiring complex semantic descriptions for software
components was experienced as difficult in software engineering. For example, a com-
prehensive survey of existing software libraries revealed that the difficulty of acquiring
software semantics hampered the adoption of sophisticated solutions in industrial settings
(Mili et al., 1998). Our literature study revealed a few approaches that have addressed
the acquisition of software semantics. However, they are not explicitly tailored towards
building ontologies.

There exists a plethora of work on ontology engineering that has a high applicabil-
ity to the problem of building and enhancing Web service ontologies. First, the literature
documents a number of methodologies that prescribe the main steps of an ontology build-
ing process (Gomez-Perez et al., 2003) (or knowledge engineering in general (Schreiber
et al., 1999)). However, these traditional methodologies do not consider the particulari-
ties of distributed and decentralized settings where the ontology is shaped by the dynamic
requirements of big or open user groups. An exception is the DILIGENT methodolo-
gy (Vrandecic et al., 2005) which accurately captures the phases of such a process.

The second body of relevant work aims to qualitatively enhance existing ontologies.
Methodologies relying of ontological notions, such as OntoClean (Guarino and Welty,
2004), validate the ontological adequacy of complex ontologies. Techniques, such as
alignment to foundational ontologies, permit analyzing, disambiguating and enriching

1.1. Research Questions 3

ontologies such as WordNet (Gangemi et al., 2002) or other industry ontologies (Borgo
and Leitao, 2004). Prior to our work, no such methods were applied in the context
of Web services, or more generically, software (except the work of G. Guizzardi on
ontology-driven conceptual modeling which also included some aspects of software de-
velopment (Guizzardi, 2005)).

Yet a third category of approaches, grouped under the term ofOntology Learning, fa-
cilitate (semi-)automatic acquisition of ontologies from unstructured, semi-structured or
structured data sources (Maedche and Staab, 2001). A variety of ontology learning meth-
ods and tools have already been developed (Gomez-Perez and Manzano-Mancho, 2003)
but none of these addresses the special context of Web services. While the field is slowly
reaching maturity and it is increasingly applied in a variety of application domains, issues
related to evaluation and usability still require investigation.

The work in this thesis addresses the problem of building Web service ontologies by
adapting some of the existing techniques in the above mentioned fields to the particular
context of Web services. Important contributions are brought to those fields as well.

In the rest of this chapter we state the research questions that we addressed in this
thesis, we describe our contributions to the state of the art and we provide an overview
of the thesis.

1.1 Research Questions

The central question investigated by this thesis is:

How to facilitate the process of building Web service ontologies and how to enhance
the quality of these ontologies?

Our work was centered around the following concrete research questions:

Q1. What requirements should Web service ontologies fulfill?
A prerequisite for improving the state of the art in Web service ontology develop-
ment is to have a good understanding of this process. In particular, it is important
to identify the requirements that Web service ontologies should fulfill.

Q2. How to enhance the quality of generic Web service ontologies?
Since generic Web service ontologies are used as standards for creating semantic
descriptions they should have a high quality. To ensure this we need ways to test if
they fulfill the previously identified requirements, to identify problematic aspects
or limitations and to provide appropriate solutions.

Q3. Is semi-automatic acquisition of Web service domain ontologies feasible?
The acquisition of Web service domain ontologies is a time consuming task whose
automation is desirable. It is important to identify the requirements for an auto-
matic acquisition solution in the context of Web services and the data sets that are
typically available. Existing ontology learning methods have to be adapted to the
particularities of the context, rigorously evaluated and incorporated in easy to use
tools.

Our work on these research questions lead to several contributions, as summarized in
the next section.

4 Introduction

1.2 Contributions

The work presented in this thesis contributes to the development of Web service ontolo-
gies and, implicitly, to the realization of the semantic Web services idea. Our contribu-
tions fall in three major categories:

1. Identifying requirements for Web service ontologies.
Despite the large body of work in the area of semantic Web services, few efforts are
directed towards identifying requirements for Web service ontologies. We are only
aware of the requirements stated in (Lara et al., 2003) and (Grosof et al., 2004).
Based on our experiences when working with the evolving semantic Web services
technology we identified a set of requirements that Web service ontologies should
fulfil. While non-exclusive, our list of requirements complements the requirements
brought forward by the community so far.

2. Methods to enhance generic Web service ontologies. Enhancements to OWL-S.
A first important goal in the field of semantic Web services was the design of
generic Web service ontologies. However, little attention has been given to the
evaluation of the quality of these ontologies. We identified a set of methods to
analyze generic Web service ontologies and to improve their quality. First, we
recommend using the generic ontology to describe real life services in order to
increase its modelling expressiveness. Second, we adapt the ontology for use in
other, related domains in order to test the generality of the conceptualized knowl-
edge. Third, we use alignment to a foundational ontology for disambiguating the
meaning of the concepts proposed by the ontology and for increasing its axioma-
tization. Alignment of several ontologies to a foundational ontology allows their
harmonization. We used these methods to analyze OWL-S, identify its limitations
and propose solutions to overcome these limitations. Many of these observations
and solutions are valuable findings for developing any other generic Web service
ontology as well. From the perspective of foundational ontologies our contribution
was an extension for using them in the context of software components.

3. Learning Web service domain ontologies.
While domain ontologies play an important role when building semantic Web ser-
vice descriptions, little research has concentrated on ways to automate their acqui-
sition. No guidelines and no tools exist to support the acquisition of these ontolo-
gies. In this thesis we pioneered work that, on a long run, aims to achieve (semi-)
automatic acquisition of Web service domain ontologies. We start by analyzing
the problem of ontology learning in the context of Web services. We identify a
set of characteristics that constrain the development of an automated solution and
design a framework for ontology learning by taking into account these characteris-
tics. We experiment with two different implementations of the framework and use
an elaborate evaluation to determine which method provides a better performance.
We implement both our methods in a prototype system and we use different means
to make our tool more user friendly. With this work we also contributed to the field
of ontology learning by showing that existing methods can be successfully adapted
to the Web service context.

1.3. Structure of the Thesis 5

1.3 Structure of the Thesis

This thesis is structured in three main parts each covering one of the research questions.

Part I: Context and Related Work
In the first part we describe the context of our work, identify a set of requirements
for Web service ontologies (as a response to the first research question) and survey
related work.

Part II: Enhancing Generic Web Service Ontologies
In this part we address the second research question. We describe several methods
that can be used to analyze and to enhance different aspects of generic Web service
ontologies. We demonstrate the use of these methods in the context of OWL-S.
We analyze whether OWL-S meets the requirements stated in Chapter 2 and offer
(partial) solutions to enhance eventual limitations.

Part III: Learning Web Service Domain Ontologies
In the final part we investigate the third research question related to the semi-
automatic acquisition of Web service domain ontologies. We analyze the require-
ments for such an automatic solution, then design, implement and evaluate two
different learning methods.

The material of the thesis is distributed in individual chapters as follows:

Part I: Context and Related Work

In Chapter 2 we introduce the semantic Web services technology and conclude on some
requirements that Web service ontologies should fulfill.

In Chapter 3 we overview related work and existing ontology engineering practices that
can potentially be applied to solve the stated problem.

Part II: Enhancing Generic Web Service Ontologies

In Chapter 4 we use OWL-S to describe a set of real life services. This allows us to
conclude on the modelling expressiveness and usability of OWL-S.

In Chapter 5 we investigate the adaptability of OWL-S by extending it to describe soft-
ware modules managed by an application server middleware. Our analysis reveals that
OWL-S is based on several valuable design principles that make it easy to reuse.

In Chapter 6 we show that OWL-S is ambiguous and poorly axiomatized and suggest the
enhancement of these aspects by alignment to the DOLCE foundational ontology. Our
alignment methodology is generally valid for aligning any other generic Web service
ontologies potentially contributing to a harmonization of these ontologies.

Part III: Learning Web Service Domain Ontologies

In Chapter 7 we analyze the process of building domain ontologies in two application
domains. Based on our analysis we establish a set of requirements that an ontology
learning solution to this problem should fulfill. Then we present a framework that adapts
ontology learning methods in the context of Web services. We describe two instantiations
of the framework that rely on natural language processing techniques with different levels

6 Introduction

of complexity. The last part of this chapter provides some details on the implementation
of our prototype system.

In Chapter 8 we perform the evaluation of the framework. We provide generic con-
siderations about the ontology learning evaluation methods and describe the evaluation
metrics that we employ. We use these metrics to assess and compare the two instantia-
tions of the framework on both available data sets.

Finally, in Chapter 9 we discuss our conclusions and contributions and point out future
work.

1.4 Publications

Several chapters of this thesis are based on previous publications:

• Chapter 2 on semantic Web services is based on “Stuckenschmidt, H., Sabou, M.,
and Klein, M. (2004a). Semantic Web Technology - Bringing Meaning to Dis-
tributed Systems.IEEE Distributed Systems Online” and two papers published in
cooperation with members of the OWL-S committee: “Martin, D. et al. (2003)
OWL-S 1.0 white paper1”, and “Martin, D. et al. (2004). Bringing Semantics to
Web Services: The OWL-S Approach. InProceedings of the First International
Workshop on Semantic Web Services and Web Process Composition (SWSWPC
2004), San Diego, California, USA”.

• Chapter 4 combines the material published in “Sabou, M., Richards, D., and van
Splunter, S. (2003). An experience report on using DAML-S. InProceedings of
the Workshop on E-Services and the Semantic Web, The 12th WWW Conference,
Budapest, Hungary” and “Richards, D. and Sabou, M. (2003). Semantic Markup
for Semantic Web Tools: A DAML-S description of an RDF-Store. InProceedings
of the Second International Semantic Web Conference, volume 2870 of LNCS,
pages 274 - 289, Sanibel Island, Florida, USA”. This work was performed in
cooperation with Debbie Richards, Sander van Splunter and Frances Brazier in
the context of the Agent Factory project. Our work was also supported by the
members of the Dutch company Aduna2 by providing support while working with
the Sesame ontology storage and query engine.

• Chapter 5 was published as “Sabou, M., Oberle, D., and Richards, D. (2004).
Enhancing Application Servers with Semantics. InProceedings of the First Aus-
tralian Workshop on Engineering Service-Oriented Systems (AWESOS), Melbourne,
Australia” and is based on a cooperation with Daniel Oberle and Debbie Richards.

• The material in Chapter 6 is the result of joint work with Peter Mika, Daniel Oberle
and Aldo Gangemi in the context of the WonderWeb project. This work was first
published as “Mika, P., Sabou, M., Gangemi, A., and Oberle, D. (2004b). Founda-
tions for DAML-S: Aligning DAML-S to DOLCE.In First International Semantic
Web Services Symposium (SWS2004), AAAI Spring Symposium Series”. Then, an
extended version of this symposium paper was published as “Mika, P., Oberle, D.,

1http://www.daml.org/services/owl-s/1.0/
2http://aduna.biz/

http://www.daml.org/services/owl-s/1.0/
http://aduna.biz/

1.4. Publications 7

Gangemi, A., and Sabou, M. (2004a). Foundations for Service Ontologies: Align-
ing OWL-S to DOLCE. InProceedings of the Thirteens International World Wide
Web Conference (WWW2004). ACM Press”.

• Chapter 7 and 8 are based on material published in “Sabou, M. (2004b). From
Software APIs to Web Service Ontologies: a Semi-Automatic Extraction Method.
In Proceedings of the Third International SemanticWeb Conference, ISWC, Hi-
roshima, Japan”, “Sabou, M., Wroe, C., Goble, C., and Mishne, G. (2005). Learn-
ing Domain Ontologies for Web Service Descriptions: an Experiment in Bioin-
formatics. InProceedings of the 14th International World Wide Web Confer-
ence, Chiba, Japan” and “Sabou, M., Wroe, C., Goble, C., and Stuckenschmidt,
H. (2005). Learning Domain Ontologies for Semantic Web Service Descriptions.
Journal of Web Semantics. 3(4). ”.

Considerations about the evaluation of our methods (detailed in Chapter 8) were
first published in “Sabou, M. (2004a). Extracting Ontologies from Software Doc-
umentation: a Semi-Automatic Method and its Evaluation. InProceedings of the
ECAI-2004 Workshop on Ontology Learning and Population (ECAI-OLP), Valen-
cia, Spain” and refined in a follow-up book chapter - “Sabou, M. (2005a). Learning
Web Service Ontologies: an Automatic Extraction Method and its Evaluation. In
Buitelaar, P., Cimmiano, P., and Magnini, B., editors,Ontology Learning and Pop-
ulation. IOS Press”.

Ideas about possible extensions of the presented work were described in “Sabou,
M. and Pan, J. (2005). Towards Improving Web Service Repositories through Se-
mantic Web Techniques. InProceedings of the Workshop on Semantic Web En-
abled Software Engineering (SWESE) collocated with the 4th International Se-
mantic Web Conference (ISWC 2005)”.

The implementation details provided in chapter 7 describe work on using visual-
isation techniques to support ontology learning. Our experiences in this direction
have been published in “Sabou, M. (2005b). Visual Support for Ontology Learn-
ing: an Experience Report. InProceedings of the 9th International Conference
on Information Visualisation (IV05), London, UK”. The work on visualization
was conducted in cooperation and with the support of Chritiaan Fluit from Aduna.
This cooperation resulted in three book chapters published prior to our work on
adapting the visualization to support ontology learning (Fluit et al., 2002, 2004,
2005).

Part I

Context and Related Work

Chapter 2

Semantic Web Services

In this chapter we provide a brief introduction to semantic Web services and the sup-
porting Semantic Web and Web services technology. We give examples of the use of
these technologies in a concrete example scenario showing how they enhance informa-
tion access and integration. We conclude the chapter with a list of requirements that Web
service ontologies should fulfill.

Parts of this chapter are based on the following co-authored materials: an article in
an online journal (Stuckenschmidt et al., 2004), the white paper for OWL-S 1.0 (Martin
et al., 2003) and a workshop paper about the use of OWL-S (Martin et al., 2004).

2.1 The Changing World Wide Web

The World Wide Web and the novel technologies that extend it (i.e., Semantic Web, Web
Services and Semantic Web Services), address data access and integration issues. In this
chapter we briefly introduce these technologies showing the advantages each of them
brings in anexample scenario. The scenario consists of the task offinding a Medicare1

certified pharmacy which is in a mile range from a location identified by zip code 19901.
The World Wide Web emerged as a solution to the information management problem

that the CERN2 research institute was facing in the late nineties (Berners-Lee, 1989).
The data-intensive research activity performed at CERN produced an increasing amount
of digital data (about projects, researchers, software etc.) which was distributed on a
network of computers running different operating systems and using particular (often
incompatible) data formats. Finding and integrating this distributed and heterogeneous
data was increasingly difficult. The Web was a distributed hypertext system that allowed
access to heterogeneous data sources by using a set of standards for describing data
(HTML), localizing documents on a network (URI) and accessing them (HTTP). Due to
the simplicity of HTML, which allowed creation of Web pages with a minimum effort,
the Web became a tremendous success in a relatively short time. While the first prototype
of the Web was written in 1990, the Web expended so fast that in 1994 the W3C (World

1Medicare is an American health insurance program.
2http://www.cern.ch

http://www.cern.ch

12 Semantic Web Services

Wide Web Consortium) was created3. Since then the number of Web sites and servers
increased at a rapid pace to over 60 million web sites in March 20054.

Example scenario.Before the Web, information needed for performing our example
task (e.g., list of pharmacies with their details) was available either in printed format or
in digital format isolated on different computers. With the Web all this information is
available for search to anyone. A vast range of medical information is available online
from disease and drug descriptions to homepages of medical institutions (e.g., hospitals,
pharmacies, health insurance programs). All it takes is looking up the Web page of some
pharmacies and estimating the distance between two zip codes.

Problems of the World Wide Web. With the accelerated growth of the Web, finding
the right information becomes increasingly difficult even with support from search en-
gines such as Google. Current search technology relies on keyword based search. These
techniques provide a relativelyhigh recall(as all Web sites that mention a given keyword
are retrieved) but a low semantic recall (as pages about the desired topic but not contain-
ing the keywords are ignored). Theirprecisionis low because only few of the retrieved
pages contain the information that the user needs. As a result, complex queries such as
“Medicare certified pharmacy one mile from 19901” are hard to answer because (1) such
specific information is often not made available as such on the Web or, (2) if it is made
available it can take different syntactic forms. A more generic query, “Medicare certified
pharmacy”, retrieves more than half a million hits, where these keywords appear spread
within each document. Trying to refine this query by enforcing that the three keywords
appear in this order, results in two hits — and again none of them answers our quest. The
major cause of these inefficiencies of keyword based search is that keywords are treated
as strings rather than meaningful entities. This technique cannot deal with the complexity
of human language and phenomena such as synonymy, polysemy etc.

The Changing World Wide Web. As a response to these limitations, the Web en-
countered two revolutionary changes as depicted in Figure 2.1. First, the Semantic Web
community aims at asemanticextension of the currentsyntactic Web by augmenting
existing Web information with logics based formal descriptions of their meaning. This
semantic markup would be machine processable and therefore allow easier access and in-
tegration of the vast amount of the available information than what can be achieved with
keyword based search. Second, the Web is changing from a collection ofstatic Web
pages to adynamic environment with the advent of the Web services technology that
makes software components accessible via Web protocols. The semantic Web services
technology developed at the cross road of these two technologies by applying Semantic
Web techniques to Web services. In the rest of this chapter we briefly present these three
technologies.

2.2 Semantic Web

The goal of the Semantic Web is to solve the current limitations of the Web by aug-
menting Web information with a formal (i.e., machine processable) representation of its
meaning. A direct benefit of this machine processable semantics would be the enhance-

3See http://www.w3.org/2004/Talks/Styles/w3c10/images/timeline.pdf for a
timeline on the Web’s development.

4http://news.netcraft.com/

http://www.w3.org/2004/Talks/Styles/w3c10/images/timeline.pdf
http://news.netcraft.com/

2.2. Semantic Web 13

Static

Syntactic

Semantic

Dynamic

Traditional Web
(URI, HTML, HTTP)

Semantic Web
(RDF(S), OWL)

Semantic Web

Services

Web Services
(UDDI, WSDL, SOAP)

Functionality

Annotation Annotation

Figure 2.1: The changing Web.

ment and automation of several information management tasks, such as search or data
integration. The idea of applying knowledge representation and reasoning techniques in
the context of the Web has been investigated from the mid-nineties notably by work on
SHOE (Simple HTML Ontology Extensions) (Luke et al., 1996) and Ontobroker (Fensel
et al., 1998). The Semantic Web term was clearly associated to this line of research in
2001 when it was defined as:

“The Semantic Web is an extension of the current Web in which information is given
well-defined meaning, better enabling computers and people to work in cooperation.”
(Berners-Lee et al., 2001)

There have been several different approaches to realizing the Semantic Web. These
approaches can be distinguished by the type of data sources that they consider for se-
mantic description as well as the richness of the semantic annotation. A first approach,
reflecting the principles of GOFAI (Good Old Fashioned AI), aims at extensively cap-
turing the meaning of textual data sources in rich semantic descriptions. Unfortunately,
research in the Information Retrieval community has already shown that formally rep-
resenting information contained in textual documents is a bad idea, that content simply
cannot be recoded in a general way. Indeed, the success of this community relied on
developing more lightweight techniques that do not require a complete understanding of
the document content. The focus of the semantic Web community has gradually shifted
from this initial approach.

An alternative to the GOFAI approach is that of decreasing the complexity of se-
mantic annotations added to textual documents. This can be achieved by using semantic
Web languages that have a low semantic expressiveness (such as XML). This kind of
lightweight annotations have been successfully used in the natural language processing
field to capture several aspects of the analyzed corpora. Also, looking to the evolution of
the Semantic Web, many of the first applications using Semantic Web technology have
mainly relied on limited semantic information and used semantic languages with low
expressivity (XML, RDF(S)).

The current focus of Semantic Web research is more and more directed towards sup-

14 Semantic Web Services

porting intelligent data exchange. In this case the information that is being annotated
is not unstructured text but rather semi-structured information available from databases
or exchanged between Web services. Annotations are also extended to several different
information artifacts, such as images, music or Web services. The role of the semantic
annotations is to support merging, integrating and exchanging data between application-
s/organizations. While this approach is considerably different from the original GOFAI
view on the Semantic Web, it brings enormous challenges and promises immediate prac-
tical benefits. The content of this thesis is in line with this third view on the Semantic
Web as our goal is not so much to access textual documents but to facilitate the annotation
of Web services and to allow intelligent data manipulation.

The “well-defined meaning”of information is provided by semantic descriptions,
often referred to asmetadata(i.e., data about data). There are two characteristics spe-
cific to semantic metadata. First, metadata describes information in terms of a domain
vocabulary whose meaning is specified by a formal domain model (ontology). Second,
metadata is expressed in a representation language that can be parsed and interpreted by
machines. We briefly describe ontologies and ontology languages in what follows.

2.2.1 Ontologies

The termontology, originating from Philosophy as detailed in (Kivela and Hyvonen,
2002) and (Smith and Welty, 2001), was adopted by AI researchers to describe formal
domain models. Several ontology definitions were provided in the last decades. The
most frequently cited definition is that given by Gruber in 1993 according to which an
ontology is “anexplicit specification of a conceptualization”. In other words, an on-
tology is a domain model (conceptualization) which is explicitly described (specified).
Later, in 1997 Borst defines an ontology as a “formal specification of asharedconcep-
tualization” (Borst, 1997). This definition requires, in addition to Gruber’s definition,
that the conceptualization should express asharedview between several parties, a con-
sensus rather than an individual view. Also, this conceptualization should be expressed
in a machine readable format (formal). In 1998, Studer et al. (Studer et al., 1998) merge
these two definitions stating that:

“An ontology is a formal, explicit specification of a shared conceptualization.”

As consensual domain models, the primary role of ontologies is to enhance communi-
cation between humans (e.g., establishing a shared vocabulary, explaining the meaning of
the shared terms to reach consensus). As formal models, ontologies represent knowledge
in a computer processable format thus enhancing communication between humans and
computer programs or two computer programs. Therefore, ontologies are investigated by
several research fields in the context of diverse application areas. Already in 1998, Guar-
ino offers an extensive list of references to research fields that have recognized by that
time the importance of ontologies (Guarino, 1998), ranging from knowledge engineering
to information retrieval and integration. Four years later, McGuinness reports on the use
of ontologies in several Web related tasks such as Web site organization, navigational
support, browsing and searching (McGuinness, 2002).

Example Scenario. To demonstrate the benefits of using ontological descriptions
for our task we built an ontology that specifies a set of concepts related to health care
providers (See Figure 2.2).Conceptssuch asHealthCareProvider, HealthProgramand
Pharmacydenote the main entities in the domain to be conceptualized. A set of relations

2.2. Semantic Web 15

hasZip

certifiedBysellsProduct

certifiedBy

O
n

to
lo

g
y

In
s
ta

n
c
e
s

Instance

Concept relation

isA relation

instanceOf relation

inferred relation

Legend

sellsProduct

Product

Medicine

Pharmacy
(sellsProduct.Medicine)

Hospital MedicareProvider
(certifiedBy.Medicare)

HealthCareProvider HealthProgram

ZipCode

Aspirin SafewayInc Medicare Medicaid

Figure 2.2: Example ontology and ontology instances.

can be established between concepts. An important relation is theisA relation which in-
dicates subsumption between two concepts. The example ontology specifies three kinds
of HealthCareProviderconcepts, i.e. three subclasses. Several restrictions can be im-
posed on properties, property restriction being a frequently used mechanism for defining
subclasses. For example, aPharmacyis anyHealthCareProviderwhich sellsMedicines
(a Hospital might differ from aPharmacyin the kind of offered products or services).
Several pharmacy Web pages can be semantically described with the concepts defined by
this ontology. For example, the data instances in Figure 2.2 describe that SafeWayInc is
a Medicare certifiedHealthCareProviderwhich sells aspirin (which is aMedicine).

Semantic descriptions enhance information access and integrating. First, several dif-
ferent syntactic forms will be encoded by the same semantic information thus overcom-
ing the limitations of the keyword based search. Second, based on the ontology that
explains the relations between concepts in a machine understandable, formal way, a com-
puter can perform reasoning. For example, it can automatically deduce that SafewayInc
can be classified both as aPharmacy(because it fulfills the restriction that it sells medi-
cines) and aMedicareProvider, because it is certified by this program. Thus semantic
data helps to enhance and automate our task.

Even if Studer’s definition (Studer et al., 1998) states the major ontology characteris-
tics, considerable variations exist along the dimensions defined by these characteristics.
Semantic Web technology, and implicitly our work, relies on ontologies with different
levels of detailandgeneralityof the captured conceptualization. We briefly discuss these
characteristics for the purpose of classifying the ontologies used in the thesis. Note that
we adopt an intuitive rather than a rigorous attitude in this discussion.

While there is a general agreement that one of the major characteristics of an on-
tology is thelevel of generalityof the specified conceptualization, there has been much
debate on defining different categories of generality (Guarino, 1997; van Heijst et al.,

16 Semantic Web Services

1997; Guarino, 1998; Studer et al., 1998). It is not our purpose to debate the differences
between these views but we rather adopt three intuitive classes of generality.

Foundational (or top-level) ontologiesare conceptualizations that contain specifications
of domain and problem independent concepts and relations (such as space, time,
matter) based on formal principles derived from linguistics, philosophy, and math-
ematics. In this thesis we use of the DOLCE foundational ontology. Other exam-
ples of top-level ontologies, all discussed and compared in (Borgo et al., 2002), are:
the Suggested Upper Merged Ontology (SUMO) (Pease et al., 2002), OpenCyc5

and the Basic Formal Ontology (BFO) (Smith, 2003).

Generic ontologiescontain generic knowledge about a certain domain such as medi-
cine, biology, mathematics or Web services. These domain concepts are often
specified in terms of top-level concepts thus inheriting the general theories behind
the top-level concepts. In this thesis we used the OWL-S (Martin et al., 2003)
ontology which specifies a set of concepts that allow describing Web services.

Domain ontologies have the lowest reusability and are specific to a particular domain.

Generality

Detail

Domain Generic TopLevel

Lightweight

Heavyweight

WS Domain

Ontology

OWL-S

DOLCE

Figure 2.3: Example ontologies classified according to the two dimensions.

A second classification criterion is thelevel of detailof the specification (Guarino,
1997; McGuinness, 2002; Uschold and Jasper, 1999). In this thesis we adopt the termi-
nology introduced in (Corcho et al., 2003) to distinguish between weak and rich domain
theories. Lightweightontologies are domain models that include a taxonomic hierar-
chy as well as properties between concepts.Heavyweightontologies contain axioms
and constraints as well. Note that the distinction between lightweight and heavyweight
ontologies is rather blurred as these are intuitive rather than fixed measures.

In this thesis we worked with several types of ontologies, as depicted in Figure 2.3:

• lightweight, domain ontologiesthat are automatically learned;

• aheavyweight, generic ontology, OWL-S, which contains a couple of restrictions
but which is still relatively poor from an ontological perspective;

• aheavyweight, foundational ontology, DOLCE.

5http://www.opencyc.org

http://www.opencyc.org

2.3. Web Services 17

2.2.2 Ontology Languages for the Semantic Web

Ontologies are explicitly specified in a formal language. The work performed in this
thesis relied on the RDF(S) and OWL languages.

RDF(S). RDF and RDF Schema6 represented the first step towards a Web based
ontology language. RDF is a data model allowing to describe resources on the Web. RDF
Schema is based on RDF and allows the definition of basic ontology elements such as
classes and their hierarchy, properties with their domain, range and hierarchy (McBride,
2004). As such RDF(S) is well suited for expressing lightweight ontologies. Several tools
were developed for RDF(S) and a considerable number of Semantic Web applications
used this language before a more expressive ontology language was developed.

<owl:Class rdf:ID ="MedicareProvider">
<rdfs:subClassOf >

<owl:Restriction >
<owl:onProperty >

<owl:ObjectProperty rdf:ID ="certifiedBy"/>
</ owl:onProperty >
<owl:hasValue >

<HealthProgram rdf:ID ="Medicare"/>
</ owl:hasValue >

</ owl:Restriction >
</ rdfs:subClassOf >
<rdfs:subClassOf >

<owl:Class rdf:ID ="HealthCareProvider"/>
</ rdfs:subClassOf >

</ owl:Class >
<owl:Class rdf:ID ="HealthProgram"/>

OWL. The example above shows the OWL declaration of theMedicareProvider
concept as a Medicare certifiedHealthCareProvider7. The Web Ontology Language
(OWL)8 is a more expressive ontology language than RDF(S). The basis for developing
OWL was the DAML+OIL language which originated by merging two language pro-
posals that aimed at overcoming the expressivity limitations of RDF(S): DAML-ONT9

and OIL10 (Horrocks et al., 2003). OWL enhances the expressivity of RDF(S) provid-
ing means to describe relations between classes (e.g., disjointness, union, intersection),
cardinality and value restrictions on properties (e.g., cardinality, universal and existential
quantifiers), property characteristics (e.g., transitivity, symmetry), equality etc.. OWL
provides the constructs to encode ontological knowledge (such as in the previous subsec-
tion) using the XML based syntax.

2.3 Web Services

Besides its spectacular growth, the Web becomes more dynamic with the advent of the
Web service technology. A Web service (WS) is a (self-contained) software component

6http://www.w3.org/RDF/
7This serialization was generated by Protege’s OWL Plugin,http://protege.stanford.edu/

plugins/owl/ .
8Web-Ont Working Group Web site:http://www.w3.org/2001/sw/WebOnt/ .
9http://www.daml.org/2000/10/daml-ont.html

10http://www.ontoknowledge.org/oil/

http://www.w3.org/RDF/
http://protege.stanford.edu/plugins/owl/
http://protege.stanford.edu/plugins/owl/
http://www.w3.org/2001/sw/WebOnt/
http://www.daml.org/2000/10/daml-ont.html
http://www.ontoknowledge.org/oil/

18 Semantic Web Services

that allows access to its functionality via a Web interface. WSs communicate by employ-
ing established protocols for message transport and encoding. Indeed, the W3C Web
Services Architecture Working Group defines a Web service as:

“a software application identified by an URI, whose interfaces and bindings are capa-
ble of being defined, described and discovered as XML artifacts. A Web service supports
direct interactions with other software agents using XML-based messages exchanged via
Internet-based protocols.” (W3C, 2002)

X
M

L

Message Exchange: SOAP

Transport Layer: HTTP, FTP, SMTP …

Service Description: WSDL

Web Service Tasks:
Publication & Discovery: UDDI

Composition: BPEL4WS

Figure 2.4: Overview of Web Service Standards.

Web service technology has introduced a new abstraction layer over and a radically
new architecture for software. Indeed, the innovative vision is that by employing a set
of XML standards to define and describe Web service functionalities, several tasks such
as discovery and composition of these services can be facilitated (or even automated)
to some extent. Web service technology also aims to facilitate the interaction between
different Web services (i.e., software programs) by enforcing the use of XML standards
for data exchange. Note, that any kind of data can be exchanged between Web services
(e.g., semi-structured, textual, structured) as long as it is embedded in an XML based
messaging protocol.

Figure 2.4 (adapted from (de Aalst, 2003)) shows the main Web service technology
standards, all based on XML. A Web service interface is described using the Web Ser-
vice Description Language11 (WSDL). Web services exchange messages encoded in the
SOAP12 (Simple Object Access Protocol) messaging framework and transported over
HTTP or other Internet protocols. Several tasks can be performed with Web services. A
typical Web service life-cycle envisions the following scenario. A service providerpub-
lishesthe WSDL description of his service in UDDI13, a registry that permits Universal
Description Discovery and Integration of Web services. Subsequently, service requesters
can inspect UDDI andlocate/discoverWeb services that are of interest. Using the in-
formation provided by the WSDL description they can directlyinvokethe corresponding
Web service. Further, several Web services can be composed to achieve a more complex
functionality. Such compositions of services can be specified using BPEL4WS14 (Busi-

11http://www.w3.org/TR/wsdl
12http://www.w3.org/TR/soap/
13http://www.uddi.org/
14ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/
http://www.uddi.org/
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

2.3. Web Services 19

ness Process Execution Language for Web Services). By relying on these standards,
Web services hide any implementation details therefore increasing cross-language and
cross-platform interoperability.

Example Scenario.Many Web services allow access to large databases permitting
controlled access to information that might not be explicitly stated on Web pages. For
example, the pharmacy finding process could be repeated forany zip code (or for any
health care provider) relying on the output of one or more Web services and not on
data provided by static Web pages. A good Web service to generalize this task is the
MedicareSupplier Web service15 which can retrieve details of Medicare suppliers given
a zip code, a city name or the types of supplies provided.

Service(
PortType:MedicareSupplierSoap (

op:GetSupplierByZipCode(
IMsg(zip), OMsg(SupplierDataLists))

op:GetSupplierByCity(
IMsg(City), OMsg(SupplierDataLists))

op:GetSupplierBySupplyType(
IMsg(description), OMsg(SupplierDataLists))

)
)

The example above shows a schematic representation of the WSDL file associated
to the MedicareSupplier service16. WSDL has considerable support from industry and
increasing tool-support (WSDL generators, editors). As an XML-based language, it is
machine processable, being a structured and standardized way to describe web-interfaces
of services. In WSDL a service is seen as a collection of network endpoints which operate
on messages. The example service provides oneport : MedicareSupplierSoap. This port
groups together threeoperations that return lists of Medicare suppliers and their details
given a zip code (forGetSupplierByZipCode), a city name (forGetSupplierByCity) or
the description of the supplied material (forGetSupplierBySupplyType). Each operation
has an input (IMsg) and an output (OMsg) message. Amessagehas a name and a set
of parts of certain type. Parts represent input/output parameters depending if they are
declared in the input or the output message. For brevity, the example above does not
state the name of the message only the name of its parts. The type of the parts can be any
XMLSchema data type or a previously defined complex type (the type of the parts is also
omitted by the schematic description). A WSDL document has two major parts. First,
the abstract interfaceof the service specifies the data types, messages and portTypes
with the corresponding operations (which refer to previously defined messages). Second,
an implementation partbinds the abstract interface to concrete network protocols and
message formats (SOAP, HTTP).

Limitations of the Web Service Technology.SOAP, WSDL, UDDI, and BPEL4WS
are the standard combination of technology to build a Web service application. However,
they fail to achieve the goals of automation and interoperability because they require
humans in the loop (Lassila, 2002). Indeed, WSDL specifies the functionality of the
service only at a syntactic level. While these descriptions can be automatically parsed and

15The WSDL description of this service is available athttp://www.webservicex.net/
medicareSupplier.wsdl .

16We use a schematic representation of WSDL files because the XML-based syntax of WSDL makes it too
verbose to be reproduced here.

http://www.webservicex.net/medicareSupplier.wsdl
http://www.webservicex.net/medicareSupplier.wsdl

20 Semantic Web Services

invoked by machines, the interpretation of their meaning is left for a human programmer.
To support reliable, large-scale interconnectivity of Web services by software, computer-
processable semantics are needed, which include the properties, capabilities, interfaces,
and effects of the service (de Aalst, 2003).

2.4 Semantic Web Services

The Semantic Web community addressed the limitations of current Web service tech-
nology by augmenting the service descriptions with a semantic layer in order to achieve
their automatic discovery, composition, monitoring and execution (McIlraith et al., 2001;
Martin et al., 2004; Stuckenschmidt et al., 2004). The automation of these tasks is highly
desirable and, as a result, several research projects adopted semantic Web service tech-
nology in different application domains (e.g., bioinformatics grid (Wroe et al., 2004),
Problem Solving Methods (Motta et al., 2003)).

Find Medical Supplier

Compute Distance

Supplier type

Reference location

List of Suppliers

Closest Supplier

Figure 2.5: Workflow for finding the closest medical supplier.

Example scenario. The example task is a specialization of the more generic task
of finding the closest medical provider (or, of the even more generic task of finding a
provider in any domain). One of the strategies for performing this generic task is to
1) retrieve the details of all medical providers (of a certain type) and then selecting the
closest by 2) computing the distance between the location of the provider and a reference
location. This workflow can be schematically represented as in Figure 2.5. For our
example task it is enough if we populate this workflow with the MedicareSupplier service
and a Web service that calculates distance between zip codes.

Semantic Web service technology aims to automate performing such tasks based on
the semantic description of Web services. Using these descriptions the right services can
be selected and combined in a way that would solve the task at hand. There are two
major approaches to Web service composition (ten Teije et al., 2004). First, given the
specification of a start and final state, pre/post condition reasoning is performed to select
and combine the right services. Second, using the parametric design paradigm, generic
task workflows are formally specified and than populated with the right Web services
depending on the task at hand.

2.4. Semantic Web Services 21

A common characteristic of all emerging frameworks for semantic Web service de-
scriptions (OWL-S (Martin et al., 2003), WSMO17, IRS (Motta et al., 2003) - see overview
and comparison in (Cabral et al., 2004)) is that they combine two kinds of ontologies to
obtain a service description. First, ageneric Web service ontology, such as OWL-S, spec-
ifies generic Web service concepts (e.g.,Input, Output) and prescribes the backbone of
the semantic Web service description. Second, adomain ontologyspecifies knowledge in
the domain of the Web service, such as types of service parameters (e.g.,City) and func-
tionalities (e.g.,FindMedicalSupplier), that fills in this generic framework. We discuss
these two kinds of ontologies in the next two subsections.

2.4.1 Generic Web Service Ontologies

Two generic ontologies for Web service descriptions are under development. First,
DAML-S is an ontology that permits describing several aspects of a Web service. DAML-
S was translated from DAML to OWL and renamed to OWL-S. The second, more recent,
initiative is WSMO (Web Service Modelling Ontology) which, even if has overlaps with
OWL-S, is based on different principles and brings several additions to OWL-S (see (Lara
et al., 2005) for a detailed analysis of these two ontologies). The research presented in
this thesis was performed in the transition period from DAML-S to OWL-S. In this pe-
riod the WSMO initiative had not yet started. In this thesis we only consider OWL-S.
Although we believe that many of our results, particulary those presented in the third part
of the thesis, are equally applicable to WSMO. We will elaborate on the generality of our
work in Section 9.1.4.

Figure 2.6: The OWL-S Service Ontology. (Note that the arrows in this picture are directed
according to the OWL-S model even if their direction might seam counterintuitive.)

The OWL-S ontology is conceptually divided into four sub-ontologies for specifying
what a service does(Profile18), how the service works(Process19) andhow the service is
implemented(Grounding20). A fourth ontology (Service21) contains theServiceconcept
which links together aServiceProfile, a ServiceModeland aServiceGroundingconcept
(see Figure 2.6). TheService presentsa ServiceProfile, is described bya ServiceModel
andsupportsa ServiceGrounding. These three concepts are all further specialized in the
Profile, Process and Grounding ontologies respectively. In the rest of this subsection,
we explain all the three parts of OWL-S by exemplifying their use for describing our

17http://www.wsmo.org/
18http://www.daml.org/services/owl-s/1.0/Profile.owl
19http://www.daml.org/services/owl-s/1.0/Process.owl
20http://www.daml.org/services/owl-s/1.0/Grounding.owl
21http://www.daml.org/services/owl-s/1.0/Service.owl

http://www.wsmo.org/
http://www.daml.org/services/owl-s/1.0/Profile.owl
http://www.daml.org/services/owl-s/1.0/Process.owl
http://www.daml.org/services/owl-s/1.0/Grounding.owl
http://www.daml.org/services/owl-s/1.0/Service.owl

22 Semantic Web Services

example service. We also introduce the schematic service representations that will be
used through this thesis.

1. The Profile Ontology specifies the functionality offered by the service (e.g.,
GetMedicalSupplier), the semantic type of the inputs and outputs (e.g.,City, Medicare-
Supplier), the details of the service provider and several service parameters, such as
quality rating or geographic radius. This description is used for discovering the service.
The central concept of this ontology,Profile, is a subclass ofServiceProfile.

In the schematic representation of semantic Web service descriptions used through-
out this thesis, for eachProfile instance we depict the process it describes (indicated by
the hasProcrelation) and its functional characteristics (Inputs, Outputs, Preconditions,
Effects - from now referred to as IOPE’s) together with their type. In the example below,
theMedicareSupplierservice presents three profiles (i.e., it offers three distinct function-
alities). Each Profile has a semantic type described by one of the functionality concepts
FindMedicareSupplierByZip, FindMedicareSupplierByCityor FindMedicareSupplierBy-
Supply. Each Profile describes a Process (later specified in the Process Model -P1, P2,
P3). Finally, all Profiles return an output which was described with theSupplierDetails
concept. The input type varies for each Profile:ZipCode, City or SupplyType. Note
that this description was constructed using concepts defined in the Web service domain
ontology presented in Section 2.4.2.

Service MedicareSupplier:

* Profile:FindMedicareSupplierByZip (hasProc P1)
(I(ZipCode), O(SupplierDetails))

* Profile:FindMedicareSupplierByCity (hasProc P2)
(I(City), O(SupplierDetails))

* Profile:FindMedicareSupplierBySupply (hasProc P3)
(I(SupplyType), O(SupplierDetails))

* ProcessModel: ...

* WSDLGrounding: ...

2. The Process ontology.Many complex services consist of smaller services ex-
ecuted in a certain order. For example, buying a book at Amazon.com involves using
a browsing service (which selects the book) and a paying service. OWL-S allows de-
scribing such internal process models. These are useful for several purposes. First, one
can check that the business process of the offering service is appropriate (e.g., product
selection should always happen before payment). Second, one can monitor the execution
stage of a service. Third, these process models can be used to automatically compose
Web services. AServiceModelconcept describes the internal working of the service and
it is further specialized as aProcessModelconcept in the Process ontology. AProcess-
Modelhas a singleProcesswhich can be atomic, simple or composite (composed from
atomic processes through various control constructs). Each Process has a set of IOPE’s.
In our notation, for each service we represent itsProcessModelwith its Process. For
eachProcesswe depict its type, the involved control constructs, the IOPE’s and their
types. TheMedicareSupplierservice allows a choice from its threeAtomicProcesses
(corresponding to the three Profiles), therefore itsProcessModelconsists of aCompos-
iteProcessmodelled with theChoicecontrol construct.

Service MedicareSupplier:

* Profile:...

2.4. Semantic Web Services 23

* ProcessModel:
CompositeProcess: MedicareProcess:Choice
{

AtomicProcess:P1 (I(ZipCode),O(SupplierDetails))
AtomicProcess:P2 (I(City),O(SupplierDetails))
AtomicProcess:P3 (I(SupplyType),O(SupplierDetails))
}

* WSDLGrounding: ...

Profile to Process Bridge.A Profilecontains several links to theProcess. Figure 4.2
shows these links, where terms in bold-face belong to theProfileontology and the rest to
theProcessontology. Firstly, aProfile states theProcessit describes through the unique
propertyhas_process . Secondly, theInput, Outputs, PreconditionsandEffects(from
now on IOPE) of theProfile correspond (in some degree) to the IOPEs of theProcess.
Understanding this correspondence is not so trivial given the fact that the IOPE’s play
different roles for theProfileand for theProcess. In theProfileontology they are treated
equally as parameters of theProfile(they are subproperties of theprofile:parameterprop-
erty). In theProcessontology onlyInputsandOutputsare regarded as subproperties of
theprocess:parameterproperty. The Preconditions and Effects are just simple properties
of theProcess. While technically the IOPEs are properties both forProfile andProcess,
the fact that they are treated differently at a conceptual level is misleading. The link be-
tween the IOPE’s in the Profile and Process part of the DAML-S descriptions is created
by therefersToproperty which has as domainParameterDescriptionand ranges over the
process:paramater.

p
a

ra
m

et
er

restrictedTo

refersTo 1

has_process

effect

p
a

ra
m

et
er

o
u

tp
u
t

precondition

in
p

u
t

in
p

u
t

p
re

co
n

d
it

io
n

o
u

tp
u

t

ef
fe

ct

OWL-S

Process

OWL-S

Profile

Profile Process

ParameterDescription

Thing

ConditionalOutput

Condition

ConditionalEffect

Figure 2.7: Profile to Process bridge.

3. The Grounding ontologyprovides the vocabulary to link the conceptual descrip-
tion of the service, specified by the Profile and Process, to actual implementation details,

24 Semantic Web Services

such as message exchange formats and network protocols. The grounding to a WSDL
description is performed according to three rules:

R1. EachAtomicProcesscorresponds to one WSDL operation.

R2. As a consequence of the first rule, each input of anAtomicProcessis mapped to a
corresponding message-part in the input message of the WSDL operation. Simi-
larly for outputs, each output of anAtomicProcessis mapped to a corresponding
message-part in the output message of the WSDL operation.

R3. The type of each WSDL message part can be specified in terms of a OWL-S para-
meter (i.e., an XML Schema data type or a OWL concept).

The Grounding ontology specializes theServiceGroundingas aWSDLGrounding
which contains a set ofWsdlAtomicProcessGroundingelements, each grounding one of
the atomic processes specified in theProcessModel. In our abstract notation, we depict
each atomic process grounding by showing the link between the atomic process and the
corresponding WSDL element. TheMedicareSupplierservice has three atomic process
groundings for each processes of theProcessModel.

Service MedicareSupplier:

* Profile:...

* ProcessModel:...

* WSDLGrounding:
WsdlAtomicProcessGrounding: Gr1 (P1->op:GetSupplierByZipCode)
WsdlAtomicProcessGrounding: Gr2 (P2->op:GetSupplierByCity)
WsdlAtomicProcessGrounding: Gr3 (P3->op:GetSupplierBySupplyType)

We finish this subsection by describing a set ofdesign principlesunderlying OWL-S
that we identified during our use of this ontology.

1. Semantic vs. Syntactic descriptions.OWL-S differentiates between the semantic and
syntactic aspects of the described entity. TheProfileandProcessontologies allow
for a semantic description of the Web service while the WSDL description encodes
its syntactic aspects (such as the names of the operations and their parameters). The
Groundingontology provides a mapping between the semantic and the syntactic
parts of a description facilitating flexible associations between them. For exam-
ple, a certain semantic description can be mapped to several syntactic descriptions
if the same semantic functionality is accessible in different ways. The other way
around, a certain syntactic description can be mapped to different conceptual in-
terpretations offering different views of the same service.

2. Generic vs. Domain knowledge.OWL-S offers a core set of primitives to specify
any type of Web service. These descriptions can be enriched with domain knowl-
edge specified in a separate domain ontology. This modelling choice allows using
the core set of primitives across several domains.

3. Modularity. Another feature of OWL-S is the partitioning of the description over sev-
eral concepts. The best demonstration for this is the way the different aspects of
a description are partitioned in three concepts. As a result aServiceinstance will

2.4. Semantic Web Services 25

relate to three instances each of them containing a particular aspect of the service.
There are several advantages of this modular modelling. First, since the descrip-
tion is split up over several instances it is easy to reuse certain parts. For example,
one can reuse theProfile description of a certain service. Second, service specifi-
cation becomes flexible as it is possible to specify only the part that is relevant for
the service (e.g., if it has no implementation one does not need theServiceModel
and theServiceGrounding). Finally, any OWL-S description is easy to extend by
specializing the OWL-S concepts.

2.4.2 Web Service Domain Ontologies

Externally defined knowledge plays a major role in each OWL-S description. OWL-S
offers a generic framework to describe a service, but to make it truly useful, domain
knowledge is required. For example, domain knowledge is used to define the type of
functionality the service offers as well as the types of its parameters.

DataStructure

ZipCode

Product
Medicine

HealthProgram

HealthCareProvider

Hospital

MedicareProvider

Pharmacy

GeographicLocation

City
Functionality

FindMedicalSupplier

FindMedicareSupplier

FindMedicareSupplierByZip

FindMedicareSupplierByCity

FindMedicareSupplierBySupply

ComputeDistance

ComputeDistanceBetweenZipCodes

ComputeDistanceBetweenCities

Figure 2.8: Web service domain ontology.

Figure 2.8 depicts the hierarchical structure of the domain ontology used to describe
the example Web service. Note that it specifies a DataStructure hierarchy (consisting of
the concepts discussed in subsection 2.2.1) and a Functionality hierarchy. The Function-
ality hierarchy contains a classification of service capabilities. Two generic classes of
service capabilities are shown here, one for finding a medical supplier and the other for
calculating distances between two locations. Each of these generic categories has more
specialized capabilities either by restricting the type of the output parameters (e.g., find
Medicare providers) or the input parameters (e.g.,ZipCode, City, SupplyType).

The complexity of the reasoning tasks that can be performed with semantic Web
service descriptions is conditioned by several factors. First, all Web services in a domain
should use concepts from the same (or a small number of coupled) domain ontology in
their descriptions. Otherwise the issue of ontology mapping has to be solved which is a

26 Semantic Web Services

difficult problem in itself. This requires that domain ontologies should bebroadenough
to provide the needed concepts by any Web service in a certain domain. Second, the
richness of the available knowledge is crucial for performing complex reasoning.

Example scenario.By using the semantic Web service descriptions presented above,
the example task can be generalized and automated. The right services needed to perform
the task can be selected automatically from a collection of services. Semantic metadata
allows a flexible selection that can retrieve services that partially match a request but are
still potentially interesting. For example, a service which finds details of medical suppli-
ers will be considered a match for a request for services that retrieve details of Medicare
suppliers, if the used Web service domain ontology specifies that aMedicareSupplieris
a type ofMedicalSupplier. Note that this matchmaking is superior to the keyword based
search offered by UDDI. The composition of several services in a more complex ser-
vice can also be automated. Finally, after being discovered and composed based on their
semantic descriptions, the services can be invoked to solve the task at hand.

The material of this chapter so far has briefly described and exemplified the technolo-
gies that should be understood for further following this thesis. In the next section we
conclude on and explain a number of requirements that ontologies used for semantic Web
service descriptions should fulfill. These requirements are then investigated throughout
the thesis.

2.5 Requirements for Web Service Ontologies

The goal of this thesis is to enhance Web service ontologies and the process of building
them. To achieve this goal we need to understand the requirements that these ontologies
should fulfill. Unfortunately, little work was directed towards defining such require-
ments. We are only aware of work described in (Lara et al., 2003) and (Grosof et al.,
2004). However, these papers only list a set of functional requirements (i.e., Web service
activities that should be supported) and ignore overall, qualitative requirements that the
ontologies should fulfill. We now state a set of such requirements based on our expe-
rience when working with semantic Web services. Note that these requirements aim to
complement the set of requirements identified by the community so far.

2.5.1 Requirements for Generic Web Service Ontologies

The role of generic Web service ontologies is to capture the domain independent aspects
of Web services. These ontologies should be richly axiomatized, heavyweight ontolo-
gies that would facilitate creating formal descriptions to be reasoned upon with automatic
means. Generic ontologies are designed and maintained by a committee of experts which
usually cooperate through virtual means. The user base of these ontologies is consider-
ably larger than the committee which maintains them. The observations of the users that
are brought to the knowledge of the committee are analyzed, and if it is the case, incor-
porated in the next versions of the standards. We consider that (at least) the following
requirements22 should be fulfilled by generic Web service ontologies:

22We thank John Domingue for his observations that lead to clarifying the descriptions of these requirements.

2.5. Requirements for Web Service Ontologies 27

Modelling Expressiveness.Generic Web service ontologies are used to model a wide
range of services from different domains. Therefore, a requirement for these on-
tologies is that they should scale to cover a large variety of heterogeneous services
by allowing the modelling of several different types of services.

Clear Semantics and Rich Formalization.Semantic Web service descriptions aim to
enable complex (reasoning-based) tasks involving multiple software agents. It is
therefore important that the intended meaning of these descriptions can be inter-
preted in an unambiguous way by all agents. A prerequisite for this goal is that the
semantics of the generic Web service ontologies is clearly and formally specified.
Indeed, a rich formalization is crucial both for clearly expressing the semantics of
the descriptions and for facilitating complex reasoning tasks with them.

Adaptability. Another important requirement is that models created using the generic
ontologies should be easily reusable (adaptable) for other Web services. Even
more, the generic knowledge captured by a generic Web service ontology should be
reusable to describe other kinds of software entities as well. This would facilitate
an easy transition from traditional software to Web services.

Harmonization with other standards. While several evolving generic Web service on-
tologies (e.g., OWL-S, WSMO, IRS-II) have the same objective they employ dif-
ferent ontology frameworks for specifying services. To this point there is no har-
monization between these proposed standards meaning that services described ac-
cording to different frameworks cannot be used together. Lack of harmonization
also hampers performing any formal comparison between these different ontolo-
gies. We think that on a long term a harmonization of these proposed standards
would be beneficial. If their maturity level does not allow for a harmonization, it
should be attempted to make the proposed standards at least interoperable. Given
the fact that semantic Web service technology aims to complement and enhance
current technology, it is also important to be aware of the correspondence between
generic Web service ontologies and other industrial Web service standards (e.g.,
WSDL, OASIS).

Usability. The success of a generic ontology is not only conditioned by its quality but
also by its early adoption by the community. Several factors can contribute to
this early adoption. For example, supporting material such as usage examples and
modelling guidelines ensure that the ontology and its use are easy to understand.
Further, tool support is important to facilitate the use of the ontology. Finally,
maintainability of the created semantic models is another facet of usability. We
acknowledge that there is a natural tension between the requirements of modelling
expressiveness and minimal ontological commitment and usability. In order to be
adopted by a wide community there will be pressure on any standard to be minimal.
Additionally, to be useable the defined concepts and relations should not be over
complex.

In the first part of this thesis we inspect OWL-S (which was the first initiative towards
establishing a generic Web service ontology) from different perspectives and determine
whether these requirements are met. We also offer several solutions for enhancing the
problematic aspects that we identify.

28 Semantic Web Services

2.5.2 Requirements for Web Service Domain Ontologies

Web service domain ontologies contain domain specific knowledge which is used to com-
plete the generic descriptions. Usually, domain ontologies are lightweight specifying the
important concepts and functionality types in a domain (note, however, that more com-
plex applications might require more complex domain ontologies as it was experienced
in the DIP project23). Unlike generic ontologies, domain ontologies employed in Web
service descriptions are usually developed by a single domain expert. Often, the designer
of the domain ontology also uses this ontology to describe his services. We identified the
following requirements for Web service domain ontologies.

Broad domain coverage.A desirable feature for domain ontologies is a broad domain
coverage. These ontologies should contain most of the concepts that describe a cer-
tain domain so that many Web services in that domain can be described according
to the same ontology. However, this characteristic is hard to achieve due to several
factors (all of these factors were observed in our case studies in Chapter 7). Note
that the broad domain coverage requirement does not also require that the ontology
should be heavyweight (though, a richly formalized ontology is always desirable).
Indeed, an ontology containing a broad taxonomy of terms but no axioms (as is the
case for many domain ontologies used for Web service descriptions) has a broad
domain coverage but it is still a lightweight ontology.

Scalability. The number of existing Web services per domain is ever increasing. Several
domains witnessed a rapid increase to several hundreds of services (e.g., over 1000
in bioinformatics (Lord et al., 2005)). With the wide adoption of this technology,
Web service repositories are changing on a daily basis being enriched with several,
often dissimilar services. This situation requires that domain ontologies should
scale to cover large, dynamically changing collections of dissimilar services. Nat-
urally, achieving this goal requires some level of automation as the ontology build-
ing process needs to be repeated regularly over large collections of services.

In the second part of this thesis we describe our work on semi-automatically acquiring
Web service domain ontologies which aims to support domain engineers to build domain
ontologies for large and dynamically changing Web service collections.

2.6 Summary

In this chapter we briefly described three novel Web technologies and showed how they
enhance information access and integration. The Web made a vast amount of digital data
available to search for everyone. However, current keyword based search techniques
often fail to identify the right pages for a query. Also, they are limited to the informa-
tion that is explicitly stated on static Web pages without being able to perform simple
data processing. These limitations are addressed by two technologies. First, the formal
description of the meaning of Web pages (created with Semantic Web technology) are
machine processable and interpretable thus enhancing several search and data integration
tasks compared to keyword search. Second, Web services make the processing service

23http://dip.semanticweb.org/

http://dip.semanticweb.org/

2.6. Summary 29

of computer programs dynamically accessible via Web interfaces. As a consequence, a
more generic version of the same task can be performed. However, discovery and inte-
gration of these Web services still needs to be done manually. Semantic Web services
overcome this limitation by semantically describing the capabilities of Web services.
Generic task models can be created which can be automatically filled in at run time with
the right Web services.

Based on our description of the semantic Web services technology, we identified a set
of requirements that Web service ontologies should fulfill. These observations constitute
an extended problem statement for our thesis since our goal is to enhance the quality and
to facilitate the building process of Web service ontologies. In the first part of the thesis,
we describe our efforts to enhance the OWL-S generic Web service ontology. Then, in the
second part, we detail our work on automatic learning of Web service domain ontologies.

Chapter 3

Related Work

In this chapter we identify and briefly overview related work. Because the goal of this
thesis is to facilitate building ontologies for Web services, work on acquiring software
semantics in general, and Web service semantics in particular, is relevant. Nevertheless,
none of these fields has been concerned with the acquisition of ontologies that describe
software. In our work we employ two different ontology engineering methods. On one
hand, we use methods relying on generic ontological principles to improve the quality
of OWL-S. Such methods were successfully used in other contexts than that of software
description. On the other hand, we adapt ontology learning to support quick acquisition
of Web service domain ontologies.

3.1 Introduction

The acquisition of semantic markup is considered a fundamental problem in reaching the
vision of the Semantic Web (Uschold, 2001; Hendler, 2001). Because semantic markup
relies on using concepts provided by ontologies, a subproblem is that of acquiring on-
tologies in the first place. While ontologies have been developed for several decades now,
the Semantic Web raises new challenges for developing them, such as larger scale and
increased change rate (van Harmelen, 2002).

In this thesis we investigate the ontology acquisition problem in a special context, that
of Web services. An obviously related body of work can be found in software engineering
in the area of acquiring software semantics (see Section 3.2).

Several methods exist for dealing with ontology acquisition. First, methodologies
exist that prescribe the major steps in the process of building ontologies. However, we
do not aim at establishing such a methodology here and therefore we do not discuss
this topic in this chapter. Second, a suit of methodologies relying on extensive research
of fundamental philosophical, linguistic and mathematical principles have been used to
enhance the quality of (heavyweight) ontologies. These methods can detect, explain
and correct frequent mistakes and faults in ontologies by relying on rigorously studied
ontological principles. We describe these methods in Section 3.3 . Finally, the ontology
learning field aims to automatically derive (lightweight) ontologies from existing data
sources. These methods have a high relevance for our third research question and they
are discussed in Section 3.4. We point out a set of problematic issues within the ontology

32 Related Work

learning field in Section 3.4.4 . These issues are addressed in our work as described in
the rest of the thesis.

3.2 Acquisition of Software Semantics

The use of semantic descriptions of software components was explored in software en-
gineering to support tasks such as program understanding (Biggerstaff et al., 1993) or
building software reuse libraries (Mili et al., 1998). However, the acquisition of semantic
descriptions was always a critical stage and hampered the development of semantic based
techniques. For example, as concluded by a major survey of software reuse libraries (Mili
et al., 1998), even if many sophisticated approaches exist to build and exploit software
reuse libraries,“the practice is characterized by the use of ad-hoc, low-tech methods”
that were more practical to use than semantically sophisticated methods.

Several methods emerged that tried to acquire some of the semantics automatically.
An approach for automatically building a software library is presented by (Maarek et al.,
1991) and implemented in the GURU tool. The approach analyzes natural language
documentation of software, which, according to the authors, is richer in functional infor-
mation than source code or explanatory comments found in the code. The approach uses
a combination of information retrieval and clustering methods. In a first stage, aprofile
is built for each analyzed document containing all the relevant terms that define the doc-
ument. In a second stage, these profiles are clustered using an unsupervised hierarchical
agglomerative clustering (HAC). The resulting hierarchy is a binary tree. The nodes in
this hierarchy are not named because it is impossible to automatically predict the right
name for them. The automatically built library proved to perform 15% better (in terms of
precision) when compared to the InfoExplorer system, a commercial tool that relies on
a lot of manually encoded knowledge about the same set of software collection. Later,
this technique was combined with code analysis methods (Helm and Maarek, 1991). Fi-
nally, an attempt to build a term hierarchy is reported by (Mili et al., 1997). They use IR
techniques limited to the noun phrases in the corpus and then rely on the co-occurrence
of terms in some documents to deduce semantic relations between them.

Note that none of these approaches actually builds taxonomic structures. It is re-
markable though that the derived semantics are evaluated in the context of a concrete
application – a topic which is currently under development in the ontology learning field
(see Chapter 8).

A subtopic of acquiring semantics for software is theacquisition of Web service
semantics. Indeed, the creation of semantic Web service descriptions is a time consum-
ing and complex task whose automation is desirable, as signaled by many researchers in
this field, for example (Wroe et al., 2004). This task can be broken down in two smaller
tasks. First, acquiring a suitable Web service domain ontology is a prerequisite when
creating semantic Web service descriptions. This is required to create a shared terminol-
ogy for the semantic service descriptions. Second, the actual process of annotating Web
services with the concepts provided by the domain ontology (i.e., creating their semantic
descriptions) has to be performed.

To our knowledge, two research teams concentrate on the second task, that of Web
service annotation. Hess and Kushmerick (Hess and Kushmerick, 2003, 2004; Hess et al.,
2004) employ Naive Bayes and SVM machine learning methods to classify WSDL files

3.3. Formal Ontology based Methods 33

(or Web forms) in manually defined task hierarchies. Patil et al. (Patil et al., 2004) em-
ploy graph similarity techniques to select a relevant domain ontology for a WSDL file
from a collection of ontologies. Then they annotate the elements of the WSDL file with
the concepts of the selected ontology. Both teams use existing domain ontologies and
acknowledge that their work was hampered by the lack of such ontologies. The work
presented in the second part of this thesis is complementary, since we address the acqui-
sition of Web service domain ontologies.

3.3 Formal Ontology based Methods

To be successfully used within information systems, ontologies should provide clear se-
mantics for their concepts and a rich formalization of these semantics. These require-
ments are particulary important in the area of semantic Web services whose ontological
descriptions should be used for reasoning tasks. However, few existing ontologies fulfill
these requirements. In this section we overview work which shows that highly general
ontological notions can be successfully employed to enhance the quality of ontologies.

OntoClean (Guarino and Welty, 2004) is a methodology for validating taxonomic
relationships and relies on the generic ontological notions of essence, identity and unity.
Using OntoClean it is possible to detect and correct common modelling mistakes such
as the confusion of subsumption with instantiation, or the confusion of subsumption and
meronymy (partOf) relations.

More generically, one can rely on a more complex set of generic principles to en-
hance existing ontologies. Several projects have proved that it is beneficial to align ex-
isting ontologies to foundational ontologies, such as DOLCE, that capture generically
valid ontological notions drawn from philosophy, linguistics and mathematics. For ex-
ample, in (Gangemi et al., 2002) the authors describe the use of the DOLCE ontology and
the OntoClean methodology in assessing the quality of WordNet’s top level category of
nouns. They perform adirect mappingof WordNet concepts to concepts in DOLCE and
they apply the rigidity properties introduced by OntoClean. Using these methods several
problematic issues of WordNet were revealed. Confusion was detected between several
different ontological elements: between concepts and individuals, between object and
meta level entities (notably, the Abstraction1 synset includes both object level concepts
- Set, Time, Space- and meta-level concepts -Attribute, Relation). They also discovered
a mixture in the level of generality of sibling synsets. The mapping resulted in making
several concrete suggestions to enhance WordNet. Another example of using alignment,
is provided in (Borgo and Leitao, 2004) where DOLCE is used in the process of building
a manufacturing ontology.

An alignment of software related ontologies has not been performed. We pioneered
this line of work by performing an alignment of OWL-S to DOLCE. This alignment
allowed us to validate and improve the quality of OWL-S (see Chapter 6).

3.4 Ontology Learning

The aim of ontology learning methods is to (semi-)automatically derive conceptual struc-
tures from different types of unstructured, semi-structured and fully structured data.
Work that fits into this category was performed in numerous disciplines - computational

34 Related Work

linguistics, machine learning, databases, software engineering (Maedche and Staab, 2001).
However, the term of ontology learning has been only recently coined as a response to
the growing need to automate ontology acquisition in the context of the Semantic Web
research.

This multidisciplinary field encompasses a variety of approaches. We are aware of
at least two extensive overviews of existing approaches and tools for ontology learn-
ing (Maedche and Staab, 2001), (Gomez-Perez and Manzano-Mancho, 2003). There-
fore, in this chapter we only provide the background necessary to motivate our choices
and position our work in the landscape of this research field.

3.4.1 Ontology Learning Approaches

An important characteristic of ontology learning approaches is the input data that they
rely on. This has a strong influence on the ontology learning method that is used. We
shortly describe ontology learning approaches grouped based on the data structures that
they use. For this we rely on the classification provided by (Gomez-Perez and Manzano-
Mancho, 2003) and extend it with work published after the survey was finalized.

The majority of existing approaches learn an ontology fromtextual sources. A
sub-category of text based approaches are approaches that process machine readable
dictionaries (MRD’s) to derive some conceptual structures (Jannink and Wiederhold,
1999), (Rigau, 1998). A recent trend in ontology learning is to leverage on the vast
amount of (redundant) data available on the Web. Pioneer in this area is the work of
Cimiano who learns subsumption hierarchies (and also instanceOf relations) by query-
ing the data available on the Web (Cimiano et al., 2004a,c).

Besides this large category of text based methods, there are a few methods developed
for learning ontologies from knowledge bases (Suryanto and Compton, 2001), semi-
structured schemata (Delteil et al., 2001) and relational schemata (Rubin et al., 2002).

When deciding what data sources were appropriate for learning Web service ontolo-
gies we considered several possibilities. First, resources connected to the underlying
implementation of the service might provide useful knowledge about the functionality
of the Web service since Web services are simply Web accessible software products.
Such are the source code, its textual documentation or existing UML diagrams. Second,
one could use Web service specific data sources such as associated WSDL files or ac-
tivity logs. One major criterion when choosing a data source as basis for our ontology
learning method was its availability. We observed that Web services are almost always
accompanied by a short textual description of their functionality which helps a user to
quickly understand what the service does. Such descriptions exist in on-line Web ser-
vice repositories such as XMethods1. Similarly, javadoc style method descriptions also
offer such short descriptions of functionality (software API documentation being more
frequently available than source code). Therefore, we experimented withtextual Web
service functionality descriptions attached to Web services as a whole or extracted from
the underlying software documentation (as detailed in Chapters 7 and 8).

1http://www.xmethods.net/

http://www.xmethods.net/

3.4. Ontology Learning 35

3.4.2 Methods for Text Based Ontology Learning

A variety of methods have been developed for learning ontologies from textual sources.
Most significantly, these methods rely on pattern based techniques, use association rules
(Maedche and Staab., 2000) or employ clustering methods (Faure and Nedellec, 1998).
The approach we adopted for learning Web service domain ontologies is motivated by
the observations that textual sources attached to Web services (1) contain valuable infor-
mation for building ontologies and that (2) they use natural language in a specific way. In
fact, such texts belong to what is defined as a sublanguage in (Grishman and Kittredge,
1986) - a specialized form of natural language (see Chapter 7 for details). Given these
characteristics of our texts we chose to rely on pattern based techniques in our ontology
learning.

Pattern based techniques are widely used in several natural language processing ap-
plications. Notably they have been used to derive semantic relations from large corpora.
A pioneer in this direction of research was the work of Hearst which introduced the idea
of learning hyponymy relations using lexico-syntactic patterns (Hearst, 1992). Lexico-
syntactic patterns are defined on both lexical and basic syntactic information (POS tags).
As such, they allow extracting relations after shallow text processing only. For exam-
ple, the hyponymy relationship suggested byBruises, wounds, broken bones or other
injuries could be extracted using theNP, NP*, or other NPpattern (Hearst, 1992). As a
follow up of this work, Charniak developed a set of lexico-syntactic patterns that identify
meronymy (partOf) relations (Berland and Charniak, 1999). In both cases, the identified
semantic relations were used to enlarge WordNet.

Naturally, such patterns have a clear relevance for ontology learning. Indeed, Hearst-
style patterns are used in the work of Cimiano (Cimiano et al., 2004c) and in the CAME-
LEON tool which incorporates over 150 generic patterns for the French language (Seguela
and Aussenac-Gilles, 1999; Aussenac-Gilles, 2005). While such generic patterns work
well in general corpora they often fail in small or domain specific corpora. In these cases
domain-tailored patterns provide a better performance (Aussenac-Gilles, 2005). Besides
using domain tailored patterns, one can also enlarge the extraction corpora. For example,
World Wide Web data can be used for pattern based learning (Cimiano et al., 2004a). In
our work and in several ontology learning approaches pattern based extraction is just a
first step in a more complex process (Reinberger et al., 2004; Faure and Nedellec, 1998;
Buitelaar et al., 2004b). In these cases patterns identify potentially interesting terms in
the corpus and then the next processing steps derive relevant semantic structures from
these terms.

3.4.3 Ontology Learning Tools

A major survey on ontology learning, performed before our research started, identi-
fied 18 tools for learning ontologies from textual sources (Gomez-Perez and Manzano-
Mancho, 2003). These tools implement a variety of methods such as clustering tech-
niques (ASIUM (Faure and Nedellec, 1998), the Mo’K Workbench (Bisson et al., 2000))
or pattern based techniques (CAMELEON (Seguela and Aussenac-Gilles, 1999)). Since
our goal was to reuse existing ontology learning methods in the context of Web services,
we wanted to experiment with these tools. However, only 3 of these 18 tools were avail-
able for download at the beginning of our research. The most useful was TextToOnto.

36 Related Work

TextToOnto2 (Maedche and Staab, 2004) is an ontology learning workbench offering
a suite of algorithms that can be combined to build an ontology. In particular, the work-
bench offers modules for identifying important concepts, learning taxonomic relations
and extracting generic binary relations using association rules. The learned ontology is
visually presented using a TouchGraph3 based schema visualization technique. By using
TextToOnto we were able to experiment with several basic algorithms. However, the
particularities of our corpus lead to a suboptimal performance of the implemented meth-
ods. One of the major problems was that our corpus employed a sublanguage specific
to software documentation which is different from generic texts. This finding prompted
us to implement our own, modified versions of these algorithms. The source code of
TextToOnto, as well as support from its developers, provided valuable help in starting up
our research.

During our research, two other tools were developed. Unlike their predecessors, these
tools aim to make ontology learning easier to use and to adapt for novice users.

OntoLT 4 (Buitelaar et al., 2004b) is a Protege5 (Noy et al., 2001) plugin that allows
quick extraction of domain ontologies through a set of mapping rules defined in terms
of XPATH queries on XML-based linguistic annotations. Currently the tool comes with
two readily defined mappings. The first one allows learning taxonomic relations based on
noun phrase information. The second mapping extracts slots. According to this mapping
a predicate becomes a slot having as domain its subject and as range its object. Other
mappings can be built depending on the needs of the user. The extracted ontology is
presented in the Protege environment. Each learned structure (concept or slot) contains
detailed information regarding its provenance (i.e., the parts of the corpus where it was
identified and the rule which led to its identification).

Text2Onto6 (Cimiano and Voelker, 2005) is the successor of TextToOnto offering an
extended set of ontology learning algorithms. Text2Onto brings several enhancements to
its predecessor. First, it relies on aProbabilistic Ontology Model (POM)which allows
combining the results of different processing algorithms and representing probabilities
for the learned structures. Second, based on this probabilistic model, an improved user
interface is built. Learned constructs are listed ordered by their probability of being cor-
rect or represented using a graph-based visualisation component. Another advantage of
the POM is the traceability of the extraction: each learned structure is stored with a set
of pointers to parts of the corpus from where it was extracted. Finally, Text2Onto imple-
ments adata driven change discoverymechanism which allows updating the ontology
model based on the changes in the underlying data without having to perform the whole
extraction from scratch. This grants efficiency and allows the user to trace the evolution
of the ontology based on the changes in the underlying data.

3.4.4 Major Issues in Ontology Learning

With the growth of the Semantic Web, ontologies are needed in various domains. This in-
creases the demand for ontology learning solutions to be used in new, different domains.

2http://sourceforge.net/projects/texttoonto/
3http://www.touchgraph.com/
4http://olp.dfki.de/OntoLT/OntoLT.htm
5http://protege.stanford.edu/
6http://ontoware.org/projects/text2onto/

http://sourceforge.net/projects/texttoonto/
http://www.touchgraph.com/
http://olp.dfki.de/OntoLT/OntoLT.htm
http://protege.stanford.edu/
http://ontoware.org/projects/text2onto/

3.4. Ontology Learning 37

For example, the context of Web services is a new application domain for ontology learn-
ing. These specialized domain have several characteristics:

Corpora with special characteristics. The corpora that describe the knowledge avail-
able in a specialized domain often exhibit rather strong characteristics. Most often,
they use natural language in a specific way, a sublanguage. This is also the case in
the domain of Web services, see Subsection 7.3.2.

Clear requirements for the output of the learning method. In a restricted domain it
is often clear what kind of knowledge is needed, what should be extracted from the
corpus. This knowledge is sometimes more specialized than the semantic structure
extracted by generic algorithms. For example, in the case of Web services, we
know that not only domain concepts but also functionality hierarchies need to be
learned (see Subsection 7.3.3). This is a novelty because existing algorithms do
not consider verbs (which usually denote functionality) as candidates for concepts.

Non NLP-expert developers and users.Finally, domain experts which use the ontol-
ogy learning tools or which need to develop them for a domain are seldom experts
in ontology engineering or in NLP.

These characteristics broaden the field of research on ontology learning with topics
such as:

Adaptability. The special characteristics of the analyzed corpora in restricted domains,
as well as the clear requirements for the knowledge to be extracted, require the
adaptation of existing ontology learning methods. This need for adaptation is al-
ready addressed by OntoLT which offers a generic framework for defining pattern
based extraction rules on specialized domains. We believe that, in order to meet the
requirements of non expert ontology learning solution developers, not only toolkits
of easily adaptable and combinable methods are needed but also guidelines of how
to implement a domain tailored ontology learning solution. We discuss how we
adapted ontology learning techniques to the context of Web services in Chapter 7.

Evaluation. Evaluation remains an important issue for ontology learning in general.
Given the fact that different methodologies are developed it is hard to provide joint
evaluation metrics or benchmarks. This is even more problematic in the case of
specialized domains where no corpora are collected, it is not clear which Gold
Standards should be used and there is no baseline for comparison. An overview
of existing evaluation practices which served as a basis for developing our own
evaluation scheme is described in Chapter 8.

Usability. Ontology learning is essentially a knowledge transfer processes from domain
knowledge as perceived by humans to formal models that can be reasoned upon
by computers. Ontology learning methods involve multiple stages. Topically, they
extracttermsfrom adocumentcorpus, then combine and transform them intoon-
tology elements(concepts). It is therefore essential, both during the development
and the use of a ontology learning tool, that the knowledge structures involved in
these processes as well as their relations are easily understood by human users.
Therefore, it is important to enhance the usability of ontology learning tools. We
briefly present our efforts in this direction in Chapter 7.

38 Related Work

3.5 Summary

In this chapter we provided a brief overview of research fields that are relevant for our
work.

In the field of software engineering, we described efforts for automatically acquir-
ing some semantic description of software components. However, to our knowledge, no
efforts have addressed building an ontology about a set of software components. Au-
tomating such a task is especially important in the context of semantic Web services
where domain ontologies play a major role.

In the field of ontological engineering we looked both at methods based on ontolog-
ical principles which aim to enhance the quality of existing ontologies, and to ontology
learning methods that aim to bootstrap ontology learning by automatically learning light-
weight ontologies. The use of ontological methods has a direct applicability for enhanc-
ing the quality of generic Web service ontologies. Indeed, these methods have not been
applied yet in the domain of software descriptions. Ontology learning can be employed
to support the building of domain ontologies. For this, ontology learning methods have
to be adapted to the context of Web services as discussed in the second part of the thesis.

Part II

Enhancing Generic Web Service
Ontologies

Chapter 4

Improving DAML-S

In Chapter 2 we stated that the wide scale adoption of a generic Web service ontology is
conditioned by itsexpressiveness(i.e., that it allows modelling a wide range of services)
andusability (i.e., modelling guidelines and examples should be provided for learning
the ontology). In this chapter we investigate DAML-S from these two perspectives by
reporting on our experiences when modelling a set of increasingly complex services. Our
conclusion is that DAML-S has both a low expressiveness and usability. The contribution
of our work is to enhance both aspects of DAML-S. First, we identify a set of modelling
limitations and offer solutions for eliminating them (thus extending the expressiveness of
the ontology). Second, we offer a set of modelling examples and guidelines to help the
take-up of the ontology by the community.

The material presented in this chapter was published as part of a paper in the work-
shop on E-Services and the Semantic Web held in conjunction with the Twelfth Inter-
national World Wide Web Conference (Sabou et al., 2003) and a paper at the Second
International Semantic Web Conference (Richards and Sabou, 2003).

4.1 Introduction

A generic Web service ontology should be used to describe any Web services, inde-
pendently of their domain. Two factors are key to the wide-scale adoption of such an
ontology. First, it should beexpressiveenough to allow the modelling of a wide range of
services. Second, examples of marked up services and modelling guidelines should exist
to support the easy learning of this ontology.

At the start of our research, DAML-S was weakly documented (lowusability). In-
deed, even though DAML-S was growing into ade factostandard for semantic Web
service markup, we only found few complete service descriptions and even less pa-
pers discussing technical issues about the markup process. Our preliminary literature
study yielded four types of reported usage of DAML-S. First, within the DAML-S coali-
tion two complete, fictitious examples (on the DAML-S site) and two concrete applica-
tions (Paolucci et al., 2002) were provided. Second, several projects used only certain
parts of the DAML-S ontology, e.g., matchmaking research focused on the Profile on-
tology (Cardoso and Sheth, 2002; Somacher et al., 2002). Third, we found work which
extended parts of DAML-S: (Brison et al., 2002) enriched the Process ontology, (Wroe

42 Improving DAML-S

et al., 2003) extended the Profile ontology with bio-informatics related properties, (Lopes
et al., 2002) extended the specification of conditions. Finally, some papers mentioned the
use of complete DAML-S as is, but gave no details about their experiences. Common
to all the above referenced papers is that none of them described the process of writing
the DAML-S markup. We were also concerned that very little of the DAML-S markup
we found pointed to actual services. In this conditions, it was a considerable effort to
get started with using DAML-S since example markup and guidelines about modelling
practices were almost completely absent.

We sought to fill this gap by providing a set of complete, real Web service descriptions
and sharing our modelling experiences. The result of this exercise was twofold. First,
we concluded that DAML-S1 had a limitedexpressivenessas we encountered difficul-
ties in modelling even simple Web services. Our observations (and proposed solutions)
were brought to the knowledge of the DAML-S committee and partly implemented. Sec-
ond, our marked up services2 as well as considerations about their markup were made
accessible to the research community in order to ease the adoption of this new ontology.

We start this chapter by describing the application which provided the set of example
services (Section 4.2). Then we describe our modelling experiences with three increas-
ingly complex services in Sections 4.3 to 4.5. Finally, we conclude in Section 4.6 by
summarizing and discussing a set of emerging, noteworthy issues.

4.2 The Web Services

We described a set of services developed in the context the SW@VU3 project that uses
Semantic Web technology to build a portal of scientific publications from BibTex files.
Table 4.1 summarizes these services and Figure 4.1 depicts a typical invocation pattern.

Bib2RDF ESesame

ISesame

DisplayCreator

SameIndividualAs

[more files]

[duplicates]

Figure 4.1: Web services used for building bibliography portals and their invocation workflow.

The main invocation steps of these services are:

1Versions v0.7 and v0.9.
2All services are available athttp://www.cs.vu.nl/ ∼marta/services .
3http://www.cs.vu.nl/ ∼mcaklein/SW@VU/

http://www.cs.vu.nl/~marta/services
http://www.cs.vu.nl/~mcaklein/SW@VU/

4.2. The Web Services 43

Step 1: Data Translation. First, each available BibTex file is converted to RDF using
theBib2Rdfservice, then saved in a web-accessible RDF(S) repository and query
engine,Sesame4 (Broekstra et al., 2002), by theISESAMEservice.

Step 2: Duplicate Detection.The merger of all available data often results in redundan-
cies as different owners of the bibliographies use syntactically different resources
to denote the same author. We useddaml:sameIndividualAs to encode
these redundancies and extended Sesame’s reasoning capabilities to interpret this
new tag. TheSIA(SameIndividualAs)service provides automated support for the
task of finding the resources referring to the same person. Using machine learning
techniques on the RDF(S) source, SIA extracts the resources which might refer to
the same person and returns tuples of similar resources. Therefore the second step
is to extract all the data from Sesame with theESESAMEservice, send it to SIA,
obtain the redundancy file and save it back to Sesame using again theISESAME
service.

Step 3: Display Creation. Finally, a portal creator software creates the portals of pub-
lications by querying Sesame.

Web Service Functionality
Bib2Rdf (B2R) A file conversion service that takes a file

in BibTEX format and outputs a file in RDF format.
ISESAME A file import service that takes a file in

RDF format and adds it to a specified public
or private repository in SESAME.

ESESAME A file export service that extracts data from a
specified public or private repository in SESAME
and outputs the data in RDF, n3 or ntriples formats.

SameIndividualAs (SIA) A utility service that reads in an RDF file
and adds thedaml : sameIndividualAs tag
to duplicate names.

PortalCreator (AI-DIS) A service which takes the contents of a SESAME
repository and displays it in a Web portal.

Table 4.1: Overview of the used services and their functionality.

These Web services can be combined differently depending on the available input
data and the user’s requirements. For example, if the data files are already provided as
RDF there is no need to perform the Bib2Rdf translation. Or, if they are in different
formats a corresponding translator should be invoked. Further, if the data originates from
a single data source the duplicate detection step is not needed anymore. Or, if the data is
already available in a Sesame repository no storage should be performed.

Semantic Web service technology aims at automating such adaptive service compo-
sition by using reasoning over service and requirements descriptions. We wished to use

4http://www.openrdf.org/

http://www.openrdf.org/

44 Improving DAML-S

this technology in order to automate the portal creation task. For this we semantically
annotated our Web services using DAML-S. These descriptions were reasoned upon by
the Agent Factory design service (Brazier and Wijngaards, 2001) in order to prescribe an
optimal composition depending on the input and output requirements. For details on the
use of the Agent Factory for this task, the interested reader is referred to (Richards et al.,
2003) and (van Splunter et al., 2003). We further report on our experiences with creating
the DAML-S markup for three of these services: Bib2Rdf, SIA and Sesame.

4.3 Modelling a Simple Service - Bib2Rdf

The first service that we described using DAML-S was Bib2Rdf5. Bib2Rdf is a simple
service: it transforms a BibTex file into a RDF representation. The service takes as
input the URL of a BibTex file and returns the RDF encoding of this data. Despite
the simplicity of this service, modelling it using DAML-S lead us to discover a severe
inconsistency between theServiceProfileand theServiceModelparts of the description.

In Section 2.4.1 we described the mapping between the parameters of theService-
Profile and theServiceModel. Several aspects of this mapping can be critiqued. First,
one would expect thatProfile parameters of a certain type can only refer toProcesspa-
rameters of the same type. However, this is not enforced. With the current specification
one can easily make a link between parameters of different types (e.g.,profile:inputand
process:output). Second, because theProcessontology does not modelPreconditions
andEffectsas subproperties ofprocess:paramater, it is inconsistent to use entities of this
type as values forprofile:refersTo. Therefore,PreconditionsandEffectsdefined in the
Profile cannot refer to the correspondingPreconditionsandEffectsof theProcess(since
they are not included in the range ofrefersTo).

The DAML-S coalition acknowledges the possibility of inconsistencies betweenPro-
file andProcessand that they will be discovered at some point (DAML Services Coali-
tion, 2002). Since matchmaking is based on theProfiledescription, the break may occur
during (attempted) usage of the service. The rationale for this design decision is not
clear. We conclude that this link between the IOPE’s at two distinct levels of specifica-
tion should be corrected and made more explicit.

Solution. A solution to this issue (included in OWL-S v.1.0 and OWL-S v.1.1.B)6

was developed during the author’s participation in the coalition’s work. The new solution
offers a simplified modelling (see a schematic representation in Figure 4.2):

The schema for describing IOPEs is only offered by the Process ontology.The Pro-
file ontology references these IOPE definitions through a set of properties. The
rationale behind this modelling is that (1) both the Profile and Process parts of the
description refer to the sameInput, (Conditional)Output, Preconditionand(Con-
ditional)Effect7 instances and that (2) the set of IOPEs declared in the Profile is
always a subset of those declared in the Process. Through this solution we avoid
duplicating the definition of IOPE instances in both models. Also, since both mod-
els will point to the same instances of IOPEs the problem of correctly mapping
between a set of Profile IOPEs and a set of Process IOPEs is circumvented.

5http://www.cs.vu.nl/ ∼marta/services/Bib2Rdf/Bib2RdfService.daml
6More recent releases of OWL-S are still based on this solution but extended it with several new notions.
7Conditional means that the existence of the output/effect depends on a condition being fulfilled.

http://www.cs.vu.nl/~marta/services/Bib2Rdf/Bib2RdfService.daml

4.4. Modelling a Service with Multiple Interfaces - SIA 45

The Process ontology models IOPEs as concepts rather than properties.BothProfile
andProcessinstances refer to IOPEs through a set of properties. Note that the un-
intuitive initial modelling where IOPEs from theProfile were linked to IOPEs in
the Processthrough a property (profile:refersTo) that ranged over properties (the
IOPEs in the Process were properties) is now eliminated. The conceptual differ-
ence betweenInputsandOutputson one hand andPreconditionsandEffectson
the other was maintained in the current modelling as well. This distinction results
from two different views that one can have about the functionality of a service. On
one hand, the functionality of a service can be regarded as an information trans-
formation process which is defined byInput andOutputparameters. On the other
hand, to describe the world state change that is provoked by the execution of a ser-
vice it is useful to definePreconditions(world states that have to be fulfilled before
execution) andEffects(world states after the execution of the service). Following
this rationale,InputsandOutputsare grouped under theParameterconcept.

has_process

hasParameter

hasOutput

hasInput

hasEffect

hasPrecondition

hasParameter

hasInput

hasOutput

hasEffect

hasPrecondition

OWL-S

Process

OWL-S

Profile

Profile Parameter

ConditionalOutput Input

ConditionalEffect

Precondition

Process

Figure 4.2: The new way to model the Profile to Process bridge.

4.4 Modelling a Service with Multiple Interfaces - SIA

The SIA (SameIndividualAs) service is essentially as simple as the Bib2Rdf service: it
acts upon an RDF file, determines resources that possibly point to the same physical per-
son and returns an RDF file with tuples of equivalent resources. The only element of
complexity is that this service can acquire the RDF source in multiple ways: (1) by read-

46 Improving DAML-S

ing it from a URL, (2) by accepting the data itself as a string and (3) by reading the data
from a Sesame repository, given the name of the repository and the log-in information.

Intuitively, this situation is similar to a specific kind ofad-hoc polymorphism, that
of overloading: a certain method allows different signatures, but essentially it executes
the same function. Indeed, the SIA service performs its function (duplicate detection)
independently of the set of parameters with which it is invoked.

The available documentation about DAML-S provided little guidance on how to
model this situation. Some coalition members have considered the problem of supporting
multiple interfaces and offered a solution for the situation where the number of arguments
are the same and in the same order but where the data types may differ, i.e. type polymor-
phism (Ankolenkar et al., 2002). The offered solution is to define a higher level concept
that covers all possible alternative data types. However, this approach does not address
our problem where we have a different number of arguments.

One simple solution to our problem would be to treat each alternative interface as a
separate service. We rejected this solution for conceptual, practical and reuse reasons. At
a conceptual level, we are describing one and the same service. If we made them separate
services, DAML-S did not provide any way of identifying that they were in fact the same
service. Knowing that a service and/or its description is related or in fact identical may be
important when it comes to choosing services. From a practical point of view, marking
up a service is time-consuming enough without having to perform the activity for every
possible interface. From a reuse point of view, we wanted to share and reuse as much as
possible between these alternative ways of accessing the service.

In order to provide the semantics that would allow more intelligent matchmaking
and to handle interfaces with different data types and number of parameters, we tried a
number of alternatives. The first variant (SIA1) was based on atop-down designstarting
with a service model and working down to the service grounding. Due to the problems
we faced in SIA1, the second variant (SIA2) used abottom-up approach starting with
the WSDL definition. SIA2 clarified the DAML-S view of a service as being primarily
defined by its IOs, rather than its effects. We developedSIA3 to support the new view of
ourservice as a composite processinvolving data readers and translators, rather than an
atomic process. However, these first three descriptions were not valid solutions as they
were either conceptually wrong or impossible to specify using DAML-S and WSDL. Our
final design (SIA4) was a compromise that provided a valid solution but which did not
completely represent our conceptual model of the service. It also involved significant
repetition of descriptions. These variants are presented next in more detail, along with
discussion of our rationale, choices and conclusions during our design. A schematic
description of each variant is provided to clarify the discussion.

4.4.1 Top-Down Design of SIA1

Because the effect of the service is not altered by the way in which the RDF file is
provided, our first intuition was to model a single service and to make the differentiation
between the three ways of accessing it at the grounding level. We adopted this modelling
in SIA18. At the Profile (Pr1) / Process (P1) level we described the service as accepting
an RdfFile and producing anotherRdfFile. The WSDL representation of the service
consists of a port with three operations (op1, op2, op3) which differ through their input

8http://www.cs.vu.nl/ ∼marta/services/sia/Sia1Service.daml

http://www.cs.vu.nl/~marta/services/sia/Sia1Service.daml

4.4. Modelling a Service with Multiple Interfaces - SIA 47

messages. The first expects aurl, the second astring and the third receives four Sesame
related parameters (server url, password, login, repository name).

* Service SIA1:

* Profile:Pr1 (hasProc=P1)(I(RdfFile), O(RdfFile))

* ProcessModel:
AtomicProcess:P1(I(RdfFile),O(RdfFile))

* WSDLGrounding:
WsdlAtomicProcessGrounding: Gr1 (P1->op1)
WsdlAtomicProcessGrounding: Gr2 (P1->op2)
WsdlAtomicProcessGrounding: Gr3 (P1->op3) !!!

* WSDL:
Service(PortType:SIA(

op1 (IMsg(url), OMsg(stream))
op2 (IMsg(string), OMsg(stream))
op3 (IMsg(url,pse,ln,rep), OMsg(stream))))

Specifying the first two groundings ofP1 to op1 andop2 was easy. However, for
the third grounding we realized that it was impossible to build a one-to-one mapping
between the single input of processP1 and the four parameters of the WSDL operation,
op3, because the DAML-S/WSDL mapping states that “each atomic process input and
output corresponds to a WSDL message part”. The DAML-S coalition acknowledges
that this could be a possible limitation, but do not give a concrete example of a prob-
lematic scenario. This example shows that the assumption prohibits modelling of ad-hoc
polymorphism. Therefore we encourage its revision.

Partial Solution. The new version of DAML-S (v.0.9) is less restrictive, but never-
theless does not solve this issue. There is a possibility of defining XSLT transformations
between theProcessparameters and the WSDL message parts. In case of inputs, multiple
input parameters can be mapped to a single WSDL message part. Still, we cannot solve
our particular problem where we need to map one input parameter(RdfFile) to multiple
message parts (url, pse, ln, rep).

4.4.2 Bottom-Up Modelling of SIA2

After SIA1, we changed our strategy to bottom-up modelling inSIA29. Based on the
structure of the WSDL file, we modelled twoAtomicProcesses: one with a single input
(P1), just like before, and one with four parameters (P2) needed when a Sesame reposi-
tory is used as the data source. With this model we excluded any grounding problem, but
new issues emerged.

The first issue relates to whether the distribution of these two Processes should be
within one or twoServiceModelinstances. Previously we decided to model a single ser-
vice. A service can have at most oneServiceModel(maxCardinality(describedBy)=1).
Therefore, both our processes have to be part of a singleServiceModel. However, the
ServiceModelcan only accommodate a singleProcess(of typeAtomic, Simpleor Com-
posite) because theprocess:has_process property has an exact cardinality of 1.
This requires the combination of the two atomic processes into a composite one. The
process:Choice control construct is closest to our needs: it expresses that only one
process can be chosen for execution. We modelled a composite process(CP) as aChoice
between the two atomic processes and included it in a singleServiceModelentity.

9http://www.cs.vu.nl/ ∼marta/services/sia/Sia2Service.daml

http://www.cs.vu.nl/~marta/services/sia/Sia2Service.daml

48 Improving DAML-S

The second issue relates to theProfile. Keeping theProfileas in the previous example
is technically correct: we can link the input and the output of the Profile to the IO’s of the
Process P1, while the parameters ofP2are not referenced from theProfile. However, this
means that when advertised, the service does not expose its ability to read data directly
from Sesame. Adding the other four parameters to the profile is not a solution either
because we cannot specify how these parameters relate. This would be misleading at
matchmaking. We decided to create twoProfile instances:Pr1 generically describes the
IO’s and maps toP1, while Pr2 reflects the parameters ofP2. The service has three
groundings, two for the genericProcess P1and one for the SesameProcess P2.

* Service SIA2:

* Profile:Pr1 (hasProc=P1)(I(RdfFile),O(RdfFile))

* Profile:Pr2 (hasProc=P2)(I(server),I(url),I(psw),
I(ln),O(RdfFile))

* ProcessModel:
CompositeProcess: CP:Choice
{ AtomicProcess:P1(I(RdfFile),O(RdfFile))

AtomicProcess:P2(I(server),I(url),I(psw),
I(ln),O(RdfFile))}

* WSDLGrounding:
WsdlAtomicProcessGrounding: Gr1 (P1->op1)
WsdlAtomicProcessGrounding: Gr2 (P1->op2)
WsdlAtomicProcessGrounding: Gr3 (P2->op3)

* WSDL: same as SIA1

This design was based on the constraints imposed by the DAML-S model. First, there
should be a one-to-one correspondence between the IO(PE)’s of all modelling levels -
Profile, Process, Grounding- even if directly not imposed but for the sake of consistency.
Second, what defines a service is not its effect but its signature. Therefore our approach
for SIA1 (andP1 for SIA2) was conceptually inconsistent with the DAML-S view: we
should provide a different Profile for each of the different ways to access the service.
These Profiles provide the meaning of the IOPE’s.

With this new view of what it means to define a service we considered another model
based on the observation that our service is a combination of four processes: a translator
process and three different data acquisition processes.

4.4.3 Composite Process Approach in SIA3

We modelled theSIA310 as having a complexProcessModel. We consider that the ser-
vice offers threeCompositeProcesses(CP1, CP2andCP3) combined in a globalCom-
positeProcess(CP). Each of these processes is a sequence of aDataReader(DR) and
the Translator (T1) process itself. The service has threeProfiles (Pr1, Pr2, Pr3) each
describing one of the three composite processes. The same WSDL file can be used.

Service SIA3:

* Profile:Pr1 (hasProc=CP1)(I(url),O(RdfFile))

* Profile:Pr2 (hasProc=CP2)(I(RdfStream),O(RdfFile))

* Profile:Pr3 (hasProc=CP3)(I(server),I(url),I(psw),
I(ln),O(RdfFile))

* ProcessModel
CompositeProcess: CP:Choice

10http://www.cs.vu.nl/ ∼marta/services/sia/Sia3Service.daml

http://www.cs.vu.nl/~marta/services/sia/Sia3Service.daml

4.4. Modelling a Service with Multiple Interfaces - SIA 49

{
CompositeProcess:CP1: Sequence

{
AtomicProcess:DR1(I(url),O(RdfFile))
AtomicProcess:T1(I(RdfFile),O(RdfFile))}

CompositeProcess:CP2: Sequence
{

AtomicProcess:DR2(I(RdfStream),O(RdfFile))
AtomicProcess:T1(I(RdfFile),O(RdfFile))}

CompositeProcess:CP3: Sequence
{

AtomicProcess:DR3(I(server),I(url),I(psw),
I(ln),O(RdfFile))

AtomicProcess:T1(I(RdfFile),O(RdfFile))}
}

* WSDLGrounding:
WsdlAtomicProcessGrounding: Gr1 (CP1->op1) !!!
WsdlAtomicProcessGrounding: Gr2 (CP2->op2) !!!
WsdlAtomicProcessGrounding: Gr3 (CP3->op3) !!!

* WSDL: same as SIA1

We encountered a new grounding problem. Conceptually each composite process
corresponds to a WSDL operation: the inputs of theDataReaderare the same as the
inputs of the WSDL operation, and the output of theTranslatorcorresponds to the output
of the WSDL operation. However, the first assumption of the existing mapping states
that “a single atomic process corresponds to a single WSDL operation”. Therefore we
cannot perform the mapping of a composite process to a WSDL operation. The DAML-S
coalition acknowledges that this could be a possible limitation, but they are skeptic about
“ the importance of relaxing this assumption” (DAML Services Coalition, 2002). This
example shows that the assumption prohibits modelling of a complex internal structure
if it is not directly reflected in the Web interface of the service. We see this as a serious
limitation to conceptual modelling.

Alternative solution. Members of the DAML-S coalition indicated an alternative so-
lution to the issue of mapping composite processes to WSDL operations. This mapping
can be done by using theSimpleProcessconcept which mediates between aCompos-
iteProcessto anAtomicProcess. More precisely, given aCompositeProcess, it has to be
correlated with aSimpleProcessinstance using thecollapsesToproperty. Then, theSim-
pleProcessinstance is linked via therealizedByproperty to anAtomicProcesswhich can
be grounded to the corresponding WSDL operation. Unfortunately, the existing material
about DAML-S at the time of our investigations did not contain any guidelines (or ex-
planations) that would reveal the role of theSimpleProcessconstruct for this particular
problem.

4.4.4 Final Model in SIA4

Based on all these experiences and aware of the limitations of DAML-S, our final model
is reflected inSIA411. We model a single service with three different profiles (Pr1, Pr2,
Pr3) each describing one of the three different functionalities of the service. The service
has a singleProcessModelcontaining a composite process (CP). This indicates that the
service can perform one of three possible atomic processes (P1, P2, P3). We map each

11http://www.cs.vu.nl/ ∼marta/services/sia/Sia4Service.daml

http://www.cs.vu.nl/~marta/services/sia/Sia4Service.daml

50 Improving DAML-S

of these atomic processes to one WSDL operation. This is essentially the same as SIA3,
however we must give up the conceptual complex internal model of processes so that we
are able to map them to WSDL operations. This description is also similar to SIA2 but
reflects that we are dealing with three different signatures, not just two.

Service SIA4:

* Profile:Pr1 (hasProc=P1)(I(url),O(RdfFile))

* Profile:Pr2 (hasProc=P2)(I(RdfStream),O(RdfFile))

* Profile:Pr3 (hasProc=P3)(I(server),I(url),I(psw),
I(ln),O(RdfFile))

* ProcessModel:
CompositeProcess: CP:Choice
{
AtomicProcess:P1(I(RdfStream),O(RdfFile))}
AtomicProcess:P2(I(RdfFile),O(RdfFile))}
AtomicProcess:P3(I(server),I(url),I(psw),

I(ln),O(RdfFile))}
}

* WSDLGrounding:
WsdlAtomicProcessGrounding: Gr1 (P1->op1)
WsdlAtomicProcessGrounding: Gr2 (P2->op2)
WsdlAtomicProcessGrounding: Gr3 (P3->op3)

* WSDL: same as SIA1

Concluding Section 4.4, we are not completely satisfied with the final model as we are
unable to model theP1, P2andP3processes as composite processes which we feel better
reflects the structure of the service. Also, we are concerned with the amount of effort
involved in providing (and maintaining) this rather large set of descriptions. While at the
Servicesuperclass level we only have one definition, which is appropriate conceptually,
this document is the smallest of all. The amount of repetition that exists in the three
Profile and Grounding documents is considerable. Of course, cut and pasting will reduce
the initial effort and defining concepts in one document and pointing to them in the other
two can reduce maintenance overheads. However, the verbosity of this approach seems
somewhat excessive. Our greatest concern with this final compromise is that we are
unsure whether this model would be consistent with the model developed by another team
to represent this same service. We feel that if semantics are to be added in a meaningful
and useful way, greater direction and precision should be provided by the ontology so
that this uncertainty is minimal.

4.5 Modelling a Complex Service - Sesame

The most complex service used by the SW@VU project is Sesame. This service presents
modelling issues which are not addressed yet in any research paper but which are likely
to surface when modelling services that expose the functionality of Semantic Web tools.

DAML-S was used to describe services in a variety of application domains. The first
described services were fictitious (e.g., the examples offered on the DAML-S site), just
like the services used for demonstrating solutions for complex tasks such as composi-
tion or matchmaking ((Sheshagiri et al., 2003), (Laukkanen and Helin, 2003), (Lei and
Horrocks, 2003)). However, recently different communities have started to experiment
with describing their own real-life services, such as the merging of agent technology
with DAML-S ((Gibbins et al., 2003), (Richards et al., 2003)). Important developments

4.5. Modelling a Complex Service - Sesame 51

are reported in the field of bioinformatics as well (Wroe et al., 2003). Also, wishing to
describe mathematical services, (Barbera-Medina et al., 2003) concludes that DAML-S
offers a good base. Last but not least, e-commerce services are described: a currency
converter and a description of Amazon12. Surprisingly however, no Semantic Web tools
were described semantically even if several Semantic Web services exist. Such are on-
tology storage facilities (Sesame), validators13 or annotation tools14.

We address this lack by using the entire DAML-S ontology and WSDL to describe
a typical Semantic Web tool, Sesame15. We found that Sesame exhibits a set of char-
acteristics which were not previously discussed for any particular group of services and
therefore made its modelling non-trivial. First, it has a modular architecture composed
of independent components which can be used in arbitrary combinations to fulfill certain
tasks. In contrast, Web services described to-date, even if modular, have a well-defined
work-flow model and their components are not usable stand-alone. Second, it uses com-
plex data types requiring a shift from the current practice of perceiving inputs and outputs
as atomic values. Third, there are several constraints between itsInput/Outputparame-
ters.

Naturally, the question arises:Is DAML-S expressive enough to model these charac-
teristics?This part of the chapter attempts to answer this question since it is likely that
such characteristics exist for other (SW) tools as well. Therefore the problems that we
encountered are likely to be typical of the problems other people will encounter with pub-
lishing their tools as a Web service. Thus we provide our solutions and recommendations
in terms of usage guidelines and extensions to DAML-S.

4.5.1 Description

Sesame is an RDF(S) repository and query engine. As such it can provide valuable sup-
port for ontology-based applications. It can be used either as a part of an application or
it can be accessed via a web-interface. Currently both HTTP and SOAP communication
protocols are available. Sesame’s HTTP interface16 makes available six different func-
tionalities at six different URLs. We shortly present these functionalities including in
brackets the URL extension where they are published.17

A Sesame server contains a set of password-protected repositories. So called public
repositories are accessible without any login information. Through the server’s HTTP in-
terface one can request a list of all repositories which are available for a specified login,
including the public ones (listRepositories). As a storage facility, Sesame offers function-
ality to upload data and to interact with it. The data upload functionality adds data with
a specified URL or sent as a string (addData). The content of a repository can be deleted
completely (clearRepository). Further, deletion at the statement level is also supported
(removeStatements). The user can retrieve the whole content of the repository (extrac-
tRDF) or alternatively only the schema information, only the instance information or
both. A more refined data extraction method, the query method (performRQLQueryand

12http://www.daml.org/services/ .
13DAML Validator athttp://www.daml.org/validator/ .
14Annotea -http://annotest.w3.org/annotations .
15The description is available athttp://www.cs.vu.nl/ ∼marta/services/sesame/owl/ .
16See detailed description athttp://www.openrdf.org/doc/sesame/users/ch08.html .
17A base URL of the form “http://HOSTNAME/SESAMEDIR/servlets” proceeds each extension - capital-

ized words depend on the server installation.

http://www.daml.org/services/
http://www.daml.org/validator/
http://annotest.w3.org/annotations
http://www.cs.vu.nl/~marta/services/sesame/owl/
http://www.openrdf.org/doc/sesame/users/ch08.html

52 Improving DAML-S

performRDQLQuery), transforms Sesame into a query engine. There is no predefined
way in which these functionalities should be used. In fact, they are highly self-contained
and can be used stand-alone rather than in combination with other functionalities.

4.5.2 Modelling Requirements

We expect that our service descriptions will be used by intelligent agents which will
reason with the provided semantic data. Also, for operational level integration all needed
technical information must be properly captured. This requirement is fulfilled by DAML-
S which allows both conceptual and syntactic level specifications (through WSDL).

At the conceptual level thesemantics of the offered functionalityhas to be specified.
There are multiple ways to do this. First, one can specify a service bydescribing its
parameters. This issue is treated throughout this part of the chapter but mostly in section
4.5.4. Second, the meaning of a service depends on its relation to other services. It is
desirable to describe how these components relate to each other so that an intelligent ser-
vice could determine usage patterns for fulfilling certain tasks. One dependency between
services is that ofcomposition, when a certain service is composed out of multiple other
services. Since this is the case of Sesame we investigate this issue in section 4.5.3.

Another issue islinking between the semantic and syntactic descriptionsof a ser-
vice. It is desirable that a single conceptual description can be mapped to descriptions
of different technical implementations of the same service. In Sesame’s case, it should
be possible to ground its semantic description to the syntactic descriptions of all its dif-
ferent interfaces (HTTP, SOAP, RMI). We only experimented with linking to a WSDL
description of an HTTP interface, however, we encountered problems as those discussed
in Section 4.4.1. Still related to grounding, technical descriptions used in combination
with semantic ones should undergo minor changes so that they are still usable by tools
which do not require semantic data. More on this in Section 4.5.4.

4.5.3 Specifying Service Semantics

Splitting up Sesame. In order to satisfy the various needs of service providers, DAML-
S does not impose a particular modelling style leaving a gap between conceptual consid-
erations and the actual modelling. This happens with the very notion of service. Concep-
tually, they define Web services as“Web sites that [...] allow one to effect some action
or change in the world”18 (DAML Services Coalition, 2002). Further they differentiate
between simple and complex services. A simple service invokes a single Web-accessible
program and there is no interaction with the user during its execution (e.g., request-
response services). A complex service is composed of multiple simple services.

In the light of these definitions Sesame and each of its functionalities are Web ser-
vices, where the functionalities are simple services and Sesame is a complex service.
Deciding on the actual modelling was not so trivial. We present two of a number of
alternatives we tried, underlining their benefits and disadvantages.

1. First modelling alternative. We first adopted the modelling style used in the
existing DAML-S examples (see a schematic representation in Figure 4.3). Accordingly,

18Note that this definition of a Web service is broader than that given by the Web services community which
considers a Web service a Web accessible program.

4.5. Modelling a Complex Service - Sesame 53

we created a singleServiceinstance,Sesame. The component functionalities were mod-
elled asAtomicProcesses (P1, ...P6) within the ProcessModel (P). Because, there is no
fixed workflow between the components of Sesame, i.e., the six functionalities can be
used in arbitrary ways to solve tasks, the workflow model that was closest to our needs
wasprocess:Choice. This expresses little about the relations between the components
and thus its semantic value is weak. We tried to compensate this at theProfile (Pr) level
where we associated multipleProfile instances with the service, one for each functional-
ity (Pr1, ...Pr6)and one for the global functionality of Sesame (P as anOntologyStore).
Finally, theGrounding (G)of Sesame contains sixAtomicProcessGroundingentities(g1,
..g6), one for each internal process and its corresponding WSDL operation(o1, ...o6).

Sesame

Pr, Pr1, Pr2, …,Pr6

P:{P1, P2, …, P6}

G:{g1, g2, …, g6}

Port::{o1, o2, …, o6}

Figure 4.3: Traditional service modelling for Sesame.

This approach has the following limitations. First, several of the simple services of-
fered alternative interfaces and implementations. Because only theServiceconcept can
have different groundings (and not atomic processes), a different implementation of an
atomic service results in a different grounding for the whole service. Therefore, we face
a combinatorial explosion of groundings for the general service whenever a component
offers a new implementation. Second, at theProfile level, there is no indication of the re-
lation between the seven services. Third, even if all services are visible at matchmaking
time (since theirProfile is explicitly mentioned), one needs to interpret the full descrip-
tion of the complex service when using just a simple service.

Note that this style of description works fine for Web services composed of simple
services which (1) do not have meaning outside the service and (2) are used according to
a fixed workflow. In such cases a single Profile suffices to describe the global task that
their execution can achieve. There is no need to advertise all of them since they cannot
be used stand-alone anyway. However, none of these assumptions apply to Sesame: its
functionalities can be used in any combination and also just alone.

2. Second modelling alternative.Due to these considerations we decided to model
each functionality as a separateService (in services S1 to S6), as represented in Figure
4.4. Two of the limitations of the previous model are solved: (1) the overhead of declar-
ing a new implementation of a simple service is reduced to declaring a single atomic
grounding and (2) when using a service only its own description needs to be interpreted.
However, the issue of expressing how these services inter-relate is still open. Optimally
we would like to express that sets of these services can be used upon a certain Sesame
server. Depending on the exposed services, different Sesame servers can have different
types: some can offer only storage functionality (OntologyStore - Sesame2), some offer

54 Improving DAML-S

S1

Pr1

P:{P1}

G:{g1}

Port::{o1, o2, …, o6}

S6

Pr6

P:{P6}

G:{g6}

Sesame1

Pr

Sesame2

Pr

…

Figure 4.4: Proposed modelling for Sesame.

querying facilities (QueryEngine), some offer both (OntologyStore and QueryEngine -
Sesame1). We want to express composition at theProfile rather than theProcesslevel.
We implemented this by building a domain ontology19 in which we enrich some of the
DAML-S concepts. We relied of the assumptions that a widely used domain ontology (1)
should reflect terms accepted by a large community while (2) being easy to extend with
new knowledge and (3) straightforward to integrate in the service descriptions.

In our domain ontology we make a conceptual difference between tools and their
functionalities and define tools in terms of the functionalities that they provide. In
terms of modelling this involves two inter-related constructions. First, we specialize the
DAML-S profile:Profile into SWToolandFunctionality(see Figure 4.5). The subclasses
of the first concept reflect the main tool categories described by a thorough survey of
existing Semantic Web tools (Gomez-Perez, 2002). The second concept is the superclass
for all functionalities. For now, we declared the functionality types relevant for Sesame
and grouped them under more generic concepts. For example, we considerRetrieveOn-
tologyandAskQueryas methods for data retrieval. Their superclass,RetrieveData, can
be extended with other methods specific to other tools which fulfill the same function.

Second, we declared the new property, (hasFunctionality), which allows us to specify
the kind of functionalities that a certain tool offers (depicted as part of the DomainOntol-
ogy in Figure 4.6). This construction allows us to defineSWToolsby imposing constraints
on the type of functionalities they have. For example, anOntologyStoremight allow a
functionality of typeStoreDataandmustoffer aRetrieveOntologyfunctionality. Also, a
QueryEnginemust provide anAskQueryfunctionality. Further, the ontology contains a
set of terms needed to describe Sesame, such asRepository, User, Password.

We fulfilled the requirements for a widely used domain ontology. First, we used
concepts from the largest survey about Semantic Web tools within the SW community
and extended the concepts of DAML-S, which is growing into a standard. Second, our
model is easy to extend: new functionality types can be added and new tool types can be
defined using existing or newly added functionality. The third issue, that of easy use for

19http://www.cs.vu.nl/ ∼marta/services/swTools.owl

http://www.cs.vu.nl/~marta/services/swTools.owl

4.5. Modelling a Complex Service - Sesame 55

DataSource

Format

Password

Damls:Profile

Functionality

RemoveData

RemoveOntology

RemoveStatement
RetrieveData

AskQuery

RetrieveInstances

RetrieveOntology

StoreData

SWTool

OntologyMerge

OntologyStore

QueryEngine

Reasoner
Repository

User

Figure 4.5: The domain ontology.

service description is demonstrated next.

Using Domain Knowledge in DAML-S descriptions. Domain concepts are used for
several reasons in a DAML-S description. First, they express the meaning of the of-
fered functionality at theProfile level. This section is devoted to this first issue. Second,
domain knowledge can be used to describe the IOPE’s both at theProcessand thePro-
file level. Finally, during the grounding process, WSDL descriptions are enriched with
domain knowledge (as shown in Section 4.5.4).

One indicates the overall functionality of a service by declaring itsProfile as being
of a type documented in the domain ontology. As discussed previously, when modelling
tools that offer complex functionalities we model both the tools and their functionalities
as services. We indicate their type of being a tool or just a functionality by using appro-
priate types for their profiles. Figure 4.6 demonstrates this process.Sesame1is aService
instance and itsProfile, Sesame1Profis of the typeOntologyStore(a kind ofSWToolpro-
file). Similarly, each individual functionality is declared as a service (according to our
modelling decision). For example, for theAddDatafunctionality, we declared aService
instance,S1AddData, and associated with it aProfile instance of typeStoreData(which
is a kind ofFunctionalityprofile).

By declaring Sesame’sProfileof typeOntologyStorewe inherit thehasFunctionality
property defined for anySWTool. At the instance level, we use this property to associate
Sesame1Profwith S1Prof. This indicates that the functionality offered by theSesame1
service relies on the functionality of theS1AddDataservice.

It is easy to define different Sesame instances with different combinations of these
functionalities. This is useful in practical scenarios when different user groups can access
different functionality. For example, a company which stores its data in Sesame may
wish to make it available both for its customers and employees. Customers are only

56 Improving DAML-S

Service Profile

SWTool Functionality

OntologyStore StoreData

Sesame1

S1AddData

Sesame1Prof

S1Prof

presents

presents

hasFunctionality

hasFunctionality

presents

property

subClassOf

instanceOf

D
A

M
L

-S
D

o
m

a
in

O
n

to
lo

g
y

In
s
ta

n
c
e
s

Figure 4.6: Use of domain knowledge in theProfile.

allowed to read the stored data. Therefore, that particular service instance of Sesame
only advertises a data reading capability. On the contrary, employees can both add and
read data, therefore their service instance points to both functionalities.

We managed to express composition (interdependency) at theProfile rather than just
at theProcesslevel, as originally possible with DAML-S. At matchmaking time, if some-
one wants to use Sesame he gets a list of all needed service profiles and can discover the
individual services associated to those profiles.

4.5.4 Input/Output Specification

We have previously been concerned about the service as a whole. We continue with
details about how the parameters of the service can be specified. The first part of this
section proposes a more flexible modelling of input parameters so that inputs depending
on a condition can be specified as well. In the second part we propose an alternative to
complex data type specification.

Conditional inputs. DAML-S does not cover cases when inputs depend on a certain
condition. Currently one can only indicate whether an input is mandatory or optional by
relying on the DAML+OIL cardinality restriction mechanism. For each mandatory input
a cardinality restriction must enforce its existence. However, we encountered situations
when an input is only required in combination with another input. For example, when
specifying the log-in information, apasswordis only mandatory when theuserparameter
is supplied. Further, in case of theaddDataservice if the actual data is supplied, rather
than aURL, then abaseURLmust be specified.

Solution. A solution that is the most consistent with the current version of DAML-
S is to extend theProcessontology to support conditional inputs in the same way that
outputs and effects may be conditional (see Figure 4.7). Following the general template

4.5. Modelling a Complex Service - Sesame 57

Process

Thing

Process

Thing

ConditionalInput

Condition

input input

ciConditionciInput

Figure 4.7: Current and proposed modelling of inputs.

of defining conditional elements, we propose defining theConditionalInputclass which
simply bundles aConditionand an input, using two properties: the condition of the con-
ditional input (ciCondition) and the input of the conditional input (ciInput). A conditional
input is an input that only occurs when a condition is true.

This modelling allows specifying a wider range of inputs than currently possible.
First, inputs depending on factors external to the process can be described. For example,
one can specify that customers from outside the USA do not need to provide the zipcode
input. In this case the customers geographic location conditions whether the zipcode
input is needed or not. Second, we can capture situations exemplified before where
an input is conditioned by the existence of another input, or generally a condition that
involves other inputs. Third, we propose an alternative way to specify mandatory inputs
by conditional inputs with a condition that is always “True”. Finally, optional inputs can
be modelled asUnconditionalInputs, i.e., inputs that do not depend on any condition.
This list is not complete, however, we think that these cases are likely to appear in other
tools (and services) as well. Note that we did not deal with how conditions should be
specified. In fact, this is an ongoing research topic for the whole community.

Complex data types: XML Schema or DAML+OIL? To support automatic discov-
ery and operational integration of Web services, their markup should provide information
about (1) the semantics of their methods and parameters as well as (2) their syntactic sig-
nature (e.g., method names, data format of parameters). The issue of how one can best
specify complex data types (both at a syntactic and semantic level) has a major impor-
tance for Sesame where four methods provide complex output data types. As a concrete
example, consider the simplest functionality of Sesame:requestRepository. It’s output
conforms to the DTD specified below.

<! ELEMENT repositorylist (repository) * >
<! ELEMENT repository (title)>
<! ELEMENT title (# PCDATA)>
<! ATTLIST repository

id ID #REQUIRED
readable (true | false) # REQUIRED
writable (true | false) # REQUIRED>

58 Improving DAML-S

Such complex data formats are defined in the “types” section of a WSDL document.
For maximum platform independence XML Schema (XSD) is used to specify the format
of complex data types. The syntactic information provided by XSD allows other tools to
easily parse any output that conforms to this DTD, therefore allowing an easy integration
between Web services. However, this information has no semantics.

The DAML-S solution to this is to replace the syntactic XSD definitions with seman-
tic definitions written in DAML+OIL, since WSDL allows using any XML-based type
definition language in its “types” section. The claim is that this would use DAML+OIL’s
rich data typing feature20 (Ankolekar et al., 2002a).

We felt that this recommendation had limitations when applied to the complex types
in Sesame. First, we found it difficult to express the complex syntax of the data type
solely with DAML+OIL elements. We even considered using an OWL-based type defi-
nition as it provides more advanced ways for data typing than its ancestor. Even so we
did not achieve our goal. This is understandable since DAML+OIL (and OWL) is an
ontology language and as such it delegates the data type representation to XSD.

Second, a WSDL document using purely DAML+OIL based data types would be
useless for those users of the service which do not understand DAML+OIL. Ideally, an
existing WSDL description should undergo minor changes when enabled for use with
semantic technology to ensure its backward compatibility with traditional applications.
We expect that many tools would use the XSD definitions of Sesame’s WSDL description
and only few would understand DAML+OIL. Therefore, we want to extend XSD types
rather than to replace them.

Third, for some applications, not all parts of a complex data type were interesting
semantically. For example, the syntax of the previous output is very complex, but se-
mantically we are not interested in all its parts. We want to specify that objects of type
Repositoryare returned but we do not want to specify further details.

Solution. With these considerations in mind, we used an alternative for complex
type definition. We used XML Schema to specify the syntax of the output, just like
for a traditional WSDL description. To add semantics to this type we augmented its
components with references to corresponding DAML+OIL concepts. Thexsd:annotation
tag has exactly this function. We wrote the following XSD definition and augmented it
with concepts defined in the domain ontology.

<xsd:element name ="repositorylist">
<xsd:complexType >

<xsd:element name ="repository">
<xsd:annotation >

<xsd:documentation >do:Repository </ xsd:documentation >
</ xsd:annotation >
<xsd:complexType >

<xsd:element name ="title" type ="xsd:string"/>
<xsd:attribute name ="id" type ="xsd:string" use ="required"/>
<xsd:attribute name ="readable" type ="xsd:boolean" use ="required"/>
<xsd:attribute name ="writeable" type ="xsd:boolean" use ="required"/>

</ xsd:complexType >
</ xsd:element >

</ xsd:complexType >
</ xsd:element >

20The issue of converting between XML messages and an ontology have been addressed by WSMO/IRS-III
by thelifting andloweringmechanisms.

4.6. Conclusions 59

This method satisfies all of our requirements. Using XML Schema to define complex
types is straightforward since the language was designed for this purpose. We can easily
add semantics to any parts of the description in such a way that it remains usable for
non-semantic based applications as well.

4.6 Conclusions

Based on our experiences when describing these three services we distilled some general
observations about DAML-S.

Positive Aspects of DAML-S.The strength of DAML-S is that it goes beyond syn-
tactic description of a service by providing a semantic description. Semantics allow rea-
soning about a service and move us towards the ultimate goal of dynamic service discov-
ery and usage. The DAML-S upper ontologies provide semantics for high level concepts
concerning Web services. Using these concepts and a set of domain relevant concepts
offered by adomain ontology, meaningful descriptions of services can be achieved. This
is particularly valuable for matchmaking where the requestor may use alternative terms.
The domain ontology can use theSameClassAsrelation to identify synonyms and the
SubClassOfrelation to identify hypernyms and hyponyms. This supports matchmaking
where different levels of abstraction are used between the requestor and provider. The
other key strength of DAML-S is that it links to an industry standard, namely WSDL. In
this way, it fulfills its role as a link between the Semantic Web community and industry.

Negative Aspects of DAML-S.Besides the above mentioned positive aspects of
DAML-S we also encountered a set of shortcomings.

A) Imprecise conceptual model. While it is commendable that DAML-S seeks to
provide flexibility and thus has not fully defined a number of its concepts, this flexibility
comes at the expense of clarity. The result is that DAML-S has an imprecisely underlying
conceptual model. We base this statement on the following facts:

Different models exist within DAML-S. The three parts of DAML-S employ different
metaphors to describe services. At the Profile level a service has four types of
parameters: IOPEs. At the Process level IOs and PEs are treated conceptually dif-
ferently as they emerge from two different views of a service (see Section 4.3). The
conceptual gap is even wider when a DAML-S model is aligned to a WSDL model
which defines services as collections of ports (see Section 4.4). These alternative
conceptual models make specification of services difficult and mapping between
models almost impossible. Even within DAML-S the different models can lead to
inconsistencies in the specification (see Section 4.3).

The mappings between parts of DAML-S are unclear. First, the mapping between the
Profile and Process lead to possible inconsistencies in the final service description
(Sections 4.3). Second, the mapping to WSDL limits the expressiveness of DAML-
S (Section 4.4). Just by modelling a simple service we conflicted with two out of
the three mapping rules. This forced us to revise our models so that a grounding
was possible at the expense of giving up polymorphism (SIA1) or an accurate
specification of a complex internal structure (SIA3).

No correspondence to software engineering (SE) concepts is established.Many of the
intended users of DAML-S are software engineers. We consider that reference to

60 Improving DAML-S

and support for SE concepts, perhaps in the form of concept mappings, would
ease the understanding of DAML-S. While WSDL intuitively models different
interfaces as PortTypes and allows grouping operations in ports (as the methods
of an interface), it seems that DAML-S only considers the very simple function
metaphor (methods). More complex concepts such as polymorphism or re-use are
not supported. We think that a SE model could both disambiguate some of the
concepts and give a shared framework for DAML-S and WSDL.

The imprecise conceptual model reduces the modelling power of DAML-S:

Multiple modelling possibilities exist.The complexity of DAML-S modelling increases
with the complexity of the modelled service. Because there is no clear view of
what services are, one can produce a variety of models (as we demonstrated for
two of our services, SIA in Section 4.4 and Sesame in Section 4.5). Note that
the nature of ontology based modelling is also partly the cause of having multiple
modelling possibilities.

Ad-hoc polymorphism cannot be modelled.Ad-hoc polymorphism is not just a term used
in software engineering, but a mechanism equally valid in an e-commerce scenario.
For example, any e-commerce site would optimally allow multiple ways of pay-
ing, e.g., by credit card or by bank transfer. Basically, the same effect would be
achieved (i.e., paying for an item) even if the money would be obtained from differ-
ent sources. From a SE point of view this is only a method so it should be modelled
as a single service. However, several unclarities arise about how to model these
different facets of the same service in DAML-S (see Section 4.4). It is not only
a question to conform to the limitations of the ontology but also to know if our
model is conceptually correct.

B) Difficult to learn. One of our major comments (and worries) is that it was difficult
to get started with writing DAML-S. The previously mentioned lack of conceptual model
played a fair role in this. Other inhibiting factors were:

Limited tool support.At the time of our research there was no tool support for writing
DAML-S markup. When using simple text editors, the task of building complex
descriptions consisting of three interlinked parts become complex, error-prone and
frustrating. This situation is changed nowadays given the plethora of semantic Web
service description editors such as ODE-SWS (Gomez-Perez et al., 2004), or the
OWL-S Editor (Elenius et al., 2005).

Few examples and guidelines are available.The DAML-S site provided two complex
examples. However, these examples were artificially created to fit the ontology
rather then being real-life examples. As a consequence, they ignore situations that
arise in the case of real life services. Further, the lack of examples was augmented
by the lack of guidelines about modelling certain situations.

Knowledge of DAML/WSDL/SOAP is required.The pre-requisites to start writing com-
plete DAML-S descriptions are rather high: one has to know DAML,WSDL and
SOAP. For users who are only partly familiar with these techniques it is a consid-
erable burden to learn all of them in sufficient depth.

4.7. Summary 61

4.7 Summary

In this chapter we investigated the expressiveness and usability of DAML-S by employ-
ing it to model three real life services.

Part A of our conclusions, referring to the imprecise conceptual model of DAML-S
and its modelling limitations, indicate that the ontology has alow expressiveness. The
contribution of this chapter is to point out some concrete limitations of DAML-S and to
provide solutions. In short, these limitations and the corresponding solutions are:

1. The mapping between the Profile and the Process lead to inconsistent descriptions.
As a solution, both DAML-S ontologies were redesigned (Section 4.3);

2. The mapping to WSDL does not permit modelling ad-hoc polymorphism and com-
plex internal structures. The problem was partially addressed with a new grounding
model (Section 4.4).

3. It is not obvious how to model complex services that combine several self-contained
services. We provide our solution, based on the use of domain ontologies, in Sec-
tion 4.5.3.

4. Conditional inputs are not supported by DAML-S. We present a rationale for them
and a possible modelling in Section 4.5.4.

5. Finally, we argue for performing minimal changes to the described WSDL files in
terms of the added semantic information (Section 4.5.4).

Part B of our conclusions indicates that DAML-S has alow usability. Our contribu-
tion to this point is to provide our example marked-up services for the community. Also,
we identify a set of commonly occurring modelling situations, we document them and
offer our modelling solutions (as possible guidelines).

The findings of this chapter were derived while using DAML-S, however, some of the
general lessons that we learned are applicable to other Web service ontologies as well.
First, the modelling situations that we documented should be covered by other ontologies
as well. Second, we believe that it is crucial to apply a new ontology to real life services
in order to assure its expressiveness. In the case of DAML-S, using it to describe only
three real life services lead to discovering a set of noteworthy issues which suggested
important improvements. Finally, usage examples and guidelines, as well as tools, are
important for ensuring the adoption of the ontology.

In the next chapters we continue to analyze DAML-S from the perspective of its
adaptability to other domains and ontological correctness.

Chapter 5

Adapting OWL-S to Generic
Software Entities

After concluding on the expressivity and usability of OWL-S in the previous chapter,
in this chapter we investigate its adaptability to describe other kinds of software entities
than Web services. The motivation to perform this analysis is twofold. First, we wish to
establish whether OWL-S is generic in a way that makes it reusable in similar domains.
This would prove a quality asset since knowledge reuse is one of the goals of ontology
engineering. Second, if OWL-S can be adapted to semantically describe generic software
entities then these entities can be easily exposed as semantically described Web services
thus facilitating the uptake of Semantic Web services technology. To perform our analysis
we use OWL-S as a basis for developing an ontology that would support a certain type
of middleware system, i.e., an application server. We begin by identifying the aspects
of application servers that benefit from semantic technology and than show how OWL-S
was reused for building an ontology to support application servers.

The material presented in this chapter has been published at the First Australian
Workshop on Engineering Service-Oriented Systems (AWESOS)((Sabou et al., 2004)).

5.1 Introduction

As a generic Web service ontology, OWL-S captures knowledge for describing a particu-
lar type of software entities, Web services. Typically, such generic knowledge structures
should be easily adaptable in related domains. Indeed, facilitating knowledge reuse is
one of the goals behind building ontologies. Therefore, one indication of the quality of
OWL-S would be its reuse in other contexts than Web services.

There is also a practical motivation behind reusing OWL-S for describing other types
of software entities and for supporting other tasks than those specific to Web services. We
envision that in a short time many different software entities will be made available as
Web services. For example, components that are now managed by middleware systems
or device controllers. If this entities are described in an ontology that has been derived
from OWL-S then at the time of their exposure as Web services it will be straightforward
to derive their semantic descriptions. This will foster the adoption of Semantic Web

64 Adapting OWL-S to Generic Software Entities

services technology. The benefits of using semantic descriptions can be already explored
in the original setting where the components are used (for example, in this chapter we
show how such semantic descriptions automate several middleware specific tasks).

In this chapter we are interested in the degree to which OWL-S is adaptable in the
context of middleware systems. Generally speaking, middleware systems facilitate multi-
tier application development in distributed information systems. Common middleware
solutions focus on software entities that provide an application programmer’s interface
(API), also calledsoftware modules. Like current Web service technology, middleware
relies on syntactic standards (e.g., IDL (Object Modelling Group, 2002)) for describing
the software modules. However, these syntactic standards have a limited expressivity.

We perform our analysis on the adaptability of OWL-S in the context of a concrete
application server: theApplication Server for the Semantic Web (ASSW)(Oberle et al.,
2004c). Application Serversare component-based products that provide functionality
for security and state maintenance, along with data access and persistence for the de-
velopment of Web applications. Despite the comprehensive functionality of application
servers, realizing a complex distributed system remains all but an easy task. For in-
stance, managing component dependencies, versions, and licenses is a typical problem.
In Microsoft environments, this is often referred to as “DLL Hell”. Developers are also
confronted with an ever-increasing repository of programming libraries for standard tasks
such as IO, networking, database access, or the handling of XML. It would be desirable
to assist the developer in using these resources.

This chapter is structured as follows. In Section 5.2 we provide the motivation from a
middleware perspective for developing an ontology to support frequent middleware tasks.
Then, in Section 5.3 we present such an ontology that was built by adapting OWL-S. We
report on the status of embedding the newly built ontology into a middleware server in
Section 5.4. We present related work in Section 6.2 then conclude in Section 5.6.

5.2 Motivation

In this section we introduce the Application Server for the Semantic Web middleware
(Section 5.2.1) and describe a set of usage scenarios which require semantic descrip-
tions of software modules (Section 5.2.2). These scenarios lead to a set of requirements
(Section 5.2.3) which guided us in developing our ontology as presented in Section 5.3.

5.2.1 Application Server for the Semantic Web

Integration of existing software modules is an important issue for the Semantic Web since
complex applications require more than a single software module. Ideally the developer
of such a system wants to easily combine different — preferably existing — software
modules. So far, however, such integration had to be done ad-hoc, generating a one-off
endeavour, with little possibilities for reuse and future extensibility of individual modules
or the overall system. TheApplication Server for the Semantic Web (ASSW)(Oberle
et al., 2004c) addresses this issue by facilitating reuse of existing modules (e.g., ontology
stores, editors, and inference engines) and, thus, the development and maintenance of
comprehensive Semantic Web applications. ASSW combines means to coordinate the
information flow between modules, to define dependencies, to broadcast events between
different modules and to translate between Semantic Web data formats.

5.2. Motivation 65

The architecture of the application server relies on the Microkernel and component
approach. The Microkernel offers a minimal functionality of managing, i.e., starting,
stopping and initializing components. Existing software modules have to be made de-
ployable1 in order to be managed by the Microkernel. This process adds a wrapper
around a software module and transforms it into aComponent. At run-time, the appli-
cation server may host several components with the same application interface (API). In
order to distinguish between components that are of direct interest to the developer and
components providing functionality for the Application Server itself (e.g., connectors or
the registry), we call the firstFunctional Componentsand the latterSystem Components.

Client software hard-codes the use of a certain API. In order to facilitate the work-
ing with a deployed component, a client software can use so-called surrogates which are
client-side objects that reveal the same API like a particular component and relay com-
munication to them2. Thus, the client is relieved from handling network protocols and
middleware idiosyncrasies. At run-time, the application server allows the client to chose
which component the surrogate should relay communication to.

The Application Server for the Semantic Web is based on the design and development
of existing application servers, applying and augmenting their underlying concepts for
use in the Semantic Web. Even more, we wish to use semantic technology within the
server itself in several scenarios as discussed in the next subsection.

5.2.2 Scenarios

In order to tackle the problems of managing and locating components, we propose to in-
troduce a formal conceptualization of these software related issues. Using this formalism
allows representing common knowledge about the domain, such as the fact that compo-
nent dependencies are transitive. The use of formal descriptions of software modules has
several benefits. Already the development of an ontology is beneficial to gain conceptual
agreement between the Application Server and the developer. For example, the ontology
formalizes relationships between the internal components of the server. Further, a mul-
titude of software tools can leverage the knowledge specified by means of a reasoning
engine. Even more, semantic descriptions of software modules can improve many of the
frequently occurring scenarios within an application server. The scenarios listed below
apply to any application server but we detail them in the ASSW setting.

S1. Implementation details. Libraries often depend on other libraries and a certain archive
can contain several libraries at once. Given this information, a system could assist
the developer in locating all the required libraries. Furthermore, the user might be
notified when two libraries require different versions of a certain third component.
For instance, the various early versions of XML parsers cause a lot of trouble. The
system only runs if the libraries are included in the path in a certain order so that
the class loader picks up the latest version. We envision to reason with this kind of
data in order to make an educated suggestion in these situations.

S2. Component Discovery.At run-time, a client can dynamically decide to which com-
ponent its surrogate should relay communication. For example, an ontology editor

1We use the word deployment as the process of registering, possibly initializing and starting a component
to the Microkernel.

2Similar to stubs in CORBA.

66 Adapting OWL-S to Generic Software Entities

might use a specific ontology store, however, there might be several of them de-
ployed in the Application Server. At this moment information other than function-
ality is important, most prominently certain properties of a component, e.g., if an
RDF store component is capable of transactions. The registry, a system component
and simple ontology store, holds semantic descriptions of all deployed components
and can be queried accordingly.

S3. API Discovery. When programming its application, a developer might want to find
a certain API in order to be able to program against it. Preferably, he will want
to perform this search at a semantic level, i.e., specify high level details of API
functionalities. For example, a developer of client software might need an API
that provides ontologystoringandretrievingfunctionality. As there can be several
related and overlapping APIs, the system should recommend the best fitting one.
To support such semantic search we suggest describing existing functionalities
(i.e., those offered by the methods of the APIs) in terms of the concepts contained
by a common service taxonomy.

S4. Classification of APIs.A developer might want to determine the type of a new API
based on the type of its offered functionality (i.e., its methods). For example, an
API offering ontology storage and inferencing capabilities will be of bothStoreAPI
andInferenceAPItypes.

S5. Publishing Web services.The developer might want to use the functionality hosted
in components as Web services. A Web service connector may publish compo-
nents’ methods correspondingly. Development toolkits usually provide the func-
tionality for creating stubs and skeletons or for automatically generating interface
descriptions. For example, the java2wsdl tool generates WSDL definitions from
java based service implementations. With representation languages like OWL-S,
tool support for these new languages is needed. Whereas WSDL tools can ob-
tain almost all of the required input directly from the source code, more powerful
languages require additional measures. Using the internal semantic description of
APIs, it will be easier to generate their corresponding OWL-S description.

5.2.3 Requirements

The scenarios discussed above lead us to a set of requirements which served as design
principles for the ontology presented in section 5.3.

R1. Module Implementation and Functionality Syntax. The ontology should contain
means to describe the implementation and invocation details of software modules
which will be used to support implementation tasks (scenario S1).

R2. Module Characteristics and Functionality Semantics.The ontology should con-
tain means to give high level descriptions of software modules, e.g. their types
such as ontology stores and reasoners, as well as their characteristics, providers
etc. This description supports component and API discovery (scenarios S2 and
S3).

R3. Reusability and Sharing. Semantic descriptions of software modules should be
reusable. Therefore, easy coupling of syntactic and semantic description should

5.3. Ontology Design 67

be supported. Another aspect of reuse is that the ontology that we design for use
within the application server should incorporate existing efforts (such as standards
and technologies) that are already used by communities.

R4. Domain Independence.The ontology should be reusable over a wider range of
domains (not just in our Semantic Web domain), therefore we should separate
generic and domain specific concepts.

These requirements guided us in designing the ontology we present next.

5.3 Ontology Design

In this section we present the ontology (shown in Figure 5.2) built by adapting OWL-S for
supporting the ASSW application server. We start by providing a comparative overview
of the ASSW ontology and OWL-S in Section 5.3.1. In Section 5.3.2 we present each
sub-ontology in detail and show how each of them fulfills a certain requirement. A
concrete example of a module description showing how all these ontologies are used at
instantiation level is presented in Section 5.4.1.

5.3.1 Overview

The design principles of OWL-S described in Section 2.4.1 underpin our work, as com-
paratively depicted in Figure 5.1. These principles influenced the kinds of sub-ontologies
and their relations. The following discussion gives the rationale of our design decisions.

OWL-SService

Profile Process Grounding

DomainOntology

WSDL

SoftwareModule

OWL-SProfile’ APIDescription IDLGrounding

IDL

Implementation

SemanticWebProfiles SemanticWeb

APIDescriptions

Web services Software modules

Type of

Software Entity

Generality

D
o

m
a
in

G
e
n

e
ri

c

S
e
m

a
n

tic

D
e
s
c
rip

tio
n

s

S
y
n

ta
c
tic

D
e
s
c
rip

tio
n

s

(sub)ontology

uses ontology

Figure 5.1: A comparative overview of OWL-S and the ontology for software modules.

68 Adapting OWL-S to Generic Software Entities

1. Semantic vs. Syntactic descriptions. We adopted the separation between semantic
and syntactic descriptions, therefore complying with requirements R1 and R2. A number
of our ontologies allow semantic description and others are used for syntactic descrip-
tions. A mapping exists between the description of both aspects. However, given the
different types of entities we want to describe, we modified some of the OWL-S ontolo-
gies as follows:

• we kept the OWL-SProfile ontology for specifying semantic information about
the described components. Also, we extended it with a few concepts for describ-
ing the functionality of APIs (and their methods) at the conceptual level. This
was necessary because theProfile ontology’s constructs for specifying functional
descriptions were too shallow. These extensions are grouped in a small ontology
calledAPI Description.

• we did not use theProcessontology because our previous analysis (detailed in
Chapter 4) yielded that Semantic Web tools usually offer a set of simpler function-
alities, but there is no predefined way of invoking them that could be captured in a
certain dataflow. Should the type of described components change, our modularly-
designed ontology can easily be extended with the Process ontology.

• we defined our own language for describing APIs syntactically since WSDL is
designed for specifying network endpoints. For this purpose, we formalized a
subset of IDL (Interface Description Language (Object Modelling Group, 2002))
terms in theIDL ontology.

• as a consequence of the changes above, we could not reuse the existing OWL-S
Grounding, rather we wrote our own grounding ontology (IDLGrounding) which
allows mappings between the conceptual description of the APIs (in theProfile)
and their syntactic specification (IDL).

2. Generic vs. Domain knowledge. We use both generic and domain ontologies in
order to fulfill our desiderata expressed by R4. OWL-S (and WSDL) are at a generic
knowledge level. The same is true for our extensions of OWL-S, as shown in Figure
5.1. For our specific goals we built two domain ontologies in the area of the Semantic
Web. The first one specifies the type of existent Semantic Web software modules at a
coarse level. The second one describes the functionality of Semantic Web specific APIs
at a more fine grained level (i.e., in terms of methods and their parameters). Naturally,
these ontologies can be easily replaced depending on the application domain, for example
bio-informatics.

3. Modularity. Modularity enables easy reuse of specifications and extensibility of the
ontology. An important issue is the size of the reusable parts. For example, because a
Profile instance contains a lot of information, which is often specific such as the contact
information of the providers, it is less likely that this instance will be reused by any other
service description. Therefore a coarser granularity (less information per concept) in-
creases the chance of reusability. We reused this principle by identifying related content,
relating it to a central concept and grouping everything in small ontologies which can be
re-used as sub-ontologies. We describe the process of isolating reusable knowledge in
the following subsection, where we present a short overview of each ontology.

5.3. Ontology Design 69

S
o

ftw
areM

o
d

u
le

G
en

eric

F
o

u
n

d
atio

n
al

D
o

m
ain

S
o

ftw
areM

o
d

u
leP

ro
file

S
o

ftw
areM

o
d

u
leG

ro
u

n
d

in
g

S
o

ftw
areM

o
d

u
leIm

p
lem

en
tatio

n

P
ro

file

S
erv

iceP
aram

eter

A
cto

r

A
P

ID
escrip

tio
n

M
eth

o
d

P
aram

eter

In
p

u
t

O
u

tp
u

t

P
reco

n
d

itio
nE

ffect

T
h

in
g

O
W

L
-S

 P
ro

file
’

A
P

ID
escrip

tio
n

ID
L

G
ro

u
n

d
in

g

ID
L

G
ro

u
n

d
in

g

In
terfaceG

ro
u

n
d

in
g

M
eth

o
d

G
ro

u
n

d
in

g

In
p

u
tG

ro
u

n
d

in
g

O
u

tp
u

tG
ro

u
n

d
in

g

In
terface

O
p

eratio
n

P
aram

eter

T
y

p
e+

v
o

id
O

p
eratio

n
T

y
p

e

C
o
m

p
o

n
en

t

F
u

n
ctio

n
al

C
o

m
p
o
n
en

t

S
y
stem

C
o

m
p

o
n
en

t P
ro

x
y

C
o
m

p
o
n

en
t

C
o

d
eD

etails

L
ib

rary
In

tercep
to

r

ID
L

Im
p

lem
en

ta
tio

n

S
em

a
n

ticW
eb

P
ro

files

O
n

to
lo

g
y

S
to

re

Q
u

ery
E

n
g

in
e

S
em

a
n

ticW
eb

A
P

Id
escrip

tio
n

s

S
to

reA
P

I

Q
u

ery
A

P
I

S
to

reA
n

d
Q

u
ery

A
P

I

Q
u

ery

A
d

d
D

ata

A
d

d
T

rip
le

A
d

d
O

n
to

lo
g

y

(su
b
)o

n
to

lo
g
y

co
n
cep

t

u
ses o

n
to

lo
g

y

su
b

co
n
cep

t

p
ro

p
erty

p
resen

ts
p

resen
ted

B
y

su
p

p
o

rts
su

p
p

o
rted

B
y

im
p

lem
en

ts
im

p
lem

en
ted

B
y

service

P
a

ra
m

eter

co
n

ta
ctIn

fo

n
a

m
e

h
a

sA
P

ID
escrip

tio
n

h
a

sM
eth

o
d

h
a

sP
a

ra
m

eter
h

a
sT

yp
e

h
a

sIn
terfa

ceG
ro

u
n

d
in

g

h
a

sM
eth

o
d

G
ro

u
n

d
in

g

h
a

sIn
p

u
tG

ro
u

n
d

in
g

h
a

sO
u

tp
u

tG
ro

u
n

d
in

g

m
a

p
sA

P
I

m
a

p
sM

eth
o

d

m
a

p
sO

u
tp

u
t

m
a

p
sIn

p
u

t

h
a

sO
p

era
tio

n

retu
rn

s
typ

eS
p

ec

m
a

p
sIn

terfa
ce

m
a

p
sO

p
era

tio
n

m
a

p
sP

a
ra

m
eter

m
a

p
sR

etu
rn

T
yp

e

h
a

sC
o

d
eD

eta
ils

req
u

iresL
ib

ra
ry

d
ep

lo
yed

W
ith

req
u

ires

q
u

eryL
a

n
g

u
a

g
e

rep
resen

ta
tio

n
L

a
n

g
u

a
g

e

d
a

ta
T
yp

es

reifica
tio

n

h
a

sM
eth

o
d

h
a

sM
eth

o
d

S
o
ftw

a
reM

o
d

u
le

h
a

sIn
terfa

ce

in
terfa

ceID

o
p

era
tio

n
ID

p
a

ra
m

eterID

S
trin

g

Figure 5.2: The ASSW ontology.

70 Adapting OWL-S to Generic Software Entities

5.3.2 The sub-ontologies

Besides reusing the design principles underlying OWL-S we were also guided in our
design by the requirements put forward in Section 5.2.3. In this section we briefly de-
scribe each of our sub-ontologies and the relations that exist between them (a graphical
overview of all the ontologies is shown in Figure 5.2). For each ontology that we dis-
cuss we indicate the scenarios (as presented in Section 5.2.2) that it supports as well as
the requirements (stated in Section 5.2.3) that it fulfills. Table 5.1 shows the relations
between our requirements and the sub-ontologies, confirming the major influence that
these requirements had on our design.

Requirement\ R1. Syntax R2. Semantics R3. Reuse R4. Domain
Sub-ontology and Sharing Independence
Software Module X
OWL-S Profile’ X X
API Description X
Implementation X
IDL X X
IDL Grounding X X
Domain Ontologies X

Table 5.1: Dependencies between requirements and sub-ontologies.

Software Module ontology

This ontology is similar to the OWL-SServiceontology and thus responds to our require-
ment R3 of sharing and reuse of existing standards. The ontology, depicted in Figure 5.3,
contains the main concept and the top concept for each type of description, ensuring a
coarse-grained modularity for the whole description. We performed some changes:

• we renamed theServiceconcept toSoftwareModule, as such entities are the fo-
cus of our descriptions. Accordingly we renamed theServiceProfileandService-
Groundingconcepts toSoftwareModuleProfileandSoftwareModuleGrounding.

• we excluded theServiceModelconcept, since, as stated in Section 5.3.1, we are
not interested in the internal working of the modules.

• we added aSoftwareModuleImplementationconcept that groups together imple-
mentation details described in theImplementationontology.

The three concepts that describe aSoftwareModulecan be specified using the corre-
sponding ontologies as described next.

OWL-S Profile’ (extension)

We use the OWL-SProfile ontology to specify the particular characteristics of aSoft-
wareModulesuch as the contact information of the providers and certain parameters. For
example, an ontology store would have a service parameter specifying the representation

5.3. Ontology Design 71

SoftwareModule

SoftwareModuleProfile SoftwareModuleGrounding SoftwareModuleImplementation

OWL-SProfile’ IDLGrounding Implementation

presents
presentedBy supports supportedBy implements

implementedBy

SoftwareModule

GenericOntology

Figure 5.3: TheSoftwareModuleontology.

language used. Therefore, ourProfile describes the component as a whole. Informa-
tion of this type might be used during component discovery at run-time and corresponds
to our requirement R2 of providing generic, high level characteristics of the described
modules. Some examples of such parameters are provided in Section 5.3.2.

Profile

ServiceParameter

Actor

OWL-S Profile’

service-

Parameter

contactInfo

name

SemanticWebProfiles

hasAPIDescription

APIDescription

SoftwareModule

Figure 5.4: TheOWL-SProfile’ontology.

We found that the current functional description specification of OWL-S is focused
on expressing a single functionality, while we want to describe several functionalities of-
fered by a software module, which correspond to (a set of) methods in the API3. Because

3Note that in the previous chapter we encountered the same weakness of the Profile model where we wished
to model that a service relies on different other services.

72 Adapting OWL-S to Generic Software Entities

of that, we added a new property toProfile (see Figure 5.4), namelyhasAPIDescrip-
tion, which ranges over theAPIDescriptionconcept that groups the information used to
describe an API and is separated in a small ontology (APIDescription). We separated
this content in a small ontology because we expect that many modules will be able to
reuse such functionality descriptions (much more than the contact information of the
providers). TheProfile was kept also to support sharing and reuse of existing standards
(requirement R3).

API Description

TheAPI Descriptionontology offers a framework for semantically describing the func-
tionality offered by methods of APIs (e.g.,AddData, RemoveData) and accordingly sev-
eral types of APIs (e.g.,StoreAPI, InferenceAPI). As such, it complements the OWL-S
Profile for our purposes.

The ontology’s central concept, calledAPIDescription, can have multiplehasMethod
properties for instances of typeMethod(see Figure 5.5). Furthermore, each instance of
Methodhas a set of parameters such as inputs, outputs, preconditions and effects. Each
parameter features ahasTypeproperty which points to a concept in a domain ontology.
Types ofMethodsandAPIDescriptionsare specialized in terms of domain concepts. This
kind of information is used to perform the task of discovering available APIs according
to their offered functionality (methods), to classify new APIs (and methods) and to de-
rive OWL-S descriptions for the corresponding Web services (scenarios S3, S4 and S5).
Requirement R2 motivates such semantic functionality descriptions.

APIDescription

Method

Parameter

Input Output Precondition Effect

Thing

APIDescription

hasMethod

hasParameter
hasType

SemanticWebAPIDescriptions

IDLGroundingOWL-SProfile’

Figure 5.5: TheAPIDescriptionontology.

Implementation

The Implementationontology, depicted in Figure 5.6, contains implementation level de-
tails of a module and thus responds to requirement R1. There are two aspects of the

5.3. Ontology Design 73

implementation:

• CodeDetailsdescribe characteristics of the code, such as the class that implements
the code, the required archives or the version of the code. All these aspects are
modelled as properties of theCodeDetailsconcept. Note that these characteristics
are specific for a certain implementation and therefore not reusable. They are used
during automatic deployment of the components (Scenario S1).

• the signature of the interface. The name of the methods and their parameters are
modelled using the ontology presented next (IDL).

Interface

Operation

Parameter

Type+void
OperationType

Component

Functional

Component

System

Component

Proxy

Component

CodeDetails

Library Interceptor

IDL

Implementation

hasOperation

returnstypeSpec

hasCodeDetails

requiresLibrary deployedWith

requires

hasInterface

String

interfaceID

operationID

parameterID

SoftwareModule

IDLGrounding

Figure 5.6: TheImplementationontology.

The main concept,Component(which is a subclass ofSoftwareModuleImplementation)
bundles an instance ofCodeDetailsand an instance ofInterface(the class which de-
scribes the signature of the API).

IDL

We formalized a small subset of the IDL (Interface Description Language (Object Mod-
elling Group, 2002)) specification into an ontology that allows describing signatures of
interfaces. TheInterfaceconcept corresponds to a described interface. It features the
propertyhasOperationwhich points to anOperationinstance. EachOperationcan have
a set of (input) parameters of a certain type. Also eachOperationreturns anOpera-
tionType(which can also be void).Interfaces, OperationsandParametershave identi-
fiers (which correspond to the names by which they are used in the code). This allows us
to specify all the invocation and implementation details needed for automatic invocation

74 Adapting OWL-S to Generic Software Entities

of the methods (see requirement R1) using a widely used industry standard (therefore
complying to R3).

IDL Grounding

The IDL Grounding ontology (see Figure 5.7) provides a mapping between theAPI-
Descriptionand theInterfacedescription. The mapping is straightforward: the concepts
InterfaceGrounding, MethodGrounding, InputGroundingandOutputGroundingmap be-
tween respective concepts from theAPI DescriptionandImplementationsub-ontologies.

IDLGrounding

IDLGrounding

InterfaceGrounding

MethodGrounding

InputGrounding OutputGrounding

hasInterfaceGrounding

hasMethodGrounding

hasInputGrounding hasOutputGrounding

mapsAPI mapsInterface

mapsOperationmapsMethod

SoftwareModule

ImplementationAPIDescription

Figure 5.7: TheIDLGroundingontology.

We acknowledge the possibility of redundancy in our approach (given that both the
IDL and theAPI Descriptionontologies look similar) but easy reuse and flexible coupling
(see R2 and R3) were a higher design goal in this work. Namely, a certain concept
level description can be grounded to many different interfaces that may look technically
different, i.e. there might be other signatures.

Domain Ontologies

We built two domain ontologies that specialize parts of the generic ontology presented
above. By isolating domain knowledge in separate sub-ontologies, we conform to the
OWL-S design principles and implicitly requirement R4 (Domain Independence).

The first otology (SemanticWebProfiles) generically describes Semantic Web soft-
ware modules. We based our ontology on the outcome of an extensive survey (Gomez-
Perez, 2002) in this domain. The survey distinguishes several categories of software
modules (ontology building modules, ontology evaluation modules etc.) and for each
category proposes a set of characteristics. These characteristics are used in the survey as
a framework for comparing the actual modules which are presented.

5.3. Ontology Design 75

SemanticWebProfiles

OntologyStore

QueryEngine

SemanticWebAPIdescriptions

StoreAPI

QueryAPI

StoreAndQueryAPI
Query

AddData

AddTriple AddOntology
queryLanguage

representationLanguage

dataTypes

reification
hasMethod

hasMethod

OWL-SProfile’ APIDescription

Figure 5.8: The domain ontologies.

We transformed this information in a domain ontology as follows. We built a taxon-
omy of categories according to the document. Each category became a subclass ofPro-
file. The characteristics of each category were modelled as sub-properties of the OWL-S
serviceParameter. For example, we created theOntologyStorecategory and added prop-
erties such asqueryLanguage, representationLanguageas suggested by the survey. The
additional properties (e.g.,QueryLanguage) are all specializations ofserviceParameter.
We concluded that it was easy to extend OWL-S Profile (theserviceParameterproperty)
for modelling the information in the survey. Also, this will allow easy addition of extra
knowledge in the future, since the survey only offers a non-exhaustive, reduced set of
characteristics.

The second ontology (SemanticWebAPIDescription) describes Semantic Web spe-
cific functionalities. It contains a set of API and functionality types (methods) which are
generally offered. For example, we declared aStoreAPIconcept, which denotes APIs for
storing engines, and defined it as providing anAddDatamethod (for adding data into the
store) and aQuerymethod (for querying the data in the store). Note that by combining
simple APIs one can create complex ones. For example, aStoreAndQueryAPIwill be
obtained by inheriting methods both from aStoreAPIand aQueryAPI. Further, within a
type of API, specializations can be created by declaring extra methods specializing the
existing ones. The schema of this ontology is provided by theAPI Descriptionontology,
where APIs are of typeAPIDescriptionand their functionalities (such asAddData) are
of typeMethod. We believe that such an ontology will allow performing a flexible search
over the existing APIs. Note that when building these domain ontologies we relied on
the ontology that we built for describing Sesame (see Section 4.5.3).

76 Adapting OWL-S to Generic Software Entities

5.4 Ontology Deployment

The ASSW ontology is incorporated in the application server4. Semantic descriptions
of the registered components are stored in a central repository, called registry. These
descriptions are then used to support a set of application server specific tasks. In this sec-
tion we exemplify an actual description of a software component (in Section 5.4.1) and
explain how semantic descriptions are used within the application server (Section 5.4.2).

5.4.1 An Example Component Description

We exemplify the use of the above described ASSW ontology for describing three on-
tology stores that use RDF(S) as their representation language. For more examples on
describing software modules with this ontology the reader is referred to (Oberle et al.,
2004b). We assume that all ontology stores are deployed to ASSW as functional compo-
nents:

KAON RDF Main Memory is an ontology store that is transient, implementing the
RDF API as used in the Karlsruhe Ontology and Semantic Web Toolsuite (KAON).

KAON RDF Server is an ontology store that implements the same API as above, how-
ever, it applies a database system for actual storage.

Sesameis an ontology store that implements its own API.

For the sake of brevity we only illustrate the description of two methods for each
API (see below). Note that we omit fully qualified classnames to improve the readability.
Also, we provide a complete semantic description only for the first component. For the
other two components we only highlight how they differ from the first one.

KAON RDF API:
void add(Statement statement)
Model find(Resource subject, Resource predicate, RDFNode object)

Sesame API:
int addDataFromUrl(String dataURL, String baseURL)
String[][] evalRqlQuery(String query)

Describing KAON RDF Main Memory. We declareKAONRDFMainMemoryas
a SoftwareModulethat links to three instances (MM Profile, KAONRDFAPIGrounding,
MM Impl) containing different aspects of the description:

<softwareModule:SoftwareModule rdf:ID ="KAONRDFMainMemory">
<damlservice:presents rdf:resource ="#MM_Profile"/>
<damlservice:supports rdf:resource ="#KAONRDFAPIGrounding"/>
<softwareModule:implements rdf:resource ="#MM_Impl"/>

</ softwareModule:softwareModule >

From the profile point of view (MM Profile) KAONRDFMainMemoryis anOntolo-
gyStore, therefore we can describe all the associated properties which we declared in the
Semantic Web Profiles domain ontology. TheProfile also includes contact information
and a pointer to theAPIDescription(RDFAPI) instance.

4The implementation,“KAON SERVER”, is available athttp://kaon.semanticweb.org

http://kaon.semanticweb.org

5.4. Ontology Deployment 77

<swProfiles:OntologyStore rdf:ID ="MM_Profile">
<damlservice:presentedBy rdf:resource ="#KAONRDFMainMemory"/>
<damlprofile:serviceName > KAONOntologyStore </ damlprofile:serviceName >
<swProfiles:platform rdf:resource ="swProfiles#Any"/>
<swProfiles:ontologyLanguage rdf:resource ="swProfiles#RDF"/>
<owlsprofile ’:hasAPIDescription rdf:resource="#RDFAPI"/>

</swProfiles:OntologyStore>

Note that all the above information is specific toKAONRDFMainMemory. However,
theAPIDescription(RDFAPI) instance can be reused by other modules as well. In terms
of our domain ontology theRDFAPI is aStoreAndQueryAPIsince it offers both adding
data (i.e., theadd method) and querying the repository (i.e., thefind method). The de-
scription of the API contains the declaration of the two methods (one of typeAddTriple,
the other of typeQuery) and their parameter, as follows:

<swApis:StoreAndQueryAPI rdf:ID ="RDFAPI">

<apiDescr:hasMethod >
<swApis:AddTriple rdf:ID ="RDFAPI_StoreTriple">

<apiDescr:hasParameter >
<apiDescr:Input rdf:ID ="StatementForStore">

<apiDescr:hasType rdf:resource ="swProfiles#OntologyStatement"/>
</ apiDescr:Input >

</ apiDescr:hasParameter >

<apiDescr:hasParameter >
<apiDescr:Output rdf:ID ="NoOutput">

<apiDescr:hasType rdf:resource ="swProfiles#NoOutput"/>
</ apiDescr:Output >

</ apiDescr:hasParameter >
</ swApis:AddTriple >

</ apiDescr:hasMethod >

<apiDescr:hasMethod >
<swApis:Query rdf:ID ="RDFAPI_Query">
...
</ swApis:Query >

</ apiDescr:hasMethod >

</ swApis:StoreAndQueryAPI >

Furthermore, we declare the technical details of the module (MM Impl).

<impl:FunctionalComponent rdf:ID ="MM_Impl">
<impl:hasCodeDetails >

<impl:CodeDetails rdf:ID ="MM_CodeDetails">
<impl:requiresLibrary rdf:resource ="#someLibraryDecl"/>
...

</ impl:CodeDetails >
</ impl:hasCodeDetails >
<impl:hasInterface rdf:resource ="#KAONRDFInterface"/>

</ impl:FunctionalComponent >

The syntactic description for the API (KAONRDFInterface) is shown below. A
grounding instance (KAONRDFAPIGrounding- not presented here) establishes the cor-
respondence between the conceptualRDFAPI description and theKAONRDFInterface
description of the technical implementation.

<idl:Interface rdf:ID ="KAONRDFInterface">

78 Adapting OWL-S to Generic Software Entities

<idl:interfaceIdentfier >
edu.unika.aifb.rdf.api.model

</ idl:interfaceIdentfier >

<idl:hasOperation >
<idl:Operation rdf:ID ="addOp">

<idl:operationIdentifier >add </ idl:operationIdentifier >
<idl:hasParameter >

<idl:Parameter rdf:ID ="statement">
<idl:parameterIdentifier >statement </ idl:parameterIdentifier >
<idl:typeSpecification >

edu.unika.aifb.rdf.api.model.Statement
</ idl:typeSpecification >

</ idl:Parameter >
</ idl:hasParameter >

<idl:returns >
<idl:OperationType rdf:ID ="response">

<idl:hasType >void </ idl:hasType >
</ idl:OperationType >

</ idl:returns >
</ idl:Operation >

</ idl:hasOperation >

<idl:hasOperation >
<idl:Operation rdf:ID ="queryOp">

...
</ idl:Operation >

</ idl:hasOperation >

</ idl:Interface >

Describing KAON RDF Server. The definition of the KAON RDF Server is very
similar to that of KAON RDF Main Memory since they provide the same API. We pro-
vide the same type of descriptions and we can reuse theRDFAPI (the semantic descrip-
tion of the API), KAONRDFInterface(the syntactic description) andKAONRDFAPI-
Grounding(the grounding between these two aspects). Only theProfile description has
to be modified in order to describe that this server uses database storage.

Describing Sesame.When describing Sesame we cannot reuse any API related de-
scriptions from the previous descriptions. We only present here the semantic description
of Sesame’s functionality (itsAPIDescription). Sesame provides other functionalities
than the previous two modules, i.e.,AddOntologyandQuery.

<swApis:StoreAndQueryAPI rdf:ID ="SesameAPI">
<apiDescr:hasMethod >

<swApis:AddOntology rdf:ID ="SesameAPI_LoadOntology">

<apiDescr:hasParameter >
<apiDescr:Input rdf:ID ="OntologyForLoad">

<apiDescr:hasType rdf:resource ="swProfiles#Ontology"/>
</ apiDescr:Input >

</ apiDescr:hasParameter >

<apiDescr:hasParameter >
<apiDescr:Output rdf:ID ="LoadedStatements">

<apiDescr:hasType rdf:resource ="swProfiles#LoadedStatements"/>

5.5. Related Work 79

</ apiDescr:Output >
</ apiDescr:hasParameter >

</ swApis:AddOntology >
</ apiDescr:hasMethod >

<apiDescr:hasMethod >
<swApis:Query rdf:ID ="SesameAPI_Query">
...
</ swApis:Query >

</ apiDescr:hasMethod >

</ swApis:StoreAndQueryAPI >

5.4.2 Using Component Descriptions

Currently, semantic descriptions support two main scenarios as introduced in Section
5.2.2. First, “implementation details” (scenario S1) such as loading components are
carried out automatically by using (1) the implementation details in each description (ac-
cording to theImplementationontology) and (2) the reasoning capabilities of the server.
For example, the transitive closure of all required libraries by a certain component can be
deduced. This and other uses of the semantic descriptions are presented in (Oberle et al.,
2004a).

Second, “component discovery” (scenario S2) is supported at run-time. Therefore,
the client can (1) query the registry for available components, (2) chose a component
from the returned list (based on its properties) and (3) use that component. For example,
OilEd (Bechhofer et al., 2001), an ontology editor acting as a client, can query for ex-
isting ontology stores or reasoners, and then select and interact with any of the available
components (as described in more detail in (Oberle et al., 2004b)). Note that this situ-
ation is superior to traditional application servers where the relation between different
clients has to be hard-coded.

5.5 Related Work

Classical Software Reuse Systems are comparable to our work in that they also need
to describe software modules appropriately for efficient and precise retrieval. Tech-
niques like the faceted classification (Diaz, 1991) are limited to the representation of
the provider’s features. Analogical software reuse (Massonet and van Lamsweerde,
1997) shares a representation of modules that is based on functionalities achieved by
the software, roles and conditions. Zaremsky and Wing (Zaremski and Wing, 1997) de-
scribe a specification language and matching mechanism for software modules. They
allow for multiple degrees of matching but consider only syntactic information. UPML,
the Unified Problem-solving Method Development Language (Fensel et al., 1999), has
been developed to describe and implement intelligent broker architectures and compo-
nents to facilitate semi-automatic reuse and adaptation. It is a framework for developing
knowledge-intensive reasoning systems based on libraries of generic problem-solving
components that are represented by inputs, outputs, preconditions and effects of tasks.
Note that these efforts either describe very different kinds of components or concentrate
solely on syntactic or semantic descriptions without blending them together.

80 Adapting OWL-S to Generic Software Entities

Another body of related work are adaptations of OWL-S to particular domains. For
example, (Wroe et al., 2003) uses an extension to OWL-S for describing Web services in
the bio-informatics domain. OWL-S is enriched with speech-acts when describing agent
based Web services in (Gibbins et al., 2003). However, none of them actually considers
software description at the API level.

IDL is augmented with concepts specified in Description Logics by (Borgida and
Devanbu, 1999). More specifically they consider adding the following kinds of informa-
tion to an IDL interface: a) data invariants (particularly useful for database-like integrity
constraints, b) procedure pre- and post-conditions, c) object behavior models of dynam-
ics. Thus, in addition to checking for exact matching of the information between client
and server, the formal assertions and Description Logic (DL) reasoning allow them to
perform additional tasks. Among them, (Borgida and Devanbu, 1999) listCompatibility
testing of the specifications, Local consistency checking, More thorough treatment of ex-
ceptionsandVariability in services provided. However, this approach just augments the
syntactic part of an API’s description. It does not deal with semantic information about
a method’s functionality like our approach.

5.6 Summary

In this chapter we investigated the adaptability of OWL-S in the context of a particular
application server which supports development of complex Semantic Web applications.
As a proof of concept we built an ontology that adapts OWL-S to meet the requirements
of the application server. The newly built ontology has already been incorporated in the
server and used for automating implementation tasks and component discovery (scenar-
ios S1 and S2).

Our conclusion is that OWL-S incorporates several valuable design principles that
make it easily adaptable for describing other types of software entities than Web services.
We believe that adaptability is an important features of generic ontologies and it should
characterize other ontologies used for Web service descriptions as well.

Chapter 6

Aligning OWL-S to a
Foundational Ontology

In previous chapters we analyzed the expressivity, usability and adaptability of OWL-
S. In this chapter we analyze OWL-S from an ontological perspective. We identify its
problematic aspects and suggest enhancements through alignment to a foundational on-
tology. Another contribution of our work is the Core Ontology of Services that tries to
fill the conceptual gap between the foundational ontology and OWL-S. This ontology
can be reused to align other Web service description languages as well, thus contributing
to their harmonization.

The material of this chapter has been first published at the AAAI Spring Symposium
entitled the First International Semantic Web Services Symposium (Mika et al., 2004b),
then an extended version was published at the Thirteenth International World Wide Web
Conference, 2004 (Mika et al., 2004a).

6.1 Introduction

Clarity in semantics and a rich formalization of this semantics are important require-
ments for ontologies designed to be deployed in large-scale, open, distributed systems
such as the envisioned Semantic Web. This is due to the fact that ontologies should fa-
cilitate mutual understanding, either for enabling effective cooperation between multiple
artificial agents, or for establishing consensus in a mixed society where artificial agents
cooperate with human beings. Foundational ontologies fulfill those requirements be-
cause they serve as a starting point for building new domain and application ontologies,
provide a reference point for easy and rigorous comparisons among different ontological
approaches and create a framework for analyzing, harmonizing and integrating existing
ontologies and metadata.

Clarity in semantics together with a rich formalization are especially important for
ontologies describing Web services (such as OWL-S) because they enable complex tasks
involving multiple agents. Our contribution to the development of OWL-S is to iden-
tify some of its problematic aspects and to suggest enhancements through alignment to a
foundational ontology. We found that OWL-S suffers conceptual ambiguity, lacks con-

82 Aligning OWL-S to a Foundational Ontology

cise axiomatization, is designed too loosely and offers an overly narrow view on Web
Services.

Through our alignment, we discovered possible enhancements to these problematic
aspects of the ontology. We present these findings for the benefit of the designers and
users of OWL-S. Furthermore, a Core Ontology of Services is developed as a middle
layer which can also be used for aligning other (Web) service description languages.
Lastly, we note that the contribution of our work is not only limited to the concrete results
reported in this chapter, but also consists of (1) examples of the benefits of alignment to
foundational ontologies and (2) a description of the alignment method itself.

This chapter is structured as follows. We begin with related work in Section 6.2. In
Section 6.3 we identify and explain several problematic aspects of OWL-S. In Section 6.4
we present the main body of work, the alignment of OWL-S to the DOLCE foundational
ontology. In Section 6.5 we detail our suggested improvements to the problematic aspects
introduced before. We conclude in Section 6.6.

6.2 Related Work

Previous efforts responded to some of the problems of OWL-S. We briefly discuss the
two initiatives we are aware of by describing their motivation, the parts of OWL-S they
focus on, the techniques they use as well as some initial results (when available).

The first initiative (Narayanan and McIlraith, 2003) is motivated by the need of for-
mal semantics to describe, simulate, automatically compose, test and verify Web service
compositions. It focuses solely on the OWL-SServiceModelwhich provides all the con-
structs for specifying composition. The authors establish a situation calculus semantics
for the main elements in the OWL-SServiceModel(e.g., atomic and composite processes,
conditional effects and outputs), then translate it to the operational semantics provided
by Petri Nets. This knowledge representation formalism has a rich theoretical and tool
support for the various composition tasks. Indeed, this semantics allowed to re-use an
existing simulation and modelling environment. Further, the authors were able to iden-
tify more tractable subsets of OWL-S (less expressive but more efficient analysis for
verification, composition and model checking).

The second effort (Ankolekar et al., 2002b) also focuses only on the OWL-SService-
Modeland proposes a concurrent operational semantics that incorporates subtype poly-
morphism. The motivation for this work is to provide an initial reference semantics
that would discover any possible ambiguity in the developed language. It would also
serve for developing techniques for automated verification of OWL-S models. Finally, if
other Web standards would provide a similar semantics it would be much easier to com-
pare them and to understand their strengths and weaknesses. The authors of both efforts
mutually acknowledge the similarity between the two proposed semantics, except some
minor details discussed in (Ankolekar et al., 2002b).

Besides aiming at increased formal axiomatization, we wish to explain the OWL-S
concepts in terms of a foundational ontology which reflects several generally accepted
theories from linguistics, philosophy, cognitive sciences etc. We show that this “on-
tological” analysis of OWL-S also brings to surface several irregularities in the model
(just like the reference semantics promises to do). Further, one of the long term benefits
of alignment is that it allows a comparison between several aligned ontologies (a goal

6.3. Problematic Aspects of OWL-S 83

also stated in (Ankolekar et al., 2002b)). We extend our analysis to the entire OWL-S
model. From a methodological perspective, the previous approaches provide indepen-
dent reconstructions of OWL-S, while, through alignment, we embed the OWL-S model
in the larger context offered by the foundational ontology. Therefore we can deduce, for
example, that OWL-S does not address the difference between a real life object (e.g.,
book) and its representational counterpart in an information system (e.g., ISBN number),
an important ontological distinction. Finally, the semantics established by previous work
are not reflected in the current OWL formalization of the model. In our case, the model
inherits the axiomatization available for the OWL-DL version of DOLCE.

6.3 Problematic Aspects of OWL-S

In this section we identify and illustrate some of the problematic aspects of understanding
OWL-S from a foundational perspective. We revisit most of them when discussing some
of our suggestions for improvements in Section 6.5. We also relate these issues to the
question of ontology quality.

Ontology quality is the topic of (Borgo et al., 2002), which provides (among others)
three criteria for evaluation:extensional coverage(concerning the amount of entities that
are supposed to be described by an ontological theory),intensional coverage(concerning
what kinds of entities are described by an ontological theory), andprecision(concerning
what axioms are required to describe just the models the ontology designer intends to
cover). According to these criteria, a good ontology should approximate the domain of
discourse that is supposed to be described, it should have a signature that maps all the
kinds of entities intended by the designer, and it should axiomatize the predicates in order
to: 1) catch all the intended models, and 2) exclude the unintended ones.

Below we introduce four problems encountered in OWL-S. The first one (conceptual
ambiguity) features both insufficient intensional coverage and overprecision. The second
and the third (poor axiomatization and loose design) are cases of insufficient precision. In
the third problem, the weakness is mainly inherited by limitations of OWL expressivity.
The fourth (narrow scope) is a case of both extensional and intensional coverage.

6.3.1 Conceptual Ambiguity

Since there is no clear conceptual framework behind OWL-S (as we concluded in Sec-
tion 4.6), it is often difficult for users to understand the intended meaning of some con-
cepts, the relationship between these concepts as well as how they relate to the modelled
services. Many concepts are still being clarified both within the OWL-S coalition and in
public mailing lists. In addition, the Web Services Architecture (WSA) Working Group
of the W3C introduced an OWL ontology of Web service concepts that seems to be in-
dependent of OWL-S1. This probably leads to the necessity of an alignment between the
two ontologies, which needs an explanation of the respective assumptions.

Conceptual ambiguity affects particularly the upper level of OWL-S shown in Fig-
ure 2.6. The notion of a service is introduced in (Martin et al., 2003) as follows:“By
‘service’ we mean Web sites that do not merely provide static information but allow one
to effect some action or change in the world, such as the sale of a product or the control

1http://www.w3.org/2004/02/wsa/

http://www.w3.org/2004/02/wsa/

84 Aligning OWL-S to a Foundational Ontology

of a physical device”. Later, we read that“any Web-accessible program/sensor/device
that is declared as a service will be regarded as a service”.

However, neither of these definitions are operationalized as neither the concept of a
“Web site” nor the “Web” appears in the ontology. Instead, the notion of a service is
characterized solely by its relationship to a number ofServiceProfiles, at most oneSer-
viceModeland any number ofServiceGroundings, which is not sufficient to understand
the concept ofServiceconsidered by OWL-S.

We note that the term Web service and closely related terms (e-Service, Service,
etc.) also suffer from overloading. In our search for possible formalizations, we found a
variety of definitions emphasizing different aspects of a service (Gangemi et al., 2003):
offering functionality (usefulness for a particular task), interoperability using standards
or providing an interface to an existing system. We also refer the reader to (Baida et al.,
2004), which compares and contrasts the definitions used in the business literature, in
software engineering and in information sciences.

6.3.2 Poor Axiomatization

OWL-S descriptions should be machine processable. Hence, it is important that each
concept is characterized by a rich axiomatization in order to support meaningful infer-
ences. In general, we believe that the level of commitment in OWL-S will need to be
raised if it shall support the complex reasoning tasks put forward by the coalition.

Unlike the issue mentioned in the previous section, poor axiomatization reflects the
lesser problem when the definition of concepts is clear, but axiomatization in the ontology
itself needs improvement. In many respects, OWL-S shows the characteristics of a typical
application ontology: there is no firm concept or relation hierarchy (most concepts and
relations are direct subconcepts of the top level concept or relation) and several relations
takeowl:Thingas their domain or range.

We propose that by adding foundations to OWL-S, the level of axiomatization can
be increased. Alignment to a foundational ontology means relating the concepts and
relations of an ontology to the basic categories of human cognition investigated by phi-
losophy, linguistics or psychology. This approach has the advantage that restrictions
on the level of common sense are inherited by the concepts in the application ontology.
This prompts the ontology engineer to sharpen his notions with respect to the distinctions
made in the foundational ontology. It also promotes reuse by highlighting commonalities,
which especially helps to reduce the proliferation of relations - a typical phenomenon for
application ontologies.

Alignment to a well-modularized foundational ontology also allows to selectively im-
port theories from the ontology such as mereology, time theory etc. We will demonstrate
this in Section 6.5 when aligning the control constructs of OWL-S to the Ontology of
Plans which is one of the basic extensions of the DOLCE foundational ontology.

6.3.3 Loose Design

A further problematic aspect of OWL-S from an ontologist’s point of view is its entangled
design. At the heart of this problem lies the purpose of OWL-S in providing descriptions
of various views on Web services required to support a number of different service re-
lated tasks (discovery, composition, invocation). Besides the functional dimension, Web

6.3. Problematic Aspects of OWL-S 85

service descriptions should be contextualized to represent various points of view on a ser-
vice, possibly with different granularity.2 Most of these views, however, are overlapping
in that they concern some of the same attributes of a service.

A straightforward modularization in such cases results in an entangled ontology,
where the placement of certain knowledge becomes arbitrary and intensive mapping is re-
quired between modules. This phenomenon is well described in object-oriented design,
where the notion ofaspects(Elrad et al., 2001) was recently proposed to encapsulate
concerns that cross-cut the concept hierarchy of a software.

A case in point is the application of attribute binding in OWL-S. The construct of
attribute binding is necessary in OWL-S to express, for example, that the output of one
process is the input for another process or that the output of a composite process is the
same as the output of one of its subprocesses. In programming, such equivalences are
expressed by the use ofvariables. Variables are governed by the rules ofscoping, which
define the boundaries of commitment.

Since OWL lacks the notion of variables, argument binding is expressed by explicit
value maps. As shown in Figure 6.1, the value map has the form of aList, attached
to a ProcessComponent. This List should contain instances of theValueOf concept as
members3. EachValueOf concept should point to a single relation of a single concept
by usingtheParameterandatProcessrelations4. For example, in case of two processes
A and B where process B takes the output of process A as an input, the list would have
two ValueOfmembers, one related to concept A and the output relation, while the other
would be related to concept B and its input relation.

The reader may also note that the intended meaning of the entire construct, namely
that all ‘sensible’ instantiations of the process should respect the equivalences expressed
in the value map, is not encoded in the axiomatization. This is explained by the lack of
expressivity of the Description Logic used.

owls:Process

Component
rdf:List

owls:ValueOf

owls:Process

owls:Parameter

owls:sameValues

rdfs:first owls:atProcess

owls:theParameter

Figure 6.1: The representation of attribute binding in OWL-S.

Besides a tedious representation, an unfortunate consequence of the present solu-
tion is that we can only guess about the scope of the commitment represented by the
value map. OWL-S seems to suggest attaching the value map to the process whose
sub-processes are involved in the value map. As argued above, however, there could be

2The OWL-S specification mentions the ability to use theProfile for providing such views. However, no
actual constructs are provided to map them to possible service executions or to each other.

3However, this is not enforced. There’s also no explanation given why an ordered collection is used, i.e.
what the ordering means.

4The cardinality restrictions are missing from the formalization.

86 Aligning OWL-S to a Foundational Ontology

multiple value map restrictions on the inputs/outputs of a process resulting from service
composition (expanding/collapsing processes). Taking the current OWL-S proposal, it is
unclear how one could approach such a situation.

6.3.4 Narrow Scope

Typically, service descriptions cross the boundary between an information system (with
objects such as a record about a book) and the external world (with objects such as
the physical book). The reason is that the Web services are only a part of the overall
service to which a value is attributed by the requester. We believe that this phenomenon
will characterize most real world services, where users are paying not simply for their
information being recorded and manipulated, but for the overall process, which includes
actual changes and effects in the real world, such as a book being delivered. Therefore,
the scope of OWL-S needs to be extended to represent real world services that naturally
cross the lines between information systems and the physical world.

While OWL-S acknowledges this aspect of services, it is unclear how a distinction
could be made between the objects and events within an information system (regarding
data and the manipulation of data) and the real world objects and events external to such
a system. Using a foundational ontology, however, it is possible and even required for
the creator of a description to make such distinctions, because they fundamentally affect
the ontological nature of the objects and events concerned. We return to this issue in
Section 6.5.4.

Besides its insufficient intensional coverage, the OWL-S core also shows an over-
commitment in precision: the topServiceconcept is related to theServiceModelconcept
with a cardinality 1:1. This means that for eachService, only oneServiceModelis ex-
pected to hold. This prevents us to consider alternativeServiceModels, or to evaluate the
relationship between aServiceModelrequired by a customer’s guideline, or by a legal
regulation, and the one underlying the provider’s system, for instance.

A further contribution of our work is to extend OWL-S with relationships for map-
ping between service descriptions and the elements of actual service executions, which
are not yet covered by OWL-S. These relationships will be directly inherited from the
Descriptions & Situations ontology, another module of DOLCE, which is introduced in
Section 6.4.2.

6.4 Alignment

In this Section we describe the alignment of OWL-S to the DOLCE foundational ontol-
ogy (explained in Section 6.4.1). DOLCE is extended by an ontology of Descriptions
& Situations further detailed in Section 6.4.2. As the conceptual gap between OWL-S
and Descriptions & Situations is too large, we constructed a Core Ontology of Services
(Section 6.4.3). Section 6.4.4 depicts how OWL-S concepts are to be expressed by using
the Core Ontology of Services. We give a short summary of this alignment methodology
in 6.4.5.

6.4. Alignment 87

6.4.1 DOLCE

The role of foundational ontologies is to serve as a starting point for building new ontolo-
gies, to provide a reference point for easy and rigorous comparisons among different on-
tological approaches, and to create a foundational framework for analyzing, harmonizing
and integrating existing ontologies and metadata standards. They are conceptualizations
that contain specifications of domain independent concepts and relations based on formal
principles derived from linguistics, philosophy, and mathematics.

DOLCE, a Descriptive Ontology for Linguistic and Cognitive Engineering, belongs
to the WonderWeb project Foundational Ontology Library (WFOL) and is designed to
be minimal in that it includes only the most reusable and widely applicable upper-level
categories, rigorous in terms of axiomatization and extensively researched and docu-
mented (Gangemi et al., 2002; Masolo et al., 2003).

Entity

Endurant Perdurant Quality Abstract

Physical

Endurant

Non-Physical

Endurant

Arbitrary

Sum

Event Stative Temporal

Quality

Physical

Quality

Abstract

Quality

Region Set

Figure 6.2: The top-level taxonomy of DOLCE.

The upper part of DOLCE’s taxonomy is sketched in Figure 6.2. DOLCE is based
on a fundamental distinction between enduring and perduring entities. The main relation
betweenEndurants(i.e., objects or substances) andPerdurants(i.e., events or processes)
is that of participation: an endurant “lives” in time by participating in a perdurant. For
example, a person, which is an endurant, may participate in a discussion, which is a
perdurant. A person’s life is also a perdurant, in which a person participates throughout
its duration. Qualities can be seen as the basic entities we can perceive or measure:
shapes, colors, sizes, sounds, smells, as well as weights, lengths or electrical charges.
Spatial and temporal qualities encode the spatio-temporal attributes of objects or events.
Finally, Abstractsdo not have spatial or temporal qualities, and they are not qualities
themselves, e.g., (quality) regions or sets. In particular, regions are used to encode the
measurement of qualities as conventionalized in some metric or conceptual space.

DOLCE is axiomatized in a modal logic (S5), but it is maintained also in other lan-
guages, used according to the particular trade-off between expressivity and computa-
tional complexity that is required by a certain application. For example, the KIF version
is suited for most detailed meaning negotiations and for machine-readability of the com-
plete axiomatization. The Loom (MacGregor, 1991) version has been used until recently
to support ontology-driven industrial applications that required both high expressivity
and classification services; in this version, some modal and temporal axioms have been
removed or transformed, in order to take advantage of the Loom variety of description
logic (which is incomplete, but desirable in certain settings). The OWL-DL (McGuinness

88 Aligning OWL-S to a Foundational Ontology

and van Harmelen, 2004) version is currently maintained for Semantic Web applications.
It probably provides the best scaled version due to the completeness of OWL-DL5. The
strategy applied in porting DOLCE to different languages is quite liberal, and consists in
finding the most appropriate naming policy and constructs that sound natural within the
best modelling practices for a certain language, provided that the subsumption hierarchy
and the axioms have an accurate mapping to the reference S5 version.

Although out of the scope of this chapter, we should mention that DOLCE has been
chosen as basis for several reasons, some due to its internal structure (rich axiomatization,
explicit construction principles, careful reference to interdisciplinary literature, common
sense-orientedness, etc.), others due to its modular nature. In fact, being part of the Won-
derWeb Foundational Ontology Library, DOLCE will be mapped to other foundational
ontologies (possibly more suitable for certain applications), and will be extended with
many modules covering different domains (e.g., legal and biomedical), problems (e.g.,
planning, contexts), and lexical resources (e.g., WordNet-like lexica). These features (in-
ternal consistency and external openness) make DOLCE specially suited for our needs.

6.4.2 Descriptions & Situations

While modelling physical objects or events in DOLCE is quite straightforward, intuition
comes to odds when we want to model non-physical objects such as social institutions,
plans, organizations, regulations, roles or parameters. This difficulty is due to the fact that
the intended meaning of non physical objects results from statements, i.e., their meaning
emerges only in the combination of other entities. For example, a norm, a plan, or a so-
cial role are usually represented as a set of statements and not as a concept. On the other
hand, non physical objects may change and be manipulated similar to physical entities,
and are often treated as first-order objects. That means an ontology should account for
such objects by modelling the context or frame of reference on which they depend. The
representation of context is a common problem in many realistic domains from technol-
ogy and society (such as law or finance) which are full of non physical objects.

Figure 6.3: Aligning D & S to DOLCE.

5The OWL-DL version of DOLCE can be found athttp://www.loa-cnr.it/DOLCE.html

http://www.loa-cnr.it/DOLCE.html

6.4. Alignment 89

In order to respond to those modelling requirements the Descriptions & Situations
(D & S) (Gangemi et al., 2003) module of DOLCE was developed. D & S results to
be a theory of ontological contexts because it is capable of describing various notions
of context or frame of reference (non physical situations, topics, plans, beliefs, etc.) as
entities. It features a philosophically concise axiomatization.

As depicted in Figure 6.3, D & S introduces a new categorySituationthat reifies a
state of affairs and involves entities of the ground ontology (in our case DOLCE). ASit-
uation satisfiesaSituation Description (S-Description), which is aligned as a dolce:Non-
Physical Endurant and is composed of descriptive entities (C-Descriptions), i.e., Para-
meters, Functional RolesandEventDescriptions. Axioms enforce that each descriptive
component links to a certain category of DOLCE:Parametersarevalued-by Regions,
Functional Rolesare played-by Endurantsand EventDescriptions satisfies Perdurants
(see Figure 6.4).

S-Descriptions can be used to model contexts, for example, a murder (Situation6)
that has been reported by a witness (FunctionalRole), which is played-by a person (En-
durant), in a testimony (S-Description). The same situation may be interpreted according
to other, alternative descriptions. This captures that multiple overlapping (or alternative)
contexts may match the same world or model, and that such contexts can have systematic
relations among their elements.

Figure 6.4: Descriptions and Situations.

D & S shows its practical value when applied as anontology design patternfor
(re)structuring application ontologies that require contextualization. As we will see in
the remainder of this section, this is the case when describing (Web) services.

6.4.3 A Core Ontology of Services

The descriptions of services show a clear contextual nature and are to be modelled as
Situation Descriptionsin the sense of DOLCE and Descriptions & Situations.7 One may

6As mentioned above, aSituationrefers to an arbitrary entity in DOLCE’s domain.
7In the following, we will refer to DOLCE with its basic extensions, i.e. D & S, Ontology of Plans, etc., as

DOLCE+.

90 Aligning OWL-S to a Foundational Ontology

only have to consider the number of different views that may exist on a service: the view
of a service provider, that of the service requester or the legal view of a contract etc. The
concepts used to formulate any given view are clearly separate from the actual objects
they act upon and often independent from the concepts appearing in other views.

Different views on the service need not be equally detailed either. For example,
commercial advertisements typically feature only selected characteristics of a service.
The various views also naturally focus on different aspects of a service, which means
that the descriptions may only be partially mapped to each other.

Instead of directly aligning OWL-S to Descriptions & Situations, we developed a
Core Ontology of Services (COS) and aligned the OWL-S sources to this ontology. This
two-stage alignment is a common technique when the conceptual gap between the source
ontologies and the foundational ontology is large. The Core Ontology of Services also
features a concise axiomatization and can be reused in other scenarios (e.g., purely com-
mercial services). We depict it in Figure 6.5 showing how the concepts of COS relate to
DOLCE and how the D&S pattern was implemented.

At the description level, we consider five frequently occurring descriptions of a ser-
vice (specializations ofS-Description), where each represents a separate viewpoint:

1. Service Offering (Description).The service offering is the viewpoint of the legal
entity providing the service. Much like commercial advertisements, the service
offering may not describe entirely how the service will be carried out. This can
also be considered as a proposal for a contract (agreement) for a service.

2. Service Request (Description).This is the counterpart of the offering in that it
comprises the expectations of the requester of the service. Requirements are often
flexible, concerning only a subset of the tasks, roles and parameters of service
activities (but might also contain others).

3. Service Agreement (Description). Once an agreement is reached between the
provider and the requester of the service, their joint understanding regarding the
service may be described in a service agreement. Agreement means an understand-
ing of the service as providing some value to the requester, which may or may not
be the same as the originally offered functionality of the service.

4. Service Assessment (Description).Typically, when an agreement is reached mea-
sures are taken to monitor, assess and control the execution of the service provided.
Assessment concerns matching the service activities against the agreement.8 Ser-
vice assessment may be executed by a third party and may also involve aspects not
even mentioned in the above three descriptions, e.g. the cleanness of a hotel room
may be checked by looking for dust on the TV sets.

5. Service Norms Description. This is a description of the social conventions re-
garding the execution of a service, whether a written code of practice (ISO) or
unwritten norm. This view is the basis for legal action once a service deviates
from the norms in ways not foreseen in the agreement.

8In an ideal world such a function would be meaningless. In reality, contracts are incomplete, since it
is difficult to imagine all possible outcomes flowing from the agreement. Also, violations and the resulting
penalties are often accepted rather than adhering to the contract (a kind of control strategy).

6.4. Alignment 91

Figure 6.5: The Core Ontology of Services aligned to DOLCE/D&S. DOLCE/D&S concepts
have a blue (dark) background. Note also how the D&S design pattern has been implemented.

92 Aligning OWL-S to a Foundational Ontology

We also introduce specializations ofEventDescription, such asTask, ServiceTask
andComputationalTask- see Figure 6.5. This allows us to model activities in an in-
formation system and in the real world. Axioms ensure thatServiceTasksonly de-
scribeServiceActivitiesand thatComputationalTasksonly sequenceComputational Ac-
tivities. The activities are new kinds of perdurants especially introduced here (see the
lower part of Figure 6.5). AComputationalActivityis a special kind ofServiceActivity
which has only information objects or binary software as participants (ComputationalAc-
tivity is the activity produced by running the software). An example of aServiceActivity
would be flying Joe, a particular passenger, to his destination. An example of aCom-
putationalActivitywould be the execution of the procedure that reserves a particular seat
for a particular passenger.

The chief difference between tasks and activities is that of between a plan and a par-
ticular execution of the plan: a plan describes possible activities, constraining the way
they should occur in order to achieve the plan’s goals. Examples ofComputationalTask
are the reservation of a flight and the collection of payment, as described in an infor-
mation system, even if they may be implemented in a number of ways. AServiceTask
can be flying the passenger (some passenger, not a particular one) to some destination.
Again, this may be carried out in several ways.

Our Core Ontology of Services may optionally take advantage of a number of con-
cepts from the Ontology of Plans which is another module for DOLCE+. It allows the
division of tasks into elementary and complex and the construction of complex tasks
from elementary ones among other features.

Further axioms also ensure that onlyInformationObjects(a newly introducedNon-
PhysicalEndurant) participate inComputationalActivities. InformationObjectis a non-
physical endurant in DOLCE, which may be expressed according to aDescriptionSystem
such as RDF or WSDL.SoftwareAsAlgorithmis an InformationObject, while Softwar-
eAsBinaryrepresents its physical counterpart (more specifically,SoftwareAsBinaryis
said to be the instrument of aComputationalActivity, while InformationObjectsaredata-
for theComputationalActivity).

The Core Ontology of Services also models frequently occurringFunctionalRoles
(see Figure 6.5). TheRequesterandProviderof a service are conceived asLegallyCon-
structedPersons, an agentive legal role in DOLCE, while theExecutorof a service is
considered an agentive functional role without a legal nature. Examples are a passenger
role (requester of the booking service) and the role of the travel agency (provider of the
service).

Another group of roles is played by the instruments used in services. These include
(Computational) InputsandOutputs, formalized asInstrumentalityRoles. Our compre-
hensive axiomatization requires that, e.g., aComputationalInputis only played by an
InformationObject.

6.4.4 Aligning OWL-S to the Core Ontology of Services

In the following we describe the alignment of OWL-S to the Core Ontology of Services
and our experiences with the process.9

9In the following concepts printed in italics are part of the OWL-S namespace, except when indicated
otherwise.

6.4. Alignment 93

The process of alignment proved its value early on by allowing us to quickly separate
concepts of the ontology that had no clear and unique ontological interpretation with re-
spect to the basic categories of DOLCE. For example, theValueOfconcept, which seems
to be introduced for technical reasons (see Section 6.3.3). Similar arguments hold for
the ConditionalEffectclass, which models a ternary relationship between a process, a
precondition and an effect. Much likeValueOf, this class is introduced for representation
purposes, its real semantics are not captured by the ontology10. Similarly, the distinc-
tions betweenServiceProfileandProfile as well asServiceModelandProcessModelare
introduced in OWL-S to provide flexibility in modelling, rather than representing con-
ceptual differences. Although the definition ofServiceis ambiguous even in the natural
text description of OWL-S, for the sake of argument we consideredServiceas aService-
OfferingDescription, which has theServiceProfileandServiceModel(also aServiceOf-
feringDescriptions) as parts. Note that theServiceProfilejust expands theServiceModel
by process descriptions. In our opinion there is no need to separate both and, e.g., have
parameters likeserviceNameonly in theProfile and not in theProcessModel. However,
our intention was to just align OWL-S rather than reorganizing it.

ServiceOffering

Description

Service ServiceProfile ServiceModel

Agentive

FunctionalRole

Actor

Task

ProcessComponent

ServiceInput

Input

ServiceOutput

Output

Figure 6.6: Aligning OWL-S to the Core Ontology of Services.

Relations likeserviceNameor textDescriptionregard the profile as a whole and are
thus aligned withServiceOfferingDescriptionas domain and literal as range. The no-
tion of Actor in theServiceProfileis aligned as anAgentiveFunctionalRolelike depicted
in Figure 6.6. TheProcessComponentconcept was aligned to theTaskconcept of the
Core Ontology of Services, while the individual control constructs were mapped to task
components included from the Ontology of Plans. For example, theRepeat-untilcontrol
construct was aligned to theCycle-UntilTaskconcept, a kind ofCyclicalTaskwith an exit
condition and/or repetition interval. As another example, theIf-then-elseconstruct maps
to the notion of anAlternateTask, a case-task with exactly two branches (both are not
shown in Figure 6.6). Note that there is a difference, however, between theControlCon-
structsof OWL-S and theTasktypes of the Core Ontology, because task types, like all
other tasks, sequence activities themselves (branching and synchro tasks, in particular,
sequence planning activities).

10This leaves open to interpretation, for example, the case when multiple conditional effects are given for a
process.

94 Aligning OWL-S to a Foundational Ontology

The disambiguation ofInputs, Outputs, PreconditionsandEffects(IOPE) was rela-
tively straightforward using the Core Ontology.Input andOutputare aligned toServi-
ceInputandServiceOutput, respectively. On the other hand, the notions ofPrecondition
andEffectare inherited from the Ontology of Plans where they are modelled asSituations
and linked to their respective tasks using thetask-preconditionandtask-postconditionre-
lationships.11 ConditionalOutputsandConditionalEffectsare modelled using the Case-
Task construct.

We omitted the alignment of the grounding ontology for WSDL (Christensen et al.,
2003) because it was not the focus of our work. Nevertheless, the notion of software tool
is present in the Core Ontology of Services as anInformationObjectthat can be expressed
according to any number of description systems.12 WSDL could be such a description
system and modelled to the extent required to express groundings.13

6.4.5 Summary

The ontology stack in Figure 6.7 summarizes our alignment effort. We used DOLCE
as foundational ontology (6.4.1), extended it by the Descriptions & Situations module
(6.4.2), defined our Core Ontology of Services (6.4.3), which was used to align OWL-S
(6.4.4). Note that this methodology of alignment could be used to align and compare
other service description efforts as well, e.g. the Web Services Architecture (WSA) or
the ontology used within the Application Server for the Semantic Web (both alignments
are detailed in (Gangemi et al., 2003)). Specialized domain and application ontologies
of service descriptions such as (Richards and Sabou, 2003) are formulated according to
one of these generic service ontologies.

DOLCE

Descriptions & Situations

Core Ontology of Services

OWL-S… …

Domain OntologiesR
e
q
u
ir
e
m

e
n
ts

D
e
s
ig

n

Figure 6.7: The stack of ontologies used in the alignment process.

Our method was a combination of a bottom-up and a top-down approach. On the one
hand, ontologies in the lower layers provided representation requirements for the higher
layers, which abstracted their concepts and relationships. On the other hand, the upper
layers provided design guidelines to the lower layers. This also meant that although our

11For preconditions, this means thattask− precondition(p, c)⇔ Process(p)∧PreCondition(pc)∧
Condition(c) ∧ hasPrecondition(p, pc) ∧ preCondition(pc, c).

12A more refined representation we considered was to modelSoftwareas an S-Description, in the sense of
an abstract algorithm.

13The Core Ontology of Services and the OWL-S alignment are available for download athttp://www.
cs.vu.nl/ ∼pmika/research/www2004/ .

http://www.cs.vu.nl/~pmika/research/www2004/
http://www.cs.vu.nl/~pmika/research/www2004/

6.5. Suggestions for Improvement 95

goal was to preserve the structure of OWL-S as much as possible, our method suggested
a rearrangement of the ontology based on the backbone provided by the D & S ontology.

6.5 Suggestions for Improvement

In this section we present suggestions for improvement of the problematic aspects of
OWL-S, discussed in Section 6.3. Note that each subsection corresponds to the one
introduced in Section 6.3.

6.5.1 Conceptual Disambiguations

The alignment to a foundational ontology helped us in understanding and crystalizing
several concepts of OWL-S. As an example, ontological analysis explained the difference
between an information object, its application domain counterpart and the role it plays
in an information system (see also Section 6.5.4). This indicated possible enhanced
modelling: since the same information object is modelled both in theServiceProfileand
ServiceModel, it is more logical to consider a single instance playing multiple roles. This
improvement is already implemented by the OWL-S coalition as described in Section 4.3.

In our Core Ontology of Services, we went further to separate the functionality,
process and software aspects of a service loaded onto the single concept ofServicein
OWL-S. It replacesServicewith the concept of different kinds ofServiceDescriptions,
which areS-Descriptions(a context in D & S) that envision a process as well as certain
roles related to the individual tasks of the process. Inputs, outputs and abstract tools used
to carry out a certain task are examples of roles. In case of information services, inputs
and outputs are played by information objects and tools are played by particular soft-
ware implementations. While this definition of aServiceDescriptionmay not be the only
one, the fact that it is formulated according to a foundational ontology allows to compare
it to alternative definitions and foster discussion on alternative conceptualizations of a
(semantic) Web service.

6.5.2 Increased Axiomatization

A key advantage of the alignment to a foundational ontology is that it prompts the en-
gineer to take a stance with respect to the principles established by the foundational
ontology. What is typically gained is an increased understanding of one’s own ontology
and a richer axiomatization through ties to the foundational ontology. DOLCE mitigates
the danger of overcommitment in this process (importing theories that are not used or not
shared by the engineer) by extensive modularization along world views (3D, 4D, etc.)
and domains (law, finance, etc.).

As an example, in the Core Ontology of Services we made use of an Ontology of
Plans which includes subtypes of the generic Task concept for a detailed modelling of
plans or process models. These constructs are directly comparable to the control con-
structs of OWL-S, but provide a higher level of axiomatization. An example of such
types is DOLCE’sSynchro-Taskwhose OWL definition is depicted in Appendix A. It
matches the concept of “join” in the “Split-Join” control construct from OWL-S. A syn-
chronization task is typically used to bind the execution of a “planning” activity rather
than of a domain activity, since the referred activity is supposed to re-synchronize a

96 Aligning OWL-S to a Foundational Ontology

process when it waits for the execution of two or more concurrent (or partly concurrent)
activities.

Higher axiomatization is partly possible by the natural linkage to the Ontology of
Time, another module for DOLCE, for describing (constraints on) temporal relations
between process elements when they are executions of a plan. OWL-S would also need
such an Ontology of Time and then it would be natural to adopt or reference an existing
ontology instead of creating an ontology from scratch.

The Ontology of Plans also allowed to align relations such asowl-s:components,
which is used to relate control constructs to their components. In OWL-S this relation
is described merely as a subrelation ofowl:Propertywith a domain ofControlConstruct.
In our work, we aligned this relation to thetemporary-componentrelation in DOLCE.
The latter has a firm foundation as a subrelation of the more basiccomponent(functional
proper-part) mereological relation andpartly-compresent-withtemporally indexing rela-
tion, both characterized with formal restrictions on its application to other basic concepts,
such asObject, Description, Event, etc.

6.5.3 Improved Design

In our work we propose to complement modularization in OWL-S with contextualiza-
tion as a design pattern. Contextualization allows us to move from a monolithic process
description of a service to the representation of different, possibly conflicting views with
various granularity. The Descriptions & Situations ontology provides us the basic prim-
itives of context modelling such as the notion of roles, which allows us to talk of inputs
and outputs on the abstract level, i.e., independent of the objects that play such roles.

Using this pattern results in a more intuitive representation of attribute binding, with
clearly defined semantics and scoping provided by Descriptions&Situations. Inputs and
outputs can be modelled asFunctionalRoles(more precisely: InstrumentalityRoles),
which serve as variables in our ontology. A single endurant — for example, a physi-
cal book — can play multiple roles within the same or different descriptions and thus it
is natural to express that the given book is output with respect to one process, but input
to another. Moreover, it is easier to represent the requirement that the input of a process
has to beplayed by the same instance as the output of another process by putting con-
straints on theobjects(and not the process or task) which play these roles (however, the
expressivity required is the same and therefore goes beyond the power of OWL).

Besides a more intuitive representation,FunctionalRolesas components have an ex-
plicit scope, namely theS-Descriptionsthey belong to. Although not addressed in the
present work, clearly defined limits in scope are necessary to describe semantic relation-
ships among (service) descriptions, for example, to talk of conflicts between descriptions.

6.5.4 Wider scope

As we have seen before, Web services exist on the boundary of the world inside an in-
formation system and the external world. Except for the rare case of a pure information
service, Web services carry out operations tosupporta real world service. Functional-
ity, which is an essential property of a service, then arises from the entire process that
comprises computational as well as real wold activities.

6.5. Suggestions for Improvement 97

Web service descriptions are thus necessarily descriptions of two parallel worlds.
In information systems, the world consist of software manipulating (representations of)
information objects. While computational processes are running, in the real world books
are being delivered to their destinations.

The connection between these worlds is that some of the information objects are
representations of real world objects. Also, computational activities comprise part of the
service execution in the real world. For example, an order needs to be entered by the Web
agent into an information system, so that the warehouse knows which books to deliver to
a given address.

The distinction between information objects, events and physical ones is not explic-
itly made in OWL-S.14 Nevertheless, we believe that this distinction is important for dis-
ambiguating the nature of services in an open environment such as the Semantic Web.15

In our work this separation naturally follows from the use of the DOLCE+ foundational
ontology, where the distinction is an important part of the characterization of concepts.
In particular, it makes possible to be more precise about the kinds of relationships that
can occur among objects or between objects and events.

Figure 6.8: The relation betweenInformationObjectsandPhysicalObjectsin DOLCE.

For example, using DOLCE+ we can distinguish between a physical object (such as
a book), an information object (such as the name of a book) and a representation of such
information using a particular description system (e.g., a string encoding). The relations
provided by DOLCE are shown in Figure 6.8.

The reader may note that by building on the Descriptions & Situations ontology de-
sign pattern, our work naturally extends OWL-S with the representation of service situ-

14Based on the examples so far, one may conjecture that OWL-S inputs and outputs concern physical objects
relating to information objects such as message parts in WSDL through grounding.

15In fact, the lack of this distinction stands behind the emergence of the ‘Semantic Web identity crisis’ that
results from the ambiguous use of identifiers in Semantic Web ontology languages such as RDF (Pepper and
Schwab, 2003). In practice a URI can be used to reference a document on the Web, to reference (a fragment of)
a document containing some definition of a concept or to represent a concept (without any intended reference
to an actual location on the Web). Unfortunately, no standard scheme exists to distinguish between the three
kinds of identifiers even though they need to be resolved in different ways.

98 Aligning OWL-S to a Foundational Ontology

ations. Service situations in our work correspond to a possible executions of a service.
The description of service executions is already considered by the OWL-S coalition for
the purposes of service execution monitoring. We believe that this direction should also
be pursued by OWL-S as service requests are often formulated in terms of actual values
of input/output parameters (or relatively narrow sets of parameter values). For example,
customers of bookshops often have a clear idea of which book they want to buy or at least
what kind of book it is. One could imagine an intelligent matching engine that in such
case returns only services that offer a particular book or a category of books, instead of
returning all known book selling services.

6.6 Conclusion

Our exercise of giving an ontological foundation to OWL-S is useful both for better
understanding OWL-S and enriching it with additional formal semantics. We see the
presented results as an example for the benefits of alignment to foundational ontologies
as our methodology is applicable also to other standards. As a matter of fact, our Core
Ontology of Services can be applied as a framework for harmonizing the ongoing efforts
to characterize Web services, because it does not commit to a specific software design
reference framework, and it is based on a generic, social notion of service. For example,
the ontology of the Web Services Architecture (WSA) Working Group of the W3C, as
well as other interesting methods for Web service deployment, such as problem-solving
methods (Motta et al., 2003), can be interpreted (aligned, harmonized, or made interop-
erable) according to our reusable ontological components.

The alignment of OWL-S to the Core Ontology of Services also means that Web
services described in OWL-S are automatically aligned to DOLCE. Such descriptions can
be further enriched by adding DOLCE-based semantics (for example, spatio-temporal
relations) to the domain concepts involved. We imagine this would allow a sufficiently
sophisticated matching or composition engine to reason with the additional semantics
in order to provide more targeted matches as a result. However, building such a tool is
beyond the scope of our work.

One of the difficulties we encountered with our method of ontology alignment was
that it required us to understand to some extent the principles of the foundational on-
tology. These principles stem from other sciences (philosophy, psychology, semiotics,
communication theory etc.), which means that a (re)engineering of this kind requires a
considerable intellectual investment from the knowledge engineer at the moment. We
think, however, that this investment, materialized in the Core Ontology of Services, will
pay off whenever new (Web) service ontologies are to be aligned or when a Web service
ontology should communicate with domain ontologies or with workflow ontologies of
the service actors, or even in the matching and composition of services that have overlap-
ping domains or tasks. Such a pay off also shows why we have not just taken a reusable
ontology, but a foundational one. A reusable ontology could have been used to carry out
an analysis of OWL-S, but in order to gain access to conceptual alignment with other
service, domain or task ontologies’ reusability is not enough: we need an appropriate
and flexible foundational ontology.

6.7. Summary 99

6.7 Summary

In this chapter we finalize our analysis of OWL-S by inspecting it from an in-depth,
ontological perspective. We conclude that OWL-S exhibits severe problems such as am-
biguity, poor axiomatization, loose design and narrow scope, thus failing to fulfill the
clear semantics and rich formalizationrequirement. Nevertheless, many of these neg-
ative aspects can be solved by aligning OWL-S to a richly formalized and extensively
researched foundational ontology. We use a stack of ontologies for the alignment made
up of DOLCE, Descriptions & Situations as well as the Core Ontology of Services. Note
that the alignment is not dependent on DOLCE, because Descriptions & Situations may
be aligned to any foundational ontology. Parts of the service description that deal with
service quality and assessment are left for future work.

The alignment to a foundational ontology is a time consuming and intellectually de-
manding activity. However, once the conceptual gap between the foundational ontology
and the domain was bridged by the development of a core ontology (in our case the Core
Ontology of Services), the alignment of other standards in the domain (e.g., WSMO,
IRS) can be performed much easier thus reaching a cross-standard harmonization.

This chapter finalizes our analysis of the OWL-S generic Web service ontology. In
the next part of the thesis we focus on solving the problem of acquiring Web service
domain ontologies.

Part III

Learning Web Service Domain
Ontologies

Chapter 7

A Framework for Learning Web
Service Domain Ontologies

Generic and domain ontologies are equally important when building semantic Web ser-
vice descriptions. In this part of the thesis we turn our attention to Web service domain
ontologies. One of the major issues related to domain ontologies is that acquiring broad
coverage domain ontologies is difficult and costly. In this chapter we describe some of
the factors that hamper building high quality domain ontologies and conclude on some
requirements for an automatic solution to this problem. Further, we present an ontology
learning framework that addresses these requirements. Note that the novelty of our work
is not in the used natural language processing methods but rather in the way they are put
together in this generic framework specialized for the context of Web services. We end
the chapter by providing some details about the implementation of our framework as a
prototype system.

The material presented in this chapter is synthesized from several different publica-
tions. It is based on a paper published at the Third International Semantic Web Con-
ference (Sabou, 2004b), a paper presented at the 14th International World Wide Web
Conference (Sabou et al., 2005a), an article in the Journal of Web Semantics (Sabou
et al., 2005b) and a workshop paper published in conjunction with the Fourth Interna-
tional Semantic Web Conference (Sabou and Pan, 2005). The content of the last section
is a summary of an article published at the 9th International Conference on Information
Visualization (Sabou, 2005b) and is based on previous work on visualization published
in three book chapters (Fluit et al., 2002, 2004, 2005).

7.1 Introduction

An important role in semantic Web service descriptions is played by Web service specific
domain ontologies. Despite their importance, few domain ontologies for Web service
descriptions exist and building them is a challenging task. In this part of the thesis we
address the problem of (semi-)automatically learning Web service domain ontologies.
We report on the first stage of this work in which we aim to get a better understanding
of the ontology learning task in the context of Web services and to identify potentially

104 A Framework for Learning Web Service Domain Ontologies

feasible technologies that could be used. Early in our work we learned that the context of
Web services raises several issues that constrain the development of an ontology learning
solution. We designed a framework for performing ontology learning in the context of
Web services which addresses these issues in two ways. First, it exploits the particular-
ities of Web service documentations to extract information used for ontology building.
In particular, the sublanguage characteristics of these texts lead to the identification of
a set of heuristics. These heuristics are implemented as pattern based extraction rules
defined on top of linguistic information. Second, the learned ontologies are suited for
Web service descriptions as they contain both static and procedural knowledge.

We implemented two learning methods that follow the basic principles of the frame-
work but use different linguistic knowledge. The first method uses basic Part-of-Speech
(POS) information and was developed and tested in the context of the WonderWeb1

project (Sabou, 2004b). The second method uses deeper dependency parsing techniques
to acquire linguistic knowledge. It was designed and tested on data sets provided by the
myGrid project2 (Sabou et al., 2005a). In this chapter we present the framework and both
methods. In the next chapter we present a comparative evaluation of the two methods in
the context of both projects.

This chapter is structured as follows. We start by analyzing the factors that hamper
building Web service domain ontologies. We do this by describing the problem of do-
main ontology building in the context of the two research projects that served as case
studies for developing and evaluating our framework (Section 7.2). Based on this analy-
sis, we present an overview of the issues that constrain the development of an ontology
learning solution in the Web services context (Section 7.3). Then, we present an ontology
learning framework that deals with these constraints and the two concrete instantiations
of this framework in Section 7.4. Implementation details of this framework in a prototype
system are provided in Section 7.5.

7.2 The Problem of Building Web Service Domain On-
tologies

In this section we describe the ontology building process as it took place in the context
of two research projects: WonderWeb andmyGrid. These projects offered realistic re-
quirements, data sets and evaluation standards for our work. In both cases we detail (1)
the kind of data sources used for ontology building and the (2) manually built domain
ontologies. These manually built ontologies serve as Gold Standards when evaluating
the automatically learned ontologies. We also (3) highlight the various difficulties that
were encountered during building these domain ontologies.

The benefit of this analysis is twofold. First, these projects reveal some of the major
aspects that make Web service ontology building difficult. These aspects prompt at the
need of automating (at least to some extent) the acquisition of domain ontologies. The
second benefit of the analysis is an overview of a set of issues that constrain the devel-
opment of ontology learning methods in the context of Web services. These constraints,
detailed in Section 7.3, guided us in the design of the ontology learning framework as
discussed in Section 7.4.

1http://wonderweb.semanticweb.org/
2http://www.mygrid.org.uk/

http://wonderweb.semanticweb.org/
http://www.mygrid.org.uk/

7.2. The Problem of Building Web Service Domain Ontologies 105

7.2.1 Case Study 1: WonderWeb RDF(S) Storage Tools

Project description. The EU-funded WonderWeb research project aimed to develop
an infrastructure for large-scale deployment of ontologies on the Semantic Web. The
project’s engineering infrastructure was provided by the KAON Application Server, a
semantic middleware system which facilitates the interoperability of Semantic Web tools
(Sabou et al., 2004). Ontologies that describe the functionality of Semantic Web tools
and services are core to the architecture of this middleware. Since RDF(S) storage and
query facilities are essential components of any Semantic Web application, they were the
first ones to be integrated with KAON and thus required a domain ontology that would
describe this domain. Besides WonderWeb, the ontology for describing RDF(S) storage
functionality was also used in the AgentFactory project which performs configuration of
semantically described Web services using agent-based design algorithms (Richards and
Sabou, 2003; van Splunter et al., 2003).

Data Sources.While there are many tools offering ontology storage (a major sur-
vey (Gomez-Perez, 2002) reported on the existence of 14 such tools), only few are avail-
able as Web services (two, according to the same survey). Therefore, it is problematic to
build a quality domain ontology by analyzing only the available Web services. However,
since Web services are simply exposures of existing software to Web accessibility, there
is a large overlap (often one-to-one correspondence) between the functionality offered
by a Web service and that of the underlying implementation. Based on this observation,
the domain ontology was manually built by analyzing the APIs of three RDF(S) storage
tools (Sesame (Broekstra et al., 2002), Jena (McBride, 2002), KAON RDF API (Maed-
che et al., 2003)).

The data sources used during ontology building consisted of thejavadocdocumenta-
tion of all methods offered by these APIs. A javadoc documentation contains a general
description of the method’s functionality, followed by the description of its parameters,
result types and exceptions to be thrown. See for example the javadoc documentation of
theaddmethod from the Jena API.

add
Add all the statements returned by an iterator to this model.

Parameters:
iter - An iterator which returns the statements to be added.

Returns:this model
Throws: RDFException - Generic RDF Exception

Manually built ontology. The manually built ontology contains 36 concepts dis-
tributed in two main hierarchies (see a snapshot of the ontology in Figure 7.1). The
first hierarchy contains concepts that denote a set of functionalities offered by the ana-
lyzed APIs. These concepts are grouped under theMethodconcept which is similar in
meaning to the OWL-SProfile concept. This hierarchy contains four main categories
of methods for: adding data (AddData), removing data (RemoveData), retrieving data
(RetrieveData) and querying (QueryMethod). Naturally, several specializations of these
methods exist. For example, depending on the granularity of the added data, methods
exist for adding a single RDF statement (AddStatement) or a whole ontology (AddOn-
tology). Note that this hierarchy reflects a certain conceptualization and isnot unique.
Besides theMethodhierarchy, the ontology also contains the elements of the RDF Data

106 A Framework for Learning Web Service Domain Ontologies

Data

RDFData

Ontology

RDFOntology

RDFPredicate

RDFResource

RDFStatement

RDFSubject

Method

AddData

AddOntology

AddStatement

QueryMethod

RemoveData

RetreiveData

Figure 7.1: RDF(S) Storage ontology snapshot.

Model (e.g.,RDFStatement, RDFPredicate) and their hierarchy, grouped under theData
concept.

The ontology is rich in knowledge useful for several reasoning tasks. For example,
the definition of methods was enriched in multiple ways such as: imposing restrictions
on the type and cardinality of their parameters or by describing their effects and types of
special behavior (e.g.,idempotent). The building of this manual ontology was a good in-
dication that API documentations are rich enough to allow building Web service domain
ontologies.

Encountered Problems.The major impediment in building a domain ontology for
describing RDF(S) storage tools was the choice of data sources from which to build the
domain ontology. Once the decision taken, it took three weeks (for one person) to build
the ontology. This time includes the time to read and understand the API documentations
as well as the time to identify overlapping functionalities offered by the APIs and to
model them in an ontology.

7.2.2 Case Study 2:myGrid Bioinformatics Services

Project description. myGrid is a UK EPSRC e-Science pilot project building semantic
grid middleware to supportin silico experiments in biology. The experimental protocol
is captured as a workflow, with many steps performed by Web services. Core to the
infrastructure is an ontology for describing the functionality of these services and the
semantics of the manipulated data. A key role of the ontology is to facilitate user driven
discovery of services at the time of workflow construction. In contrast to efforts such as
OWL-S and WSMO, the ontology is not currently intended to support workflow specifi-
cation, agent-driven automated service discovery, automatic invocation, or monitoring.

Data Sources.The ontology was built manually initially using the documentation
for 100 services as a source of relevant terms. These services are part of the EMBOSS

7.2. The Problem of Building Web Service Domain Ontologies 107

(European Molecular Biology Open Software Suite) service collection3 and are further
referred to as EMBOSS services. Each EMBOSS service has a detailed description con-
taining (among others) a short description of the service, detailed information about its
command line arguments, examples of the input/output file formats, its relation with
other services in the collection or even references to scientific publications describing its
functionality.

generic_process
aligning

gapped_aligning

global_aligning

pairwise_global_aligning

pairwise_local_aligning

calculating
displaying

local_aligning

multiple_local_aligning

distinguishing

filtering

grouping

inserting

joining

Figure 7.2: myGrid ontology snapshot.

Manually built ontology. The manually builtmyGrid ontology is much larger and
more complex than the RDF(S) related ontology. It contains over 550 concepts dis-
tributed over a set of distinct subsections covering the domains of molecular biology,
bioinformatics, informatics and generic tasks, all under a common upper level structure.
However, currently only a part of this ontology (accounting for 23% of its concepts)
provides concepts for annotating Web service descriptions in a forms-based annotation
tool. The so obtained semantic Web service descriptions are used for facilitating ser-
vice discovery (Wroe et al., 2004). ThemyGrid ontology contains only a small number
of concepts denoting functionality (23) (see a snapshot of this part of the ontology in
Figure 7.2). Observe that a different modelling principle is used here compared to the
RDF(S) related ontology. Namely, the functionality concepts simply denote generic ac-
tions that can be performed in bioinformatics without being linked to the involved data
structures. A possible explanation for this choice is that in bioinformatics one can per-
form these operations on a multitude of data structures and thus, enumerating all these
combinations would be impractical.

Encountered Problems. Several factors hampered the building of this ontology.
First, ontology building in itself istime consuming. The ontology was initially built with
two months of effort from an ontology expert with four years experience in building de-
scription logic based biomedical ontologies. A second impediment is thedynamic nature
of the field. The exponential rise in the number of bioinformatics Web services over
the past year required a further two months effort to maintain and extend the ontology.
However, its content currently lags behind that needed to describe the 1000+ services
available to the community. Thirdly,lack of toolshampered the process. At the time of

3http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/

http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/

108 A Framework for Learning Web Service Domain Ontologies

development, tool support for handling separate ontology modules was minimal, hence
the existence of a single substantial ontology.

A fourth impediment was thelack of guidelineson how to build the domain spe-
cific ontology, or indeed how to relate it to upper level ontologies. Since at that time
DAML-S (the predecessor of OWL-S) was still under development, the ontology curator
devised their own generic Web service description schema based on DAML-S but much
simplified to reflect narrower requirements. Lacking guidance from the Web services
field, the curator relied on design principles employed in other large open source bio-
medical ontologies such as openGALEN (Rector and Rogers, 1999) and the TAMBIS
ontology (Baker et al., 1999).

7.2.3 Conclusions

The analysis of the ontology building process presented in the previous two subsections
lead to two major conclusions. First, ontology building was experienced as a difficult
process in both projects. This prompts to the need of a (semi-)automated solution for
this problem. In this thesis we investigate the use of ontology learning techniques for
(semi-)automating domain ontology building. Second, the Web service context presents
a set of constraints that have to be taken into account when designing a (semi-)automatic
solution. In this subsection we detail both conclusions.

1. Ontology building is difficult and should be automated.Both case studies agree on
a set of problematic factors that hampered the ontology building activity.

High number of textual documents. The ontology curators had to analyze (read, un-
derstand and identify common concepts in) ahigh number of textual documents
(over hundred in both cases) to ensure the quality of their ontologies. The number
of analyzed documents is increasing as more Web services become available.

Lack of guidelines. A second impediment was thethe lack of guidelineson what knowl-
edge such ontologies should contain and what design principles they should follow.
This resulted in different groups building different ontologies to describe Web ser-
vices in the same domain, as reportedly happened in bioinformatics (Lord et al.,
2004). A difference in modelling style can already be seen if we compare the
ontologies produced by the two case studies. In case study 1, the names of the
functionality concepts denote both the action of the functionality and the partici-
pating data structure (e.g.,BookTicket). In case study 2, only the verb denoting the
action is used in the naming the functionality concepts (e.g.,Aligning).

These factors make ontology building a time consuming activity (several months of
work) creating a demand for tools that support ontology curators to extract ontologies
from large and rapidly changing textual data collections.

2. Several constraints have to be taken into account when building an automated
ontology learning solution.We conclude that the two ontology building activities differ
in several aspects. First, the application domains are different: computer science vs.
biology related. Second, different kinds of data sources are used as a basis for ontology
building: javadoc descriptions of several tool APIs in case study 1 and detailed service
documentations in case study 2. These sources also differ in their grammatical quality,

7.3. Requirements for an Ontology Learning Solution 109

the descriptions used in case study 1 having a lower quality from this perspective. The
manually built ontologies are also different. ThemyGrid ontology is much larger and
more complex than the RDF(S) related ontology. This is not necessarily an advantage
since experience has shown that only a small fraction of the ontology is currently used
for Web service annotation.

Despite these differences there are several characteristics that are exhibited by both
case studies. These characteristics, described in detail in the next section, acted as a set
of requirements for setting up an ontology learning framework specialized for the Web
services domain (see Section 7.4).

7.3 Requirements for an Ontology Learning Solution

During our analysis of the ontology building process in the two case studies, we identified
a set of characteristics that have a major influence on the design of an ontology learning
solution. These characteristics relate to two aspects of the learning problem.

The quality of the analyzed texts.The textual comments attached to Web services are
characterized by a low grammatical quality (see Subsection 7.3.1) and several
sublanguage features (see Subsection 7.3.2). These characteristics have partially
caused the suboptinal functioning of existing ontology learning tools. We over-
came the limitations of these characteristics by carefully choosing the NLP tools
used within our ontology learning framework.

The characteristics of the learned ontology.Domain ontologies employed for Web ser-
vice descriptions conceptualize both static and procedural knowledge (see Subsec-
tion 7.3.3). However, current ontology learning efforts are centered on extracting
static knowledge. Therefore, we adapted existing techniques to the extraction of
procedural knowledge as well.

7.3.1 Dealing with Low Grammatical Quality

Low grammatical quality is a strong characteristic of the natural language descriptions
associated with Web services. Indeed, these descriptions are mostly short, informative
comments written by developers. Typically, punctuation is completely ignored and sev-
eral spelling mistakes are present. Naturally, services that have many users expose better
documentation while less-used services barely contain snippets of abbreviated text.

The evident drawback of this low grammatical quality of the analyzed texts is that
they are difficult to process with off the shelf NLP tools. Existing NLP tools were trained
on high quality newspaper corpora which offer a considerable higher quality than Web
service documentations. For example, some rule based part of speech taggers are sen-
sitive to the capitalization of words considering most capitalized words as nouns. A
possible remedy is to use preprocessing such as, e.g., capitalization of the first words of
the sentence, adding some punctuation, etc.

There are also two advantages of working with such documentations. First, these
texts usually employ simple sentences instead of using complicated phrases. This re-
duced ambiguity favors the use deeper linguistic analysis. For example, dependency
parsers work better on short sentences than on complex phrases. The second advantage

110 A Framework for Learning Web Service Domain Ontologies

is that these texts use natural language in a specific (they belong to a sublanguage). This
characteristic makes them amenable to automatic analysis as discussed in the next sub-
section.

7.3.2 Dealing with Sublanguage Characteristics

Software documentation in general, and Web service descriptions in particular, employ
natural language in a specific way. They belong to what is defined as a sublanguage
in (Grishman and Kittredge, 1986). A sublanguage is a specialized form of natural lan-
guage which is used within a particular domain or subject matter and characterized by a
specialized vocabulary, semantic relations and syntax (e.g., weather reports, real estate
advertisements). Harris, one of the first researchers to study the use of natural language
in restricted domains, introduced the notion ofsublanguage word classesdefined as sets
of words that are acceptable in the same context within a sublanguage (Harris, 1968). An
intuitive example from the medical domain is that in the contextrevealed a tumor
we might find words such asX-ray, film, scan. These words belong to the MEDICAL
TESTs sublanguage word class. There are several constraints on the co-occurrences of
word classes in a sublanguage. For example, many valid sentences in the medical sub-
language have the formMEDICAL TEST revealed DISEASEwhile sentences of the form
DISEASE revealed MEDICALTESTare meaningless in this sublanguage (even if gram-
matically valid). These constraints are calledselectional constraints.

Several word classes and selectional constraints can be determined in the Web ser-
vice sublanguage we are analyzing. For example, by considering EXTVB a word class
of verbs that indicate an extraction process (e.g.,extract, get, retrieve) a frequently oc-
curring pattern which involves this word class and the preposition “from” can be used to
easily determine the output and the source of the action.

Selectional Constraint (Pattern):
EXT_VB OUTPUT from SOURCE.

Examples:
Extract data from aaindex.
Extract cds , mrna and translations from feature tables.
Get data from cutg.
Retrieve features from a sequence.

Knowledge about word classes and their selectional constraints in a certain sublan-
guage can greatly support several Natural Language Processing tasks, such as Informa-
tion Extraction (Grishman, 2001). Using sublanguage analysis techniques has also a di-
rect applicability in Ontology Learning since word classes often denote semantic classes.
Also, selectional constraints can help to determine the members of a word class given
some knowledge about the members of other word classes involved in the restrictions.

One of the major problematic aspects of sublanguage analysis is that determining the
interesting word classes and their selectional constraints is a time consuming process.
There has been promising research on (partly) automating this process ((Grishman et al.,
1986; Riloff, 1996)). However, our intention was, for the first design of our framework,
to focus on few but frequently occurring sublanguage features that do not need laborious

7.4. A Framework for Learning Web Service Domain Ontologies 111

work to be identified. Such are patterns that do not rely on lexical information but only
on syntactic structures. For example, one of the straightforward observations was that,
in this sublanguage, almost any verb indicates an action performed by a Web service.
So, a word classACTION would include any identified verbs. Also, noun phrases that
appear after an action verb denote a participant in the action, forming the word class
ACTIONPARTICIPANT. These word classes can be easily identified by relying only on
a minimal linguistic analysis. A co-occurrence of these word classes identifies a Web
service functionality and provides the basic material for an ontology learning algorithm.

7.3.3 Learning Ontologies of Procedural Knowledge

Ontology learning has to be adapted not only to deal with the characteristics of the input
data but also to produce ontologies that are fit for the task of describing Web services.
Web service domain ontologies contain both static (i.e., domain entity concepts) and
procedural knowledge (i.e., functionalities offered by Web services). Existing ontology
learning efforts, to our knowledge, have only focused on deriving static knowledge. One
of the contributions of our work is to extend these techniques to the acquisition of proce-
dural knowledge as well.

Another factor to consider is that, due to the lack of guidelines in modelling pro-
cedural knowledge for Web services, different modelling styles are emerging (e.g., see
the two different styles adopted by the ontologies of our case studies). Our framework
provides methods for generating ontologies that follow any of the two modelling styles.
Even more, the framework can be extended to follow novel modelling styles as well.

7.4 A Framework for Learning Web Service Domain On-
tologies

In the previous section we identified a set of particularities that condition ontology learn-
ing when performed in the context of Web services. These characteristics require the
adaptation of existing ontology learning methods. Our literature study yielded that the
ontology learning field offers a wide range of different approaches to ontology acqui-
sition. However, while most work is targeted on specific domains we are not aware of
any efforts that analyze software documentation style texts. Several generic ontology
learning tools exist, most prominently Text-To-Onto (Maedche and Staab, 2004), On-
toLearn (Navigli and Velardi., 2004) or OntoLT (Buitelaar et al., 2004b), but they are
either not available for experimenting or they are workbenches of generic methods that
can be fine-tuned for a certain domain.

We tried to extract a domain ontology from our corpora using Text-to-Onto, the only
tool publicly available at the time of our experiments. The results were suboptimal due
to the strong particularities of our corpus which hampered the efficacy of the generic
methods implemented by the tool.

In this section we present an ontology learning framework which is tailored to address
the particularities of the Web services domain. We first describe the learning framework
as a whole (Section 7.4.1), then we detail each of its steps.

112 A Framework for Learning Web Service Domain Ontologies

7.4.1 Overview of the Framework

The ontology learning framework consists of several steps, as depicted in Figure 7.3. We
briefly describe these steps and show how the characteristics of the Web services context
influenced their design.

Linguistic Analysis

Extraction Patterns

2.Ontology Building

3.Ontology Pruning

1.Term Extraction

Figure 7.3: The main steps of the ontology learning framework.

1. Term Extraction. In the first step we identify words in the corpus that are relevant
for ontology building. A word or a set of words that are identified as useful for
ontology building form a “term”. Term extraction is done in two steps. First, in a
linguistic analysisphase the corpus is annotated with linguistic information. Then,
a set ofextraction rulesare applied on this linguistic information to identify the
potentially interesting terms.

The characteristics of the Web services domain influenced our design choices in
several ways. First, to overcome the limitations of the poor grammatical quality
of the texts we have employed linguistic analysis of different complexity. As it is
evident from the results of our experiments, more complex analysis led to better
results. Then, the small size of the corpus and its sublanguage features facilitated
the use of a rule-based solution. Namely, the sublanguage features of the corpora
allowed us to easily observe a few heuristics for identifying important information
and implement them in our extraction rules.

2. Ontology Building. In the second step of the framework, the previously identified
terms are centralized, analyzed and transformed in corresponding concepts and
their hierarchical relations. The ontology building phase derives both static and
procedural knowledge in the form of a hierarchy of frequent domain concepts and
a hierarchy of Web service functionalities. The strong sublanguage features of
the analyzed corpora allow extracting terms that are highly relevant for ontology
building. Therefore, it suffices to use simple ontology learning techniques and to
adapt them to the requirements of the domain (e.g., extract procedural knowledge).

3. Ontology Pruning. The low grammatical quality of the corpus as well as its sublan-
guage characteristics cause a suboptimal functioning of the used linguistic tools.

7.4. A Framework for Learning Web Service Domain Ontologies 113

Therefore, some of the derived concepts do not have any domain relevance. The
pruning stage excludes these potentially uninteresting concepts from the ontology.

In the next subsections we detail all three steps of the learning framework.

7.4.2 Step1: Term Extraction

The term extraction phase identifies (sets of) words (i.e.,terms) in the corpus that are
relevant for ontology building. This phase can be realized in different ways, for example,
by usinglinguistic analysisof different complexity. We report on two instantiations of the
framework which use two different kinds of linguistic knowledge. The first instantiation,
M POS, uses basic Part-of-Speech (POS) information while the second,M DEP, relies
on deeper dependency parsing techniques to acquire linguistic knowledge.

The different linguistic information requires implementing different extraction pat-
terns for the extraction rules:surface patternsin the first case andsyntactic patternsin
the second. While the form of these pattern based rules differ (as will be described in
what follows), the heuristics behind them remain the same. Independently of the techni-
cal implementation, we distinguish two major categories of rules according to the type
of information they derive.

Rules for identifying domain conceptsrely on the observation that domain concepts
correspond to nouns in a corpus. Given the small size of the corpora and the
concise style of the Web service documentations the majority of nouns denote po-
tentially interesting domain concepts. We extract entire noun phrases where a noun
phrase consists of a head noun preceded by an arbitrary (zero or more) number of
modifiers (nouns or adjectives).

Rules for identifying functionalities implement the previously described sublanguage
characteristic, i.e., that verbs and related nouns are good indicators of Web service
functionality.

In what follows we detail two concrete instantiations of the term extraction step which
rely on different linguistic information.

Method 1: Part-of-Speech Based Term Extraction

The first instantiation of the framework relies on the simplest linguistic information, i.e.,
part of speech tags (POS). A POS tagger is used to perform thelinguistic analysisphase.
The tagger assigns each word in the sentence a corresponding POS tag. For example, in
the sentence below, the tagger identified a verb (i.e.,find), two nouns (i.e.,sites, proteins),
an adjective (i.e.,antigenic) and a preposition (i.e.,in).

Find(VB) antigenic(JJ) sites(NN) in(Prep) proteins(NN).

Following the general steps described by the framework, a set of extraction rules are
applied on the derived linguistic information. The extraction patters which form the left
hand side of the rules aresurface patternswhich, besides POS tag linguistic information,
rely on surface knowledge such as the order of words in the sentence.

114 A Framework for Learning Web Service Domain Ontologies

1. Identifying domain concepts.We stated above that extraction patterns are written
to extract both static (domain concepts) and procedural (service functionalities) knowl-
edge. Thesurface patternthat extracts noun phrases implements the heuristic observa-
tion described above. This rule is specified in JAPE (Cunningham et al., 2000), a rich
and flexible regular expression based rule mechanism.

((DET) *
(ADJ|NOUN|POS) *
(NOUN)):np

-->:np.NP={}

The pattern in the left hand side of the rule (i.e., before “→”) identifies noun phrases.
Noun phrases are word sequences that start with zero or more determiners (identified by
the (DET)* part of the pattern). Determiners can be followed by zero or more adjec-
tives, nouns or possession indicators in any order (identified by the (ADJ|NOUN|POS)*
part of the pattern). A noun phrase mandatorily finishes with a noun, called head noun
((NOUN)). DET, ADJ, NOUN and POS are macros and act as placeholders for other
rules identifying terms that are part of these categories. These macros rely on the actual
POS tag information. For example, the ADJ macro has the following definition:

Macro: ADJ (
{Token.category == JJ, Token.kind == word} |
{Token.category == JJR, Token.kind == word} |
{Token.category == JJS, Token.kind == word}

)

The macro contains the disjunction of three patterns. This means that the macro will
fire if a word satisfies any of these three patterns. Each of these three patterns identifies
words which were assigned one of the JJ, JJR and JJS POS tags. POS tags are assigned in
the“category” featureof a “Token” annotation. Note that annotations and their features
are used in GATE (Cunningham et al., 2002) to encode various information about the
analyzed documents.

Any word sequence identified by the left hand side of a rule can be referenced in
its right hand side. The text snippet identified by a (part of) a pattern is associated to a
variable which than can be reused in the right hand side. For example,np identifies all
noun phrases. This string is then used in the right hand side of the rule which specifies
that strings denoted bynp should be annotated with theNP annotation. In the example
sentence, this rule identifies“antigenic sites”4 (ADJ NOUN) and“proteins” (NOUN)
as noun phrases.

2. Identifying functionalities. One surface patternidentifies pairs of verbs and
following noun phrases as potential functionality information to be added to the domain
ontology. Having identified noun phrases (NP) and verbs (VB) with two previous rules,
the JAPE rule for identifying and annotating functionalities is straightforward.

({VB}{NP}):funct
-->:funct.Functionality = {}

4We use this notation convention to present“terms” extracted from the corpus.

7.4. A Framework for Learning Web Service Domain Ontologies 115

In the example sentence, this rule identifies“find” “antigenic site” as a verb phrase
denoting a possible functionality in bioinformatics.

Method 2: Dependency Relation Based Term Extraction

In a second instantiation of the framework,M DEP, we experiment with richer linguis-
tic information than POS tags, i.e., dependency relations. Dependency parsing offers a
deeper linguistic analysis than POS tagging being a commonly used method in compu-
tational linguistics. A dependency relation is an asymmetric binary relation between a
word calledheadand a word calledmodifier.

We use Minipar (Lin, 1998), a state of the art dependency parser with a reported high
performance (88% precision and 80% recall with respect to dependency relations). As
an example, we list in Table 7.1 Minipar’s analysis for our example sentence. For each
word, the following information is provided : (i) its position in the sentence; (ii) its form
as it appears in the sentence; (iii) its lemma; (iv) its part of speech; (v) the name of the
dependency relation between this word and the head (e.g., obj) and (vi) the position of
the head word modified by the current word. In the example,antigenicis an adjective
which modifies the nounsites, andsitesis the object of the verbfind.

Pos. Word Lemma POS Relation Head
1 find find V - -
2 antigenic antigenic A mod 3
3 sites site N obj 1
4 in in Prep mod 3
5 proteins protein N pcpmp-n 4

Table 7.1: An example Minipar output.

The benefit of using richer linguistic information is that the potentially interesting
information can be extracted in an easier way. Naturally, while the same heuristics are
used, the extraction patterns must be re-implemented. In this case the patterns are defined
on the syntactic relations within the sentences and therefore calledsyntactic patterns.

1. Identifying domain concepts.The first category of patterns, those that identify
domain concepts, explore thenn(noun modifier of a noun) andmod(adjective modifier of
a noun) dependency relations to detect noun phrases. When such relations are identified,
the head noun together with its modifiers are annotated as being a noun phrase. Regular
expressions are not enough to encode these more complex patterns (they do not allow
variables). We use extra java code on the right hand side of the JAPE extraction rules to
accomplish this.

2. Identifying functionalities. The pattern for functionality identification relies on
the obj relationship and identifies pairs of verbs and their objects. If the object is the
head of a noun phrase then the whole noun phrase is extracted. This pattern relies on the
output of the previous NP extraction pattern.

This pattern captures the desired information in the majority of cases with a few ex-
ceptions. One of the exceptions occurs when several verbs in a sentence refer to the same
object. For example, the sentenceReplace or delete sequence sectionssuggests that both
“replace” “sequence section”and “delete” “sequence section”are valid functionali-

116 A Framework for Learning Web Service Domain Ontologies

Position Word Lemma POS Relation Head
1 replace replace V - -
2 or or U lex-mod 1
3 delete delete V lex-dep 1
4 sequence sequence N nn 5
5 sections section N obj 1

Table 7.2: Verb dependency example.

Position Word Lemma POS Relation Head
1 pick pick V - -
2 pcr pcr N nn 3
3 primers primer N obj 1
5 hybridi- hybridi- N nn 6

zation zation
6 oligos oligos N conj 3

Table 7.3: Noun dependency example.

ties in this domain that we wish to extract. However, Minipar’s output does not directly
encode the verb-object relation betweendeleteandsection(see Table 7.2). On the other
hand, the analysis denotes that there is a dependency relation between the two verbs of
the sentence. Whenever two or more verbs are related by a logical operator they should
be bound to a single noun (the object of one of the verbs). One of our extraction patterns
identifies cases when several verbs are related via thelexdepor conj relations. These
relations denote cases when verbs are related via logical operators such as “or”, “and”
(e.g.,Reverse and complement a sequence) or “,”. Often there are cases when the logical
dependency between more than two verbs is partially specified and we have to explicitly
define all dependents based on the transitivity of this relation (e.g., if dependency(v1,v2)
and dependency(v2,v3) then dependency(v1,v3)).

Another exception is when several objects are in a conjunctive relation. For example,
from Pick pcr primers and hybridization oligoswe wish to extract both“pick” “pcr
primer” and“pick” “hybridization oligos” functionalities. However, the Minipar output
specifies only the first verb-object relation (see Table 7.3). Nevertheless, knowing that
there is a conjunctive relation betweenprimersandoligoswe can deduce thatoligosalso
plays an object relation with respect to the verbpick. Just as with verbs, we have written
a pattern that identifies conjunctive NPs and deduces the additional knowledge. The
patterns that identify dependency of verbs and objects are performed before the pattern
that identifies functionalities.

Summarizing Section 7.4.2, note that the sublanguage nature of the Web service spe-
cific corpora allowed us to extract sufficient material for ontology building by using only
relatively simple, off the shelf natural language processing techniques. There are several
advantages of using these simple extraction methods. First, they are fast. Second, they
rely on off the shelf, thoroughly researched and high-performance techniques (POS tag-
ging, dependency parsing). Finally, the pattern based extraction rules can be adjusted or

7.4. A Framework for Learning Web Service Domain Ontologies 117

extended by the users of the system according to the needs of their particular data sets.

7.4.3 Step2: Ontology Building

The second step of our framework, ontology building, collects the results of the pattern
based extraction. Noun phrases are a basis for deriving a data structure hierarchy and the
functionality information is used for building a functionality hierarchy. We employ the
lemma (i.e., base form) of the extracted terms for ontology building.

Site

AntigenicSite

CleavageSite

PotentialProteoliticCleavageSite

RestrictionEnzymeCleavageSite

SignalPeptideCleavageSite

MarSarSite
RestrictionCutSite

RestrictionSite

Figure 7.4: The automatically extractedSiteconcept.

Building the data structure hierarchy. We observed that many of the terms men-
tioned in the analyzed corpora (and especially in the bioinformatics corpus) have a high
level of compositionality, in the sense that they incorporate other meaningful terms as
proper substrings. Our observation is confirmed by a recent study of the Gene Ontol-
ogy terms which proved that 63,5% of all terms in this domain are compositional in
nature (Ogren et al., 2004). Another observation, also proved by this study, is that com-
positionality indicates the existence of a semantic relationship between terms. If a term
t1 is obtained by adding a modifier in to another termt2 thent1 is more specific thant2.
This translates in the ontological subsumption relationship.

The hierarchy building algorithm reflects these observations. If a concept A’s lex-
icalization is a proper substringendinganother concept B’s lexicalization (e.g.,Site in
AntigenicSite) then A is more generic than B and the corresponding subsumption rela-
tionship is added to the ontology. Also, if the lexicalization of two concepts B and C end
with the same substring we speculate that this substring represents a valid domain con-
cept (even if it does not appear as a stand alone term in the corpus) and add it as a parent
concept for B and C. As an example, Figure 7.4 depicts theSitedata structure hierarchy.
Such compositionality based hierarchy building, also calledvertical relations, has been
used in (Buitelaar et al., 2004b; Velardi et al., 2001) and (Cimiano et al., 2004c).

Building the functionality hierarchy. There are no clear guidelines in the field of
semantic Web services about how functionality hierarchies should look like. The OWL-
S/IRS/WSMO style of modelling functionalities includes both the verb of the action and
a directly involved data element in the functionality (e.g.,BookTicket). This modelling
style was followed in case study 1 (see Figure 7.1). On the other hand, in the bioinfor-
matics domain ontology developed in case study 2, functionalities are concepts denoting
action (e.g.,Aligning) without any connection to the data structures see (Figure 7.2). We
provide ontology building modules that produce functionality hierarchies fulfilling either

118 A Framework for Learning Web Service Domain Ontologies

of these modelling styles, i.e., creating verb-noun phrase (e.g.,DeleteSequenceSection)
or only verb (e.g.,Deleting) based concepts.

Note that we do not take a strong stand on the right way to model functionality hierar-
chies. There are several reasons for this. First, in this initial iteration of our work we were
more concerned with correctly extracting the needed information than with the way it is
conceptualized (once the right information is extracted it can be conceptualized in sev-
eral different ways). Second, while we acknowledge that this is an important issue that
requires further investigation, we believe that modelling guidelines should be provided
by those who are using the semantic Web services technology. In fact, our observation,
based on the experimental work that we performed, is that different domains would ben-
efit from different ways of conceptualizing the functionality knowledge. Therefore, we
believe that as the technology will be used in more domains, common guidelines will
emerge on the appropriate ways to model functionalities (probably dependent on domain
characteristics). To this end we have not constrained the use of a particular conceptualiza-
tion in our tool but allowed its extension with different functionality hierarchy building
modules.

7.4.4 Step3: Ontology Pruning

The first two main steps of the framework, term extraction and ontology building, result
in an initial ontology. These steps only rely on our initial heuristics to select the po-
tential concepts. However, even if they capture strong sublanguage characteristics, our
heuristics are not perfect and some of the derived concepts are not domain relevant. Also,
several irrelevant concepts are derived due to the suboptimal functioning of NLP tools
on the low quality texts. The pruning module aims to filter out irrelevant concepts from
the learned ontologies.

Maedche describes two major strategies for performing ontology pruning (Maedche,
2002). First, thebaseline pruningstrategy is based on the assumption that frequent terms
in a corpus are likely to denote domain concepts. Conversely, concepts that are based
on low frequency terms should be eliminated from the ontology. The second pruning
strategy,relative pruning, is based both on the frequency of the terms in the analyzed
corpus and in an independent reference corpus. Only concepts that rely on terms that are
frequent in both analyzed and relative corpora will be maintained in the ontology.

Lacking a reference corpus in both domains, we use abaseline pruningstrategy in
our current implementations. We consider the average frequency (Freq) of then learned
concepts as a threshold value and prune all concepts that have a lower frequency than
this value.

Freq =
∑n

i=1 freq(concepti)
n

Another heuristic for the pruning is based on the observation that noun phrases in-
cluded within a functionality annotation by our rules are more likely to denote domain
concepts. Therefore, if a low frequency data structure concept’s lexicalization was iden-
tified within a functionality annotation and the correspondingFunctionalityconcept was
not pruned then the data structure concept will not be pruned either.

7.4. A Framework for Learning Web Service Domain Ontologies 119

7.4.5 Possible Extensions of the Framework

The extraction framework and its two instantiations alow extracting basic information
about Web services, such as functionality types and domain concepts that play the role of
parameters. Ongoing experiments explore new ways to extend this basic framework in
order to acquire richer information about the services. In this section we briefly overview
some of our future plans for extending the framework. Note, however, that the next
chapter, presents only the evaluation of the basic framework (without these extensions).

A first possible extension should not only identify parameters but should also be able
to distinguish which of them are inputs or outputs. For this, more refined rules can be
defined. For example, the word “given” in front of a noun phrase often indicates that it
plays the role of an input. We are currently working on identifying such heuristics. Some
example heuristics that would identify inputs are:

* given NP(,NP) *

e.g., Gets current weather given a zip code.
e.g., Given amount, interest rate, and term, this service
will calculate load payments.

* VB(Action) NP(output) between NPs(inputs)

e.g., Calculates the distance between two U.S. ZIP codes.
e.g., Translates text between a variety of languages.

The second source of information for determining inputs, outputs and functionalities
are the WSDL files that describe Web services. In particular, the names of the methods
and messages contain useful information about the service. From preliminary investiga-
tions it seams that WSDL files are often more accurate in providing this information than
the textual descriptions attached to Web services. Our idea is that a combination of both
sources should give the best results.

Besides operational features, such as inputs and outputs, other features can be im-
portant when choosing a service. In particular the geographic area where the service is
active is an important consideration. Our ontology learning framework should be able
to extract the geographical constraints indicated by Web services (these concepts can be
used to describe the geographic radius of the service). Note that this issue is becoming
more evident in online Web service repositories where services from different parts of
the world and acting in different geographic regions are registered.

Some online Web service repositories attempt to deduce this feature from the country
extension of the URL where the service description is published. However, this seldom
indicates the geographic region for which the service was built. For example, a Web
service that“validates and enhances contact information for any address in India”can
be published at a .com address5. Conversely, a Web service whose URL contains a
certain country identifier (e.g., France6) might perform a service that is independent of
geographic constraints (e.g., in the case of the example service - cipher/decipher).

5http://ws.strikeiron.com/IndianAddressVerification?WSDL
6http://www.quisque.com/fr/chasses/crypto/cesar.asmx?WSDL

http://ws.strikeiron.com/IndianAddressVerification?WSDL
http://www.quisque.com/fr/chasses/crypto/cesar.asmx?WSDL

120 A Framework for Learning Web Service Domain Ontologies

An alternative solution to determining geographic constraints for a service is to use
Named Entity Recognition (NER) systems. Such systems automatically identify geo-
graphic entities, persons and organizations in free text. NER technology matured in the
previous decades to reach performances of 80-90% Precision and Recall for a generic
system (such as ANNIE) and 90-95% Precision and Recall for systems that are tuned to
the needs of particular domains (Cunningham et al., 2002).

Search through all Swedish telephone subscribers.

Search UK Index.

This webservice return longitude, latitude and height
from a given city. Only for France.

Lookup ATM Locations by Zip Code (US Only).

For example, for the Web service descriptions above, our experiments show that the
ANNIE NER system recognizesSwedish, UK, US, Franceas references to the corre-
sponding countries. We observed that, in some cases, the restriction is strengthened by
the use of “only” in constructions such as “only for/in country” or “country only”. These
constructs can be easily identified using a regular expression based rule mechanism, for
example in the term extraction step of our framework.

Another possible extension of the framework is at the level of used algorithms. For
example, more complex algorithms should be used to derive the taxonomy hierarchy. In
this direction we experimented with encoding a set of Hearst based patterns. However,
the occurrences of such patterns are rare in the textual sources attached to Web services.
In fact, when analyzing around 450 descriptions (extracted from the SalCentral7 online
Web service repository), only 10 contained subsumption information identifiable with
Hearst patterns. We will further explore the use of WordNet for hierarchy learning in this
domain.

7.5 Implementation Details

An important part of our work was the implementation of a prototype system. We aimed
to build a system that is easy to use both by developers and users of ontology learning
methods. Such a user friendly tool brings us closer to the ultimate goal of our work,
that of facilitating the process of building Web service domain ontologies. First, we aim
for a modular, easy to run and understand implementation that can be easily modified
and adapted to new application domains. We achieve this by using the GATE frame-
work (Cunningham et al., 2002) (Sections 7.5.1 and 7.5.2). Second, we use visual tech-
niques to provide a user friendly and easy to understand presentation of several data sets
derived during ontology learning (i.e, the extracted terms, the learned ontology) in order
to support frequently occurring tasks (Section 7.5.3).

7http://www.salcentral.com/

http://www.salcentral.com/

7.5. Implementation Details 121

7.5.1 The GATE Framework

As developers of ontology learning solutions we found that GATE offered several fea-
tures important for the development of ontology learning tools, such as, modularity,
traceability, portability and evaluation. Indeed, GATE is one of the few available generic
NLP frameworks that has been developed to offer“robustness, re-usability, experimen-
tal repeatability and scalability”(Bontcheva et al., 2004). Also, to our knowledge, it is
the only NLP framework to offer support for ontology based language engineering. The
application that we built, being part of the framework, inherits these features.

GATE is an infrastructure and framework for developing natural language processing
applications. Processing Resources(i.e., processing algorithms such as POS taggers,
dependency parsers, etc) andLanguage Resources(i.e., data elements such as corpora
and ontologies) can be combined in applications either programmatically or visually.
GATE also offers a wide range of Processing Resources and the possibility to extend this
set by own, customized modules.

Figure 7.5: Building an application with the GATE user interface.

Modularity. GATE allows for building modular applications. Applications can be
built up by pipelining a set of Processing Resources either programmatically or visually.
Using GATE one can visually load NLP modules (e.g., tokenizers, POS taggers) and data
structures (e.g., corpora, ontologies) and combine them in different applications. For
example, Figure 7.5 depicts the GATE user interface. The left pane shows the currently
loaded Processing and Language Resources. The right pane shows how these resources
are combined in a pipeline to build up an application (calledpostag). These resources run
over all the documents provided by thetestcorpus. Note that this application performs

122 A Framework for Learning Web Service Domain Ontologies

the Linguistic Analysis and Term Extraction steps of the part of speech based ontology
learning method (MPOS).

Figure 7.6: Inspecting annotations with the GATE user interface.

Traceability. Besides easy combination of Processing Resources, GATE also pro-
vides a user interface for the inspection of the results produced by each of these resources.
Input and output data to processing resources is represented in terms of so called “anno-
tations”. An annotation is a description which is added to a certain part of the analyzed
text. Annotations can be added on individual words, word compounds, sentences or para-
graphs. Annotations can be easily visualized in GATE. In Figure 7.6 we inspect one of
the documents in the corpus (highlighted in the left pane, under Language Resources)
and all its annotations. The text of the document can be seen in the bottom-middle pane.
The right pane contains all annotations, grouped in so called annotation sets. For exam-
ple, theTokensannotation set contains annotations that depict different information. The
Tokenannotation is added to identify all tokens in the sentence. TheNPannotation labels
all noun phrases in the text. TheFunctionalityannotation set contain only theFunctan-
notation which spreads on word combinations that might denote a functionality offered
by the service. When one annotation is selected all its instances are highlighted in the
text. In our case bothNP andFunct annotations are highlighted. Note that there can
be overlaps between annotations. Besides their name, annotations can contain a set of
features which are attribute - value pairs. One can view these features in the top-middle
pane. For example, eachFunct annotation has a feature that contains the label of the
noun phrase (np) and a feature whose value is the verb that participates in the function-
ality (verb). These annotations can be easily inspected for all documents allowing an

7.5. Implementation Details 123

insight in the results of the Processing Resources.
Portability. By using this modular architecture of GATE it is easy to adapt an ap-

plication to novel needs by simply replacing or modifying some of the modules. For
example, one can use different language processing modules, or adjust some of the JAPE
rules.

Evaluation. GATE also offers two mechanisms for quantitative evaluation. The
first one,AnnotationDiff, compares two sets of annotations added to a document. This
functionality is useful to compare an automatically annotated document with a manually
annotated version of the same document or one could compare the annotations added by
two different systems (or different versions of the same system). The other evaluation
tool, the benchmarking tool, performs the evaluation at a corpus level rather than at
document level. The tool compares how a given annotating is assigned toall documents
in two different versions of a corpus. Precision, Recall and F-measure are compared at
document level and then at corpus level.

ANNIE English Tokenizer

ANNIE Sentence Splitter

ANNIE POS Tagger

JAPE Rules M_POS

OntologyBuilding&Pruning

MINIPAR(external)

JAPE Rules M_DEP

OntologyBuilding&Pruning

M_POS

M_DEP

Figure 7.7: The GATE implementation of MPOS and MDEP.

7.5.2 Two Concrete Implementations

We implemented both ontology learning methods by using GATE. Many of the off the
shelf techniques on which our methods rely on were readily available in GATE. For ex-
ample (as depicted in the left hand side of Figure 7.7), theLinguistic Analysisstep of
the Part of Speech based method,M POS, was entirely performed using processing re-
sources offered by GATE: a tokenizer (ANNIE English Tokenizer), a sentence splitter
(ANNIE Sentence Splitter) and the Hepple POS tagger (Hepple, 2000) (available as the
ANNIE POS Taggerprocessing resource). In the case of the dependency based method,
M DEP, (see the right hand side of the Figure 7.7), we performed the linguistic pre-
processing external to GATE by using MINIPAR (Lin, 1998). For both approaches,
theExtraction patternswere implemented using the JAPE regular expression based rule
mechanism (Cunningham et al., 2000) which is part of GATE. The final two steps are
jointly performed by a single module (OntologyBuilding&Pruning) which was imple-
mented as a GATE Processing Resources and therefore it is usable from the GATE GUI.

124 A Framework for Learning Web Service Domain Ontologies

The data used by our methods (such as the linguistic information or the structures iden-
tified by patterns) is represented asannotationson the analyzed texts. Both extraction
rules and individual modules operate on these annotations and represent their output as
annotations.

We greatly benefitted from the support of GATE during implementation. To briefly
mention the most important benefits, first, we couldreuseseveral existing libraries for
document management and ontology representation. Second, by declaring parts of our
method as GATE Processing Resources and using the offered annotation based system
as a data transfer mechanism between these parts, we can run and manage our tool via
the GATE GUI. It is now possible (1) to build and configure modular applications by
visually selecting existing Processing Resources (our own or provided by GATE), (2) to
select different corpora or (3) to inspect the annotation based output of each processing
module. All these allow easy debugging and make the extraction process transparent to
the end users thus increasing the usability of the tool. Finally, we have used thedata
storageandevaluationfacilities of GATE during the development and fine-tuning stages
of our prototype.

7.5.3 Visual Support for Ontology Learning

In the previous section we discussed the implementation details of our prototype and
showed how by using GATE we achieved usability features important for developers. In
this section we discuss how visual techniques can be used to present the learned ontolo-
gies and therefore, to make our tool easier to use both for developers and end users.

Some systems already exist that exploit visualization techniques for the Semantic
Web. For example, ontology authoring tools (Gomez-Perez, 2002) offer visualization
facilities that support the needs of the ontology development stage. Our analysis of these
tools (detailed in (Fluit et al., 2004)) concluded that the visualizations used by authoring
tools are mainly schema based. The reason for this is that the users of these tools are
ontology engineers that need to get an insight in the complexity of the ontology that
they build. Therefore, these tools employ schema visualization techniques that primarily
focus on the structure of the ontology, i.e., its concepts and their relations. Schema
visualizations often do not make any graphical distinction between schema information
and instances. As a result, they do not scale to visualise many instances. Also, they fail
to show instance level overlaps between classes.

Besides ontology authoring tools, we are aware of three ontology learning approaches
that employ visual techniques. First, the Text-To-Onto (Maedche and Staab, 2004) tool
employs a TouchGraph based schema visualization to present the extracted ontologies.
Second, in conjunction with the work presented in (Reinberger et al., 2004), a visual-
ization technique is developed to present related terms (lexons) extracted from a cor-
pus (Pretorius, 2004). Finally, Text2Onto also relies on a graph based visualization of
the extracted concepts. While useful, these visualizations only depict relations between
entities of the same type (i.e., concepts, terms). However, due to the complexity of on-
tology learning, it is often crucial to know how entities of different types interrelate (e.g.,
from which documents was a concept extracted?). To achieve this we used the Cluster
Map (Fluit et al., 2002), a visual technique developed by the Dutch company Aduna8.

8http://aduna.biz

http://aduna.biz

7.5. Implementation Details 125

Note that, unlike the commonly used schema based visualization techniques, the Cluster
Map technique was optimized for visualizing large, instantiated ontologies.

The Cluster Map is used to visualize light-weight ontologies that describe a domain
through a set of classes (concepts) and their hierarchical relation. The technique visual-
izesinstancesof a set ofclassesaccording to their classification into these classes. Due
to the specialization relationship that is encoded in the hierarchy, the set of objects in
a subclass is a subset of its superclass. The set of subclasses of a class isincomplete
when their union does not contain all the objects of the superclass. Classes that share
instances areoverlappingif no specialization relationship holds between them. These
characteristics are quit common for taxonomies. However, they are difficult to show sat-
isfactorily in textual representations or in schema like techniques that are currently used
in the Semantic Web. The Cluster Map offers an alternative in this matter.

Figure 7.8: Cluster Map example.

Figure 7.8 shows an example Cluster Map that visualizes a set of documents classi-
fied according to topics discussed in those documents. Each small sphere represents an
instance. The classes are represented as rounded rectangles, stating their names and car-
dinalities. Directed edges connect classes and point from specific to generic (e.g.,Load
Managementis a subclass ofManagement). Balloon-shaped edges connect instances to
their most specific class(es). Instances with the same class membership are grouped in
clusters (similar to Venn Diagrams). Our example contains four clusters; one of them
represents the overlap of theLoad managementandEnergy Managementclasses.

The organization of the graph is computed using a variant of the well-known spring-
embedder algorithm (Eades, 1984). On the one hand the class and cluster nodes repel
each other. On the other hand the edges, connecting two classes or clusters to their
classes, produce an attractive force between the connected nodes; i.e., they work as
“springs”.

The added value of our visualisation lies in its expressivity. The classes and their
relationships (the vocabulary of the domain) are easy to detect. Also, it is immediately
apparent which items belong to one or multiple classes, which classes overlap (e.g.,En-
ergyManagementandLoadManagement) and which do not. The subclasses of the root
class areincompleteas their union does not cover the superclass: some members of
Managementwere not further classified.

Another interesting aspect of the visualization is that geometric closeness in the map
is related to semantic closeness. This is a consequence of the graph layout algorithm.

126 A Framework for Learning Web Service Domain Ontologies

Classesare semantically close if they share many objects. Indeed, the more objects two
classes share, the closer they are represented.Objectsare semantically close if they be-
long to the same class(es). Indeed, objects with the same class membership are clustered.

In our prototype, we adapted the Cluster Map to support frequently occurring situa-
tions both during the development and the deployment of an ontology learning method
(see details in (Sabou, 2005b)). These different visualizations have been embedded in
the GATE framework as plugins. One of the plugins supports the evaluation of ontology
extraction and as such complements the text based evaluation tools offered by GATE.
The second plugin, demonstrated here, visualizes the extracted ontology and shows how
the derived concepts relate based on the documents from where they were extracted. Fi-
nally, the third plugin helps identifying concepts that have been derived from several data
sources in cases when ontology learning is performed on multiple different corpora.

Situation Description. Ontology learning methods are not perfect. Besides often
extracting irrelevant concepts, they are limited in grouping concepts under more generic
concepts (discovering abstractions) as well as discovering relations between them. There-
fore, any automatically extracted ontology has to be inspected by a domain expert which
judges the domain relevance of the concepts and enriches the ontology with important
abstractions and relations. To understand the meaning of a concept and to evaluate its
correctness, it is often necessary to inspect the contexts in which it is used in the corpus,
i.e., to access the documents from which it was extracted. Further, to discover new rela-
tions between concepts (or possible abstractions) an insight has to be provided on how a
selected set of concepts interrelate at document level.

Proposed Visualization.To support these analysis tasks, we use the Cluster Map in
a “traditional” way: each extracted concept forms a Cluster Map class and the documents
from which it was extracted become its instances. Each document instance contains the
position of the terms which resulted in deriving concepts. Documents from which no
concept was learned are added under theTopclass.

Examples.This visualization allows accessing all documents from which a concept
was learned. This quick access toevidenceinformation is essential for understanding the
intended meaning of the concept.

To detect relations between a set of extracted concepts, we visualize these concepts
and analyze the resulting image. For example, we visualized the functionality concepts
extracted for the domain of bioinformatics. We observed that two groups of intercon-
nected functionalities emerged (see part A and B of Figure 7.9). Each group represents
functionalities that are often offered simultaneously by Web services. At a closer look
we observe that the first group (part A) contains functionalities that search or modify
content, while in the second group (part B) we find functionalities concerned more with
input/output operations such asReadingor Writing. The domain expert can easily access
(with a simple mouse click) and inspect the documents that interrelate these concepts
and decide if it is the case to set up new abstract categories (e.g.,ContentServicesand
InputOutputServices).

In another example, part D of Figure 7.9, we visualized both Method (Evaluatingand
Creating) and DataStructure type concepts derived from our first case study on RDF(S)
stores. On the obtained visualization two groups of terms are formed around the verbs.
The visual closeness of these concepts rightly suggests that they have some shared char-
acteristics. The first group (byEvaluation) contains concepts that are involved in eval-
uating a query (i.e., aSesameServer, a Repositoryon that server as well as aQuery).

7.5. Implementation Details 127

Figure 7.9: Understanding the extracted ontology.A), B) Related Web service Functionali-
ties; C)MethodandDataStructureconcept type identification in the corpus; D) Detecting similar
concepts based on verb’s selectional restriction.

The second group contains concepts that describe elements of the RDF data model. In
principle, this visualization is equivalent with theselectional restrictiontechnique which
is often used in ontology learning to detect semantically related concepts (e.g. (Cimiano
et al., 2003)). This technique identifies terms that often occur in the same syntactic con-
text as likely to be semantically related. For example, the objects of the verbto drive in
He drives the carandShe drives a truckshare the characteristic of being drivable and
therefore belong to the same semantic class (e.g.,Vehicle).

Another task frequently performed by the method’s developer is to measure how well
the ontology covers the domain. For example, in our application domain we expect that
each document should be described by at least oneMethodand oneDataStructurecon-
cept. However, when visualizing all the documents in the corpus (Top), all documents
from which aMethodconcept was extracted and all documents resulting in aDataS-
tructure concept (see part C) we found out that only 101 out of 156 documents fulfil
our expectation and that no concepts were extracted from 26 documents. It is easy to
filter out documents that provided no (or only one type of) concepts and investigate the
reasons. Solving them can improve the ontology learning.

In this section we described a set of visualizations that support frequently occur-
ring tasks during the development and the deployment of ontology learning tools. To
build these visualizations, we exploit the fact that Cluster Maps visualize the relations
between two types of entities (instances and classes). In the presented visualizations dif-
ferent types of ontology learning related entities (documents, terms, concepts, document
sources) play the role of instances and classes to support different tasks. Our conclusion
is that the Cluster Map technique offers a powerful visual paradigm that can easily be
adapted to support a wide range of generic (e.g., analysis, comparison, monitoring) or
ontology learning specific (e.g., evaluation) tasks. The interactive GUI allows creating

128 A Framework for Learning Web Service Domain Ontologies

different visualizations just with a few mouse-clicks.
We are aware that, while flexible, the Cluster Map paradigm requires a certain amount

of training to be used to its full potential. This is especially true when different entities
play the role of classes and instances. For a novice user it can be confusing when chang-
ing between these different visualizations.

More generally, we believe that visual techniques can enhance the development and
deployment of ontology learning methods. Naturally, the Cluster Map isNOT the only
technique that can be used. Other techniques might be useful to support these (or other)
situations. These experiments, even if not backed up by a rigorous user study, are en-
couraging for further pursuing the integration of ontology learning solutions with visual
techniques.

7.6 Summary

In this chapter we analyzed the domain ontology building process in two case studies.
The conclusion of this study was that the high number of Web services that exist per
domain as well as current lack of modelling guidelines hamper the building process and
motivate the development of tools that support ontology building in this domain. We also
observed a set of characteristics that are specific to the Web services context and which
need to be addressed when designing (semi-)automatic solution to this problem.

The design of the presented ontology learning framework is influenced by our find-
ings. The framework aims to provide support when dealing with a high number of Web
services. It also allows deriving ontologies that are built according to different modelling
styles in order to compensate for the current lack of guidelines in this direction. Further,
the characteristics of the Web services context (related to the quality of the analyzed data
sets and the nature of the derived knowledge) influenced the main design decisions such
as the choice of NLP techniques, the rationale behind the extraction rules or the output
format of the conceptualization stage. Finally, it is notable that relatively simple, off the
shelf natural language processing techniques sufficed for implementing the framework.
These rely on well studied techniques, are fast and can be easily adjusted to particular
needs of the domain. We have implemented our framework in a prototype system by
using the GATE NLP workbench and extending it with visual support for presenting the
results of ontology learning methods.

In the next chapter we detail issues related to the evaluation of the framework.

Chapter 8

Evaluation

In the previous chapter we presented a framework that adapts ontology learning in the
context of Web services. We also described two learning methods based on this frame-
work that employ linguistic analysis of different complexity. In this chapter we evaluate
the framework. We evaluate both methods in two different domains, verifying the quality
of the extracted ontologies against high quality hand-built ontologies of these domains.
This evaluation indicates that (1) our extraction is indeed applicable in different domains,
that (2) deeper linguistic analysis leads to better results and that (3) good results can be
achieved using relatively simple off the shelf techniques.

We continuously extended and updated our view on ontology learning evaluation.
Our first considerations on this issue were published in the ECAI-2004 Workshop on
Ontology Learning and Population (ECAI-OLP) (Sabou, 2004a). Then the metrics were
refined in a follow-up book chapter (Sabou, 2005a), in two papers published at the Third
International Semantic Web Conference (Sabou, 2004b) and the 14th International World
Wide Web Conference (Sabou et al., 2005a) and in an article that appeared in the Journal
of Web Semantics (Sabou et al., 2005b).

8.1 Introduction

Evaluation is an integral part of the development of any tool or algorithm. The evalua-
tion of the previously presented framework represented an important part of our work.
Performing this evaluation was not straightforward because there are no standard bench-
marks nor well-defined criteria for evaluating ontology learning algorithms. We per-
formed two partial evaluations as we developed each of the methods in the framework.
We verified the performance of the part of speech method (M POS) on the data sets pro-
vided by case study 1 (Sabou, 2004b) and we evaluated the dependency parsing based
method (M DEP) in the context of case study 2 (Sabou et al., 2005a). However, these
evaluation experiments, besides applying the methods on two different data sets, used
slightly different evaluation metrics (as our strategy was evolving). Therefore, these par-
tial results are not enough to answer the following questions:

Q1: Is the framework applicable across domains?The goal of our work is to build a
framework that adapts ontology learning to the context of Web services but which

130 Evaluation

is independent of the domain of the analyzed services. A proof of this domain
independence would be that both methods would perform similarly on data sets
from different domains.

Q2: Which extraction method performs best? Since our methods were evaluated on
different data sets and using slightly different evaluation criteria, it is hard to com-
pare them. To achieve a fair comparison we should (1) apply the methods on the
same data sets and (2) use the same set of evaluation strategy and metrics.

Our approach to find out the answer to these questions is to take evaluation a step
further by applying both methods on data drawn from both case studies1. Also, we use
the same evaluation criteria for assessing the methods.

Since ontology learning evaluation is a non-trivial task, we start this chapter by giving
an overview of some evaluation practices used by the community (Section 8.2). We use
a subset of these practices for our evaluation as described in detail in Section 8.3. We
describe the experimental corpora in Section 8.4 and discuss our experimental results in
Section 8.5. We finally conclude in Section 8.6.

8.2 Ontology Learning Evaluation Practices

Evaluation of ontology learning is an important but largely unsolved issue, as reported by
papers in a recent workshop (Buitelaar et al., 2004a). Two evaluation stages are typically
performed when evaluating text based ontology learning methods:

Term level evaluation assesses the performance of extracting terms relevant for ontol-
ogy learning from the corpus. Naturally, the quality of term extraction has a direct
influence on the quality of the built ontology. This evaluation can easily be per-
formed by using the well-established recall/precision metrics.

Ontology quality evaluation assesses the quality of the learned ontology. Two differ-
ent ontology evaluation approaches were identified by Maedche (Maedche, 2002)
depending on what is considered a “quality” ontology.

In anapplication specific ontology evaluationthe quality of an ontology is directly
proportional to the performance of an application that uses it. Several papers report on
successfully using ontologies in various tasks such as text clustering and classification
tasks (Hotho et al., 2003; Bloehdorn and Hotho, 2004) or information extraction (Faure
and Poibeau, 2000). However, initial considerations on task-based ontology evaluation
are only reported in (Porzel and Malaka, 2004). Two problematic issues surface for
such evaluations. First, it is often difficult to asses the quality of the supported task or
the performance of the application (e.g., search). Second, an experimental environment
needs to be created where no other factors but the ontology influences the performance of
the application. However, in the case of complex applications it is often hard to achieve
such a “clean” experimental environment.

In a Gold Standard based ontology evaluationthe quality of the ontology is ex-
pressed by its similarity to a manually builtGold Standard ontology. In some cases the

1All experimental data (corpora, extracted and gold standard ontologies) can be downloaded fromhttp:
//www.cs.vu.nl/ ∼marta/experiments/extraction.html .

http://www.cs.vu.nl/~marta/experiments/extraction.html
http://www.cs.vu.nl/~marta/experiments/extraction.html

8.3. Chosen Evaluation Criteria 131

authors use a Gold Standard ontology which was extracted from different corpora than
used by the learning method ((Reinberger and Spyns, 2004)). Other authors use Gold
Standard ontologies extracted strictly from the automatically analyzed corpora ((Cimi-
ano et al., 2004b, 2003)). One of the difficulties encountered by this approach is that
comparing two ontologies is rather difficult. According to (Maedche and Staab, 2002),
one of the few works on measuring the similarity between ontologies, one can compare
ontologies at two different levels: lexical and conceptual. Lexical comparison assesses
the similarity between the lexicons (set of labels denoting concepts) of the two ontolo-
gies. At the conceptual level the taxonomic structures and the relations in the ontologies
are compared.

The Gold Standard evaluation approach assumes that the Gold Standard ontology
contains all the extractable concepts from a certain corpus and it contains only those.
In reality though, Gold Standards omit many potential concepts in the corpus and intro-
duce concepts from other sources (such as the domain knowledge of the expert). The
evaluation results are influenced by these imperfections of the Gold Standard. To com-
pensate for these errors, aconcept-per-concept evaluation by a domain expertcan be
performed. Such an evaluation is presented in (Navigli et al., 2004). Expert evaluation
can be performed also in cases when a Gold Standard is not available and its construc-
tion is too costly just for the sake of the experiment. Ideally, the evaluation should be
performed by several experts.

8.3 Chosen Evaluation Criteria

We employ a combination of these evaluation strategiesto asses and comparethe quality
of the implemented learning methods. We first asses the performance of the term extrac-
tion algorithm (marked 1 in Figure 8.1). To evaluate ontology quality we first rely on the
domain experts’ concept per concept based evaluation (2). The domain experts in both
case studies are the curators of the corresponding Gold Standard ontologies. Then, we
compare the extracted ontologies to the Gold Standard ontologies provided by each case
study (3). In what follows, we present the methodology and metrics for performing each
type of evaluation.

8.3.1 Term Extraction

This evaluation stage is only concerned with the performance of the term extraction mod-
ules. To measure the performance of these modules we manually identified all the rel-
evant terms to be extracted from the corpus. Misspelled terms are not considered for
extraction. We used the Benchmark Evaluation Tool offered by GATE to compare this
set of terms with the ones that were identified through pattern based extraction. We use
Term Recall (TRecall) to quantify the ratio of (manually classified) relevant terms that
are extracted from the analyzed corpus (correctextracted) over all terms to be extracted
from the corpus (allcorpus). Term Precision (TPrecision) denotes the ratio of correctly
extracted terms over all extracted terms (allextracted). We also compute theFmeasure
by assigning an equal importance to both precision and recall.

TRecall =
correctextracted

allcorpus
; TPrecision =

correctextracted

allextracted

132 Evaluation

corpus

expert’s domain

knowledge

learned ontologyGold Standard

3. Ontology

Comparison

1. Term
Extra

ctio
non

to
lo

gy
le

ar
ni

ng

m
a
n
u
a
l o

n
to

lo
g
y

b
u
ild

in
g

Terms

2. Expert

Evaluation

learning/building

evaluation

Figure 8.1: Chosen evaluation strategies.

Fmeasure =
2 ∗ TPrecision ∗ TRecall

TPrecision + TRecall

8.3.2 Expert Evaluation

In this evaluation stage the domain expert performs a concept per concept evaluation of
the learned ontology. We compute the ontology precision which represents the percent-
age of domain relevant concepts in the extracted ontology (OPrecision). We observed
that manually built Gold Standards often omit several concepts from the corpus or in-
troduce concepts that are not named in the corpus. Therefore, for this evaluation step,
a domain expert distinguishes between two categories of relevant concepts: those that
exist in the Gold Standard (correct) and those omitted by the Gold Standard (new). Ir-
relevant concepts are markedspurious. In terms of these three categories of concepts,
OPrecision is defined as follows:

OPrecision =
correct + new

correct + new + spurious

Note that, since in this evaluation we only wish to estimate how domain representa-
tive the learned ontology is (i.e., precision), we do not need to calculate the number of
Gold Standard concepts that have not been discovered by the automatic method (though
this number simply represents the difference between the number of all Gold Standard
concepts and the number of correctly identified concepts). We will consider the recall of
the learning method in next Section 8.3.3.

We also evaluate the quality of the taxonomic relations. For this we count the number
of taxonomic relations discovered between domain relevant (i.e.,correct andnew) con-
cepts (allRelsRelevant). Then an expert assesses how many of these taxonomic relations

8.3. Chosen Evaluation Criteria 133

express indeed anisA relation(allRelsCorrect). TheTaxoPrecision metric is the ratio
of correctly identified isA relations over all taxonomic relations between domain relevant
concepts that were automatically discovered.

TaxoPrecision =
allRelsCorrect

allRelsRelevant

Useful side-results of the expert evaluation were the opinion and suggestions of the
experts (see Section 8.5.2). This qualitative evaluation provided valuable ideas for further
improvements.

8.3.3 Ontology Comparison

In the final evaluation stage we compare each extracted ontology to the manually built
Gold Standard ontologies in the corresponding domain. For the lexical comparison, our
first metric denotes the shared concepts between the manual and extracted ontology. This
metric was originally defined in (Maedche and Staab, 2002) as therelative number of hits
(RelHit), then renamed in (Cimiano et al., 2003) to Lexical Overlap (LO). LetLO1 be the
set of alldomain relevantextracted concepts (correct andnew) andLO2 the set of all
concepts of the Gold Standard. The Lexical Overlap is the ratio between the number of
concepts shared by both ontologies (i.e.,correct - the intersection of these two sets) and
the number of all Gold Standard concepts (notedall). Intuitively, this metric is equiv-
alent to recall while the previously defined OPrecision represents precision. If two or
more correctly extracted concepts are equivalent to a single concept in the Gold Standard
(e.g.,AddModel, LoadOntologyare equivalent toAddOntology) then only one of them is
counted. ThereforeLO1 ∩ LO2 contains only individual concepts (notedcorrecti).

LO(O1, O2) =
|LO1 ∩ LO2 |

|LO2 |
=

correct

all

The extracted ontology can often bring important additions to the manual ontology
by highlighting concepts that were ignored during its creation. We are not aware of any
previously defined metric for measuring these additions. Therefore, we define Ontolog-
ical Improvement (OI) as the ratio between all domain relevant extracted concepts that
are not in the Gold Standard (notednew) and all the concepts of the Gold Standard.

OI(O1, O2) =
|LO1 \ LO2 |

|LO2 |
=

new

all

For comparing the taxonomic structures of the Gold Standard and the extracted on-
tology we employ a similar strategy as during the expert evaluation stage. We first count
the number of taxonomic relations that were discovered between two Gold Standard con-
cepts (allRelsRelevantGS). Then we count the number of relations that are qualified as
isA relationsby the Gold Standard (allRelsCorrectGS). TheTaxoPrecisionGS is the
ratio of these two numbers.

TaxoPrecisionGS =
allRelsCorrectGS

allRelsRelevantGS

This taxonomic comparison is simpler than the cotopy based comparison introduced
by Maedche (Maedche, 2002). However, it is feasible to be performed because the com-
pared hierarchies are not too deep and the overlap between them is quite small.

134 Evaluation

8.4 Experimental Corpora

The experimental corpora were provided by the two research projects.
Case study 1: RDF(S) tools.The first corpus,C RDFS, contains 112 documents

extracted from the documentation of the tools used to build the manual ontology (51
documents from Jena’s API, 37 from the KAON RDF API and 24 from Sesame’s API).
Each document in the corpus contains the javadoc description of one method. Previ-
ous work showed that the short textual descriptions of these methods contain the most
information and other javadoc elements such as the method syntax and the description
of the parameters introduce a lot of noise severely diminishing the performance of the
extraction (Sabou, 2004b). Therefore, we only use such short descriptions in these ex-
periments. Also, we exclude the syntax of the method because it introduces irrelevant
technical terms such asjava, com, org. Note that earlier work on building software li-
braries using information retrieval methods adopted similar decisions to exclude syntax
details from the analyzed corpus (Helm and Maarek, 1991). For exemplification, we
show some examples of typical descriptions that we analyze:

List all resources which are subjects of statements. Subsequent
operations on those resource may modify this model. (Jena)

Returns a resource uri that is unique for this model. (KAON)

Uploads data from an inputstream to a repository. (Sesame)

Case Study 2: Bioinformatics services.The corpus for this domain,C BIO, con-
sisted of 158 individual bioinformatics service descriptions as available at the EMBOSS
web site2. We worked only on the short method descriptions since they are significant
for Web service descriptions in general being similar to descriptions found in online Web
service repositories such as XMethods3. The detailed descriptions of the EMBOSS ser-
vices present a specific layout which makes extraction much easier. However, using it
would have biased our extraction methods towards this particular kind of documentation.
Therefore, we analyze such short descriptions only:

Replace or delete sequence sections.

Find antigenic sites in proteins.

Cai codon usage statistic.

8.5 Results

In this section we present an evaluation and comparison of the two implementations of
the framework. We ran both implementations on both corpora presented in Section 8.4
and used the evaluation criteria described in Section 8.3 to evaluate them. The ontology
building algorithm was adjusted to follow the modelling principle employed by each
Gold Standard ontology (i.e., producing compound functionality concepts for case study
1 and simple action verb based concepts for case study 2). In order to get an insight in

2http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/
3http://www.xmethods.net/

http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/
http://www.xmethods.net/

8.5. Results 135

the efficiency of our pruning heuristics we evaluated both a pruned (i.e., completing all
processing steps in Figure 7.3) and an un-pruned (i.e., excluding the last processing step
from Figure 7.3) version of the extracted ontologies.

8.5.1 Term Extraction

The results of the first evaluation stage (see Table 8.1) indicate a better performance of
M DEP in both domains, the F-measure being higher forM DEP than forM POS. In
each corpusM DEP resulted in higher recall thanM POSeven if the precision slightly
decreased. However, in the context of ontology learning, in general, and for Web service
domain ontology learning in particular, recall is often more important than precision:
the domain experts prefer deleting a few concepts rather than missing some important
concepts. Note that our results for precision are in the same range as those of the On-
toLearn system (Navigli et al., 2004) - their precision is ranging from 72.9% to about
80.0%. However, we obtain a higher recall compared to the 52.7% values achieved by
OntoLearn.

C RDFS C BIO
M POS M DEP M POS M DEP

correctextr 471 549 319 384
allcorpus 631 631 446 446
allextr 658 774 393 480

TRecall 75% 87% 72% 86%
TPrecision 72% 70% 81% 80%
F-measure 73 78 76 83

Table 8.1: Term extraction results for both case studies.

The errors are mostly due to mistakes in the output of the linguistic analysis tools. It
is well known that generic tools perform worse on specialized corpora than on newspaper
style texts that were used for their initial training. For example, verbs at the beginning of
the sentence are often mistaken for nouns thus causing a lower recall. It is likely that these
performance values will remain in this range unless we train the linguistic analysis tools
for this specific sublanguage. Note also that the performance of dependency parsing is
sensitive to the length and complexity of the analyzed texts. Fortunately, the majority of
sentences in our corpora are simple and allow a correct analysis. This partially explains
the better performance of the dependency parsing based implementation.

A second source for errors are spelling and punctuation mistakes. The RDF(S) related
corpusC RDFShas, from this perspective, a lower quality than the bioinformatics corpus
C BIO and, indeed, this affects thePrecision of the extracted set. This leads to the
conclusion that textual sources from Web service catalogs should be preferable to low
quality code documentation.

8.5.2 Expert Evaluation

The results of the expert evaluation for the extracted ontologies are shown in Table 8.2
(for the RDF(S) domain) and Table 8.3 (for the bioinformatics domain). For both data

136 Evaluation

sets theM DEP method resulted in a slightly decreased ontology precision as a direct
consequence of a lower term extraction precision (seeTPrecisionin Tables 8.2 and 8.3).
The explanation of this correlation is that more incorrect extracted terms will lead to
more incorrect concepts. Actually, we can trace down the cause of this behavior to the
quality of the analyzed texts, and conclude that low quality texts will lead to less precise
ontologies.

The pruning mechanism increased the ontology precision in both domains and for
both methods leading to precisions in the range of 57% (M DEP, case study 1) to 74%
(M POS, case study 2). This means that more than half of the concepts of all pruned
ontologies are relevant for the analyzed domain thus offering a good start for building a
domain ontology.

Not Pruned Pruned
M POS M DEP M POS M DEP

correct(i) 29(23) 35(27) 24(20)) 29(21)
new 70 77 45 65

spurious 165 211 46 71
OPrecision 38% 35% 60% 57%

LO 46% 54% 40% 42%
OI 140% 154% 90% 130%

Table 8.2: Evaluation results for the RDF(S) domain, case study 1, in the expert evaluation and
ontology comparison phases.

Not Pruned Pruned
M POS M DEP M POS M DEP

correct 25 27 12 18
new 140 157 64 80

spurious 98 105 26 39
OPrecision 63% 63% 74% 72%

LO 20% 22% 10% 14%
OI 112% 126% 51% 64%

Table 8.3: Evaluation results for the Bioinformatics domain, case study 2, in the expert evaluation
and ontology comparison phases.

The taxonomic evaluation results (see Tables 8.4 and 8.5) show that both methods
identified a similar number of taxonomic relations per corpus (18/17 forC RDFSand
78/73 forC BIO). Naturally, C BIO resulted in much more taxonomic relations given
the high level of compositionality of bioinformatics concepts. For both corpora and
both extraction methods all extracted taxonomic relations were correct (TaxoPrecision
= 100%). This indicates that the hierarchy building algorithm that we used, even if
simple, performs well. A similar conclusion was drawn by a comparative study of several
taxonomy building algorithms which proved that the vertical relation based algorithm
had the highest precision (Cimiano et al., 2004c). However, this algorithm has a low
recall being able to identify only compositionality based taxonomic relations. Note that

8.5. Results 137

besides correctly discovering the taxonomic relations existing in the Gold Standards,
many new taxonomic relations were discovered as well (either between Gold Standard -
Gold Standard concepts, Gold Standard -new concepts ornew - new concepts).

The effect of the pruning mechanism on the taxonomic structures is different for the
two corpora. Namely, inC BIO more than half of the correct taxonomic relations disap-
pear after pruning (unlikeC RDFSwhere the effect of pruning is not so radical). One of
the major reasons for this behavior is that, in bioinformatics, due to the compositional-
ity of terms, deep data structure concept hierarchies are created where the frequency of
the concepts decreases with their generality. These low frequency specialized concepts
were often pruned even if important, thus many taxonomic relations being deleted with
them. A solution would be to decrease the pruning threshold when advancing deeper into
the hierarchy. Also, since the ontology precision was already high without pruning, we
might have adopted a lower value for the overall pruning threshold.

Qualitative Evaluation.Besides our quantitative results, we derived several interest-
ing observations from the comments of the domain experts who performed the evaluation.

Recall vs. Precision. It seams that the cleanness of the ontology is not of major
importance for the ontology engineer. Often even concepts that are not included in the
final ontology are useful to give an insight in the domain itself and to guide further
abstraction activities. We should therefore concentrate on increasing the recall of the term
extraction process even at the expense of its precision. This could be done by extending
our original set of extraction patterns to cover more cases, as well as by adjusting the
extraction tools to this sublanguage through training.

Synonymy. During the evaluation, the expert recognized several potential synonym
sets such as:{find, search, identify, extract, locate, report, scan}, {fetch, retrieve, re-
turn}, {pick, select}, {produce, calculate} or {reverse, invert}. Synonymy information
is an important piece of knowledge for semantic Web services. Especially search and
matchmaking algorithms would benefit from knowing which concepts are equivalent.
The ontology engineer can decide to include synonymy in his ontology in different ways.
For example, he can maintain all these concepts and describe their synonymy via an ex-
plicit mapping (e.g., owl:equivalentClass). Alternatively, he can choose to maintain one
single concept per synonym set and link all lexical synonyms to this concept. Automatic
acquisition of synonymy information remains important future work.

Abstractions. The experts often redistributed the extracted domain concepts accord-
ing to their domain view. For example, two subclasses identified forProtein belong to
different domains, molecular biology and bioinformatics, and have to be placed in the
corresponding hierarchies accordingly. Such abstractions need to be still manually cre-
ated according to the ontology engineers view on the domain. However, the abstraction
step is considerably supported if the expert has an overview of relevant domain concepts.

Support. The curators considered the extracted ontologies as a useful start for deriv-
ing a domain ontology. Several complex structures could be directly included in a final
ontology (e.g., theSitehierarchy in Figure 7.4), or provided helpful hints on how certain
concepts interrelate. The most appreciated contribution was that the learned ontologies
even suggested new additions for the manually built ontologies.

138 Evaluation

8.5.3 Ontology Comparison

In the final evaluation step we perform a comparison of the automatically learned ontolo-
gies with the corresponding manually built Gold Standard ontologies. In case study 1,
the unpruned ontology extracted withM DEP contains more than half of the concepts
existing in the manually built ontology (LO = 54%) and many new potential concepts
(OI = 154% in Table 8.2). These values are lower for the unpruned ontology derived
with M POS. Lexical overlap was computed based on the individual correctly extracted
concepts (correcti) shown within brackets. The behavior of the pruning mechanism was
satisfactory. While pruning has almost doubled the ontology precision (from 38% to
60% forM POSand from 35% to 57% forM DEP) it only slightly affected the lexical
overlap. Ontological improvement was more affected (e.g., reduced from 140% to 90%
for M POS) because many of the newly identified concepts possibly have a low domain
relevance. Therefore our pruning distinguishes between important domain concepts and
less important concepts.

Not Pruned Pruned
M POS M DEP M POS M DEP

allRelsRelevant 18 17 12 14
allRelsCorect 18 17 12 14

TaxoPrecision 100% 100% 100% 100%
allRelsRelevantGS 4 3 2 2
allRelsCorectGS 4 3 2 2

TaxoPrecisionGS 100% 100% 100% 100%

Table 8.4: Taxonomy Evaluation results for the RDF(S) domain, case study 1.

Not Pruned Pruned
M POS M DEP M POS M DEP

allRelsRelevant 78 73 27 30
allRelsCorect 78 73 27 30

TaxoPrecision 100% 100% 100% 100%
allRelsRelevantGS 10 11 5 6
allRelsCorectGS 10 11 5 6

TaxoPrecisionGS 100% 100% 100% 100%

Table 8.5: Taxonomy Evaluation results for the Bioinformatics domain, case study 2.

In the case of case study 2, the comparison with the bioinformatics Gold Standard (the
ontology currently used in Web service description), shows the same trend but registers
less success than the RDF(S) case study (see Table 8.3). The unpruned ontologies cover
only 20 - 22% of the manual ontology for both methods, even if they suggest many new
possible concepts (OI = 112%/126%). The pruning behavior is less satisfactory in this
case: it reduces both the lexical overlap and the ontology improvement to half while
resulting in a low ontology precision increase. This behavior is also explained by the fact

8.5. Results 139

that low frequency specialized terms were pruned even if important (see our explanation
in 8.5.2).

Why is the lexical overlap so low? The major cause for ontological losses was
that the curator also included concepts about the fields of biology, bioinformatics and
informatics that are not present in the corpus. For this he relied on his expert knowledge
and other ontologies in the domain (see Section 7.2). See, for example, the organism
- primate hierarchy or the hierarchy of measurement units in Figure 8.2. Further, the
curator relied on a set of compound concepts to define different “views” on services. For
example, the left hand side of Figure 8.3 contains a snapshot of a set of concepts that
define different kinds of services based on their compositionality or the types of inputs
and outputs. These concepts that define views represent 18% of all concepts in the Gold
Standard. Our algorithm is not able to learn such views, however, it is feasible to extend
it in this direction.

unit
composite_unit

primitive_unit

length_unit

centimetres

metres

milimetres

micrometres

nanometres

temperature_unit

celsius

fahrenheit

kelvin

organism

eukaryote_organism

multicellular_eukaryote_organism

animal

metazoan_animal

chordate_animal

vertebrate_animal

mammal
eutherian_animal

primate

Figure 8.2: Example of parts in themyGrid ontology that are not mentioned in the corpus.

mygrid_service_accepting_GO_term_id

mygrid_service_accepting_bioinformatics_data

mygrid_service_accepting_bioinformatics_data_or_datastructure

mygrid_service_accepting_biological_sequence

mygrid_service_operation_accepting_protein_sequence

mygrid_service_operation_composed_of_retrieving_nocletides

mygrid_service_operation_producing_MEDLINE_reference

mygrid_service_operation_producing_alignment_data

mygrid_service_operation_producing_bioinformatics_data

Figure 8.3: A hierarchy of different views defined on services.

Why is the ontological improvement so high?Our results suggest that themyGrid
ontology curator worked rather independently from the given corpus during the build-
ing of the Gold Standard as he missed many concepts named in the corpus. Post-
experimental interviewing revealed that the examination of the corpus was not metic-
ulous. He used “just in time ontology development”: concepts were added if needed for

140 Evaluation

describing a certain service. Note also that he worked on a subset of our analyzed corpus
(100 service descriptions instead of 158 analyzed by us). Name changes could also ac-
count for the mismatch. The curator expanded abbreviations or created a preferred term
for several synonyms (e.g.,Retrievingfor fetch, get, return). In fact, he acknowledged
that the automatic approach leads to a more faithful reflection of the terms the community
uses to describe their services.

8.5.4 Comparison with Other Ontology Learning Tools

While the primary goal of this research was that of adapting existing techniques to the
Web services context rather than developing new ones, we still attempted to compare
our tool with other existing tools. This task was hampered by several factors. First, few
ontology learning tools are publicly available for download and experimentation. We
only know about TextToOnto and OntoLT. However, these tools are essentially ontology
learning workbenches that provide a set of generic techniques and allow their customiza-
tion to the user’s needs. For example, both tools offer a way to encode domain specific
extraction patterns. Therefore, after tuning these tools to execute our patterns (which
are the elements that make our tool tailored for Web services) we expect to have similar
results. The differences would be caused by the performance of the underlying language
processing tools (e.g., all tools use different POS taggers).

Despite these considerations we ran TextToOnto with its standard term extraction
pattern on the data set provided by our first case study. The results are presented in com-
parison with the results of our methods in Table 8.6. As expected, the results are lower
than those obtained when using domain specific extraction patterns. In particular the lex-
ical overlap and the ontology improvement metrics rich values lower than half of those
obtained with our methods. One of the straightforward explanations is that TextToOnto’s
standard pattern ignores all functionality type concepts. Indeed, such concepts are spe-
cific to our Web service context and are irrelevant for generic ontology learning tasks.
Therefore, TextToOnto’s lower performance indicates that it was not fine-tuned for the
context of Web services. In any case these results do not suggest that TextToOnto is a
non-performantgenericontology learning tool.

Not Pruned
M POS M DEP TextToOnto

correct(i) 29(23) 35(27) 9
new 70 77 39

spurious 165 211 154
OPrecision 38% 35% 23%

LO 46% 54% 18%
OI 140% 154% 78%

Table 8.6: A comparison of our methods with TextToOnto on the data provided by case study 1.

To complete our comparison, we searched for performance results that could give an
insight in how our tool compares to others. This is again difficult because many ontol-
ogy learning related papers do not report any evaluation results or use metrics that are
incompatible with ours. We found that (Cimiano et al., 2003) (and other papers related

8.6. Discussion 141

to this work) reported on a formal concept analysis based ontology learning algorithm
where the lexical overlap reached a maximum value of 27.71%. We provide this result
as an indication of a typical performance value and we are aware that it is not enough
to give an overview of the state of the art performance in ontology learning. In fact,
the ontology learning community just reached the stage when an effort is made towards
establishing evaluation benchmarks and metrics to be adopted by the whole community
with the purpose of being able to compare the different efforts.

8.6 Discussion

The work presented in Chapter 7 and Chapter 8 is motivated by the observation that,
while domain ontologies are of major importance for semantic Web services, their acqui-
sition is a time-consuming task which is made more difficult with the increasing number
of Web services. The ultimate goal of our research is to build tool support for (semi-) au-
tomatic ontology learning in the context of Web services. In these chapters, we presented
the first stage of the research whichpioneeredontology learning for Web services. On-
tology learning in the context of Web services raises several non-trivial questions while
inheriting some unsolved issues from ontology learning in general. The aim of the work
was to better understand the problem at hand and to investigate what technologies might
be feasible to use. We addressed a set of fundamental issues such as: data source selec-
tion, choosing the appropriate learning algorithms, deciding on evaluation methodologies
and metrics, considering usability. The contribution of our work lies in identifying and
tackling these issues as well as offering (partial) solutions to them. We discuss our find-
ings in this section and point out future work that can be based on our findings so far.

Selecting Data Sources.Traditional ontology learning is predominantly focused
on learning ontologies that describe a set of textual documents. In this case the data
sources for ontology learning are those textual sources. However, there are several possi-
ble data sources that could be used for learning Web service ontologies. First, resources
connected to the underlying implementation might provide useful knowledge about the
functionality of the Web service since Web services are simply web accessible software
products. Such are the source code, its textual documentation or existing UML diagrams.
Second, one could use Web service specific data sources such as associated WSDL files
or activity logs.

During our work, we observed that Web services are almost always accompanied by
a short textual description of their functionality which helps a user to quickly understand
what the service does. Such descriptions exist in on-line Web service repositories such
as XMethods and also in javadoc style code documentations. Besides being the most
available sources, short textual descriptions of Web services (1) are characterized by a
low grammatical quality and (2) use a specific sublanguage that makes them amendable
to automatic processing. In our work we only considered these textual documentations.
Current experiments, not reported here, show that WSDL documents also contain valu-
able information about the service that they describe being more detailed than the short
textual descriptions we have considered. As future work, we will combine these two
sources.

Choosing Learning Techniques.The goal of our work was to adapt existing ontol-
ogy learning techniques for this specific domain rather than developing novel ones. The

142 Evaluation

choice of these techniques depends on the kind of data sources considered. For exam-
ple, UML diagrams would require semantic mapping techniques (Falkovych et al., 2003)
which are essentially different from natural language processing techniques used for tex-
tual sources. We designed a framework for learning ontologies from textual Web service
descriptions and implemented two methods within this framework that use natural lan-
guage processing techniques of different complexity. During the design and evaluation
of this framework we derived the following observations:

Simple techniques work fine in well-defined contexts.Despite our methods are based
on relatively simple, off the shelf term extraction and ontology building techniques,
the learned ontologies have a good quality (as we argue in the evaluation part of
this discussion). One explanation of this phenomenon is that we are considering
a well-defined ontology learning task and work on specialized texts with strong
sublanguage characteristics. Our context differs from efforts to design generic on-
tology learning methods which have to run on any kind of textual sources and build
only generic ontological structures. Therefore, generic ontology learning methods
are harder to build and they rely on more complex techniques. We believe that
since Semantic Web technology is used in a variety of specialized domains, tools
that allow easy adaptation of basic ontology learning methods will have an in-
creased practical importance. We consider this work as a first step towards context
directed ontology learning.

Deeper linguistic analysis seams to increase performance.The dependency relation-
ship based method performs better than the POS tag based method. First, it in-
creases the recall of the term extraction from the corpus with little impact on the
term extraction precision. Second, while the extracted ontologies have a lower
precision this is compensated by higher values for ontological overlap and im-
provement (but experts consider precision less important than domain coverage).
Another argument for the use of dependency parsing is that the richer dependency
information makes it much easier to write and establish new syntactic patterns than
surface ones.

It should be possible to build a domain independent tool.The sublanguage features on
which our methods build can be identified in Web service descriptions written for
various domains. Therefore, we believe that it is feasible to build an ontology
learning tool that is tailored to the context of Web service descriptions but which
is applicable across different application domains. A good indication is that both
our methods perform similarly in two different domains. However, corpus partic-
ularities can influence the extraction performance. For example, punctuation and
spelling mistakes lead to a low term extraction precision, and consequently, to a
less precise ontology.

We envision several improvements for the basic framework presented here. First, we
wish to extend the method with more fine-grained extraction patterns to complement the
current high coverage patterns. There are a considerable number of sublanguage patterns
that were not used in this iteration but could provide rich input for the ontology building.
We also wish to exploit pronoun resolution and prepositional phrases. Machine learning
techniques could help in discovering some new patterns. It is interesting to investigate
if these fine-grained lexical-based patterns would still make our framework applicable

8.6. Discussion 143

across different domains. Second, we want to enhance the ontology building step. Use of
synonymy information during the conceptualisation step is an important development
possibility. Further, we would like to concentrate on strategies that enrich the basic
extracted ontology. For example, defining different views on a set of domain concepts or
providing a set of patterns that act on the already extracted semantic information.

Evaluation. To achieve the goal of this first stage of research, that of understanding
the applicability of ontology learning techniques in the context of Web services, our
evaluation was directed towards getting an insight in the performance of the learning
methods. A possible extension of our evaluation would be to test the robustness of the
methods, i.e., to see how their performance is affected when applied on incrementally
enlarged data sets in the same domain. One of the major future tasks is to perform
a task-based evaluation of the extracted ontologies in a Web service context, e.g., by
powering Web service tasks such as search, matchmaking, etc. This would complement
the current evaluation and indicate the appropriateness of the learned ontologies for Web
service tasks. However, we believe that the current evaluation is sufficient to encourage
the continuation of this line of work.

One of our major observations is that the evaluation of ontology quality is difficult
because the Gold Standards do not faithfully represent the knowledge in the corpus: the
domain experts omit several concepts because it is not feasible to read and analyze all
available documents in a reasonable time frame. Complementary, our methods extract
ontologies that contain a high percentage of domain relevant concepts from a corpus.
The amount (and domain relevance) of extracted concepts can be influenced by tuning
the pruning algorithm.

The quality of the ontologies, even if extracted by using simple methods, was en-
couraging. We state this based on the fact that similar work on ontology learning in open
domain reports on a maximum lexical overlap of 27,71% while we reach 54% procent
in some cases. Further, during the qualitative evaluation, the experts indicated that the
extracted ontologies represent more faithfully the knowledge in the corpus and that they
provide a useful start for building a domain ontology. Indeed, providing ontology cura-
tors with ontologies that contain half of the extractable concepts is a considerable help
for this time consuming task.

Chapter 9

Conclusions and Future Work

The goal of this thesis is to enhance the quality of Web service ontologies and to facil-
itate the process of building these ontologies. To achieve this goal we investigated the
following three research questions:

• Q1. What requirements should Web service ontologies fulfill?

• Q2. How to enhance the quality of generic Web service ontologies?

• Q3. Is semi-automatic acquisition of Web service domain ontologies feasible?

In the first part of the thesis we investigated the first research question and established
a set of requirements for Web service ontologies based on our experiences with semantic
Web services technology. In the second part of the thesis we focused on the second
research question by describing a set of methods to check whether a generic Web service
ontology fulfills the requirements stated in the first part of the thesis. These methods also
help enhancing the quality of the ontologies. In the final part of the thesis we turned our
attention to Web service domain ontologies and described our efforts to build a semi-
automatic solution for their acquisition (as stated by our third research question).

In this chapter we discuss our conclusions and contributions related to the three re-
search questions that we investigated (in Section 9.1) and present ideas for future work
(in Section 9.2).

9.1 Conclusions and Contributions

In this section we detail our major conclusions and describe our contributions to the state
of the art. We organize our discussion around the three major topics introduced by our
research questions.

The general conclusion of our work is that Web service ontologies should fulfill sev-
eral requirements (as discussed in Section 9.1.1) and that several methods can be em-
ployed to facilitate achieving these requirements. One part of the presented methods
relate to generic Web service ontologies and are concerned with improving their quality
(see Section 9.1.2). The rest of the methods aid the semi-automatic acquisition of Web
service domain ontologies as discussed in Section 9.1.3.

146 Conclusions and Future Work

9.1.1 Requirements for Web Service Ontologies

Based on our work with the emerging semantic Web services technology we concluded
that:

Web service ontologies should fulfill a set of requirements.A major requirement for a
generic Web service ontology is high quality. In particular, the ontology should provide a
high modelling expressivenessso that a large variety of services can be modelled.Clear
semantics and a rich formalizationof these semantics would ensure the support for com-
plex reasoning tasks performed by artificial agents. Then, another measure of quality is
whether the captured generic knowledge isadaptablefor use in similar domains. It would
also be desirable that a mapping (harmonization) between different evolving generic on-
tologies can be achieved in order to ensure a basis for their comparison. Finally, if such
a generic ontology is to be used in a consistent way by a large and open group of users,
it is compulsory that adequate usage examples and guidelines are provided (we call this
characteristicusability). Web service domain ontologies should provide a broad domain
coverage and they should contain the knowledge that describes large and dynamic Web
service collections.

Our contribution is to identify and describe these requirements.

9.1.2 Enhancing Generic Web Service Ontologies

In the second part of the thesis we presented a set of methods that could enhance the
quality of generic Web service ontologies. We used these methods to test the quality of
OWL-S, to identify its limitations and to propose solutions. The outcome of our work
is often generally reusable when developing other generic ontologies as well (see Sec-
tion 9.1.4). We hereby briefly describe the main methods that we used, the conclusions
we reached and our contributions:

The modelling expressiveness of the OWL-S generic Web service ontology has been
tested and improved by using it to describe real life services.For testing the modelling
expressiveness of OWL-S we used it to describe a set of services (Chapter 4). This exer-
cise yielded the conclusion thatOWL-S had a low modelling expressiveness. We found
that the ontology relies on an unclear conceptual model as it used different metaphors
when representing a service at Profile and Process level. Also, the links between these
different parts were unclear. This lead to discovering several internal inconsistencies and
limitations to model situations as ad-hoc polymorphism or complex internal structures.

Our contribution is to identify, exemplify and document some modelling use cases
that should be covered by any generic Web service ontology. For OWL-S, we provided a
set of solutions to the identified limitations. Some of these suggestions have already been
incorporated in newer versions of the ontology.

The adaptability of OWL-S has been tested by reusing it in a related context.One
of the positive conclusions was thatOWL-S was easily adapted to similar domains (high
adaptability). In particular, we reused several of the design principles that underly OWL-
S to build an ontology that would describe API-based software components and that
would support several tasks within a semantic middleware (see Chapter 5). The result of
our work, the ASSW ontology was embedded in the ASSW application server already.

Our contributions are (1) identifying the reusable parts of OWL-S and (2) the ex-
tension of OWL-S for use with middleware systems. This work was published in the

9.1. Conclusions and Contributions 147

middleware community and appreciated as being useful and innovative (Oberle et al.,
2004a).

The alignment of OWL-S to a foundational ontology ensured clear semantics and a
rich formalization of these semantics.An investigation of OWL-S from an ontological
perspective revealed that it presented conceptual ambiguity, poor axiomatization, loose
design and narrow scope thus leading us to the conclusion thatthe ontology has a low
clarity in semantics and these semantics are poorly formalized(see Chapter 6). To over-
come these limitations we performed an alignment to DOLCE, a rigorously formalized
foundational ontology. To bridge the conceptual gap between the high level concepts of
DOLCE and the concepts of OWL-S we designed an intermediate ontology, the Core
Ontology of Services (COS).

One of the contributions of our work, form DOLCE’s perspective, is to extend the
DOLCE library with this software related module. Besides offering a set of valuable
observations to the OWL-S community, the contributions of this part of our work are the
development of COS and the alignment methodology that can be generically reused for
aligning other generic ontologies as well. By the alignment of multiple ontologies to
COS, a mapping (harmonization) can be achieved between their concepts.

9.1.3 Learning Web Service Domain Ontologies

In the third part of the thesis we investigated the feasibility of an automated solution to
support the process of building Web service domain ontologies. Our work resulted in the
following conclusions and contributions.

The Web service context exhibits some specific features that can be exploited for de-
veloping an automated ontology acquisition solution.From the two case studies that
we performed we concluded that domain ontology building scenarios can be different but
that they exhibit a few important characteristics that have to be taken into account when
developing an automated solution (see Chapter 7). We observed that the generally avail-
able data sets for ontology learning are textual descriptions of the offered functionalities
(e.g., API documentation, or Web service comments). These textual descriptions have a
low grammatical quality and they employ natural language in a specific way (they use a
sublanguage). Further, both static and procedural knowledge should be extracted by the
automated tool.

Our contribution is to get a better understanding of the problem at hand and identify
aspects that can be used to build automated ontology acquisition methods.

Simple ontology learning methods can be adapted to the Web service context. Af-
ter understanding the particularities of the Web service context we built a framework
that adapted ontology learning methods to the specificities of the domain. This frame-
work relies on the observation that, due to the sublanguage characteristic of the analyzed
texts, simple pattern based techniques can be used to extract semantic structures from the
regularities of the sublanguage. This framework allows the implementation of different
extraction methods. For example, we used linguistic analysis of different complexity to
perform ontology learning.

Our contribution is to draw up the general lines of the framework and to provide two
different implementations (see Chapter 7).

Evaluation shows that the extracted ontologies have a good quality.Evaluation of
ontology learning methods is not a straightforward task. We analyzed several different

148 Conclusions and Future Work

approaches and used a combination of these to define our evaluation metrics. The results
of our evaluation show that (1)our framework, even if designed for the Web service
context, is applicable across application domains(our methods perform comparatively
in two different domains). The results also imply that (2)deeper linguistic analysis
leads to better resultsbeing less sensitive to the imperfections of the corpus. Finally,
the experts involved in the evaluation indicate that (3)the extracted ontologies represent
faithfully the knowledge in the corpus and that they provide a useful start for building a
domain ontology. In fact, the extracted ontologies contain, on average, more than 50%
of domain relevant concepts. Comparatively to other ontology learning efforts in open
domains we were able to obtain higher values for our ontology overlap metric (almost
double) . The strength of our method is in complementing human experts and supporting
them in a meticulous inspection of the corpus thus contributing to a broad coverage of
the domain’s terminology.

Our contribution at this point, besides giving an insight in the performance of the
learning methods, is to establish a baseline for evaluating ontology learning in the Web
services context. We collected two data sets and their associated manually built Gold
Standard ontologies that can be used as a benchmark for evaluating new solutions (see
Chapter 7). We also established an evaluation scheme that can be used to evaluate
ontology learning in this domain.

We provide an easy to extend prototype by implementing our methods in a generic
NLP framework. To achieve our goal of facilitating the acquisition of Web service
ontologies, besides building high performance ontology learning methods, we need to
implement them in tools that are easy to adapt and use by experts. Aware of this re-
quirement, we implemented our prototype so that it is easy to debug, extend or adapt by
developers of ontology learning methods in the Web service context (see Chapter 7). Our
implementation relied on the use of a generic NLP workbench, GATE. In our implemen-
tation we experimented with visual means to present the extracted knowledge.

Our contribution is a prototype system that can be easily adapted to further needs of
the Web services context.

9.1.4 A Note on the Generality of our Results

The work presented in this thesis was performed in the context of OWL-S because at
that time it was the only generic Web service ontology. During our work other semantic
Web service frameworks have merged, most notably WSMO. In this section we argue
that several of our results are general enough in order to be reused in the context of other
semantic Web service efforts as well.

Our claim is based on the comparison of these Web service efforts as reported in two
recent research papers, (Cabral et al., 2004; Lara et al., 2005). The main conclusion
of both papers is that these Web service frameworks cover complementary aspects of
Web services. For example, OWL-S relies on an agent oriented approach while WSMO
focuses on business requirements such as trust and security (Cabral et al., 2004). This
fact makes the comparison of the ontologies non trivial. These Web service frameworks
also differ in their maturity level. Indeed, as concluded by (Lara et al., 2005), OWL-
S is more mature in some aspects having a well defined process model and grounding
component. On the other hand, WSMO has a clearer conceptual model and makes a
clear difference between requestors and providers. A common characteristic is that all

9.2. Future Work 149

approaches rely on the use of ontologies to describe Web services. The OWL-S ontology
has to be complemented by a domain ontology, then, in the case of WSMO domain
ontologies and task ontologies are used in combination.

The authors of the comparison in (Lara et al., 2005) conclude that further future
work is needed to better compare WSMO and OWL-S. First, a set of real use cases
should be modelled with both approaches to determine their applicability in real-world
settings. Second, a formal mapping should be established between these two ontologies
after WSMO will be completed in all aspects.

We hereby provide a brief overview of our results that are reusable in the context of
WSMO as well:

Modelling use cases.The modelling use cases identified when describing our services
are generally valid and should be covered by any generic Web service ontology.
Indeed, they could be reused in the context of the first line of future work identified
in (Lara et al., 2005) - that of modelling several real use cases using both ontologies
to assess their applicability in real life settings.

The alignment methodology.Our alignment methodology can serve as an example when
aligning other generic Web service ontologies to DOLCE or other foundational
ontologies. Indeed, alignment could have several advantages at this stage of devel-
opment in the semantic Web services field. First, it could help to identify potential
conceptual ambiguities in the currently developed WSMO ontology. Second, by
aligning both WSMO and OWL-S to DOLCE it would be easier to construct a
formal mapping and to get a better understanding of the differences between these
ontologies.

The Core Ontology of Services.The COS ontology provides an conceptual bridge be-
tween the high level concepts of DOLCE and the domain of software descriptions.
We claim that this ontology will facilitate the alignment of other generic Web ser-
vice ontologies to DOLCE because these ontologies will have to be aligned to the
concepts of COS rather than directly to the generic concepts provided by DOLCE.

The methods for learning Web service domain ontologies.These methods are inde-
pendent of the generic Web service ontology that is used. Nevertheless, different
semantic Web services frameworks might rely on different ways of organizing the
domain knowledge. Our methods should provide a good basis for adaptation to the
particular needs of a certain framework.

9.2 Future Work

In this thesis we used a variety of methods to enhance the quality of Web service ontolo-
gies and to facilitate the process of building them with the ultimate goal of supporting
the semantic Web services research as a whole. However, even if we covered a variety
of issues on this topic we envision that important research still has to be done in the con-
text of enhancing the semantic Web services field (see Section 9.2.1). Our work has also
a significance for the fields of software engineering and ontology learning. We detail
possible future work on these fields in Sections 9.2.2 and 9.2.3.

150 Conclusions and Future Work

9.2.1 Semantic Web Services

There are several possibilities of extending our research in the area of semantic Web
services.

1. Enhancing and harmonizing generic Web service ontologies.As we discussed in
previous sections, several of the results of our work with respect to generic Web ser-
vice ontologies can be reused when building any other generic ontology. Therefore, we
encourage applying the results of this work in the context of novel initiatives such as
WSMO. In particular, an important task would be the harmonization of several generic
Web service ontologies through their alignment to the Core Ontology of Services. Such
a harmonization could benefit the field in several ways. First, it would be beneficial to
determine flaws and problematic aspects of these ontologies. Second, this harmonization
would provide a basis for comparing the different ontologies thus allowing their comple-
mentary development.

There is an awareness in the semantic Web services community that some level of
standardization is becoming necessary, especially given the increasing number of dif-
ferent approaches that became recently available. This need became evident at a recent
W3C workshop that aimed at identifying potential standardization work in the area of
semantic Web services (Battle and Martin, 2005). Participants to this forum have iden-
tified several approaches to realizing semantic Web services. These are: Web-Service
Modelling Ontology (WSMO), the OWL Service ontology (OWL-S), Web-Service Se-
mantics (WSDL-S1) (Miller et al., 2005), the First-Order Ontology for Semantic Web-
Services (FLOWS) (Berardi et al., 2004), the Siemens Service Description Reference
Model (SDRM), IRS III and Meteor-S2. The general opinion was that“agreement on a
common core set of specifications would be feasible”and desirable, however, the differ-
ent maturity level of the approaches might not permit any standardization efforts yet.

2. Ontology learning in the Web services context - continued.While our work on
ontology learning addresses several important issues thus pioneering this research direc-
tion, in its current status, it can be mostly considered as aproof of conceptthat ontology
learning can be performed in the context of Web services. We are aware of several limita-
tions and we envision various ways to further develop this work. In fact, this line of work
will be continued in a recently funded European research project, TAO. In particular, the
following topics can be addressed:

Extracting more complex information. The implemented methods only extract simple
information about services (their parameters and functionality). However, much
more has to and can be learned form these descriptions. For example, the role of
each parameter (input, output, precondition), constraints on the services activity
(e.g., geographic radius) or quality ratings.

Using and combining more extraction sources.One way to obtain more complex in-
formation is to consider other extraction sources as well. For example, recent
experiments have shown that WSDL descriptions also contain valuable and often
more precise and detailed information than the textual documentations. An obvi-
ous challenge when using multiple sources is combining the knowledge extracted

1http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html
2http://lsdis.cs.uga.edu/projects/meteor-s/

http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html
http://lsdis.cs.uga.edu/projects/meteor-s/

9.2. Future Work 151

from them. Note that this issue is one of the developing topics in ontology learn-
ing (Cimiano and Voelker, 2005).

Scaling up the learning methods.We achieved encouraging results when only using
relatively simple ontology learning methods. An obvious future direction is to
scale up these methods in several ways. First, the use of more complex taxonomy
building algorithms and methods that consider synonymy (e.g., WordNet based)
are a straightforward improvement. Second, we have to consider that current meth-
ods were developed on repositories of Web services from a single domain. This
simplifying assumption fails on open repositories, such as those on the Web that
contain services from several different domains. A good way to drop all the im-
plicit assumptions that we made during the development of the framework is to
apply our methods in the context of open Web based service repositories.

Automatically detecting extraction rules. One of the possible critiques of our frame-
work is that is relies on manually identified extraction rules. While the identifica-
tion of the heuristics which underly these few rules was almost straightforward, we
are aware that an automation of this process could be beneficial. There has been
promising research on (partly) automating this process in the context of sublan-
guages ((Riloff, 1996; Grishman et al., 1986)) which we hope to be able to reuse
and extend in our context.

Task based evaluation.Our current evaluation, even if complex, was only useful to get
an insight in the performance of our methods. An obvious next step in our work is
to evaluate the appropriateness of the automatically learned ontologies to support
Web service related tasks.

Completing and extending the usability studies.While an important first step, our us-
ability considerations are not backed up by usability tests. We wish to identify
more scenarios where visualization is useful and to experiment with other visual
paradigms than the Cluster Map. Naturally, all these new experiments should un-
dergo usability tests.

3. Tools for Semantic Web services.An obvious way to continue the general direction
of offering support for developing the Web services technology is building supportive
tools. In fact, this need for semantic Web service tools is also clearly expressed in a
recent article on this topic which acknowledges that“the lack of standardization and
tool support has so far been a limiting factor for adoption of semantic Web services
technology”(Elenius, 2005).

Several tools have been developed lately to support different tasks involved in creat-
ing semantic Web services such as automatic markup generation from WSDL (Mindswaps
OWL-S API3, OWL-S IDE4), finding a suitable domain ontology (METEOR-S (Patil
et al., 2004)), (semi-)automatic annotation of Web services (ASSAM5 (Hess et al., 2004)),
editing and visual composition of semantic Web services (OWL-S Editor for Protege6 (Ele-

3http://www.mindswap.org/2004/owl-s/api/
4http://projects.semwebcentral.org/projects/owl-s-ide/
5http://moguntia.ucd.ie/projects/annotator/
6http://owlseditor.semwebcentral.org/

http://www.mindswap.org/2004/owl-s/api/
http://projects.semwebcentral.org/projects/owl-s-ide/
http://moguntia.ucd.ie/projects/annotator/
http://owlseditor.semwebcentral.org/

152 Conclusions and Future Work

nius et al., 2005), the OWL-S Editor developed at University of Malta7 (Scicluna et al.,
2004), ODE SWS8 (Gomez-Perez et al., 2004)). Note, however, that all of these tools
are research prototypes and that there are no“commercial efforts to provide tools sup-
porting SWS technologies per se”(Battle and Martin, 2005). An obvious next step is
the development of workbenches that support the entire process of semantic Web service
development.

Another observation is that little automated support is provided by current tools. We
argue that automatic methods should be better integrated with existing or next genera-
tion semantic Web services tools. In particular, our current efforts try to combine the
automatic ontology learning and the automatic semantic annotation as done in the AS-
SAM tool. As such, the whole task of providing the semantic annotation (i.e., acquire
the domain ontology and annotate Web services with its concepts) would be automated.

Finally, we think that it would also be beneficial to leverage on the advantages of
using ontologically founded methodologies. For example, ontological design principles
(e.g., such as the distinction between a situation and its description) could be formulated
as reusable ontology design patterns and integrated in semantic Web service tools in a
way that makes them easy to reuse.

4. Methodologies for building ontology based standards.Web service description
standards built to support the semantic Web services technology are naturally based on
ontological modelling. This is the case both for OWL-S and WSMO and possibly for
other recommendations built in the future. Therefore we believe that it is important to
analyze and formalize the process of creating these ontology based standards. This will
help to better understand the development life cycle of the standard, the processes that
are involved, the personnel that is needed and the resources that need to be allocated.

9.2.2 Semantic Web Enabled Software Engineering

Another promising research direction is the integration of semantic Web technologies
in software engineering. In fact, during this thesis we have already initiated such an in-
tegration through the use of semantic technologies to support several tasks in the context
of an application server middleware (see Chapter 5). The creation of the ASSW ontology
and its follow up integration in the ASSW server proved useful and was well received by
the middleware community (Oberle et al., 2004a).

Another way to contribute to the software engineering field is to adapt our work
on (semi-)automatic ontology learning to improve online Web service repositories. Our
analysis of the current techniques used to organize these libraries yielded that they rely
on no or almost no semantic information. We believe that one of the reasons is the cost
and difficulty to acquire semantic descriptions of these large and dynamic Web service
collections. In fact, the situation of Web service repositories is similar to the situation
of software libraries which, as concluded by a major survey (Mili et al., 1998), pre-
dominantly employ simplistic techniques that do not rely on knowledge acquisition. We
detailed this analysis and our ideas about how the current situation could be improved by
semantic Web technology in (Sabou and Pan, 2005).

7http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/
OwlSEdit.html

8http://kw.dia.fi.upm.es/odesws/content.htm

http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/OwlSEdit.html
http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/OwlSEdit.html
http://kw.dia.fi.upm.es/odesws/content.htm

9.2. Future Work 153

Our efforts in the direction of using semantic Web techniques in a software engi-
neering context are not unique but they belong to an increasing trend that supports this
integration. For example, the use of semantic Web techniques in software engineering
is the topic of the Semantic Web Enabled Software Engineering (SWESE) workshop9

collocated with the International Semantic Web Conference 2005.

9.2.3 Ontology Learning

A final research field where we envision possible future work is the field of ontology
learning.

1. Adaptive ontology learning.With the continuous uptake of semantic Web technology
in a variety of domains the need for adapting ontology learning solutions to these domains
is also increasing. This trend has been identified and supported by the newest ontology
learning tools such as OntoLT and Text2Onto. In particular, OntoLT allows the adap-
tation of pattern based ontology building approaches to different domains. Text2Onto,
on the other hand, offers a comprehensive library of generic ontology learning mod-
ules that can be combined in a particular setting (however, they cannot be modified to
fit certain domain constraints). Through their goal of bringing ontology learning closer
to non-experts, these tools differ from the plethora of previous work which was mostly
concerned with discovering new techniques.

Based on our experience in the context of Web services, we believe that in concrete
domains, where a set of constraints provide a well defined ontology learning problem,
simpler learning methods will provide good results. It is essential to provide easy to use
tools and comprehensive guidelines about the use of these tools to allow the adaptation
of ontology learning by diverse communities.

2. Evaluation of ontology learning tools.The issue of evaluation is probably the most
important one for the development of the ontology learning field. In this stage, where
several approaches exist, their comparative evaluation is a prerequisite for the further de-
velopment of the field. However, as concluded at a workshop with the same topic (Buite-
laar et al., 2004a), different techniques use different steps and have different results. For
example, clustering techniques have an essentially different outcome than term extrac-
tion based methods. These factors hamper the development of a standard set of evaluation
metrics. Nevertheless, initial efforts towards an ontology learning challenge are currently
performed.

3. Usability in ontology learning tools. The wide use of ontology learning techniques
does not only require that they are easily adaptable to new domains but also that they are
incorporated in tools that are easy to use. In fact, the more general topic of ensuring a
smooth user interaction with semantic based tools and technologies is the topic of several
workshops (e.g., the End User Semantic Web Interaction Workshop10 at ISWC 2005 and
the End User Aspects of the Semantic Web Workshop11 at ESWC2005).

Our experience is that the newest ontology learning tools, OntoLT and Text2Onto,
support usability by providing provenance information or even using visual techniques
to present their results. However, there is no concrete effort to identify a set of usability

9http://www.mel.nist.gov/msid/conferences/SWESE/
10http://www.ifi.unizh.ch/ddis/iswc2005ws.html
11http://kmi.open.ac.uk/events/usersweb/

http://www.mel.nist.gov/msid/conferences/SWESE/
http://www.ifi.unizh.ch/ddis/iswc2005ws.html
http://kmi.open.ac.uk/events/usersweb/

154 Conclusions and Future Work

features and to experiment with techniques that would best implement them. In this
thesis we provided our view on some usability features and presented ways in which we
achieved these features. We believe though that this effort needs to be detailed and taken
to a community level.

Appendix A

DOLCE+’s Synchro-task in
OWL Abstract Syntax

Class(<dolce+:synchro-task> partial
<dolce+:elementary-task>
restriction(<dolce+:predecessor>

someValuesFrom (unionOf(
<dolce+:concurrent-task>
<dolce+:partly-concurrent-task>)))

restriction(<dolce+:direct-predecessor>
minCardinality(2))

restriction(<dolce+:sequences>
allValuesFrom
(dolce+:planning-activity))

restriction(<dolce+:represented-by>
allValuesFrom (<dolce+:join-node>))

annotation(<rdfs:label> "synchro-task")
annotation(<rdfs:comment>

"A task that joins a set of
tasks after a branching"))

Samenvatting

Twee nieuwe ontwikkelingen veranderen op het moment het gezicht van het World Wide
Web. Aan de ene kant maakt Web service technologie via web standaarden uniforme
toegang mogelijk tot software componenten die aanwezig zijn op verschillende plat-
formen en geschreven in verschillende programmeertalen. Dit heeft geresulteerd in de
beschikbaarheid van software componenten die een verscheidenheid aan functionaliteit
aanbieden (van monetaire conversie tot het boeken van vluchten) via het Web. Aan de
andere kant reikt de Semantisch Web technologie technieken aan voor het verrijken van
bestaande Web data met op logica gebaseerde formele beschrijvingen van hun betekenis.
Deze semantische “markup” is machinaal te verwerken en faciliteert toegang en inte-
gratie van de enorme hoeveelheid Web data. De kern van Semantisch Web technologie
bestaat onder andere uitontologiëen, formele representaties van algemene wereld kennis
dat de elementen biedt om semantische beschrijvingen te construeren.

Een beperking van Web service technologie is dat het vinden en bijeenbrengen van
services nog steeds menselijke handelingen vereist, terwijl het aantal Web services stijgt.
Semantische Web Service technologie groeide uit als een antwoord op dit probleem uit-
gaande van het idee Web services te verrijken met een semantische beschrijving van hun
functionaliteit om het vinden en integreren van services te faciliteren. Semantische Web
service beschrijvingen steunen op twee soorten ontologieën. Ten eerste specificeert een
generieke Web service ontologiede centrale aspecten van Web services onafhankelijk van
het domain waarin zij opereren (b.v. inputs, outputs). Ten tweede biedt eendomein on-
tologieconcepten uit het domein van de Web service aan om de beschrijvende template
die gebouwd is met concepten uit de generieke ontologie in te vullen (b.v.Voedsel, Ho-
tel, VoedselBestelling, HotelBoeking). Wij noemen de generieke en domein ontologieën
samenWeb service ontologieën.

Een belangrijk probleem van semantische Web service technologie, dat wij in dit
proefschrift ter hand nemen, is dat het bouwen van Web service ontologieën een tij-
drovende en complexe taak is. Dit vormt een beperking in de ontwikkeling van het veld.
Het proefschrift onderzoekt en formuleert oplossingen voor de problemen bij het con-
strueren van zowel generieke als domein ontologieën voor Web service beschrijvingen.

In Hoofdstuk 2 beschrijven we in meer detail Web services, het Semantisch Web
en semantische Web service technologie en leiden een set van vereisten af die Web ser-
vice ontologiëen dienen te vervullen. Een belangrijke vereiste voor een generieke Web
service ontologie is een hoge kwaliteit. De ontologie moet vooral een hoge modelleer
expressiviteit bieden zodat een grote varieteit van situaties kan worden gemodelleerd.
Duidelijke semantiek en rijke formalizatie van deze semantiek verzekert ondersteun-
ing voor complexe redeneertaken uitgevoerd door kunstmatige agenten. Een andere

kwaliteitsmaat is of de beschreven generieke kennis ook aan te passen is voor gebruik
in op elkaar gelijkende domeinen. Het is tevens wenselijk dat een afbeelding (harmo-
nizatie) tussen verschillende evoluerende generieke ontologieën mogelijk is om een basis
voor onderlinge vergelijking te verzekeren. Ten laatste, als een generieke ontologie door
een grote en open groep gebruikers op een consistente wijze moet worden kunnen ge-
bruikt is het verplicht dat adequate gebruiksvoorbeelden en richtlijnen worden verstrekt.
Voor domein ontologiëen is het belangrijk dat ze een breed domein bestrijken en dat ze
opschalen naar een grote verscheidenheid aan services.

In het tweede deel van het proefschrift onderzoeken we methoden die de kwaliteit van
generieke Web service ontologieën kunnen verbeteren. Hiervoor testen wij de kwaliteit
van dede factostandaard voor Web service beschrijvingen, OWL-S. We bestuderen elke
eis die we aan web-service ontologieen stellen, trekken conclusies over de beperkin-
gen van de OWL-S ontology, en stellen een aantal oplossingen voor (die ook vaak van
toepassing zullen zijn voor andere generieke ontologieen).

Om de modellerings expressiviteit en bruikbaarheid van OWL-S te testen hebben we
het gebruikt om een set van services te beschrijven (Hoofdstuk 4). Dit werk leverde
als resultaat op dat OWL-S een lage modellerings expressiviteit heeft. We concluderen
dat de ontologie op een onduidelijk conceptueel model steunt omdat het verschillende
metaforen gebruikte om een service te representeren op Profiel en Proces niveaus. Ook
waren de verbindingen tussen de verschillende delen onduidelijk. Dit leidde tot de ont-
dekking van verschillende interne inconsistenties en beperkingen in modelleringssitu-
aties zoals ad-hoc polymorphisme of complexe interne structuren. Wij bieden een set
van oplossingen aan voor de geidentificeerde beperkingen, en sommigen zijn inmiddels
verwerkt in nieuwere versies van de ontologie. Een andere bijdrage was het identificeren
en documenteren van enige modelleer eisen die in rekenschap moeten worden genomen
door iedere Web service ontologie.

Ons gebruik van OWL-S doet ons ook conclusies trekken over haar bruikbaarheid.
We concluderen dat OWL-S moeilijk te leren viel omdat voorbeeld beschrijvingen van
verschillende services ontbraken. Evenzo ontbraken richtlijnen voor het modelleren van
bepaalde situaties. Onze contributie betrof het aanreiken van een set voorbeeld Web
service beschrijvingen dat de bestaande didactische voorbeelden van het OWL-S comité
kunnen aanvullen. Ook leidde de discussie rond onze modelleerbeslissingen (en twijfels)
zoals gedocumenteerd in verschillende artikelen, ook al zijn deze niet vergelijkbaar met
modelleer richtlijnen, ertoe dat het besef bij de gebruiksgemeenschap ontstond dat er
problematische aspecten waren in hun ontologie.

Een van de positieve conclusies betrof dat OWL-S eenvoudig aanpasbaar is voor
op elkaar gelijkende domeinen (hoge aanpasbaarheid). Meer specifiek hebben we ver-
schillende ontwerp principes die het fundament van OWL-S vormen hergebruikt om een
ontologie te bouwen die API gebaseerde software componenten kan beschrijven en dat
verschillende taken in semantische middleware kan ondersteunen (zie Hoofdstuk 5). Het
resultaat van ons werk, de ASSW ontologie, werd ingebed in en verbeterde de werking
van de ASSW applicatie server.

Een analyse van OWL-S van het ontologische perspectief toonde toonde conceptuele
ambiguiteit aan, matige axiomatisatie en een smal perspectief, en leidde ons tot de con-
clusie dat de ontologie een lage semantische helderheid bezit en dat deze semantiek
tevens op zwakke wijze geformaliseerd is (zie Hoofdstuk 6). Om deze beperkingen te
verwijderen gebruiken we een verbinding (“alignment”) met DOLCE, een diepgaand

bestudeerde en rigoreus geformaliseerde basis ontologie. Om het epistemologische gat
tusssen de hoog niveau concepten van DOLCE en de concepten van OWL-S te over-
bruggen hebben wij een tussenliggende ontologie ontworpen: de Kern Ontologie van
Services (KOS). Een van de bijdragen van ons werk vanuit het perspectief van DOLCE
is het uitbreiden van de DOLCE bibliotheek met deze software gerelateerde module.
Behalve het aanbieden van een set waardevolle observaties aan de OWL-S gebruikersge-
meenschap zijn de bijdragen van dit deel van ons werk het ontwikkelen van KOS en de
verbindingsmethodologie die op algemene wijze kan worden herbruikt om ook andere
basis ontologiëen te verbinden. Door het verbinden van verschillende ontologieën met
KOS kan een harmonizatie van hun concepten worden bereikt.

In het laatste deel van het proefschrift onderzochten we de haalbaarheid van het
bouwen van een geautomatiseerde oplossing om het bouwproces van Web service domein
ontologiëen te ondersteunen. Uit de twee case studies die we uitvoerden concluderen we
dat scenario’s voor het bouwen van domein ontologieën zeer verschillend kunnen zijn
maar dat zij een aantal belangrijke karakteristieken hebben waarmee rekening dient te
worden gehouden wanneer men een geautomatiseerde oplossing ontwikkelt. We ob-
serveerden dat de over het algemeen beschikbare data sets voor het automatisch leren
van ontologiëen textuele beschrijvingen van aangeboden functionaliteit zijn (b.v. API
documentatie, of Web service commentaren). Deze textuele beschrijvingen hebben een
lage grammaticale kwaliteit en gebruiken natuurlijke taal op een zeer specifieke manier
(ze gebruiken een subtaal). Verder dient zowel statische als dynamische kennis afgeleid
te worden door geautomatiseerde programma’s. Onze bijdrage is het identificeren van
deze eigenschappen.

Onze tweede conclusie was dat eenvoudige ontologie leermethoden kunnen worden
aangepast voor de Web service context. Nadat we de eigenaardigheden van de Web ser-
vice context begrepen hebben we een raamwerk gebouwd dat ontologie leermethoden
aanpast aan de karakteristieken van het domein. Dit raamwerk steunt op de observatie
dat, vanwege de karakteristieken van de gebruikte subtaal in de geanalyseerde teksten,
simpele patroon gebaseerde technieken kunnen worden gebruikt om semantische struc-
turen te extraheren uit de regelmatigheden van de subtaal. Dit raamwerk staat de imple-
mentatie van verschillende extractie methoden toe. We hebben linguistieke analyses van
verschillende complexiteit gebruikt om ontologie lering uit te voeren. Onze bijdrage is
het opstellen van algemene contouren van het raamwerk en het demonstreren van twee
aparte implementaties (zie Hoofdstuk 7)

Evaluatie van ontologie leer methoden is geen eenvoudige taak. We analyseerden
een aantal verschillende aanpakken en gebruikten een combinatie van methoden om
onze evaluatie metriek te definiëren. De resultaten van onze evaluatie tonen aan dat
(1) ons raamwerk, al is het ontworpen voor de Web service context, toepasbaar is op
verschillende domeinen (onze methoden presteren vergelijkbaar in twee verschillende
domeinen). De resultaten tonen ook aan dat (2) diepere linguistische analyse leidt tot
betere resultaten omdat zij minder gevoelig is voor de onvolkomenheden van het cor-
pus. Ten laatste gaven de experts die betrokken waren bij de evaluatie aan dat (3) de
gëextraheerde ontologieën een betrouwbaarder representatie van de kennis in het corpus
zijn dan de hand gebouwde Gouden Standaard ontologieën en dan ze een nuttig startpunt
voor het bouwen van een domein ontologie vormen. De geëxtraheerde ontologieën be-
vatten zelfs meer dan 50% van de relevante domein concepten. Onze bijdrage is, behalve
het verschaffen van inzicht in de prestaties van van de leer methoden, het vestigen van

een basismeting voor evaluatie van ontologie leer methoden in de Web services context.
We verzamelden twee data sets en hun bijbehorende met de hand gebouwde Gouden
Standaard ontologieën die kunnen worden gebruikt als een toets voor het evalueren van
nieuwe oplossingen (zie Hoofdstuk 8).

Om het doel van het ondersteunen van het verkrijgen van Web service domein ontolo-
gieën volledig te bereiken dienen we, naast het bouwen van ontologie lerings methoden
met een hoge prestatie, ze te implementeren in programma’s die eenvoudig te gebruiken
zijn door experts. Ons bewust van deze eis, hebben we een prototype geı̈mplementeerd
dat (1) eenvoudig te debuggen, uit te breiden en aan te passen is door ontwerpers van
ontologie lerings methoden in deze context en dat (2) een intuı̈tieve gebruikersinterface
voor domein experts heeft die ontologieën willen extraheren met het programma (zie
Hoofdstuk 7). We bereikten deze gebruikseigenschappen door het gebruik van de GATE
software en het gebruik van visuele metaforen om de geëxtraheerde kennis te presen-
teren.

Ook al hebben we een verscheidenheid aan kwesties betreffende het onderwerp van
het bouwen van Web service ontologieën behandeld, stellen wij ons voor dat verder be-
langwekkend onderzoek gedaan kan worden in de context van het verbeteren van het
semantische Web service veld. In het bijzonder, als de voorstellen voor generieke Web
service ontologiëen een bepaald niveau van rijpheid bereiken, zal het belangrijk worden
ze te harmonizeren. Verder is de aanpak voor het leren van Web service domein on-
tologiëen zoals hier gepresenteerd slechts een [aantoonbaarheidsstudie] en dient verder
uitgebreid en ontwikkeld te worden. Toekomstig werk kan zich ook concentreren op het
dichter bij elkaar brengen van software engineering en Semantisch Web technologie in
zijn algemeenheid. Ten laatste zou het ontologie lerings veld profijt hebben van verder
onderzoek van adaptieve ontologie lering, evaluatie van ontologie lerings methoden en
het ontwikkelen van bruikbaarder ontologie lerings programma’s.

Bibliography

Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Payne, T., and Sycara, K. (2002a). DAML-S: Web Service De-
scription for the Semantic Web. In (Horrocks and Hendler, 2002), pages 348 – 364.

Ankolekar, A., Huch, F., and Sycara, K. (2002b). Concurrent Execution Semantics for DAML-S
with Subtypes. In (Horrocks and Hendler, 2002), pages 318 – 333.

Ankolenkar, A., Hutch, F., and Sycara, K. (2002). Concurrent Semantics for the Web Services
Specification Language DAML-S. InProceedings of The Fifth International Conference on
Coordination Models and Languages.

Aussenac-Gilles, N. (2005). Supervised Text Analyses for Ontology and Terminology Engineering.
In Proceedings of the Dagstuhl Seminar on Machine Learning for the Semantic Web.

Baida, Z., Gordijn, J., Omelayenko, B., and Akkermans, H. (2004). A Shared Service Terminol-
ogy for Online Service Provisioning. InProceedings of the Sixth International Conference on
Electronic Commerce (ICEC04), Delft, The Netherlands. ACM.

Baker, P., Goble, C., Bechhofer, S., Paton, N., Stevens, R., and Brass, A. (1999). An Ontology for
Bioinformatics Applications.Bioinformatics, 15(6):510 – 520.

Barbera-Medina, W., Padget, J., and Aird, M. (2003). Brokerage for Mathematical Services in
MONET. In (Cavedon and Maamar, 2003).

Battle, S. and Martin, D. (2005). W3C Workshop on Frameworks for Semantics in Web Ser-
vices Summary Report. Available online at:http://www.w3.org/2005/04/FSWS/
workshop-report.html .

Bechhofer, S., Horrocks, I., Goble, C., and Stevens, R. (2001). OilEd: a reason-able ontology editor
for the Semantic Web. InProceedings of the Joint German Austrian Conference on Artificial
Intelligence, volume 2174 ofLNAI, pages 396 – 408. Springer-Verlag.

Berardi, D., Gruninger, M., Hull, R., and McIlraith., S. (2004). Towards a First-Order Ontology
for Web Services. InProceedings of the W3C Workshop on Constraints and Capabilities for
Web Services.

Berland, M. and Charniak, E. (1999). Finding Parts in Very Large Corpora. InProceedings of the
37th Annual Meeting of the ACL.

Berners-Lee, T. (1989). Information Management: A Proposal. Available online at:http:
//www.w3.org/History/1989/proposal.html .

Berners-Lee, T. (1999).Weaving the Web. Harpur, San Francisco.

http://www.w3.org/2005/04/FSWS/workshop-report.html
http://www.w3.org/2005/04/FSWS/workshop-report.html
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web.Scientific American,
284(5):34 – 43.

Biggerstaff, T., Mitbander, B., and Webster, D. (1993). The Concept Assignment Problem in
Program Understanding. InProceedings of the 15th International Conference on Software En-
gineering, pages 482 – 498, Los Alamitos, CA. IEEE Computing Society Press.

Bisson, G., Nedellec, C., and Caamero, L. (2000). Designing clustering methods for ontology
building: The Mo’K workbench. In (Staab et al., 2000).

Bloehdorn, S. and Hotho, A. (2004). Text Classification by Boosting Weak Learners based on
Terms and Concepts. InProceedings of the Fourth IEEE International Conference on Data
Mining, pages 331 – 334. IEEE Computer Society Press.

Bontcheva, K., Tablan, V., Maynard, D., and Cunningham, H. (2004). Evolving GATE to Meet
New Challenges in Language Engineering.Natural Language Engineering, 10(3/4):349 – 373.

Borgida, A. and Devanbu, P. (1999). Adding more DL to IDL: towards more knowledgeable
component inter-operability. InProceedings of the 21st international conference on Software
engineering, pages 378 – 387. IEEE Computer Society Press.

Borgo, S., Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A. (2002). Ontology RoadMap.
WonderWeb Deliverable D15.

Borgo, S. and Leitao, P. (2004). The Role of Foundational Ontologies in Manufacturing Domain
Applications. In (Meersman and Tari, 2004), pages 670 – 688.

Borst, W. (1997). Construction of Engineering Ontologies. PhD thesis, University of Tweente,
Enschede, NL–Centre for Telematica and Information Technology.

Brazier, F. and Wijngaards, N. (2001). Automated servicing of agents.Artificial Intelligence and
Simulation of Behaviour, Special Issue on Agent Technology, 1(1):5 – 20.

Brison, J., Martin, D., McIlraith, S., and Stein, L. (2002). Agent-Based Composite Services in
DAML-S: The Behavior-Oriented Design of an Intelligent Semantic Web. In Zhong, N., Liu, J.,
and Yao, Y., editors,Web Intelligence. Springer-Verlag, Berlin.

Broekstra, J., Kampman, A., and van Harmelen, F. (2002). Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In (Horrocks and Hendler, 2002), pages 348 –
363.

Buitelaar, P., Cimiano, P., and Magnini, B., editors (2004a).Proceedings of the ECAI Workshop on
Ontology Learning and Population: Towards Evaluation of Text-based Methods in the Semantic
Web and Knowledge Discovery Life Cycle. Valencia, Spain.

Buitelaar, P., Olejnik, D., and Sintek, M. (2004b). A Protege Plug-In for Ontology Extraction from
Text Based on Linguistic Analysis. In (Bussler et al., 2004).

Bussler, C., Davies, J., Fensel, D., and Studer, R., editors (2004).Proceedings of the First European
Semantic Web Symposium (ESWS2004), volume 3053 ofLNCS. Springer-Verlag, Heraklion,
Crete, Greece.

Cabral, L., Domingue, J., Motta, E., Payne, T., and Hakimpour, F. (2004). Approaches to Semantic
Web Services: An Overview and Comparisons. In (Bussler et al., 2004), pages 225 – 239.

Cardoso, J. and Sheth, A. (2002). Semantic e-Workflow Composition. Technical report, LSDIS
Lab, Computer Science, University of Georgia.

Cavedon, L. and Maamar, Z., editors (2003).Proceedings of the AAMAS Workshop on Web Ser-
vices and Agent-Based Engineering. Melbourne, Australia.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2003). Web Services Description
Language (WSDL). Working Draft. Available online at:http://www.w3.org/TR/wsdl .

Cimiano, P., Handschuh, S., and Staab, S. (2004a). Towards the Self-Annotating Web. In (Feldman
et al., 2004), pages 462 – 471.

Cimiano, P., Hotho, A., and Staab, S. (2004b). Clustering concept hierarchies from text. In
Proceedings of LREC.

Cimiano, P., Pivk, A., Schmidt-Thieme, L., and Staab, S. (2004c). Learning Taxonomic Relations
from Heterogeneous Evidence. In (Buitelaar et al., 2004a).

Cimiano, P., Staab, S., and Tane, J. (2003). Automatic Acquisition of Taxonomies from Text: FCA
meets NLP. InProceedings of the ECML/PKDD Workshop on Adaptive Text Extraction and
Mining, Cavtat–Dubrovnik, Croatia.

Cimiano, P. and Voelker, J. (2005). Text2Onto - A Framework for Ontology Learning and Data-
driven Change Discovery. InProceedings of the 10th International Conference on Applications
of Natural Language to Information Systems (NLDB’2005).

Corcho, O., Fernandez-Lopez, M., and Gomez-Perez, A. (2003). Methodologies, tools and lan-
guages for building ontologies. Where is the meeting point?Data and Knowledge Engineering,
46(1):41 – 46.

Cunningham, H., Maynard, D., Bontcheva, K., and Tablan, V. (2002). GATE: A framework and
graphical development environment for robust NLP tools and applications. InProceedings of
the 40th Anniversary Meeting of the Association for Computational Linguistics.

Cunningham, H., Maynard, D., and Tablan, V. (2000). JAPE: a Java Annotation Patterns Engine
(Second Edition). Research Memorandum CS–00–10, Department of Computer Science, Uni-
versity of Sheffield.

DAML Services Coalition (2002). DAML-S: Semantic Markup for Web Services. DAML-S v.
0.7 White Paper. Available online at:http://www.daml.org/services/daml-s/0.
7/daml-s.pdf .

de Aalst, W. V. (2003). Dont Go with the Flow: Web Services Compostition Standards Exposed.
IEEE Intelligent Systems, 18(1):72 – 76.

Delteil, A., Faron-Zucker, C., and Dieng, R. (2001). Learning Ontologies from RDF Annotations.
In Proceedings of the IJCAI Workshop on Ontology Learning, Seattle.

Diaz, R. P. (1991). Implementing Faceted Classification for Software Reuse.Communications of
the ACM, 34(5):88 – 97.

Eades, P. (1984). A heuristic for graph drawing.Congressus Numerantium, 42:149 – 160.

Elenius, D. (2005). Tools for Semantic Web Services.AgentLink News, 18:8 – 11.

Elenius, D., Denker, G., Martin, D., Gilham, F., Khouri, J., Sadaati, S., and Senanayake, R. (2005).
The OWL-S Editor A Development Tool for Semantic Web Services. In (Gomez-Perez and
Euzenat, 2005), pages 78 – 92.

http://www.w3.org/TR/wsdl
http://www.daml.org/services/daml-s/0.7/daml-s.pdf
http://www.daml.org/services/daml-s/0.7/daml-s.pdf

Elrad, T., Filman, R., and Bader, A. (2001). Aspect-oriented programming: Introduction.Commu-
nications of the ACM, 44(10):29 – 32.

Falkovych, K., Sabou, M., and Stuckenschmidt, H. (2003). UML for the Semantic Web:
Transformation-Based Approaches. In Omelayenko, B. and Klein, M., editors,Knowledge
Transformation for the Semantic Web, volume 95 ofFrontiers in Artificial Intelligence and Ap-
plications, pages 92 – 107. IOS Press, Amsterdam.

Faure, D. and Nedellec, C. (1998). ASIUM: learning subcategorization frames and restrictions of
selection. In Kodratoff, Y., editor,Proceedings of Workshop on Text Mining, 10th European
Conference on Machine Learning (ECML 98).

Faure, D. and Poibeau, T. (2000). First experiments of using semantic knowledge learned by
ASIUM for information extraction task using INTEX. In (Staab et al., 2000).

Feldman, S., Uretsky, M., Najork, M., and Wills, C., editors (2004).Proceedings of the 13th
International World Wide Web Conference (WWW’04). ACM Press, New York, NY, USA.

Fensel, D., Benjamins, R., Motta, E., and Wielinga, B. (1999). UPML: A framework for knowledge
system reuse. In Dean, T., editor,Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, IJCAI 99, pages 16 – 23, Stockholm, Sweden. Morgan Kaufmann.

Fensel, D., Decker, S., Erdmann, M., and Studer, R. (1998). Ontobroker: Or How to Enable Intel-
ligent Access to the WWW. InProceedings of the 11th Knowledge Acquisition for Knowledge-
Based System Workshop (KAW98). Banff, Kanada.

Fensel, D., Sycara, K., and Mylopoulos, J., editors (2003).The SemanticWeb - ISWC 2003, Second
International Semantic Web Conference, Proceedings, volume 2870 ofLNCS. Springer-Verlag,
Sanibel Island, FL, USA.

Fluit, C., Sabou, M., and van Harmelen, F. (2002). Ontology-based Information Visualisation. In
Geroimenko, V., editor,Visualising the Semantic Web. Springer-Verlag.

Fluit, C., Sabou, M., and van Harmelen, F. (2004). Supporting User Tasks through Visualisation
of Light-weight Ontologies. In (Staab and Studer, 2004), pages 415 – 434.

Fluit, C., Sabou, M., and van Harmelen, F. (2005). Ontology-based Information Visualization:
Towards Semantic Web Applications. In Geroimenko, V., editor,Visualising the Semantic Web,
Second Edition. Springer-Verlag.

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., and Schneider, L. (2002). Sweetening
Ontologies with DOLCE. In Gomez-Perez, A. and Benjamins, V., editors,Proceedings of the
13th International Conference on Knowledge Engineering and Knowledge Management (EKAW
2002). Ontologies and the Semantic Web., volume 2473 ofLNCS. Springer-Verlag, Siguenza,
Spain.

Gangemi, A., Mika, P., Sabou, M., and Oberle, D. (2003). An Ontology of Services and Service
Descriptions. Technical report, Laboratory for Applied Ontology, National Research Council,
I-00137 Rome, Italy.

Gibbins, N., Harris, S., and Shadbolt, N. (2003). Agent-based Semantic Web Services. In (Hencsey
and White, 2003), pages 710 – 717.

Gomez-Perez, A. (2002). A survey on ontology tools. OntoWeb Delieverable 1.3.

Gomez-Perez, A. and Euzenat, J., editors (2005).The Semantic Web: Research and Applica-
tions: Second European Semantic Web Conference, ESWC, Proceedings, volume 3532 ofLNCS.
Springer-Verlag, Heraklion, Crete, Greece.

Gomez-Perez, A., Fernandez-Lopez, M., and Corcho, O. (2003).Ontological Engineering. Ad-
vanced Information and Knowledge Processing. Springer-Verlag.

Gomez-Perez, A., Gonzalez-Cabero, R., and Lama, M. (2004). Development of Semantic Web
Services at the Knowledge Level. InProceedings of the European Conference on Web Services
(ECOWS), Erfurt, Germany.

Gomez-Perez, A. and Manzano-Mancho, D. (2003). A Survey of Ontology Learning Methods and
Techniques. OntoWeb Delieverable 1.5.

Grishman, R. (2001). Adaptive Information Extraction and Sublanguage Analysis. InIJCAI-2001
Workshop on Adaptive Text Extraction and Mining.

Grishman, R., Hirschman, L., and Nhan, N. T. (1986). Discovery Procedures for Sublanguage
Selectional Patterns: Initial Experiments.Computational Linguistics, B12(3):205 – 216.

Grishman, R. and Kittredge, R., editors (1986).Analyzing Language in Restricted Domains: Sub-
language Description and Processing. Lawrence Erlbaum Assoc., Hillsdale, NJ.

Grosof, B., Gruninger, M., Kifer, M., Martin, D., McGuinness, D., Parsia, B., Payne, T., and Tate,
A. (2004). Semantic Web Services Language Requirements.http://www.daml.org/
services/swsl/requirements/swsl-requirements.shtml .

Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications.Knowledge Ac-
quisition, 5(2):199 – 220.

Guarino, N. (1997). Semantic Matching: Formal Ontological Distinctions for Information Organi-
zation, Extraction, and Integration. In Pazienza, M., editor,Information Extraction: A Multidis-
ciplinary Approach to an Emerging Information Technology, volume 1299 ofLNCS, pages 139
– 170. Springer-Verlag.

Guarino, N. (1998). Formal Ontology and Information Systems. In Guarino, N., editor,Formal
Ontology in Information Systems. Proceedings of FOIS’98, pages 3 – 15. IOS Press, Amsterdam,
Trento, Italy.

Guarino, N. and Welty, C. (2004). An Overview of OntoClean. In (Staab and Studer, 2004), pages
151 – 171.

Guizzardi, G. (2005).Ontological Foundations for Structural Conceptual Models. PhD thesis,
Telematica Instituut.

Harris, Z. (1968).Mathematical Structures of Language. Wiley Interscience, New York.

Hearst, M. (1992). Automatic Acquisition of Hyponyms in Large Text Corpora. InProceedings of
the Fourteenth International Conference on Computational Linguistics.

Helm, R. and Maarek, Y. (1991). Integrating Information Retrieval and Domain Specific Ap-
proaches for Browsing and Retrieval in Object-Oriented Class Libraries. InProceedings of
Object-oriented Programming Systems, Languages, and Applications, pages 47 – 61, New York,
NY, USA. ACM Press.

Hencsey, G. and White, B., editors (2003).Proceedings of the 12th International World Wide Web
Conference. ACM Press, Budapest, Hungary.

http://www.daml.org/services/swsl/requirements/swsl-requirements.shtml
http://www.daml.org/services/swsl/requirements/swsl-requirements.shtml

Hendler, J. (2001). Agents and the Semantic Web.IEEE Intelligent Systems, 16(2):30 – 37.

Hepple, M. (2000). Independence and commitment: Assumptions for rapid training and execution
of rule-based pos taggers. InProceedings of the 38th Annual Meeting of the Association for
Computational Linguistics (ACL-2000), Hong Kong.

Hess, A., Johnston, E., and Kushmerick, N. (2004). ASSAM: A Tool for Semi-Automatically
Annotating Semantic Web Services. In (McIlraith et al., 2004), pages 320 – 335.

Hess, A. and Kushmerick, N. (2003). Learning to Attach Semantic Metadata to Web Services. In
(Fensel et al., 2003), pages 358 – 274.

Hess, A. and Kushmerick, N. (2004). Machine Learning for Annotating Semantic Web Services.
In AAAI Spring Symposium on Semantic Web Services.

Horrocks, I. and Hendler, J. A., editors (2002).The Semantic Web - ISWC 2002, First International
Semantic Web Conference, volume 2342 ofLNCS. Springer-Verlag, Sardinia, Italy.

Horrocks, I., Patel-Schneider, P., and van Harmelen, F. (2003). FromSHIQ and RDF to OWL:
The Making of a Web Ontology Language.Journal of Web Semantics, 1(1):7 – 26.

Hotho, A., Staab, S., and Stumme., G. (2003). WordNet improves Text Document Clustering. In
Proceedings of the Semantic Web Workshop at SIGIR-2003, 26th Annual International ACM
SIGIR Conference, Toronto, Canada.

Hyvonen, E., editor (2002).The Semantic Web Kick-Off in Finland - Vision, Technologies, Re-
search, and Applications. HIIT Publications, University of Helsinki.

Jannink, J. and Wiederhold, G. (1999). Thesaurus Entry Extraction from an On-line Dictionary. In
Proceedings of Fusion, Sunnyvale, CA.

Kivela, A. and Hyvonen, E. (2002). Ontological Theories for the Semantic Web. In (Hyvonen,
2002).

Lara, R., Lausen, H., Arroyo, S., de Bruijn, J., and Fensel, D. (2003). Semantic Web Services: de-
scription requirements and current technologies. InProceedings of the International Workshop
on Electronic Commerce, Agents, and Semantic Web Services held in conjunction with the Fifth
International Conference on Electronic Commerce (ICEC 2003), Pittsburgh.

Lara, R., Polleres, A., Lausen, H., Roman, D., de Bruijn, J., and Fensel, D. (2005). A Conceptual
Comparison between WSMO and OWL-S. WSMO Deliverable, D.4.1, v.0.1.

Lassila, O. (2002). Serendipitous Interoperability. In (Hyvonen, 2002).

Laukkanen, M. and Helin, H. (2003). Composing Workflows of Semantic Web Services. In (Cave-
don and Maamar, 2003).

Lei, L. and Horrocks, I. (2003). A Software Framework For Matchmaking Based on Semantic
Web Technology. In (Hencsey and White, 2003), pages 331 – 339.

Lin, D. (1998). Dependency-based Evaluation of MINIPAR. InWorkshop on the Evaluation
of Parsing Systems, First International Conference on Language Resources and Evaluation,
Granada, Spain.

Lopes, A., Gaio, S., and Botelho, L. (2002). From DAML-S to Executable Code. InProceedings
of the AAMAS Workshop on Challenges in Open Agent Systems.

Lord, P., Alper, P., Wroe, C., and Goble, C. (2005). Feta: A Light-Weight Architecture for User
Oriented Semantic Service Discovery. In (Gomez-Perez and Euzenat, 2005), pages 17 – 31.

Lord, P., Bechhofer, S., Wilkinson, M., Schiltz, G., Gessler, D., Hull, D., Goble, C., and Stein, L.
(2004). Applying Semantic Web Services to bioinformatics: Experiences gained, lessons learnt.
In (McIlraith et al., 2004), pages 350 – 365.

Luke, S., Spector, L., and Rager, D. (1996). Ontology-Based Knowledge Discovery on the World-
Wide Web. InAAAI96 Workshop on Internet-based Information Systems.

Maarek, Y., Berry, D., and Kaiser., G. (1991). An Information Retrieval Approach for Automati-
cally Constructing Software Libraries.IEEE Transactions on Software Engineering, 17(8):800
– 813.

MacGregor, R. (1991). Using a Description Classifier to Enhance Deductive Inference. InPro-
ceedings Seventh IEEE Conference on AI Applications, pages 141 – 147.

Maedche, A. (2002).Ontology Learning for the Semantic Web. Kluwer Academic Publishers.

Maedche, A., Motik, B., and Stojanovic, L. (2003). Managing Multiple and Distributed Ontologies
in the Semantic Web.VLDB Journal, 12(4):286 – 302.

Maedche, A. and Staab., S. (2000). Discovering Conceptual Relations from Text. In Horn, W.,
editor, Proceedings of the Fourteenth European Conference on Artificial Intelligence (ECAI
2000), pages 321 – 325, Berlin, Germany. IOS Press.

Maedche, A. and Staab, S. (2001). Ontology Learning for the Semantic Web.IEEE Intelligent
Systems, 16(2):72 – 79.

Maedche, A. and Staab, S. (2002). Measuring Similarity between Ontologies. InProceedings of
European Knoeledge Ackquisition Workshop (EKAW).

Maedche, A. and Staab, S. (2004). Ontology Learning. In (Staab and Studer, 2004), pages 173 –
190.

Martin, D., Burstein, M., Denker, G., Hobbs, J., Kagal, L., Lassila, O., McDermott, D., McIl-
raith, S., Paolucci, M., Parsia, B., Payne, T., Sabou, M., Sirin, E., Solanki, M., Srinivasan, N.,
and Sycara, K. (2003). OWL-S 1.0 white paper.http://www.daml.org/services/
owl-s/1.0/ .

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B.,
Payne, T., Sabou, M., Solanki, M., Srinivasan, N., and Sycara, K. (2004). Bringing Semantics
to Web Services: The OWL-S Approach. InProceedings of the First International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC 2004), San Diego, California,
USA.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and Oltramari, A. (2003). Ontology Library
(final). WonderWeb Deliverable D18.

Massonet, P. and van Lamsweerde, A. (1997). Analogical Reuse of Requirements Frameworks. In
Proceedings of the 3rd IEEE International Symposium on Requirements Engineering (RE’97),
pages 26 – 39, Annapolis, MD, USA. IEEE Computer Society.

McBride, B. (2002). Jena: A Semantic Web Toolkit.IEEE Internet Computing, 6(6):55 – 59.

McBride, B. (2004). The Resource Description Framework (RDF) and its Vocabulary Description
Language RDFS. In (Staab and Studer, 2004), pages 51 – 66.

http://www.daml.org/services/owl-s/1.0/
http://www.daml.org/services/owl-s/1.0/

McGuinness, D. (2002). Ontologies Come of Age. In Fensel, D., Hendler, J., Lieberman, H.,
and Wahlster, W., editors,Spinning the Semantic Web: bringing the World Wide Web to Its Full
Potential. MIT Press.

McGuinness, D. and van Harmelen, F. (2004). Web ontology language (OWL) overview. Available
online at:http://www.w3.org/TR/owl-features/ . W3C Recommendation.

McIlraith, S., Plexousakis, D., and van Harmelen, F., editors (2004).The Semantic Web - ISWC
2004, Third International Semantic Web Conference, Proceedings, volume 3298 ofLNCS.
Springer-Verlag, Hiroshima, Japan.

McIlraith, S., Son, T., and Zeng, H. (2001). Semantic Web Services.IEEE Intelligent Systems.
Special Issue on the Semantic Web, 16(2):46 – 53.

Meersman, R. and Tari, Z., editors (2004).On the Move to Meaningful Internet Systems 2004:
CoopIS, DOA, and ODBASE, OTM Confederated International Conferences, Proceedings, vol-
ume 3290 ofLNCS. Springer-Verlag, Agia Napa, Cyprus.

Mika, P., Oberle, D., Gangemi, A., and Sabou, M. (2004a). Foundations for Service Ontologies:
Aligning OWL-S to DOLCE. In (Feldman et al., 2004), pages 563 – 572.

Mika, P., Sabou, M., Gangemi, A., and Oberle, D. (2004b). Foundations for DAML-S: Aligning
DAML-S to DOLCE. In First International Semantic Web Services Symposium (SWS2004),
AAAI Spring Symposium Series.

Mili, A., Mili, R., and Mittermeir, R. (1998). A survey of software reuse libraries.Annals of
Software Engineering, 5:349 – 414.

Mili, H., Ah-Ki, E., Godin, R., and Mcheick, H. (1997). Another nail to the coffin of faceted
controlled-vocabulary component classification and retrieval.SIGSOFT Software Engineering
Notes, 22(3):89 – 98.

Miller, J., Verma, K., Rajasekaran, P., Sheth, A., Aggarwal, R., and Sivashanmugam, K. (2005).
WSDL-S: A Proposal to W3C WSDL 2.0 Committee. White paper.

Motta, E., Domingue, J., Cabral, L., and Gaspari, M. (2003). IRSII: A Framework and Infrastruc-
ture for Semantic Web Services. In (Fensel et al., 2003), pages 306 – 318.

Narayanan, S. and McIlraith, S. (2003). Analysis and simulation of Web Services.Computer
Networks, 42(5):675 – 693.

Navigli, R. and Velardi., P. (2004). Learning Domain Ontologies from Document Warehouses and
Dedicated Websites.Computational Linguistics, 30(2).

Navigli, R., Velardi, P., Cucchiarelli, A., and Neri, F. (2004). Quantitative and Qualitative Evalua-
tion of the OntoLearn Ontology Learning System. In (Buitelaar et al., 2004a).

Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., and Musen, M. A. (2001).
Creating Semantic Web Contents with Protege-2000.IEEE Intelligent Systems, 16(2):60 – 71.

Oberle, D., Eberhart, A., Staab, S., and Volz, R. (2004a). Developing and Managing Software
Components in an Ontology-based Application Server. InProceedings of the Fifth International
Middleware Conference.

Oberle, D., Staab, S., Studer, R., and Volz, R. (2004b). KAON SERVER Demonstrator. Wonder-
Web Deliverable 7.

http://www.w3.org/TR/owl-features/

Oberle, D., Staab, S., Studer, R., and Volz, R. (2004c). Supporting Application Development in
the Semantic Web.ACM Transactions on Internet Technology (TOIT), 4(4).

Object Modelling Group (2002). IDL / Language Mapping Specification - Java to IDL. 1.2.

Ogren, P., Cohen, K., Acquaah-Mensah, G., Eberlein, J., and Hunter, L. (2004). The Compositional
Structure of Gene Ontology Terms. InProceedings of the Pacific Symposium on Biocomputing.

Paolucci, M., Sycara, K., and Kawamura, T. (2002). Delivering Semantic Web Services. Technical
Report CMU-RI-TR-02-28, Robotics Institute, Carnegie Mellon University.

Patil, A., Oundhakar, S., Sheth, A., and Verma, K. (2004). METEOR-S Web service Annotation
Framework. In (Feldman et al., 2004), pages 553 – 562.

Pease, A., Niles, I., and Li, J. (2002). The Suggested Upper Merged Ontology: A Large Ontology
for the Semantic Web and its Applications. InWorking Notes of the AAAI-2002 Workshop on
Ontologies and the Semantic Web. Edmonton, Canada.

Pepper, S. and Schwab, S. (2003). Curing the Web’s Identity Crisis. Technical report, Ontopia
(http://www.ontopia.net).

Porzel, R. and Malaka, R. (2004). A Task-based Approach for Ontology Evaluation. In (Buitelaar
et al., 2004a).

Pretorius, A. (2004). Lexon Visualization: Visualizing Binary Fact Types in Ontology Bases. In
Proceedings of the 8th International Conference on Information Visusalisation, London.

Rector, A. and Rogers, J. (1999). Ontological issues in using a description logic to represent
medical concepts: Experience from GALEN.IMIA Working Group 6 Workshop.

Reinberger, M. and Spyns, P. (2004). Discovering Knowledge in Texts for the Learning of
DOGMA-Inspired Ontologies. In (Buitelaar et al., 2004a).

Reinberger, M.-L., Spyns, P., Pretorius, A., and Daelemans, W. (2004). Automatic initiation of an
ontology. In (Meersman and Tari, 2004), pages 600 – 617.

Richards, D. and Sabou, M. (2003). Semantic Markup for Semantic Web Tools: A DAML-S
description of an RDF-Store. In (Fensel et al., 2003), pages 274 – 289.

Richards, D., van Splunter, S., Brazier, F., and Sabou, M. (2003). Composing Web Services using
an Agent Factory. In (Cavedon and Maamar, 2003).

Rigau, G. (1998).Automatic Acquisition of Lexical Knowledge from MRDs. PhD thesis, Departa-
ment de Llenguatges i Sistemes Informatics – Universitat Politecnica da Catalunya.

Riloff, E. (1996). Automatically Generating Extraction Patterns from Untagged Text. InProceed-
ings of the 13th National Conference On Artificial Intelligence (AAAI), pages 1044–1049.

Rubin, D., Hewett, M., Oliver, D., Klein, T., and Altman, R. (2002). Automatic data acquisition
into ontologies from pharmacogenetics relational data sources using declarative object defini-
tions and XML. InProceedings of the Pacific Symposium on Biology.

Sabou, M. (2004a). Extracting Ontologies from Software Documentation: a Semi-Automatic
Method and its Evaluation. In (Buitelaar et al., 2004a).

Sabou, M. (2004b). From Software APIs to Web Service Ontologies: a Semi-Automatic Extraction
Method. In (McIlraith et al., 2004), pages 410 – 425.

http://www.ontopia.net

Sabou, M. (2005a). Learning Web Service Ontologies: an Automatic Extraction Method and its
Evaluation. In Buitelaar, P., Cimmiano, P., and Magnini, B., editors,Ontology Learning from
Text: Methods, Evaluation and Applications, volume 123 ofFrontiers in Artificial Intelligence
and Applications. IOS Press, July.

Sabou, M. (2005b). Visual Support for Ontology Learning: an Experience Report. InProceedings
of the 9th International Conference on Information Visualisation (IV05), London, UK.

Sabou, M., Oberle, D., and Richards, D. (2004). Enhancing Application Servers with Seman-
tics. InProceedings of the First Australian Workshop on Engineering Service-Oriented Systems
(AWESOS), Melbourne, Australia.

Sabou, M. and Pan, J. (2005). Towards Improving Web Service Repositories through Semantic Web
Techniques. InProceedings of the Workshop on Semantic Web Enabled Software Engineering
(SWESE) collocated with the 4th International Semantic Web Conference (ISWC 2005).

Sabou, M., Richards, D., and van Splunter, S. (2003). An experience report on using DAML-S. In
Proceedings of the Workshop on E-Services and the Semantic Web, The 12th WWW Conference,
Budapest, Hungary.

Sabou, M., Wroe, C., Goble, C., and Mishne, G. (2005a). Learning Domain Ontologies for Web
Service Descriptions: an Experiment in Bioinformatics. InProceedings of the 14th International
World Wide Web Conference, Chiba, Japan.

Sabou, M., Wroe, C., Goble, C., and Stuckenschmidt, H. (2005b). Learning Domain Ontologies
for Semantic Web Service Descriptions.Journal of Web Semantics, 3(4).

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., van de Velde, W., and
Wielinga, B. (1999).Knowledge Engineering and Management The CommonKADS Methodol-
ogy. The MIT Press, Cambridge, Massachusetts.

Scicluna, J., Abela, C., and Montebello, M. (2004). Visual Modelling of OWL-S Services. In
Proceedings of the IADIS International Conference WWW/Internet, Madrid, Spain.

Seguela, P. and Aussenac-Gilles, N. (1999). Extraction de relations semantiques entre termes et
enrichissement de modeles du domaine. InActes de la Conference IC’99 - Plate-forme AFIA.

Sheshagiri, M., desJardins, M., and Finin, T. (2003). A Planner for Composing Services Described
in DAML-S. In (Cavedon and Maamar, 2003).

Smith, B. (2003). Basic Formal Ontology. Technical report, Institute for Formal Ontology and
Medical Information Science, University of Leipzig.

Smith, B. and Welty, C. (2001). FOIS introduction: Ontology—towards a new synthesis. In
Proceedings of the International Conference on Formal Ontology in Information Systems, pages
3 – 9, Ogunquit, Maine, USA. ACM Press.

Somacher, M., Tomaiuolo, M., and Turci, P. (2002). Goal Delegation in Multiagent System. In
Tecniche di Intelligenza Artificiale per la ricerca di informazione sul Web.

Staab, S., Maedche, A., and Nedellec, C., editors (2000).Proceedings of the ECAI-2000 Ontology
Learning Workshop.

Staab, S. and Studer, R., editors (2004).Handbook on Ontologies. International Handbooks on
Information Systems. Springer-Verlag.

Stuckenschmidt, H., Sabou, M., and Klein, M. (2004). Semantic Web Technology - Bringing
Meaning to Distributed Systems.IEEE Distributed Systems Online.

Studer, R., Benjamins, V., and Fensel, D. (1998). Knowledge Engineering: Principles and Meth-
ods.Data and Knowledge Engineering, 25(1-2):161 – 197.

Suryanto, H. and Compton, P. (2001). Discovery of Ontologies from Knowledge Bases. InPro-
ceedings of the International Conference on Knowledge Capture, pages 171 – 178, New York,
NY, USA. ACM Press.

ten Teije, A., van Harmelen, F., and Wielinga, B. (2004). Configuration of Web Services as Para-
metric Design. In Motta, E., Shadbolt, N., Stutt, A., and Gibbins, N., editors,Proceedings
of the 14th International Conference on Knowledge Engineering and Knowledge Management,
(EKAW-2004), number 3257 in LNAI, pages 321 – 336, Whittleburry Hall, UK. Springer-Verlag.

Uschold, M. (2001). Where is the Semantics in the Semantic Web? InProceedings of the Work-
shop on Ontologies in Agent Systems (OAS) at the 5th International Conference on Autonomous
Agents.

Uschold, M. and Jasper, R. (1999). A Framework for Understanding and Classifying Ontology
Applications. InProceedings of the IJCAI99 Workshop on Ontologies and Problem-Solving
Methods. Stockholm.

van Harmelen, F. (2002). How the Semantic Web will change KR: challenges and opportunities
for a new research agenda.The Knowledge Engineering Review, 17(1):93 – 96.

van Heijst, G., Schreiber, A. T., and Wielinga, B. J. (1997). Using Explicit Ontologies in KBS
Development.International Journal of Human-Computer Studies, 46(2/3):183 – 292.

van Splunter, S., Sabou, M., Brazier, F., and Richards, D. (2003). Configuring Web Service,
using Structurings and Techniques from Agent Configuration. InProceedings of the IEEE/WIC
International Conference on Web Intelligence, Halifax, Canada,.

Velardi, P., Missikoff, M., and Fabriani, P. (2001). Using Text Processing Techniques to Automat-
ically enrich a Domain Ontology. InProceedings of the International Conference on Formal
Ontology in Information Systems, pages 270 – 284. ACM Press.

Vrandecic, D., Pinto, H., Sure, Y., and Tempich, C. (2005). The DILIGENT Knowledge Processes.
Journal of Knowledge Management.

W3C (2002). Web services architecture requirements. W3C Web Services Ar-
chitecture Working Draft, Available online at: http://www.w3.org/TR/2002/
WD-wsa-reqs-20021114 .

Wroe, C., Goble, C., Greenwood, M., Lord, P., Miles, S., Papay, J., Payne, T., and Moreau, L.
(2004). Automating Experiments Using Semantic Data on a Bioinformatics Grid.IEEE Intelli-
gent Systems, 19(1):48 – 55.

Wroe, C., Stevens, R., Goble, C., Roberts, A., and Greenwood, M. (2003). A Suite of DAML+OIL
Ontologies to Describe Bioinformatics Web Services and Data.Journal of Cooperative Infor-
mation Science, 12(2):197 – 224.

Zaremski, A. and Wing, J. (1997). Specification Matching of Software Components.ACM Trans-
actions on Software Engineering and Methodology, 6(4):333 – 369.

http://www.w3.org/TR/2002/WD-wsa-reqs-20021114
http://www.w3.org/TR/2002/WD-wsa-reqs-20021114

SIKS Dissertation Series

1998
1998-1 Johan van den Akker (CWI)

DEGAS - An Active, Temporal Database
of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically
Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analy-
sis of Business Conversations within the
Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoe-
meting

1999
1999-1 Mark Sloof (VU)

Physiology of Quality Change Mod-
elling; Automated modelling of Quality
Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and
neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical
Objects

1999-5 Aldo de Moor (KUB) Empowering
Communities: A Method for the Legit-
imate User-Driven Specification of Net-
work Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database
design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and
Analysis of a Multi-Agent Mechanism for
Discrete Reallocation

2000
2000-1 Frank Niessink (VU)

Perspectives on Improving Software
Maintenance

2000-2 Koen Holtman (TUE)Prototyping of
CMS Storage Management

2000-3 Carolien M.T. Metselaar (UvA)
Sociaal-organisatorische gevolgen van
kennistechnologie; een procesbenader-
ing en actorperspectie

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence
Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in
Information Retrieval

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent
Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical
Patient Management

2000-8 Veerle Couṕe (EUR)
Sensitivity Analyis of Decision-Theoretic
Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Opti-
mization

2000-10 Niels Nes (CWI)
Image Database Management System
Design Considerations, Algorithms and
Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for
Database Management

2001

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying
Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Pro-
gramming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version
Spaces with Instance-Based Boundary
Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A
Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on In-
formation Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for
Multi-Agent Systems Dynamics

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of
Large Object-Oriented Models, Views of
Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and
simulation language for work practice
analysis and design

2001-11 Tom M. van Engers (VU)
Knowledge Management: The Role of
Mental Models in Business Systems De-
sign

2002
2002-01 Nico Lassing (VU)

Architecture-Level Modifiability Analy-
sis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based
document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for In-
formation Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov
Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling
Electronic Environments inhabited by
Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building a
knowledge-based ontology of the legal
domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Ker-
nel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering:
Exploring Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel (KUB)
Integrating Modern Business Applica-
tions with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics:
Biological and Organisational Applica-
tions

2002-12 Albrecht Schmidt (UvA)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive
Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches
to Modelling, Programming and Verify-
ing Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Ac-
tivity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations,
Models and Applications

2002-17 Stefan Manegold (UvA)
Understanding, Modeling, and Improv-
ing Main-Memory Database Perfor-
mance

2003
2003-01 Heiner Stuckenschmidt (VU)

Ontology-Based Information Sharing in
Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning
About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Pres-
ence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Sup-
ported by Database Technology

2003-05 Jos Lehmann (UvA)
Causation in Artificial Intelligence and
Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual
environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge In-
tensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behav-
iour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some
experimental studies on the interaction
between medium, innovation context and
culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural
Language Dialogue using Bayesian Net-
works

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia
information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Oppo-
nent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation
Processes across ICT-Supported Organ-
isations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental
Maintenance of Indexes to Digital Media
Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probabil-
ity, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction:
Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-
business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis
of Approximation in Symbolic Problem
Solving

2004-04 Chris van Aart (UvA)
Organizational Principles for Multi-
Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process
Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestu-
urd onderwijs, een opstap naar abstract
denken, vooral voor meisjes

2004-08 Joop Verbeek (UM)
Politie en de Nieuwe Internationale In-
formatiemarkt, Grensregionale politiële
gegevensuitwisseling en digitale exper-
tise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explo-
rations into argument-based reasoning

2004-10 Suzanne Kabel (UvA)
Knowledge-rich indexing of learning-
objects

2004-11 Michel Klein (VU)
Change Management for Distributed
Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expres-
sions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On
Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations
in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for In-
ductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualita-
tive Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models
for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating mul-
tidisciplinary design teams

2005
2005-01 Floor Verdenius (UVA)

Methodological Aspects of Designing
Induction-Based Applications

2005-02 Erik van der Werf (UM)
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptu-
alisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving
Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for
Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation
for Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building
Distributed Ontology-based Web Appli-
cations

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for
Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualita-
tive Simulation in Interactive Learning
Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clus-
tering - A Decentralized Approach to
Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Onderste-
unen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Se-
mantic Web; Exploring how semantics
meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive
Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-
usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic
networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art
and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in

Database Systems by Exploiting Appli-
cation Semantics

2006
2006-01 Samuil Angelov (TUE)

Foundations of B2B Electronic Contract-
ing

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use
of information technology in organiza-
tions

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learn-
ing to solve problems

	1 Introduction
	1.1 Research Questions
	1.2 Contributions
	1.3 Structure of the Thesis
	1.4 Publications

	I Context and Related Work
	2 Semantic Web Services
	2.1 The Changing World Wide Web
	2.2 Semantic Web
	2.2.1 Ontologies
	2.2.2 Ontology Languages for the Semantic Web

	2.3 Web Services
	2.4 Semantic Web Services
	2.4.1 Generic Web Service Ontologies
	2.4.2 Web Service Domain Ontologies

	2.5 Requirements for Web Service Ontologies
	2.5.1 Requirements for Generic Web Service Ontologies
	2.5.2 Requirements for Web Service Domain Ontologies

	2.6 Summary

	3 Related Work
	3.1 Introduction
	3.2 Acquisition of Software Semantics
	3.3 Formal Ontology based Methods
	3.4 Ontology Learning
	3.4.1 Ontology Learning Approaches
	3.4.2 Methods for Text Based Ontology Learning
	3.4.3 Ontology Learning Tools
	3.4.4 Major Issues in Ontology Learning

	3.5 Summary

	II Enhancing Generic Web Service Ontologies
	4 Improving DAML-S
	4.1 Introduction
	4.2 The Web Services
	4.3 Modelling a Simple Service - Bib2Rdf
	4.4 Modelling a Service with Multiple Interfaces - SIA
	4.4.1 Top-Down Design of SIA1
	4.4.2 Bottom-Up Modelling of SIA2
	4.4.3 Composite Process Approach in SIA3
	4.4.4 Final Model in SIA4

	4.5 Modelling a Complex Service - Sesame
	4.5.1 Description
	4.5.2 Modelling Requirements
	4.5.3 Specifying Service Semantics
	4.5.4 Input/Output Specification

	4.6 Conclusions
	4.7 Summary

	5 Adapting OWL-S to Generic Software Entities
	5.1 Introduction
	5.2 Motivation
	5.2.1 Application Server for the Semantic Web
	5.2.2 Scenarios
	5.2.3 Requirements

	5.3 Ontology Design
	5.3.1 Overview
	5.3.2 The sub-ontologies

	5.4 Ontology Deployment
	5.4.1 An Example Component Description
	5.4.2 Using Component Descriptions

	5.5 Related Work
	5.6 Summary

	6 Aligning OWL-S to a Foundational Ontology
	6.1 Introduction
	6.2 Related Work
	6.3 Problematic Aspects of OWL-S
	6.3.1 Conceptual Ambiguity
	6.3.2 Poor Axiomatization
	6.3.3 Loose Design
	6.3.4 Narrow Scope

	6.4 Alignment
	6.4.1 DOLCE
	6.4.2 Descriptions & Situations
	6.4.3 A Core Ontology of Services
	6.4.4 Aligning OWL-S to the Core Ontology of Services
	6.4.5 Summary

	6.5 Suggestions for Improvement
	6.5.1 Conceptual Disambiguations
	6.5.2 Increased Axiomatization
	6.5.3 Improved Design
	6.5.4 Wider scope

	6.6 Conclusion
	6.7 Summary

	III Learning Web Service Domain Ontologies
	7 A Framework for Learning Web Service Domain Ontologies
	7.1 Introduction
	7.2 The Problem of Building Web Service Domain Ontologies
	7.2.1 Case Study 1: WonderWeb RDF(S) Storage Tools
	7.2.2 Case Study 2: myGrid Bioinformatics Services
	7.2.3 Conclusions

	7.3 Requirements for an Ontology Learning Solution
	7.3.1 Dealing with Low Grammatical Quality
	7.3.2 Dealing with Sublanguage Characteristics
	7.3.3 Learning Ontologies of Procedural Knowledge

	7.4 A Framework for Learning Web Service Domain Ontologies
	7.4.1 Overview of the Framework
	7.4.2 Step1: Term Extraction
	7.4.3 Step2: Ontology Building
	7.4.4 Step3: Ontology Pruning
	7.4.5 Possible Extensions of the Framework

	7.5 Implementation Details
	7.5.1 The GATE Framework
	7.5.2 Two Concrete Implementations
	7.5.3 Visual Support for Ontology Learning

	7.6 Summary

	8 Evaluation
	8.1 Introduction
	8.2 Ontology Learning Evaluation Practices
	8.3 Chosen Evaluation Criteria
	8.3.1 Term Extraction
	8.3.2 Expert Evaluation
	8.3.3 Ontology Comparison

	8.4 Experimental Corpora
	8.5 Results
	8.5.1 Term Extraction
	8.5.2 Expert Evaluation
	8.5.3 Ontology Comparison
	8.5.4 Comparison with Other Ontology Learning Tools

	8.6 Discussion

	9 Conclusions and Future Work
	9.1 Conclusions and Contributions
	9.1.1 Requirements for Web Service Ontologies
	9.1.2 Enhancing Generic Web Service Ontologies
	9.1.3 Learning Web Service Domain Ontologies
	9.1.4 A Note on the Generality of our Results

	9.2 Future Work
	9.2.1 Semantic Web Services
	9.2.2 Semantic Web Enabled Software Engineering
	9.2.3 Ontology Learning

	A DOLCE+'s Synchro-task in OWL Abstract Syntax
	Samenvatting
	Bibliography
	SIKS Dissertation Series

