
Open Research Online
The Open University’s repository of research publications
and other research outputs

WSMO-Lite and hRESTS: lightweight semantic
annotations for Web services and RESTful APIs
Journal Item

How to cite:

Roman, Dumitru; Kopecký, Jacek; Vitvar, Tomas; Domingue, John and Fensel, Dieter (2015). WSMO-Lite
and hRESTS: lightweight semantic annotations for Web services and RESTful APIs. Web Semantics, 31 pp. 39–58.

For guidance on citations see FAQs.

c© 2014 Elsevier B.V.

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.websem.2014.11.006

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1016/j.websem.2014.11.006
http://oro.open.ac.uk/policies.html

Open Research Online
The Open University’s repository of research publications
and other research outputs

WSMO-Lite and hRESTS: lightweight semantic anno-
tations for Web services and RESTful APIs

Journal Article
How to cite:

Roman, Dumitru; Kopeck, Jacek; Vitvar, Tomas; Domingue, John and Fensel, Dieter (2014). WSMO-
Lite and hRESTS: lightweight semantic annotations for Web services and RESTful APIs. Web Semantics (In
press).

For guidance on citations see FAQs.

c© 2014 Elsevier B.V.

Version: Proof

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.websem.2014.11.006

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copy-
right owners. For more information on Open Research Online’s data policy on reuse of materials please consult
the policies page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1016/j.websem.2014.11.006
http://oro.open.ac.uk/policies.html

Web Semantics: Science, Services and Agents on the World Wide Web () –

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

WSMO-Lite and hRESTS: Lightweight semantic annotations for Web
services and RESTful APIs
Dumitru Roman a,∗, Jacek Kopecký b, Tomas Vitvar c, John Domingue e, Dieter Fensel d
a SINTEF, Forskningsveien 1, 0314 Oslo, Norway
b School of Computing, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth, PO1 3HE, UK
c Institut für Informatik, University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria
d STI Innsbruck, University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria
e Knowledge Media Institute, The Open University, Walton Hall, MK7 6AA Milton Keynes, UK

a r t i c l e i n f o

Article history:
Received 17 February 2014
Received in revised form
24 November 2014
Accepted 26 November 2014
Available online xxxx

Keywords:
WSMO-Lite
SAWSDL
Web services
RESTful services

a b s t r a c t

Service-oriented computing has brought special attention to service description, especially in connection
with semantic technologies. The expected proliferation of publicly accessible services can benefit greatly
from tool support and automation, both ofwhich are the focus of SemanticWebService (SWS) frameworks
that especially address service discovery, composition and execution. As the first SWS standard, in 2007
the World Wide Web Consortium produced a lightweight bottom-up specification called SAWSDL for
adding semantic annotations to WSDL service descriptions. Building on SAWSDL, this article presents
WSMO-Lite, a lightweight ontology of Web service semantics that distinguishes four semantic aspects
of services: function, behavior, information model, and nonfunctional properties, which together form
a basis for semantic automation. With the WSMO-Lite ontology, SAWSDL descriptions enable semantic
automation beyond simple input/output matchmaking that is supported by SAWSDL itself. Further, to
broaden the reach of WSMO-Lite and SAWSDL tools to the increasingly common RESTful services, the
article adds hRESTS and MicroWSMO, two HTML microformats that mirror WSDL and SAWSDL in the
documentation of RESTful services, enabling combiningRESTful serviceswithWSDL-based ones in a single
semantic framework. To demonstrate the feasibility and versatility of this approach, the article presents
common algorithms for Web service discovery and composition adapted to WSMO-Lite.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The emergence of service-oriented computing has brought spe-
cial attention to the area of service modeling. Service descriptions
are a fundamental element that enables such tasks as service dis-
covery, composition and mediation. As argued by [1], semantic
interoperability is crucial for Web services, and the technologies
of the Semantic Web have the potential to provide the needed
level of interoperability. In the recent years, research into seman-
tic Web service (SWS) models and descriptions has received much
attention and funding: the major research projects include the US-
based OWL-S initiative,1 and the European projects DIP, SUPER and

∗ Corresponding author.
E-mail addresses: dumitru.roman@sintef.no (D. Roman),

jacek.kopecky@port.ac.uk (J. Kopecký), tomas@vitvar.com (T. Vitvar),
john.domingue@open.ac.uk (J. Domingue), dieter.fensel@sti2.at (D. Fensel).
1 http://www.daml.org/services/owl-s/.

SOA4All.2 In these and other projects, researchers have proposed
several frameworks for semantic Web services (SWS), especially
OWL-S, WSMO, and WSDL-S.

OWL-S [2] and WSMO [3] embody a semantics-first approach
to semantic modeling of Web services: in both frameworks, the
semantic description of a service is conceptually independent of
the underlying technical description (e.g. WSDL [4]), and there
is a grounding mechanism to connect the semantics with the
technical descriptions. In contrast, WSDL-S [5] attaches semantic
annotations directly to the underlying technical descriptions, in
effect building on the Web service model of WSDL.

Service-oriented computing, revolving around the so-called
WS–∗ family of technologies (based on the SOAP protocol [6]
and the WSDL service description language), is heavily driven by
standardization. The approach embodied byWSDL-S turned out to

2 dip.semanticweb.org, ip-super.org, soa4all.eu.

http://dx.doi.org/10.1016/j.websem.2014.11.006
1570-8268/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.websem.2014.11.006
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
mailto:dumitru.roman@sintef.no
mailto:jacek.kopecky@port.ac.uk
mailto:tomas@vitvar.com
mailto:john.domingue@open.ac.uk
mailto:dieter.fensel@sti2.at
http://www.daml.org/services/owl-s/
http://www.dip.semanticweb.org
http://www.ip-super.org
http://www.soa4all.eu
http://dx.doi.org/10.1016/j.websem.2014.11.006

2 D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

be an acceptable commonground for both the research community
and industry; based onWSDL-S, the World WideWeb Consortium
(W3C) produced in 2007 its Recommendation called SAWSDL—
Semantic Annotations for WSDL and XML Schema [7]. SAWSDL is
not a fully-fledged SWS framework; instead it only provides hooks
in WSDL where semantic annotations can be attached, leaving the
specification and standardization of concrete service semantics
for later. Modeling service semantics, within the framework of
SAWSDL, is the focus of our work.

In addition to WS–∗, in recent years another approach to
service-oriented computing has started gaining traction: RESTful
Web services [8], often also called Web APIs. RESTful services are
a common part of Web applications, as the applications’ func-
tionalities are increasingly used by programmatic clients, such as
other Web applications. RESTful services are especially present in
Web applications that use rich Ajax3 user interfaces, where the
JavaScript code running in the browser is a programmatic client, for
which theWeb application must provide an appropriate access in-
terface. RESTful Web services use native Web technologies around
HTTP [9], theWeb architecture [10], and standard data formats, re-
sulting in effective integration with the Web. RESTful services are
proliferating in part because the Web technologies used by REST-
ful Web service are perceived as simpler than the WS–∗ technolo-
gies [11].

In [11] the authors analyze the architectural differences be-
tween WS–∗ and RESTful services. Among the key differences be-
tween WS–∗ and RESTful services is their client-facing structure:
where a WS–∗ service exposes a single endpoint that handles all
the operations of the service, a non-trivial RESTful service exposes
a number of independentlymeaningful and addressable resources.

Irrespective of the types of services (WS–∗ vs. RESTful), the
availability of service annotations is a prerequisite for service
automation in discovery, composition, mediation, etc. Treating
service annotations uniformly for both WS–∗ and RESTful services
would not only enable better interoperability between them but
would also enable technologies for service automation to be
applicable across both types of services. In our work, we reconcile
the twodifferent kinds of services andwe show thatmost semantic
automation algorithms can disregard the difference, eventually
enabling more scalable and robust mechanisms for WS–∗ and
RESTful services tasks.

To achieve this reconciliation, we define hRESTS and Mi-
croWSMO – two HTML microformats that mirror WSDL and
SAWSDL over the HTML documentation of RESTful services – en-
abling us to create WSMO-Lite semantic descriptions of RESTful
services. Furthermore, we develop a concrete ontology of service
semantics (WSMO-Lite) for usewith the standard SAWSDL, andwe
broaden the applicability of SAWSDL to RESTful services and Web
APIs (through hRESTS and MicroWSMO). Finally, to demonstrate
the viability of our SWS approach,we adapt automation algorithms
for service discovery and composition to WSMO-Lite.

The overall purpose of this paper is to give a comprehensive
overview of the WSMO-Lite approach for reconciling WS–∗ and
RESTful services, to demonstrate the feasibility of the approach,
and to serve as an entry and reference point for interested parties
in using the WSMO-Lite approach.

Parts of this paper are based upon, and extend work reported
in [12,13]. [12] introduced the annotation of WSDL services
with WSMO-Lite, and [13] introduced the hRESTS microformat,
however, no previous publication provided this comprehensive
overview of the WSMO-Lite approach, or the feasibility analysis
on how SWS tasks can be applied to the approach. To the extent
of our knowledge, WSMO-Lite is the first principled effort focused

3 http://en.wikipedia.org/wiki/Ajax_(programming).

Fig. 1. Semantic Web service descriptions with WSMO-Lite.

on defining an ontology of service semantics for SAWSDL service
descriptions.

The rest of this article is organized as follows. Section 2 pro-
vides an overview of the WSMO-Lite framework for lightweight
semantic service descriptions, and highlights some design consid-
erations important for our work. Section 3 introduces a minimal
service model that captures the common structure of Web ser-
vices and bridges the worlds of WS–∗ and RESTful Web services.
Section 4 formally defines the WSMO-Lite ontology for service se-
mantics, showing how it fits WSDL and SAWSDL. Section 5 shows
how we apply SAWSDL and WSMO-Lite to RESTful services—it
defines the two microformats, hRESTS and MicroWSMO, for
annotating RESTful services’ HTML documentation. Section 6
presents concrete algorithms for service discovery and compo-
sition, adapted to WSMO-Lite from earlier SWS research. Sec-
tion 7 presents an analysis of feasibility of the overall approach
from different angles (tooling support, viability), Section 8 dis-
cusses related work and the limitations of WSMO-Lite, and
Section 9 concludes the article with a summary of the core con-
tributions and with a discussion of future work.

2. Overall approach and design principles

Fig. 1 shows the core technologies thatmake up our framework.
Ourwork stems from the standardization of SAWSDL; as illustrated
on the left-hand side of the figure, SAWSDL extends the service
description language WSDL with semantic annotations. For the
content of the annotations, we define the WSMO-Lite ontology of
service semantics,wherewe identify the kinds of service semantics
that are necessary to support SWS automation.

The right-hand side of the figure shows our technologies for
describing and semantically annotating RESTful services: hRESTS
and MicroWSMO. WSMO-Lite builds on a unified minimal service
model that extracts the concepts common in WS–∗ and RESTful
Web services. Based on this model, hRESTS (HTML for RESTful Ser-
vices) is a microformat4 for structuring common HTML documen-
tation of RESTful APIs to make it machine-processible, analogously
to how WSDL provides machine-processible descriptions on the
WS–∗ side.5 MicroWSMO (Microformat for WSMO-Lite) is an ex-
tension of hRESTS that adds SAWSDL annotation properties, where
WSMO-Lite semantics can be attached.

Our work is guided by the following design principles:

Proximity to underlying standards. In semantics-first frameworks
(OWL-S, WSMO), the semantic description of a service is

4 Microformats are an approach for annotating mainly human-oriented Web
pages so that key information is machine-readable [14].
5 There is currently no accepted equivalent ofWSDL for RESTful services; theWeb

Application Description Language (WADL, [15]) is a RESTful (resource-oriented)
alternative to WSDL, but it is not commonly accepted.

http://en.wikipedia.org/wiki/Ajax_(programming)

D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 3

conceptually independent of the underlying technical de-
scription (e.g. WSDL), and there is a ‘‘grounding’’ mech-
anism to connect them. In contrast, WSMO-Lite follows
the spirit of WSDL-S and SAWSDL and breaks up the se-
mantics of Web services into pieces that attach directly
to SAWSDL. With this approach, the semantic descrip-
tion does not get separated from the underlying WSDL,
as would be the case with OWL-S or WSMO.

Inclusion of RESTful services. In order for semantic automation al-
gorithms to be able to work uniformly with WS–∗ as
well as RESTful services, WSMO-Lite defines a minimal
RDF service model that captures the common struc-
ture of Web services. WSDL descriptions annotated with
SAWSDL, or hRESTS description annotated with Mi-
croWSMO, are parsed as RDF instances of the service
model.Working on top of this RDF view of the underlying
descriptions, most automation algorithms need not dis-
tinguish between the two kinds Web services; only the
algorithms that involve actual service invocations must
use the appropriate communication technologies which
differ between WS–∗ and RESTful services.

Lightweight minimality. In the spirit of SAWSDL, WSMO-Lite aims
to be minimalistic and lightweight: (a) it defines a very
small vocabulary for service semantics, and a minimal
service model common to WS–∗ and RESTful services,
(b) these are defined in the most basic SemanticWeb on-
tology language, RDFS [16], which has very limited rea-
soning requirements but can easily accommodate more
expressive languages, especially including languages for
logical expressions and rules; (c) WSMO-Lite builds on
WSDL, which is already well-known to Web services
practitioners; (d) the choice of microformats as the
mechanism for describing RESTful services limits the
need for new syntax, and (e) the two microformats are
also tightly scoped to fit already existing service docu-
mentation. In effect, WSMO-Lite adds very few new con-
structs on top of the underlying technologies that are
already well-known, and it carries no inherent require-
ments on reasoning power.

Modularity. WSMO-Lite distinguishes between four types of ser-
vice semantics: the service’s function, behavior, informa-
tion model, and its nonfunctional properties. Together,
these types of service semantics support the automa-
tion of all the major service consumer’s tasks: discovery,
composition, negotiation, ranking, invocation, etc.6
WSMO-Lite annotations are modular: in any given
service-oriented system, increasing needs for automa-
tion can bemet incrementally by adding and refining var-
ious types of semantic annotations. For example, when
the number of services becomes hard to manage, func-
tional annotations can be added to support service dis-
covery and composition; when many services are being
composed together, information model annotations can
be added to facilitate data mediation; and later nonfunc-
tional properties can be added so that the system can
adaptively respond to service failures with replacements
that have similar nonfunctional parameters (e.g. quality
of service, policy, price) as the service that failed.

6 The service consumer’s tasks are identified in the Semantic Execution Envi-
ronment Tech. Committee (SEE TC) at OASIS, the primary standardization body for
WS–∗; see http://oasis-open.org/committees/tc_home.php?wg_abbrev=semantic-
ex.

3. Service model analysis

Our goal is to support both WS–∗ and RESTful Web services.
In order for semantic automation algorithms to be able to work
uniformly with the two kinds of services, we build WSMO-Lite on
aminimal RDFSmodel that captures the common structure ofWeb
services.

The minimal service model is derived from relevant work
on service modeling and description, mainly from the standard
for Service-Oriented Architecture Reference Model (SOA RM) and
fromWSDL. Since these specifications are part of the WS–∗ family
of standards, we also show that our service model is nevertheless
appropriate for RESTful services as well. The model and the
demonstration of its applicability to RESTful services are the main
contributions of this section.

For automated processing, the minimal service model serves
as a layer of abstraction over the underlying concrete Web
service description languages: WSDL on the WS–∗ side, and HTML
documentation for RESTful services. These service descriptions are
annotated with semantics, as discussed in the following Sections 4
and 5. Service descriptions can be parsed into RDF in terms of
the service model, and then semantic automation algorithms (for
discovery, composition, etc.) can process the semantic annotations
without distinguishing WS–∗ services from RESTful services.

Below, in Section 3.1, we analyze relevant servicemodeling and
description specifications that underlie our WSMO-Lite minimal
servicemodel,which is defined in Section 3.2. Finally in Section 3.3,
we show that this model also naturally applies to RESTful services.

3.1. Existing service models

The term ‘‘service’’ in its modern usage comes from economics.
The services sector now dwarfs agriculture and manufacturing,
the original main sectors of the economy; its boom has recently
spawned the field of Services Science [17], which deals with terms
such as exchange of goods and economic entities. In IT, there have
been several efforts to define service models and conceptualize
services and service-oriented architectures, activities initiated in
academic research (e.g. [18–20]) as well as in the context of
standardization bodies (e.g. [21]).

The term ‘‘Web service’’ started in association with a set of con-
crete technologies for distributed computing, especiallyWSDL and
SOAP, as shown in [22]. Service-oriented architecture (SOA) is an
abstraction of Web services: it is oriented toward large-scale dis-
tributed systems, and it sheds the technology bias of ‘‘Web ser-
vices’’. SOA is currently best articulated by the OASIS consortium’s
industry-standard Reference Model for Service Oriented Architec-
ture (SOA RM, [21]), which defines a service as follows:

A service is a mechanism to enable access to one or more
capabilities, where the access is provided using a prescribed
interface and is exercised consistent with constraints and policies
as specified by the service description.

The SOA RM investigates a number of aspects of services;
it identifies the top-level six aspects to be Service description,
Visibility, Execution context, Real-world effect, Contract and policy,
and Interaction. A service in SOA is generally not a single artifact,
instead it is a concept useful for manageability. From the point
of view of a client, the constituent elements of a service are its
network location (part of the Visibility aspect) and the service
description.

Service description7 is key to automation, because a client,
broker, or other intermediary only has service descriptions to

7 In this section we emphasize with italics the terms defined by the SOA RM.

http://oasis-open.org/committees/tc_home.php?wg_abbrev%3Dsemantic-ex
http://oasis-open.org/committees/tc_home.php?wg_abbrev%3Dsemantic-ex

4 D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Fig. 2. Subset of OASIS SOA RM relevant for the WSMO-Lite service model.

guide it in selecting and using the available Web services. Fig. 2 (a
simplified combination of Figs. 6 and 9 from SOA RM, highlighting
in gray the six top-level aspects of services) details the parts
of the SOA RM that must be captured in a machine-readable
description: a service has a certain functionality, which implements
the service capabilities that achieve the real-world effect; it may
have additional constraints (contracts and policies); it is reachable
(commonly through a computer network, at a given location that
gives the service visibility); and it has a service interface, made up
of an information model and a behavior model, both involved in
interactions between the service and its clients.

The information model of a service interface characterizes the
information that may be exchanged with the service. It specifies
the semantics (i.e., the meaning) of the data, and its structure and
form. The behavior model describes the actions (operations) that
may be invoked on the service, and the process that defines the
possible order(s) in which the actions make sense. In the words
of the SOA RM, ‘‘the process model characterizes the temporal
relationships and temporal properties of actions and events
associated with interacting with the service’’. The interaction side
of the service is the most detailed part of service description in
SOARMbecause it represents themajority of the service’s interface
for use by clients.

Information about operations,message structures, communica-
tion protocols and message exchange patterns, and physical ser-
vice access points (service reachability), is already part of technical
descriptions such as WSDL; in this article we do not study the se-
mantics of these underlying technical descriptions. In our case, for
automation using semantics, we want to represent the semantics
of the remaining aspects not covered in the underlying technical
descriptions.

Inspired by the distinctionsmade by [23], we group the remain-
ing aspects of SOA RM service description into four orthogonal
parts:

• Functional description specifies service functionality, that is,
what a service can offer to its clients when it is invoked.
• Nonfunctional description defines any contract and policy

parameters of a service, or, in other words, incidental details
specific to the implementation or running environment of the
service.
• Behavioral model specifies the process (in other words, the

ordering of operations) that a client needs to follow when
consuming a service’s functionality.
• Information model defines the input, output and fault messages

of the actions.

(a) Structural view with functional, nonfunctional,
behavioral and information semantics.

(b) Conceptual view.

Fig. 3. WSMO-Lite Web service description model.

Functional and nonfunctional semantics are directly properties
of a service. Behavioral semantics tie to service operations. Finally,
information semantics tie to the data that a service communicates
with—to the input, output and fault messages of the operations.
This leads us to a service model extracted fromwhat already exists
in the underlying technical descriptions: a service has a number
of operations, each of which may have input, output and fault
messages. The following subsection defines the concrete terms of
the model, along with an RDFS ontology that captures them.

3.2. WSMO-Lite service model

The WSMO-Lite service description model is a straightforward
simplification of the structure of WSDL, following the design
principles of proximity to underlying standards and lightweight
minimality. Fig. 3 shows two views of the model. The upper part
(a) of the figure shows the structure of a service description,
separating the non-semantic structure below from the semantic

D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 5

Fig. 4. Structure of an example RESTful hotel reservation service: (a) showing types of resources, (b) showing details of example search results resources that make up a
part of the service.

Table 1
Mapping of RESTful services to WSMO-Lite service model.

RESTful services WSMO-Lite service model

Service (group of resources) Service
Resource (disregarded on the semantic level)
Resource method Operation
Method request/response Operation input/output
Hyperlink (treated as part of message data)

aspects on top. For expressing the semantic aspects, we define in
Section 4 the WSMO-Lite service semantics ontology. The lower
part (b) of the figure shows the concepts that make up the service
model, along with the relationships between them.

TheWSMO-Lite servicemodel is rooted in the concept of service.
While some technologies, such as WSDL, abstract the interface of
a service from the service itself, so that the interface definition
is reusable between multiple services, in our service model the
interface would only constitute an indirection between a service
and its semantic annotations, with no added value. Therefore, our
service model does not separate the interface from the service.

A Web service is a collection of operations (at least one).
Operations have input and output messages (with inputs and
outputs viewed from the side of the service), and potentially input
and output faults as well. Which of these messages should be
present depends on the operation’s message exchange pattern: the
most common one is request–response, where an operation has
a single input (request) message followed at run-time either by
a single output (response) message or by an output fault. Some
advanced message exchange patterns can also include input faults
(faults going from the client to the service), as discussed especially
in [24].

The servicemodel ismirrored straightforwardly in an RDFS [16]
ontology. It contains three classes: wl:Service, wl:Operation and
wl:Message,8 and five properties: wl:hasOperation,
wl:hasInputMessage, wl:hasOutputMessage, wl:hasInputFault and
wl:hasOutputFault.9 Instances of this RDFS ontology are created
as the result of parsing WSDL or hRESTS service descriptions,
effectively acting as an RDF view of those descriptions.

3.3. Modeling RESTful services

RESTfulWeb services are hypermedia applications consisting of
interlinked resources (like Web pages) that are oriented toward

8 The prefix wl denotes the WSMO-Lite namespace http://www.wsmo.org/ns/
wsmo-lite# (which is also the location of the ontology).
9 Note that WSDL, from which we extract the WSMO-Lite service model, also

has an RDF mapping (and a simple OWL ontology) defined in [25]; its structure
reflects the complexity of WSDL and therefore it is unsuitable for a lightweight
framework such asWSMO-Lite, hence the need for our own ontology in theWSMO-
Lite namespace.

machine consumption. In their structure and behavior, RESTful
Web services can be very much like common Web sites [8]. The
hypertext nature of RESTful Web services seems to differ from
the service model discussed so far: it requires that services be
decomposed intoWeb resourceswhich are preferably units of data,
whereas the WS–∗ model decomposes services into operations,
i.e. units of function. In this section,we showhow these approaches
can be reconciled, according to our design principle of inclusion of
RESTful services.

From the Architecture of the Web [10] and from the REST
architectural style [26], we can extract the following concepts
inherent in RESTful services: a resource, identified by aURI that also
serves as the endpoint address where clients can send requests;
every resource has a number of methods (in HTTP [9], the most-
used methods are GET, HEAD, POST, PUT and DELETE) that are
invoked by means of request/response message exchanges. The
messages can carry hyperlinks, which point to other resources and
which the client can navigate when using the service. A hyperlink
can simply be a URI, or it can be a formwhich specifies not only the
URI of the target resource, but also the method to be invoked and
the structure of the input data.

Note that the architecture of the Web contains no formal
concept of a service as such; a service is a grouping of resources
that is useful for developing, advertising and managing related
resources.

While the resources of the service (the nouns) form a
hypermedia graph, the interaction of a clientwith a RESTful service
is a series of operations (the verbs or actions) where the client sends
a request to a resource and receives a response that may link to
further useful resources. The hypermedia graph (the links between
resources) guides the sequence of operation invocations, but the
meaning of a resource is independent of where it is linked from;
the same link or form, wherever it is placed, will always lead to the
same action. Therefore, even though this may be counterintuitive,
the operations of a RESTful Web service can be considered
independently from the graph structure of the hypertext.

In Table 1, we summarize the mapping from the Web-
architecture-based model of RESTful services into the WSMO-Lite
minimal service model. Effectively, an automated client (such as a
semantic automation system) can view RESTful services through
the model from Fig. 3, with the operations being the methods
available on the resources that constitute the RESTful services. This
common view allows us to support WS–∗ and RESTful services in
WSMO-Litewithout regard to their technological and architectural
differences.

Fig. 4(a) depicts an example RESTful hotel booking service, with
its resources and the links among them; we use this synthetic
example to demonstrate how a hypermedia service can naturally
be viewed as a set of operations.

The ‘‘service homepage’’ is a resource with a stable address and
information about the other resources that make up the service. It

http://www.wsmo.org/ns/wsmo-lite#
http://www.wsmo.org/ns/wsmo-lite#
http://www.wsmo.org/ns/wsmo-lite#
http://www.wsmo.org/ns/wsmo-lite#
http://www.wsmo.org/ns/wsmo-lite#
http://www.wsmo.org/ns/wsmo-lite#

6 D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Fig. 5. Extracting operations of the example service from Fig. 4.

serves as the initial entry point for client interaction. In a human-
oriented Web application, this would be the homepage, such as
http://hotels.example.com/.

The homepage resource of our example service contains a form
for searching for available hotels, given a number of guests, a start
date, the duration of the stay, and a location. The search form serves
as a parametrized hyperlink to search results resources, as shown
in Fig. 4(b), one resource per every unique combination of the
input data—the form prescribes how to create a URI that contains
the input data; the URI then identifies a resource with the search
results.

In our example, search results are presented as a list of concrete
rates available at the hotels in the given location, for the givendates
and the number of guests, as also shown in Fig. 4(b). Each item
of the list contains a link to further information about the hotel
(e.g. the precise location, star rating and other data), and a form for
booking the rate, which takes as input the payment details (such
as credit card information) and an identification of the guest(s)
who will stay in the room. The form data is submitted (with the
POST method) as a booking request to a payment resource, which
processes the booking and returns a newly created confirmation
resource. The content of the confirmation can serve as a receipt.

The service homepage resource also links to ‘‘my bookings’’, a
resource listing the bookings of the current user (who is identified
through a suitable authentication functionality). This resource
links to the confirmations of the bookings made by the user. With
such a resource available to them, client applications need not
store the information about performed bookings locally.

Together, all the resources we have described here form the ho-
tel booking service. So far, our description of the example hotel
reservation service has been based on the hypermedia aspect: we
described the resources and how they link to each other. In Fig. 5,
we extract the operations present in the example service into the
model from Fig. 3, demonstrating the mapping from Table 1. The
search form in thehomepage represents a search operation, the ho-
tel information pages linked from the search results can be viewed
as an operation for retrieving hotel details, the reservation form for
any particular available rate becomes a reservation operation, and
so on.

We have shown how we can view RESTful services as sets of
operations, in concord with the comparison of WS–∗ and RESTful
services in [11]whichputs RESTful services in theRemote Procedure
Calls integration style. Because we can see RESTful services as sets
of operations, we can apply the same kinds of semantic descrip-
tions as we apply to WS–∗ services; in the following section, we
discuss how we represent service semantics on top of this model.

4. WSMO-Lite ontology of service semantics

In the analysis of the service model in Section 3.1, we distin-
guished between four types of semantics that can be used in order
to support automation: functional, nonfunctional, behavioral and
information model semantics. This section focuses on formalizing
these semantics and how they apply in SAWSDL and in our mini-
mal service model.

In particular,we startwith a formalization of the service seman-
tics in Section 4.1. Section 4.2 formalizes the SAWSDL annotation
mechanism for attaching semantics to service descriptions in the
minimal servicemodel and Section 4.3 shows how the annotations
should apply to the more complex model of WSDL.

4.1. Service semantics representation in WSMO-Lite

Informally, the four types of service semantics are represented
in the WSMO-Lite service ontology as follows:

• Information semantics are represented using domain ontolo-
gies, which are also involved in the descriptions of the other
types of semantics.
• Functional semantics are represented inWSMO-Lite with capa-

bilities and/or functionality classifications. A capability defines
preconditions which must hold in a state before the client can
invoke the service, and effectswhich hold in a state after the ser-
vice invocation. Functionality classifications define the service
functionality using some classification ontology (i.e., a hierar-
chy of categories).10
• Nonfunctional semantics are represented using an ontology

that semantically captures some policy or other nonfunctional
properties.
• Behavioral semantics are represented by annotating the service

operations with functional descriptions, i.e., capabilities and/or
functionality classifications. In later sections, we demonstrate
how the functional annotations of operations serve for the or-
dering of operation invocations.

We formalize these terms below. Mainly, we define ontology,
which is the fundamental building block for all types of semantic
descriptions. We use a generic definition of ontology that encom-
passes the common definitions in literature; our definition is only
as specific as necessary to capture core ontology elements needed
for the purpose of this work, and it remains general enough for us

10 The distinction of capabilities and categories is the same that is made by [1]
between ‘‘explicit capability representation’’ (using taxonomies) and ‘‘implicit
capability representation’’ through preconditions and effects.

http://hotels.example.com/

D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 7

to be able to plug in various knowledge representation languages,
such as RDFS [16], OWL [27] and RIF [28], as appropriate in any par-
ticular system. Further, we formalize classification and capability,
which provide a functional description of services and operations.

The formalization allows us to be explicit about the terms we
define and about how the terms apply to SAWSDL annotations (esp.
in Table 2), and it is also useful for defining algorithms that process
WSMO-Lite descriptions, such as the ones shown in Section 6.

Definition 4.1 (Ontology). An ontologyΩ is a four-tuple

Ω = (C, R, E, I)

where C, R, E, I are sets that, in turn, denote classes (unary pred-
icates), relations (binary and higher-arity predicates), explicit
instances of classes and relations (extensional definition), and
axioms (intensional definition) that describe how instances are in-
ferred.

A particular axiom common in ontologies is the subclass
relationship between two given classes c1 and c2: if c1 is subclass
of c2 (written as c1 ⊆ c2), every instance of c1 is also an instance
of c2. In general, the subclass relationship forms a partial order on
the set of classes (it is a transitive, reflexive and antisymmetric
binary relation). To indicate that an ontology contains a subclass
axiom between the given classes c1 and c2, we write (c1 ⊆ c2) ∈ I .
Along with the subclass relationship, ontologies may also contain
a subrelation relationship (r1 ⊆ r2), defined analogously.

Definition 4.2 (Classification). A classification is an ontology
ΩC (c0) = (C, R, E, I)whose classes (members of C) represent cat-
egories of things. Classification categories form a subclass (sub-
category) hierarchy with a single root c0, i.e., every class in the
ontology is either directly a subclass of c0 (as captured by the sub-
class axioms within I), or it is a subclass by transitivity through a
finite sequence of other classes.11

For the purposes of describing the different kinds of service se-
mantics, we distinguish several sub-types of ontologies: an infor-
mationmodel ontology (an ontology used as an informationmodel
in a service description) is denoted as Ω I

≡ Ω; a functionality
classification ontology with root c0 ∈ C (whose classes form a tax-
onomy of service functionalities), denoted as ΩF (c0) ≡ ΩC (c0);
and an ontology for nonfunctional semantics as ΩN

≡ Ω , whose
instances (members of E) are concrete nonfunctional descriptions.

Definition 4.3 (Capability). A capability is a three-tuple

K = (Σ, φpre, φeff)

Σ ⊆ V ∪ C ∪ R ∪ E

where K (kappa) stands for the capability, φpre is a precondition
which must hold in a state before the service (or operation) can
be invoked, and φeff is the effect, an expression which is expected
to hold in a state after the successful invocation. Preconditions
and effects are defined as logical statements over members of Σ ,
a set of identifiers of elements from C, R, E of some ontology Ω I

complemented with a set V of variable names.

The formal concepts used to describe service semantics in-
troduced above can be materialized as an ontology in RDFS.
The WSMO-Lite service semantics ontology rather straightfor-
ward and consists of four classes: wl:FunctionalClassificationRoot,
wl:NonfunctionalParameter,wl:Condition andwl:Effect; the names-
pace also includes the terms of the minimal service model. For fur-
ther details of the syntax, the reader is referred to [30].

11 Note that it may also be practical in some systems to use less-formal SKOS [29]
concept schemes with hierarchies of broader and narrower concepts: the SKOS
narrowerTransitive property would replace the subclass axiom ⊆, and a SKOS top
concept would serve the function of the classification root.

Table 2
WSMO-Lite service model annotations with SAWSDL properties.

Svc. model Annotation type/value Context Type

Service mref φpre or φeff K = (Σ, φpre, φeff) F
Service mref x ∈ C ΩF (c0) = (C, R, E, I) F
Service mref x ∈ C ∪ R ∪ E ΩN

= (C, R, E, I) N
Operation mref φpre or φeff K = (Σ, φpre, φeff) B
Operation mref x ∈ C ΩF (c0) = (C, R, E, I) B
Message mref x ∈ C ∪ R Ω I

= (C, R, E, I) I
Message lift f (data)→ X ⊆ E Ω I

= (C, R, E, I)a I
Message lower g(X ⊆ E)→ data Ω I

= (C, R, E, I)a I
a As explained in the text of Section 4.2, the symbols f , g and data are not

formalized any further.

4.2. Attaching semantics to the service model using SAWSDL RDF
properties

The semantic concepts defined in the previous subsections are
used to express the semantics of concrete services. The result-
ing semantic descriptions are used to annotate the underlying
non-semantic descriptions (such as WSDL) using the standard
SAWSDL properties model reference, lifting schema mapping and
lowering schema mapping. After parsing the underlying non-
semantic descriptions into an RDF form that follows the min-
imal service model from Section 3, the semantic annotations
translate into the respective SAWSDL RDF properties, sawsdl:
modelReference, sawsdl:liftingSchemaMapping and sawsdl:
loweringSchemaMapping. Below, we first informally describe the
SAWSDL properties, and then we define a simple formalization of
the annotations, in relation to the minimal service model.

In SAWSDL, the main annotation property is a model reference,
which points from any WSDL component to the associated
semantics. In the context of WSMO-Lite, a model reference on a
service can point to a description of the service’s functional and
nonfunctional semantics; amodel reference on an operation points
to the operation’s part of the behavioral semantics description;
and a model reference on a message points to the message’s
counterpart(s) in the service’s information model ontology.

Each concrete model reference value is always identified with
a URI. Multiple values of a model reference on a single component
all apply to the component; for example, a service can have some
nonfunctional properties, pointers to functionality categories, and
preconditions and effects which togethermake up the capability of
the service.

The other two SAWSDL properties, lifting schema mapping
and lowering schema mapping, are necessary to connect semantic
clients with the message-structure-oriented Web services. A se-
mantic client works on the semantic level, with RDF data. In con-
trast, Web services and their clients usually exchange messages in
XML or in a similar non-semantic structured data format. In or-
der to enable the client to communicate with actual Web services,
its semantic data must be lowered12 into the expected input mes-
sages, and the data coming from the service in its output messages
must be lifted back up to the semantic level. The lifting and low-
ering schema mapping properties are used to associate messages
with appropriate transformations between the underlying techni-
cal format such as XML and a semantic knowledge representation
format such as RDF. Both properties take as values the URIs of doc-
uments that define the lifting or lowering transformations.

Table 2 formalizes the content of the annotations on our service
model. The first column specifies the service model component
that is being annotated, the second column specifies the annotation
property (model reference, lifting or lowering schema mapping),

12 SAWSDL layers semantics on top of syntax, hence lifting and lowering.

8 D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Fig. 6. The structure and use of the WSMO-Lite service ontology, annotating the service model from Fig. 3(b).

and the third column specifies what value the annotation can take.
The fourth column (Context) shows where the value comes from,
using the definitions from Section 4.1, and finally, the fifth column
(Type) shows which of the four types of semantics this annotation
describes: Functional, Nonfunctional, Behavioral and Information
semantics.

The values of the lifting and lowering schema mapping proper-
ties are formalized as f (data)→ X and g(X)→ data, where X ⊆ E
represents a set of data instances of some informationmodel ontol-
ogyΩ I . The functions f and g are transformations between sets of
ontological instances (X) and their representations in the under-
lying technical format, denoted as data. We do not constrain the
underlying technical formats and the form of the transformation
functions, therefore, the terms f , g and data are not formalized any
further.

Fig. 6 illustrates the WSMO-Lite annotations in relation to
the service model in a graphical form. The centrally-located
components of the service model are annotated with pointers
to domain-specific semantic descriptions that fit the service
semantics classes defined inWSMO-Lite. The figure also illustrates
howWSMO-Lite follows the design principle ofmodularity.

4.3. Using WSMO-Lite in WSDL and SAWSDL

The service model presented in Section 3, based on WSDL, is
intentionally a simplification. Above, we defined how the minimal
service model can be annotated with WSMO-Lite semantics, and
here we show how the annotations should apply to the more
complex model of WSDL.

Table 2 defines the WSMO-Lite semantic annotations for the
minimal service model. Table 3 presents a concise summary of
how the annotations apply in WSDL. The first column shows the
components of the WSMO-Lite minimal service model, the second
column indicates the type of semantics (functional, nonfunctional,
behavioral and information-model) attached to the particular
component, and the third column enumerates the corresponding
WSDL components where the annotations belong.
Functional annotations. Most directly, the functional semantics of
a service can be described with annotations on the WSDL service
components. However, a major part of a WSDL description is the

Table 3
WSMO-Lite semantics in WSDL.

WSMO-Lite svc. model Type WSDL component

Service F Service or interface
Service N Service
Operation B Interface operation
Message I Element declaration or type definition

service interface, which ‘‘describes a Web service in terms of the
messages it sends and receives’’, doing it ‘‘by grouping related
messages into operations’’ [4].

From the point of view of service semantics, WSDL makes
no assertions about different services that implement the same
interface, only that they will accept and emit messages with
the structure defined in the interface operations, and sequenced
according to the operation message exchange patterns. In other
words, the WSDL specification does not mandate that an interface
should be tied to any particular functionality that can be achieved
using its operations.

Still, if aWSDL interface is created to support certain functional-
ity, the description of this functionality can be added as a semantic
annotation on the WSDL interface, so that it applies to all WSDL
services that use this interface. It is also possible that both the ser-
vice and its interface are annotated with functional descriptions,
when the service restricts the functionality of the interface. Fur-
thermore, inWSDL 2.0, interfaces may extend other interfaces. The
functionality of an interface then includes the functionalities of the
interfaces extended by it.
Nonfunctional annotations. Nonfunctional properties define inci-
dental details and policies specific to the implementation or
running environment of a service; therefore, they are naturally
expressed as annotations of the WSDL service component.
Note that while the SAWSDL specification only describes the use of
model reference annotations onWSDL interface components (along
with some of their subcomponents, such as operations) and on
XML Schema element declaration and type definition components,
it allows the annotation of all the other components in WSDL,
including service. Our use of model references with functional and
nonfunctional annotations on service components is fully within
the spirit of SAWSDL.

D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 9

Behavioral annotations. WSMO-Lite does not define a specific con-
struct for behavioral descriptions; instead, we use functional an-
notations of service operations and we expect that the client will
be able to decide the ordering of operation invocations based on
what the operations do.13

In WSDL, service operations are described in the service
interface; the intended behavior of an interface can be described
with annotations on its operation components.

Notably, whileWSDL focuses on themessaging and networking
aspects of a service description, the use of HTTP has necessitated
that WSDL introduce a semantic flag for marking operations as
safe as defined in the Web architecture [10]. We discuss this
property some more in Section 5.2; here it will suffice to say
that operation safety is a part of the behavioral semantics of a
service. An operation marked in WSDL as safe should be viewed in
WSMO-Lite as having a model reference annotation with the value
http://www.w3.org/ns/wsdl-extensions#SafeInteraction, which is
treated as a functional category of safe interactions.
Information model annotations. The semantics of the exchanged
data is expressed through annotations on the message schemas. A
model reference annotation on an XML Schema element declaration
or type definition points to a description of the semantics of the
data described by the schema. For instance, an annotation pointing
to an ontology class or relation means that the data will define an
instance (or multiple instances) of that class/relation.

As few Web services use RDF-based messages [31], semantic
annotations of operation inputs and outputs should be accompa-
nied by pointers to the appropriate lowering and lifting transfor-
mations, also on the XML Schema element declarations or type
definitions. A lifting transformation should accept documents valid
according to the schema, and produce the equivalent RDF data. A
lowering transformation takes RDF data as its input, and should
produce an XML document that is valid according to the schema.

For lifting and lowering with XML-based Web services, we
recommend the use of the language XSPARQL,14 a fusion of
SPARQL and XQuery, a query and transformation language able to
process RDF and XML data sources and return RDF or XML. The
W3C Member Submission [32], which defines the language, also
includes a use case that demonstrates the use of this language for
SWS lifting and lowering.

5. hRESTS and MicroWSMO: annotating RESTful Web services

As shown in Section 3, the minimal WSMO-Lite service model,
which is a simplification of WSDL, also applies to RESTful services.
However, WSDL is not commonly accepted for describing RESTful
services. Alternative REST-oriented service description languages
have been proposed; most prominent among these is the Web
Application Description Language WADL [15]. WADL describes
RESTful services as sets of interlinked resources, but effectively it
has the same function as WSDL—to be the basis for tool support.

Despite the existence of WADL (and WSDL 2.0, the REST-
friendly version of WSDL), the providers of RESTful services have
so far been reluctant to provide any kind of machine-readable
service descriptions [31]. Instead, RESTful services are commonly
described in textual documentation, most often in the form of
HTML pages.15 The lack of machine-processible descriptions limits

13 In [12], we have shown that the WSMO-Lite behavioral semantics (functional
annotations on service operations) can be translated into a WSMO choreography
(cf. [3]), which is an explicit behavioral description.
14 http://xsparql.deri.org/.
15 For example, see docs.amazonwebservices.com/AmazonSimpleDB/2007-11-
07/DeveloperGuide and flickr.com/services/api.

the possible tool support for users of RESTful services, including
any semantic automation.

Since most RESTful APIs are described in HTML documentation,
we propose here two microformats, hRESTS (which stands for
‘‘HTML for RESTful Services’’), and MicroWSMO (‘‘Microformat
for WSMO-Lite’’16), which together provide a simple mechanism
for annotating HTML service documentation so that it becomes
machine-processible and amenable to adding semantics.

hRESTS and MicroWSMO are two separate microformats
because like WSDL, hRESTS is also useful by itself, without seman-
tic annotations. hRESTS was developed first, in international col-
laboration (cf. [13]), as the common ground for facet-browsing of
Web APIs in SA-REST [33], and for semantic automation with Mi-
croWSMO.Modeling hRESTS andMicroWSMO asmicroformats for
HTML documentation follows our design principles of proximity
to underlying standards and lightweight minimality, and modeling
them as two separate microformats stems from the principles of
modularity.

Microformats are an ‘‘adaptation of semantic XHTML that
makes it easier to publish, index, and extract semi-structured in-
formation’’ [14], an approach for annotating human-orientedWeb
pages so that key information is machine-readable. A microformat
is mainly a collection of keywords that are used as class17 names
on HTML elements to indicate the type of data contained by the
elements, and keywords used on hyperlinks to specify relations
between resources. An HTML page with microformat annotations
works in a Web browser as any other HTML page, while also al-
lowing programmatic extraction of the contained data, regardless
of the presentation structure of the page. There are already micro-
formats for contact information, calendar events, etc., supported
by a variety of tools.18

Alternatively to introducing a microformat to annotate the
HTML documentation of RESTful services, we can also use RDFa
[34], which provides a general syntax for embedding RDF data in
HTML. In comparisonwith RDFa, microformats are less intrusive in
the underlying HTML and easier to author, but they require custom
parsers, where RDFa parsers will extract any RDFa content from
any HTML page.

This section first describes the microformats and then turns to
RDFa. In Section 5.1 we define the microformat hRESTS and its
RDF interpretation, and in Section 5.2 we specify the microformat
MicroWSMO. Section 5.3 discusses the straightforward application
of RDFa as an alternative to using the microformats.

5.1. hRESTS: a service description microformat

As already stated, public Web services come with HTML
documentation. Textual documentation in HTML is the prevalent
form of Web API descriptions, and in many cases it is the only one.

Typically, such documentation will list the available operations
(under various names such as API calls, methods, commands etc.),
their URIs and parameters, the expected output data, any error
conditions and so on; it is, after all, intended as the documentation
of a programmatic interface. In effect, the documentation of
RESTful services is usually closer to the structure of WSDL (a

16 MicroWSMO is so named for historical reasons; a more direct name ‘‘SA-
hRESTS’’ (Semantic Annotations for hRESTS) would be confusingly close to SA-REST
by [33]; and another alternative, ‘‘MicroSAWSDL’’, would imply close ties with
WSDL, which would be undesirable with RESTful services.
17 MostHTMLelementsmayhave an attribute class that can carry a list of arbitrary
strings. Classes are commonly used for assigning visual styles to elements, but they
can also be used as annotations about the meaning of the elements’ contents.
18 See microformats.org for examples and further information about microfor-
mats.

http://www.w3.org/ns/wsdl-extensions#SafeInteraction
http://xsparql.deri.org/
http://www.docs.amazonwebservices.com/AmazonSimpleDB/2007-11-07/DeveloperGuide
http://www.docs.amazonwebservices.com/AmazonSimpleDB/2007-11-07/DeveloperGuide
http://www.flickr.com/services/api
http://www.microformats.org

10 D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

set of operations) than that of WADL (a set of data resources).
In Section 3.3, we have explained why the WSDL-based simple
service model is not really foreign to RESTful Web services. This
justifies why our microformat hRESTS straightforwardly follows
the WSMO-Lite minimal service model, rather than having a
resource-oriented structure like WADL.

The following is an example of a typical operation description,
encoded in HTML:
Operation description HTML source
ACME Hotels service API <h1> ACME Hotels service API</h1>
Operation getHotelDetails <h2> Operation

getHotelDetails</h2>
Invoked using the method GET
at http://example.com/h/{id}

<p> Invoked using the method GET
at<code>
http://example.com/h/{id}
</code>

Parameter: Parameter:
id- the identifier of the particular
hotel

<code> id</code>—the identifier of
the particular hotel

Output value: Output value:
hotel details in
an ex:hotelInformation
document

hotel details in an
<code> ex:hotelInformation</code>
document</p>

Such documentation has all the details necessary for a human
to be able to create a client program that can use the service. In or-
der to tease out the technical details (operations, addresses, HTTP
methods, input and output data formats), the HTML documenta-
tion needs to be amended in some way, which is what the micro-
format hRESTS does. hRESTS adds machine-readable structure to
HTML service descriptions and it additionally identifies two key
pieces of information about an operation: the address (URI tem-
plate) and theHTTPmethod used by the operation. In effect, hRESTS
is analogous to WSDL, albeit less detailed.

The microformat is made up of a number of HTML classes that
correspond to the various parts of our service model and their
properties:

• service specifies the description of the whole service,
• operationmarks a single operation within a service,
• address defines the URI template for an operation,
• method defines the HTTP method for an operation,
• inputmarks a block describing the inputs of an operation,
• output does the same for the outputs, and
• label specifies a human-readable name of a service or of an

operation.

The classes service, operation, input and output are
used on HTML block markup, marking a block of the HTML page
that describes a whole service, a particular operation or one of its
messages. In contrast, the classes address, method and label
are used on textual markup, indicating that the text content of the
marked element is the actual address URI template, the method
name or the label.

Note that both the classes address and method, naturally
nested in operation, may also be specified on the level of
service, in which case these values serve as defaults for
operations that do not specify them. In the absence of any explicit
value for method, the default is GET.

The input and output classes serve as extension points—
hRESTS does not provide for furthermachine-readable information
about the inputs and outputs. In Section 5.2, MicroWSMO adds
semantic annotations in these blocks; other extensions may be
developed in the future for example to specify formal data schemas
for the messages.

Listing 1 shows hRESTS annotations (in bold) in the HTML code
of the sample service description shown earlier. Note the added
<div> and blocks that add nested element structure to
the description; they do not otherwise affect the presentation of
the HTML documentation.

1 <div class="service" id="svc">
2 <h1>ACME Hotels service API</h1>
3 <div class="operation" id="op1">
4 <h2>Operation getHotelDetails</h2>
5 <p> Invoked using the GET
6 at <code class="address">http://example.com/h/{id}</code>

7
8 Parameters:
9 <code>id</code>− the identifier of the particular hotel

10

11
12 Output value: hotel details in an
13 <code>ex:hotelInformation</code> document
14
15 </p>
16 </div></div>

Listing 1: Example hRESTS service description

For semantic automation, hRESTS descriptions are not meant to
be processed directly in the HTML form, instead we map them to
RDF data that follows the service model from Section 3. This way,
WSMO-Lite tools need not distinguish between WSDL services
and RESTful APIs—except during actual service invocation, they
can be treated as equals. In order to represent the operation
address and method in the RDF form, we add two RDF properties,
hr:hasMethod19 and hr:hasAddress. If defaults for method and
address are specified on the service level, the RDF form reflects
the default values already applied, that is, instances of wl:Service
will never have either hr:hasMethod or hr:hasAddress, while
instances of wl:Operation should always have both.

The mapping of hRESTS descriptions into RDF can be carried
out through GRDDL [35], a mechanism for extracting RDF data
fromWeb pages, particularly suitable for processingmicroformats.
With GRDDL, the Web page is processed by one or more XSLT
transformations that result in RDF triples; the result is an RDF view
on the content of the page.

The following subsection contains an example of HTML anno-
tatedwith bothmicroformats and it shows the RDF data generated
from such HTML.

5.2. MicroWSMO semantic annotations for hRESTS

Building on hRESTS, we can now proceed to annotate de-
scriptions of RESTful services with semantics. Since hRESTS is by
design similar to WSDL, we add semantic annotations using the
standard SAWSDL properties, adapted to a microformat syntax in
a microformat called MicroWSMO. Similarly to how SAWSDL is
a layer for semantic annotations of WSDL (the machine-readable
service description language with support in development tools),
alsoMicroWSMO is a layer for semantic annotations of hRESTS (the
service description microformat that aims to provide for develop-
ment tool support).

SAWSDL annotations are URIs that identify semantic concepts
and data transformations. The annotation URIs can be added to the
HTML documentation of RESTful services in the form of hypertext
links. HTML [36] defines a mechanism for indicating the relation
represented by a hyperlink; the relation is specified in the rel
attribute. Along with class, the rel attribute is also commonly
used by microformats.

In accordance with SAWSDL, MicroWSMO consists of the
following three types of link relations:

• model indicates that the link is a model reference,
• lifting and lowering then denote links to the respective

data transformations.

19 The namespace prefix hr stands for http://www.wsmo.org/ns/hrests#.

http://www.wsmo.org/ns/hrests

D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 11

The model link relation, on a hyperlink present within an
hRESTS service, operation, input or output block, specifies
that the link is a model reference from the respective component
to its semantic description. We can directly apply WSMO-Lite
semantics here, as discussed in Section 4.2 and summarized in
Table 2.

Note that HTTP [9] defines some limited semantics for the
various methods. In particular, the method GET is supposed to be
safe, and the methods PUT and DELETE are idempotent. The safety
property of GET is of particular interest, allowing opportunistic
client behavior such as pre-caching and Web crawling, or even
automated offer discovery, which we describe in [37]. To include
operation safety in the service behavioral semantics, MicroWSMO
can automatically add amodel reference towsdlx:SafeInteraction20

on any operation that uses GET.21
The lifting and lowering link relations, on hyperlinks

present within hRESTS input or output blocks, specify that the
links point to the respective lifting and lowering schema mapping
data transformations between the knowledge representation
format of the service’s data ontology and the network transmission
syntax of the messages of the service.

In contrast to data lifting and lowering for WS–∗ services, im-
plementing lifting and lowering for RESTful services is complicated
by the following factors: (a) XML is not as prevalent in RESTful ser-
vices, so data transformations may need to support other formats,
such as JSON22; (b) the input data to a RESTful service operation
is not necessarily in a single document, as parts of the input data
may instead be URI (query) parameters; and (c) themeaning of the
response data depends also on the response status code (in case of
faults).

Listing 2 illustrates the use of the MicroWSMO link relations on
semantic annotations added to the hRESTS description from Listing
1. The model link relation is used on lines 4 and 13. Line 4 specifies
that the service supports hotel reservations (theURIwould identify
a category in some classification of services), and line 13 defines
the input of the operation to be an instance of the class Hotel,
which is a part of the service’s data ontology. Line 15 shows a link
to a lowering transformation that would presumably map a given
instance of the class Hotel into the ID that the service expects as a
URI parameter.

1 <div class="service" id="svc">
2 <h1>ACME Hotels service API</h1>
3 <p>This service is a
4
5 hotel reservation service.
6 </p>
7 <div class="operation" id="op1">
8 <h2>Operation getHotelDetails</h2>
9 <p> Invoked using the GET

10 at <code class="address">http://example.com/h/{id}</code>

11
12 Parameters:
13
14 <code>id</code>− the identifier of the particular hotel
15 (
16 lowering)

20 wsdlx:SafeInteraction is a class defined by the WSDL RDF mapping [25] to
represent the safety property.
21 A low but significant number of Web applications use HTTP GET to perform
side effects, such as deleting an item from a container or confirming mailing list
unsubscription. Web search engine crawlers and Web accelerator programs have
been using server-provided restrictions (robots.txt) and heuristics (such as
the presence of URI parameters after ‘?’) to guess whether GET will be safe on a
given URI, limiting their reach to avoid unintended consequences for broken Web
applications. Such heuristics can also be built into a MicroWSMO parser so that the
wsdlx:SafeInteractionmodel reference would only be attached to operations whose
address is judged as safe.
22 http://www.json.org/.

17

18
19 Output value: hotel details in an
20 <code>ex:hotelInformation</code> document
21
22 </p>
23 </div></div>

Listing 2: Example MicroWSMO semantic description

To demonstrate the RDF mapping of both hRESTS and Mi-
croWSMO, Listing 3 shows the RDF data that can be extracted
from the example description in Listing 2, for instance by using the
GRDDL XSLT transformation mentioned in the preceding subsec-
tion. The result has the same structure as the RDF data obtained
from WS–∗ descriptions in WSDL and SAWSDL. Using this RDF
form of the service descriptions, we can treat RESTful services de-
scribed with hRESTS and MicroWSMO just like WS–∗ services de-
scribed with WSDL and SAWSDL.

1 @prefix ex: <http://example.com/serviceDescription.html#> .
2 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
5 @prefix wsdlx: <http://www.w3.org/ns/wsdl−extensions#> .
6

7 ex:svc a wl:Service ;
8 rdfs:isDefinedBy <http://example.com/serviceDescription.html> ;
9 rdfs:label "ACME Hotels" ;

10 sawsdl:modelReference <http://ecommerce.example/hotelReservation> ;
11 hr:hasOperation ex:op1 .
12 ex:op1 a wl:Operation ;
13 rdfs:label "getHotelDetails" ;
14 hr:hasMethod "GET" ;
15 sawsdl:modelReference wsdlx:SafeInteraction .
16 hr:hasAddress "http://example.com/h/{id}"^^hr:URITemplate ;
17 wl:hasInputMessage [
18 a wl:Message ;
19 sawsdl:modelReference <http://example.com/data/onto.owl#Hotel> ;
20 sawsdl:loweringSchemaMapping <http://example.com/data/hotelID.xsparql>
21] ;
22 wl:hasOutputMessage [
23 a wl:Message ;
24] .

Listing 3: RDF data extracted from Listing 2

5.3. RDFa: an alternative to hRESTS and MicroWSMO

Alternatively to using microformats to capture the service
model structure in the HTML documentation of RESTful Web
services, we can also employ RDFa [34], directly using the RDF-
based WSMO-Lite service model. RDFa specifies a collection of
generic XML attributes for expressing RDF data in any markup
language, and especially in HTML.

In our case, the difference between the use of a microformat or
RDFa boils down to several considerations:
• the microformat syntax is simpler and more compact than

RDFa;
• RDFa represents the full concept URIs and thus facilitates the

coexistence of multiple data vocabularies in a single document,
where microformats may run into naming conflicts;
• processing microformats requires vocabulary-specific parsers

(such as our XSLT transformation described in Section 5.1),
while parsing the RDF data from RDFa is independent from any
actual data vocabularies.
• RDFa cannot support language-specific shortcuts (such as the

defaulting of address and method properties from a service to
its operations), but with tool support, users may not need such
shortcuts.

Mindful of the size of the article, we illustrate the RDFa form of
the WSMO-Lite service model with SAWSDL annotations (instead
of the hRESTS/MicroWSMO microformats) with a brief snippet in
Listing 4.

http://www.json.org/

12 D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

1 <div typeof="wl:Service" about="#svc"
2 xmlns:wl="http://www.wsmo.org/ns/wsmo−lite#"
3 xmlns:sawsdl="http://www.w3.org/ns/sawsdl#"
4 xmlns:rdfs="http://www.w3.org/2000/01/rdf−schema#">
5
6 <h1>ACME Hotels service API</h1>
7 <p>This service is a
8 <a rel="sawsdl:modelReference"
9 href="http://ecommerce.example/hotelReservation">

10 hotel reservation service.
11 </p>
12 <div rel="wl:hasOperation"><div typeof="wl:Operation" about="#op1">
13 <h2>Operation <code property="rdfs:label">getHotelDetails</code></h2>

Listing 4: Example service description with RDFa annotations

6. Illustrative SWS automation algorithms

The preceding sections show how Web service descriptions
can be annotated with semantics, and the ontology in which
the semantics are expressed. Semantic descriptions are intended
to support tasks such as service discovery and composition,
therefore in this section we show several algorithms for these
tasks, in order to evaluate that the proposed languages can
actually support Web service automation. Adapted from existing
literature, the presented algorithms are not necessarily meant to
be the most powerful or the most efficient ones, instead they are
meant to demonstrate the versatility of our lightweight semantic
descriptions.

The process of usingWeb services can be split into the following
tasks: discovery, negotiation, ranking and selection, composition,
mediation and invocation. Here, we focus on algorithms for Web
service discovery. We do not intend to imply that the presented
algorithms are the most efficient or the most user-friendly; they
are a selection of common and proven approaches, on which we
can easily demonstrate how such algorithms can be adapted to
WSMO-Lite. By adopting known and tested approaches, we show
how SWS research may converge on a technology like WSMO-Lite
that is close to Web services practitioners. In other words, with
WSMO-Litewe do not have to discard the existing body of research
on SWS automation algorithms.

Adapting existing algorithms to WSMO-Lite involves the rec-
onciliation of terminology and the refinement of WSMO-Lite se-
mantics. WSMO-Lite has two effects on terminology that have to
be accepted in an adapted algorithm: first, WSMO-Lite takes the
SAWSDL point of view building bottom-up on the underlying tech-
nical descriptions, as opposed to top-down froma semanticmodel;
and second, WSMO-Lite distinguishes between the four types of
semantics (functional, nonfunctional, behavioral and information)
and it specifies four RDFS classes to express them.

Since WSMO-Lite semantics are intentionally limited, adapting
a SWS automation algorithmmay involve filling in concrete details
(e.g. instantiation of classes) about WSMO-Lite semantics that are
used by the algorithm, effectively refining the semantics defined
by WSMO-Lite. Additionally, an algorithm must also define what
kinds of data it requires from the user to specify a goal.

The following subsections present selected algorithms adapted
to WSMO-Lite, demonstrating both the use of WSMO-Lite termi-
nology and the refinement of its semantics. We have chosen to
focus on algorithms that use functional semantics, as these are
non-trivial; adapting algorithms that use information and non-
functional semantics is straightforward, and working with behav-
ioral semantics inWSMO-Lite is analogous to functional semantics.

6.1. Functional Web service discovery

The scope of the term ‘‘discovery’’ can be understood very
widely, encompassing a Web crawler that finds existing service

descriptions, amatchmaker that selects known services thatmatch
a given user goal, and even a negotiation step that finds the
concrete offers of the selected services. In this section, we restrict
the meaning of discovery to functionalWeb service matchmaking;
i.e., the client’s goal specifies what a desired service should be
able to do, and the matchmaker compares it to the advertised
functionalities of the knownWeb services.

Klusch [38] presents themost recent survey of semantic service
discovery approaches. Along with logic-based matchmakers,
he also investigates non-logic-based mechanisms that employ
measures such as text similarity to determine the degree of match
between a service and a user request. Among the logic-based
approaches, Klusch further investigates what kinds and parts of
service semantics are considered for matching, especially pointing
out how various approaches use different combinations of the
descriptions of service inputs, outputs, preconditions and effects
(together known as IOPE).

Among full IOPE matchmakers, which use all the four semantic
aspects, Klusch cites the work of [39],23 which we adopt here for
the purpose of demonstrating matchmaking withWSMO-Lite. The
approach of Keller et al. is based on a simple concept of modeling
Web services and goals as sets of relevant objects: a service can
deliver certain objects, and a goal requests them. We use Keller
et al.’s naming of these sets: a Web service W is represented
through a set named RW , and a goal G is represented through a set
named RG.

Keller et al. distinguish twomodeling intentions: existential and
universal. In existentialmodeling, the sets overdescribe the services
and goals—a goal G will be satisfied if any object(s) from RG is
delivered; and a service W can only really deliver some objects
from RW . For example, a goal set can describe all room reservations
in a given city at given dates, but the intention is to get only one
reservation; and a service set can describe all the possible room
reservations at a given hotel, but only some roomswill be available
at some dates. In universal modeling, the sets describe the service
or the goal exactly: the goal requires all the objects from RG to
be delivered, and the service can deliver all the objects from RW .
While universal modeling is potentially more accurate, Keller et al.
list no plausible use cases where the required level of description
detail would be desirable or practical. Therefore, we restrict our
discussion only to the existential modeling intention.

In order for W and G to be considered a match, the sets RW and
RG have to be interrelated. There are four possible set-theoretic
relations,with an inherentmatch-degree ranking among them (the
list goes from the best match to the worst):

• Exact match of equal sets (RG = RW): the service may be able
to deliver all the objects requested by the goal, and it cannot
deliver any other, irrelevant objects. This is the closest match
between a goal and a service. For example, a goal requests
accommodation in Rome, and there is a service that specializes
on accommodation in Rome.
• Web service subset of goal (RG ⊇ RW): the service can only

deliver some of the objects requested by the goal; it cannot
deliver irrelevant objects. For example, if the goal requests
accommodation in Rome, a particular service may only cover
budget hotels in this city. The service description indicates that
the service has limitations with respect to the goal (only budget
hotels), but it can be acceptable to the client (whose goal does
not specify the client’s demands on service level or price).
• Goal subset of Web service (RG ⊆ RW): the service may be able to

deliver all objects requested by the goal, but itmay also (or even

23 We use a newer publication by Keller et al. which superseded that cited by
Klusch.

D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 13

only) deliver irrelevant objects. For example, a service offering
accommodation in Italy in general may have a limited coverage
of hotels in Rome. In this case wemerely have a possible match.
• Nonempty intersection of service and goal (RG ∩ RW ≠ ∅): the

service may be able to deliver some of the requested objects,
but it may also deliver irrelevant objects. For example, a Hilton
hotel reservation service is clearly limited with respect to the
hotel (it only books Hilton hotels), but it still is a possible match
because the description does not say whether there is a Hilton
hotel in Rome.

The fourmatch degreesmay be used to rank the discovered ser-
vices. For example, performing negotiation with better-matching
services first can quicker lead to useful results, which the semantic
client system can asynchronously display to the user.

WSMO-Lite provides two distinct mechanisms for describing
the functionality of Web services: the lightweight but coarse-
grained functional classification24 that deals with taxonomies of
functionality, and the more expressive capability described with
preconditions and effects. Both types can be interpreted as
descriptions of sets of objects. [39] only deal with capabilities; we
extend their approach to discovery using functional classifications.

In the subsections below, we detail the concrete matchmaking
algorithms that follow the set-based approach of Keller et al.: in
Section 6.1.1, we discuss the extension of the work of Keller et al.
for matchmaking with functional classifications, in Section 6.1.2,
we summarize matchmaking with capabilities from [39], and then
in Section 6.1.3 we combine the two separate approaches.

6.1.1. Matchmaking with WSMO-Lite functional classifications
Functional classification is the simpler one of the two mecha-

nisms WSMO-Lite provides for functional description of Web ser-
vices. Using SAWSDL model references, a Web service s can be
associated with one or multiple categories (cs1, . . . , c

s
n) from one

or multiple classification ontologies. For the purpose of the discov-
ery algorithms here,we interpret those categories as specifying the
sets of objects that can be delivered by Web services, as discussed
above. Keller et al. do not consider functional classifications in their
work. By interpreting functional categories as sets of objects, we
devise here a straightforward extension of the approach of [39].

Multiple categories associated with one service are treated in
conjunction—a service belongs to all the functionality categories
with which it is associated. In other words, the service is described
by the intersection of the functionality categories. Effectively, we
can say the service is associated with a single functional category
RW :

RW =

i=1...n

csi .

For selecting Web services, a user goal must specify a category
of interest, RG, so that the matchmaking algorithm can return
services associated with matching categories that are related with
the goal category through the subclass relationships that make up
the functionality classifications. For symmetry and simplicity, we
describe the goal category also as the intersection of one or more
given categories (cg1 , . . . , c

g
m):

RG =

i=1...m

cgi .

Since WSMO-Lite functionality classifications are built using
the subclass relationship (ci ⊆ cj), we are limited to inspecting

24 Creating taxonomies is an expensive, consensus-driven task with benefits
diminishing as the number of categories grows, therefore we expect functionality
classifications to be coarse-grained.

Fig. 7. Matchmaker algorithm for WSMO-Lite functional classifications.

the subclass hierarchies to determine the match degrees between
goals and Web services:
• RG = RW : the service exactly matches the goal if it is both a

subset and a super-set of the goal, as defined below.25
• RG ⊇ RW : the service is a subset of the goal if the service is

associated with a subcategory of each of the goal categories.
• RG ⊆ RW : the goal is a subset of the service if the goal is

associated with a subcategory of each of the service categories.
• RG ∩ RW ≠ ∅: the service intersects the goal if any of the

above is true, but also if we can find any one category that is
a subcategory of all of the categories associated with both the
goal and the service.26

Fig. 7 shows the matchmaking algorithm that embodies our
adaptation of the work of Keller et al. to WSMO-Lite functional
classifications; it formalizes the conditions for each of the match
degrees.

The algorithm employs subsumption reasoning, which can in
some languages (such as RDFS) be reduced to the well-known and
tractable problem of graph reachability. In other words, discovery
with functional classifications can provide good performance at
the cost of expressivity—the level of detail practically possible in
service and goal descriptions.

6.1.2. Matchmaking with WSMO-Lite preconditions and effects
In addition to the coarse-grained functionality classifications

discussed above, WSMO-Lite supports fine-grained service de-
scription with logical expressions that capture the precondition
and effect (together, the capability) of the service. Preconditions
and effects can also be used to model services as sets of objects,
as shown by [40] (referenced from [39] as a concrete realization of
set-based discovery in formal logics). Here, we provide a summary
of their approach, adapted to the terminology of WSMO-Lite.

Keller et al. propose two ways of expressing the sets of objects
that represent Web services and user goals:
Simple semantic descriptions: the sets RW and RG are defined using
first-order formulas φ(x) and ψ(x)27 with one free variable each:
W : RW = {x | φ(x)}
G : RG = {x | ψ(x)}.

25 Note that this is a one-way implication, not an exclusive iff : for example when
using two overlapping classifications for whichwe do not have a formalmapping, it
is possible that the service category is an exact match of the goal category but they
use different terms so the matchmaker has no means of verifying the match.
26 We assume here that any explicitly defined functionality category can be seen
as a non-empty set of objects that some service can deliver.
27 Note that in contrast to [40], we swap the use of the symbols φ and ψ , for
consistency with preceding sections.

14 D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Table 4
Proof obligations for the four types of set-theoretic relationship between the goal
and the service object sets.
Source: From [40].

Set relationship Proof obligation

Simple semantic descriptions
RG = RW W,G,O |H ∀x : (ψ(x)↔ φ(x))
RG ⊆ RW W,G,O |H ∀x : (ψ(x)→ φ(x))
RG ⊇ RW W,G,O |H ∀x : (ψ(x)← φ(x))
RG ∩ RW ≠ ∅ W,G,O |H ∃x : (ψ(x) ∧ φ(x))

Rich semantic descriptions
RG = RWG W,G,O |H ∃ i1, . . . , in : (∀x : (ψ(x)↔ φ(x, i1 . . . in)))
RG ⊆ RWG W,G,O |H ∃ i1, . . . , in : (∀x : (ψ(x)→ φ(x, i1 . . . in)))
RG ⊇ RWG W,G,O |H ∃ i1, . . . , in : (∀x : (ψ(x)← φ(x, i1 . . . in)))
RG ∩ RWG ≠ ∅ W,G,O |H ∃ i1, . . . , in : (∃x : (ψ(x) ∧ φ(x, i1 . . . in)))

Rich semantic descriptions: the above is extended with a notion of
input data that influences the set of objects delivered by the service.
The service description expresses a precondition φpre(i1 . . . in) on
the inputs, and an effect φeff (x, i1 . . . in), combined together in
φ(x, i1 . . . in). Thus, the set RW depends on the concrete input data,
which is captured in the goal description as a set of instances DG.
The service is not considered to deliver anything meaningful if the
precondition cannot be fulfilled by a given set of concrete inputs.

W : RW = {x | ∃ i1 . . . in ∈ DG : φ(x, i1 . . . in)}
φ(x, i1 . . . in)↔ φpre(i1 . . . in) ∧ φeff (x, i1 . . . in)

G : RG = {x | ψ(x)}
DG = {i1, . . . , im}.

In an actual WSMO-Lite service description, the formula φ(x)
or φeff (x, i1 . . . in) is captured in a suitable logical language such
as RIF [28] as the effect of a Web service capability K (kappa, see
Section 4.1), and the formula φpre(i1 . . . in) is similarly captured as
the capability’s precondition.

In order to evaluate the various types of match, an automated
reasoner can be employed to prove logical relationships between
the formulas. In Table 4, we summarize the proof obligations
defined in [40]. All of the proof obligations are of the form

W,G,O |H expression

where W is the definition of the Web service, G is the definition of
the goal, O is a set of ontologies to which both descriptions refer,
and expression is the actual formula that combines ψ(x)with φ(x)
or φ(x, i1 . . . in).

A discovery algorithm straightforwardly follows from the table:
the algorithm would simply use a reasoner to evaluate the proof
obligations for the given goal and for each known service, returning
the matching services along with their match degrees.

The rich semantic descriptions are backward-compatible with
the simple semantic descriptions: if there is no precondition, and
the effect is independent of the input data i1 . . . in, the proof obliga-
tions in the lower half of Table 4 reduce to those from theupper half
of the table. This compatibilitymakes it possible for simple descrip-
tions to be used together with rich descriptions in a single system.
It also enables gradual adoption of semantic complexity—a system
can first only support the simple descriptions, and later adopt rich
descriptionswhen the service providers and users become familiar
with the logic languages and with the ontologies involved in the
system; the older simple descriptions will still be evaluated cor-
rectly.

6.1.3. Combining functional classifications and capabilities
So far, we have adapted the work of Keller et al. to WSMO-

Lite preconditions and effects (Section 6.1.2), and we have
extended it to deal with WSMO-Lite functionality classifications
(Section 6.1.1). Here, we discuss how these two mechanisms can
usefully be combined.

To combine functional classification discovery with capability
discovery, functional classification descriptions can be straightfor-
wardly translated to capability descriptions as follows:

W : RW =

i=1...n

csi H⇒ φ(x) = (∀i = 1 . . . n : x ∈ csi).

Equally, goal descriptions can also be translated in this manner.
The translationwould enable capability discovery to use functional
classification annotations. However, due to the difference in nature
of taxonomies used for functional classifications and ontologies
used for fine-grained logical expressions, we do not expect that
creating mappings between them would be economical, therefore
the above translation would be unlikely to lead to new matches
(better matchmaking recall).

Alternatively, the two approaches can be combined in an ef-
ficient two-stage discovery process, where functional category
matching precedes precondition and effect evaluation. Functional-
ity classifications can be expected to be coarse-grained, with each
category expressing the consensus of a community. On the other
hand, logical preconditions and effects provide the expressivity to
describe services and goals in great detail, however, at the cost
of decreased performance, due to the computational complexity
of logical reasoning and proof. In combination, discovery over a
large Web service registry can perform an efficient first step using
functional classifications, and then evaluate the preconditions and
effects only on the services with matching categories. Thus,
WSMO-Lite offers improved scalability to large Web service reg-
istry sizes over existing approaches such as OWL-S and WSMO,
where discovery traditionally always performs computationally
intensive reasoning.

When used alone, capability descriptions need to be detailed
and yet comprehensive to describe the service’s functionality
unambiguously. In combination with functionality classifications,
a functional category specifies the broad functionality of the
given service, therefore the preconditions and effects in the
capability description need only express desired additional details.
Effectively, the logical expressions that make up the capability
descriptions may be simpler, easing the task of authoring the
semantic service descriptions.

The two-stage combination of the two discovery approaches
(based on functionality classifications and on formal capabilities)
requires also that the user goal contain both kinds of data: a
requested functionality category and a description of the desired
effect (plus input data if rich capability descriptions are used).
Also here, the logical expression that defines the desired effect
is simplified because it operates in the context of the requested
functionality category specified by the goal.

In summary, combining matchmaking through functionality
classifications and through logical capabilities has benefits both in
performance and in complexity of service descriptions.

Notably, Stollberg [41] achieves similar effects on discovery
scalability and description complexity by enhancing WSMO
discovery [39] with the use of goal templates and Web service
templates. The templates are presumably defined through a similar
process as our functionality classifications—by reaching consensus
on useful subdivision of a domain. Goal templates can be matched
against Web service templates ahead of the time of concrete
discovery, so that a concrete goal need only be matched against
the concrete Web services that are described using Web service
templates that match the template of the goal.

As Stollberg’s work focuses on the performance benefits from
pre-matching of templates, it does not pursue the difference
between authoring logical capability descriptions and creating
hierarchies of functionality templates. WSMO-Lite separates
functionality classifications from logical capabilities, stressing the
differences in granularity and degree of collaboration expected to
author the two types of semantic descriptions.

D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 15

6.2. Functional Web service composition

Web service composition is the process of combining existing
services in such a way that they provide a new desired function-
ality; the result is also often called a service composition, or a
composite service. There are many different strategies for service
composition, as shown by the survey of [42].

Among other aspects, the survey emphasizes the distinction
between manual composition and automatic composition. To
support manual composition, research focuses on languages
that describe compositions, and tools that help the user with
composing selected services. For automated composition, research
investigates languages for describing services, and algorithms that
use service descriptions to compose services that together can
achieve a specified goal. Semantic technologies such asWSMO-Lite
are especially suited for supporting automated composition,which
is therefore the scope of this section.

Different automated composition approaches use varying levels
of detail in service descriptions. A recent example by [43] is repre-
sentative ofmany approaches thatmatch services using a sequence
based on their inputs and outputs. Such approaches assume that
the inputs and outputs of a service implicitly reflect the service’s
functionality. Conversely, more sophisticated approaches such as
the one from Hoffmann et al. [44] use the preconditions and ef-
fects ofWeb services as explicit functional descriptions, decoupling
message types from service functionality.

These two levels mentioned so far are commonly called
functional-level composition, treating Web services as functions
with single points of input and output. In contrast, process-level
composition (e.g. [45]) takes into account the behavioral interfaces
of the composed services, treating them as processes rather than
atomic functions. Functional-level composition is tractable, but be-
cause it does not take into account the services’ behavioral inter-
faces, the composition solutions are not guaranteed to be actually
executable. Rather, they support the human designer with rich in-
formation about possible compositions. Ideally, only minor modi-
fications should correct any remaining mismatches.

The result of Web service composition may simply be a linear
sequence of services (e.g. [44]), or it can be a non-linear composi-
tion with parallel and/or conditional branches [43,45].

In this section, we adapt to WSMO-Lite the composition ap-
proach from Hoffmann et al. [44]. It illustrates powerful compo-
sition with service preconditions and effects without delving into
the complexity of process-level composition. While the algorithm
produces linear compositions, it is a property of the algorithm—
WSMO-Lite can just aswell support other composition approaches.

The composition algorithm of Hoffmann et al. is defined using a
formalism that is independent of the underlying SWS technology;
here we show how it can be used with WSMO-Lite. For this
purpose, we summarize the approach in enough detail tomake the
section self-contained.

The formalism used by Hoffmann et al. follows Winslett’s [46]
possible models approach to define the semantics of updates that
occur when a Web service is applied to a given expected state. In
order to explain the high-level functioning of the algorithm, we
show here a subset of the formalism.

In the formalism, Web services are represented with their
preconditions and effects. In WSMO-Lite, these are captured as a
capabilityK (kappa, see Section 4.1). Further, user goals are defined
by Hoffmann et al. through preconditions and effects, where
the precondition serves only as the supply of initial constants.
Therefore, we capture a goal directly as the effect and a set of the
initial constants:

W : K = (Σ, φpre, φeff)

G : ψ eff (x1, . . . , xn)
DG = {i1, . . . , im}

where ψ eff (x1, . . . , xn) describes the desired goal models, and DG

represents the initial set of constants for the algorithm.
The composition approach is built on a notion of beliefs: a belief

is captured as a set of models that are considered possible; i.e., at
each point in a composition, our uncertainty about the true state
of the execution is expressed in terms of the set of models that
may be possible. An initial belief b0 is created from the background
ontology and the constants in DG. A solved belief is such a belief
whose all models fulfill the desired goal effect.

Given a belief b and a service s, the result of applying s in b is a
new belief (a set of models), denoted apply(b, s). Each of the new
models captures one possible way the old belief can be updated to
reflect the service’s effect φeff . Creating new models that satisfy a
given logical expression is calledupdate reasoning, and it is a known
hard problem (cf. [47]). Hoffmann et al. use approximate reasoning
with Horn theories, which they show to be tractable. The detailed
formal definition of the function apply(m, s) can be found in [44].

Fig. 8 outlines the composition algorithm, with updates from
[44] to adopt WSMO-Lite terminology. The overall structure of the
algorithm is typical for state-space search algorithms (see [48]).
The inputs are the known services and the goal, and a successful
output is a sequence of service applications that solves the goal.
The algorithm searches in a space of beliefs that correspond to
states in a typical AI planning search. The initial belief b0, created
on line 1, combines the background ontology with the goal data.

The algorithm works with a so-called open-list O, which
contains all the beliefs that have yet to be processed; initially, that
is only the belief s0 (see line 3). In the open-list, each belief is kept
in a 4-tuple ⟨b, h,H, p⟩, where b is the belief itself, p is the path
that leads to this belief (a sequence of Web service applications),
and h and H are additional values returned by a heuristic function
that can help guide the search. The value of h is an estimate on how
many Web services still need to be applied to b in order to obtain
a solution (in other words, how close to the solution the belief
appears to be), and H is a subset of all the available Web services
that the heuristic function deems applicable to b. The heuristic
value h guides the algorithm to the most appropriate beliefs in the
search graph, and the set H prunes the search graph by dropping
unwanted services.

The main loop on lines 4–11 executes until the open-list is
empty, or until the solution is found. At every step, it selects the
best next belief (as indicated by the heuristics) and removes it from
the open-list (line 5). As presented, the algorithm is a ‘‘greedy best-
first search’’ [48], but it can be changed effortlessly to other search
algorithms, such as A∗ which is commonly very efficient in finding
a solution.

Having selected the next belief, we compare it on line 6 with
the goal using the function isSolved. If the goal effect is satisfied in
the belief, we have found a solution and the algorithm ends.

If the solution has not been reached yet, we expand the
currently-selected belief: we generate new beliefs by applying the
availableWeb services (in the loop on lines 7–11). Applying aWeb
service s on a belief b (line 8) leads to a changed belief b′, which
is added to the open-list, along with its heuristic values and the
updated path (lines 10 and11). If theWeb service s is not applicable
to the belief b (either its precondition does not apply, or its effect
leads to a contradiction), we simply skip this service and move to
the next one (line 12).

If the open-list becomes empty, the algorithm has explored the
entire search spacewithout finding a solution, and it ends (line 12).

After the algorithm finds a composition solution, the composi-
tion can be presented to the user, who may need to fill in details
related to data or process mediation (cf. [49,50]).

16 D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Fig. 8. Web service composition algorithm for WSMO-Lite.

7. Feasibility of the approach

Throughout this article, we have stressed the need for
lightweight semantics for Web services, especially including
RESTful APIs that have seen limited attention from Web service
automation researchers. The languageswe have presented directly
address the need: WSMO-Lite covers service semantics, and
hRESTS/MicroWSMO support RESTful APIs. In this section, we look
at the feasibility of the approach from different angles: tooling
support and viability (will it work?).

7.1. Tooling

WSMO-Lite is intended for automation of the use of Web
services, thus the main implementation is in tools that realize
automation algorithms such as those presented in Section 6. At
OASIS, themain standardization body forWS–∗Web services, such
tools are called a Semantic Execution Environment (SEE),28 which
employs semantic technologies to support a user in achieving its
goal with Web services.

AWSMO-Lite-based semantic execution environment, SOA4All
Studio29 was developed by the research project SOA4All.30 It
contains components for semantic service discovery, ranking,
composition and monitoring.

Among other functionalities, SOA4All Studio supports service
providers (or interested third parties) in creating semantic descrip-
tions for Web services, bothWS–∗ and RESTful. Editors for seman-
tic service description are an important kind of implementation of
WSMO-Lite. DescribingWeb services semantically is a knowledge-
intensive task that cannot be fully automated without strong
artificial intelligence, but tools such as SOA4All Studio’s WSMO-
Lite Editor/SOWER (for WS–∗ services)31 and MicroWSMO Edi-
tor/SWEET (for RESTful services)32 can ease the task by suggesting
appropriate ontologies, guiding the user in applying semantic an-
notations to the underlying Web service descriptions:

28 http://oasis-open.org/committees/tc_home.php?wg_abbrev=semantic-ex.
29 http://technologies.kmi.open.ac.uk/soa4all-studio/.
30 http://soa4all.eu.
31 http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-
platform/sower/.
32 http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-
platform/sweet/.

• WSMO-Lite Editor, a.k.a. SOWER: supports adding (and ma-
nipulating) semantic annotations in WSDL and XML Schema
descriptions, according to the distribution of the kinds of se-
mantics defined in Table 3. Also supports the publication of new
semantic descriptions in the SOA4All service registry, after
transforming the WSDL into an RDF form of the WSMO-Lite
minimal service model [51].
• MicroWSMO Editor, a.k.a. SWEET : supports adding and manip-

ulating semantic annotations in the HTML documentation of
RESTful services; therefore it also allows adding hRESTS anno-
tations towhich the semantic annotations can be attached. Also
this editor enables the publication of the semantic descriptions
in the registry, after transforming the hRESTS/MicroWSMOdoc-
uments into the WSMO-Lite RDF form [52].

Editing tools may also verify some consistency and complete-
ness criteria (we have proposed some such criteria for WSMO-Lite
descriptions in [12]) and even guide a user through the steps of a
semantic service descriptionmethodology. For instance, the OASIS
SEE Technical Committee is working on MEMOS (A Methodology
for Modeling Services [53]), which should be directly applicable to
WSMO-Lite as well as other SWS frameworks.

SOA4All Studio is backed by iServe33 [54], a semantic service
description registry. iServe is fully based on the WSMO-Lite ser-
vice model, but it is also capable of importing OWL-S service
descriptions and treating them as WSMO-Lite descriptions. The
registry publishes service descriptions in an open manner as
linked data, and it provides a RESTful service discovery API
that implements several discovery algorithms: (1) the functional
classification discovery described in Section 6.1.1, (2) statistical
text-similarity matchmaker based on iMatcher [55], and (3) a sim-
ple input/output subsumption matchmaker. Only the first algo-
rithm is described in Section 6, as the adaptation of the other two
to WSMO-Lite is straightforward.

7.2. Viability

The viability of the languages is demonstrated in a number of
places throughout this article; let us summarize them here in the
order of the life cycle of semantic service descriptions: descriptions
are first created, then stored (published) somewhere, and finally
processed for discovery and other automation purposes.

33 http://iserve.kmi.open.ac.uk/.

http://oasis-open.org/committees/tc_home.php?wg_abbrev%3Dsemantic-ex
http://technologies.kmi.open.ac.uk/soa4all-studio/
http://soa4all.eu
http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-platform/sower/
http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-platform/sower/
http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-platform/sweet/
http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-platform/sweet/
http://iserve.kmi.open.ac.uk/

D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 17

Table 5
Summary of comparison of WSMO-Lite and WSMO.

While we have not performed a direct examination of the
ease and usability of service description authoring, the creation
and authoring of WSMO-Lite descriptions is likely to benefit
from the principle of remaining lightweight that permeates our
work. In Section 7.1, we have described two published editor
tools that support SAWSDL and hRESTS/MicroWSMO. Authoring
WSDL/SAWSDL descriptions is a well-known and settled area, but
annotating the HTML documentation of RESTful services is still
a research area with space for further exploration. For example,
some RESTful APIs have documentation that is not a close fit to the
hRESTS structure of a list of operations with their separate inputs
and outputs, in which case an editor tool will require the use of
the flexible RDFa form of hRESTS and MicroWSMO discussed in
Section 5.3. The third-party development and use of the previously
mentioned two editor tools, free of significant issues against our
languages, has shown that the creation ofWSMO-Lite descriptions
can be effectively supported for both major kinds of Web services.

For the storage and publishing of WSMO-Lite service descrip-
tions, Section 7.1 describes the public registry iServe. At the time of
thiswriting, the registry contains almost 2000 service descriptions.
iServe was used as the service registry in the EU projects SOA4All
and NoTube [56].

Finally for processing of SWS descriptions, Section 6 describes
several algorithms directly built on the WSMO-Lite service
model and semantics. The discovery algorithms in particular are
implemented in the iServe registry showing that they perform
on par with state-of-the-art service matchmakers [57]. This gives
us confidence that further SWS algorithms can be adapted to
WSMO-Lite without loss of functionality, and that WSMO-Lite
is therefore a viable SWS description approach. While adopting
different existing SWS automation systems toWSMO-Lite does not
immediately mean interoperability, it gives researchers a common
ground and a shared vocabulary, making it easier to identify and
work out the differences between various approaches to the same
SWS automation problem (such as discovery).

8. Comparison with other SWS frameworks and related work

WSMO-Lite is a new development in the area of semantic de-
scriptions of Web services. To our knowledge, WSMO-Lite is the
first SWS description approach built on top of SAWSDL. The stan-
dardization of SAWSDL has spurred research in ways to connect
earlier SWS frameworkswith the new standard, see [58–60]. These
efforts simply used SAWSDLmodel references to point to elements
of OWL-S or WSMO service descriptions, in effect using SAWSDL
for grounding. Even with SAWSDL groundings, WSMO and OWL-S
semantic Web service descriptions stay conceptually independent
of the underlying technical descriptions.

In contrast,WSMO-Lite builds semantic descriptions directly on
the underlying technical descriptions (as per our design principles
from Section 2). In Section 8.1, we compare WSMO-Lite to the two
major preceding frameworksWSMO and OWL-S, showing that the

most important differences are not in technical capabilities, but in
positioning toward theWeb service technologies onwhich service-
oriented systems are built.

Additionally, in Section 8.2 we also compare WSMO-Lite to
WSDL-S [5], the predecessor of SAWSDL. SinceWSDL-S has several
features that did not become parts of the SAWSDL standard, it is
useful here to show howWSMO-Lite brings them back.

Finally, Section 8.3 briefly discusses other relevant related
works, and in Section 8.4 we discuss the limitations ofWSMO-Lite.

8.1. Comparing WSMO-Lite to WSMO and OWL-S

As summarized in Table 5, the main differences between
WSMO-Lite and the two preceding frameworks lie especially in
the scope of the frameworks and in their relation to standards,
but there are other notable differences. All of the differences are
detailed in the following paragraphs. Where OWL-S differs from
WSMO, WSMO-Lite happens to be closer to OWL-S; therefore we
generally start by comparingWSMO-Lite toWSMO and then add a
remark about OWL-S.

The foremost difference betweenWSMO-Lite andWSMO is that
of scope: where WSMO is a comprehensive framework that covers
all the areas of semantic descriptions around services, OWL-S and
WSMO-Lite have a narrower scope. In particular, WSMO contains
language structures to define ontologies, user goals, andmediators,
and OWL-S and WSMO-Lite do not.

Further, where WSMO details both the outer and the inner
behavior of services in choreography and orchestration process
descriptions, both OWL-S and WSMO-Lite only describe the
outward behavior of services; OWL-S uses an explicit process
model,34 while WSMO-Lite captures the functionalities of the
operations, leaving the choreography process implicit. In this
regard, the scope of WSMO is deeper.

A major difference between WSMO, OWL-S and WSMO-Lite,
one which may affect the adoption of these semantic technologies
in service-oriented environments, lies in the relation of the tech-
nologies to existing standards.

From the viewpoint of standards for Web services, WSMO-Lite
builds directly onWSDL and SAWSDL,while bothWSMOandOWL-
S remain independent of Web service technologies, shielded by a
layer called ‘‘grounding’’ that provides the necessary links toWSDL.

In relation to the Semantic Web standards RDF and OWL,
both WSMO-Lite and OWL-S use them directly, while WSMO
provides its own ontology language, with a mapping to the W3C
Recommendations.

In both areas of standardization, WSMO-Lite is positioned close
to the formal standards; as such, it can easily be adopted in
environments that already use the standard technologies.

TheWSMO framework comeswith a special syntax, described as
‘‘abstract’’ and ‘‘human-readable’’, and it also provides two further
exchange formats, in XML and in RDF. The human-readable syntax
is especially intended for advanced users who can author logical
statements and service descriptions in a source form; other users
are expected to use authoring tools. In contrast, both OWL-S and
WSMO-Lite use RDF as their only representation format.

Other notable differences between WSMO-Lite and the two
preceding frameworks lie in support for using functionality
classifications, support for RESTful services, and implementations
within tools.

34 OWL-S Process Model does not make an explicit conceptual differentiation
between choreography and orchestration, and primarily focuses on the outward
behavior of services. While it does exhibit internal features through procedural
control constructs, it is relatively modest in terms of language constructs compared
to other fully fledged process orchestration languages.

18 D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

As part of the functional and behavioral semantics, WSMO-
Lite supports the use of functionality-based classifications. WSMO
focuses on expressing service functionality and behavior through
logical expressions, and therefore it has no explicit support
for categorizing service and operation functionalities. In OWL-S,
service classification used to be supported (only on services, not
on operations); in the newest version this support is deprecated
and delegated to domain-specific extensions.

In relation to the hRESTS/MicroWSMO microformats, WSMO-
Lite supports the semantic description of RESTful services, which are
an increasingly important part of the Web. In contrast, both OWL-
S and WSMO would need a grounding specification for RESTful
services, and we know of no efforts in this direction.

Finally, while there are already existing tools for WSMO
(e.g. WSMX, WSMT, and IRS-III35) and for OWL-S (e.g. OWL-S Edi-
tor, OWL-SMatcher, andWeb Service Composer36), comparatively
fewer tools have been developed that support WSMO-Lite, as we
have discussed in Section 7.1.

In summary, WSMO-Lite is positioned as an extension of the
sole SWS standard SAWSDL, with a tight scope and a close
relation to underlying technologies. WSMO-Lite’s direct support
for RESTful services is a major advantage over preceding SWS
approaches. On the other hand, there are only a few tools that
support WSMO-Lite service description authoring and processing.

8.2. Comparing WSMO-Lite to WSDL-S

WSDL-S is a technology that was developed as an extension
of WSDL, in order to bring semantics closer to the underlying
Web services technologies. Along with a generic model reference
construct that became the cornerstone of SAWSDL, WSDL-S also
defined constructs for WSDL interface categorization and for
operation preconditions and effects, which were not carried over
into SAWSDL.

To facilitate semantic automation, WSDL-S allows the ex-
pression of preconditions and effects on WSDL operations. In
WSMO-Lite, preconditions and effects are treated as functional an-
notations, supported both on operations, as part of the behavioral
semantics of a service, and on the service itself, as part of its func-
tional semantics. Specifying high-level preconditions and effects
on the service as a whole is useful for coarse-grained service dis-
covery and composition, without delving into the details of the
service’s operations. In this way, the discovery and composition
process may be able to overlook formal incompatibilities that SWS
automation is not able to resolve, but which can be overcome
through process mediation devised by a human engineer.

For coarse-grained service discovery, WSDL-S also specifies a
construct for attaching categorization information to WSDL inter-
faces. WSMO-Lite treats categorizations as functionality classifi-
cations, supported both on the service (interface) as functional
semantics, and on the service’s operations, where functional cat-
egories serve as parts of the behavioral semantics of the service.
WhereWSDL-S expects the coarse-grained approach of categoriza-
tions to be useful only on the level of whole services, WSMO-Lite
can also handle categories applicable to operations; for instance
wsdlx:SafeInteraction is a category of operations that are safe for
invocation, as defined in the architecture of theWeb, and discussed
here in Section 5.2.

Effectively,WSMO-Lite embraces allWSDL-S constructs, gener-
alizing their use as part of the functional and behavioral semantics
of Web services.

35 http://wsmx.org/, http://wsmt.sf.net/, http://technologies.kmi.open.ac.uk/irs/.
36 http://semanticweb.org/wiki/OWL-S_Editor,
http://owlsm.projects.semwebcentral.org/,
http://www.mindswap.org/~evren/composer/.

8.3. Other relevant related works

The Unified Service Description Language (USDL) [61] is a gen-
eral purpose domain-independent service description language. It
aims to capture a comprehensive description of services, across
various facets, business aspects, and perspectives of the wide va-
riety of stakeholders involved in a service ecosystem. As such, it
is independent of any technologies such as WS–∗ or REST. [62]
proposed a mechanism to annotate WSDL services with USDL de-
scriptions. More recently, [63] proposed a comprehensive vocabu-
lary for capturing and sharing USDL service based on Linked Data
principles. Despite these attempts, to our knowledge, USDL has
not been used to comprehensively reconcile theWS–∗ and RESTful
worlds.

Semantic descriptions of REST APIs is an active research field. A
recent survey of existing approaches is provided in [64] where ap-
proaches such as WADL, RDFa, ROSM, SPARQL-Based descriptions,
SEREDASj, etc., are discussed. None of these approaches is primar-
ily focused on reconciling WS–∗ and RESTful services.

8.4. Limitations of WSMO-Lite

WSMO-Lite is very lightweight and extensible, therefore it is
not easy to pinpoint its limitations. Nevertheless, here we attempt
to identify limitations that could be encountered in future work on
top of WSMO-Lite, even if they have not yet been experienced in
implementations:

• Message is an atomic construct. If we consider an event
scheduling operation whose output is an Event, it may contain
information about its attendees that might be annotated as Per-
son. WSMO-Lite provides no mechanism to capture that the
Person is a part of the Event in this case. We believe this type of
data modeling should better be addressed in the ontology used
for annotations (where an Event can already point to its atten-
dees), so theWSMO-Lite message could only be annotated with
the Event class.
• Behavioral semantics are represented as functional annotations

of operations. Theremay be caseswhere the annotations should
be accompanied by additional context information, such as for
example an explicit declaration of shared variables.
• We put nonfunctional semantics on the service as a whole; if

need be, WSMO-Lite can be extended straightforwardly to sup-
port nonfunctional semantics on individual operations.
• MicroWSMO may encounter modeling difficulties if the HTML

structure of the documentation of some API does not permit a
proper nesting of the microformat-annotated HTML elements.
This is a limitation shared with microformats in general; the
problem can be overcome by refactoring the HTML code, which
can usually be achieved without affecting the presentation of
the documentation.
• At the moment, WSMO-Lite has no support for other service

descriptions such as WADL or the JSON-based Swagger.37 This
present limitation would constitute future work, prioritized by
the popularity the languages.

9. Conclusions and outlook

The Semantic Web of data is starting to be taken seriously out-
side the research community, as demonstrated by the increasing
numbers of data providers in the Linked Data project [65] and take

37 http://swagger.wordnik.com.

http://wsmx.org/
http://wsmt.sf.net/
http://technologies.kmi.open.ac.uk/irs/
http://semanticweb.org/wiki/OWL-S_Editor
http://owlsm.projects.semwebcentral.org/
http://www.mindswap.org/~evren/composer/
http://swagger.wordnik.com

D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 19

up bymajor players such as Google, Facebook andMicrosoft. How-
ever, the Semantic Web vision is not limited to data interoper-
ability; it has also always included processing services, as implied
in [66] and further discussed in [67].

Research on Semantic Web Services strives for automating
the tasks associated with using and combining Web services.
Several approaches to semantic Web service automation have
been proposed. However, SWS research has been fragmented and
detached from the lower-level WS–∗ specifications, which can
explain its limited adoption in industrial settings. W3C has begun
to consolidate SWS approaches through standardization, with
SAWSDL being the first step, albeit a small one. SAWSDL directly
addresses the issue of limited adoption by putting semantics close
to the accepted standardWeb services description languageWSDL.
But SAWSDL does not specify any actual service semantics.

In this article, we have introduced WSMO-Lite, an ontology for
service semantics that fits directly into SAWSDL annotations, and
to demonstrate the viability of this ontology, we have adapted
several SWS automation algorithms to WSMO-Lite. WSMO-Lite is
intentionally lightweight, in order to ease the learning curve for
adopters of SWS technologies.

In addition to SAWSDL-based support of WS–∗ services,
WSMO-Lite also supports RESTful services, which have so far re-
ceived relatively little attention from the SWS research commu-
nity38 (compared to the larger amount of research work that went
into SWS for WS–∗ services). RESTful services are an increasingly
important component of Web applications. There is no widely
accepted machine-oriented description language for RESTful ser-
vices, therefore we also propose two microformats, hRESTS and
MicroWSMO, which mirror WSDL and SAWSDL which augment
human-oriented HTML documentation of RESTful services. With a
minimal semantic servicemodel that is an abstraction ofWSDL and
hRESTS, RESTful services can be included in semantic processing
with WSMO-Lite seamlessly. The easy integration of RESTful and
WS–∗ Web services will especially gain importance as the popu-
larity of RESTful services increases in enterprise environments that
have traditionally favored WS–∗ technologies.

To summarize the intended impact of WSMO-Lite:

• WSMO-Lite brings a unifying approach for semantics address-
ing both WS–∗ and RESTful services. While lightweight, it sup-
ports well-known automation algorithms.
• WSMO-Lite aims to simplify the creation of semantic descrip-

tions of Web services, and thus to improve the usage of Web
services.

The main task for future work is fostering the adoption of
SAWSDL and WSMO-Lite in industrial WS–∗ settings, and the
adoption of hRESTS and MicroWSMO in RESTful service-oriented
systems. Adoption is related to standardization, especially in the
standards-heavy environment of service-oriented computing. The
standardization of SWS approaches can continue in a piece-meal
fashion as demonstrated by SAWSDL;WSMO-Lite has already been
submitted to W3C as a Member Submission [73]. The W3C Team
Comment on the submission stated that it ‘‘is a useful addition to
SAWSDL for annotations of existing services and the combination
of both techniques can certainly be applied to a large number of
semantic Web services use cases’’.

Furthermore, adapting various discovery and composition al-
gorithms to WSMO-Lite and performing performance evaluations
of their implementations adapted to WSMO-Lite is also part of fu-
ture work. For example, discovery evaluation can be performed

38 Though relatively few, approaches such as [68–72] for matchmaking of RESTful
service have recently started to appear.

within the framework of the S3 Contest on Semantic Service Se-
lection [74]39 which is the reference contest for evaluating service
matchmakers.40

Acknowledgments

The authors would like to thank Dr. Karthik Gomadam of the
Kno.e.sis Center for his contributions to the microformat hRESTS;
James Scicluna of STI Innsbruck for his help in adapting their
Web service composition and ranking approaches to WSMO-Lite;
and Dr. Dong Liu of the Knowledge Media Institute (The Open
University) for his help with testing our semantic models within
iServe.

References

[1] K. Sycara, M. Paolucci, A. Ankolekar, N. Srinivasan, Automated discovery,
interaction and composition of semanticWeb services, Web Semant. Sci. Serv.
Agents World Wide Web 1 (1) (2003) 27–46.

[2] OWL-S 1.1 Release, Tech. Rep., OWL Services Coalition, November 2004.
Available at: http://www.daml.org/services/owl-s/1.1/.

[3] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, D. Fensel, Web service modeling ontology, Appl. Ontol. 1
(1) (2005) 77–106.

[4] Web Services Description Language (WSDL) Version 2.0, Recommendation,
W3C, June 2007. Available at: http://www.w3.org/TR/wsdl20/.

[5] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, K. Verma,
Web Service Semantics—WSDL-S, Technical Note, April 2005. Available at:
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html.

[6] SOAP Version 1.2 Part 1: Messaging Framework, Recommendation, W3C, June
2003. Available at: http://www.w3.org/TR/soap12-part1/.

[7] Semantic Annotations for WSDL and XML Schema, Recommendation, W3C,
August 2007. Available at: http://www.w3.org/TR/sawsdl/.

[8] L. Richardson, S. Ruby, RESTful Web Services, O’Reilly Media, 2007.
[9] Hypertext Transfer Protocol—HTTP/1.1, RFC 2616, IETF, June 1999. Available

at: http://www.rfc-editor.org/rfc/rfc2616.txt.
[10] Architecture of the World Wide Web, Recommendation, W3C, December

2004. Available at: http://www.w3.org/TR/webarch/.
[11] C. Pautasso, O. Zimmermann, F. Leymann, RESTful Web services vs. big Web

services: making the right architectural decision, in: Proceedings of the 17th
International World Wide Web Conference, WWW2008, 2008.

[12] T. Vitvar, J. Kopecký, J. Viskova, D. Fensel, WSMO-lite annotations for Web
services, in: The Semantic Web: Research and Applications, 5th European
Semantic Web Conference, ESWC 2008, Springer, Tenerife, Spain, 2008.

[13] J. Kopecký, K. Gomadam, T. Vitvar, hRESTS: an HTML microformat for
describing RESTful Web services, in: Proceedings of the 2008 IEEE/WIC/ACM
International Conference onWeb Intelligence,WI-08, Sydney, Australia, 2008.

[14] R. Khare, T. Çelik, Microformats: a pragmatic path to the semantic Web
(Poster), in: Proceedings of the 15th International Conference on World Wide
Web, 2006, pp. 865–866.

[15] M.J. Hadley, Web application description language (WADL), Tech. Rep., Sun
Microsystems, 2006. Available at: https://wadl.dev.java.net/.

[16] RDF Vocabulary Description Language 1.0: RDF Schema, Recommendation,
W3C, February 2004. Available at: http://www.w3.org/TR/rdf-schema/.

[17] H. Chesbrough, J. Spohrer, A researchmanifesto for services science, Commun.
ACM 49 (7) (2006) 35–40.

[18] Z. Baida, J. Gordijn, B. Omelayenko, A shared service terminology for
online service provisioning, in: ICEC’04: Proceedings of the 6th International
Conference on Electronic Commerce, ACM Press, New York, NY, USA, 2004.

[19] C. Preist, A conceptual architecture for semanticWeb services, in: Proceedings
of the 3rd International Semantic Web Conference, ISWC 2004, in: Lecture
Notes in Computer Science, LNCS, vol. 3298, Springer, 2004.

[20] R. Ferrario, N. Guarino, Towards an ontological foundation for services science,
in: Proceedings of FIS 2008, 2008.

[21] Reference Model for Service Oriented Architecture 1.0, OASIS Standard, Octo-
ber 2006. Available at: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html.

[22] Web Services Architecture, Working Group Note, W3C, February 2004.
Available at: http://www.w3.org/TR/ws-arch.

[23] A.P. Sheth, Semantic Web process lifecycle: role of semantics in annotation,
discovery, composition and orchestration, in: Invited Talk, Workshop on
E-Services and the Semantic Web, 2003. Available at:
http://lsdis.cs.uga.edu/lib/presentations/WWW2003-ESSW-invitedTalk-
Sheth.pdf.

[24] Web Services Description Language (WSDL) Version 2.0: Adjuncts, Recom-
mendation, W3C, June 2007. Available at:
http://www.w3.org/TR/wsdl20-adjuncts/.

39 http://www-ags.dfki.uni-sb.de/klusch/s3/.
40 See also [75] for a recent survey on service discovery.

http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref1
http://www.daml.org/services/owl-s/1.1/
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref3
http://www.w3.org/TR/wsdl20/
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/sawsdl/
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref8
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.w3.org/TR/webarch/
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref12
https://wadl.dev.java.net/
http://www.w3.org/TR/rdf-schema/
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref17
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref18
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref19
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://www.w3.org/TR/ws-arch
http://lsdis.cs.uga.edu/lib/presentations/WWW2003-ESSW-invitedTalk-Sheth.pdf
http://lsdis.cs.uga.edu/lib/presentations/WWW2003-ESSW-invitedTalk-Sheth.pdf
http://lsdis.cs.uga.edu/lib/presentations/WWW2003-ESSW-invitedTalk-Sheth.pdf
http://www.w3.org/TR/wsdl20-adjuncts/
http://www-ags.dfki.uni-sb.de/klusch/s3/

20 D. Roman et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

[25] Web Services Description Language (WSDL) Version 2.0: RDFMapping, Work-
ing GroupNote,W3C, June 2007. Available at: http://www.w3.org/TR/wsdl20-
rdf.

[26] R.T. Fielding, Architectural styles and the design of network-based software
architectures (Ph.D. thesis), Richard N. Taylor, University of California, Irvine,
Chair, 2000.

[27] OWLWeb Ontology Language Overview, Recommendation 10 February 2004,
W3C, 2004. Available at: http://www.w3.org/TR/owl-features/.

[28] RIF Core Dialect, Recommendation, W3C, June 2010. Available at:
http://www.w3.org/TR/rif-core/.

[29] Simple Knowledge Organization System, Recommendation, W3C, August
2009. Available at: http://www.w3.org/TR/skos-reference/.

[30] J. Kopecký, T. Vitvar, D. Fensel, WSMO-Lite: lightweight semantic descriptions
for services on the Web, CMS WG Working Draft D11, March 2009. Available
at: http://cms-wg.sti2.org/TR/d11/.

[31] M. Maleshkova, C. Pedrinaci, J. Domingue, Investigating Web APIs on the
WorldWideWeb, in: Proceedings of he 8th IEEE European Conference onWeb
Services, ECOWS 2010, 2010. Available at: http://oro.open.ac.uk/24320/.

[32] A. Polleres, T. Krennwallner, N. Lopes, J. Kopecký, S. Decker, XSPARQL
Language Specification, W3Cmember submission, January 2009. Available at:
http://www.w3.org/Submission/xsparql-language-specification/.

[33] A.P. Sheth, K. Gomadam, J. Lathem, SA-REST: semantically interoperable and
easier-to-use services and mashups, IEEE Internet Comput. 11 (6) (2007)
91–94.

[34] RDFa in XHTML: Syntax and Processing, Recommendation, W3C, October
2008. Available at: http://www.w3.org/TR/rdfa-syntax/.

[35] Gleaning Resource Descriptions from Dialects of Languages (GRDDL), Recom-
mendation, W3C, September 2007. Available at:
http://www.w3.org/TR/grddl/.

[36] HTML 4.01 Specification, Recommendation, W3C, December 1999. Available
at: http://www.w3.org/TR/html401.

[37] J. Kopecký, E. Simperl, Semantic Web service offer discovery for E-commerce,
in: Proceedings of the 10th International Conference on Electronic Commerce
2008, Innsbruck, Austria, August 19–22, 2008.

[38] M. Klusch, Semantic Web service coordination, in: M. Schumacher, H. Helin,
H. Schuldt (Eds.), CASCOM: Intelligent Service Coordination in the Semantic
Web, Springer Birkhäuser, 2008 (Chapter 4).

[39] U. Keller, R. Lara, H. Lausen, D. Fensel, Semantic Web service discovery in
the WSMO framework, in: J. Cardoso (Ed.), Semantic Web: Theory, Tools and
Applications, Idea Publishing Group, 2006.

[40] U. Keller, R. Lara, A. Polleres, I. Toma, M. Kifer, D. Fensel, D5.1: WSMO
Web Service Discovery, Tech. Rep., DERI Innsbruck, 2004. Available from
http://www.wsmo.org/TR/d5/d5.1.

[41] M. Stollberg, Scalable semanticWeb service discovery for goal-driven service-
oriented architectures (Ph.D. thesis), University of Innsbruck, 2008.

[42] S. Dustdar, W. Schreiner, A survey on Web services composition, Int. J. Web
Grid Serv. 1 (1) (2005) 1–30.

[43] F. Lecue, A. Leger, A formal model for semantic Web service composition,
Lecture Notes in Comput. Sci. 4273 (2006) 385–398.

[44] J. Hoffmann, I. Weber, J. Scicluna, T. Kaczmarek, A. Ankolekar, Combining
scalability and expressivity in the automatic composition of semantic Web
services, in: Proceedings of the 8th International Conference on Web
Engineering, ICWE’08, Yorktown Heights, USA, 2008.

[45] M. Pistore, P. Roberti, P. Traverso, Process-level composition of executable
Web services: on-the-fly versus ‘‘Once-for-all’’ composition, in: Proceedings
of the Second European SemanticWeb Conference, ESWC’05, in: Lecture Notes
in Computer Science, LNCS, vol. 3532, Springer-Verlag, 2005.

[46] M. Winslett, Reasoning about actions using a possible models approach, in:
Proc. AAAI’88, 1988.

[47] A. Herzig, O. Rifi, Propositional belief base update and minimal change,
Artificial Intelligence 115 (1) (1999) 107–138.

[48] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, second ed.,
Prentice Hall, Englewood Cliffs, NJ, 2002.

[49] E. Cimpian, A. Mocan, M. Stollberg, Mediation enabled semantic Web services
usage, in: The Semantic Web—ASWC 2006, in: Lecture Notes in Computer
Science, LNCS, vol. 4185, Springer, 2006.

[50] A. Mocan, E. Cimpian, An ontology-based data mediation framework for
semantic environments, Int. J. Sem. Web Inf. Syst. 3 (2) (2007) 69–98.

[51] M. Maleshkova, G.A. Rey, A. Simov, B. Renie, D. Liu, Service provisioning
platform second prototype, Deliverable D2.1.4 of the Project SOA4All, August
2010. Available at:
http://soa4all.eu/file-upload.html?func=startdown&id=229.

[52] M. Maleshkova, C. Pedrinaci, J. Domingue, Semantic annotation of Web
APIs with SWEET, in: Proceedings of the 6th Workshop on Scripting and
Development for the Semantic Web, Colocated with the Extended Semantic
Web Conference, Heraklion, Greece, 2010.

[53] M. Kerrigan, B. Norton, E. Simperl, MEMOS: a methodology for modeling
services, in: Proceedings of the 5th International Workshop on Semantic
Business ProcessManagement, SBPM, Crete, Greece, 2010, Co-locatedwith the
7th European Semantic Web Conference, ESWC.

[54] C. Pedrinaci, D. Liu,M.Maleshkova, D. Lambert, J. Kopecký, J. Domingue, iServe:
a linked services publishing platform, in: Proceedings of 1st International
Workshop on Ontology Repositories and Editors for the Semantic Web, ORES
2010, Colocated with 7th ESWC, 2010.

[55] C. Kiefer, A. Bernstein, The creation and evaluation of iSPARQL strategies for
matchmaking, in: Proceedings of the 5th European Semantic Web Conference
(ESWC), in: Lecture Notes in Computer Science, LNCS, vol. 5021, Springer,
2008.

[56] H.Q. Yu, N. Benn, S. Dietze, R. Siebes, C. Pedrinaci, D. Liu, D. Lambert,
J. Domingue, Two-staged approach for semantically annotating and brokering
TV-related services, in: Proceedings of the IEEE International Conference on
Web Services, ICWS, Miami, Florida, USA, 2010.

[57] J. Kopeckỳ, Web service automation supported by lightweight semantic
annotations (Ph.D. thesis), University of Innsbruck, 2012.

[58] D. Martin, M. Paolucci, M. Wagner, Bringing semantic annotations to Web
services: OWL-S from the SAWSDLperspective, in: K. Aberer, K.-S. Choi, N. Noy,
D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi,
G. Schreiber, P. Cudré-Mauroux (Eds.), The SemanticWeb, in: Lecture Notes in
Computer Science, LNCS, vol. 4825, Springer, 2007.

[59] M. Paolucci, M. Wagner, D. Martin, Grounding OWL-S in SAWSDL,
in: B.J. Krämer, K.-J. Lin, P. Narasimhan (Eds.), ICSOC, in: Lecture Notes
in Computer Science, LNCS, vol. 4749, Springer, 2007.

[60] J. Kopecký, M. Moran, T. Vitvar, D. Roman, A. Mocan, WSMO Grounding, April
2007. Available at: http://www.wsmo.org/TR/d24/d24.2/.

[61] J. Cardoso, A. Barros, N. May, U. Kylau, Towards a unified service description
language for the Internet of services: requirements and first developments,
in: 2010 IEEE International Conference on Services Computing (SCC), IEEE,
2010.

[62] S. Kona, A. Bansal, L. Simon, A. Mallya, G. Gupta, USDL: a service-semantics
description language for automatic service discovery and composition, Int. J.
Web Serv. Res. (IJWSR) 6 (1) (2009) 20–48.

[63] C. Pedrinaci, J. Cardoso, T. Leidig, Linked USDL: a vocabulary for Web-scale
service trading, in: The SemanticWeb: Trends and Challenges, Springer, 2014,
pp. 68–82.

[64] R. Verborgh, A. Harth, M. Maleshkova, S. Stadtmüller, T. Steiner, M. Taheriyan,
R. Van de Walle, Survey of semantic description of rest APIs, in: C. Pautasso,
E. Wilde, R. Alarcon (Eds.), REST: Advanced Research Topics and Practical
Applications, Springer, New York, 2014, pp. 69–89. URL:
http://dx.doi.org/10.1007/978-1-4614-9299-3_5.

[65] C. Bizer, T. Heath, T. Berners-Lee, Linked data—the story so far, Int. J. Sem.Web
Inf. Syst. (IJSWIS) 5 (3) (2009) 1–22.

[66] T. Berners-Lee, J. Hendler, O. Lassila, The semanticWeb, Sci. Am. 284 (5) (2001)
34–43.

[67] J. Hendler, T. Berners-Lee, E. Miller, Integrating applications on the semantic
Web, J. Inst. Electr. Eng. Japan 122 (10) (2002) 676–680 (in Japanese); English
reprint. Available at: http://www.w3.org/2002/07/swint.

[68] F. Slaimi, S. Sellami, O. Boucelma, A. Ben Hassine, Flexible matchmaking
for RESTful Web services, in: R. Meersman, H. Panetto, T. Dillon, J. Eder,
Z. Bellahsene, N. Ritter, P. De Leenheer, D. Dou (Eds.), On the Move to
Meaningful Internet Systems: OTM 2013 Conferences, in: Lecture Notes in
Computer Science, vol. 8185, Springer, Berlin, Heidelberg, 2013, pp. 542–554.
URL: http://dx.doi.org/10.1007/978-3-642-41030-7_39.

[69] M. Pantazoglou, A. Tsalgatidou, A generic query model for the unified
discovery of heterogeneous services, IEEE Trans. Serv. Comput. 6 (2) (2013)
201–213.

[70] U. Lampe, S. Schulte, M. Siebenhaar, D. Schuller, R. Steinmetz, Adaptive
matchmaking for RESTful services based on hRESTS and microWSMO,
in: Proceedings of the 5th International Workshop on Enhanced Web Service
Technologies, WEWST’10, ACM, New York, NY, USA, 2010,
URL: http://doi.acm.org/10.1145/1883133.1883136.

[71] L. Panziera, M. Comerio, M. Palmonari, F. De Paoli, Distributed matchmaking
and ranking of Web APIs exploiting descriptions from Web sources, in:
Service-Oriented Computing and Applications, SOCA, 2011 IEEE International
Conference on, 2011.

[72] L. Panziera, M. Comerio, M. Palmonari, F. De Paoli, C. Batini, Quality-driven
extraction, fusion andmatchmaking of semantic Web API descriptions, J. Web
Eng. 11 (3) (2012) 247.

[73] D. Fensel, F. Fischer, J. Kopecký, R. Krummenacher, D. Lambert, T. Vitvar,
WSMO-lite: lightweight semantic descriptions for services on the Web, W3C
member submission, August 2010. Available at:
http://www.w3.org/Submission/WSMO-Lite/.

[74] M. Klusch, Overview of the S3 contest: performance evaluation of semantic
service matchmakers, in: Semantic Web Services, Springer, 2012, pp. 17–34.

[75] M. Klusch, Service discovery, in: R. Alhajj, J. Rokne (Eds.), Encyclopedia of Social
Networks and Mining (ESNAM), Springer, 2014.

http://www.w3.org/TR/wsdl20-rdf
http://www.w3.org/TR/wsdl20-rdf
http://www.w3.org/TR/wsdl20-rdf
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref26
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/skos-reference/
http://cms-wg.sti2.org/TR/d11/
http://oro.open.ac.uk/24320/
http://www.w3.org/Submission/xsparql-language-specification/
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref33
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/grddl/
http://www.w3.org/TR/html401
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref38
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref39
http://www.wsmo.org/TR/d5/d5.1
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref41
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref42
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref43
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref45
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref47
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref48
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref49
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref50
http://soa4all.eu/file-upload.html?func%3Dstartdown%26id%3D229
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref55
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref57
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref58
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref59
http://www.wsmo.org/TR/d24/d24.2/
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref61
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref62
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref63
http://dx.doi.org/10.1007/978-1-4614-9299-3_5
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref65
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref66
http://www.w3.org/2002/07/swint
http://dx.doi.org/10.1007/978-3-642-41030-7_39
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref69
http://doi.acm.org/10.1145/1883133.1883136
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref72
http://www.w3.org/Submission/WSMO-Lite/
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref74
http://refhub.elsevier.com/S1570-8268(14)00118-8/sbref75

