

Enhancement of the Usability of SOA Services

for Novice Users

Submitted in the Faculty of Science and Agriculture in fulfilment for the degree

Master of Science

In

Computer Science

By

Yalezo Sabelo

Supervisor: Prof Mamello Thinyane

December 2014

Telkom Centre of Excellence in ICT4D

Computer Science Department

Private Bag 1314

Alice

5700

ii

Declaration

I, the undersigned hereby declare that the work that is contained in this thesis is my own

original work, and it has not been submitted to any educational institution for similar or any

other degree. Any information that is extracted from other sources is acknowledged.

Name: S Yalezo

Date: December 2014

iii

Acknowledgement

I would like to thank my family especially Mrs Buyiswa Yalezo my mother for supporting

me throughout the year, not forgetting my brothers for inspiring me. In addition, I would like

to thank Prof M. Thinyane for providing me with the opportunity to do research under his

guidance; support and giving me the liberty to explore various research topics. My colleagues

and friends thank you for the support, motivation and joy you brought. Finally, I would like

to thank Telkom for the funding. Lastly, I would like to thank God that I am serving for

having such mercy for me; truly, his grace is sufficient for me.

iv

Abstract

Recently, the automation of service integration has provided a significant advantage in

delivering services to novice users. This art of integrating various services is known as

Service Composition and its main purpose is to simplify the development process for web

applications and facilitates reuse of services. It is one of the paradigms that enables services

to end-users (i.e.service provisioning) through the outsourcing of web contents and it requires

users to share and reuse services in more collaborative ways. Most service composers are

effective at enabling integration of web contents, but they do not enable universal access

across different groups of users. This is because, the currently existing content aggregators

require complex interactions in order to create web applications (e.g., Web Service Business

Process Execution Language (WS-BPEL)) as a result not all users are able to use such web

tools. This trend demands changes in the web tools that end-users use to gain and share

information, hence this research uses Mashups as a service composition technique to allow

novice users to integrate publicly available Service Oriented Architecture (SOA) services,

where there is a minimal active web application development.

 Mashups being the platforms that integrate disparate web Application Programming

Interfaces (APIs) to create user defined web applications; presents a great opportunity for

service provisioning. However, their usability for novice users remains invalidated since

Mashup tools are not easy to use they require basic programming skills which makes the

process of designing and creating Mashups difficult. This is because Mashup tools access

heterogeneous web contents using public web APIs and the process of integrating them

become complex since web APIs are tailored by different vendors. Moreover, the design of

Mashup editors is unnecessary complex; as a result, users do not know where to start when

creating Mashups. This research address the gap between Mashup tools and usability by the

designing and implementing a semantically enriched Mashup tool to discover, annotate and

compose APIs to improve the utilization of SOA services by novice users. The researchers

conducted an analysis of the already existing Mashup tools to identify challenges and

weaknesses experienced by novice Mashup users. The findings from the requirement analysis

formulated the system usability requirements that informed the design and implementation of

the proposed Mashup tool. The proposed architecture addressed three layers: composition,

annotation and discovery. The researchers developed a simple Mashup tool referred to as soa-

Services Provisioner (SerPro) that allowed novice users to create web application flexibly. Its

usability and effectiveness was validated. The proposed Mashup tool enhanced the usability

v

of SOA services, since data analysis and results showed that it was usable to novice users by

scoring a System Usability Scale (SUS) score of 72.08. Furthermore, this research discusses

the research limitations and future work for further improvements.

vi

Table of Contents

Declaration ... ii

Acknowledgement ... iii

Abstract ... iv

Table of figures ... xi

Table of listings.. xiii

List of Tables .. xiv

List of Acronyms ... xv

Publications .. xvii

1 Chapter 1: Introduction... 1

1.1 Introduction .. 1

1.2 Research Rationale .. 1

1.2.1 ICTs ... 2

1.2.2 Mashups .. 3

1.2.3 Significance of Mashups ... 4

1.2.4 Factors Affecting Mashup Usability ... 5

1.3 Research Problem .. 6

1.4 Research Questions .. 6

1.5 Research Objectives ... 6

1.6 Methodology and Research Design ... 7

1.7 Contributions of the Research ... 8

1.8 Chapter Outline .. 8

1.9 Conclusion ... 9

Part I: Research Context and Related Work ... 10

2 Chapter 2: Literature Review ... 11

2.1 Introduction .. 11

2.2 Service Composition .. 11

2.2.1 Portals .. 11

2.2.2 Mashups .. 12

2.3 Mashups as a Service Composition Technique ... 14

2.3.1 Adopted Web Technologies .. 15

2.3.2 Web Services and Semantic Web Technologies ... 16

vii

2.4 EUP in Mashup Editors ... 18

2.4.1 Widgets .. 18

2.4.2 Pipes and Filters .. 19

2.4.3 Data Federation ... 19

2.5 Designing Mashups ... 19

2.5.1 Mashup Engine .. 20

2.5.2 Mashup Editor ... 21

2.5.3 Mashup Tool Architecture... 21

2.5.4 Mashup Tool Execution Environments ... 22

2.6 Mashup Tools Composition Styles .. 23

2.6.1 Composition Patterns .. 24

2.6.2 Workflows on Mashup process ... 25

2.7 Web content mining ... 26

2.7.1 Web Page ... 26

2.7.2 Web API Documentation .. 26

2.7.3 RPC-style Web APIs ... 26

2.7.4 RESTful Web APIs ... 27

2.7.5 SOAP ... 27

2.7.6 Mashup Repositories ... 28

2.8 Applications of Mashups ... 28

2.9 Challenges Facing Mashups .. 30

2.10 Usability of Mashup Tools .. 31

2.10.1 Definition of Usability .. 31

2.10.2 Usability Goals .. 31

2.10.3 Evaluator-Based Usability Evaluation Methods ... 32

2.10.4 User-based Usability Evaluation Methods .. 33

2.11 Conclusion ... 34

3 Chapter 3: Homogenization of Web Contents.. 36

3.1 Introduction .. 36

viii

3.2 Ontology as a Web 3.0 Service .. 36

3.3 Semantic Annotations .. 37

3.3.1 Service Description ... 37

3.3.2 Service Discovery ... 40

3.3.3 Services Publication .. 40

3.3.4 Service Selection and Matching .. 41

3.4 Related Work ... 41

3.4.1 Usability in Mashup Tools .. 41

3.4.2 Web APIs Homogenization ... 43

3.5 Homogenization Process ... 43

3.6 Conclusion ... 44

Part II: Methodology and System Modelling ... 46

4 Chapter 4: Methodology ... 47

4.1 Introduction .. 47

4.2 Research Methodology .. 47

4.3 Research Approach and Design ... 49

4.3.1 Literature Review .. 49

4.3.2 System Requirements .. 49

4.3.2.1 Requirements Gathering .. 50

4.3.3 Design .. 55

4.3.4 Research Prototyping .. 56

4.3.5 System Evaluation ... 57

4.3.6 Research Conclusion ... 58

4.4 Conclusion ... 58

5 Chapter 5: Mashup Design ... 59

5.1 Introduction .. 59

5.2 Design Process ... 59

5.3 Mashup Engine .. 61

5.4 API Editor .. 62

5.4.1 Discovering Layer ... 62

ix

5.4.2 Annotation Layer ... 63

5.5 Mashup Editor ... 64

5.5.1 Visual Composer Layer ... 64

5.5.2 Service Construction ... 65

5.5.3 Request Handling and Data Passing .. 66

5.5.4 Use Case Diagrams ... 68

5.6 Conclusion ... 68

Part III: Development and Implementation .. 69

6 Chapter 6: Implementation and Development .. 70

6.1 Introduction .. 70

6.2 Development Process ... 70

6.3 Mashup Engine .. 72

6.4 SerPro API Editor (SAE) ... 75

6.5 Mashup Editor ... 82

6.5.1 Connecting Widgets .. 83

6.5.2 Construction Requests ... 84

6.6 Research Implementation Technologies .. 86

6.7 Conclusion ... 88

Part IV: Experimentation and Research summary .. 89

7 Chapter 7: Experimentation and Discussion .. 90

7.1 Introduction .. 90

7.2 Validation Process ... 90

7.3 Usability Testing .. 91

7.3.1 Methodology ... 91

7.3.2 Findings of SUS .. 91

7.4 Acceptance Testing .. 94

7.4.1 Methodology ... 94

7.4.2 Findings ... 98

7.5 Comparison of Mashup tools ... 99

7.5.1 Research Usability Attributes .. 99

x

7.5.2 SUS .. 102

7.6 Discussion .. 104

7.6.1 Composition Style ... 104

7.6.2 Semantic Web Technologies ... 104

7.6.3 Usability of SOA Services .. 104

7.7 Conclusion ... 106

8 Chapter 8: Research Conclusion .. 107

8.1 Introduction .. 107

8.2 Research Summary .. 107

8.3 Addressing Research Objectives ... 109

8.4 Research Limitations and Challenges .. 112

8.5 Research Contribution and Recommendation ... 113

8.6 Future Work ... 113

8.7 Conclusion ... 114

Part V: Reference Material .. 115

References .. 116

Appendix A: Ethical clearance .. 124

Appendix B: SUS questionnaire and Mashup Tool SUS scores.. 125

Appendix B.1.SUS questionnaire .. 125

Appendix B.2.Review of Mashup Tools .. 127

Appendix C: Code Snippet .. 138

xi

Table of figures

Figure 1-1.Research overview ... 1

Figure 1-2.Yahoo! Pipes (Jones & Churchill, 2009) ... 4

Figure 2-1.Microsoft Popfly (Loton, 2008) ... 13

Figure 2-2.SOA artefacts ... 14

Figure 2-3.SWS formation adapted: (Pedrinaci & Domingue, 2010) 16

Figure 2-4.Programmable Web (ProgrammableWeb, 2014) ... 28

Figure 3-1.Web evolution (Spivack, 2008).. 36

Figure 3-2.Annotation methods adapted: (Kopeck & Vitvar, 2008) 38

Figure 4-1.Research union (Saunders et al., 2011) .. 48

Figure 4-2.Requirements activity... 50

Figure 4-3.Comparison Of Mashup Tools ... 53

Figure 4-4.Research model .. 56

Figure 5-1.Mashup tool functionality .. 59

Figure 5-2.System architecture .. 60

Figure 5-3.Administrator use case ... 62

Figure 5-4.SerPro API editor flow diagram ... 63

Figure 5-5.Use case diagram for API editor .. 64

Figure 5-6.Widget transformation ... 65

Figure 5-7.Service creation sequence diagram .. 65

Figure 5-8.Request handling sequence diagram .. 67

Figure 5-9.End-user use case diagram ... 68

Figure 6-1.Development process ... 70

Figure 6-2.Mashup tool data flow .. 71

Figure 6-3.Mashup Engine UML class diagram .. 74

Figure 6-4.SerPro annotating tool .. 75

Figure 6-5.API editor workflow .. 76

Figure 6-6.Plain HTML FlickerAddComments service .. 78

Figure 6-7.Sesame server ... 80

Figure 6-8.Mashup Editor .. 82

Figure 6-9.Mashup editor development UML diagram ... 85

Figure 6-10.Development Structure ... 86

Figure 7-1.Validation process .. 90

xii

Figure 7-2.Frequency of users SUS question responses .. 92

Figure 7-3.SUS scores Box of Whisker ... 94

Figure 7-4.Question 1 vs. user‘s responses .. 95

Figure 7-5.Question 2 vs. user‘s responses .. 96

Figure 7-6.Question 3 vs. user‘s responses .. 96

Figure 7-7.Question 4 vs. user‘s responses .. 97

Figure 7-8.Mashup Tool Comparison .. 103

Figure 8-1.Growth of web APIs (ProgrammableWeb, 2014) .. 107

Figure B-1.Microsoft Popfly whisker box ... 128

Figure B-2.Intel mash maker house rentals (Ennals & Shadle 2007) 128

Figure B-3.Intel MashMaker whisker box ... 129

Figure B-4.Yahoo Pipes whisker box .. 132

Figure B-5.MobiMash (Cappiello et al., 2012).. 133

Figure B-6.MobiMash whisker box ... 134

Figure B-7.Marmite (Wong & Hong, 2007) .. 135

Figure B-8.Marmite whisker box ... 136

Figure B-9.Dapper whisker box ... 137

xiii

Table of listings

Listing 5-1. Request handling algorithm ... 67

Listing 6-1.Executing a widget .. 72

Listing 6-2. Adding APIs to Sesame.. 72

Listing 6-3.Saving Mashup details .. 72

Listing 6-4.Populating Mashup details .. 73

Listing 6-5.Executing a published Mashup ... 73

Listing 6-6.Structuring XML to JSON .. 73

Listing 6-7.RDF representation of FlickerAddComments service .. 78

Listing 6-8.Serializes the HTML info to JSON Object ... 79

Listing 6-9.Annotating API details with Ontology .. 79

Listing 6-10.Uploading RDF files to Sesame server ... 79

Listing 6-11.Querying API from Sesame .. 80

Listing 6-12.JSON file Writer.. 81

Listing 6-13.Creates DOJO compatible template .. 81

Listing 6-14.Json file structure .. 81

Listing 6-15.Connecting and wiring two widgets .. 83

Listing 6-16.Unwiring two widgets ... 83

Listing 6-17.Executing request .. 84

Listing 6-18.Instantiating request .. 84

Listing 6-19.Sending request to the Mashup Engine ... 84

Listing 6-20.Response handler in widget piping ... 85

xiv

List of Tables

Table 1-1.Research design ... 8

Table 7-1.SUS score in each question from 12 users .. 92

Table 7-2.SUS scores of proposed Mashup tool .. 93

Table 7-3.Five Whisker terms .. 93

Table 7-4.Comparison Analysis... 99

Table 7-5.SUS score of Mashup tool ... 102

Table B-1.Microsoft Popfly SUS scores .. 127

Table B-2.IntelMashMaker SUS score .. 129

Table B-3. Yahoo SUS vs. users .. 131

Table B-4.MobiMAsh SUS score .. 133

Table B-5.Marmite SUS score ... 135

Table B-6.Dapper SUS scores ... 137

xv

List of Acronyms

AJAX Asynchronous JavaScript And XML

AL Application logic

API Application Programming Interface

BPM Business Process Management

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheet

CSV Comma Separated Value

DA Data Application

DHTML Dynamics Hypertext Mark-up Language

DOM Document Object Model

EUD End-User Development

EUP End-User Programming

GUI Graphical User Interface

hREST Hypertext Mark-up Language for Representational State

Transfer

HTML Hypertext Mark-up Language

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology

JIT Just In Time

JSON JavaScript Object Notation

OWL Web Ontology Language

QoS Quality of Service

RDF Resource Description Framework

RDFs Resource Description Framework Schemas

REST Representational State Transfer

RO Research Objective

RQ Research Question

SAE SerPro API Editor

xvi

SAWSDL Semantically Annotated Web Service Description Language

SerPro soa-Services Provisioner

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOWER Sweet is nOt a Wsdl EditoR

SPARQL SPARQL Protocol and RDF Query Language

SUS System Usability Scale

SWEET Semantic Web sErvice Editing Tool

SWS Semantic Web Services

UCSD User Centred System design

UDDI Universal Description and Discovery Interface

UI User Application

URI Universal Resource Identifier

URL Universal Resource Locator

WADL Web Application Description Language

WMSL Web Mashup Scripting Language

WS-BEL Web Service Business Execution Language

WSDL Web Service Description Language

WSMF Web Service Modelling Framework

WSMO Web Service Modelling Ontology

WSMX Web Service Modelling Execution

WWW World Wide Web

XHR XMLHttpRequest

XML Extensive Mark-up Language

XML_RPC XML Remote Procedure Calls

xvii

Publications

In the course of the research the following papers were published:

I. YALEZO S, THINYANE M (2013). Enabling Service Composition in ICTD

Contexts through GUI Mashup Tool, Southern Africa Telecommunication Networks

and Applications Conference (SATNAC 2013), Spier Wine Estate, Stellenbosch,

South Africa.

II. YALEZO S, THINYANE M (2014). SerPro: A Mashup tool for enhanced usability

for novice users, Southern Africa Telecommunication Networks and Applications

Conference (SATNAC 2014), BoardWalk, Port Elizabeth, South Africa.

1

1 Chapter 1: Introduction

1.1 Introduction

This chapter briefly introduces the research details. It discusses Information and

Communication Technologies (ICTs) and background of Mashups. It also covers the thesis

statement, research questions, objectives, methodology and chapter outline. In summary, this

chapter gives a reader the background and the context of the research project.

1.2 Research Rationale

Web applications play an increasingly vital role in the day-to-day lives of millions of people

(ranging from social media to online services). This increase has led to web applications

overtaking traditional desktop software in terms of the usefulness to end-users (Spivack,

2008). Such a growth in popularity of web applications has been driven by organisations

offering a diverse range of online services that provide users with dynamic and feature-rich

environments (Halfond, 2010). These trends suggest that the use and importance of web

applications will continue to increase significantly in the years to come, and this growth

requires high demand of usable web tools. Hence, there is a need for usable web tools to

allow novice users to be able to use such technologies.

Figure 1-1.Research overview

On the left of Figure 1-1: are the plethora of restful APIs and on the right are the novice users

who utilizes the publicly available APIs using Mashup Tools. In this research, novice users

are referred to as type of users who are eager to use the web to gain and share information but

do not have programming skills (i.e., computer literate).

2

As mentioned in the research title and as illustrated by Figure 1-1 , this research concerns the

evaluation of Mashup tools to enhance the utilization and usability of SOA services by novice

users. This research involves usability, which is one of the basic objectives in Human-

Computer Interaction (HCI), since HCI is a study that involves the interaction between

people and computers. Usability is referred to as the extent to which a user can learn,

understand and be satisfied by a system. This means that usability is the measures of how

easy the interface is to use and whether the required functionality are provided so that users

can do what they want to do. It is difficult to ensure that a system is usable since design goals

sometimes conflict one another. The priority of design goals is influenced by the context of

use and the targeted group, hence, this research aims to improve the usability of SOA

services using Mashup tools with a specific focus on novice users.

The usability of software‘s is an important aspect for the success of organisation that uses

web applications. Moreover, high demands for web applications motivates the development

of tools and services that enable web-users to generate web applications that combine content

from multiple sources to provide unique services that suit their situational needs. These types

of applications are referred to as Mashups (Tuchinda et al., 2008). In Mashup tools, the

Mashup Engine that is the software that automates the integration of disparate services to

form new services is manages the integration of services then a Mashup editor is used to

design and create the Mashup applications.

1.2.1 ICTs

ICT are a diverse set of technological tools and resources used to communicate, and to create,

publicize, store, and manage information (Fillip, 2005). Communication and information are

at the very heart of web applications, and subsequently the use of ICTs in delivering e-

services has a long history. ICTs had been involved in programmes undertaken by

governmental agencies, public and private educational institutions and non-profit

organisations to provide a better life and improve socio-economic conditions around the

world and in Africa (Bertot et al., 2012). This is in the context of 70 % of the population in

developing countries having access to a fixed or mobile telephone internet services (Fillip,

2005);and they include the least connected regions of Africa. Such an increased rate of

internet connections demands the use of web tools to enhance the utilization of SOA services.

The used communication technologies increase the accountability of online service delivery

to the underserved regions, in an innovative, fast, and cost-efficient manner. As ICTs targets

3

developing countries by creating new ways of doing business and delivering services.

Through extending the use of ICTs, this research aim to promote the utilization of SOA

services available on the web via a usable Mashup tool, to enable novice users to easily

access and benefit from the web. These tools present great opportunities in ICT context since

they allow development of web application where there are minimal coding skills. The next

subsection briefly discusses Mashups.

1.2.2 Mashups

The dispersed data and services around the web needed to accomplish the user‘s goals, and

are not in a form amenable to the user‘s needs and capabilities. It is extremely unlikely for the

web site developers to fulfil all the user‘s needs. For this reason, Mashup tools that aid novice

users to create web application that suit their needs evolved. One of the earliest and best-

known Mashups is housingmaps.com, which crawl rental listings from the Craigslist

community web site and puts them on Google Maps (Wong & Hong, 2007; Di Fabbrizio et

al., 2009). Rather than having to go through each of the text listings and manually entering

each address into a map service, this Mashup makes it easy for end-users to see a map of all

the available listings. Mashups combine disparate service to create envisioned personalized

services.

 There are three types of Mashups namely: Consumer, Data, and Enterprise Mashups

(Koschmider et al., 2009). Consumer Mashups (sometimes referred to as Graphical User

Interface (GUI) Mashups) are web-based applications that use mainly the presentation layer

to interact with the users. Data Mashups are web-based applications that mainly integrate data

sources. Enterprise Mashups are web-based applications that are mainly process based

Mashups. This research focus is on consumer Mashups to enhance their usability for novice

users particular those in rural communities where ICT4D interventions are increasingly being

deployed.

Figure 1-2, below illustrates a Mashup application that was created using Yahoo Pipes (i.e.

Mashup tool). The purpose of the Mashup designed in Figure 1-2, is to fetch feed and filter

results according regular expression, for instance the above example filters everything that is

not a video, game and audiobook. At the bottom of the Figure 1-2, results are shown with

artist names and the name of the songs or albums.

4

Figure 1-2.Yahoo! Pipes (Jones & Churchill, 2009)

The next subsection discusses the significance of Mashup tools.

1.2.3 Significance of Mashups

Mashup applications have recently received a significant attention as one of the supportive

web applications. There are three main reasons for this new trend (Latih et al., 2011): The

first one is the availability of tools that have enabled end users to develop Mashup

applications. The second reason is the availability of web technologies that support this

activity. Lastly is the interest and acceptance of Mashup application development by

enterprise users. Mashups are the key enablers for a flexible interaction between users and

web application since they enhance web contents with cost efficiency and content reuse at the

same time they facilitate sharing of resources amongst different businesses and organisations.

Most tools to help novice users create Mashups tend to emphasize programming techniques

that are beyond the skills and abilities of average web users. Furthermore, most of the end-

user programming tools tend to focus on GUIs (e.g. automating repetitive actions) rather than

processing existing web based content and services. Hence, it is inappropriate for end users to

carry out online tasks using these tools. One of the challenges experienced by Mashups is

heterogeneity of web resources.

5

1.2.4 Factors Affecting Mashup Usability

This research has identified two factors that affect the usability of Mashups namely: design of

interaction platforms and heterogeneity of resources. The design of Mashup editors or

interaction techniques affects usability of Mashups by not providing an intuitive design so

that users can be able to create Mashups without initial up skilling. Heterogeneity is the

measure of degree to which web contents differ. If two agents agree on how to represent and

communicate the data, a seamless and conflict-free integration is established. To achieve

semantic interoperability two agents (i.e. both humans and machines) need to agree on how to

understand the data. The level of understanding differs and depends mostly on the complexity

of the formalized knowledge.

Heterogeneity present many challenges to Mashups, since the key guiding principles in

Mashups are sharing and reuse. It makes it hard for Mashup to discover web contents and

combine them to form new services that satisfies users (Maué et al., 2009). The following

listing discusses heterogeneities that hinder flexible integration of web resources:

i. Application-specific knowledge: there are specific identifiers or terms that are used in

an organisations which makes the underlying data hardly usable for other users

(Ioannou, 2010). The manner in which such data is represented can only be

understood by a certain application, since it was built for a specific domain rather than

the entire application domains. Consequently other applications fail to discover such

specific data, as it is constrained to a very limited user group.

ii. Hierarchical problems: probably the most common issue in service discovery is the

different level of expertise between the client and the data provider. The way that data

is represented often differs in terms of meaning since the order and the perception of

using certain words and structure is different (Momeni, 2011). Although some words

are spelled the same, they typical differ in meaning according to the contexts of use.

Hierarchical challenge makes it impossible to match a user's query and service

description even if the chosen languages differ.

Modern web applications have new features and capabilities that significantly increase their

complexity. These features and capabilities include dynamically generated HTML contents,

interaction with external systems, data structures and data from multiple sources. The

dynamic nature of modern web applications limits the use of such techniques. Since the set of

generated web contents can vary at runtime, a service composer might be unable to integrate

6

various web API contents sufficiently; that degrades robustness and result in a cumbersome

service combination.

1.3 Research Problem

Although there has been an extensive amount of research in Mashup tools (Soriano et al.,

2008; Upadhyaya & Zou, 2012; Fisichella & Matera., 2011), many of the techniques

developed are not able to adapt to modern web application development approaches. The

content used by Mashup tools differ since it is extracted through one or more APIs, for

instance the structure or the form of the returned data by web application is a good example

of this difference. Eventually these differences cause Mashups to be unusable to novice users

since programming skills are needed.

The overall goal of this research is to improve usability of Mashups focussing on novice

users. Subsequently, this research focuses on two key parts of this task: the design of a

service composer (Mashup tool) and the homogenization of web APIs, in order to allow

integration of various public web APIs without the knowledge of programming skills. To

address this problem, the thesis statement for the dissertation is as follows: Semantically

enriched web tools to discover transform and compose web contents from public APIs

(disparate service) can improve the usability of SOA services to novice users.

1.4 Research Questions

With the stated research problem, the main research question is how can a usable Mashup

tool that targets novice users be developed? Following are the sub-questions the research

seeks to answer:

RQ1. What impedes the usability of Mashup tools?

RQ2. What are the different techniques for Mashup tool service composition?

RQ3. How can annotation and discovery of APIs be implemented, so as to achieve a

smooth composition?

RQ4. How can semantic web technologies be utilized to improve usability of Mashups?

1.5 Research Objectives

The main research objective is to develop a usable Mashup tool for novice users to utilize

SOA services, and is accomplished through the following sub-objectives:

RO1. To identify usability shortfalls of the existing Mashup tools.

RO2. To investigate service composition on Mashup tools

7

RO3. To investigate semantic technique on annotating and discovering services.

RO4. To implement a Mashup tool and a Mashup editor

RO5. To implement a homogenization layer and evaluate its effectiveness.

In order to achieve the above research objectives, the next section discusses the methodology

used.

1.6 Methodology and Research Design

This section briefly discusses the methodology that was used to achieve the research

objectives. It outlines the steps that were taken to the completion the research. Furthermore, it

outlines the research design (i.e. how the objectives and question were achieved by mapping

them to research methods and chapters used). The following listing discusses the steps that

were undertaken in order to complete the research:

i. Literature review on the background of Mashups, existing Mashup tools, types of

Mashups and components of Mashups was undertaken through journals, articles,

dissertations, conference proceedings and textbooks.

ii. The design of Mashup workflow and control flow between Mashup tooland its

components was modelled using Unified Modelling Langauage (UML) diagrams;

flow, use-case, and sequence diagrams.

iii. The Mashup tool was implemented using Java, Eclipse and Tomcat. Mashup editor

was developed through GUI libraries such as jsPlumb and API editor was developed

using JQuery, and lastly Mashup engine was developed through Java and servlets.

iv. The Mashup tool was validated through surveys and questionnaires and analyzed

through graphs.

v. Discussion and conclusion was based on how well the analyzed data fit to the research

objectives.

The above listing outlined the research methodology, Table 1-1, details how the research

questions were addressed in order to accomplish the research.

8

Table 1-1.Research design

Research question Research objective Research Method Chapter

RQ1 RO1 users observations,

 surveys, focus

group

Chap 2

RQ2 RO2 & RO5 Literature and

system design

Chap 5 & 6

RQ3 RO4 & RO5 System design and

implementation

Chap 3 ,5 & 6

RQ4 RO5 Focus group,

Interviews and SUS

score

Chap 6 & 7

The following section discusses the contribution of this study.

1.7 Contributions of the Research

As the studies showed that for a massive adoption of Mashups, end-users must be supported

by lowering the complexity involved with describing, finding and composing web APIs

(Duke et al., 2010; Kenda et al., 2013). A simple Mashup tool, which discovers and compose

web APIs was implemented, and it allowed novice users to access and utilise the publicly

available online SOA services offered by the businesses and organisations. The

improvements and the challenges encountered are discussed in (Section 8.4).

1.8 Chapter Outline

This section presents how the rest of the dissertation chapters are organised.

Chapter 2: this chapter focuses on literature review about Mashups. It discusses how to

design Mashups and the basic requirements in Mashup developments. Thereafter advantages

and benefits are presented followed by the challenges and issues affecting Mashups.

Chapter 3: this focuses on the usability of Mashup tools. This chapter discusses the key web

technologies used to mitigate the heterogeneity of web APIs. It solely focuses on semantic

annotations and ontology developments up to date. Furthermore, the initiatives and

approaches developed by other researches are discussed.

9

Chapter 4: this chapter addresses the methodology that was used to achieve the research

objectives. Different types of philosophies are discussed and motivation towards the choices

made to each research method used.

Chapter 5: this chapter focus on the design of the proposed Mashup tool. The system

architecture is presented together with its components and modules. Three layers are

addressed, namely: discovery, annotation and composition layer. Moreover, user interactions

are presented using UML diagram.

Chapter 6: this chapter discusses the implementation of the proposed tool with the aid of

code snippets. The implementation technologies are also discussed.

Chapter 7: this chapter focuses on the evaluation and validation of the system. Two tests are

presented (i.e., the usability and the acceptance testing). Focus group, SUS and the interview

are then used present the results.

Chapter 8: this chapter presents the discussion from the obtain results. It interprets the

meaning, significance and importance of the obtained results. Research limitation and

recommendations are presented and finally the research summary and the overall conclusion

of the research.

1.9 Conclusion

 Mashup tools are explicitly designed for sharing and reusing the publicly available web

APIs. They are useful for diverse areas and can support a great variety of input and output

structured data (i.e. eXtensive Mark-up Language (XML) and JavaScript Object Notation

(JSON)). These tools in general have intuitive designs and easy-to-use web interfaces that

require little training for beginners. The extraction, recombination and integration of data

with these tools are easier than writing code in a particular programming language. In

addition, users can share their application amongst one another since the participation of

users is a major benefit in web 2.0 tools. As it is only users who know what they want,

Mashups allows them to design and create new web applications much more rapidly than

with traditional software engineering methods. Despite the strengths some issues arise when

using Mashup tools as discussed in the problem statement, nevertheless, they still hold a great

opportunity in provisioning service to novice users.

10

Part I: Research Context and Related Work

11

2 Chapter 2: Literature Review

2.1 Introduction

The previous chapter discussed the applications and significance of Mashups. This chapter

discusses service composition and the types of content aggregation that had been used in the

past years namely Portals and Mashups. Content aggregation is the concept of facilitating the

sharing and reuse of services or resources on the web. It offers many benefits as it decreases

the cost and the time it takes to implement complete web applications. This chapter also

focuses on Mashup design, challenges facing Mashups and a brief discussion on usability of

Mashups.

2.2 Service Composition

The integration of web services into composite applications is regarded as service

composition. Service composition is usually performed on the business logic layer, and

results in executable plans that fulfil certain requirements of the newly created web

application (Nestler et al., 2009). It refers to a way of delivering enterprise solutions by

assembling them from already existing components, instead of building them from scratch. It

also includes personalization and customization abilities, so that users can easily and quickly

modify specific functionalities. Service composition contains two steps namely: retrieval of

data, and combination of web contents. This process of service composition involves the

aggregation of content from various web resources used to form a specific service. Web

services are used as the basic components (sometimes referred to as APIs) used to form

Mashups. There are two flavours of web services: Simple Object Access Protocol (SOAP)

and Representational State Transfer (REST), both flavours can be exploited as usable

building blocks for the creation of new web applications. There are initiatives aiming at

promoting service composition (also known as content aggregators) such as Mashups, Portals

and WS-BPEL (Weske et al., 2006). The research does not discuss on WS-BPEL as it is out

of the scope. There have been some research inputs towards the combination of various web

contents and they include portals and Mashups; the rest of this section details on both

approaches.

2.2.1 Portals

Portals being an older technology designed as an extension to traditional dynamic web

applications, in which the process of converting data content into marked-up web pages is

split into two phases: generating fragments and aggregating fragments into pages (Miah et al.,

12

2012). Each mark-up fragment is generated by a portlet, and the Portal combines them into a

single web page. Portlets may be hosted locally on the Portal server or remotely on a separate

server. The Portal technology defines a complete event model covering reads and updates. A

request for an aggregate page on a portal is translated into individual read operations on all

the portlets that form the page. Portal technology is about server-side and presentation-tier

aggregation; moreover, it cannot be used to drive more robust forms of application

integration such as two-way interaction. The research does not discuss details of portals as

they are out of the scope. As of weaknesses they portrayed, portals are now implemented

using the Mashup styles.

2.2.2 Mashups

Mashups are web applications that combine presentation, functionality and data from

multiple services to help users solve tasks not originally envisioned by the web site designers

(Lin et al., 2009). Mashup tools are software tools that assist users in developing Mashup

applications. There exist various Mashup tools that are targeted at certain types of users

namely; technical users and novice users. Technical users are a group of users that have a

skill in programming. End-users are users that do not have programming skill however they

are computers literate (Latih et al., 2011).

2.2.2.1 Definition of Mashups

This subsection defines the building components of a Mashup tool namely: Mashup

application, Mashup engine, and Mashup editor.

Definition 1: Mashup applications are referred to as Mashups, which are the resultant

application created through Mashup editors and/ or Mashup engine.

Definition 2: Mashup engine is the software program designed to automate the process of

service composition and;

Definition 3: Mashup editor are the visual support elements used for user interaction.

Mashup engine together with Mashup editor form what the research refer to as a Mashup

tool.

Different architectures are used by different Mashups, and Mashup architectures are

discussed in (Section 2.5.3). The following subsection discusses the background of Mashups.

13

2.2.2.2 Mashup Background

Mashups started in a musical domain by remixing isolated original songs to form new ones

(Ogrinz, 2009). With the quick adaptations and advantages offered in the music domain,

Mashups were adopted by the web domain. Since the birth of web Mashups, businesses had

been creating Mashups and the process was manual according to (Ogrinz,2009). Moreover

Ogrinz (2009), claims that Microsoft Excel is arguably the father of the corporate data

Mashups, since for years, Excel end-users were duplicating data to feed their calculation

engines. Spreadsheet-based Mashups were used throughout the enterprise without the

involvement of IT. According to Meditskos and Bassiliades (2011), Daniel et al. (2012a),

Mashup tools enabled the automation of integrating resources so that users could easily

utilize the available web resources, nevertheless, there are still Mashups that are developed

manually which strongly targets programmers. Tuchinda et al. (2008) argue that Mashup

editors together with Mashup tools enabled web users to generate web applications that

combine content from multiple sources, and provide them as unique services that suite their

situational needs. Following Figure 2-1 illustrates a Mashup application that is developed

using a Mashup tool:

Figure 2-1.Microsoft Popfly (Loton, 2008)

Figure 2-1, shows a Mashup example in which the Flicker block sends a list of images about

―beaches‖ with their geographical coordinates to the Virtual Earth block (Figure 2-1: top and

middle) to display them on a map (Figure 2-1: bottom).

As web Mashups were used to combine data, functionality and presentation to create new

web-based applications. Cetin et al. (2007) proposed web Mashups as a one of the approaches

that could be used for migration of legacy system to better paradigms, for instance SOA.

14

Migration is defined as the movement of services from old operating environment to new

ones with minimal coding. Mashup facilitate more general platforms and execution

environment such as SOA. As the goal of this research is to create a usable Mashup tool that

allow novice users to build Mashups easily with no programming experience; Mashup tools

are chosen as the key service composition enablers. The following sections give a brief

background of concepts and web technologies employed by the Mashup tools.

2.3 Mashups as a Service Composition Technique

Mashups are about simplicity, usability, and ease of access. This simplicity has the upper

hand over feature completeness or full extensibility. There are two formalities, which lead to

identification of heterogeneous web contents as a challenge within Mashup tools namely:

sharing and reuse. Sharing of web contents is of great importance as it allows various groups

of users to utilize services created by the others. Mashups facilitate sharing by cataloguing

newly created services to a repository, which is normally implemented through a middleware.

The second focus of Mashups is geared towards web content reuse. Web content reuse is a

study that had evolved several technologies in order to gain its true potential. Web contents

are derived from web resources in order to simplify the development of Mashups

applications.

In order to embrace the primary goals of Mashup tools, studies shows that they are

implemented as SOA centric web based application (Benhaddi et al., 2012). SOA facilitates

the two formalities through its building blocks and service architecture and is composed of

three actors namely service provider, service consumer and repository (Chapin, 2010). With

the belief that Mashups implement SOA, Figure 2-2 illustrates that claim and further

discusses on what basis does the claim holds.

Figure 2-2.SOA artefacts

15

In web services and SOA as stated in the above paragraph that there are three building blocks

known as: producer, consumer and repository of the services. Service producer provides and

publishes web services to a registry, so that consumers can be aware of services that are

available. Service consumer is the user of the services. Mashup editors correspond to

consumers and Mashup tools correspond to service providers and lastly the repository maps

to both the databases and the online resources used by the Mashups. The next section

discusses the adopted web technologies used by Mashups for added robustness.

2.3.1 Adopted Web Technologies

This section presents the web technologies and paradigms that are adopted by the Mashup

tools to mitigate the challenges experienced by Mashup developers such as heterogeneity.

This subsection does not detail on Mashup challenges rather it focuses on some employed

concepts that reduces complexity in Mashup development. In order to homogenize data,

Semantic Web Services (SWS) promises to produce web services that are semantically

annotated. SWS yields web services that are intelligent (i.e. they can be automatically or

semi-automatically described, published, selected and discovered) (Rao, 2004). The aim of

the SWS is to create a platform where both humans and web machine agents are able to

consume information in the web, using semantic web technologies and web services. There

are initiatives that have to be considered in the context of SWS:

i. It uses the Web Service Modelling Ontology (WSMO) which refines and extends

the Web Service Modelling Framework (WSMF) with ontologies. The WSMF is a

framework used to model the development and the description of Web services

based on two main requirements: maximal decoupling and strong mediation.

WSMO also employs a concept known as Web Service Modelling Language

(WSML), which is the language that allows the writing of annotations for web

services using WSMF.

ii. Lastly, SWS uses Web Service Modelling Execution (WSMX) as an execution

environment in order to discover, select and invoke web services. SWS are

capable of referring to the consumer and provider information and perceiving the

conditions in order to automatically settle contracts through negotiation (Choi et

al., 2006).

There are other annotation-based approaches such as Semantically Annotated Web

Service Description Language (SAWSDL), Hypertext Mark-up Language for REST

16

Services (hRESTS) and WSMO-lite, which enabled the creation of lightweight semantic

web services, which are discussed in (Section 3.3). With the introduction of SWS, the

Figure 2-3 below shows the key concepts used by Mashups according to (Choi et al.,

2006; Pedrinaci & Domingue, 2010).

Figure 2-3.SWS formation adapted: (Pedrinaci & Domingue, 2010)

As depicted in Figure 2-3, World Wide Web (WWW) has played a major role in associating

web contents with humans. It offered users with limited access due to the scarcity and costs

that were involved such that only a certain group of users were able to use the web -:

university or college and research labs (Pedrinaci & Domingue, 2010). It mainly used

Hypertext Transfer Protocol (HTTP), Hypertext Mark-up Language (HTML) and Universal

Resource Identifier‘s (URI) as the core protocols. This first wave of web evolution is referred

to as web 1.0, were users could only read from the Web but they could not do further

interactions (O‘reilly, 2007). The following subsection details some of the key technologies

in web 2.0, which is second wave of the web that allows users to be both producers and

consumer of web resources.

2.3.2 Web Services and Semantic Web Technologies

Web services are defined as self-contained, modular units of application logic, which provide

business functionality to other applications via an internet connection. They can be integrated

with each other to fulfil the user's requirement, regardless of the languages that are used to

implement them and the platforms where they are executed (Pedrinaci et al., 2012). Web

17

services present many benefits to the web such that its functionality need to be described with

additional pieces of information called semantic annotation which adds meaning to them

(Srivastava & Koehler, 2003). Furthermore web services are semantically annotated with

ontologies using Semantic web technologies (Feier et al., 2005). In order to establish

understanding between that will not restrict the usability of web services mostly to human

users and machine user around the web.

According to Koschmider et al. (2009), Mashups implements SOA since most of SOA-

centric organisations use web services which are also used by the Mashups. Web services

implement SOA, which is a set of well-defined interfaces and guidelines used in software

development. Moreover, web services are said to be operations that can be performed on an

online resource. They use XML languages such as Web Service Description Language

(WSDL) to describe them, SOAP to access them and Universal Description Discovery

Integration (UDDI) to discover them (Rao, 2004). These XML languages allow different

applications to exchange data regardless of the operating systems, programming languages

and execution environments underlying those applications.

Semantic web promises to make web contents machine understandable, allowing machines

and applications to access a variety of heterogeneous resources. They also process, integrate

web content, and produce added-value output for users. The way in which semantic web

technologies work is as such: pages not only store content as a set of unrelated words in a

document, but also code their meaning and structure, by so doing they give access to millions

of resources, irrespective of their physical location and language (Rao, 2004). In general, the

Semantic web languages include the following standards:

i. The Resource Description Framework (RDF) which is family of standards that

leverages URI and XML for meaningful descriptions using triples. Triples allow

resources to be described in the form of metadata by means of <subjects, predicates,

object>. URI uniquely identifies resources and relations amongst them (Pietro et al.,

2008).

ii. RDF Schema (RDFS) is an extension of RDF, which defines a simple modelling

language on top of RDF and it enables the representation of class, property and

constraint.

iii. Ontologies specification languages, such as Web Ontology Language (OWL) as

conceptual or data models.

18

There are many advantages when semantic web technologies are combined with web services

to leverage WWW. They result in SWS, which is all about making web services intelligent

by annotating them with semantic web technologies (Benjamins et al., 2002).

This section discussed the two ways of aggregating content namely portal and Mashups.

Mashups seemed to be the successors of Portals and some of the Mashup key web enabling

technologies and concepts were discussed. Before delving into details on how Mashup tools

are designed, the research discusses a concept of great importance towards developing web

application for novice users. The concept is known as End User Programming (EUP) and is

discussed in the following section.

2.4 EUP in Mashup Editors

EUP is playing an increasingly central role in shaping software to meet the broad, varied,

rapidly changing needs of the world as the number of users continues to grow in the web

(Wong & Hong, 2007). Programming is referred to as the process of transforming a mental

plan of desired actions for a computer into a representation that can be understood by the

computer. End-user programmers are users who are not formally trained in programming,

yet need to program in order to accomplish their daily task (Mehandjiev & Angeli, 2012).

EUP enables end users to create their own programs. End-user programmers are also defined

as people who write programs, but not as their primary job function i.e. they write programs

in support of achieving their main goal allowing diverse communities to use software‘s and

application without knowledge of computer programming. EUP include paradigms such as

widgets, Pipes and filters (Bolin, 2005). Programming for end users is one of the important

parts of in this research, since the main aim is to allow novice users to access SOA services

and create web applications with simplicity. The next sub sections details on the EUP

paradigms.

2.4.1 Widgets

A web widget is a small application with limited functionality that can be installed and

executed within a web page by an end user (Soylu et al., 2011). A widget occupies a portion

of a webpage and does something useful with the information that is fetched from other

websites and it can be represented in a certain style. Widgets are typically created in Dynamic

HTML (DHTML), JavaScript, or Adobe Flash. A widget is a stand-alone application that can

be embedded into third party sites by any user on a page where they have rights of ownership

(Batard et al., 2011). They also allow users to turn personal content into dynamic web apps

that can be shared on websites where the code can be installed. Widgets are used as small

19

stand-alone web application in Mashups. They can be connected with each other through

Pipes and filters to create meaningful applications.

2.4.2 Pipes and Filters

Many Mashups leverage the Pipes and Filters integration pattern to create the logic for data

combination (Latih et al., 2011). The implementation of pipes and filters pattern consists of a

series of interconnected components. Each component performs a specific function such as

filtering unnecessary data or joining records. The connection between components denotes

that the output from one component is the input to the other component (Xuanzhe et al.,

2010). The advantage of using the pipes and filters pattern is the simplicity in modelling data

flows. Each pipe or filter in the flow is explicitly defined and their integration is driven by the

data flow (Cao et al., 2010). Data sources are filtered, processed and combined to produce

new mashed-up information. In addition, it is easier to maintain the Mashups built using this

pattern since the Mashups execute exactly as they are designed following the flow paths at

runtime.

2.4.3 Data Federation

The data federation pattern aims to efficiently federate both structured and unstructured data

from multiple disparate sources (Latih et al., 2011). It helps to mitigate the burden of

aggregating, correlating and correcting relevant yet heterogonous data. This pattern supports

data operations against a virtual view. At design time, views of the data sources are declared

and the relationships between such views are defined as operations including joins, unions,

projections, selections and aggregations. The data federation pattern can be realized by

several pipes and filters, each providing the Mashup component with an interface to access

the data (Papadakis et al., 2011). In the context of Mashups, the data redundancy, therefore,

this data can be stored and reused later without going through the data processing pipes and

filters every time they are needed. Thus introducing some level of redundancy can both

simplify the design and improve the responsiveness of Mashups.

In the following sections, a thorough look is conducted on Mashups design, which is the

crucial process that determines the success of a Mashup tool.

2.5 Designing Mashups

This section discusses the requirements needed to develop Mashups. The architecture,

support and execution environments are discussed. The next subsection presents the design

and support provided by the Mashup Engine and the Mashup editor.

20

2.5.1 Mashup Engine

Mashup tools apply in different domains for different users; therefore, the way they offer

support to users varies. According to Latih et al. (2011), Mashup tools can be categorized into

three domains automated, semi-automated and manual (scripting tools). This research does

not discuss about the Mashup tools that offers manual support to integrate APIs, as they

mainly target developers.

2.5.1.1 Automated Mashup Tools

This category of Mashup tools normally supports the development of situational Mashup

applications. A situational application is an application that is developed rapidly to address an

immediate need of an individual or small community. It is created for a specific situation and

it is utilized only for short periods while the situation exists. It is a Just-in-time (JIT) solution

but not necessarily short-lived. Examples of Mashup tool that support the development of

situational Mashup applications are MaxMash and Automatic Mashup of Composite

Application (Latih et al., 2011).

2.5.1.2 Semi-Automated Mashup Tools

Semi-automated Mashup tools were developed to support end user in developing Mashup

applications. Such tools are developed based on End-User Development (EUD) paradigms

(Bolin, 2005). EUD paradigms provide programming capabilities for everyone by pushing on

different aspects of computing technologies. One of the EUD paradigms is wiring or dataflow

paradigm is where several selected widgets that support particular functions are connect

together for example are Yahoo! Pipes and Marmite. There are also tools that use widgets

only to create Mashups, each widget represents a particular function, users just select it for

use and they get response for example; tools like iGoogle and Netvibes.

2.5.1.3 Scripting Tools

Lastly, Scripting tools Mashup applications require some form of programming or coding. The

coding process is simplified by using scripting languages rather than the normal

programming languages. Such Mashup tools are developed for technical users. An example

of a Mashup tool in this category is Web Mashup Scripting Language (WMSL) (Sabbouh et

al., 2007).

The research adopts the semi-automated style, since it assists users in creating Mashups

although the process and tasks are not fully automated. The next subsection details the design

21

of Mashup editors, since designing a Mashup tool not only needs support offered by the

Mashup engine to integrate public web APIs but also need Mashup editor which allows

novice users to interact with Mashup tools easily and flexible.

2.5.2 Mashup Editor

Mashup editor is an environment that allows end users to remix the available public web

APIs. According to Latih et al. (2011), there are three types of support offered by Mashup

editors namely: Visual Mashup editor, Browser extension application and Web portal

Mashup tools.

2.5.2.1 Visual Mashup Editor

A visual Mashup editor allows users to create Mashup application by manipulating program

elements graphically rather than by specifying them textually. For instance, Yahoo! Pipes let

users to develop Mashup applications via a visual editor by selecting a few modules and wire

them together (Latih et al., 2011).

2.5.2.2 Browser Extension

A browser extension application is developed as a plug-in application to web browsers. By

using this tool, users can develop a Mashup while browsing the web for instance Intel

Mashmaker. It is a plug-in to Firefox web browser and it suggest to users on what type of

data to integrate. Other browser extension Mashup tools are Marmite and Vegemite (Latih et

al., 2011).

2.5.2.3 Web Portal Mashup Tools

Web portal Mashup tools are simple tools that provide users with a dashboard full of widgets

ready to be mashed. In this type of Mashup tool, data sources are aggregate into a single

layout. They reuse the existing Mashup applications, for example, users can stream their

emails from Gmail, get local and world weather information, and pull RSS from their

favourite sites. Other examples are MyYahoo and Facebook (Latih et al., 2011; Miah et al.,

2012).

The next subsection discusses the components, composition and execution environments of

Mashups and the type of support offered by the Mashup tools to integrate public web APIs.

2.5.3 Mashup Tool Architecture

This subsection discusses the two architectures of Mashup application that is server side

Mashups and client side Mashup. These architectures enable developers to realise the

22

lucrative side for mixing contents. Some developers prefer client-side and some server-side

depending on resources and situation in hand. Furthermore, this subsection covers the types

of support offered by Mashup tools. Noting that Mashup tools objective is to simplify the

integration process by automating instead of manually combining various web resources.

Mashups are designed with two different architectures, depending on where process and data

integration takes place. If it takes place on the server-side, the Mashup is called a server-side

Mashup. In this case, once the result is produced on the server, it will be pushed to the client

for the sake of presentation. Alternatively, both integration and visualization tasks can be

performed in client browser, which results in a client-side Mashup (Aghaee & Pautasso,

2010). Moreover, in a server-side Mashup all the requests from the client pass through the

server, which acts as a proxy to make calls to the other web sites (Aghaee & Pautasso, 2010).

Server side Mashups are more secured and support multithreading. Multithreading is when a

serve execute different threads simultaneously to solve task at hand, and threads are the

lightweight processes (i.e. each thread serve a unique function). They are secured since the

data transmission between the Mashup client and the server is normally done through client-

side XMLHttpRequest (XHR) calls though when dealing with real time data, the

communication can be through web sockets (Anttonen et al., 2011). This research focuses on

using server side as the location for content mixing.

The integration process side is not enough for the design of a Mashup tool since prior

development; it has to be clear what execution environment the Mashup tool targets. The next

subsection discusses how Mashups behave at runtime.

2.5.4 Mashup Tool Execution Environments

A Mashup execution environment defines the device that Mashup application can run on.

There are two devices that currently run Mashups applications namely desktop and mobile

devices. Desktop Mashups includes PC, laptops and servers while mobile devices include

smart phones, tablets and Personal Digital Assistant (PDA). Mobile Mashups serve as an

alternative solution as compared to hybrid apps, since they can be accessed from any

browsers on any platform that enables portability. Hybrid apps and mobile Mashup combines

reusable components from a large pool of web APIs, while mobile Mashups can also be

developed using end-user programming Mashup tools such as Yahoo! Pipes. Such end user

tools require less effort as opposed to hybrid apps since they are platform-independent and

building them requires no programming skills. These observed trends in Mashup domain

23

increases demands on the standards and the methodologies that are used to build Mashups, so

that they can accommodate mobile devices. For instance with the use of Cascading Style

Sheet (CSS3) and HTML5, desktop Mashups can be easily ported to mobile browsers and

vice versa (Aghaee & Pautasso, 2010).

This section discussed the design and support offered by Mashup tools, the next section

discusses the technologies and patterns used to integrate data.

2.6 Mashup Tools Composition Styles

The composition model determines how components are integrated to form the Mashup,

assuming components are readily available. To facilitate end-user compositions, the

composition model should be as simple as possible. A composition model has several

distinct characteristics: output type, orchestration style, and data-passing styles (Benslimane

et al., 2008):

i. First, we distinguish the model‘s output type. As with components in input,

composition output can be of type Data Application (DA), Application logic (AL), or

User Interface (UI), depending on whether the composition provides data,

programmable APIs, or applications with a user interface.

ii. The second characteristic is orchestration style. Orchestrating components implies

specifying how developers define and synchronize the components‘ execution. Three

main approaches exist:

a. Flow-based styles define orchestration as sequencing or partial order among

tasks or components and are expressed through flow chart-like formalisms.

b. Event-based approaches use publishes– subscribe models. They‘re particularly

powerful for maintaining synchronized behaviour among components.

c. In the layout-based style, components (with or without user interfaces) are

arranged in the composite application‘s common layout. Each component‘s

behaviour is specified individually by accounting for the other components‘

reactions to user interactions.

iii. Lastly, is the data passing style of a Mashup tool. There are two data-passing

approaches: a dataflow approach, in which data flows from component to component;

and a blackboard approach, in which data is written to variables, which serve as the

source and target of operation invocation on components, much like in programming

languages.

24

This subsection discussed the different composition styles used within Mashup development,

and the next subsection presents the data integration patterns.

2.6.1 Composition Patterns

To integrate data in Mashups requires Mashup patterns. Design patterns in software industry

are general reusable solutions to some commonly occurring problem. Patterns describe how a

certain type of problem can be solved in many different situations. Ogrinz (2009) classifies

Mashup patterns into five categories: harvest patterns, enhance patterns, assemble patterns,

manage patterns, and test patterns:

2.6.1.1 Harvesting Pattern

Harvesting pattern is used to extract data from both structured and unstructured sources.

Structured sources can be databases, RSS feeds, XML, and other data streams. Unstructured

sources can be web sites, binary files, or free form text. Harvest patterns include mechanisms

to navigate to important information and then retrieve it. For instance, Ogrinz (2009)

identifies two harvest patterns referred to as API Enabler and Infinite Monkeys. The former is

used to create REST or other kind of interface for previously closed resources, and the latter

is used to extract larger quantities of data to be examined more closely later. Often these two

can be combined or executed in parallel.

2.6.1.2 Enhance Patterns

Enhance patterns make keeping Mashups running less time and money consuming. This

happens in five ways: extending Mashups to a wider audience, fixing bugs without touching

the underlying code, making software more user friendly, improving the ―findability‖ of data,

and incorporating changing business rules. Enhance patterns have emphasis on changing the

interaction model of a Mashup to keep it useful.

2.6.1.3 Assemble Patterns

Assemble patterns can be used when developing the core function of Mashups: adding

resources together from multiple sources to create some-thing new. Often the problem to be

solved with assemble patterns is availability of source data in suitable format or converting

data from a format to another. Sometimes the problem is the amount of data, which is so

excessive that presenting it to the user becomes an issue.

25

2.6.1.4 Manage Patterns

Management patterns can be used as a mechanism for transmitting and storing data, handling

data and securing access to data. Manage patterns include this kind of actions in order to

maintain and manage Mashups. Managing data reduces number of bugs that can affect the

system performance.

2.6.1.5 Test Patterns

Test patterns describe mechanisms that make it easy to understand and implement Mashups.

Since users can also develop Mashups, there is also an obligation for the users acting as

developers to test their Mashups at least in some degree.

Having discussed the patterns used in Mashup tool for data integration, the following

subsection focuses on workflow of Mashup applications.

2.6.2 Workflows on Mashup process

Workflow describes the flow of data, and in, Mashup tools it, means being able to specify a

control and data flow over human tasks. That is, it requires being able to define sequences,

branches, or conditional executions of work items. In the early nineties, establishing such

kind of process logic as own modelling concern and detaching its execution from monolithic

software systems was one of the major contributions of workflow management systems

(Hahmann, 2005).

 Typically, modern process modelling formalisms distinguish between control flow (i.e., the

order of tasks) and data flow (i.e., the way data is propagated among tasks). The coordination

of multiple actors may happen via control flow only, since business data may also flow only

in the real world from one actor to another, yet the process needs to progress. Today's data

Mashups (e.g., Yahoo! Pipes) or service compositions are already highly process-based

without implementing a control flow (Philips et al., 2010). In fact, these types of data

Mashups are typically data flow based only. Very likely, the reason for this choice is

simplicity and the lack of the need to coordinate multiple actors.

UI-based Mashups are more event-based, yet when it comes to the integration of web

services, control flows to express the service orchestration logic is typically needed

(Freudenstein et al., 2007). Furthermore, Freudenstein et al. (2007), argue that ―Mashing up

people, UIs, data, and services and mapping them to an overall workflow requires various

techniques such deciding on granularity of actors and services and process state feedbacks‖.

26

The next section discusses the prebuilt resources (components) used by Mashup tools in the

process of service composition.

2.7 Web content mining

As outlined in (Section 2.3) that web services are the primary building blocks of Mashups,

this section focuses on APIs. Mashup use APIs to extract data from the web. APIs maybe

implemented in different flavours including HTML, REST, SOAP and XML Remote

Procedure Calls (XML_RPC). Web APIs are typically a related collection of web services.

An example of a web API includes the Google API, which makes various search functions

available over the internet for use in third-party applications. Most web APIs have a free

limited-use license or trial period, and some of them require payment for the service. These

API‘s are usually contained in Programmableweb website (Lee et al., 2009). The following

subsections discuss methods and ways that are used to get data from the public web APIs.

2.7.1 Web Page

Obtaining the necessary information for discovering or invoking the vast majority of Web

APIs nowadays requires interpreting highly heterogeneous HTML pages that provides

documentation for developers. Tag-based Segmentation approaches are used to analyse the

Document Object Model (DOM) tree of web page and automatically divide it into sub trees

in order to eventually extract information. These techniques usually rely on specific HTML

tags (e.g., <table>). However, this approach does not perform well when dealing with

heterogeneous cases where various tags are used as separators.

2.7.2 Web API Documentation

Given a web page documentation and a web API, extracting web contents consists of two

main steps: Firstly web pages are pre-processed to i) circumvent any issues with incorrect

HTML pages, and ii) to remove scripts and images which will not be taken into account for

feature extraction. The second step takes care of processing and analysing the cleaned web

pages to extract the main technical features of the web APIs such as the operation names, and

URI templates.

2.7.3 RPC-style Web APIs

RPC is a communication style that is centred on the notion of operations or procedures,

which essentially define the actions that remote components can trigger. Web APIs adopting

this style of communication offer programmatic access to the data and functionality hosted on

27

the underlying web site by means of an arbitrary number of operations. Additionally, the

documentation sometimes indicates further details such as the invocation endpoint (i.e., URL)

or the HTTP method to be used. Even though the blocks are both taken from RPC-style web

APIs documentation, the underlying structure and their visual appearance differ significantly,

providing an example of the heterogeneity among web APIs documentation. In extracting

relevant information from RPC-style web APIs the focus is centred on the detection of blocks

providing information about the different operations.

2.7.4 RESTful Web APIs

Web APIs that conform to REST principles are characterised by a communication model

whereby requests and responses are built around the transfer of representations of resources

and a prefixed set of operations one can carry over these. The documentation of RESTful web

APIs is centred on the notion of resource and the parameters required for identifying these

resources as well as on the actual operations allowed over the resources which in the case of

web APIs is indicated by the HTTP method to be used. Given the characteristics of RESTful

interfaces, the main goal is to detect and extract the resources, their URIs (templates) along

with the HTTP method to be used and the corresponding description. REST naming

conventions are hardly usable since there is no usual criterion for defining resource

identifiers. Instead, the most characteristic elements in this case are URI templates and HTTP

methods although they occur in several places throughout the documentation (e.g., one may

GET and POST a resource) which hampers significantly the segmentation of the web page

into coherent sets of resources and operations. The problem often caused by URIs is partially

eliminated by adopting the same repetitive pattern for documenting each resource and the

operations available (Ly et al., 2012).

2.7.5 SOAP

Web APIs that conforms to SOAP are said to facilitate the automation of web application.

They are described using WSDL and published using UDDI through the ubiquous HTTP. In

order to consume a SOAP web API, developers need to be familiar with XMl markup

languages. SOAP APIs permits developers to view what types of remote operations are

available for a certain service. Even the datatypes returned by the APIs are described to the

developer.

28

2.7.6 Mashup Repositories

Programmable web is one of the repositories dedicated to promote Mashup and APIs

(ProgrammableWeb, 2014). It allows users to keep track of APIs of their interest and to

discover some of the newly created APIs and Mashups. GooglemapsMania is also Mashup

repository which is dedicated to promote map-Mashups, those Mashups that are presented on

the maps (MapsMania, n.d.).

2.8 Applications of Mashups

Mashups have a strong flavour of reuse. They help developers not to reinvent the wheel when

someone else has implemented it and provided an API. APIs provide very useful

functionality that no longer requires being re-implemented. All of this enables a rapid

development when building new web applications, which is perhaps the most compelling

reason for using Mashups. There are many categories of Mashup, for instance Figure 2-4,

depict the observed trends of Mashups in programmable web:

Figure 2-4.Programmable Web (ProgrammableWeb, 2014)

As depicted Figure 2-4 that the number of publicly and commercial APIs are increasing in the

recent years. As of 2003 there were few developers who dedicated themselves to provide and

share web API, since the infrastructure that existed was not supportive towards rapid

development of API and web applications (ProgrammableWeb, 2014).

29

With so many people using Mashups, there is a demand for API developers to create APIs for

other developers as to enable integration of data and services. There are a few limitations to

using Mashups and most of these only appear when combining externally hosted services.

For example, some services provide limits to the number of calls to an exposed web service,

and almost all require some sort of registration. Also when mashing up external APIs, it is

demanded that developers keep track of changes (i.e. to know that service is still stable and

reliable).

The following listing discusses the benefits and advantages possessed by Mashups and

service provisioning platforms:

i. Applicability: the Mashup tools available for Mashups are useful for diverse areas and

support a great variety of input and output data types, from Comma Separated Value

(CSV) formats to structured XML and semantically rich RDF. Common Mashup tasks

such as data integration by mapping identities can be easily performed (e.g. with

Yahoo! Pipes even without explicit coding).

ii. Simplicity: the Mashup tools in general have intuitive designs and easy-to-use web

interfaces that require little training for beginners. Extraction, recombination and

integration of data with these tools is easier than writing code in a particular

programming language.

iii. Reusability: Mashup tools are explicitly designed for sharing and reusing. The author

of a Mashup can describe and publish his Mashup and others can reuse and add new

features or customize and combine it into something new.

iv. Interoperability: various Mashup tools can be easily combined to enhance the Mashup

capability. For example, Dapper can be used to fetch data in different formats

(Sigelman et al., 2010).

v. User participation: the participation of users is a major benefit in web 2.0 tools.

Activities, such as suggesting or even implementing new features by users, facilitate

the improvement of applications much more rapidly than with traditional software

methods.

Despite these strengths, some issues arise when using Mashup tools. The next section

discusses the factors that hinder a wide adoption of Mashups.

30

2.9 Challenges Facing Mashups

In Mashup applications, one of the vital processes that take place is known as service

composition. Service composition involves the integration of different web contents to create

new services according to user‘s requests, by refining and combining only the necessary data.

This process depends on the support offered by Mashup tool, some Mashup tools are

automated and some are semi-automated. The ones that are automated do the process of

service composition automatically while the semi-automatic ones automate the process

partially. The process of service composition is the one that determines whether a Mashup

tool is worth it or not to end-users. According to Tuchinda et al. (2008), Mashups service

composition process is much more complex because it needs to deal with retrieval,

integration and presentation of data.

One of the key challenges in service composition is the integration of web services and non-

web services contents since extra programming is required. Ngu et al. (2010) argue that such

a challenge is caused by the components that are developed at different times, by different

groups, using different technologies, naming conventions, and structures. Other issues are as

follows:

i. Usability: most Mashups are designed for creativity rather than usability, which

impede the fast growth of Mashup users.

ii. Performance and scalability: Mashing large data using web services from different

sources can be very slow. A bandwidth or server bottleneck causing limited speed

of the network connections and slow retrieval of the desired data is the result.

iii. Security: Users have to bear the security risks when uploading their data to web

2.0 sites. Although users may choose not to publish the work to the public, they

lose control of the work once it is uploaded (or if directly programmed online) to a

server.

iv. Missing features and instability: Due to the fact that the available tools are

relatively new and sometimes still have ―beta‖ status, some essential features may

either be not supported or have limited functionality. In addition, bugs can lead to

server instabilities and downtimes.

v. Flexibility: Although these tools are considered to be useful in common data

Mashup use cases, they are not as flexible as individually programmed

components. For certain tasks, writing custom code may be required.

31

vi. Quality: Due to the previously mentioned issues, the final output from Mashup

tools may not match the quality that ―professional‖ users can achieve with local

software development.

This section discussed the challenges affecting a wide adoption of Mashup tools. With the

aim of the research being to create a usable Mashup tool that target novice users were there is

a less active development of web application; the next section defines usability and outlines

the usability requirement.

2.10 Usability of Mashup Tools

This section focuses on the usability amongst the aforementioned challenges. In the previous

section (Section 2.9), the advantages and challenges of Mashup tools were discussed. With

the usability listed as one of the challenges affecting a wide adoption of Mashup tools, and

with the research aim being to create a usable Mashup tool for novice users to utilize the

available SOA services. This section discusses the usability and the methods used to evaluate

the usability of Mashup tools.

2.10.1 Definition of Usability

According to ISO (1998), usability is defined as ― the extent to which a product can be used

by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in

a specified context of use‖. The human-centred design is characterised by: the active

involvement of users and a clear understanding of user and task requirements (Preece et al.,

1994). The web developers need to allocate appropriate function between users and

technology, and with user centred design; in order to implement and evaluate different design

solutions (Preece et al., 1994).

Designers produce primary objectives referred to as usability goals and user experience goals

(Abras et al., 2004). A usability goal addresses the issue of meeting a specific usability

criteria (Abras et al., 2004). A user experience goal is concerned with the quality of the user‘s

experience with the system.

2.10.2 Usability Goals

Usability goals need to be specified for optimizing user interactions. Quesenbery (2003)

argued that the following are the usability dimensions: effectiveness, efficiency, engaging,

error-tolerant and easy to learn.

32

i. Effectiveness: Most general goal, concerned with whether the system is doing what it

generally says it will do.

ii. Efficiency: Consider saving user‘s time in performing task. Systems that require the

least number of steps are usually considered as being efficient.

iii. Error-tolerant: It prevents making serious/ unrecoverable errors, provide means of

recovering from errors: undo options, confirmation dialogs.

iv. Engaging: Is sufficient functionality to accommodate range of user‘s tasks. It deals

with how easy to remember once learned important goal to in the systems.

v. Easy to learn: Is to identify how much time users are willing to spend to learn the

system.

The above-mentioned usability goals served as the guide during the design and

implementation of the proposed Mashup tool. The process of evaluating system usability can

be categorized into two methods: first by evaluators and lastly by users. This classification

was introduced by (Nielsen et al., 1994). This classification of usability evaluation methods is

the most appropriate for this research work on usability evaluation of Mashup tools, and each

mentioned usability methods is discussed.

2.10.3 Evaluator-Based Usability Evaluation Methods

This category includes usability methods that involve evaluators in the process of identifying

usability problems. These methods are aimed at finding usability problems that users might

encounter while interacting with an interface and making recommendations to improve the

usability of the interface. The following subsections discuss some of the usability testing

methods.

2.10.3.1 Heuristic Evaluation

Heuristic evaluation is a usability that involves having a number of evaluators assessing the

user interface and judge whether it conforms to a set of usability principles (‗heuristics‘)

(Nielsen et al., 1994).

2.10.3.2 Guideline Reviews

This is a usability method, which contains comprehensive guidelines and involves checking

an interface for conformance with these usability guidelines. This method is similar to the

heuristic evaluation method, except for the length and details of the guidelines used by

evaluators; heuristic evaluators use a short list (of less than a dozen items) while guideline

33

reviewers use a longer and more detailed list (with several dozen or more guidelines)

(Nielsen et al., 1994).

2.10.4 User-based Usability Evaluation Methods

The user testing method is considered to be the most important and useful approach since it

provides direct information regarding how real users use the interface; it illustrates exactly

what problems users‘ encounter in their interaction (Nielsen et al., 1994). The user testing

method is a systematic way of observing actual users trying out a product and collecting

information about the specific ways in which the product is easy or difficult for them.

2.10.4.1 Questionnaires and Interviews

Different types of questionnaire (i.e. closed or open) and interviews (i.e. unstructured, semi-

structured or structured) are considered useful and simple techniques that collect data

regarding users‘ satisfaction with, or preferences on, a user (Nielsen et al., 1994; Hom, 1998).

Hom (1998) also indicated that surveys cannot be used to observe and record actual users‘

interactions with an interface but can be used to collect information regarding users‘

opinions, attitudes and preferences, as well as self-reported data concerning behaviour.

Therefore, data about users‘ actual behaviour should have precedence over users‘ preferences

since users‘ statements cannot always be taken at face value (Hom, 1998).

2.10.4.2 SUS

The SUS is a simple, ten-item scale giving a global view of subjective assessments of

usability. SUS is a likert scale (Brooke, 2013). It is often assumed that a likert scale is simply

one based on forced-choice questions, where a statement is made and the respondent then

indicates the degree of agreement or disagreement with the statement on a 5 point scale.

According Brooke (2013), SUS yields a single number representing a composite measure of

the overall usability of the system being studied. The usual threshold for SUS is 68. This

means if the system is below 68 then it is not usable.

2.10.4.3 Focus Groups

This is an informal method for collecting in-depth information regarding the needs,

judgments and feelings of typical users about an interface (Nielsen et al., 1994; Hom, 1998).

In a focus group, about 5 to 9 users discuss selected topics, such as the different functions and

features of an interface, with the assistance of a moderator, and then identify issues during

34

their interaction. This method allows diverse and relevant issues to be raised; it brings out

users‘ spontaneous reactions, comments and ideas through their interaction (Hom, 1998).

2.10.4.4 KLM

The Keystroke-Level Model (KLM) is a simplified version of GOMS. It was proposed by

(John & Kieras, 1996) as a method for predicting user performance. Using KLM, execution

time is estimated by listing the sequence operators and then summing the times of the

individual operators. KLM aggregates all perceptual and cognitive function into a single

value for an entire task, using a heuristic (John & Kieras, 1996). The total of the operator

times is the estimated time to complete the task.

A KLM model provides the designer with a model of a user's behaviour while performing

well-known tasks. These models can be used for a variety of purposes, as follows: If the

designer has a list of likely user goals, KLM models can be used to verify that a method

exists to achieve each of these goals. KLM models can predict the time it will take for the

user to carry out a goal (assuming an expert user with no mistakes). This allows a designer to

profile an application and to locate bottlenecks, as well as compare different UI designs to

determine which one allows users to execute tasks quicker.

In this section, different methods of evaluating usability were discussed and usability

principles were outlined. Furthermore, the definitions of usability according to different

researchers were presented. The next section summarizes this chapter.

2.11 Conclusion

This chapter discussed the ways of aggregating contents to facilitate service reuse and

sharing. Number of benefits and challenges were discussed and the observed trend on the

convergence of portals and Mashup was discussed. The aim of the chapter was to give

readers and developers the scope of Mashups (.i.e. to what extent had Mashup research been

conducted). The basis of SWS is the descriptions of web resources. It creates such

descriptions by annotating resources with metadata, resulting in annotations about that

resource. The resultant annotations create a relationship between URIs and build up a

network of data. They also simplify the integration of annotated data from multiple sources,

which results in smooth service composition when properly designed. Service composition

using SWS contains the following steps namely: service description, service discovery,

service publication and service invocation. These steps can be summarized into selection and

35

matching of appropriate services. The next chapter address how the proposed Mashup tool

addresses the process of services composition using SWS.

36

3 Chapter 3: Homogenization of Web Contents

3.1 Introduction

In the previous chapter, a review of literature showed that there are some challenges facing

the development of Mashups. This chapter focuses on the techniques of semantic annotation

to create meaningful data thereafter further related work is discussed.

3.2 Ontology as a Web 3.0 Service

Ontologies are formal explicit descriptions of concepts in a domain using properties of each

concept for describing various features and attributes of the concept. Ontologies together with

a set of individual instances of classes constitute a knowledge base. In reality, there is a fine

line where the ontology ends and the knowledge base begins (Sabou, 2006). The classes are

the core building blocks of ontologies, and they describe concepts in the domain.

Ontologies define a common vocabulary for researchers or developers who need to share

information in a domain. It includes machine-interpretable definitions of basic concepts in the

domain and relations among them. Ontologies are developed to share common understanding

of the structure of information among people or software‘s and to enable reuse of domain

knowledge. Figure 3-1 shows the evolution of the web:

Figure 3-1.Web evolution (Spivack, 2008)

37

Figure 3-1, shows the evolution of the web from a simple platform that only allowed users to

consume web resources, to a platform were users could both provide and communicate

information simultaneously. Currently, the web provides users with feature rich web

application and platforms together with software programs that can even automate the

integration of various web resources. The web resources are moving from meaningless

resources to semantically enriched smart agents. This is to allow with other web technologies

evolving and being embraced, for instance semantic web and web services.

The next section discusses semantic annotations approaches, which are the techniques used to

bridge the gap between Mashups and legacy applications.

3.3 Semantic Annotations

Semantically annotating web services results in new concept called SWS. This concept yields

web services that are intelligent i.e. they can be automatically or semi-automatically

described, published, selected and discovered (Küster et al., 2008). SWS aim at turning the

internet from an information repository for human consumption into a world-wide system for

distributed web computing by combining semantic web technologies and web services

(Zeshan & Mohamad, 2011). There are a number of ways on how services are described,

discovered, selected and consumed using SWS.

3.3.1 Service Description

The problem of ad-hoc semantic annotation of services, have been tackled by the use of

WSMO-Lite, minimal extension to SAWSDL. WSMO-Lite provides means to create

lightweight semantic service descriptions in Resource Description Framework Schema

(RDFS) by annotating various WSDL elements in accordance with SAWSDL annotation

mechanism (Loutas et al., 2011). As some services are not described in WSDL the term

MicroWSMO was coined to describe such services. MicroWSMO is a micro-format-based

language based on the same kinds of annotations as WSMO-Lite, adapted to support the

annotation of HTML-based descriptions of web APIs (Ambite et al., 2009). Ultimately the

minimal service model evolved, which is defined as a simple RDFS model that provides a

model that is able to capture the semantics for both web services and web APIs, consequently

allowing both kinds of services to be treated homogeneously when at selection time

(Maleshkova et al., 2009; Loutas et al., 2011). Figure 3-2 illustrates how the descriptions of

services are made.

38

Figure 3-2.Annotation methods adapted: (Kopeck & Vitvar, 2008)

As illustrated Figure 3-2, the following subsections explain the annotation methods that are

used to enhance service description (Kopeck & Vitvar, 2008;Maué et al., 2009).

3.3.1.1 SAWSDL

To date, SAWSDL is the only SWS specification that is a World Wide Web Consortium

(W3C) recommendation. It defines a set of extensions to WSDL, as well as rules for linking

WSDL elements to semantic information. In particular, SAWSDL supports three kinds of

annotations over WSDL and XML Schema, namely model Reference, liftingSchemaMapping

and loweringSchemaMapping. These three annotation types enable links to be made from

parts of a WSDL document to the associated semantic elements, or to the specifications of

data transformations from a syntactic representation to its semantic counterpart and vice

versa. In this way, it enables the incremental addition of semantics on top of existing WSDL

descriptions, providing a basis for extending results from a well-established approach.

However, SAWSDL only provides simple means for connecting service elements to semantic

entities and does not define any concrete service semantics such as types, formats or model

for the semantic descriptions.

3.3.1.2 WSMO-Lite

WSMO-Lite builds upon SAWSDL, overcoming some of SAWSDL‘s limitations while

remaining lightweight. WSMO-Lite makes explicit the intended meaning for model reference

annotations without modifying SAWSDL but rather informing users on how they should

structure the models their annotations point-to. The WSMO-Lite ontology can be used to

capture four aspects of service semantics:

39

i. The information model defines the data model. In particular, it describes the model for

input and output messages and is represented using domain ontology, along with

associated data lifting and lowering transformations.

ii. The functional semantics define what the service does by using functionality

classification or preconditions and effects. It describes what the service can offer to its

clients when it is invoked by assigning it to a particular class of service functionality,

defined in classification ontology.

iii. The behavioural semantics define the sequencing of operation invocations when

invoking the service. The behaviour of a service can be described through

choreography or a workflow definition. However, behavioural semantics are not

represented explicitly in WSMO-Lite.

iv. The non-functional semantics define any service-specific implementation or

operational details such as service policies, implementation information or running

environment requirements. Non-functional properties can include the price of a

service or the Quality of Service (QoS) aspects such as performance and reliability.

3.3.1.3 MicroWSMO

MicroWSMO uses micro-format for adding semantic information on top of existing HTML

web API documentation. It uses HTML for Restful services (hRESTS) for marking service

properties and making the descriptions machine-processable. HRESTS provides a number of

HTML classes that enable the marking of service operations, inputs and outputs, HTTP

methods and labels, by inserting attributes within the HTML. With the structure of hREST in

place, HTML service descriptions can be annotated further by including pointers to the

semantics of the service, operations and data manipulated. MicroWSMO adopts the

SAWSDL annotation mechanisms and it uses three main types of link relations:

i. Model, which can be used on any service property to point to appropriate semantic

concepts identified by URIs;

ii. Lifting associate messages with appropriate transformations (also identified by URIs)

between the underlying technical format such as XML and a semantic knowledge

representation format such as RDF at the lower level.

iii. Lowering associate messages with appropriate transformations (also identified by

URIs) between the underlying technical format such as XML and a semantic

knowledge representation format such as RDF at the upper level.

40

Therefore, MicroWSMO, based on hRESTS, enables the semantic annotation of web APIs in

the same way in which SAWSDL, based on WSDL, supports the annotation of web services.

MicroWSMO also adopts the WSMO-Lite ontology as the reference ontology for annotating

web APIs semantically. By doing so, both WSDL services and Restful services, annotated

with WSMO-Lite and MicroWSMO respectively, can be treated homogeneously.

3.3.2 Service Discovery

Service discovery has been the subject of much research and development. The most

renowned work is perhaps Universal Description Discovery and Integration (UDDI), while

nowadays Seekda4 provides the largest public index with about 29,000 WSDL Web services

(Meditskos & Bassiliades, 2011). Research on SWS has generated a number of ontologies

(e.g., hREST, SAWSDL), semantic discovery engines (e.g., Seekda4), and further supporting

infrastructure over the years. Despite these advances, however, the majority of these

initiatives are predicated upon the use of WSDL web services, which have turned out not to

be prevalent on the web where web APIs are increasingly favoured (Küster et al., 2008). As a

consequence, there has not been much progress on supporting the automated discovery of

web APIs. The main means used nowadays by developers for locating web APIs are the use

of traditional search engines like Google or searching through dedicated and registries

(Daniel et al., 2012b). The most popular directory of web APIs is Programmableweb provides

simple search mechanisms based on keywords, tags, or a simple prefixed categorisation.

Therefore, despite the increasing relevance of web APIs, in nowadays there is no system that

support discovery of APIs. The main obstacles in this regard concern first of all, the

automated location of web APIs, and subsequently, the gathering, interpretation and

extraction of relevant information concerning these APIs (Ly et al., 2012).

3.3.3 Services Publication

The objective of syntactic and semantic descriptions of web services is to provide

information about services in a way that can automatically be processed by machines (Sbodio

et al., 2010). However, at present, these descriptions can only be retrieved through the web of

documents, which is essentially designed for human beings, or through specific interfaces to

silos of services such as UDDI that have failed to see significant uptake. This is particularly

true for syntactic descriptions of services (although there is an RDF mapping for WSDL), but

also for semantic descriptions, which have remained somewhat disconnected from current

practices in the web of data (Brambilla et al., 2006). A fundamental step for bringing services

41

closer to the web, thus better enabling their discovery and supporting their use, is publishing

them based on current best practices on the web such as publishing of service annotations as

linked data.

3.3.4 Service Selection and Matching

The objective of creating service descriptions is so that services can be found and discovered.

This section focuses on the problem of selecting and matching services. The basic approach

is for the client to create a formal description of their requirement, and for the matchmaker to

compare this against the stored service descriptions to find the most appropriate matches.

Templates can be used operationally in workflows, acting as placeholders for late binding

services. It enables automated suggestion of next steps in a pipeline based on the following:

type and enabling partial verification of correctness. In discovery engines, it assists to find

suitable services. In ranking and selection engines, it allows to order them by suitability; and

in execution engines, to supply values to service invocations. Services can be found by

creating a SPARQL RDF and Query Language (SPARQL) query, and in particular, queries

can be derived from a service template. When there is no explicit mediation in the model,

finding exact matches for input and output types is important to connect to the model

references from the SAWSDL and MicroWSMO (Pedrinaci et al., 2011).

This section discussed the core concepts of SWS known as WSMO. It consists of ontologies

that help to automate services description and service discovery. The next section focuses on

further related work.

3.4 Related Work

This section is divided into two sections namely: making content Mashup ready and end-

users programmed Mashups (i.e., usable Mashup tools). The research first discusses the

usability of Mashup first followed by homogenization of web APIs.

3.4.1 Usability in Mashup Tools

This subsection discusses the studies that focused on encompassing usability principles to

Mashup tools. The purpose of the conceptual evaluation model was to serve as a meaningful

and useful framework or model for identifying the specific usability impact factors of

Mashup makers, as indicated in (Sarraj, 2012). The conceptual evaluation model consisted of

three main parts, which represent the three main usability aspects of Mashup makers. These

three parts are: visual support, user interaction support and functional support. Firstly, the

42

visual support part is concerned with the usability of the user interface of the Mashup maker:

layout of components, size, colour, and metaphors. Secondly, the user interaction support

addresses the usability of the Mashup Maker from a user interaction perspective. It groups

usability aspects such as cognitive and intuitive interaction support. Lastly, the functional

support part considers how the Mashup maker supports the users‘ functional requirements.

This model was used to serve as the guide for development and evaluation of Mashup tools,

but no Mashup tool was implemented to validate the whereabouts of the provided guidelines.

In optimizing Mashup for flexible interaction, Dang et al. (2007) proposed a personalisation

technique to enhance the functionality of Mashups interaction with users by presenting a

robust and flexible service-oriented architecture of personalised Mashups. While

Krummenacher et al. (2009) proposed a project funded by European Union to create

applications that can be used by all users and it is known as SOA4ALL. With the aim of

providing ‖ a comprehensive framework and infrastructure that integrates complementary and

evolutionary technical advances (i.e. SOA, context management, web principles, web 2.0 and

semantic web) into a coherent and domain-independent services delivery platform‖. This

work is one of the main projects that have been developed in collaborating end users with

Mashups applications. They proposed Semantic Web sErvice Editing Tool (SWEET) and

Sweet is nOt a Wsdl EditoR (SOWER) for annotating web services. SWEET is used to

annotate restful web services while SOWER is user to annotate SOAP based web services.

To create interactive users interfaces, Daniel et al. (2012a) proposed a domain-specific

approach to Mashups that speaks the language of the user. This work focused awareness on

the terminology; concepts, rules, and the domain user are comfortable-with. This work

enabled end users without programming skills to compose own applications.

Furthermore to give end-users the freedom to customize processes and process activities

according to their specific needs, Fisichella and Matera (2011) proposed a reference model.

The proposed model allowed for a flexible process definition and process execution to

support the dynamic user-based composition process. Yet still there are Mashup tools that use

data feeds to create services and uses widgets for user interaction, but still these Mashup tools

are not usable to non-technical users. Mashup tools lack the collaborative reasoning

emphasized by SOA4All project, though they support both web based data sources and

corporate data. Likewise Yahoo Pipes uses widgets and feeds for Mashup creation but still

not usable by non-technical users. Yahoo! Pipes are visual tool for data extraction and

processing of web sources (Jones & Churchill, 2009).

43

3.4.2 Web APIs Homogenization

In order to facilitate end-user Mashup based application there is a need to transform

heterogeneous structures to a homogenous structure. This subsection discusses some of the

studies that were conducted in order to handle heterogeneity of web resources.

In the making of web contents web enabled, Soriano et al. (2008) proposed a flexible

presentation layer for human users, using SOA based web-services to enhance interactions

and usability of services by developing an open Mashup platform known as EzWeb. This

work did not provide a mechanism for making web contents ―Mashup-ready‖, because in

order to simplify the process of developing end user based Mashups, there is need to solve

the issues around heterogeneous resource. In solving the issue around heterogeneous,

Momeni (2011) proposed a methodology by analysing the components required for

combining and integrating information into machine process-able dataset from different web

data sources to a homogeneous structure, using the e-commerce ontology. This work partially

solved the process of making resource web-enabled, since it provided different adaptors for

each service. Yet again, Upadhyaya (2012) proposed a framework to assists end users in the

process of discovering and composing services and to simplify the integration of

heterogeneous web resources. This work was achieved using the following two goals: first to

identify Mashup-ready web resources from different web applications and SOAP-based Web

services, and lastly to providing approaches to discover and compose web resources that are

capable of accomplishing user‘s activities. This work did not solve the issue of making web

resources Mashup-ready in a global scale of SOA. Furthermore, in increasing the number of

web service based resources used by Mashups, Malki & Benslimane (2012) proposed

SAWADL which only allowed the semantic annotation of the REST web Service. This work

was used to combine web APIs and REST Web services to develop more agile and flexible

Mashup application.

3.5 Homogenization Process

This section highlights the key technologies and requirements for semantic annotation

processes. The following listing outlines the requirements for semantic annotation tools

(Uren et al., 2006; Maynard, 2005):

i. User Centerd System Design: the semantic annotation system should include the

following aspects in order to allow a diverse range of use and adoption:

a. They should be seamlessly integrated in order to allow users to read and write

the annotated API documentations.

44

b. Ease of installation.

c. As the web browser is the mostly used tool to access web resources, semantic

annotation tools must be implemented as browser plugin, for ease of use. They

should be compatible with more collaborative environments.

ii. Interoperability: because most of semantic annotation tool support HTML and XML,

allowing them to handle different types of media approaches, can result in a more

distributed environment. For instance the use of a standard web ontology language for

standard consistency can further improve collaborative environments. The format,

resulting from annotated documentation of REST services must be usable to other

system and applications.

iii. Annotated API storages: semantically annotated API documentation must employ

RDF servers, especially the use of triplestores. Where annotations of APIs are linked

with their original documenation.

iv. Annotation process support: the support offered by the semantic annotation tools

should be far more automatic, since the creation, maintainance and navigation of

ontology greatly favours specialists (i.e., knowledge base engineers and experts). If

semantic annotation tools support the process of automated annotation and discovery

of APIs, then its high likely that their complexity will be hidden to users and that will

increase its usability.

The above listing discussed the requirements of semantic annotation tools (i.e.,

homogenization of web APIs). As the research hypothesis outlined that a semantically enable

Mashup tool to discover, annotate and compose web APIS can improve usability of SOA

services for novice users; this research use hREST and defined ontology to semantically

annotated web APIs, with SerPro API editor being an annotating tool that employs the

mentioned semantic annotation approaches. Furthermore the semantic annotation

requirements reviewed above are addressed in the proposed Mashup tool. For the discovery

SPARQL is used as a query language, to query services from Sesame server. To compose

web APIs a survey on the existing Mashup tool was conducted, based on its findings the

design architecture was proposed and implemented.

3.6 Conclusion

No study has been conducted to create a Mashup tool that could make web contents to be

easily combined by providing a Mashup-ready transforming layer. Hence, this research aims

45

to develop a tool and transform web resources into Mashup-ready contents to improve service

composition. To ease service composition for novice end users requires an agile presentation

layer. Both sections are applicable to our current research, which aims to distribute web-

based applications to rural based areas. Such users need Mashup ready content and user-

friendly interfaces.

Having discussed the Mashup landscape, the next chapter presents research methods and the

research philosophy used to achieve the highlighted the research challenges.

46

Part II: Methodology and System Modelling

47

4 Chapter 4: Methodology

4.1 Introduction

This chapter presents the research philosophy, approach, design and methods used to address

the research problem as outlined in (Chapter 1). This research project sought to analyse the

usability of Mashup tools, through mainly qualitative and quantitative methods using

deductive logic. The research aim is to design and implement a usable Mashup tool that

targets novice users to create web applications with ease. This is in line with the overall

research problem as identified in (Chapter 1).

4.2 Research Methodology

Research methodology is a way to systematically solve the research problem (Rajasekar et

al., 2006). It is referred to as a science of studying how research is done scientifically.

Research methodology consists of various steps that are generally adopted by a researcher in

studying the research problem along with the logic behind them and it helps the researcher to

know the suitable research methods or techniques for a particular problem (Holden & Lynch,

n.d.). Moreover, it helps researchers to know which of the selected methods/ techniques are

relevant and what they mean and indicate. According to Williams (2011), research is

described as the ―traditional assumption that in science the researcher must maintain

complete independence if there is to be any validity in the results produced‖. This means that

in order to attain good results the researcher must be involved but must not have influence on

the research outcome in the execution of the fieldwork. The suggestions mentioned in this

section were clarified by choosing a research philosophy

The research paradigm/ philosophy offers a framework, consisting of theories, methods and

ways of defining data, which explains the relationship between data and theory as suggested

by (Collis & Hussey, 2003). There are two main research philosophies or paradigms that

guide the design and methods of research. These are positivism and interpretivism (Saunders

et al., 2011). These approaches have different propositions regarding common assumptions

concerning obtaining knowledge and the process of research. The most common assumptions

are termed epistemology, ontology and the logic of the research. Epistemology concerns how

a researcher will obtain knowledge during the research; ontology concerns how each

paradigm views reality (knowledge), or what is considered reality from the viewpoint of the

researcher; and the logic of a research describes the nature of the relationship between

research and theory, which could be, according to Saunders et al., (2011) either deductive or

48

inductive. Saunders et al. (2011) describe scientific research as an onion with multi-layers as

shown in Figure 4-1:

Figure 4-1.Research union (Saunders et al., 2011)

Following the research union and referring to the aims and objectives of this research as

mentioned in (Chapter 1), this research has adopted an interpretivist approach. Interpretivism

is an appropriate approach with regard to the research problem. The research problem is

related to a positivist approach if it evolves from the literature where variables and theories

may exist that need to be tested and verified, while a research problem is related to an

interpretivist approach when little information exists on the topic and more exploration is

needed since the variables are largely unknown. Therefore, it was clear that the interpretivism

approach is an appropriate one to be adopted in this research, as it is not guided by theory that

must be tested objectively. Instead, it aimed at finding an understanding regarding which

usability methods are the best in evaluating usability issues of the currently existing Mashup

tools.

This research combined several research methods for the purpose of facilitating triangulation.

Triangulation in the context of this research means the mixing of data or methods used so that

diverse viewpoints or standpoints cast light up on a topic (Olsen, 2004). The research

employed both qualitative and quantitative research methods. This was performed by the

semi-structured surveys performed in the literature study and the empirical investigation of

the usability of Mashup tools and it allowed the integration of different research methods to

49

study Mashups in order to avoid repeating the same weakness possed by the already existing

Mashup tools (Voss et al., 2002). More details about the research design and method are

provided in (Section 4.3).

The aim of this section was to highlight the research philosophy related to this research.

4.3 Research Approach and Design

The research approach is a method of producing new knowledge or deepening an

understanding of a topic or issue. Research strategies include logical and qualitative research

approaches. Research approach and design also helps to establish or confirm facts

(Onwuegbuzie & Leech, 2010). The review of literature has produced reoccurring themes

emphasizing the importance of Mashup tools in enhancing the utilization of SOA services

and service composition is a critical component in preparing Mashups for novice users.

4.3.1 Literature Review

The literature review presented in (Chapter 2) was used in this research to address the

research problem as discussed in the following listing:

i. To indicate the key shortfalls of the current Mashup tools (i.e., assess the strengths

and weaknesses of previous work including omissions); these were identified in

(Chapters 2 and Chapter 3).

ii. To demonstrate the state of art on service composition platforms, in particular the

Mashup usability is up-to-date: as demonstrated in (Chapters 2, Chapter 3 and

Chapter 4).

iii. To show how this research relates to previous published research: as demonstrated in

(Chapter 2).

iv. To enhance and improve the current state of consumer Mashup tools.

The above listing outlined how the review of literature contributed to this research, the

following section discusses the system requirements.

4.3.2 System Requirements

Requirements analysis in systems engineering and software engineering, encompasses those

tasks that go into determining the needs or conditions to meet for a new or altered product,

taking account of the possibly conflicting requirements of the various stakeholders, such as

beneficiaries or users (Blanchard et al., 1990). Requirements form the basis for all future

work on the project, from design and development to testing and documentation, in order to

50

provide the best chance of creating a system that fully satisfies the needs of the customers.

Conceptually, requirements analysis includes three types of activity:

Figure 4-2.Requirements activity

i. Eliciting requirements: the task of communicating with customers and users to

determine what their requirements are. This is sometimes also called requirements

gathering.

ii. Analysing requirements: determining whether the stated requirements are unclear,

incomplete, ambiguous, or contradictory, and then resolving these issues.

iii. Recording requirements: Requirements might be documented in various forms, such

as natural-language documents, use cases, user stories, or process specifications.

New systems change the environment and relationships between people, so it is important to

identify all the stakeholders, take into account all their needs and ensure they understand the

implications of the new systems (Blanchard et al., 1990). Analysts employ several qualitative

methods to elicit the requirements from their target group. The following subsections explain

the methods used to derive the research; functional and non-functional requirements, to

inform the design of the proposed Mashup tool.

4.3.2.1 Requirements Gathering

This section details how other research methods were used to gather usability requirements.

However, before getting to details of what methods were used to gather data, the research

discusses the ethical issues considered during data collections.

51

Ethical Considerations

While gathering data using inteview, focus groups and SUS to identify short-falls of the

current existing consumer Mashup tools, with a special focus on usability; to assist in

planning and designing usable mashup tool, as well as to evaluate the effectiveness of the

prospective mashup tool. The following ethical issues were taken into consideration:

 Users participation is completely voluntary.

 Respondents are not harmed and embarrass; hence they must feel free about

answering questions.

 The collected data is confidential and respondents cannot be identified on the basis of

a response (i.e. anonymity).

Participants were allowed to leave at any particular stage if they felt uncomfortable, but their

presence was of great importance towards the study. The participants culture and believes

were not violated, hence participants were free to go if they felt that the tasks being

performed conflicted with their culture. A ethical clearance certificate is attached in

(Appendix A). For each survey conducted, a consent form was attached (i.e., users had to feel

in the consent forms before completing the surveys and participating in an interview). The

next subsection discusses the research subjects (respondents).

Research Sample

In this research two samples were used:one sample was drawn from Faculty of Social Science

and the other from the Department of Computer Science. The users from the Faculty of

Social Science were regarded as novice users and 15 students were used as the subjects to the

study. These users came from different departments: 6 Social Work and 8 from Human and

Resources Management and 1 from Political Science, and all of them were post graduates.

Their age ranged from 23 to 28. These users were chosen since all of them were computer

literate but did not have programming skills. This group of users was chosen when

conduction interviews and SUS, to get their behaviour and preference towards Mashup tools.

This research also drawn a sample from Computer Science department and 3 of them were

postgraduates and the rest were undergraduate. These users were regarded as technical users

since all of them had programming skills. Their age ranged from 19 to 27. The aim using this

group of users was to get feedback and opinion of technical users t owards Mashup tools, and

to identify the usability short-falls and suggest some of the improvement or features that

could be increase the usabilty of Mashup tools. Mostly this group was chosen when

52

conducting focus group sessions, to get and discuss various ideas that could improve usability

of Mashup tools.

The above research samples were used to collect data using the methods discussed in the

following subsection.

Data Collection Methods

There are three methods used namely: observation, survey and focus group. This subsection

discusses each method and how it was used to collect data in this reseacrh

Firstly, participant observation is appropriate for collecting data on naturally occurring

behaviours in their usual contexts (Blanchard et al., 1990). Direct observation emphasizes

observing and recording actual behaviour, rather than reported or recalled behaviour (Patton

& Cochran, 2002). The researcher records as much behaviour as possible, including actions,

conversations, and descriptions of the locale and persons.

Secondly surveys, according to Williams (2011) surveys are defined as a viable approach to a

problem only when there is data to support it. Patton and Cochran (2002) further define

survey research as ―the process of collecting representative sample data from a larger

population and using the sample to infer attributes of the population‖. The main purpose of

this is to estimate, with significant precision, the percentage of population that has a specific

attribute by collecting data from a small portion of the total population. The researcher

wanted to find out from members of the population their view on usability of Mashup tools.

SUS was used as one of the survey techniques together users‘ perception towards the

currently existing Mashup tools.

During SUS experiment, the observations were made from the way that most of the

respondents behaved towards certain tools. The following listing describes them:

i. Users did not complete the given tasks; they took a lot of time to complete sub-tasks.

They were not satisfied, users were confused (i.e. did not know where to start).

ii. For some users using the Mashup tool was easy whilst on the other hand it was

difficult for remaining group. In order to create or use Mashups most users needed

assistance. Six out of twelve of the observed users were not aware of what are

Mashups and what is their purpose.

53

iii. According to users behaviour the Mashup tools did not map to the real worldwide (i.e.

there was too much inconsistency). Majority of users (i.e., 8 out of 12) required more

time to get going with the Mashup tools; they did not enjoy using Mashups.

iv. Although most users (i.e., 10 out of 12) showed that it can be quick and easy to learn

Mashup, they were so frustrated since they said it was unnecessary hard to use them.

As it was indicated in the literature review chapter (i.e., Chapter 2), that there are 3 type of

support offered by Mashup tools namely: visual, browser extension and web portals support.

The existing Mashup tools used in this research were categorised, and the following listing

summarizes SUS scores obtained from the pre-evaluation of Mashup tools:

i. Widgets-based (visual suppport): Yahoo! Pipes, Microsoft Popfly and MobiMash.

ii. Browser extension: Intel MashMaker and Marmite.

iii. Form-based (web portal): Dapper.

Type of Mashup Tools SUS scores Averages

Widget Based

Yahoo Pipes 40.21 44.71

Microsoft Popfly 48.33

MobiMash 45.58

Browser extension

Marmite 57.29 55.12

IntelMashMaker 52.92

Form-based

Dapper 42.92 42.92

Figure 4-3.Comparison Of Mashup Tools

In this research, SUS was used to assist in as far as defining the usability of the existing tools,

as well as to evaluate the effectiveness of an implemented tool as compared to its

counterparts. The details of the SUS score of the above mentioned Mashup tools are

presented in (Appendix B).

Thirdly, Focus groups which are regarded as being effective in eliciting data on the cultural

norms of a group and in generating broad overviews of issues of concern to the cultural

groups or subgroups represented (Rajasekar et al., 2006). Focus group was used to identify

functionality shortfalls of the current existing Mashup tools. As well as recommendation on

how Mashup tools can be improved in future. The focus group evaluation techniques are

defined as the method used to gather users behaviours, attitudes and reaction towards the

system. It was conducted using 6 users, and all the respondents were the same as the one in

SUS. In the focus group section, the following questions were discussed:

54

i. What is the purpose of a Mashup tools?

ii. What can be done to improve Mashup tools for end-users?

iii. How can user freedom be achieved whilst emphasizing on functionality?

iv. What technologies to use in order to create usable and flexible Mashup tool?

The findings of the focus group signifies that if the proposed Mashup tool can adhere to the

following suggested solutions, then it can be usable.

i. Workflow the way services are executed and composed.

ii. User feedbacks to inform users about the status of the currently executing tasks.

iii. User freedom or transparency allow users to know and see what they are doing

(Mashing).

iv. Easy and straight forward documentation tutorial should be easy to learn (such that it

will only take few seconds to get on track).

This subsection discussed and analysed the results obtained from the above usability

methods, the findings obtained in pre-evaluation conducted, served as the guide to the design

of the proposed tool. Using the above-mentioned methods the following were the two types

of requirements needed to be considered when developing the proposed Mashup tool:

functional and non-functional requirements.

4.3.2.2 Requirements Analysis

The previous subsection presented how the requirements were gathered. This subsection

analyses the gathered requirements to produce two basic requirement categories on system

development: functional and non-functional requirements.

Functional Requirements

These types of requirement focus on what is offered by the system. The Mashup tool

developed offer the following functionalities:

i. The Mashup editor should interact with users through GUI components for instance

widgets and wirings for designing and connecting two or more widgets.

ii. The Mashup applications created must be published on a repository.

iii. The Mashup tool must be able to discover web APIs.

iv. The Mashup tool must be able to semantically annotate web APIs.

v. Using the Mashup tool users must be able to recommend their services.

55

Non-functional Requirements

This section addresses the usability metrics that guided the design and implementation of

SerPro. These usability research variables served as the guidelines to create a usable Mashup

tool. Based on the observed usability requirements and functional requirements addressed in

the previous listing, following are the research usability metrics:

i. Familiarity the Mashup tools should be least surprising and it must use drag and

drop functionality for the user interface. The multithreading of request must

employed using technology such as JQuery for queuing requests, since user are

used to application that multitask. The system should handle number of requests

concurrently, without interruptions.

ii. Workflow-visibilty: the visibility of task sequence being executed must be shown.

The graph showing the mostly used Mashups must provided on the welcome page,

which indicate the measure on which users are satified.

iii. Customizable-design: users should be able to add they own components (i.e., APIs

of their choice), and ambiguous components must be handled. If the user do not

find their service they must be able to add their services. The system must be

easily integrated (.eg., Adding new services from other Mashup tools).

iv. Error-handling as much as possible errors must be reduced, and in case an error

occurs, it must be handled peacefully. The errors must be visible to users although

they are handled peacefully

v. System-documentation tutorials should be quick and easy and also API

documentation must be clear.

Usability of the system is one of the utmost non-functional requirements. The system should

offer services that are useful, enjoyable and supportive to novice users. They should enjoy

using the Mashup applications. The services offered must correspond to their location.

4.3.3 Design

A design to explore the design space was conducted together with a series of small studies to

inform the design of the proposed tool. It consisted of tools like Yahoo! Pipes, Dapper,

Marmite, IntelMashMaker, MobiMash and Microsoft Popfly, for some of the commercial

tools, a blank paper study, and a series of low-fidelity paper prototypes was conducted.

SerPro (the proposed tool) was inspired by Yahoo! Pipes and Microsoft Popfly, but is

focused more on the usability aspects together with the extraction and processing of web

56

contents. The purpose for conducting the basic usability study with Yahoo! Pipes and other

Mashup tools was to understand potential usability problems that should be addressed in the

design of SerPro. In Yahoo! Pipes, end-users create a workflow by chaining together a series

of operations. End-users can choose operations from desktop applications they are familiar

with, such as getting email addresses from the address book application or retrieving a web

page with the web browser. The proposed Mashup tool adopted the functionalities like these;

and the research design is presented in (Chapter 5).

4.3.4 Research Prototyping

The software development life cycle employed in the study was mixed User Centred System

Design (UCSD), and it is depicted in Figure 4-4 (Abras et al., 2004).

Figure 4-4.Research model

The type of model used is known as UCSD. As web 2.0 allows users to become ―prosumers‖

UCSD also have the same vision which is to develop applications that are useful and usable

to users (Preece et al., 1994; Gulliksen et al., 2003). As Consumer Mashups allow various

range of users to create simple web application with ease so as UCSD. Mashups are said to

have adopted the style used by UCSD model. Following are the key feature that UCSD

leveraged the research with (Abras et al., 2004):

i. It analyses based on users and their world.

ii. It allows Mashups tool designers and developers to prototype (Väänänen-Vainio-

Mattila & Wäljas, 2011).

iii. The prototype are evaluated and if it does not meet the requirements it iterate to the

design stage, until the desired output. The evaluation also allowed researchers to do

requirement elicitation using Nielsen‘s heuristics (Nielsen et al., 1994). And this

57

allowed them to better model the users according to what they can do and what they

expect of the developed Mashup tool.

If the system can respond in complex ways, it is difficult to appreciate this from static figures

in a specification, so the specification phase of projects often uses rapid prototyping tools to

construct a functional user interface (Väänänen-Vainio-Mattila & Wäljas, 2011). The

developed prototypes can be demonstrated to clients and used as a basis for discussion, as

applied in this research where different prototypes were developed to improve the usability of

the proposed Mashup tool. UCSD development model prototypes can be refined iteratively

until the full system functionality is achieved. Moreover, incremental prototyping requires

that the rapid prototyping tool also meets the engineering requirements of the final system

(Houde & Hill, 1997). If such a tool is not available, an alternative is deep prototyping, in

which one aspect of the system functionality is fully implemented before developing the rest

of the interface.

These common approaches to prototyping are quite different to the prototyping techniques

that have been found to be successful in developing novel user interfaces. Many product

designers believe that creativity in the product design process is directly related to the number

of prototypes produced. The objective of building multiple prototypes is to investigate design

alternatives through evaluation with actual users to study the mental model that the user

develops when interpreting the prototype (Toleman, 1996). The research prototyping is

presented in (Chapter 6).

4.3.5 System Evaluation

System testing was conducted to verify the functional and non-functional requirements of the

proposed Mashup tool. As the functional requirements had been outlined, the functional

testing and integrating testing is addressed in (Chapter 6). These types of test validate how

the system requirements were met. If the proposed Mashup tool achieved the functionalities

outlined in (Section 4.3.2.2), then it would mean that the functional requirements were

accomplished. Based on the Mashup editor that has already been developed, integration test

validates on whether or not if it was possible to integrate Mashup tool with the transformation

layer in order to attain the above mentioned functional units.

Furthermore the usability test and acceptance test was conducted to validate the system non-

functional requirements. In the usability test, SUS score was used to measure the usability of

the system, and for evaluating the acceptability of the system, the focus group and interviews

58

were used. In the system evaluation (i.e., Chapter 7), the obtained results were analysed,

interpreted and discussed.

4.3.6 Research Conclusion

The research was concluded based on whether the objectives were achieved or not.

Furthermore the research limitation and challenges were discussed together with the

contribution and achievement made. Finally, future work was suggested to researchers

interested in the field of Mashup tools, and is presented in (Chapter 8).

4.4 Conclusion

This chapter summarized the techniques used to carry out a research. It also stated that

understanding the philosophy issues in a research study is very useful since, it can help to

define the research design in terms of considering what type of evidence is required, how it

will be gathered and interpreted, and how this will provide answers to the research questions.

Moreover it helped the researcher to determine, and even to develop designs that may be not

related to their experience. It also clarified that in order to develop a good Mashup tool and a

good Mashup editor, an appropriate model and a good design is required in order to achieve a

good productivity. Furthermore, the chapter clarified some of the requirements needed for the

system to be functional. The primary goal of methodology was to create a detailed functional

specification defining the full set of system capabilities to be implemented, along with

accompanying data and process models illustrating the information to be managed and the

processes to be supported by the new system (Botta & Bahill, 2008).

This chapter identified the requirements that assisted the designing, implementation and

testing of the system. The different prototypes were used to explore different possible

solutions, and evaluating the usability of alternatives techniques. The next chapter presents

the design of the proposed Mashup tool.

59

5 Chapter 5: Mashup Design

5.1 Introduction

This chapter presents the system architecture and system design, and its purpose is to create a

technical solution that satisfies the system requirements as an input to the system

construction. Furthermore the functional specifications produced during system requirements

analysis and findings from the pre-evaluation study are translated into an architecture (Botta

& Bahill, 2008). The architecture consists of system components that are designed and

prototyped to enable development and testing of the system using languages such as UML

(Fowler, 2001).

5.2 Design Process

System modelling deals with conversions of requirements to system functionalities. This

section deals with how the novice users interact with the system. One of the most interesting,

and most difficult, of the tasks that are undertaken in by computer scientists is the design of

an entire system (Botta & Bahill, 2008). A system is a set of interacting parts, generally too

large to be built by a single person, created for some particular purpose. The way to solve a

large problem is to break it into a set of interacting smaller problems.

The proposed Mashup tool is designed as the client-server side processing, that is, the control

of data processing from the client to the server. The Mashup Engine is primarily responsible

for running Mashup service composition, triggering the component‘s actions, and managing

the communication between the client and server. The Mashup engine provides data flow

processing; Figure 5-1 illustrates the Mashup tool functionality:

Figure 5-1.Mashup tool functionality

60

As depicted in Figure 5-1, each module can then be decomposed into even smaller problems,

up to a point that a problem can be solved on its own. The decomposition gives a set of

components, and how do they fit together. Modelling a system requires a right way to

decompose the functionality such that small set of abstractions created can be re-used and re-

combined to provide the needed functionality (Hwang, 1979). As Figure 5-1 above illustrates

the high-level components of the Mashup Tool; Figure 5-2 presents a detailed architecture of

the proposed tool that is broken down into components and layer that operate within:

Figure 5-2.System architecture

In Figure 5-2 the following layers are illustrated: firstly, discovery layer, which is the module

in charge of retrieving web APIs from online web repository. It is used to store web APIs on

the local machine where they can be accessed easily. Secondly, annotation layer as stated in

the research hypothesis that a semantically enriched form can improve the way that SOA

services are currently provisioned for novice users, this module purpose is to semantically

annotate services from the local repository and the web; and SerPro API Editor is used as an

annotating tool to achieve the aforementioned purpose. Lastly, composition layer after

61

discovering and semantic annotation of publicly available services, this layer aggregates the

web contents obtained from such services to create new web applications or Mashups.

As the design of the proposed Mashup tool adapted client-server architecture. The reviewed

literature showed that server architectures are more secured than client architecture, moreover

client architecture have less payload than server architectures, which results in high

performance (.i.e. efficiency). Adopting both architectures yields a well-established system.

The following sections describes each of the components illustrated in the system

architecture.

5.3 Mashup Engine

The composition layer is where integration of disparate web APIS takes place. This layer is

divided into two: visual composition and programmatic composition. Visual composition

takes place in the Mashup editor and it is done through GUI widgets and wirings. When end-

users finish creating the Mashups through Mashup editor, the final service created is then

transferred to the Mashup engine. In the Mashup engine, it is where pragmatic composition

takes place and various web contents are combined. Between visual and programmatic

composition there is a bi-directional relationship in the sense that every time a user wires or

connect two widget the Mashup editor sends request to the server which then connects to the

web and send back response to the Mashup editor in order to populate results in the targeted

widget.

The Mashup engine parses component details as a JSON object to the composition editor at

design time, and bind them in the Mashup engine at run time. This composition layer module

implements the REST concept model and supports the checking of data types in the system

using the defined ontologies. The Mashup Engine is the key component in the Mashup Tool

that establishes communication between different components (i.e., API editor and Mashup

Editor). Figure 5-3 shows how users interact with the Mashup engine (only admin users are

able to interact with Mashup Engine, novice users only interact with it through the Mashup

Editor or the API Editor).

62

Figure 5-3.Administrator use case

The above Figure 5-3 shows the operations of the administrator. The system administrator is

the one in charge of frequently updating and maintaining the system. There can be one or

more system administrators, and they are required to have technical skills. With the

interaction and roles of users being discussed, the next the section presents the design of the

API editor (annotation browser plugin).

5.4 API Editor

The previous section discussed the Mashup Engine, this section focuses on the key

functionalities provided by the SerPro API Editor (SAE) to craft web APIs from the web to

the local Sesame server through the Mashup Engine. This component contains two modules:

discovery and annotation of web APIs. The discovery layer is partially supported by this

component, as its main focus is on the annotation of web APIs.

5.4.1 Discovering Layer

In the discovey layer, is where various web resources are discovered from the web.

Discovering resources is one of the major challenges in Mashup development, as a result

most of the web resources are manual discovered due to lack of semantic annotation and

well-defined structures in the web. This layer use SerPro API editor which also forms a partof

the proposed Mashup Tool. It publishes dicovered resources to a repository (i.e., Sesame

server), which are later used to populate the API details in the Mashup editor. As resources

are discovered they are semantically annotated through the annotation layer.

63

5.4.2 Annotation Layer

The annotation layer is one of the most crucial parts of the research as it answers the research

question (RQ3) in this research. Semantic annotations have been around for quite some time

and ever since they evolved, they made life easier for developers. They are said to be the

technologies that add meaning and understanding to the web. By semantically annotating

resources, the web results in an interoperable environment. On the web, most resources are

web services, which are sometimes referred to as APIs. As the literature has showed REST

services also form part of these APIs, however in nature they are described in plain HTML.

Therefore, this layer describes these APIs in a well-defined structured form like RDF/XML.

The annotation layer uses ontology to annotate REST-based web services. These

aforementioned web technologies result in a smooth integration of web APIS. When

resources are well annotated they undergo the composition process smooth and quick. Figure

5-4, illustrates user interactions with the browser plugin (API editor):

Figure 5-4.SerPro API editor flow diagram

64

The above diagram (i.e., Figure 5-4) illustrates the sequence of steps undertaken when adding

APIs from the web. Two listeners are attached to notify and differentiate the system states. In

general the use case diagram of the API editor is illustrated by Figure 5-5 :

Figure 5-5.Use case diagram for API editor

This section discussed the two layers that operate within the proposed system architecture

(i.e., the discovery layer and the annotation layer). Moreover, it discussed how the users

interact with the API editor. The API editor component is used to discover APIs on the web

and semantically annotate them. Thereafter feed the Mashup editor with all the API details

gathered.

5.5 Mashup Editor

A mechanism for discovering and adding APIs to the local Sesame server has been discussed

in the previous section. This section presents the component used to create Mashups in the

proposed tool. Mashup Editor uses the Mashup Engine to query all the available web API

details on the Sesame server. The Mashup engine returns the web API details in a JSON file.

Thereafter the Mashup Editor populates widgets based on the obtained web APIs details. This

section presents the modules within the Mashup Editor.

5.5.1 Visual Composer Layer

Visual composer editor provides the Mashup design canvas to the user. It shows a Mashup

components list, from which users can drag and drop widgets into the canvas in order to

connect them (i.e., these list-items become widgets when clicked). Figure 5-6, depicts a

pictorial view of the widgets in the context of this research:

65

Figure 5-6.Widget transformation

As it was discussed in (Chapter 2), that widgets are used as building blocks of EUD. In Figure

5-6, theres a widget in the left side (labelled A) and another in the right hand side (labelled

B). The one in the left hand side corresponds to the design time while the one the right side

corresponds to runtime. The difference between this binding instants is that in runtime the

textboxes that were in design time are converted to two select boxes: first one for source

widgets and second one populates response of selected source.

This subsection discussed the design of widgets and the next section focuses on service

construction (i.e., how Mashup applications are created).

5.5.2 Service Construction

This subsection presents the sequence diagram of how the proposed tool constructs services.

The proposed Mashup tool follow both client and server side architecture. The interaction of

the Mashup engine, Mashup Editor and the repository is illustrated by Figure 5-7:

Figure 5-7.Service creation sequence diagram

66

As stated in chapter 2, that a client-server side Mashup tool mixes the content in the web

server and transfers it to the client via HTTP Protocol. The following steps are performed

during the creation of services:

i. A user generates an event on the client‘s web browser. The event triggers a JavaScript

function on the client.

ii. The client makes a request to the server via the (―proxy server‖) that provides the web

site, and the request is typically Asynchronous JavaScript And XML (AJAX) request.

iii. A web component on the server receives the request and calls a method which

encapsulates the code to connect and interact with the other web sites in the Mashup

tool.

iv. The proxy server opens a connection to the web, i.e. the web site that provides the

needed service.

v. The API addresses receives the request, processes the request and then returns data to

the proxy server.

vi. The proxy server receives the response and may transform it to an appropriate data

format for the client.

vii. The proxy server returns the response to the client.

viii. The AJAX function updates the client‘s view of the page with the results from the

server.

The next subsection discusses request handling and data passing algorithm which was used to

integrate web contents form various widgets.

5.5.3 Request Handling and Data Passing

This subsection discusses how different requests are handles within the proposed Mashup

tool. For each widget request, JQuery connects to the Mashup engine (i.e. Request handler),

as shown by Figure 5-8:

67

Figure 5-8.Request handling sequence diagram

The illustrated sequence diagram in Figure 5-8 above is explained using the following

algorithm:

Listing 5-1. Request handling algorithm

Request handling algorithm

A. If (the connection is successfully established) then

I. The proxy first query the local server (i.e. Sesame server)

1. It search requesting widget name against the available APIs

If (the widget name matches with one of the defined APIs)

a. Sends an object with APIs details to Mashup engines

Otherwise

b. It sends back the error to Mashup engine

2. Otherwise

a. It sends back error to proxy

b. The proxy sends back error to dojohandler

II. Send request to the Mashup engine

III. The Mashup engine connects to the web and send request to particular API

IV. When the response is recieved, it then Mashup editor

V. JQuery handler receives the response and passes it as an input to the subsequent

widget

VI. Then construct the next request

B. Otherwise

I. Request is not sent

II. Exceptionhandler notifies client UI that the request was not sent

68

This subsection briefly outlined how the requests are handled between Mashup Editor and

Mashup Engine. Furthermore, it discussed how the data was passed from one widget to the

other. Following subsection describes the user interaction with the Mashup Editor.

5.5.4 Use Case Diagrams

Figure 5-9, shows that users can be able to create, update and browse for the available

services. In the proposed Mashup tool users are allowed test their Mashup applications before

saving them to the repository. The following Figure 5-9, depicts user interaction with the

proposed Mashup editor:

Figure 5-9.End-user use case diagram

This section briefly outlined how the composition process of both visual and composition

process of proposed Mashup tool took place, and it focused on the communication

establishment between Mashup editor and Mashup tool. After the details were compiled in

the Mashup editor, they are then sent to Mashup tool servlet class. The next section presents

the conclusion of the chapter.

5.6 Conclusion

This chapter discussed the architecture of the system with its components. The workflow

management between Mashup editor and Mashup engine was discussed, moreover the

libraries and alyers that were used to develop the system were discussed. Lastly the defined

user goals in terms of use cases and sequence diagrams were presented. The next section

discussee the implementation of the proposed tool.

69

Part III: Development and Implementation

70

6 Chapter 6: Implementation and Development

6.1 Introduction

This chapter focuses on how the proposed Mashup tool was implemented using the gathered

requirements from the system design (Chapter 5). The purpose of this chapter is to illustrate

how the system requirements were converted into a working Mashup tool. The development

process is described, and the implementation details for different components are discussed

with the aid of code segments. The next section focuses on the development process.

6.2 Development Process

This section outlines the procedure that was used to develop the Mashup Tool, as stated in

(Chapter 4), how the system is to be developed. The SLDC used was UCSD as discussed in

(Chapter 4). The development process of the proposed tool is iterative in the sense that 3

prototypes were developed as illustrated by the Figure 6-1:

Figure 6-1.Development process

The first prototype served as a feasibility study, and only the Mashup Editor was developed.

Thereafter a second prototype which included the Mashup Engine was developed to add

support for multithreading of processes and security. Lastly, a prototype that included a

partial mechanism to discover and annotate web APIs was implemented, to address the

manner in which APIs were added to the Mashup Engine. The implementation and the

development of the system were executed using three stages. The first stage constitutes the

implementation of the Mashup editor and the second phase is the development of the Mashup

engine and lastly, is the development of the API editor. As stated in (Chapter 2), that

71

workflow describes how the data is passed and the sequence in which the data is passed (i.e.,

control flow), Figure 6-2 illustrates the data flow pattern of the proposed Mashup tool:

Figure 6-2.Mashup tool data flow

Figure 6-2 above shows a Mashup engine as a module responsible for establishing

communication with the external web resources. It is used to send requests to and from the

web. The manner in which APIs are added to Mashup tool is illustrated by (step 1, 2, 3, 4, 5,

and 6) which are initiated by the annotation layer that is used to annotate restful services

through the API Editor and the Sesame server which is used to publish and query services.

For initializing the Mashup Editor with API details, step 6, 7, and 8 are triggered by the

Mashup Engine to query Sesame server and create a JSON file that is sent to the Mashup

editor in order to initialize widgets. Subsequent to that, (step 9 and 10) are used to construct

requests to the Mashup Engine that connects to the web and return API responses. The rest of

this chapter discusses how each layer was developed with the aid of code snippets.

72

6.3 Mashup Engine

The aim of the Mashup Engine is to establish communication between Mashup editor, API

editor and the web. It controls the flow of data between various components and is the core

component of the proposed Mashup Tool. In order to present the development process of the

proposed Mashup tool, this research starts by discussing the implementation of the Mashup

engine.

As this research has adopted client-server architecture, the following listings present how the

Mashup Engine handled the requests and responses coming from different components, and

how the Mashup Engine facilitates communication between different components:

Listing 6-1.Executing a widget

Listing 6-1, Illustrates how the various API requests are handled, when executing a single

widget. Widget details (such as parameters) are sent from the Mashup Editor to the Mashup

Engine, then a method called SolveWidget is invoked to parse the request data, construct

REST request and connects to the web. Thereafter a response is sent back to the Mashup

Editor.

Listing 6-2. Adding APIs to Sesame

Listing 6-2, Shows how the Mashup Engine connects with the API Editor. When users finish

adding APIs details from the web using the API Editor, the collected data is sent to the

Mashup Engine, to invoke a method called createJsonStructure of class RDFAnnotator. This

method annotates API details and saves them to the Sesame server.

Listing 6-3.Saving Mashup details

73

Listing 6-3 shows how the Mashup applications are published to the local server. In order to

publish Mashups in the local server, they must have the name and the description to invoke

the MashupInitializer method of class MashupProxy.

Listing 6-4.Populating Mashup details

Listing 6-5, illustrates how the published Mashup applications are executed. When a certain

Mashup is selected for execution, parameters needed in order to complete the request are

populated in the home page. Thereafter users fill in the form fields, in order to run a certain

Mashup.

Listing 6-5.Executing a published Mashup

The above listings discussed how the Mashup Engine handles the different requests; Listing

6-6, illustrates how the XML responses are converted to JSON format, since the proposed

Mashup tool only used JSON as the messaging protocol.

Listing 6-6.Structuring XML to JSON

As this section has discussed how the composition process takes place in the Mashup engine,

the following UML class diagram (i.e., Figure 6-3), illustrates the classes used by the Mashup

engine.

74

Figure 6-3.Mashup Engine UML class diagram

Figure 6-3, shows the classes that extend the Mashup engine in order to maintain sessions and

manage requests.

This section outlined that the Mashup Engine maintains the composition life cycle of the

proposed tool. Furthermore, this section discussed how the Mashup Engine handles different

+beforeMarshalling(in requestData : string) : object
+mashupInit(in name : string, in desc : string, in requestData : string) : void
+toExecuteFromJsp(in reqData : string, in mashupId : string, in url : string) : object
+sendParamsToJsp(in request, in response) : object
+proccessRequest(in request : object, in response : object) : void
+doGet()
+doPost()

-MASHUP_DESCRIPTION : string
-COMPOSITE_APP : object
-CONNECTIONS : object
-DATA : string
-FINAL_SERVICE : object
-JSON_OBJECT : object
-MASHUP_NAME : string
-PARSER : object
-SERVICE_INFOR : object

MashupServerServlet

+XMLtoJSON(in xml : string) : string
+executeRequest() : object
+setProxy(in endpoint : string) : object

-addr : object
-connection : object
-httpProxy : object
-uri : string
-url : object

MashupConnection

+bracketNotation(in paramValue : string) : void
+findParamValue(in paramValue : string, in responseCollection : object) : object
+beforeExcuteRequest(in serviceDetails : object, in responseMap : object) : object
+getValue(in responseObject : object) : object
+isNumber(in word : string) : bool
+recurseObject(in dataObject : object, in toQuery : object) : object
+searchObject(in response : object, in api_name : string) : object

-ITERATOR : object
-LIST : object
-MATCHER : object
-PARAM_NAME : string
-PARAM_VALUE : string
-SERVICE : string
-SERVICENAME : string
-SOURCE : string
-SUB : int
-TO_RUN : object
-VALUE_TO_RUN : string

MashupSerializer

+parse(in jsonObject : object, in type : string)
+compositeApp(in jsonObject : object)

-List : object
-Map : object
-Mashup : object

MashupParser

+MashupApp() : void
+getConnections() : object
+getFinalService() : object
+getMashupDescription() : string
+getMashupName() : string
+getParameters() : object
+getServiceInfo() : object
+setConnections() : void
+setFinalService() : void
+setMashupDescription() : void
+setMashupName() : void
+setServiceInfo() : void

-CONNECTIONS : object
-FINAL_SERVICE : object
-MASHUP_DESCRIPTION : string
-MASHUP_NAME : string
-RESPONSE_MAP : object
-SERVICE_BLOCK : object
-SERVICE_INFO : object
-SERVICE_PARAMS : object
-SOURCE : string
-TARGET : string
-TO_PUBLISH_PARAMS : object

MashupApp

+Compose(in serviceInformation : object) : object
+Composition(in mashup : object, in Parames : object) : void
+alterValues(in map : object) : object
+ComposeMashup() : object
+executeService(in serviceDetails : object, in params : object) : object
+getSource(in targetName : string) : string
+getTarget(in sourceName : string) : string
+hasSource(in targetName : string) : bool
+hasTarget(in sourceName : string) : bool
+isExecuatble(in serviceDetails : object) : bool
+isParamResolvable(in paramValue : string) : bool
+postComposition() : void
+preComposition() : void

-CONNECTIONS : object
-RESPONSE : object
-RESPONSE_MAO : object
-TARGET : string
-SOURCE : string
-PUBLISHED_PARAMS : object

MashupComposition

*

*

*

1
*

1

1..1

1..*

75

requests, and a class diagram showing classes that are used by the Mashup Engine to manage

the life cycle of the proposed Mashup tool was presented. Hence, the Mashup engine is the

core module of the Mashup tool, as it is in charge of semi-automating the integration of

various web contents.

6.4 SerPro API Editor (SAE)

SAE is the tool developed for supporting users in creating semantic Restful services by

structuring service descriptions and associating semantic annotations with the aim to support

a higher level of automation when performing common tasks, such as their discovery and

composition. Its configuration takes the form of a Google chrome plugin displayed within a

web browser. It is very lightweight and can be used to directly annotate Restful service

descriptions documented in the web site. Figure 6-4 depicts SAE tool:

Figure 6-4.SerPro annotating tool

Figure 6-4 above is used to discover web APIs from the web by extracting HTML

representation and serializing the data as a JSON object which is then semantically annotated

using the defined ontology found in (Appendix C). The following listing, describes the role

played by the API editor (whose design is inspired by SWEET):

i. It provides Mapping of HTML service descriptions in order to mark service properties

(i.e., operations, address, HTTP method, input, output and labels).

76

ii. It includes an ontology to link semantic information to service properties.

iii. It saves HTML Restful service description, as RDF triples.

iv. It posts semantic descriptions to Sesame, where they can be browsed, searched and

reused.

It can be noted that two layers are included in the API editor (i.e., discovery and annotation

layer). The layer that locates API details that are documented using HTML is referred to as

discovery component, subsequent to that is the annotation layer which is used to semantically

annotate API details in HTML format to RDF format for machine readability and

interoperability, as illustrated in Figure 6-5:

Figure 6-5.API editor workflow

The following listing explains Figure 6-5 :

1. Users search for rest services through web browsers. They search using search

engines and online registries, however the most prefered way is to search using

77

online registries, such as programmableweb, were API details are summarized in

details concerning how they can be found and what do they return (i.e., response).

2. As stated in step one above, that online registries are prefered, this step involves

visiting the website were the API details reside. Whether a search engine is used or

online regitry is used, this step remains unchanged.

3. This step is used to map API HTML documentations with the annotation browser

plugin (i.e., API editor). Text is highlighted from web site and mapped to the browser

plugin by clicking to a corresponding REST property.

4. This step forms a part of (step 3), it attaches a listener to step 3 in order to focus on

the currently selected tab. It is also used to simplify JavaScript coding style.

5. Thereafter, this step stores the higlighted text using LocalStorage, that is cloned in

into a hashmap (i.e. Rest-property --> highlighted HTML text).

6. This steps acts as a proxy class between (step 3, 4, and 5). It initiates actions and

requests to be taken.

7. The results of the above steps is a JSON data (i.e., the hashmap mentioned step 5),

and the Mashup engine filters the request and invoke a class that handles the

semantic annotations of services.

8. Uses the data parsed by the Mashup engine and annotates the given data using the

defined ontology stored in the Sesame server.

9. The Sesame serverManager class stores the sent data and creates an RDF file based

on the triples created from the HTML documentation. It may write the file to the disk

or uploads to Sesame server.

10. The RDF file is shown to the users, the user may store it on their own machines or

reuse it for different purpose.

As shown by the listing above that the HTML representation of an API documentation can be

achived through the mentioned sequence of steps. The use of SAE produces API details that

can be used by different users ranging from human-users to machine-user. The following

diagrams present the functionality of SAE; in Figure 6-6 a HTML documentation of Flicker

services is shown thereafter a RDF representation obtained using SAE is shown in Listing

6-7:

78

Figure 6-6.Plain HTML FlickerAddComments service

Using the API Editor, annotating the above plain HTML file yields the following RDF file:

Listing 6-7.RDF representation of FlickerAddComments service

As the diagrams show the representation of both APIs in HTML (Figure 6-6) and RDF

(Listing 6-7); that the API details were transformed from plain HTML documentation to RDF

79

documentation. The following code snippets are used to parse HTML data into JSON object,

which is then annotated, using the defined ontology called ―SerPro.owl‖ (found in Appendix

C). The Mashup engine invokes the createStructure method to initiate the annotation process

as shown in Listing 6-8:

Listing 6-8.Serializes the HTML info to JSON Object

After the data is parsed as a JSON object, the serializing method is invoked to extract the

necessary properties of REST API. After extracting REST API properties, it then stores them

into Sesame server by invoking the createIndividual method of the MashupOntology class.

The createIndividual method invokes method that saves the details to the Sesame server and

that method is called writeFile. The above code then call the annotating class and writes the

RDF file using sesameManager class, using Listing 6-9:

Listing 6-9.Annotating API details with Ontology

Listing 6-9 shows how the RDF file is created and uploaded to the Sesame server. After such

a RDF file is created then it is loaded to the Sesame server using Listing 6-10:

Listing 6-10.Uploading RDF files to Sesame server

Listing 6-10 shows how the sesameserverManager class establishes connection with the

Sesame server and adds the RDF file, using triples mechanism (i.e., subject, predicate, and

object).

Sesame is referred to as service warehouse that unifies service publication, analysis, and

discovery using lightweight semantics. Sesame provides the features of service registries and

80

additional functionality that exploits service descriptions and service annotations, and is

illustrated by Figure 6-7:

Figure 6-7.Sesame server

After the API are annotated and loaded to Sesame server, in order to keep the Mashup Editors

API list updated, the sesameserverManager queries all the available API triples in its store

and the writes a JSON file that is located in the local web server. The created JSON file is

then used to populate widgets using DOJO on the Mashup Editor. Listing 6-11 illustrates how

the API details are queried and saved to a JSON file:

Listing 6-11.Querying API from Sesame

Listing 6-11 presents a SPARQL query that is used to select all the API details in the Sesame

server and create hashmap object containing all the API details. Listing 6-12, Shows how the

object containing API details is then written to a file:

81

Listing 6-12.JSON file Writer

The JSON file created in Listing 6-12 uses the following template in order to maintain

standard form of dojo tree. All the service details are contained in ―items‖ JSONArray object

as shown in Listing 6-13:

Listing 6-13.Creates DOJO compatible template

The output of the Mashup tool after querying Sesame server is a JSON file, which is one of

the methods used to create communication between the Mashup Editor and the API Editor,

and it has the following structure.

Listing 6-14.Json file structure

JSON file Structure

{"label":"Name",

"identifier":"Name",

items":[

{"Name":"",

"category":"",

"operations":[

{"Name":"",

"Parameters":[""],

"Description":"",

"Methods":"",

"Endpoint":""}

]}

This section discussed the role played by the Sesame server in storing and querying API

details. The main aim of Sesame server is to store the discovered API details at the same time

be able to query (i.e. select and match APIs) locally in order to allow a smooth composition

of services. As this section described how the API details were added and retrieved from

Sesame server, the next section presents the Mashup Editor.

82

6.5 Mashup Editor

In this research Mashup editor is referred to as the main module that users require in order to

compose new services. This is because most of the time, the users design and compose

Mashup through it and novice users do not care about the server-side technicalities; they are

only concerned about what they see and do. The review of relevant literature and pre-

evaluation study showed that when Mashup tools are evaluated, the main tests lie on the

usability of the Mashup editor (i.e., so the easier it is to use a Mashup editor is the more a

Mashup tools becomes usable). In other words, the simplicity of the Mashup editor is directly

proportional to the usability of the Mashup tool. A Mashup editor requires an intuitive design

as illustrated in pre-evaluation study for exiting Mashup tools. As stated in (Section 5.2) that

the composition of Mashup applications involves both Mashup editor and Mashup tool,

Figure 6-8 shows that with the Mashup editor users are able to design their application by

wiring widgets and pipes:

Figure 6-8.Mashup Editor

Figure 6-8, depicts the functional view of how the users compose services using the Mashup

editor together with the Mashup engine. Each module of the Mashup editor is discussed as to

how it aids the creation of Mashups with novice users. The file structure labelled ―Service

Modules‖ that is shown on the left of Figure 6-8, is produced from the local JSON file

created from the local repository to initialize the widgets.

83

6.5.1 Connecting Widgets

In the centre of Figure 6-8 is the canvas which allow the dragging and dropping of widgets.

The widgets use information that is attached to dojo tree using JSON file. When the item

from the dojo-tree is clicked, dojo attaches service details to the click-listener object, then

when creating widgets JavaScripts simple iterate through the event object to populate the

necessary data on the widget. These widgets are designed using HTML form elements, and

when connecting two or more widgets the code in Listing 6-15 is used:

Listing 6-15.Connecting and wiring two widgets

Listing 6-15 shows that when two or more widgets are connected two method are invoked

(i.e., removeGoodInputs and sorter). The first function is used to remove any input fields in

widget and replace them with two select boxes as shown in Figure 5-6 in (Section 5.5.1).

When users unwire widgets, Listing 6-16 is used to attach the detach event listener:

Listing 6-16.Unwiring two widgets

Furthermore, it shows how the select boxes are removed and replaced with the input fields.

From the editor, it is also possible to execute Mashups and widgets, the next section presents

how the requests are constructed.

84

6.5.2 Construction Requests

The construction of requests takes place using two type of default widget namely: output-

widget and user input-widget. The output-widget is use to signal the completion of Mashup

design (i.e. the final service) whilst the input-widget signals that for a particular widget to

execute, a user is prompted to enter a certain value.

Listing 6-17.Executing request

Furthermore, each time users save Mashups, they are required to fill in the name and

description of the Mashup, and if the user does not do so an alert box is shown as illustrated

in the Mashup editor. After the output-widget is clicked, Listing 6-18 is used to collect

widget details:

Listing 6-18.Instantiating request

Using the code in Listing 6-18 to formulate API details into JSON object, then Listing 6-19 is

then used to send a request to the Mashup engine:

Listing 6-19.Sending request to the Mashup Engine

85

Listing 6-19 shows how requests are constructed. The web technologies that are used to

construct request are AJAX and JQuery, and the response on success, is handled by JSONtree

function, which populates the response data in a tree view. On the right side of Figure 6-8, the

display module, which shows the widget responses returned from the Mashup engine, is

shown in a tree view mode with variable-name and values. The purpose of the tree is to make

it easier for the users to see and know what they mashing.

In order to maintain data passing between widgets a responseHandler function is invoked to

populate response data in select boxes of the targeted widget. Listing 6-20 shows how the

response data is passed from one widget to the other:

Listing 6-20.Response handler in widget piping

The responseHandler function uses JQuery to traverse through the JSON object and populate

option inside select boxes. Different classes are used to initialize and manage events in the

Mashup Editor, and the class diagram (i.e., Figure 6-9) below depicts the classes and methods

involved in the implementation of Mashup Editor:

Figure 6-9.Mashup editor development UML diagram

86

Figure 6-9, explains the policies used in the class diagram: Each widget uses two libraries

(i.e. Dojo library and Jsplumb). Dojo library is used for data extraction. Jsplumb is used for

widget manipulation (User interface). Each widget uses events handlers to establish

communication between one another.

This section presented the visual composition layer (i.e., Mashup Editor) together with it

components; screenshots were presented to show the user interfaces and the pictorial view of

the proposed system. As the Mashup engine is in charge of executing request made in client

side and return responses back to the client side in an amenable way (i.e. JSON format). The

next section presents the research tools and libraries that were used to develop the proposed

Mashup Tool.

6.6 Research Implementation Technologies

The Mashup tool consists of three layers represented by SAE, Mashup engine and the

Mashup editor, with a specific focus on discovery and semantic annotation, composition, and

UI provisioning respectively (see Figure 5-2). The project was implemented in Java. On the

server side JSE and Java Servlets were used to create the server. On the client side JSP, CSS,

HTML and JavaScript‘s were used. The discovery and semantic annotation layer were

developed using the server side technologies, while composition layer was developed using

both server-side and client-side technologies. The rest of this chapter focuses on

implementation on each of the aforementioned layers.

Figure 6-10.Development Structure

87

i. Java is an object-oriented computer programming language, and it is specifically

designed to have as few implementation dependencies as possible. The code that runs

on one platform does not need to be recompiled to run on another. Java is simple,

familiar, secure, architecture-neutral and portable.

ii. Ontology tools: Jena is a Java framework for building semantic web applications. It

provides extensive Java libraries for helping developers develop code that handles

RDF, RDFS, RDFa, OWL and SPARQL. Jena includes a rule-based inference engine

to perform reasoning based on OWL and RDFS ontologies, and a variety of storage

strategies to store RDF triples in memory or on disk.

iii. Sesame is an open source Java framework for storing, querying and reasoning with

RDF and RDF Schema. It can be used as a database for RDF and RDF Schema, or as

a Java library for applications that need to work with RDF internally. Sesame

provides the necessary tools to parse, interpret, query and store information. More

generally; Sesame provides an application to developers as a toolbox that contains

useful functionalities to manipulate RDF.

iv. CSS: is a simple mechanism for adding style into web pages (e.g., position, colours,

size), and it is a way to style and present HTML. HTML is the meaning or content,

which is presented using style sheet.

v. AJAX: is an important front-end technology that lets JavaScript communicate with a

web server. It allows website to load new contents without leaving the current page,

by that it creates faster and better experience for user.

vi. JavaScript (JS) is a dynamic computer programming language. It is most commonly

used as part of web browsers, whose implementations allow client-side

scripts to interact with the user, control the browser, communicate asynchronously,

and alter the document content that is displayed.

It is also being used in server-side

programming, game development and the creation of desktop and mobile

applications.

a. Dojo toolkit is an open source modular JavaScript library designed to ease the

rapid development of cross-platform, JavaScript/Ajax-based applications and

web sites.

b. jsPlumb provides a means for a developer to visually connect elements on

their web pages. It uses SVG in modern browsers, and VML on IE 8 and

below.

88

c. Jquery jQuery is a cross-platform JavaScript library designed to simplify

the client-side scripting of HTML.

jQuery is the most popular JavaScript

library in use today.

This section discussed the technologies that were used to implement the proposed Mashup

tool. The next section presents the chapter summary.

6.7 Conclusion

This chapter detailed on how the system components were implemented. Furthermore, the

section also outlined how the composition modules were integrated (i.e. how the

communication was established). Three components were addressed which played an

important role in the establishment of communication with both the web and the Mashup

tool. Lastly this section presented the technology review to describe what software‘s and

libraries were used to implement the proposed Mashup tool.

The next part of the research focuses on the evaluation and conclusion of the research.

89

Part IV: Experimentation and Research summary

90

7 Chapter 7: Experimentation and Discussion

7.1 Introduction

This chapter presents the tests that were conducted to evaluate the effectiveness of the

proposed Mashup tool. Furthermore, it details on the types of tests that were conducted (i.e.,

usability testing and acceptance testing). Thereafter the results obtained from the tests are

analysed, interpreted and discussed.

7.2 Validation Process

As it is already outlined that the validation process undertakes two types of tests to evaluate

the system, this section presents how the evaluation of the proposed Mashup tool was

conducted. With the main research question being how to design a usable Mashup tool that

targets novice users, usability testing is conducted to determine whether the implemented

Mashup tool is usable and suitable for novice users. While acceptance testing is conducted to

evaluate novice user‘s attitude, preferences and behaviour towards the Mashup tool proposed.

Figure 7-1 illustrates a condensed view of the evaluation process:

Figure 7-1.Validation process

For each test, the following aspects are discussed:

i). Why choose the type of test?

ii). What methodology was used to achieve it?

iii). What were the results?

Thereafter the research compares the results obtained from the two conducted tests with the

findings obtained from the pre-evalaution study presented in Chapter 4 and in Appendix B.

Furthermore the results obtained are analysed and interpreted.

Acceptance

(Interview, Focus

group)

Usability

(SUS)

91

The next section focuses on the usability tests conducted, as it is the main objective of this

research to implement a usable Mashup tool.

7.3 Usability Testing

This section presents the usability of the proposed tool using the SUS to determine the

success of the proposed Mashup tool, where all of its modules had been integrated. This type

of test is conducted to evaluate the usability of the system, as the research topic stated that the

aim of this research is to enhance the usability of SOA services for novice users. Usability

test is conducted since it measures the extent to which users can use a system. The proposed

Mashup tool usability was measured using a SUS. Furthermore the research employed a

UCSD, that means that the Mashup tool was design with users in mind, and also the user‘s

needs towards usability of SOA services are the central focus of the research (Preece et al.,

1994).

7.3.1 Methodology

The SUS scores are between 0 and 100, and they are analysed using percentiles. Percentiles

are useful for giving the relative standing of an individual in a group, and they provide

normalized ranks. A SUS score of 68 (a usability threshold) signifies that a system is usable

to its users (Brooke, 2013). The SUS is a simple, ten-item scale giving a global view of

subjective assessments of the system‘s usability. The respondents were trained on how to use

the proposed Mashup tool (i.e., they had an opportunity to interact with the system before the

evaluation process). During the evaluation process 12 respondents were allowed to interact

with the proposed Mashup tool, thereafter before any discussion took place, the respondents

were asked to record their immediate response to each item (a SUS questionnaire found in

Appendix B). The 12 postgraduate students were from the same institution as researchers and

the ethical clearance certificate was obtained from the university (found in Appendix A). The

respondents used were from Faculty of Social Sciences (with 4 of them masters, 8 of them

being honours students). The purpose of the SUS was to determine the usability and

learnability of the Mashup tools.

7.3.2 Findings of SUS

Using twelve respondents and normalizing user‘s response, the following were the obtained

SUS scores.

92

Table 7-1.SUS score in each question from 12 users

Disagree Undecided Agree

Q1 2 4 6

Q2 7 2 3

Q3 5 3 4

Q4 8 1 3

Q5 2 2 8

Q6 10 1 1

Q7 8 1 3

Q8 6 4 2

Q9 5 1 6

Q10 10 2

The table above shows the response from the users, for each question in the SUS. Since the

SUS has ten question, each question is denoted by Qn for n= 1...10 (i.e., it can be found in

appendix B). The purpose of this table is to map user‘s attitudes and behaviours towards the

proposed Mashup tool. Figure 7-2, shows the frequency of users who disagreed, in-between

and agreed, for each question:

Figure 7-2.Frequency of users SUS question responses

In Figure 7-2 above, it can be seen that there were users who were in-between (i.e.,

undecided) for all the questions except last question (i.e., question 10) while in other ones

93

they agreed or disagreed. For instance question 1, it can be noted that 6 of the users showed

that they would enjoy using the system frequently and that they were satisfied with how the

system operated. Moreover, for question 2, only 3 users disagreed that the proposed tool was

simple and intuitive, the rest found the system simple while 7 of the users found the system

simple and properly designed. Furthermore, for all the question users responses were

positive; they showed that the proposed Mashup tool was usable and acceptable to them. For

question10, which is the question on learnability of the system, the respondents showed that

there was not much to learn recording a total of 10 out 12. Table 7-2 presents the normalized

SUS scores of the proposed Mashup Tool:

Table 7-2.SUS scores of proposed Mashup tool

Users Score SUS score=score*2.5

1 24 60
2 29 72.5
3 33 82.5
4 32 80
5 30 75
6 27 67.5
7 33 82.5
8 29 72.5
9 29 72.5
10 25 62.5
11 21 52.5
12 34 85
sum 865
Overall SUS score 72.08

The obtained SUS scores is 72.08 as presented in Table 7-2. The obtained SUS score is above

the general threshold of SUS (i.e., 68), and that signifies that the proposed Mashup tool is

usable to novice users. Furthemore the obtained SUS scores are analyzed using the following

five-number summary:

Table 7-3.Five Whisker terms

Table 7-3 above table shows the five numbers for plotting a whisker. It can be noted that the

median is 72.5, which means the middle number of the score is 72.5. The median show that

most of the scores were positive. The standard deviation was calculated to be 7.71, which

Standard Deviation Mode Median Min Max First Quartile(Q1) Third Quartile(Q3)

9.99 72.5 72.5 52.2 85 62.5 82.5

94

signifies the spread of scores from the mean (72.08). It means that the scores can range from

(62.09, 82.07) which shows positive results since most of SUS fall inside the box. They yield

the following Whisker and a Box:

Figure 7-3.SUS scores Box of Whisker

The above diagram (Figure 7-3) shows the measure of usability of the proposed Mashup tool

against users SUS scores. It can be noted from the diagram 25
th

 percentile is 62.5, which

means that 25% of the individual SUS scores are below 62.5 and 75% of the scores are above

62.5. It shows that most users were happy with system usability. The interquartile range is 20,

which signify the difference between 25
th

 and 75
th

 percentile. The lower quartile range shows

that 10 out of 12 scores where inside the box (i.e. they were between 25
th

 and 75 percentile).

As it was discussed in the literature that for system to be usable it must have attained a SUS

score of 68 and above, the SUS score of the proposed tool was 72.08 which above the

average SUS score. These results signify that the proposed Mashup tool was usable to novice

users. The following section evaluates the acceptability of the system.

7.4 Acceptance Testing

This section presents the acceptance testing that was used to evaluate whether the proposed

system was acceptable to novice users. The acceptability of the system was evaluated using

interviews and focus groups to describe the user‘s behaviours, desires and reactions to the

proposed Mashup tool. These research methods were used as a justification technique

towards the usability of the proposed Mashup tool.

7.4.1 Methodology

This section presents the methods that were used to test the acceptability of the system. In the

evaluation process users were given the following scenario:

95

Case scenario: As a user who is computer literate, but not having programming skills but

you are eager to use the internet to gain and share information. You have heard about the type

of web application that makes accessing different web resource easy, namely Mashups. You

are then asked to create a Mashup application. You have been promised that an initial training

will be conducted to get you started. How will you go about creating your Mashup

Application?

The purpose of this study was to validate the system acceptability and usability. The

interview questions are discussed in the next subsection.

7.4.1.1 Interviews

For the interview 15 respondents were used (including the 12 students from the Faculty of

Social Sciences that were used in usability test) there 3 students were given training. As all of

the users in the interview sessions were trained prior the interview the following question

were asked during the sessions:

(Q)1 Can you create your own Mashup application?

(Q)2 Are you able to discover web APIs? If yes then how?

(Q)3 Can you publish and semantically annotate Mashups?

(Q)4 Are you satisfied with design and usability of the system?

The above listing served as the follow-up questions of the SUS testing, the following results

were obtained:

Figure 7-4.Question 1 vs. user’s responses

The pie chart in Figure 7-4 above shows the results of the people that were involved during

interview sessions for question 1 (Q1). This was done to investigate the usability of the

interface. The results were positive, 67% of the interviewees demonstrated that they were

able to create Mashup applications while 33% found it difficult to create Mashup

96

applications. As the system was developed for novice users, with main purpose of the

Mashup tool being to allow them to create web application of their choice, the user interface

(i.e., Mashup editor) was easy and usable, however 33% of the users found the Mashup

Editors interface unnecessary complex.

Figure 7-5.Question 2 vs. user’s responses

Figure 7-5 gives an explicit detail of users‘ responses based on how they discovered APIs.

The results depicted by the pie chart shows that it was not easy for users to discover APIs on

the web. As a result 60 % of the respondents found the process time consuming and

frustrating whilst 40% of the respondents were able to discover APIs. However even though

40% of the respondents were not satisfied, the majority of the users were confused and not

satisfied (i.e. did not know where to start).

Figure 7-6.Question 3 vs. user’s responses

This question was used to check whether the users were able to publish and semantically

annotate web APIs using SerPro API editor. According to users response annotating web

APIs was easy and enjoyable as compared to discovering APIs, and 53 % of the respondents

found annotating web API easy while 47% could not semantically annotate web APIs.

97

Figure 7-7.Question 4 vs. user’s responses

This was the last question and it was used to check the overall response of the users towards

the proposed Mashup tool. The user‘s response showed that the system was effective and

satisfying, 73% of users were happy with the design of the system. Although 27% of users

were not satisfied since they found the API editor more error-prone (i.e., they were making

many mistakes).

This subsection presented results from the interview; the next subsection focuses on the focus

group session.

7.4.1.2 Focus Group

In the focus group, the above scenario was given to 6 students (of 3 were undergraduates and

the rest postgraduates). All the above subjects were from the Computer Science department.

They were asked to create a simple Mashup application using iTune and foursquare APIs,

thereafter to discover their APIs of choice and annotate them. The following aspects were

used as the key points in each task to evaluate their effectiveness in the proposed Mashup

tool:

i. Mashup editor: widgets, piping, tree-views, select boxes.

ii. SerPro API Editor: highlighting, button-click, chrome-plugin, compatibility.

iii. Discovery: programmable web, web engines, ontology-base repositories.

In the focus group the following questions were used:

(Q)1 Is the proposed tool conforming to what it promised?

(Q)2 Do the added support improve usability of Mashup tools?

(Q)3 To further improve usability of Mashups, what can be added?

The results obtained from the focus group are presented using two sections; Mashup Editor,

and API Editor and discovery.

98

Mashup editor

All the users enjoyed drag and drop together with wiring widgets, as they mapped it to a

game (―referred to as snake‖). Several users (i.e., 4 out of 6) also recommended the use of

select boxes to populate widgets response when piping. As they insisted that, it was easy and

less error-prone since users only had to choose from what exists than having to use filters that

were used by its counterparts. For all of them (6 user) it was the first time they created a web

application in a simple and intuitive manor.

API Editor and Discovery

The entire focus group respondents enjoyed annotating web API using SerPro API editor, as

it was configured as a Google chrome plugin; they found it well designed in terms of

extracting HTML information to a well-defined RDF form that is populated in the Mashup

editor. Although they were fascinated by SerPro API editor the use of click-button was error-

prone to them, as they were arguing on what if a certain users highlights wrong items or

inappropriate web content and add it as API property (i.e., name, method, etc..) since most of

them were not aware of REST style architecture. Furthermore (4 of 6) respondents

recommended the use of a smart and intelligent discovery of web APIs. Moreover, they

insisted on providing the platform in other execution environment such as mobile devices,

since they believed that such initiative can enable a wide adoption of Mashups.

7.4.2 Findings

This subsection interprets and summarizes the results obtained from the interview processes

and focus group session. In general, respondents were satisfied with their experience in

creating Mashups (as a results 73% of them were satisfied with how the Mashup Tool was

designed), and they were eager to share their observations. As the main research hypothesis

has stated that a semantically enriched Mashup tool that can compose, discover and annotate

publicly available web APIs, can actually improve the usability of SOA services for novice

users. The acceptability tests conducted showed that the proposed system is acceptable to

novice users, which served the notion that: if the novice users can use a system then all types

of users can.

This section discussed the acceptability of the proposed Mashup tool. Two methods were

used: interview and focus group. The aim of using interview was to get the quantitative

measure on the system acceptance while focus group was used to obtain the users attitudes

towards the system components. This section showed that the proposed Mashup tool was

99

acceptable to novice users although they were not satisfied with the design of the other

components (such as discovery component).

The next section presents the comparison of Mashup tools.

7.5 Comparison of Mashup tools

This section presents a comparison study of the proposed Mashup tools together with the

existing Mashup tools (discussed and summarised in Appendix B). This section presents the

evaluation of results presented in the aforementioned tests. The comparison is conducted

using the usability metrics formulated in (Chapter 4), also referred to as system usability non-

functional requirements and the SUS scores. Thereafter an evaluation of functional

requirement is also discussed.

7.5.1 Research Usability Attributes

This section presents the comparison study of Mashup tool based on the formulated research

usability attributes namely: familiarity, workflow-visibility, customizable-design, error-

handling and system documentation. Table 7-4 presents a comparative table based on the

analyses conducted amongst various Mashup tools together with the proposed Mashup tool

and the formulated usability attributes presented in (Chapter 4). In Table 7-4 below ―X‖

signifies that the Mashup tool supports a usability attribute and “-” means that the Mashup

tool does not supports a usability attribute.

Table 7-4.Comparison Analysis

 Familiar Workflow-

visibility

Customizable-

design

Error handling System-

documentation

Microsoft Popfly X - X X -

Yahoo Pipes - - X X -

Intel Mashmaker X - X - X

MobiMash X - - - X

Marmite - X X X X

Dapper X X X - X

SerPro X X - X X

According to literature survey in (Section 4.3.2.1), Table 7-4 presents the usability attributes

that are the key determining factors of usability in Mashup tools, and each attribute is

discussed in the following subsections.

100

7.5.1.1 Familiarity

The proposed Mashup tool was least surprising since the users understood the wiring of the

different widgets, and enjoyed using the proposed to an extent they thought of it as game. The

drag and drop user interface functionality was enabled, and users were able to drag items

from the JSON tree view to the widgets (as shown in Figure 6-8). Its user interface was easy

to use and unnecessary components were not provided in the Mashup editor. Similarly,

Dapper and Microsoft Popfly are familiar, since they were form-based and widget-based,

respectively. Moreover Dapper used a form wizard to create Mashups. Although Yahoo!

Pipes and Marmite were widget-based and form-abased, respectively; they were not familiar.

In Yahoo! Pipes the dragging and dropping of widgets is appealing but when it comes to the

process of creating Mashups, users found it unnecessary complex; since users had to fill in

URLs before they could execute the Mashup applications.

Furthermore, Intel MashMaker and MobiMash are familiar to users although Intel

MashMaker is browser extension and MobiMash is template-based. Moreover users found

MobiMash to be familiar since it was a mobile based Mashup and since mobile devices and

smartphones are gaining wide popularity around the world. While Intel Mash Maker gathered

user preference based on the site users visit in order to extract and compose services, the use

of the ―already gathered info‖ looked appealing to users.

7.5.1.2 Workflow-visibility

The visibility of task being executed was provided in the Mashup editor. Users are able to see

all the tasks that are currently being executed. Moreover, a GUI web interface to add services

and annotate service was provided using SAE and Sesame server, where users were able to

see the results of annotated web API documentation form plain HTML documentation.

Similarly, Dapper and Marmite provided the workflow, since it displayed to users all the

tasks that were executed, although some of the tasks were hidden, and also since they have

form-based fields and buttons; every task executed was visible to the users, as they knew

where button clicks would direct them.

Whilst Yahoo Pipes and Microsoft Popfly did not provide a sequence of tasks being executed

and only displayed visual elements that represent its components - users enjoyed using them.

Furthermore, Intel MashMaker was not visible since even the manner it created Mashup

applications was based on user preferences that is usually derived from the users web browser

history, users only see buttons to execute the Mashup without knowing the design of the

101

underlying Mashup application. Lastly, MobiMash was not visible because of its template-

based nature; the composition process did not provide sequence of tasks being executed.

7.5.1.3 Customizable-design

A partial technique to make the system customizable was included in design of the proposed

Mashup tool, moreover users were able to add their own components, and ambiguous

components were handled. However the users found the proposed tool not customizable since

it was unnecessary hard for them to discover and annotate web API, as a results in question 3

and 4 of the interview (in Section 7.4.1.1), 60% user could not discover web APIs and 43%

of the respondents could not annotate web API. While Dapper and Microsoft Popfly are

customizable since the Mashups created using them can be crafted to other platforms, for

instance, Mashup applications created using Dapper could be used in the Netvibes and

iGoogle. Moreover, Microsoft Popfly is customizable since it is also able to use Mashup

created using other Mashup tools as its components.

Similarly, Yahoo! Pipes is customizable since it could use variety of web resources such as

feeds (e.g. ATOM, RSS) and web sites, although it is not compatible with Mashup

applications created using other Mashup tool. Furthermore, Marmite and Intel MashMaker

are customizable in the sense that users were able to do different operations since their

process of creating Mashups was semi-automated and browser based. Moreover they relied

on the community defined extractors to extract data from various sources (i.e., structured and

unstructured). Lastly, MobiMash is not customizable, since its templates are predefined,

which reduced it dynamic adaptability of data from different web contents.

7.5.1.4 Error-handling

A minimally error-prone and error handling design was addressed in the proposed Mashup

tool and errors were reduced. In case an error took place, it is handled peacefully by alerting

the users that an error has occurred, and what the cause of the error was (as shown in Figure

6-8). In Dapper and Marmite there was no error handling technique employed, since it was

less error-prone according to users. Similarly, Microsoft Popfly employed error-handling

mechanism since users did not have to fill in anything rather they were selecting, dragging

and dropping, and wiring blocks. Moreover, Yahoo Pipes had a mechanism of handling

exception. When an error occurred, it provided a feedback to the user. Even during the piping

of widgets, it alerted users of compatible and incompatible widgets when connecting them. In

Intel MashMaker no error handling mechanism was employed, and even if an error handling

102

mechanism was employed, it is unlikely that users could make errors as it is browser-based

extension.

7.5.1.5 System-documentation

Documentations deals with how long a user‘s is required to read before using the proposed

Mashup tool. During the evaluation trainings, respondents were able to grab the sequence of

steps needed to complete a task. Therefore, the proposed tool was easy to learn. Moreover,

Dapper provided documentation, since the users were guided throughout the process of

creating Mashups without having to read a tutorial. Similarly, Marmite, MobiMash and Intel

MashMaker were documented with short and brief instruction since users had to do little to

get going. Whilst Yahoo! Pipes provided the documentations, respondents were still

confused; as a result, it was useless to users (not because of the functionality offered rather

the complexity that was involved). This is in contrast to Microsoft Popfly that did not provide

documentation but users found it easy to use.

This subsection discussed the comparison of Mashup tools based on the usability attributes

formulated in this research; the next subsection presents a comparison of SUS scores.

7.5.2 SUS

The above subsection (Section 7.5.1) discussed the usability dimensions of the research; this

section presents a comparison of the studied Mashup tool using tables and graphs. Table 7-2,

summarizes the obtained SUS scores in this research:

Table 7-5.SUS score of Mashup tool

Mashup tool SUS score

Microsoft Popfly 48.33

Yahoo Pipes 40.21

Intel Mashmaker 52.92

MobiMash 45.58

Marmite 57.29

Dapper 42.92

SerPro 72.08

Table 7-2 depicts that the proposed Mashup tool scored a greater SUS than its competitors,

since its design and was adopted from its counterparts. As it has already been outlined that

the minimum threshold SUS score= 68 (the SUS scores for the mentioned tool can be found

in Appendix B), Figure 7-8 presents a line graph of SUS scores:

103

Figure 7-8.Mashup Tool Comparison

From Figure 7-8 it can be noted that the browser based extension (i.e., Intel Mashmaker and

Marmite) scored a great SUS as compared to widget based (Microsoft Popfly: 48.33,

MobiMash: 45.58 and Yahoo Pipes: 40.21) and form based (Dapper: 42.95) as categorized in

(Section 4.3.2.1). This is because browser extension Mashup Tools were less error-prone, as

compared to widget based were users encountered a lot of errors especially Yahoo! Pipes.

The proposed Mashup tool scored a great score as compared to its counterparts, since

different prototype were develop and a SUS score of 60.83 was obtained for the second

prototype while a SUS score of 72.08 was obtained for the final prototype. The proposed tool

was also widget based, but why did the users enjoyed it as compared to the other ones? This

question is answer by the following paragraph.

It can be noted that between the SUS scores and research variables there was insignificant

correlation. Some of the Mashup tools posed more than one research variable but their SUS

scores were low (e.g., Dapper, posed 4 research variables but SUS score was 42.92). It can be

concluded that the ease of use in a Mashup tool depended on its interaction technique.

Furthermore, the proposed tool was familiar to respondents as Microsoft Popfly and Yahoo!

Pipes inspired it; the researchers adapted some of the design techniques from them. For

instance, the use of select boxes in the proposed Mashup tool was adapted from Microsoft

Popfly, moreover the drag and drop functionality of widgets was adapted from Yahoo! Pipes.

Therefore, it was expected for the proposed tool to be usable since before it was designed a

pre-evaluation study was conducted to identify strengths and weaknesses encountered by the

currently existing Mashup tools. The next sections further discuss the research findings.

104

7.6 Discussion

As the research hypothesis stated that a semantically enabled Mashup tool that can compose,

annotate and discover web APIs can improve the usability of SOA services for novice users,

the research is discussed using two sections: composition style, and semantic web

technologies, to interpret and determine effectiveness of the system components.

7.6.1 Composition Style

This section discusses how the users perceived the composition layer. The respondents

enjoyed the drag & drop functionality, particularly the information on what to see and do.

Several respondents as shown in (Section 7.4.1.1) liked the piping of widgets and the

visibility of the response, which was displayed in select boxes. Furthermore, 67 % of the

respondents were able to create their Mashup applications. The composition layer was easy

and appealing to users, because of the widget design and response handling mechanism.

Moreover, the users liked the display of pre-defined APIs as shown in left side of Figure 6-8.

7.6.2 Semantic Web Technologies

In order to discover or semantically annotate web APIs most users needed assistance. Half of

the observed users were not aware of what Mashups are and what their purpose is. According

to users behaviour the Mashup discovery process was inconsistent. The results showed that

most users did not prefer the technique used to discover APIs in the web, as they were saying

it was not easy to use. Even if the users showed that it can be quick and easy to learn Mashup,

they were so frustrated since they said it was unnecessary hard to use them. Although it was

simple to add APIs to the Mashup tool, 60% of the users encountered errors and were

complaining that it was time consuming to discover and annotate web APIs. As a result, they

preferred using programmable web to discover web APIs since it provides them with all the

API details needed in order to add APIs to Mashup editor, rather than using search engines.

This is because the annotation and discovery layer were designed with novice users being the

central focus, and that might have limited the functionality and resulted in complexity.

Furthermore, the discovery and annotation of web resources is still a major challenge that

affects web developers, especially when the targeted group are non-technical users. The

research limitations and challenges are discussed in (Section 8.4).

7.6.3 Usability of SOA Services

The main aim of this research is to enhance the usability of SOA services for novice users,

this section outline the key factor of Mashup tools usability. As this research employs

105

Mashups as the transport layer to enhance the usability of SOA services for novice users, the

findings in (Section 7.5) revealed the following attributes as the most influential to the system

usability:

i. Customizable: transparency and visibility were the key requirements observed.

Allowing users to interchange Mashup applications greatly improves usability.

ii. Familarity: deals with consistency of the Mashup tools from one Mashup tool to the

other. Since Mashups are web application, they should be adopt the similar style even

though they create a composite applications.

iii. Documentation: having a easy to learn Mashup documentation and less complex

process during the composition of Mashup tool.

Furthermore, according to the findings from the focus group and interviews (in Section 7.4),

participants pointed programming skills as the key determinant to the creation of the

Mashups. While participants had their different values and behaviours towards system

components, the collected data also suggested the explored factor that leads usability of

Mashup tools were the following:

i. Discovery: which deals with how the users discover APIs.

ii. Annotation: discovering APIs is not enough without given them a meaning and a

common understanding, especially REST services. Allowing API to have a common

understanding amongst each other can result in a smooth integartion of services.

iii. Composition style: the composition style used like widgets and use of select box

inside widgets, was also key to the succes of Mashups

Even though the proposed Mashup tool did not address some usability attributes such as

customizability, it scored a SUS score of 72.08, which is greater than threshold score to

regard a system as usable to user. One of the challenge that made the proposed Mashup tool

not usable, was the discovering technique used. It was manual and needed technically

equipped users. The focus group was conducted using respondents from the Computer

Science department (i.e., users with technical skills) and the results showed that the Mashup

Editor was usable but the discovery layer and annotation method used was unnecessary

complex and error-prone according to their response. They recommended an intelligent

discovering tool that will hide the complex of semantic web technologies at the same

facilitate ease of use. Does the proposed Mashup tool enhance the usability of SOA services?

This question is answered by the following paragraph.

106

This research enabled novice users to utilize SOA services (with a particular focus on REST

services) via the proposed Mashup tool. The key role played by the Mashup tool was to hide

the complexity of SOA services so that, novice users are able to utilize SOA services with

ease. That allowed novice users to use SOA services without worrying about the underlying

technicalities. In the future, SOA services such as (SOAP) will be included in the proposed

tool, to enhance the use of Mashups in the global scale of SOA.

Overall the findings signify that the proposed Mashup tool was usable to novice users and

enhanced the usability of SOA services, since it was efficient, effective, less error-prone, easy

to learn and engaging with the users as argued by Quesenbery (2003), in the literature survey

(Section 2.10.2), although challenges and limitation were encountered.

This section discussed and interpreted the results obtained from usability, acceptance testing,

and comparison study of the proposed Mashup tool. The next section summarizes this

chapter.

7.7 Conclusion

This section presented the testing processes undertaken to validate the proposed system. The

usability and acceptance test were conducted, with the purpose of validating whether the

different components mentioned in the design architecture and implementation adheres to the

research goals. The comparison study was conducted to compare the proposed Mashup tool

to its counterparts. Focus group was used to gather user‘s preferences and behaviour towards

the Mashup tools. Furthermore, the interviews were conducted to test on whether the users

accept the proposed tool or not. Lastly based on different methods used to evaluate the

proposed Mashup tool, the results obtained were analysed, interpreted and discussed. The

next section presents research summary, research challenges and the conclusion of this

research.

107

8 Chapter 8: Research Conclusion

8.1 Introduction

This chapter discusses and concludes the usability of Mashups for novice users. Furthermore,

it reviews some of the limitations and problems that were encountered during research and

discusses the research achievements and future work. Moreover, it presents the overall

conclusion about the research. The next section discusses the use of Mashup and Restful

services, as compared to their alternatives.

8.2 Research Summary

Why the research has chosen Mashups as the key enablers of service provisioning? Mashup

tools are explicitly designed for sharing and reusing. Mashup tools are useful for diverse

areas and can support a great variety of input and output data types, from structured XML

and semantically rich RDF. These tools in general have intuitive designs and easy-to-use web

interfaces that require little training for beginners, and creating web applications using them

is easier than writing a code in a particular language. Following is the diagram showing how

APIs have emerged in the past 8 years.

Figure 8-1.Growth of web APIs (ProgrammableWeb, 2014)

With plethora of web APIs, why the research has chosen Restful web services over SOAP and

others? Web services are there to give web developers the ability to create the best web-

based applications in the shortest amount of time. There are two approaches for interfacing to

the web with web services, namely SOAP and REST. Both approaches work, both have

108

advantages and disadvantages to interfacing to web services, but it is up to the web developer

to make the decision of which approach may be best for each particular case. One of the

benefits of using RESTs in the research was due to its ability of exposing public API over the

internet and the handling CRUD operations on data. REST is focused on accessing named

resources through a single consistent interface. SOAP brings its own protocol and focuses on

exposing pieces of application logic (not data) as services. SOAP exposes operations. SOAP

is focused on accessing named operations, each implement some business logic through

different interfaces. REST provides true web services based on URIs and HTTP methods, but

both technologies can be mixed. REST is very easy to understand although it lacks the

standards for documenting its services (restful services.).

Since REST uses standard HTTP, it is much simpler in just about every way. Creating clients,

developing APIs, the documentation is much easier to understand and there much that REST

does not do easier/ better than SOAP. REST permits many different data formats whereas

SOAP only permits XML. While this may seem like it adds complexity to REST because

there is a need to handle multiple formats, from this research point of view REST has actually

been quite beneficial since JSON usually is a better fit for data and parses it much faster.

REST allows better support for browser clients due to its support for JSON. REST reads can

be cached, SOAP based reads cannot be cached. For instance, Yahoo uses REST for all their

services including Flickr. Amazon and EBay provide both though Amazon‘s internal usage is

nearly all REST. Google used to provide only SOAP for all their services, but in 2006, they

deprecated in favour of REST. As shown above, each technology approach has their uses.

They both have underlying issues around security, transport layers, and the like, but they both

can get the job done and in many cases, they each bring something to the web.

Why incorporating SOA and SWS technology in the proposed tool? As SOA, advocates the

development of complex distributed applications based on the reuse and composition of

existing functionality offered as services. Essential to this vision are the publishing and

discovery of services (i.e. Restful services). Number of repositories has been created to this

but they have failed to provide suitable support for publishing and querying services in

expressive and extensible manner. The web of data had proposed a set of principles that

actually represent the current best practices for publishing data on the web in a machine

processable manner. IServe builds upon these principles and uses them as its core what we

refer to as the Minimal Service Model, a minimal vocabulary for describing services in RDF,

which abstracts away the original approach used for annotating the services, such as

109

SAWSDL, WSMO-Lite and MicroWSMO. The Minimal Service Model provides a simple

common ground for describing both WSDL services and Web APIs in RDF in a way such

that developers for simple service matchmaking based on SPARQL can directly use it.

In further realizing the vision and the main aim of this research, developers design less

complex and less programming skills demanding tools. Moreover giving the services

available online back to novice users in different parts of the country can improve the socio-

economic development in South Africa, Africa and the world as the whole. The next section

present on how the research objectives were accomplished.

8.3 Addressing Research Objectives

This section reflects on the research and outlines answers to the questions addressed in this

research. The main research question was how a usable Mashup tool that targets novice users

can be developed. The research was completed using the following main research hypothesis:

Semantically enriched web tool to discover transform and compose web contents of

public APIs (disparate service) can improve usability of SOA service for novice users.

With the main research question being stated, the following sections addresses how each sub

research questions together with sub research objectives was accomplished.

What impedes the usability of Mashup tools? This research question was answered by the

identification of usability shortfalls of the currently existing Mashup tools. Different

tools were compared in terms of their design, visualization and composition model. The

design referred to their architecture style, for instance client architecture or server

architecture. The visualization comprised of how the data was presented to end-users. Lastly,

composition model entailed workflow processes and how the composition was done. From

the pre-evaluation analysis model in (Section 4.3.2.1.), the findings showed that the users

were not happy with the user interface design of the existing Mashup tools. Six usability

metrics were formulated using the observed weaknesses of the current Mashup tool. Based

on the mentioned issues the first research question was answered. Research method like SUS

and focus group were used. The next question discusses how the identified issues were

addressed in the design of the proposed Mashup tool.

What are the different techniques for Mashup tool service composition? This research

question was answered by investigating service composition using Graphical Users

Interface. Using the comparative analysis of the existing Mashup tools (Section 4.3.2.1.), it

was realised that most of the tools used widgets as presentation modules to allow user to

110

remix web contents. The review of literature showed that there were three techniques used

when integrating web contents (Latih et al., 2011) namely: Visual Mashup editor, Browser

extension application and Web portal Mashup tools. A visual Mashup editor is a tool that lets

users create a Mashup application by manipulating program elements graphically rather than

by specifying them textually, for instance Yahoo Pipes let users to develop Mashup

applications via a visual editor by selecting a few modules and wire them together. This

research adopted the visual Mashup editor since novice users find these tools easy if they are

using graphics. Visual Mashup tool are the easiest type of tools and they involve users

throughout the process of service composition. This research question was answered through

the design and the implementation of the Mashup tool, which was presented in (Chapter 5

and Chapter 6), respectively. In the proposed architecture different modules were

encompassed to attain a usable Mashup tool (as dicussed in Section 5.1). Lastly, design

principles were also used as guidelines to attain a simple and intuitive Mashup tool.

As stated in the previous research question that most tools used widgets. The integration of

services contained web contents from different web resources to create new services

according to user‘s requests, by refining and combining only the necessary data. This process

depends on the support offered by Mashup tool, some Mashup tools are automated and some

are semi-automated. Literature shows that semi-automated composition was developed to

support End User Development of Mashup applications. EUD paradigms provide

programming capabilities for everyone by pushing on different aspects of computing

technologies. One of the EUD paradigms employed was wiring or dataflow. Dataflow

paradigm is where several selected widgets that support particular functions are connect

together for example in Yahoo Pipes. Each widget represents a particular function, users just

select it for use and they get response for example tools like iGoogle and Netvibes. The use

of widgets was appealing to users as the results showed from the focus group in (Section

7.4.1.2.)

This research question was answered by incorporating semi-automatic manner in the

proposed tool, since it supported widgets, which were used in the Mashup editor for

designing Mashup applications.

How can annotation and discovery of APIs be implemented, to achieve a smooth

composition? This question was answered by investigating a semantic technique to

match, select and annotate services. Most of the approaches that have been used to annotate

services resulted in models that were more complex, when using artificial branch to select

111

services that better fit a certain context. The use of SWS mitigates such challenges by

providing semantic annotations of services to support the application of automated machinery

to be able to reason about the functional and non-functional characteristics of services.

Literature mentioned semantic annotation of services, which deals with universal description

amongst different services can result in a smooth integration of services. Service composition

using SWS included the following steps namely: service description, service discovery,

service publication and service invocation, as discussed in (Section 2.3.1). These steps can be

summarized into selection and matching of appropriate services. The semantic approach of

the proposed tool is referred to as the homogenization layer and is presented in (Chapter 3).

The SerPro API editor was designed and implemented as discussed in (Section 5.3.). SerPro

API editor was used as a semantically annotating tool and Sesame repository was used as a

local discovery repository for the proposed tool. In (Chapter 3) different service description,

selection, and matching approaches were discussed, as a result, the API editor used SPARQL

to select and match services in the local Sesame server. The ontology to semantically

annotate REST web APIs was defined and created, and it can be found in (Appendix C).

How can semantic web technologies be utilized to improve usability of Mashups? This

question was answered by the implementation of API Editor and evaluating its

effectiveness. After integrating the API editor to the proposed tool there was an improving

although the composition process of the proposed tool was not that smooth, since the

discovery process was still manual and complex to novice users, nevertheless the SUS score

increased from 60.83 to 72.08 as discussed in (Section 5.1). Furthermore in (Section 7.4.1.1.),

interview question number two (i.e., Q2), showed that 60% of the user could not discover

REST web APIs whilst 40% of the users were able to discover API, this signifies that the

discovery of web APIS was a key component in determining the usability of Mashups.

Moreover interview question number three (i.e., Q3), showed that 57% of users were happy

with semantic annotation process and only 43% of users found the annotation tool

unnecessary complex.

In (Section 3.5), the semantic annotation tools requirements were reviewed from the literature

namely; usability, interoperability, annotation storages and support offered for annotation

process. This research semantic annotation tools (SAE) was interoperable in the sense that it

used RDF and Owl, which are semantic ontologies that construct data and services that are

machine-readable. The storage for annotated document is Sesame server, which is triple store

database that can store and query RDF data. Furthermore, the SAE offered manual support

112

for the process of annotating API documentation. As the previous paragraph outlined that

57% of the users enjoyed the semantic annotation tool, although there were challenges

encountered. This question was answered and showed that semantic web technologies to

discover and annotate web APIs can improve usability of SOA services for novice users, on

the bases that they are autonomous and support EUD.

The next section addresses some of the limitations and challenges encountered during the

research process.

8.4 Research Limitations and Challenges

A partial method to address the discovering and publishing web APIs was used and its

limitations and challenges are discussed. Furthermore, the rights or permission granted for

external users for the iServe and SWEET external applications were limited. As a results

annotating and discovering web APIs was done manually. The following were the challenges

encountered:

i. Due to time constraints learning (SWS) is the project on its own, because there is no

standard way of adding APIs, errors may arise.

ii. Constructing requests from API base URLs was a limitation since there was no

mechanism to keep track of the changes made to API documentation (i.e., there was

lack of a mechanism to link semantically annotated APIs documentation to original

API documentation). Security policies some site don‘t allow displaying their APIs

inside frame.

iii. Measuring usability also depends upon the users or the respondents used during the

evaluation process, the chosen respondents may have effect on the obtained results.

Furthermore the traing given to users, might have been limited as compared to their

mental capabilities.

iv. The research mostly employed user oriented evaluation methods (as it was trying to

target novice users). Not exploring other usability testing methods (such as Keystroke

Level Model) may have effect.

Mostly the usability was prioritized over other system testing methods, in the near future

performance and bandwidth tests might be taken into consideration. Testing the proposed

Mashup tool in different types of novice users was a challenge as some of novice users were

not aware of Mashups, so this might have limited the research findings in terms of the system

usability.

113

8.5 Research Contribution and Recommendation

The research provided a platform for provisioning service in ICT context. The Mashup editor

produced showed that novice users are able to create their own Mashup application with easy

and flexibility. Primarily APIs interfaces are designed and developed for programmers or

advanced users (i.e. users sophisticated with computer science skills), with the aim of

allowing web developers to utilize the already developed services. The web developer‘s

design what application logics to include in APIs and they do that differently especially

REST APIS, and that makes it difficult for machine users to use them since it is difficult

generalised the pattern in which they are deigned. In this research, a partial general pattern

(or standard) was designed and used to discover and annotate REST web APIs. Moreover, a

Mashup Editor that encapsulated API details inside widgets was developed and enhanced the

usability of SOA services for novice user.

With the rise of web 2.0 application, such Mashup, being applications that allow novice users

to share and communicate information on the web freely, demands are mounting to a level

that leaves web developers confused. All that is left to be done from the present moment is to

design and implement web tools that are customizable; in the sense that users are able to use

each other web applications and services. While services created could be accessed and

executed in different environments (for instance mobile phone and sharing amongst the

already existing Mashup Tools). Currently, the studies and tests conducted in this research

showed that not only novice users are not able to use the existing Mashup tools even the

advanced users with programming skills that reside in other domain within computer science

were not able to use them.

Furthermore, because novice users are aware of platforms and technologies used to create

online services, there is huge demand for developers to not only target developer when

developing APIs but to include designs that makes it easy for novice users to utilize their

services.

8.6 Future Work

The proposed Mashup tool enabled novice users to create their situational web applications,

which served a good purpose since the main aim of this research was to enable novice users

to create Mashups with no coding skills being required. Nevertheless, some of the users

encountered challenges when it comes to annotate and discover web APIs. As automated

annotation, tools to discover and select APIs are needed to inspire and attract wide audience

114

in Mashup tools for novice users. For the future work, an investigation to extend the API

editor to include automated features for extracting and semantically annotating APIs will be

conducted.

The next section discusses the overall conclusion of the research.

8.7 Conclusion

The different service provisioning techniques were reviewed. The research problem together

with research question and objectives were addressed. Solution to the research hypothesis

were formed, structured and analysed. Different prototypes (i.e., 3 prototypes) were

developed to achieve the research goal. A research philophy was used together with research

methods as the technique of the methodology. This research was interpretive, in the sense that

it interpreted the already working Mashup tools by identifying their shortfalls and later those

weaknesses were addressed to the proposed tool. The shortfalls assisted in the design and

implementation of usable tool such as the proposed one. The results showed that the proposed

tool was usable and acceptable to novice users. Furthermore, the proposed tool does not

require any skill of coding. The main research question was achieved through its sub-

questions, the proposed Mashup tool was usable to novice users, and that enhanced the

usability of SOA services for novice users.

The research showed that the usability of any web tool has to be viewed in terms of the

context in which it is used, and its appropriateness to that context. In general, it is impossible

to specify the usability of a system (i.e., its fitness for purpose) without first defining who are

the intended users of the system, the tasks those users will perform with it, and the

characteristics of the physical, organisational and social environment in which it will be used.

This research shows that well designed Mashup tool are usable to novice users. And that the

utilization of SOA services could be increased through Mashup tools for novice users, since

they hide complexity of APIs and focus on GUI elements to represent services. The overall

findings suggested that Mashup developer need to develop web tools that are usable, simple

and appealing to novice users in order to create web application (i.e., composite applications)

where there is a minimal development of web application.

115

Part V: Reference Material

116

References

Abras, C., Maloney-Krichmar, D., & Preece, J. (2004). User-centered design.Bainbridge, W.

Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publications, 37(4),

445-56.

Aghaee, S., & Pautasso, C. (2010). Mashup development with HTML5. In Proceedings of the

3rd and 4th International Workshop on Web APIs and Services Mashups (p. 10). ACM.

Ambite, J. L., Darbha, S., Goel, A., Knoblock, C. A., Lerman, K., Parundekar, R., & Russ, T.

(2009). Automatically constructing semantic web services from online sources (pp. 17-32).

Springer Berlin Heidelberg.

Anttonen, M., Salminen, A., Mikkonen, T., & Taivalsaari, A. (2011). Transforming the web

into a real application platform: new technologies, emerging trends and missing pieces.

In Proceedings of the 2011 ACM Symposium on Applied Computing (pp. 800-807). ACM.

Barbara F.(2005).ICT4D - Information and Communication Technologies for Development.

Available at

http://ictlogy.net/lo/01001/ict4d_course_barbara_fillip_at_courses.ictlogy.net.pdf [Accessed

13 February 2014].

Batard, F., Boudaoud, K., & Riveill, M. (2011). A middleware for securing mobile mashups.

In Proceedings of the 20th international conference companion on World wide web (pp. 9-

10). ACM.

Benhaddi, M., Baïna, K., & Abdelwahed, E. H. (2012). A user–centric Mashuped

SOA. International Journal of Web Science, 1(3), 204-223.

Benjamins, R., Contreras, J., Corcho, O., & Gomez-Perez, A. (2002). The six challenges of

the Semantic Web. Available at http://oa.upm.es/5668/1/Workshop06.KRR2002.pdf

[Accessed 20 April 2014].

Benslimane, D., Dustdar, S., & Sheth, A. (2008). Services Mashups. The New Generation of

Web Applications, 13-15. Available at

http://www.infosys.tuwien.ac.at/staff/sd/papers/ServicesMashups_IC.pdf [Accessed

September 2013].

Bertot, J. C., Jaeger, P. T., & Grimes, J. M. (2012). Promoting transparency and

accountability through ICTs, social media, and collaborative e-government.Transforming

Government: People, Process and Policy, 6(1), 78-91.

Blanchard, B. S., Fabrycky, W. J., & Fabrycky, W. J. (1990). Systems engineering and

analysis (Vol. 4). Englewood Cliffs, New Jersey: Prentice Hall.

Bolin, M. M. T. (2005). End-user programming for the web. Doctoral dissertation.

Cambridge: Massachusetts Institute of Technology.

Botta, R., & Bahill, R. (2008). Fundamental principles of good system design.Engineering

Management Journal. Citeseer.

http://ictlogy.net/lo/01001/ict4d_course_barbara_fillip_at_courses.ictlogy.net.pdf
http://oa.upm.es/5668/1/Workshop06.KRR2002.pdf
http://www.infosys.tuwien.ac.at/staff/sd/papers/ServicesMashups_IC.pdf

117

Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E., & Facca, F. M. (2006). A

software engineering approach to design and development of semantic web service

applications. In The Semantic Web-ISWC 2006 (pp. 172-186). Springer Berlin Heidelberg.

Brooke, J. (2013). SUS : A Retrospective. Journal Of Usabilty Studies, 8(2): 29–40.

Cao, J., Riche, Y., Wiedenbeck, S., Burnett, M., & Grigoreanu, V. (2010). End-user mashup

programming: through the design lens. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (pp. 1009-1018). ACM.

Cappiello, C., Matera, M., Picozzi, M., Caio, A., & Guevara, M. T. (2012). MobiMash: end

user development for mobile mashups. In Proceedings of the 21st international conference

companion on World Wide Web (pp. 473-474). ACM.

Cetin, S., Altintas, N. I., Oguztuzun, H., Dogru, A. H., Tufekci, O., & Suloglu, S. (2007). A

mashup-based strategy for migration to service-oriented computing. In Pervasive Services,

IEEE International Conference on (pp. 169-172). IEEE.

Chapin, N. (2010). Software characteristics of SOA projects. InProceedings of the 11th

International Conference on Product Focused Software (pp. 152-157). ACM.

Choi, O., Moon, S. H., Han, S., & Abraham, A. (2006). Intelligent Web Services System

based on Matchmaking Algorithm. WSEAS Transactions on Circuits and Systems, 5(8), 1166.

Collins, J., & Hussey, R. (2003). Business Research: a practical guide for undergraduate and

postgraduate students. New York: Paigrave Macmillan.

Dang, M. T., Dimitrova, V., & Djemame, K. (2007). Personalised mashups: opportunities and

challenges. User modelling. LNCS, 4511.

Daniel, F., Imran, M., Kling, F., Soi, S., Casati, F., & Marchese, M. (2012). Developing

domain-specific mashup tools for end users. In Proceedings of the 21st international

conference companion on World Wide Web (pp. 491-492). ACM.

Daniel, F., Rodríguez, C., Roy Chowdhury, S., Motahari Nezhad, H. R., & Casati, F. (2012).

Discovery and reuse of composition knowledge for assisted mashup development.

In Proceedings of the 21st international conference companion on World Wide Web (pp. 493-

494). ACM.

Di Fabbrizio, G., Okken, T., & Wilpon, J. G. (2009). A speech mashup framework for

multimodal mobile services. In Proceedings of the 2009 international conference on

Multimodal interfaces (pp. 71-78). ACM.

Di Pietro, I., Pagliarecci, F., Spalazzi, L., Marconi, A., & Pistore, M. (2008). Semantic web

service selection at the process-level: The ebay/amazon/paypal case study. In Web

Intelligence and Intelligent Agent Technology, 2008. WI-IAT'08. IEEE/WIC/ACM

International Conference on (Vol. 1, pp. 605-611). IEEE.

Duke, A., Stincic, S., Davies, J., Rey, G. Á., Pedrinaci, C., Maleshkova, M., & Mehandjiev,

N. (2010). Telecommunication mashups using RESTful services. In Towards a Service-

Based Internet (pp. 124-135). Springer Berlin Heidelberg.

118

Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., & Gandhi, P. (2007). Intel Mash Maker:

join the web. ACM SIGMOD Record, 36(4), 27-33.

Feier, C., Polleres, A., Dumitru, R., Domingue, J., Stollberg, M., & Fensel, D. (2005).

Towards intelligent web services: The web service modeling ontology (WSMO). Available

http://oro.open.ac.uk/23147/1/ [Accessed 16 June 2014].

Fisichella, M., & Matera, M. (2011). Process flexibility through customizable activities: A

mashup-based approach. In Data Engineering Workshops (ICDEW), 2011 IEEE 27th

International Conference on (pp. 226-231). IEEE.

Fowler, M. (2001). Is design dead?. SOFTWARE DEVELOPMENT-SAN FRANCISCO-, 9(4),

42-47.

Freudenstein, P., Buck, J., Nussbaumer, M., & Gaedke, M. (2007). Model-driven

Construction of Workflow-based Web Applications with Domain-specific Languages.

In MDWE.

Gulliksen, J., Göransson, B., Boivie, I., Blomkvist, S., Persson, J., & Cajander, Å. (2003).

Key principles for user-centred systems design. Behaviour and Information

Technology, 22(6), 397-409.

Hahmann, T.(2005). Workflow / Web Service Composition. Available at

http://www.spatial.maine.edu/~torsten/presentations/WorkflowComposition.pdf [Accessed

23 August 2013].

Halfond, W. G. (2010). Program analysis to support quality assurance techniques for web

applications. unpublished Doctoral dissertation, Antlanta: Georgia Institute of Technology.

Hom, J. (1998). The usability methods toolbox handbook. Fuente: http://www.

idemployee.id.tue. nl/gwm rauterberg/lecturenotes/UsabilityMethodsToolboxHandbook.pdf

(Consultado el 23-09-12).

Houde, S., & Hill, C. (1997). What do prototypes prototype. Handbook of human-computer

interaction, 2, 367-381.

Hwang, K. (1979). Computer arithmetic: principles, architecture and design. John Wiley &

Sons, Inc.

Ioannou, E. (2011). Entity linkage for heterogeneous, uncertain, and volatile data. Doctoral

dissertation, University of Hanover.

ISO, W. (1998). 9241-11. Ergonomic requirements for office work with visual display

terminals (VDTs). The international organization for standardization.

John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques:

Comparison and contrast. ACM Transactions on Computer-Human Interaction

(TOCHI), 3(4), 320-351.

Jones, M. C., & Churchill, E. F. (2009). Conversations in developer communities: a

preliminary analysis of the yahoo! pipes community. InProceedings of the fourth

international conference on Communities and technologies (pp. 195-204). ACM.

http://oro.open.ac.uk/23147/1/
http://www.spatial.maine.edu/~torsten/presentations/WorkflowComposition.pdf

119

Kenda, K., Fortuna, C., Moraru, A., Mladenić, D., Fortuna, B., & Grobelnik, M. (2013).

Mashups for the Web of Things. In Semantic Mashups (pp. 145-169). Springer Berlin

Heidelberg.

Kopecky, J., & Vitvar, T. (2008). Wsmo-lite: Lowering the semantic web services barrier

with modular and light-weight annotations. In Semantic Computing, 2008 IEEE International

Conference on (pp. 238-244). IEEE.

Koschmider, A., Torres, V., & Pelechano, V. (2009). Elucidating the mashup hype:

Definition, challenges, methodical guide and tools for mashups. In Proceedings of the 2nd

Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the Web at

WWW (pp. 1-9).

Krummenacher, R., Norton, B., Simperl, E., & Pedrinaci, C. (2009). Soa4all: enabling web-

scale service economies. In Semantic Computing, 2009. ICSC'09. IEEE International

Conference on (pp. 535-542). IEEE.

Küster, U., Lausen, H., & König-Ries, B. (2008). Evaluation of semantic service discovery—

a survey and directions for future research. In Emerging Web Services Technology, Volume

II (pp. 41-58). Birkhäuser Basel.

Latih, R., Patel, A. & Zin, A.M. (2011). The Design Of Block-Based Mashup Tool For End-

Users Mashup Applications Development. JATIT, 34(2): 215–225.

Lee, Y. J. (2013). Algorithm for Automatic Web API Composition. In WEB 2013, The First

International Conference on Building and Exploring Web Based Environments (pp. 57-62).

Lin, J., Wong, J., Nichols, J., Cypher, A., & Lau, T. A. (2009). End-user programming of

mashups with vegemite. In Proceedings of the 14th international conference on Intelligent

user interfaces (pp. 97-106). ACM.

Loton, T. (2008). Introduction to Microsoft Popfly, No Programming Required. Lotontech

Limited.

Loutas, N., Peristeras, V., & Tarabanis, K. (2011). Towards a reference service model for the

Web of Services. Data & Knowledge Engineering, 70(9), 753-774.

Ly, P. A., Pedrinaci, C., & Domingue, J. (2012). Automated information extraction from

Web APIs documentation. In Web Information Systems Engineering-WISE 2012 (pp. 497-

511). Springer Berlin Heidelberg.

Maleshkova, M., Pedrinaci, C., & Domingue, J. (2009). Supporting the creation of semantic

restful service descriptions. Available at http://oro.open.ac.uk/23106/1/paper6.pdf [Accessed

31 March 2014].

Malki, A., & Benslimane, S. M. (2012). Building Semantic Mashup. In ICWIT (pp. 40-49).

Available at http://ceur-ws.org/Vol-867/Paper5.pdf [Accessed 12 November 2013].

MapsMania. Available at http://googlemapsmania.blogspot.com/ [Accessed 5 June 2014].

Maué, P., Schade, S., & Duchesne, P. (2009). Semantic annotations in OGC standards.

Available at

http://oro.open.ac.uk/23106/1/paper6.pdf
http://ceur-ws.org/Vol-867/Paper5.pdf

120

https://portal.opengeospatial.org/modules/admin/license_agreement.php?suppressHeaders=0

&access_license_id=3&target=http://portal.opengeospatial.org/files/%3fartifact_id=34916[A

ccesed 16 July 2014].

Maynard, D. (2005). Benchmarking ontology-based annotation tools for the semantic web.

In UK e-Science Programme All Hands Meeting (AHM2005) Workshop on Text Mining, e-

Research and Grid-enabled Language Technology, Nottingham, UK.

Meditskos, G., & Bassiliades, N. (2011). A combinatory framework of Web 2.0 mashup

tools, OWL-S and UDDI. Expert Systems with Applications, 38(6), 6657-6668.

Mehandjiev, N., & De Angeli, A. (2012). End user mashups: analytical framework.

In Proceedings of the 2nd International Workshop on Adaptive Services for the Future

Internet and 6th International Workshop on Web APIs and Service Mashups (pp. 36-39).

ACM.

Miah, S. J., Debuse, J. C., Gammack, J., & Pigott, D. (2012). A Portal-Based Web Service

Development Using a Mashup Approach. In Proceedings of the Conference on Information

Systems Applied Research ISSN (Vol. 2167, p. 1508).

Momeni, E. (2011). Semantic Web-Based Integration of Heterogeneous Web Resources.

In AAAI Spring Symposium: AI for Business Agility.

Nestler, T., Feldmann, M., Preussner, A., & Schill, A. (2009). Service composition at the

presentation layer using web service annotations. In Proc. of the 1st Intl. Workshop on

Lightweight Integration on the Web (ComposableWeb’09).

Ngu, A. H., Carlson, M. P., Sheng, Q. Z., & Paik, H. Y. (2010). Semantic-based mashup of

composite applications. Services Computing, IEEE Transactions on, 3(1), 2-15.

Nielsen, J. (1994). Usability inspection methods. In Conference companion on Human

factors in computing systems (pp. 413-414). ACM.

Ogrinz, M. (2009). Mashup patterns: Designs and examples for the modern enterprise.

Pearson Education.

Olsen, W. (2004). Triangulation in social research: qualitative and quantitative methods can

really be mixed. Developments in sociology, 20, 103-118.

Onwuegbuzie, A. J., & Leech, N. L. (2010). Generalization practices in qualitative research:

a mixed methods case study. Quality & Quantity, 44(5), 881-892.

O'reilly, T. (2007). What is Web 2.0: Design patterns and business models for the next

generation of software. Communications and Strategies, 65(1), 17-37.

Papadakis, G., Ioannou, E., Niederée, C., & Fankhauser, P. (2011). Efficient entity resolution

for large heterogeneous information spaces. In Proceedings of the fourth ACM international

conference on Web search and data mining (pp. 535-544). ACM.

Patton, M. Q., & Cochran, M. (2002). A Guide to Using: Qualitative Research

Methodology. Medicins Sans Frontieres, UK.

https://portal.opengeospatial.org/modules/admin/license_agreement.php?suppressHeaders=0&access_license_id=3&target=http://portal.opengeospatial.org/files/%3fartifact_id=34916
https://portal.opengeospatial.org/modules/admin/license_agreement.php?suppressHeaders=0&access_license_id=3&target=http://portal.opengeospatial.org/files/%3fartifact_id=34916

121

Pedrinaci, C., & Domingue, J. (2010). Web services are dead. long live internet

services. SOA4All White Paper. Available at http://soa4all.eu/file-upload.html [Accessed 26

June 2013].

Pedrinaci, C., Lambert, D., Maleshkova, M., Liu, D., Domingue, J., & Krummenacher, R.

(2011). Adaptive service binding with lightweight semantic web services (pp. 233-260).

Springer Vienna.

Pedrinaci, C., Liu, D., Lin, C., & Domingue, J. (2012). Harnessing the Crowds for

Automating the Identification of Web APIs. In AAAI Spring Symposium: Intelligent Web

Services Meet Social Computing.

Philips, E., Carreton, A. L., Joncheere, N., De Meuter, W., & Jonckers, V. (2010).

Orchestrating nomadic mashups using workflows. InProceedings of the 3rd and 4th

International Workshop on Web APIs and Services Mashups (p. 1). ACM.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., & Carey, T. (1994).Human-

computer interaction. Addison-Wesley Longman Ltd.

ProgrammableWeb (2014). Fastest Growing Web API Categories. Available at

http://www.programmableweb.com/api-research Accessed [Accessed 5 June 2013].

Quesenbery, W. (2003). The five dimensions of usability. Content and complexity:

Information design in technical communication, 81-102.

Rajasekar, S., Philominathan, P., & Chinnathambi, V. (2006). Research methodology. arXiv

preprint physics/0601009. Available at http://arxiv.org/pdf/physics/0601009.pdf [Accessed

23 November 2013].

Rao, J. (2004). Semantic web service composition via logic-based program synthesis.

unpublished doctoral dissertation. Norwegian: Norwegian University of Science and

Technology.

Sabbouh, M., Higginson, J., Semy, S., & Gagne, D. (2007). Web mashup scripting language.

In Proceedings of the 16th international conference on World Wide Web (pp. 1305-1306).

ACM.

Sabou, M. (2006). Building web service ontologies. SIKS Dissertation Series, (2004-4).

Sarraj, weal al. (2012). A Usability Evaluation Framework for Web Mashup Makers for End-

Users.unpublished doctoral disseration. Belgium: Vrije Universiteit Brussel. Available at

https://wise.vub.ac.be/sites/default/files/theses/Wael_Al_Sarraj_PhD_WISE_VUB_2012.pdf

[Accessed 19 January 2014].

Saunders, M. N., Saunders, M., Lewis, P., & Thornhill, A. (2011). Research methods for

business students, 5/e. Pearson Education India.

Sbodio, M. L., Martin, D., & Moulin, C. (2010). Discovering Semantic Web services using

SPARQL and intelligent agents. Web Semantics: Science, Services and Agents on the World

Wide Web, 8(4), 310-328.

http://soa4all.eu/file-upload.html
http://arxiv.org/pdf/physics/0601009.pdf
https://wise.vub.ac.be/sites/default/files/theses/Wael_Al_Sarraj_PhD_WISE_VUB_2012.pdf

122

Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P., Plakal, M., Beaver, D., Jaspan,

S. & Shanbhag, C. (2010). Dapper, a large-scale distributed systems tracing

infrastructure. Google research.

Soriano, J., Lizcano, D., Hierro, J. J., Reyes, M., Schroth, C., & Janner, T. (2008). Enhancing

user-service interaction through a global user-centric approach to SOA. In Networking and

Services, 2008. ICNS 2008. Fourth International Conference on (pp. 194-203). IEEE.

Soylu, A., Wild, F., Mödritscher, F., Desmet, P., Verlinde, S., & De Causmaecker, P.(2011).

Mashups and widget orchestration. In Proceedings of the International Conference on

Management of Emergent Digital EcoSystems (pp. 226-234). ACM.

SpivacK N., (1998). Web Evolution. Available at

http://www.slideshare.net/novaspivack/web-evolution-nova-spivack-twine [Accessed 12

October 2013].

Srivastava, B., & Koehler, J. (2003). Web service composition-current solutions and open

problems. In ICAPS 2003 workshop on Planning for Web Services (Vol. 35, pp. 28-35).

Toleman, M. A. (1996). The design of the user interface for software development

tools (Doctoral dissertation, University of Queensland).

Tuchinda, R., Szekely, P., & Knoblock, C. A. (2008). Building mashups by example.

In Proceedings of the 13th international conference on Intelligent user interfaces (pp. 139-

148). ACM.

Upadhyaya, B., & Zou, Y. (2012). Integrating heterogeneous web services from an end user

perspective. In Proceedings of the 9th Middleware Doctoral Symposium of the 13th

ACM/IFIP/USENIX International Middleware Conference (p. 7). ACM.

Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E., & Ciravegna, F.

(2006). Semantic annotation for knowledge management: Requirements and a survey of the

state of the art. Web Semantics: science, services and agents on the World Wide Web, 4(1),

14-28.

Väänänen-Vainio-Mattila, K., & Wäljas, M. (2011). Towards user-centered mashups:

exploring user needs for composite web services. In CHI'11 Extended Abstracts on Human

Factors in Computing Systems (pp. 1327-1332). ACM.

Voss, C., Tsikriktsis, N., & Frohlich, M. (2002). Case research in operations

management. International journal of operations & production management, 22(2), 195-219.

Weske, M., Vossen, G., & Puhlmann, F. (2006). Workflow and service composition

languages. In Handbook on Architectures of Information Systems(pp. 369-390). Springer

Berlin Heidelberg.

Williams, C. (2011). Research methods. Journal of Business & Economics Research

(JBER), 5(3).

Wong, J., & Hong, J. I. (2007). Making mashups with marmite: towards end-user

programming for the web. In Proceedings of the SIGCHI conference on Human factors in

computing systems (pp. 1435-1444). ACM.

http://www.slideshare.net/novaspivack/web-evolution-nova-spivack-twine

123

Xuanzhe, L., Zhao, Q., Huang, G., Jin, Z., & Mei, H. (2010). iMashup: assisting end-user

programming for the service-oriented web. In Proceedings of the IEEE/ACM international

conference on Automated software engineering (pp. 285-288). ACM.

Zeshan, F., & Mohamad, R. (2011). Semantic web service composition approaches:

Overview and limitations. International Journal of New Computer Architectures and their

Applications (IJNCAA), 1(3), 640-651.

124

Appendix A: Ethical clearance

125

Appendix B: SUS questionnaire and Mashup Tool SUS scores

Appendix B.1.SUS questionnaire

System Usability Scale: Mashup tools

 I am Sabelo Yalezo currently a master student in Computer Science. I am conducting this

survey in the fulfilment of my master‘s degree, under the topic: ―Enabling Service

Composition in ICTD context through a GUI Mashup Tool‖. The aim of this SUS is to

identify short-falls of the current existing consumer Mashup tools, with a special focus on

usability. The survey outcomes will be used to assist in planning and designing usable

Mashup tool, as well as to evaluate the effectiveness of the prospective Mashup tool. The

following ethical issues were taken into consideration:

 Users participation is completely voluntary.

 We do not harm and embarrass respondents; hence they must feel free about

answering questions.

 The collected data is confidential and respondents cannot be identified on the basis of

a response (i.e. anonymity).

Participants may leave at any particular stage if they may feel uncomfortable, but their

presence is of great importance towards our study.

Supervisor:

Prof M Thinyane

Telkom Centre of Excellence in ICT for Development,

Department of Computer Science, University Of Fort Hare,

Private Bagx1314, Alice

126

Key: 1= Strongly-disagree, 2= Disagree, 3= In-between, 4= Agree, 5=Strongly-disagree

1) I think that I would like to use this

Mashup tool frequently

2) I found the Mashup tool

unnecessarily complex

3) I thought the Mashup tool was easy

to use

4) I think that I would need the

support of a technical person to be

able to use this Mashup tool

5) I found the various functions in this

Mashup tool were well integrated

6) I thought there was too much

inconsistency in this Mashup tool

7) I would imagine that most people

would learn to use this Mashup tool

very quickly

8) I found the Mashup tool very

cumbersome to use

9) I felt very confident using the

Mashup tool

10) I needed to learn a lot of things

before i could get going

Tool: pipes.yahoo.com

Tool: open.dapper.net

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

127

Appendix B.2.Review of Mashup Tools

The SUS scale is generally used after the respondent has had an opportunity to use the

system being evaluated, but before any debriefing or discussion takes place (Brooke, 2013).

Respondents should be asked to record their immediate response to each item, rather than

thinking about items for a long time. All items should be checked. If a respondent feels that

they cannot respond to a particular item, they should mark the centre point of the scale.

 Scoring SUS

Note that scores for individual items are not meaningful on their own. To calculate the SUS

score, first sum the score contributions from each item. Each item's score contribution will

range from 0 to 4. For items 1, 3, 5, 7, and 9 the score contribution is the scale position minus

1. For items 2,4,6,8 and 10, the contribution is 5 minus the scale position. Multiply the sum

of the scores by 2.5 to obtain the overall value of SU. SUS scores have a range of 0 to 100.

Microsoft Popfly

In Popfly, users build Mashups using basic programming constructs called blocks. Each block

performs a set of operations such as data retrieval and data display. Each operation takes

input parameters to allow customization. Blocks are connected to form a network in which

the output of a block can be used as input for adjacent blocks. In Popfly, blocks are listed in

different categories, which users can search. Additionally, users may share their Mashups

with others for reuse and modifications. Shared Mashups can be retrieved using a textual

search. Microsoft Popfly was show in Figure 2-1.

Table B-1.Microsoft Popfly SUS scores

Users Score SUS score=score*2.5

1 25 62.5

2 29 72.5

3 14 35

4 26 65

5 16 40

6 26 65

7 29 72.5

8 11 27.5

9 18 45

10 10 25

11 4 10

12 24 60

128

Average 48.33

Figure B-1.Microsoft Popfly whisker box

Intel MashMaker

Intel®Mash Maker is an interactive tool that tracks what the user is doing and tries to infer

what information and visualizations they might find useful for their current task (Ennals et

al., 2007). Mash Maker uses structured data from existing web sites to create new ―mashed

up‖ interfaces combining information from many sources. The Intel®Mash Maker client is

currently implemented as an extension to the Firefox web browser. Mash Maker adds a

toolbar to the browser that shows buttons representing enhancements that Mash Maker

believes the user might want to apply to the current page. An enhancement might combine

the data on the page with data from another source, or visualize data in a new way.

Figure B-2.Intel mash maker house rentals (Ennals & Shadle 2007)

129

Composition: Mash Maker is intended to be an integral part of the way the user browses

information, rather than being a special tool that a user uses when they want to create

Mashups. In order to create Mashups from normal websites, Mash Maker must first extract

structured data from them. If the web site does not provide RDF data, then Mash Maker

extracts structured data from the raw HTML using a community-maintained database of

extractors, where each extractor describes how to extract structured data from a particular

kind of web site. The next diagrams depict the SUS scores of respondents and a box of

whisker.

Table B-2.IntelMashMaker SUS score

Users Score SUS score=score*2.5

1 26 65

2 27 67.5

3 30 75

4 29 72.5

5 29 72.5

6 1 2.5

7 3 7.5

8 28 70

9 17 42.5

10 8 20

11 28 70

12 28 70

Average 52.92

Figure B-3.Intel MashMaker whisker box

130

Yahoo! Pipes

Yahoo! Pipes is a web-based visual programming language for constructing data Mashups.

Yahoo! Pipes was originally developed as a tool to make extracting, aggregating, and

republishing data from across the web easier(Jones & Churchill, 2009). Since its launch in

February 2007, over 90,000 developers have created individual pipes on the Yahoo! Pipes

platform, and pipes are executed over 5,000,000 times each day. The Yahoo! Pipes editing

environment consists of four main regions: a navigational bar across the top, the toolbox on

the left, the work canvas in the centre, and a debug-output panel at the bottom. The toolbox

contains modules, the building blocks of the Yahoo! Pipes visual language. In the graphical

language of Yahoo! Pipes, modules (operators) are laid out on a design canvas. Modules may

have zero or more input ports, and all have at least one output port; additionally, modules

may have parameters which can be set by the programmer, or themselves wired into the

output of other modules so that the value of the parameter is dependent upon a runtime value

specified elsewhere.

Composition: The input and output ports are wired together, representing the flow of data

through the application. Selecting an output port, highlights all the compatible input ports to

which the user may connect it. There are a number of data types within Yahoo! Pipes which

determine what inputs and outputs are compatible. In the most general terms, there are simple

scalar data values, and items, which are sets of data objects (e.g., items in an RSS feed, or

nodes in an XML document). Values include types like text, urls, locations, numbers, dates,

and times. In Yahoo! Pipes, data flows from the initial module(s), where user-data are input,

or external data are retrieved, through subsequent modules in the pattern and order dictated

by the wiring diagram. All applications in Yahoo! Pipes have a single output module, which

is wired to the end of the execution sequence, and collects the final data stream for

distribution via RSS, JSON (JavaScript Object Notation), or a variety of other formats.

Yahoo! Pipes allows users to define complex branching, and looping structures, have

multiple sources and execution paths executing in parallel, and in general, create programs of

arbitrary complexity. There is no direct method for writing recursive functions, and Yahoo!

Pipes does not allow for cycles in the program structure (i.e., where the output of a module is

fed back to the input of a module further „upstream‟). This enforces a mostly linear execution

flow to the applications which is bounded by the amount of data being processed.

131

Pipes: Each pipe application is individually addressed by a unique ID and URL. Users may

publish their pipes in the public directory, where they can be searched, browsed, and viewed

by anyone. When a pipe application is viewed by someone who is not the owner of the pipe, a

local copy is made in the viewer‘s browser. Any changes that are made by the viewer are

saved to a new copy on the server, preserving the original pipe. In addition to entire pipes

being copy able and modifiable, pipes can be embedded within one another as a ―sub-pipe‖.

This allows developers to create and share reusable components, and generate intermediate

levels of abstraction in their applications. An embedded sub-pipe is represented as a module

in the Yahoo! Pipes interface, which can be wired to other modules, or other sub-pipes. Users

can drill-down into embedded sub-pipes, to inspect and modify the included functionality.

The diagram of Yahoo Pipes is shown in Figure 1-2; the next diagrams depict the SUS scores

of respondents and a box of whisker.

Table B-3. Yahoo SUS vs. users

Users Score SUS score=score*2.5

1 7 17.5

2 7 17.5

3 9 22.5

4 11 27.5

5 12 30

6 13 32.5

7 16 40

8 20 50

9 23 57.5

10 23 57.5

11 23 57.5

12 29 72.5

Average 40.21

132

Figure B-4.Yahoo Pipes whisker box

MobiMash

The need to self-create applications is now even stronger for the mobile users: simple

applications addressing very contingent and situational requirements, as Mashups are, can

solve several users‘ information needs arising in mobile usage contexts (Cappiello et al.,

2012). MobiMash is a platform for the construction of mobile Mashups, characterized by a

lightweight composition paradigm, mainly guided by the notion of visual templates. The

composition paradigm generates an application schema that is based on a domain specific

language addressing dimensions for data integration and service orchestration, and that

guides at runtime the dynamic instantiation of the final mobile app.

MobiMash is characterized by an End-User Development (EUD) Web environment, where a

visual composition paradigm, based on the completion of visual templates, allows the users to

easily configure the fusion of contents coming from different data sources, and the

synchronization of such core contents with both remote APIs and local services available on

the mobile device. The so-created applications are device‘s native applications that, in

contrast with Web Mashups, do not need the Web browser as execution environment - the

access to mobile device services is therefore enhanced.

Visual composition: The right hand side of Figure B-5 exemplifies the DE visual

composition paradigm based on the completion of visual templates. The composition canvas

consists of two main panels: the data panel on the left displays the data retrieved by querying

some selected data services; the visual template panel on the right shows a selected visual

template, i.e., a representation of the UI of the final app. As soon as data items selected in the

data panel are associated to UI elements, the visual template panel is updated with a preview

of the association effect. In this way, the user constructs the presentation layer - and

133

implicitly integrates data. In fact, in case of data items deriving from different sources, the

user actions are targeted towards the construction of unified data views. In this integration

process, the local schemas of the different sources are reshaped depending on the user

selection of data items, while the global schema is derived by the structure of the visual

template and the user-defined mappings between its elements and the items of each single

source.

Figure B-5.MobiMash (Cappiello et al., 2012)

The DE also allows the user to synchronize the integrated data view with the invocation of UI

components and local services. The aim is to enrich the core data with contents of different

nature. The available services are shown to the user through an icon menu in the upper part of

the screen, which adapts its listed items by showing the only APIs and local services that are

compatible with the data associated to the selected visual element. The next diagrams depict

the SUS scores of respondents and a box of whisker.

Table B-4.MobiMAsh SUS score

Users Score SUS score=score*2.5

1 24 60

2 19 47.5

3 19 47.5

4 18 45

5 30 75

6 23 57.5

7 24 60

8 3 7.5

9 19 47.5

10 21 52.5

11 7 17.5

12 7 17.5

Average 44.58

134

Figure B-6.MobiMash whisker box

Marmite

Marmite lets end-users create so-called Mashups that repurpose and combine existing web

content and services(Wong & Hong, 2007). Marmite supports a data flow architecture, where

data is processed by a series of operators in a manner similar to Unix pipes.

More specifically, Marmite lets end-users:

 Easily extract interesting content from one or more web pages.

 Process it in a data flow manner, for example filtering out values or adding metadata

 Integrate it with other data sources, either from local or remote databases, from other

existing web pages or services.

 Direct the output to a variety of sinks, such as databases, map services, text files, web

pages, or compliable source code that can be further customized

In other words, Marmite‘s linked view shows both the program and the data simultaneously.

With some users are able to use this system and to construct programs with web services

quickly without difficulties.

135

Figure B-7.Marmite (Wong & Hong, 2007)

The next diagrams depict the SUS scores of respondents and a box of whisker.

Table B-5.Marmite SUS score

Users Score SUS score=score*2.5

1 39 97.5

2 12 30

3 18 45

4 23 57.5

5 15 37.5

6 18 45

7 18 45

8 28 70

9 31 77.5

10 9 22.5

11 31 77.5

12 33 82.5

Average 57.29

136

Figure B-8.Marmite whisker box

Dapper

Dapper stands for Data mapper. The main purpose of the service is to convert any type of

content into a standard form that can be reused (i.e., RSS, XML) (Sigelman et al., 2010). It

also has a set of publishing features that turn that content into Google Gadget, Netvibes

Module, Flash widgets and so on. It is a web application that visually runs is a wizard mode

asking the user to fill-in some field at each step in order to create a ―dapp‖ (data imported).

The user interface is very minimalist, but it gets the things done. Dapper can be made public

and indeed for popular services like YouTube and Flickr there is a huge collection of dapps

available. Typically there is no need to create a separate dapp. In many cases dapp is a good

candidate to be tuned into a map Mashup or image loop. The user defines the output format

or visualization type to use. The next level of development is to combine those dapps into an

aggregator service. The typical example is to combine search result from several search

engines or video clips from alternative video services similar to a movie aggregator.

The next diagrams depict the SUS scores of respondents and a box of whisker.

137

Table B-6.Dapper SUS scores

Users Score SUS score=score*2.5

1 21 52.5

2 23 57.5

3 7 17.5

4 7 17.5

5 29 72.5

6 5 12.5

7 16 40

8 21 52.5

9 27 67.5

10 4 10

11 35 87.5

12 11 27.5

Average 42.92

Figure B-9.Dapper whisker box

138

Appendix C: Code Snippet

139

