247 research outputs found

    dynamic modelling of the swash plate of a hydraulic axial piston pump for condition monitoring applications

    Get PDF
    Abstract In the last years Prognostic and Health Management (PHM) has become one of the challenging topic in the engineering field. In particular, model-based approach for diagnostic relies on the development of a mathematical model of the system representing its flawless status. Once the model has been developed and carefully calibrated on experimental data referred to flawless pump condition the comparison between the model output and the real system output leads to the residual analysis, which gives a diagnosis of the component health. This paper presents the mathematical model of a hydraulic axial piston pump developed in order to replicate the dynamic behavior of the swash plate for PHM applications. The model has been developed on the basis of simplified hypotheses, a friction model between swash plate and bearings has been introduced. A detailed experimental activity was carried out to calibrate and validate the model with step tests and sweep tests. The comparison between numerical and experimental results shows a satisfying agreement and highlights the model capability to reproduce the swash plate dynamics. Future works will include tests with the pump in faulty conditions to evaluate the pump health state through the residual analysis of the swash plate position

    Predictive model for the degradation state of a hydraulic system with dimensionality reduction

    Get PDF
    In recent years, the optimization in the use of resources has a key role in achieving a bigger marginality, reducing the operative costs. Due to the advances in the data science field, even the maintenance context is living important changes. The predictive maintenance and the condition-based maintenance can overcome the classic traditional maintenance methods, like the time-based maintenance or the corrective maintenance, with respect to the first intervention, reducing the costs for unscheduled maintenance, manpower, or loss of production and extending the useful life of the components. Based on these presuppositions, the paper proposes the development of a predictive model for the degradation state of the components of a complex hydraulic system, with some tests and some suggestions about the dimensionality reduction. The system has four known types of breakdown, with different degrees of severity; moreover, a fifth parameter represents whether the cycle has reached stable conditions or not

    Failure Diagnosis and Prognosis of Safety Critical Systems: Applications in Aerospace Industries

    Get PDF
    Many safety-critical systems such as aircraft, space crafts, and large power plants are required to operate in a reliable and efficient working condition without any performance degradation. As a result, fault diagnosis and prognosis (FDP) is a research topic of great interest in these systems. FDP systems attempt to use historical and current data of a system, which are collected from various measurements to detect faults, diagnose the types of possible failures, predict and manage failures in advance. This thesis deals with FDP of safety-critical systems. For this purpose, two critical systems including a multifunctional spoiler (MFS) and hydro-control value system are considered, and some challenging issues from the FDP are investigated. This research work consists of three general directions, i.e., monitoring, failure diagnosis, and prognosis. The proposed FDP methods are based on data-driven and model-based approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the remaining useful life (RUL) of the faulty components accurately and efficiently. In this regard, two dierent methods are developed. A modular FDP method based on a divide and conquer strategy is presented for the MFS system. The modular structure contains three components:1) fault diagnosis unit, 2) failure parameter estimation unit and 3) RUL unit. The fault diagnosis unit identifies types of faults based on an integration of neural network (NN) method and discrete wavelet transform (DWT) technique. Failure parameter estimation unit observes the failure parameter via a distributed neural network. Afterward, the RUL of the system is predicted by an adaptive Bayesian method. In another work, an innovative data-driven FDP method is developed for hydro-control valve systems. The idea is to use redundancy in multi-sensor data information and enhance the performance of the FDP system. Therefore, a combination of a feature selection method and support vector machine (SVM) method is applied to select proper sensors for monitoring of the hydro-valve system and isolate types of fault. Then, adaptive neuro-fuzzy inference systems (ANFIS) method is used to estimate the failure path. Similarly, an online Bayesian algorithm is implemented for forecasting RUL. Model-based methods employ high-delity physics-based model of a system for prognosis task. In this thesis, a novel model-based approach based on an integrated extended Kalman lter (EKF) and Bayesian method is introduced for the MFS system. To monitor the MFS system, a residual estimation method using EKF is performed to capture the progress of the failure. Later, a transformation is utilized to obtain a new measure to estimate the degradation path (DP). Moreover, the recursive Bayesian algorithm is invoked to predict the RUL. Finally, relative accuracy (RA) measure is utilized to assess the performance of the proposed methods

    A Study on Comparison of Classification Algorithms for Pump Failure Prediction

    Get PDF
    The reliability of pumps can be compromised by faults, impacting their functionality. Detecting these faults is crucial, and many studies have utilized motor current signals for this purpose. However, as pumps are rotational equipped, vibrations also play a vital role in fault identification. Rising pump failures have led to increased maintenance costs and unavailability, emphasizing the need for cost-effective and dependable machinery operation. This study addresses the imperative challenge of defect classification through the lens of predictive modeling. With a problem statement centered on achieving accurate and efficient identification of defects, this study’s objective is to evaluate the performance of five distinct algorithms: Fine Decision Tree, Medium Decision Tree, Bagged Trees (Ensemble), RUS-Boosted Trees, and Boosted Trees. Leveraging a comprehensive dataset, the study meticulously trained and tested each model, analyzing training accuracy, test accuracy, and Area Under the Curve (AUC) metrics. The results showcase the supremacy of the Fine Decision Tree (91.2% training accuracy, 74% test accuracy, AUC 0.80), the robustness of the Ensemble approach (Bagged Trees with 94.9% training accuracy, 99.9% test accuracy, and AUC 1.00), and the competitiveness of Boosted Trees (89.4% training accuracy, 72.2% test accuracy, AUC 0.79) in defect classification. Notably, Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbors (KNN) exhibited comparatively lower performance. Our study contributes valuable insights into the efficacy of these algorithms, guiding practitioners toward optimal model selection for defect classification scenarios. This research lays a foundation for enhanced decision-making in quality control and predictive maintenance, fostering advancements in the realm of defect prediction and classification

    Establishment of a novel predictive reliability assessment strategy for ship machinery

    Get PDF
    There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme.There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme

    Detection, Diagnosis and Prognosis: Contribution to the energy challenge: Proceedings of the Meeting of the Mechanical Failures Prevention Group

    Get PDF
    The contribution of failure detection, diagnosis and prognosis to the energy challenge is discussed. Areas of special emphasis included energy management, techniques for failure detection in energy related systems, improved prognostic techniques for energy related systems and opportunities for detection, diagnosis and prognosis in the energy field

    Exploring Prognostic and Diagnostic Techniques for Jet Engine Health Monitoring: A Review of Degradation Mechanisms and Advanced Prediction Strategies

    Get PDF
    Maintenance is crucial for aircraft engines because of the demanding conditions to which they are exposed during operation. A proper maintenance plan is essential for ensuring safe flights and prolonging the life of the engines. It also plays a major role in managing costs for aeronautical companies. Various forms of degradation can affect different engine components. To optimize cost management, modern maintenance plans utilize diagnostic and prognostic techniques, such as Engine Health Monitoring (EHM), which assesses the health of the engine based on monitored parameters. In recent years, various EHM systems have been developed utilizing computational techniques. These algorithms are often enhanced by utilizing data reduction and noise filtering tools, which help to minimize computational time and efforts, and to improve performance by reducing noise from sensor data. This paper discusses the various mechanisms that lead to the degradation of aircraft engine components and the impact on engine performance. Additionally, it provides an overview of the most commonly used data reduction and diagnostic and prognostic techniques

    ADVANCES IN SYSTEM RELIABILITY-BASED DESIGN AND PROGNOSTICS AND HEALTH MANAGEMENT (PHM) FOR SYSTEM RESILIENCE ANALYSIS AND DESIGN

    Get PDF
    Failures of engineered systems can lead to significant economic and societal losses. Despite tremendous efforts (e.g., $200 billion annually) denoted to reliability and maintenance, unexpected catastrophic failures still occurs. To minimize the losses, reliability of engineered systems must be ensured throughout their life-cycle amidst uncertain operational condition and manufacturing variability. In most engineered systems, the required system reliability level under adverse events is achieved by adding system redundancies and/or conducting system reliability-based design optimization (RBDO). However, a high level of system redundancy increases a system's life-cycle cost (LCC) and system RBDO cannot ensure the system reliability when unexpected loading/environmental conditions are applied and unexpected system failures are developed. In contrast, a new design paradigm, referred to as resilience-driven system design, can ensure highly reliable system designs under any loading/environmental conditions and system failures while considerably reducing systems' LCC. In order to facilitate the development of formal methodologies for this design paradigm, this research aims at advancing two essential and co-related research areas: Research Thrust 1 - system RBDO and Research Thrust 2 - system prognostics and health management (PHM). In Research Thrust 1, reliability analyses under uncertainty will be carried out in both component and system levels against critical failure mechanisms. In Research Thrust 2, highly accurate and robust PHM systems will be designed for engineered systems with a single or multiple time-scale(s). To demonstrate the effectiveness of the proposed system RBDO and PHM techniques, multiple engineering case studies will be presented and discussed. Following the development of Research Thrusts 1 and 2, Research Thrust 3 - resilience-driven system design will establish a theoretical basis and design framework of engineering resilience in a mathematical and statistical context, where engineering resilience will be formulated in terms of system reliability and restoration and the proposed design framework will be demonstrated with a simplified aircraft control actuator design problem

    Degradation-level assessment and online prognostics for sliding chair failure on point machines

    Get PDF
    This paper presents a degradation-level assessment and failure prognostics methodology for degrading systems. The proposed methodology consists of offline and online phases. In the offline phase, different time-domain health indicators (HIs) are extracted and the best indicator of degradation is selected by filter-based methods. Then, a degradation model is defined and its parameters are estimated using the selected HI. In the online phase, the k-means clustering is utilized to detect a change(s) in the system’s health state and to trigger failure prognostics for remaining useful life (RUL) prediction. The degradation model parameters are updated as new data are available, and the RUL is predicted iteratively. The proposed methodology is implemented on point machine sliding chair degradation using in-field condition monitoring (CM) data. The results show that the methodology can be effectively used in machine degradation-level assessment and in online RUL predictions

    Advances in Fluid Power Systems

    Get PDF
    The main purpose of this Special Issue of “Advances in Fluid Power Systems” was to present new scientific work in the field of fluid power systems for hydraulic and pneumatic control of machines and devices used in various industries. Advances in fluid power systems are leading to the creation of new smart devices that can replace tried-and-true solutions from the past. The development work of authors from various research centres has been published. This Special Issue focuses on recent advances and smart solutions for fluid power systems in a wide range of topics, including: • Fluid power for IoT and Industry 4.0: smart fluid power technology, wireless 5G connectivity in fluid power, smart components, and sensors.• Fluid power in the renewable energy sector: hydraulic drivetrains for wind power and for wave and marine current power, and hydraulic systems for solar power. • Hybrid fluid power: hybrid transmissions, energy recovery and accumulation, and energy efficiency of hybrid drives.• Industrial and mobile fluid power: industrial fluid power solutions, mobile fluid power solutions, eand nergy efficiency solutions for fluid power systems.• Environmental aspects of fluid power: hydraulic water control technology, noise and vibration of fluid power components, safety, reliability, fault analysis, and diagnosis of fluid power systems.• Fluid power and mechatronic systems: servo-drive control systems, fluid power drives in manipulators and robots, and fluid power in autonomous solutions
    • …
    corecore