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Abstract 

In recent years, the optimization in the use of resources has a key role in achieving a bigger marginality, reducing the operative costs. Due to the 
advances in the data science field, even the maintenance context is living important changes. The predictive maintenance and the condition-based 
maintenance can overcome the classic traditional maintenance methods, like the time-based maintenance or the corrective maintenance, with 
respect to the first intervention, reducing the costs for unscheduled maintenance, manpower, or loss of production and extending the useful life 
of the components. Based on these presuppositions, the paper proposes the development of a predictive model for the degradation state of the 
components of a complex hydraulic system, with some tests and some suggestions about the dimensionality reduction. The system has four 
known types of breakdown, with different degrees of severity; moreover, a fifth parameter represents whether the cycle has reached stable 
conditions or not.  
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1. Introduction  

 Hydraulic systems are very important, due to common 
industrial applications, for example in manufacturing or 
engineering machinery [1]. A correct condition monitoring of 
hydraulic systems can improve productivity, reducing 
maintenance costs and preventing the system from further 
deteriorating, considering that reliability and safety are 
important issues [2]. In fact, accurate condition-based 
maintenance or predictive maintenance strategy can help with 
the safety management of a plant. Condition monitoring is the 
starting point for correct condition-based maintenance or 
predictive maintenance, that can guarantee reduction of 
machine downtime and maintenance costs. Due to the high 
competitive environment today, it is necessary to decrease 
operating and support costs, and for this reason it is important 
not only to identify a fault but the failure state, too [3]. 
Moreover, the advancement in sensor technologies has 
simplified and accelerated the development of multisensory 

systems, widely used during processes monitoring [4]. For 
hydraulic systems, it is not commonplace for human operators 
to detect faults or to monitor the condition of a component, for 
example valves [5]. It is important to underline that a single 
component, that can be for example a pump, can directly affect 
with its performance the normal work of the entire hydraulic 
system [6]. The research starts from the previous research [7] 
conducted on the same dataset used in this paper; the specific 
dataset is available on the UC Irvine Machine Learning 
Repository. The aim of this paper is to implement a machine 
learning system able to predict the degradation level of four 
specific components of a hydraulic system, that are the cooler, 
the valve, the pump, and the hydraulic accumulator. The 
situation is considered as a classification problem; in fact, for 
every component there are predefined degradation levels, so 
the machine learning model task is to determine the correct 
class of degradation. The paper proposes even an approach for 
a certain dimensionality reduction, suggesting a specific 
selection criterion from the initial features to the final features. 
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 The remainder of the paper is organized as follows. Section 
2 presents the related literature. Section 3 presents the materials 
and the methods and Section 4 the case study and the dataset. 
Section 5 presents the feature engineering and in Section 6 is 
presented the practical experiment. The discussion of the paper 
results, the conclusions, and future research are summarized in 
Section 7.  

2. Literature review  

As explained in section 1. “Introduction”, hydraulic systems 
are deeply investigated, due to their widespread industrial 
presence. There is a research field about condition monitoring 
for hydraulic systems [8,9] because a correct condition 
monitoring is essential for the characterisation of the health 
state of the system [10]. 

For what concerns the topic of predictive maintenance, and 
maintenance in general, of hydraulic systems, there are specific 
researches for aviation and aerospace industry. In fact, airline 
flight operation departments need to correctly manage their 
expensive assets, hydraulic systems’ components are subjected 
to multiple wear conditions and hydraulic system has a 
significant impact on safety, too [11,12,13,14,15,16,17]. 

In some paper, the authors have decided to focus on a specific 
component of the hydraulic system. Giving some examples, 
one of these components is the valve; in fact, valves can be 
considered the core control component of the hydraulic 
systems and they have an important role in numerous 
engineering applications [1,18,19]. Another important 
component is the pump; [20,21] are focused on piston pump, 
because it is the main component of hydraulic power system,  
[14] considers the pump in the context of the civil aviation, 
focusing on the failure of the aero-hydraulic pump, [22,23] 
approach the pump as a key component for better improving 
the hydraulic system reliability and [24] proposes an 
experimental method for the determination of remaining useful 
life of the aviation hydraulic piston pump. 

For what concern predictive maintenance and degradation 
state prediction, it is clear that a correct  identification of the 
current degradation state of industrial components is a 
fundamental step for the implementation of condition-based 
and predictive maintenance approaches [25]. The identification 
and the integration of key process variables for the evaluation 
of the equipment degradation state can be considered an 
important starting point to eliminate potential failures, ensure 
stable equipment operation and improve the mission reliability 
of manufacturing systems and the quality of products [26]. [27] 
underlines that the maintenance priorities are focused on the 
criticality of assets, related to asset degradation conditions. The 
degradation state of the components is indispensable for a more 
accurate prediction of the remaining useful life of the 
monitored components [28].  

Researches about predictive maintenance with a focus on the 
degradation state of the components have been carried out 
about bearings [29], transport systems [30], systems which are 
subject to competing and dependent failures due to degradation 
and traumatic shocks [31], degrading system modelled by a 
gamma process [32], industrial processes modelled by using 
hidden Markov model [33]. 

Talking about the specific dataset used in this paper, there are 
previous works about it [7,34,35]. 

In [7] a systematic approach is developed and evaluated for 

the automated training of condition monitoring systems for 
complex hydraulic systems, with important suggestions about 
the dimensionality reduction and the cycle-based approach. 
[34] debates about condition monitoring, proposing a statistical 
condition monitoring system, and the determination of typical 
faults related to the hydraulic system as well as the sensors, too. 
[35], finally, suggests specific methods for feature selection 
and feature extraction. 

The aim of this paper, due to the relevance of the degradation 
states’ prediction for the predictive maintenance, is to develop 
and to test a predictive model for the degradation state of 
critical components of a hydraulic system. The research will 
start from the analysis of previous works on the same hydraulic 
system [7,34,35].  

3. Materials and methods  

The proposed predictive model is developed and tested using 
a real case study, adopting both dimensionality reduction and 
machine learning algorithms. The followed approach is based 
on testing different situations and combinations, finding the 
best set up for the model; in fact, different feature selection and 
feature extraction methods have been tested, using them in 
correlation with different machine learning algorithms. The 
objective of the research is to find the optimal predictive model 
for the addressed problems. The case study and the steps of the 
research will be presented in the following sections. The 
overall methodological framework can be resumed in the 
scheme (Figure 1): 

 
Figure 1. Methodological framework of the research 
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4.Case study 

The core of this paper is an experimental analysis for a 
complex hydraulic system, that consists of a primary working 
and a secondary cooling-filtration circuit which are connected 
via the oil tank.  

The features’ approach of the paper starts with some 
suggestions about condition monitoring proposed in [7]. The 
followed approach proposes both methods for feature selection 
and feature extraction. The difference between feature 
selection and feature extraction is that feature selection is 
for filtering irrelevant or redundant features from your dataset, 
while feature extraction is for creating a new, smaller set of 
features that still captures most of the useful information. The 
key difference between feature selection and extraction is that 
feature selection keeps a subset of the original features while 
feature extraction creates brand new ones. The paper 
implements, using specific features extracted or selected by the 
raw data, an analysis of the health state of four components of 
a hydraulic system and an analysis on the achievement of stable 
conditions. 

The dataset is composed of raw data collected with physical 
and virtual sensors arranged on four specific components of the 
hydraulic system: cooler, valve, internal pump, and hydraulic 
accumulator. They monitor and register some specific process 
parameters during the load cycles of the hydraulic system. The 
virtual sensors explain values obtained with physical models 
based on real value, that are the cooler efficiency, the cooler 
power, and the system efficiency. The load cycles are 2205 
with a duration of 60 seconds for cycle. The paper considers 
the situation of a fixed working cycle with pre-defined load 
levels, that is one of the possible working situations [7] because 
it represents the typical cyclical operations and the load 
characteristics of industrial applications.  

Table 1. Monitored parameters 

Physical dimension Sensor Units of 
measure 

Frequency 

Pressure PS1, PS2, PS3, 
PS4, PS5, PS6 

Bar 100 Hz 

Motor Power EPS1 W 100 Hz 

Flow rate FS1, FS2 l/min 10 Hz 

Temperature TS1, TS2, TS3, 
TS4 

°C  
 

1 Hz 

Vibration VS1 mm/s 1 Hz 

Cooling efficiency CE % 1 Hz 

Cooling power CP kW 1 Hz 

System efficiency SE % 1 Hz 

 
 So, considering every sensor, every monitored parameter 

and the frequency, the dataset is composed of 43680 features: 
 

 1 Hz  8*60 = 480 

 10 Hz  2*600 = 1200 

 100 Hz  7*6000 = 42000 

As mentioned in the abstract, the system has 4 known types 
of breakdown. Moreover, for every component there are 
different levels of performance, from the total efficiency to the 
breakdown: 

 COOLER CONDITION (%): 
o 3: Close to total failure (732 cases) 
o 20: Reduced efficiency (732 cases) 
o 100: Full efficiency (741 cases) 

 
 VALVE CONDITION (%): 

o 100: Optimal switching behaviour (1125 
cases) 

o 90: Small lag (360 cases) 
o 80: Severe lag (360 cases) 
o 73: Close to total failure (360 cases) 

 
 INTERNAL PUMP LEAKAGE: 

o 0: No leakage (1221 cases) 
o 1: Weak leakage (492 cases) 
o 2: Severe leakage (492 cases) 

 
 HYDRAULIC ACCUMULATOR (bar): 

o 130: Optimal pressure (599 cases) 
o 115: Slightly reduced pressure (399 cases) 
o 100: Severely reduced pressure (399 cases) 
o 90: Close to total failure (808 cases) 

In addition to the mentioned breakdowns, the cycle should 
achieve stable conditions: 

 
 STABLE FLAG: 

o 0: Conditions were stable (1449 cases) 
o 1: Static conditions might not have been 

reached yet (756 cases) 

Since the obtainable outputs are categorical, it means that 
they represent belonging to a specific predetermined category, 
the presented problems are classification problems. In fact, the 
classification is the categorisation of the data point in groups. 

Cooler condition, valve condition, internal pump leakage, 
and hydraulic accumulator are multiclass classification 
problems, because the number of possible outputs is bigger 
than two; quite the opposite, the stable flag is a binary 
classification because the possible outputs are two. 

5. Feature engineering 

This step has been the core step of the analysis; in fact, as 
explained before, the starting dataset had 43680 features. The 
excessive number of features involves an important risk of 
overfitting; the overfitting occurs when a very complex 
statistical model adapts to the observed data, because it has an 
excessive number of parameters with respect to the number of 
observations. The consequence is that the model can guarantee 
good performance during the training, but not with a new 
sample of data. Due to the excessive size of parameters, the 
authors have decided to process the raw data, extracting 
representative functions for every sensor and every cycle.  

The authors have decided, at the beginning, to use six new 
features, for sensors and cycles, as suggested in [7]. The 
features are reduced from 43680 to 102 because there are 6 new 
features for 17 sensors.  

The chosen features can be divided into two categories [7]: 
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 Functions representative of the signal shape: 
 

o SLOPE OF LINEAR FIT (SOLF): it 
represents, for every sensor and every cycle, 
the slope obtained by the single 
measurement for the single sensor. 

o POSITION OF MAXIMUM VALUE 
(POM): for every sensor and every cycle, the 
authors have computed the maximum value, 
positioning it in rank with all the other 
maximum values of the other lines. 
 

 Functions representative of the distribution density 
characteristics: 
 

o MEDIAN (MED): it represents, for every 
sensor and every cycle, the value that is 
assumed by the statistical units in the middle 
of the distribution. 

o VARIANCE (VAR): it represents, for every 
sensor and every cycle, the variability of the 
data. 

o SKEWNESS (SKEW): it represents, for 
every sensor and every cycle, the symmetry 
index of the data. 

o KURTOSIS (KURT): it represents, for 
every sensor and every cycle, a departure 
from the normal distribution, with respect to 
which there is a greater flattening or a greater 
lengthening of the distribution. 

So, after all this feature engineering, every line of the dataset 
represents a cycle, with, for every sensor, the features presented 
above, as shown in Table 2. 

Table 2. Representation of the extracted features 

 
As explained at the beginning of the paper, the presented 

problem is a classification problem. In this context, the 
situation belongs to supervised learning. A supervised learning 
algorithm learns from labelled training data, and after that, the 
structured model is able to predict outcomes for unforeseen 
data. Practically, it means that every line of the dataset needs 
to be associated with the related output. During the training, the 
machine learning model learns how to predict the desired 
outputs only with the input data, that in this paper are presented 
in Table 2. 

     The five outputs of the case study are: 
 

 LABEL 1 (L1): COOLER CONDITION 
 LABEL 2 (L2): VALVE CONDITION 
 LABEL 3 (L3): INTERNAL PUMP LEAKAGE 
 LABEL 4 (L4): HYDRAULIC ACCUMULATOR 
 LABEL 5 (L5): STABLE FLAG 

     The possible values for every output have been presented 

in section 4. “Case study”. 
At the end of the labelling phase, the complete dataset for 

the analysis is (Table 3): 

Table 3. Labelled dataset  

 

6. Analysis and results 

Having processed the original dataset according to [7], the 
new dataset with its cycle-based features was ready for the 
implementation. “Cycle-based features” means that the 
considered features are representative of the situation of a 
single working cycle.  It was decided to use as a development 
environment a tool offered by the cloud computing service 
Microsoft Azure, Azure Machine Learning Studio. 

Due to the presence of five different classifying labels, the 
project was divided into five experiments, one for every label. 

The experiments came up to be multiclass classification 
problems all but the last since the fifth label presented only two 
classes, so it was studied as a binary classification problem, as 
explained before.  

In accordance with [35], it occurred the issue of feature 
engineering in order to lower the risk of being exposed to 
overfitting and the ‘curse of dimensionality’, which would have 
led respectively to a non-generally applicable solution and a 
slower computing process.  

Following the cited above studies, it was decided to try a set 
of diverse feature selection and feature extraction methods. 

Specifically, these used two main mechanisms: a feature 
selection method based on the Pearson’s correlation coefficient 
and a feature extraction method known as the Linear 
Discriminant Analysis (which are going to be referred to as 
‘Pearson’ and ‘LDA’). 

The former was chosen as it is an acknowledged measure of 
the correlation between two variables, particularly between a 
feature and the referring label, so the Pearson’s method ranks 
the correlation of every feature with a label, selecting the most 
correlated ones according to the selection number set. 

Moreover, it has been used even in [7] and has a low 
computational cost, with quick results [35]. 

In this way, Pearson lowered the dimension of the dataset 
with just the more relevant features. Pearson’s correlation 
coefficient, for any two variables, represents the value that 
indicates the strength of the correlation and it is computed by 
taking the covariance of two variables and dividing by the 
product of their standard deviations. It is important to mention 
that the coefficient is not affected by changes of scale in the 
two variables. 

The use of the latter was inspired by previous studies such as 
[7], which chose LDA for feature extraction; LDA produces in 
output a new dataset made of linear combinations of the feature 
variables which can group the data more efficiently into 
classes, since it is projected in a smaller feature space still 
preserving the discriminant information. With LDA it is 
possible to create a new feature dataset that captures the 
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combination of features that best separates two or more classes. 
Examples of Pearson’s correlation for this case study are 

present in Figure 2 and Figure 3. An examples for the Linear 
Discriminant analysis is shown in Figure 4. 

 

Figure 2. Example of Pearson's correlation for Label 1  

 

Figure 3. Example of Pearson's correlation for Label 2  

 

 

Figure 4. Example of LDA projections for Label 1  

Furthermore, these methods were used in four distinct 
combinations in order to evaluate afterwards the best 
performing for every experiment.  

Two of these processes consisted of a simple application of 
LDA which was first set to extract 60 features and then 80. The 
third was a plain utilization of Pearson where the number of 
features requested to select was 60. In the end, the last one was 
the only real combination since it employed a sequence of the 
two methods, selecting and then extracting 60 features. 

The number of features received in output from the feature 
selection and the feature extraction processes (60 or 80) was 
decided so that it could have been easily replicable and adapted 
to other datasets with different dimensions. The decision has 

been structured in that way: the authors have decided to 
consider for all the known breakdowns and the stable 
conditions all the features that have a Pearson’s correlation 
with them bigger than 0.15 and the same number of features for 
the prediction of every breakdown and for the stable conditions 
and, in this specific case, 60 is the number of features that can 
guarantee not to neglect features that satisfy this condition. 
Symmetrically, the authors have decided to use the same 
number of features with the LDA, testing the difference, only 

for LDA, increasing the number of features for 
ଵ

ଷ
, so at 80. In 

this way, the size of the final dataset was roughly 60% and 80% 
respectively, of the one after the first dimensionality reduction. 
In fact, the first dimensionality reduction creates a dataset with 
102 features, the second one with 60 or 80 features 
respectively. Summarizing, there are two parameters to choose 
to repeat the proposed methodology: the cut off value for the 
Pearson’s correlation, and the increased percentage of features 
to test. Further researches will establish optimal values of these 
two parameters. 

The predictive model can be resumed in these steps: 
1. Signals collection for the features of interest; at the 

beginning there are 43680 features 
2. Data integration from all the data sources 
3. Feature engineering for the first dimensionality 

reduction; the new features are functions 
representative of the signal shape or functions 
representative of the distribution density 
characteristics. After this step, there are 102 
features. 

4. Feature selection and feature extraction; in this step, 
there are two parameters to choose to repeat the 
proposed methodology: the cut off value for the 
Pearson’s correlation of interest, and the increased 
percentage of features to test. In this paper, these 
parameters are: 

o Cut off value = 0.15 

o Increased percentage of features to test = 
ଵ

ଷ
 

Different combinations of feature extraction and 
feature selection methods have been tested: 

o Feature selection with Pearson  60 
features 

o Feature extraction with LDA 60 features 
o Feature extraction with LDA  80 

features 
o Feature selection with Pearson and then 

feature extraction with LDA  60 features 
As explained, after this step there are 60 or 80 
features. 

5. Since the dataset was reduced in dimension, it was 
subjected to the proper machine learning operation 
which consisted of two parts: in the first part the 
algorithms were trained with the ‘Train Data’, in the 
second one the algorithms were tested with the ‘Test 
Data’, the section of data on which they didn’t 
develop. 

In order to get a wider solution, it was established to try four 
learning models based on the following learning algorithms, 
setting the models on a different mode according to the nature 
of the problem, binary or multiclass: 

 NEURAL NETWORK: 
o Network architecture: fully-connected case 
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o Number of hidden nodes:100 
o The learning rate: 0.1 
o Number of learning iterations:100 
o The initial learning weights diameter:0.1 
o The momentum:0 
o The type of normalizer: Min-Max normalizer 
o The loss function: CrossEntropy 
o The activation function: Sigmoid 
o The training algorithm: Back-propagation 

 SUPPORT VECTOR MACHINE: 
o Number of iterations: 1 
o Lambda: 0.001 
o Normalize features: YES 

 LOGISTIC REGRESSION: 
o Optimization tolerance: 1E-07 
o L1 regularization weight:1 
o L2 regularization weight:1 
o Memory size for L-BFGS:20 

 DECISION FOREST: 
o Resampling method: Bagging 
o Number of decision trees:8 
o Maximum depth of the decision trees: 32 
o Number of random splits per node:128 
o Minimum number of samples per leaf node:1 

Obviously, these are suggestions for the set up of the 
algorithms’ parameters, that can be set up even in different 
ways. Further researches will establish optimal values of these 
parameters. 

The usage of the first and second algorithms was based on 
what was done in [7], so the results got from these resembled 
those obtained in the older experiment. 

The logistic regression algorithm was chosen deliberately to 
collect a result in output which could have been used as a 
benchmark for the other outcomes, since it is a widespread 
algorithm historically acknowledged as a fundamental one in 
classification problems. 

Instead, the selection of a method working with the decision 
forest algorithm was driven by the will of applying an up-to-
date model since its use is becoming more and more prevalent 
due to its generally satisfying performances. In addition to that, 
it must be said that this decision was strongly supported by the 
capability of the algorithm to perform in the presence of noisy 
features, which could have come up as stated in [34] due to 
sensor faults or malfunctioning. 

In the end, all the models were run on the ‘Test Data’, thus it 
was possible to collect a complete set of results, which could 
project the outcome of each learning algorithm for all the tested 
conditions in terms of the statistical measure that appeared to 
be more relevant.  

In order to get meaningful results, for the multiclass 
experiments those were expressed in terms of what was 
referred to as ‘average accuracy’, namely the arithmetic mean 
of every class’ accuracy as the ratio between correct predictions 
and all the predictions; on the other hand, in the binary 
experiment the chosen metric was the F-Score, that is the 
harmonic mean of precision and recall, due to the fact that it 
seemed more pertinent since this label presented an uneven 
class distribution. 

 

 F-SCORE: 2*
௉௥௘௖௜௦௜௢௡∗ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟
 

 

The precision of an algorithm represents the ratio of correct 
positive observations and the recall is the ratio of correctly 
predicted positive events. 

 ACCURACY: 
ே௨௠௕௘௥ ௢௙ ௖௢௥௥௘௖௧௟௬ ௣௥௘ௗ௜௖௧௘ௗ ௜௧௘௠௦

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙  ௜௧௘௠௦ ௧௢ ௣௥௘ௗ௜௖௧
 

 

 PRECISION: ்௥௨௘ ௣௢௦௜௧௜௩௘௦

்௥௨௘ ௣௢௦௜௧௜௩௘௦  ி௔௟௦௘ ௉௢௦௜௧௜௩௘௦
 

 

 RECALL:  
்௥௨௘ ௉௢௦௜௧௜௩௘௦

்௥௨௘ ௉௢௦௜௧௜௩௘௦ା  ே௘௚௔௧௜௩௘௦
 

 
Once the collection of the results was done, the whole set was 

evaluated, particularly looking for the best combination of 
feature engineering, feature selection or extraction method and 
machine learning algorithm in every label, it means the 
predictive model that can guarantee the best performance for 
every prediction. 

In the first experiment the best outcome was obtained from 
the application of the method based on the decision forest 
algorithm on a dataset that was elaborated with Pearson 
process, although all the results were spread among a few 
percentage points. 

As well as for the first, the classification on the second label 
got its best score operating with the sequence of Pearson and 
decision forest, however it is worth to highlight that in this 
condition the predictive model classified correctly every 
instance. 

In the third experiment the best result was unique, since it 
was the only one achieved with the neural network algorithm, 
scoring exactly the same with processes which involved LDA, 
yet it must be said that almost all the other outcomes were just 
a few percentage points lower than those mentioned above. 

With regards to the fourth label, the learning model which 
performed better was the one applying the decision forest, 
similarly to the first couple of experiments, even if it was 
operated on a dataset that underwent the LDA process set on 
extracting 80 variables. 

In the last one, even if it was a binary classification problem, 
it was found that the best sequence working on this label was 
identical to the one in the last described experiment. 

In addition to this analysis, it could be stated that combining 
the feature selection process based only on Pearson and the 
learning models using support vector machine and logistic 
regression led to the worst results in every classification, with 
an exception for the first experiment, in which all the 
algorithms and all the methods for  feature selection and feature 
extraction led to comparable results. 

The results for every tested combination of feature selection 
or extraction and algorithm are shown in Table 4. An 
explanation for the columns’ name and column S&E is 
necessary: 

 S&E Method of feature selection or extraction 
 LR  Logistic Regression 
 NN  Neural Network  
 DF  Decision Forest 
 SVM  Support Vector Machine  
 F60/F80  LDA with 60/80 features 
 PF60  LDA and Pearson with 60 variables 
 P60  Pearson with 60 variables 

 
As explained before, for label from 1 to 4 the performance 
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evaluation is based on the accuracy of the model and for label 
5 the evaluation is based on the F-Score. 

 Table 4. Results 

 
7. Conclusions 

 
At the end of the paper, the authors can make some 

reflections. Firstly, the suggested methods about the 
dimensionality reduction, that are to use Pearson’s correlation 
according to the minimum correlation and the Linear 
Discriminant Analysis similarly, and the predictive model in 
general guarantee an important performance. In fact, the 
suggestion to reduce the number of features at 60 or 80, finding 
the optimal combination of the inputs that linearly separates 
each group while minimizing the distances within each group 
or selecting the n variables more correlated with the target 
label, and the predictive model can guarantee a performance 
bigger than 99% for the four multiclass classifications and 
bigger than 95% for the binary classification. Logistic 
regression and support vector machine with Pearson for label 
2, label 3, and label 4 have the worst performance, but in both 
cases bigger than 80% for label 2, bigger than 75% for label 3 
and bigger than 70% for label 4. For label 5 the worst 
performance is with neural network and support vector 
machine with Pearson, but in both cases bigger than 77%. 
Moreover, the authors have tested not only previously used and 
confirmed algorithms in the same context, it means with the 
same dataset, but even new algorithms like decision forest and 
logistic regression. Decision forest is the best algorithm in four 
situations and only for label 3 neural network outperforms 
decision forest. There is not a single number of features or a 
single method of selection or extraction of features with the 

best performance. In fact, for label 1 and label 2 Pearson with 
60 features achieves the best results. For label 3 there is an 
equal accuracy between LDA with 80 features, LDA with 60 
features and the combination between LDA and Pearson with 
60 features. For label 4 and label 5 the best performance is 
achieved by LDA with 80 features. In general, there is a small 
difference between LDA with 60 features and LDA with 80 
features. In fact, both for the multiclass classifications and the 
binary classification the difference of accuracy and F-Score 
between LDA with 60 features and LDA with 80 features is 
never bigger than 0.01 approximatively. Talking about the 
limitation of the model, that for the authors become future 
researches, all the selected or extracted features are based on a 
single cycle. This is a limitation, as mentioned in [7], because 
there is the risk of neglecting deteriorations visible latter than a 
cycle. Future research will be focused on adding new features, 
based on functions representative of the distribution density, 
computed on a bigger time window. Another future research 
will be the implementation of the same model in different 
situations, such as different machines or components. 
Moreover, on the same hydraulic system, could be useful to try 
to increase the number of the performance levels or to try 
different approaches for feature selection or feature extraction. 
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