dynamic modelling of the swash plate of a hydraulic axial piston pump for condition monitoring applications

Abstract

Abstract In the last years Prognostic and Health Management (PHM) has become one of the challenging topic in the engineering field. In particular, model-based approach for diagnostic relies on the development of a mathematical model of the system representing its flawless status. Once the model has been developed and carefully calibrated on experimental data referred to flawless pump condition the comparison between the model output and the real system output leads to the residual analysis, which gives a diagnosis of the component health. This paper presents the mathematical model of a hydraulic axial piston pump developed in order to replicate the dynamic behavior of the swash plate for PHM applications. The model has been developed on the basis of simplified hypotheses, a friction model between swash plate and bearings has been introduced. A detailed experimental activity was carried out to calibrate and validate the model with step tests and sweep tests. The comparison between numerical and experimental results shows a satisfying agreement and highlights the model capability to reproduce the swash plate dynamics. Future works will include tests with the pump in faulty conditions to evaluate the pump health state through the residual analysis of the swash plate position

    Similar works