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Abstract: This paper presents a degradation-level assessment and failure prognostics methodology for 

degrading systems. The proposed methodology consists of offline and online phases. In the offline phase, 

different time-domain health indicators (HIs) are extracted and the best indicator of degradation is selected 

by filter-based methods. Then, a degradation model is defined and its parameters are estimated using the 

selected HI. In the online phase, the k-means clustering is utilized to detect a change(s) in the system’s 

health state and to trigger failure prognostics for remaining useful life (RUL) prediction. The degradation 

model parameters are updated as new data are available, and the RUL is predicted iteratively. The proposed 

methodology is implemented on point machine sliding chair degradation using in-field condition 

monitoring (CM) data. The results show that the methodology can be effectively used in machine 

degradation-level assessment and in online RUL predictions. 

Keywords: degradation-level assessment, clustering, change-point detection, failure prognostics, RUL 

prediction, railway point machines, sliding-chair degradation, predictive maintenance. 

 

1. INTRODUCTION

Machine degradation-level assessment (MDA) is one of the 

important issues in Prognostics and Health management 

(PHM) discipline. The MDA analyses the machine failure 

propagation to get knowledge about the hidden health state 

transitions either from raw data (e.g. batteries) or from 

constructed health indicators (HIs), before triggering 

prognostics tools. Hence, the MDA information can be used in 

the development of robust prognostics models in incipient 

failure detection to trigger remaining-useful-life (RUL) 

prediction for complex systems (e.g. railway point machines, 

high-speed train bogies, wind turbines, nuclear power plants 

and aircrafts (X. Wang et al. 2016)). 

Railway turnout systems, which consist of sliding-chair plates, 

point machine, stock rails, locking systems, etc., are used to 

manage the train turnouts by moving rail blades at a distance. 

Hence, the point machine health assessment is very crucial to 

increase operational reliability and passenger safety in railway 

transportation. In general, there are different types of point 

machines, such as hydraulic, electro-mechanical and 

pneumatic (Atamuradov et al. 2009). In (Z. Wang et al. 2016), 

the authors proposed an integrated feature extraction 

methodology based on singular value decomposition (SVD) 

and empirical mode decomposition (EMD) techniques and the 

Mahalanobis distance metric for fault detection of electro-

mechanical point machines using power signals acquired from 

the point machine test bench. A similar work was also 

conducted in (Yoon et al. 2016) using in-field DC current 

signals based on Dynamic Time Warping (DTW) technique 

for point machine fault detection. In (Jin et al. 2015), the 

authors proposed a systematic health assessment methodology 

for point machine fault diagnostics using simulated failure 

modes’ data. The power signal was divided into 7 segments 

using the motor speed parameters and statistical features were 

extracted from each segment for further analysis. By using 

self-organizing maps (SOM) and principal component analysis 

(PCA) techniques, the authors successfully evaluated the 

methodology in point machine degradation-level assessment 

and incipient fault detection. In (Asada et al. 2013), the authors 

proposed a fault diagnostics methodology using Discrete-

Wavelets Decomposition (DWT) and Support Vector Machine 

(SVM) classifier for electro-mechanical point machines. The 

DWT was employed in feature extraction and reduction steps 

before SVM based fault classification. The k-means clustering 

was utilized to select the best DWT type and decomposition 

level in feature selection and reduction step. Afterward, 

different failure modes were efficiently classified by kernel-

based SVM classifier using DWT based features. In (Eker et 

al. 2011; Eker & Camci 2013), the authors presented a state 

duration based methodology for point machine failure 

prognostics. The point machine degradation was modeled 

artificially using an exponential failure propagation function. 

The proposed methodology gave better RUL prediction results 

when compared to different prognostics tools. A data-driven 

failure prognostics model was proposed in (Letot et al. 2015) 

for point machine health assessment using the power signals 



acquired from the test bench. The point machine degradation 

model, which is the combination of linear and exponential 

functions, was built using an extracted time-domain based HI 

to predict the RUL of the system. A generic fault detection 

methodology was presented in (Atamuradov et al. 2017) based 

on a segment evaluation and inferential statistics approach. 

The authors extracted different statistical HIs from the DC 

current signal of point machine and employed data fusion to 

construct a unique system HI. The fused HI was further used 

in fault detection by segment evaluation. In  (Ashasi-Sorkhabi 

et al. 2017), the authors proposed fault detection and 

prognostics approach for automated people mover train 

gearbox. The fault detection was carried out online using an 

extracted HIs from vibration signals and the data-driven 

prognostics model parameters were updated based on a 

Bayesian approach and was validated on the periodically 

logged field data. Air leakage detection and failure prediction 

approach for the train braking system was proposed in (Lee 

2017). A regression classifiers were used in failure modes 

modeling and a density-based clustering was utilized to detect 

the leakage anomalies using compressor data. The 

methodology was efficiently demonstrated in anomaly 

detection and severity prediction based on logistic function. 

Several interesting types of research on point machine fault 

diagnostics can also be found in (García Márquez et al. 2010; 

García Márquez et al. 2007) papers. Moreover, failure 

prognostics approaches which were proposed for discrete 

systems can be found in (Ammour et al. 2017; Yin 2017).    

As been summarized in the previous paragraph, the point 

machine health assessment is an important task to increase 

reliability and safety in railway transportation and very 

challenging. This could be due to the insufficient data, 

unavailable failure modes which develop in long-period of 

time (Eker et al. 2011) and nonlinear system degradation 

behavior that makes constructing trendable system HIs hard, if 

not impossible. The sliding chair plates of the point machine 

can experience different degradation states (i.e. healthy, 

moderate and severe states) throughout their lifespan before 

the complete failure. To forecast the future degradation 

behavior of the sliding chair plates, it is important to detect a 

change-point(s) that the machine falls into a faulty state from 

healthy state. In practice, it is important to note that there can 

be more than one changing point (see Fig. 1) due to some 

physical phenomena. In this case, each degradation level 

(D1,2,3,4 in Fig. 1) should be evaluated (i.e. testing the failure 

severity criteria) differently, and the prognostics should be 

triggered when the machine switches to a severe health state.  

Fig. 1. Machine health state changes. 

Therefore, a machine degradation-levels should be properly 

assessed to detect an incipient fault before triggering a 

prognostics algorithm. This paper presents a MDA and failure 

prognostics methodology for point machine sliding chair 

degradation. In the offline phase of the proposed methodology, 

different statistical HIs are extracted from in-field condition 

monitoring (CM) data and selected by filter based HI selection, 

utilizing monotonicity and similarity statistics. Then, a double 

exponential degradation model is built and the parameters are 

estimated using the selected HI. In the online phase, an 

unsupervised technique, which is k-means, is used to detect the 

changing point(s) by grouping newly received HI data, before 

the prognostics. Finally, the prognostics model is triggered to 

predict the RUL. As new data points are available, the model 

parameters are re-estimated and the component RUL is 

predicted iteratively. The main contributions of this work, 

compared to the reviewed papers are 1) HI selection by two 

step intraclass and interclass feature analysis using filter 

methods, 2) unsupervised change-point detection and 3) RUL 

prediction based on online prognostics model update by 

windowing approach. 

The paper is organized as follows: Section 2 explains the 

proposed methodology steps. Section 3 presents the sliding 

chair degradation modeling and the experimental rig setup. 

The results are presented in Section 4. Section 5 concludes the 

paper. 

2. METHODOLOGY

The proposed methodology consists of offline and online 

phases. In the offline phase, the health indicator construction 

and the degradation model definition is presented. The online 

phase includes the clustering based change-point detection and 

the RUL prediction steps. The general scheme of the proposed 

methodology is depicted in Fig. 2. 

2.1 Health Indicator Extraction and Selection 

A HI extraction can be defined as an extraction of useful and 

important hidden information from raw data that indicates 

health state transitions in a system degradation. In this paper, 

time-domain based HIs such as root-mean-square (rms), 

kurtosis, skewness, crest factor (crfactor), standard deviation 

(stdev) and peak-to-peak (p2p) are extracted. The HI selection 

is carried out in two steps. The HIs which have a higher 

monotonicity value than the calculated sample mean are 

selected first in step 1 (intraclass analysis). In step 2 (interclass 

analysis), a similarity matrix is constructed from the selected 

HIs using the Euclidean distance. The best HI is then selected 

from the similarity matrix mean which has a minimum 

distance value. In the intraclass selection, the most trendable 

HIs are selected and in the interclass selection, the most 

representative HI is selected among the trendable HIs. The 

monotonicity is calculated using equation (1) and the 

Euclidean distance is calculated using equation (2). The 

similarity matrix (!"#$) is constructed as indicated in

equation (3). The most representative HI is selected by using 

equation (4). 

$% = &'( ))*+,-./012 3 ( ))*+,4.012 '5 (1) 
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Fig. 2. Two-step degradation-level assessment and failure prognostics methodology scheme.

where $% is the monotonicity value for the "67 HI (89%). The

absolute value of the difference between number of positive :( ;
;89" > <? and negative derivatives :( ;

;89" @ <?  gives the 

monotonicity value. A HI with the higher monotonicity 

indicates the better degradation with an increasing/decreasing 

trend.   

;"!A:BC D? = EF :B% 3 D%?GH%I2J
(2) 

where K is the length of the given HIs B and D.

!"#$ = L;"!A:M2M2? N ;"!A:M2MO?P Q P;"!A:MOM2? N ;"!A:MOMO?RO×O (3) 

ST!A89 = min/:U:!"#$?? (4) 

where ;"!A:M2MO? is the distance value between the health

indicators M2  and MO from the data pool with size $ and U is

the similarity mean value. 

2.2 Clustering based Degradation-level Assessment 

A k-means (Lloyd 1982) unsupervised machine learning 

technique is adopted in this paper in MDA for change-point(s) 

detection.   

The k-means groups a given X dataset (V = W2C WG�/W0) into

C (X = X2C X �/XY) clusters. The similarity degree between

the cluster center U% and the data points is based on an

Euclidean distance, where " = ZC [C � X. The goal is to

minimize the objective function expressed by: 

\:UC ]? =^^]YC_`W_ 3 UY`G
a

YI2

0

_I2
(5) 

where  ]YC_ b {<CZ} is the membership value of the data pointW_ to the cluster XY. The best partition number can be identified

by using cluster validity techniques (Maulik & 

Bandyopadhyay 2002). In this paper, well-known within 

cluster consistency evaluation technique, which is Silhouette 

(Rousseeuw 1987) evaluation, is adopted for cluster 

validation.  

2.3 Degradation Model for Failure Prognostics 

First, the degradation trend of the selected HI is extracted by 

using a moving average noise filtration technique before the 

curve fitting step. In this research, a double exponential 

function, which was proposed in (Skima et al. 2016), is 

adopted in the sliding chair degradation modeling due to its 

good degradation representability as given in (6).   

c:A?de = f × TWB:g × A? h j × TWB:k × A? (6) 

where c:A?de is the model output at time A and fC gC jC k are the

model parameters. The degradation model parameters are 

estimated in the offline phase. In the online phase, after the 

detection of changing point, failure prognostics is triggered to 

predict the RUL of the sliding chairs. As new data values are 

available, the model parameters are re-estimated and the 

system RUL is predicted iteratively until the end-of-life (EOL) 

threshold is reached. To update the exponential model 

parameters in the online phase, it is obligatory to have 

sufficient amount of data points. In this study, the model 

update is performed after each 5 and 10 time stamps. The RUL 

prediction accuracy (lopp) is calculated by using equation (7) 

(Tobon-Mejia et al. 2012). 

lopp =2
qF 3rxs/|tuvw:S? 3 tuvy:S?| tuvz:S?~q�I2 (7) 

where � is the number of data point used in RUL prediction.

For the best prediction performance, the lopp produces 1 and

0 for the worst.   

3. EXPERIMENTAL SETUP AND DATA COLLECTION

Since the point machines are highly reliable systems, the 

degradation of their components can take a long period of time 

(Gebraeel, Elwany, & Pan 2009), which makes failure 

prognostics very hard. To overcome this problem, the sliding 
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chair degradation is simulated by an accelerated aging 

procedure on the real system. The sliding chair plates support 

the point machines to move the rail blades from normal-to-

reverse and reverse-to-normal positions. There were totally 12 

lubricated (i.e. healthy) sliding chair plates on the turnout 

system. The first sliding chair failure state was generated by 

contaminating the farthest 10th, 11th and 12th plates. The second 

faulty state was acquired by contaminating the 9th farthest 

plate. By adding a new contaminated plate to the faulty group, 

we generated a complete point machine sliding chair failure. 

There are totally 10 different health states (10 samples/health 

state) which were generated by the accelerated aging. The 

resistive force sensory data has been investigated in this 

research due to good degradation representation property 

(Camci et al. 2016; Ardakani et al. 2012). An electro-

mechanical point machine, an installed force sensor and the 

sliding chair plates which were investigated in this current 

research, are depicted in Fig. 3. The real turnout system and 

the sliding chair degradation modeling are shown in Fig. 4. 

The resistive force time series and one sample from each 

healthy and faulty states of the sliding chair degradation are 

depicted in Fig. 5. 

4. RESULTS AND DISCUSSIONS

The point machine resistive force measurements went through 

HI extraction step to reveal the sliding chair plate degradation 

patterns. Before calculating the monotonicity values, the 

extracted HIs should be smoothed. The extracted and 

smoothed HIs by using Moving Average are shown in Fig. 6. 

As depicted in Fig. 6, the extracted descriptive statistics gave 

different degradation patterns, where some of them are not 

correlated with the sliding chair degradation. The extracted 

HIs went through two- steps: intraclass and interclass HI 

selection to select the best HI representing the sliding chair 

failure propagation, as it was explained in section 2. The 

calculated monotonicity values of the given HIs are shown in 

Fig. 7. The rms, stdev and p2p have been selected as the most 

trendable indicators from the intraclass selection, and fed into 

the interclass selection for the best HI selection. Before 

building the similarity matrix (equation (3)), the selected HIs  

Fig. 3. a) Point machine b) installed force sensor and c) 

sliding chair plates. 

were normalized between [0,1]. The calculated interclass 

similarity values for the given HIs are presented in Table 1. 

Based on the proposed filter health indicator selection method, 

Fig. 4. Turnout system and sliding-chair degradation 

simulation. 

Fig. 5. a) Force time series and b) healthy, c) faulty data 

samples for sliding chair degradation. 

Fig. 6. Extracted HIs from force measurements. 

Time (ms) Time (ms) 

Time (ms) Sample 

a)
F

o
rc

e 
(J

)
b

) 
F

o
rc

e 
(J

)

c)
 F

o
rc

e 
(J

)

Railway Turnout System 

Contaminated Lubricated 

sk
ew

n
es

s

rm
s

k
u

rt
o

si
s 

st
d

ev

cr
fa

ct
o

r

p
2

p
 

Cycle Cycle 

Cycle Cycle 

Cycle Cycle 
a) Point Machine

b) Force sensor

c) Sliding chair plates

Sliding chair plates 

Point Machine 



Fig. 7. Calculated monotonicity values for a given HIs. 

Table 1. Similarity matrix for selected HIs. 

rms stdev p2p 

rms 0 0.34 0.75 

stdev 0.34 0 0.50 

p2p 0.75 0.50 0 

Average 0.54 0.42 0.62 

stdev has been selected as the best representative and the most 

supported HI with minimum distance for the sliding chair 

degradation. It is also important to note that the selected stdev 

has the highest monotonicity value (see Fig. 7) compared to 

the others, which proves the efficiency of the proposed filter 

method for failure prognostics. The proposed exponential 

degradation model was fitted to stdev to estimate the model 

parameters in the offline phase. The estimated degradation 

model parameters obtained by curve fitting and the goodness 

of fit (R2) are given in Table 2. 

After the degradation model definition in the offline step, the 

selected HI went through the k-means based change-point 

detection to trigger failure prognostics for RUL prediction in 

the online phase. The cluster number was optimized by using 

Silhouette validation. The maximum Silhouette value refers to 

the best cluster number. The k-means has efficiently clustered 

the given HI into two degradation-levels. The change-point 

detection result is depicted in Fig. 8. The first level 

corresponds to the healthy state and the second level to the 

failure state. The last index (cycle # 71) of the 1st degradation-

level is the changing point in the sliding chair degradation, 

which indicates the incipient failure. The change-point is used 

to launch the RUL prediction. The RUL prediction results are 

shown in Fig. 9. After the first trigger, the model parameters 

are not updated until the new data values are available. In this 

study, the waiting time was performed using two different 

window sizes. The purpose was to check the accuracy of the 

prognostics model with a given amount of data and to optimize 

the RUL prediction interval for better maintenance planning in 

machine condition monitoring. The RUL prediction results 

using window length 5 (W-5) and 10 (W-10) for the model 

update is given in Fig. 10. As seen from Fig. 10, the W-10 

converged to the real RUL faster than the W-5 in its first 

update process. But using a longer window size can be a 

disadvantage and can affect maintenance planning negatively, 

especially for critical components such as sliding chairs. 

Despite its computational complexity, the W-5 based model 

updating is more precise than the W-10. The RUL prediction 

performances for W-5 and for W-10 were calculated as 0.90 

and 0.81 using the equation (7). Hence, using a shorter window 

size in model updating could be more efficient for RUL 

prediction of critical systems to be used in post-prognostics 

decision making.  

Table 2. Estimated degradation model parameters. 

Parameters a b c d R2 

Values 0.097 -0.038 0.018 0.038 0.99 

Fig. 8. Change-point detection results using k-means. 

Fig. 9. RUL prediction (RULr – real and RULp – predicted) 

after the change-point detection (CP71). 

Fig. 10. RUL prediction results using window sizes a) five 

(W-5) and b) ten (W-10).  

5. CONCLUSIONS

In this paper, a degradation-level assessment and an online 

prognostics approach were proposed for a point machine 

sliding chair monitoring. The two-step filter method was 

proposed for HI extraction and selection. A degradation-level 
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assessment based on the k-means was performed to detect 

change(s) in the component health state transitions. The k-

means could only detect the bigger change in the health state 

but was less sensitive to smaller changes in failure 

propagation, which might mislead to late RUL predictions. 

The data-driven based prognostics model was developed and 

the RUL of the system was predicted using two different time 

stamps and the results were compared.   

As a future work, we plan to utilize different change-point 

detection algorithms which are more sensitive to smaller 

changes and to develop prognostics approach based on failure 

severity criteria for systems experiencing different health state 

transitions (i.e. healthy, moderate, severe, etc.). 
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