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The reliability of pumps can be compromised by faults, impacting their 
functionality. Detecting these faults is crucial, and many studies have 
utilized motor current signals for this purpose. However, as pumps are 
rotational equipped, vibrations also play a vital role in fault 
identification. Rising pump failures have led to increased maintenance 
costs and unavailability, emphasizing the need for cost-effective and 
dependable machinery operation. This study addresses the imperative 
challenge of defect classification through the lens of predictive 
modeling. With a problem statement centered on achieving accurate 
and efficient identification of defects, this study’s objective is to evaluate 
the performance of five distinct algorithms: Fine Decision Tree, Medium 
Decision Tree, Bagged Trees (Ensemble), RUS-Boosted Trees, and 
Boosted Trees. Leveraging a comprehensive dataset, the study 
meticulously trained and tested each model, analyzing training 
accuracy, test accuracy, and Area Under the Curve (AUC) metrics. The 
results showcase the supremacy of the Fine Decision Tree (91.2% 
training accuracy, 74% test accuracy, AUC 0.80), the robustness of the 
Ensemble approach (Bagged Trees with 94.9% training accuracy, 99.9% 
test accuracy, and AUC 1.00), and the competitiveness of Boosted Trees 
(89.4% training accuracy, 72.2% test accuracy, AUC 0.79) in defect 
classification. Notably, Support Vector Machines (SVM), Artificial Neural 
Networks (ANN), and k-Nearest Neighbors (KNN) exhibited 
comparatively lower performance. Our study contributes valuable 
insights into the efficacy of these algorithms, guiding practitioners 
toward optimal model selection for defect classification scenarios. This 
research lays a foundation for enhanced decision-making in quality 
control and predictive maintenance, fostering advancements in the 
realm of defect prediction and classification. 
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1. Introduction 

The process of locating and resolving issues with mechanical machinery is given great priority in today's 
advanced industries [1]. The hydraulic turbomachines of choice for a range of industries, including those that 
deal with food processing and oil refineries, are centrifugal pumps, also referred to as CPs. They feature a very 
strong design that can handle a wide range of flow needs. To run a conventional chemical factory, it is believed 
that each person uses an average of one CP [2]. Moreover, it is estimated that around 20% of the overall energy 
generated on a global scale is allocated for the functioning of pumps [3]. As a result, they are critical components 
in keeping the plant's process course running. Prediction of defects in mechanical systems can be performed in 



J. of Advanced Industrial Technology and Application Vol. 4 No. 2 (2023) p. 48-65 49 

 

 

several methods, including qualitative and statistical analysis of obtained failure data, development of system 
mathematical models, and application of machine learning techniques. The specific fault frequency variations 
are examined and studied during a qualitative analysis to establish which faults are present [4].  

On the other hand, there is a substantial margin for error due to the involvement of humans. CP flaws have 
been identified by several studies through the use of modeling tools [5]–[8]. Conversely, precisely modeling the 
interrelated defects and locating them can be a very difficult challenge. Online machine learning and condition 
monitoring are becoming increasingly popular as the capabilities of current computers continue to improve [9]. 
Artificial neural networks (ANNs), fuzzy logic, empirical mode decomposition (EMD), decision trees, support 
vector machines (SVM), and deep learning are some of the most common and widely used machine learning 
approaches. The machine learning approaches discussed above have been employed by researchers to identify 
and diagnose defects in various mechanical systems, such as bearings, [10]–[18] gears [19]–[25], induction 
motors [26]–[32], and pumps [33], [34], [43], [44], [35]–[42]. 

 It is crucial to choose the right signal to use for CP condition monitoring. CP vibration [2], [32], [45]–[48], 
motor line current [2], [45], [49]–[51] and auditory emission signals [45], [52], [53] are common examples of 
signals. Failures also alter how the CP system operates, changing the motor's load and, consequently, the motor's 
line-current. As a result, the utilization of motor current has also been employed for the detection of CP defects. 
The most frequently advised signals for the diagnosis of CP defects are vibration signatures due to their 
immense utility, sensitivity to fault conditions, and ease of acquisition. Given the advantages vibration signals 
provide, this study would use the data from these signals to identify CP faults. Analysis of the collected signal is 
possible in the time, frequency, and time-frequency domains. Many studies use the time domain to identify faults 
since it provides a physical comprehension of the signal and is sensitive. However, compared to time-domain 
analysis, spectral/frequency analysis has three key advantages. The first is that it makes the waveform easier to 
grasp. Second, the physical characteristics of the signal typically depend on its frequency, and third, it is a tool 
used in mathematics to solve equations [54].  

The analysis of fault data encompasses various data forms, including temperature, pressure, and vibration 
fluctuations [47]. Managing vibration data, in particular, is challenging due to its rapid expansion, leading to 
storage and analysis complexities. Given the irregularity and insufficiency of these data forms, effective 
methodologies for analysis are elusive. To address this, researchers are increasingly drawn to studying this data 
type to improve vibration data interpretation [54]. This study aims to evaluate classifier performance based on 
true positive rate (TPR), false negative rate (FNR), and area under the curve (AUC), seeking both an optimal 
classification algorithm and enhanced insights into pump failure. To achieve this, the vibration dataset from the 
Kaggle Machine Learning Repository serves as the data mining foundation for this study's objectives. 
Classification, a cornerstone of supervised learning, is central. The study applies five distinct classification 
techniques—Decision Tree (DT), Ensemble, Support Vector Machine (SVM), Neural Networks (ANN), and k-
Nearest Neighbor (KNN)—to categorize the dataset into NORMAL, BROKEN, and RECOVERING classes. In 
Section 2, the study delves into the functional categorization characteristics of each algorithm. In summary, this 
research addresses the challenges of managing and interpreting fault data, focusing on classifier evaluation to 
identify an effective algorithm for understanding pump failure dynamics. 
The major contributions of this study are; 

 Enhanced Methodologies for Vibration Data Analysis: The study acknowledges the challenges associated 
with managing and interpreting vibration data due to its rapid growth and irregularity. By applying a 
range of classification techniques such as Decision Tree, Ensemble, Support Vector Machine, Neural 
Networks, and k-Nearest Neighbor, the study contributes to advancing effective methodologies for 
analyzing complex vibration data. This can lead to improved accuracy in identifying and understanding 
patterns related to pump failure. 

 Classifier Performance Evaluation for Pump Failure Prediction: The study's focus on evaluating 
classifier performance using metrics like true positive rate, false negative rate, and area under the curve 
represents a significant contribution. By systematically comparing the performance of different 
classification algorithms on the vibration dataset, the study provides valuable insights into the strengths 
and weaknesses of each algorithm for predicting pump failure. This can guide practitioners in selecting 
the most suitable algorithm for real-world applications. 

 Insights into Pump Failure Dynamics: Through the classification of vibration data into categories of 
NORMAL, BROKEN, and RECOVERING, the study contributes to a deeper understanding of pump failure 
dynamics. By leveraging various classification techniques, the study sheds light on distinguishing 
patterns associated with different failure modes. This understanding can potentially lead to proactive 
maintenance strategies and improved decision-making in industrial settings, ultimately contributing to 
reduced downtime and enhanced operational efficiency. 

In summary, the study's major contributions lie in advancing vibration data analysis methodologies, 
evaluating classifier performance for pump failure prediction, and providing insights into the dynamics of pump 
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failures through effective classification techniques. The remaining parts of this article are structured as follows: 
in section 2, a discussion on literature review of the algorithms chosen for this study as well as relevant works, 
and Section 3 explains the methodology of the study. The results that were obtained are discussed in Section 4, 
while the conclusions and suggestions for the future are presented in Section 5. 

2. Literature Review on Classification Algorithms 

This section provides a detailed explanation of the classification algorithms employed in this study. The section 
further gives an overview of the related studies in the literature concerning the application of the classification 
algorithms including their cons and pros. Several researchers have focused on the condition motoring of 
centrifugal pumps so far. McKee et al., [55] introduced centrifugal pump fault types and analyzed known 
diagnostic and prognostic methods for centrifugal pumps. In comparison to operating conditions such as 
current, voltage, vacuum gauge reading, and pressure gauge reading, vibration signals are commonly used in 
centrifugal pump condition motoring. Because vibration signals provided dynamic information about the 
machine condition, Wang and Chen, [37] demonstrated that they were useful in defect diagnostics of centrifugal 
pumps. Xue et al., [56] further stated that the vibration signature is the most telling indicator of the condition of 
spinning machinery. Effective feature extraction of vibration signals is a critical step in ensuring problem 
diagnosis accuracy. 

In the feature analysis of a centrifugal pump, various methodologies were used. Samanipour et al., [57] used 
pressure time domain features to detect centrifugal pump cavitations. Kumar and Kumar, [58] demonstrated an 
automatic centrifugal pump detection approach based on time-frequency properties. Muralidharan and 
Sugumaran, [39], [46], [59] proposed wavelet-based fault diagnostic algorithms for monoblock centrifugal 
pumps and also presented a comparative study between support vector machine (SVM) and extreme learning 
machine (ELM) for fault detection in pumps. Azizi et al., [60] presented a hybrid feature selection technique for 
centrifugal pump cavitation severity. Yu et al., [61] suggested a sewage source heat pump system fault detection 
methodology based on principal component analysis (PCA). Zhang et al., [62] presented a variational mode 
decomposition method for detecting rolling bearing faults in a multistage centrifugal pump. Sakthivel et al., [48] 
investigated dimensionality reduction strategies for failure diagnosis of a single-block centrifugal pump using 
vibration signals. Liu et al.[63] used locally linear embedding, wavelet modification, and singular value 
decomposition approaches to reduce the dimensionality of submersible plunger pump failure diagnostics. 

Several artificial intelligence algorithms have been employed in centrifugal pumps in terms of comparative 
investigation of identification performance. Muralidharan and colleagues [64], [65] used naive Bayes, Bayes net, 
and support vector machine (SVM) to diagnose faults in a single-block centrifugal pump. Sakthivel et al.[48], [52] 
used rough-set, fuzzy set, and gene expression programming to diagnose faults in a monoblock centrifugal 
pump. Deep belief networks and lowest entropy deconvolution were introduced by Wang et al. [66], [67] to 
detect problems in axial piston pumps. Panda et al. [68] used SVM to investigate flow obstructions in the inlet 
pipe and approaching bubble production in the centrifugal pump. Kang et al. [69] used the status coupling 
relationship to improve fault detection sensitivity and reduce false alarm rates in the pipeline and pump unit 
systems fault diagnostics. Buono et al.[70] studied the possibility of cavitation in gerotor pumps and developed a 
defect diagnosis method based on the auto-regressive-moving-average methodology. Al-Tobi et al. [71] used a 
genetic algorithm, multilayer feedforward perceptron, SVM, and continuous wavelet transform to diagnose a 
centrifugal pump failure. Vibration analysis was used by Al-Obaidi et al. [72] to detect and diagnose the 
cavitation phenomena within centrifugal pumps. Bordoloi and Tiwari [72] talked about the best SVM method for 
detecting pressure flow obstructions and cavitations in casing of pumps. Azadeh et al. [47] suggested a flexible 
approach for centrifugal pump defect diagnostics using ANN and SVM. Nevertheless, one of the limitations of 
ANN is that it is impossible to determine the size of the hidden layer or the learning rate. The precision of the 
classifier is always a problem for fuzzy logic. SVM has higher classification accuracy, but the negative is the high 
algorithmic complexity and the need to properly set its hyperparameters in advance. 

WSNs are able to communicate with a wide variety of fields, including but not limited to Household Robotics 
Systems, research, ship monitoring, underwater acoustics, and medical diagnosis. The principles of AI serve as 
the foundation for ML techniques, which are implemented in computing problems in instances where 
conventional methods are unable to be utilized. To compare their efficacy, the author set linear regression, 
Stochastic Gradient Decent and Naive Bayes (NB), to the test for classification (SGD) using multiple machine 
learning algorithms on several different datasets [10]. (SGD). Classifiers were utilized for the purpose of 
classification, and among the classifiers that were utilized, Gaussian naive Bayes performed best. Preprocessing 
of Electrocardiogram Signals and support vector machine coupling were used in order to classify the collected 
data. We used the adaptive filter in order to cut down on the latency as well as the computational overhead. For 
the purpose of classification utilizing parameters like ECG and HRV, [11] utilized techniques such as SVM, 
Principal Component Analysis (PCA), knowledge-based system, KNN, and ANN. In this study, four machine 
learning classifiers were employed: DT, KNN, ANN, SVM, and ENSEMBLE. The simulation results demonstrate 
their detection accuracies. Fig. 1 depicts the types of classification algorithms employed in the study. 
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Fig. 1 Classification learner algorithms 

2.1 Decision Tree 

 In machine learning, Decision Trees (DT algorithms are used for both prediction and classification. Using the 
decision tree and a given set of inputs, one can map the many outcomes resulting from the decisions or 
consequences. DT classifies occurrences by sorting them according to the feature values they possess. A decision 
tree is a diagram in which each node represents a property of an instance that can be classified, and each 
subdivision signifies a probable value for the corresponding node [73]. Instances are classified and ordered 
according to their feature values, beginning with the root node. Decision tree learning is a technique used in data 
mining and ML in which a DT is used as a prediction model to map observations to a target value. Classification 
trees and regression trees are common names for these tree-based models. Post-pruning processes in decision 
tree classifiers typically use a validation set to assess how well the trimmed trees perform. If a node has a high 
frequency of a certain class among the sorted training samples, it can be removed [74]. Fig. 2 is an illustration of 
the decision trees. 
 

 

Fig. 2 Decision tree 

 



52 J. of Advanced Industrial Technology and Application Vol. 4 No. 2 (2023) p. 48-65 

 

 

2.2 Ensemble 

The ensemble learning methodology is a close emulation of the human socio-cultural tendency of asking the 
opinions of multiple individuals before making any significant choice. This behavior is common among humans. 
An ensemble algorithm is a generic meta-approach to machine learning that combines the predictions from 
several different models to achieve improved predictive performance [10]. Even though there are an infinite 
number of ensembles that you can construct for your predictive modeling challenge, the subject of ensemble 
learning is mostly dominated by three distinct methodologies [75]. To such an extent that, rather than 
algorithms per se, each is now considered to be a field of study that has given rise to a lot of additional 
approaches that are more specialized. The ensemble Kalman filter EnKf is a collection of reservoir simulations 
with varying initial circumstances that attempt to capture and update a probability distribution. Each model is 
an advanced one-time step using previous data, and the Kalman filter provides a revised ensemble of models. 
This approach has the advantage of always being available as an estimate of the probability density function of 
such true reservoir state, as well as the estimate is continuously updated as new data becomes available. The 
ensemble constructs new models in the revision process by modifying the parameters of the original models or 
by mixing parameters from more than one earlier model as shown in Fig. 3.   
 

 

Fig. 3 Ensemble method [75] 

2.3 Artificial Neural Network (ANN) 

A neural network is described by Haykin [76] as a fundamentally distributed massively parallel processor made 
up of fundamental processing units that have a natural preference for accumulating and exchanging experience 
data. The network makes use of synaptic weights, which are also known as the strengths of interneurons' 
connections to one another to store the knowledge it has learned from its environment. Layers of connected 
neurons make up an ANN. Numerous tiny nodes or neurons, which are the small neuron processing units that 
make up each layer, communicate with one another through weighted numerical connections. There are n layers 
of neurons in it, with two serving as input and output layers. Only the first layer is capable of receiving and 
sending outside signals, while the last layer is in charge of sending calculations' results. When incoming signals 
are processed by relays, the n-2 hidden layers that are the deepest take out any relevant characteristics. After 
that, the yield layer stays adjusted so that it conforms to the necessary qualities. To maximize the network's 
capacity for spotting significant data or patterns, complex neural networks may include some hidden layers, 
feedback loops, and time-delay elements. Using a single layer for input, hidden, and output, Fig. 4 depicts the 
simple architecture of a typical ANN [77]. 

According to Bello et al. [78], ANNs enable the examination and diagnosis of nonlinear behaviors in 
compound systems that may be investigated, and operators and decision-makers can use them as an effective 
performance evaluation tool. ANNs can be taught to learn from prior examples and uncover intricate practical 
correlations among the data supplied, even if the underlying links are difficult to articulate or unknown. This is 
made feasible by their education. These methods enable the representation of complex physical processes, 
including those with nonlinear, high-order, and time-varying dynamics, as well as those for which analytic 
models are not yet widely available. 

A basic neural network consists of three parts, as shown in Fig. 4: the input layer (layer L1), the hidden 
layers (layers L2, L3), and the output layer (layer L4).  Each layer has its weight and the weight changes as the 
model go through the hidden layers until it reaches the output layer. The components of each layer are 
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completely independent of each other. As Fig. 4 shows, more hidden layers would result in different outputs. The 
performance of the obtained ANN is based on its ability to generalize from the training to the validation data set. 
Neural networks with more than two hidden layers are known as deep neural networks (DNN) [79]. 

 

 

Fig. 4 Structure of ANN [80] 

2.4 Support Vector Machines (SVM) 

Using the concept of statistical learning, Vapnik developed support vector machines (SVMs) in the late 1960s. 
SVMs are a method for supervised machine learning that allows for both classification and regression data 
analysis, but their main use is for classification. As processing power became more widely available in the 
middle of the 1990s, they started to emerge, opening the door for several useful applications. It bases its 
operations on the reduction of structural risk. A hyperplane and a group of support vectors are used to divide 
the data into two classes in a basic SVM model [81]. To be thorough, a basic overview of SVM is provided below. 
Between two data sets, the SVM can be viewed as creating a classification line or hyperplane. In a two-
dimensional context, the SVM's process can be basically explicated without sacrificing simplification. Class A is 
represented by a series of circles, whereas class B is represented by a series of squares (class B). The SVM 
searches for and places a straight boundary (solid line) between the categories to increase the margin (shown by 
dashed lines). The SVM aims to find the border in each class as close to the nearest point of data as possible. 
After that, the boundary is established in the center of this region. The boundary is then placed in the center of 
this area [73]. The closest data points are used as support vectors for establishing the limits (SV, represented by 
a gray circle and square). 

The remaining features in the feature set can be discarded once the support vectors have been chosen 
because they provide all of the classification data required. By utilizing structural risk reduction to solve a 
constrained quadratic optimization problem, SVM splits data transversely the choice borderline of the 
hyperplane f(x) = 0. The objects with distinct labels that correspond to positive and negative classifications are 
included in the provided data input (xi I = 1, 2, N). The separation hyperplane is defined by the vector W and 
scalar b from Fig. 4. The separating hyperplane that produces the largest margin or separation between the 
plane and the data that is nearest to it is the best one. When the kernel function is used, SVM can be applied to 
non-linear classification tasks [82]. Due to the management of non-linearly separable features, working in a 
high-dimensional feature space presents challenges that can be overcome with the kernel function. Because it 
specifies the feature space that will be used to classify the training dataset, selecting the right kernel function is 
essential [83]. An illustration of how SVM classifies data is shown in Fig. 5. 
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Fig. 5 Classification of data with SVM 

2.5 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) is a distance-based classification technique developed by Fukunaga et al. [84]. It 
uses labeled samples stored in a training phase and labeled samples from that class to determine whether a 
sample belongs to a particular class. In effective methods of classification and regression, the contributions of 
neighbors are given weights. This means that neighbors who are closer to one another contribute more to the 
average than neighbors who are further apart. For instance, one common weighing technique uses a distance 
measure (d) to give each neighbor a weight of 1/d. For both K-NN classification and K-NN regression, the 
neighbors are drawn from a pool of examples whose classes or property values are already known. We could 
think of this as the algorithm's training set, though it is not strictly necessary. In Fig. 6, we see a KNN example in 
action. 
 

 

Fig. 6 Illustration of KNN [80] 

Table 1 Comparison of strength and weakness of algorithms 

Algorithm  Strength  Weakness  

Fine Decision Tree 
 

Interpretability: Decision trees 
are inherently interpretable, 
making it easier to understand 
the decision-making process. 
Handling Non-Linearity: Effective 
in capturing non-linear 

Overfitting: Fine decision trees 
may be prone to overfitting, 
capturing noise in the data and 
reducing generalization to 
unseen data. 
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relationships within the data. 
Medium Decision Tree 
 

Interpretability: Similar to the 
fine decision tree, it provides a 
clear and interpretable decision 
structure 

Reduced Complexity: The 
medium tree might sacrifice some 
complexity, potentially missing 
finer patterns in the data. 

Bagged Trees (Ensemble): 
 

Improved Accuracy: Ensemble 
methods, like bagging, reduce 
overfitting and enhance model 
accuracy by aggregating multiple 
models. 
Robustness: Less sensitive to 
noise and outliers due to 
averaging predictions across 
multiple trees. 

Lack of Interpretability: 
Ensemble methods can be less 
interpretable compared to 
individual decision trees. 

RUS-Boosted Trees: 
 

Boosted Accuracy: Boosting 
focuses on correcting errors 
made by previous models, leading 
to improved accuracy. 
Handles Class Imbalance: 
Particularly effective when 
dealing with imbalanced datasets. 

Sensitivity to Noisy Data: RUS-
Boosted trees may be sensitive to 
noisy data, potentially resulting 
in overfitting. 

Boosted Trees: 
 

Accuracy Improvement: Boosting 
helps in improving the accuracy 
of the model by giving more 
weight to misclassified instances. 
Versatility: Can be applied to 
various types of data 

Computational Complexity: 
Training boosted trees can be 
computationally expensive, 
especially with large datasets. 

 
The research findings, elucidating the strengths and weaknesses of various classification algorithms for 

pump failure prediction based on vibration data, carry significant implications for industrial maintenance and 
safety. The research findings, particularly the success of the Ensemble method, pave the way for optimized 
predictive maintenance strategies. Implementing the Ensemble method can enhance the accuracy of pump 
failure predictions, allowing for proactive maintenance interventions. This, in turn, minimizes unexpected 
breakdowns, reduces downtime, and extends the lifespan of industrial equipment. Maintenance schedules can 
be optimized based on more accurate predictions, leading to cost savings and improved operational efficiency. 

The detailed insights into pump failure dynamics, obtained through the classification of vibration data into 
categories like NORMAL, BROKEN, and RECOVERING, enable early fault detection. The Ensemble method's 
ability to distinguish patterns associated with different failure modes empowers maintenance teams to identify 
issues at their nascent stages. Early intervention can prevent catastrophic failures, ensuring the safety of 
personnel and minimizing the risk of accidents or damage to equipment. Understanding the strengths and 
weaknesses of each algorithm allows industrial practitioners to make informed decisions based on the specific 
requirements of their maintenance scenarios. For instance, the interpretable nature of Decision Trees could be 
preferred in situations where transparency in decision-making is crucial. On the other hand, the high accuracy of 
Ensemble methods may be prioritized in scenarios where predictive accuracy is paramount. By selecting the 
most appropriate algorithm for pump failure prediction, industrial maintenance teams can allocate resources 
more efficiently. This includes manpower, spare parts, and equipment. Proactively addressing potential failures 
reduces the need for reactive, emergency responses, leading to cost savings and an overall more efficient 
allocation of resources.  

The implementation of advanced algorithms requires a skilled workforce. The research findings highlight 
the importance of understanding algorithmic strengths and weaknesses. Organizations can invest in training 
programs to equip their personnel with the skills needed to leverage these algorithms effectively, ensuring the 
successful implementation of predictive maintenance strategies. The research findings underscore the dynamic 
nature of predictive maintenance. Regularly reassessing and adapting algorithms based on evolving datasets and 
technological advancements is essential. Continuous improvement efforts can be guided by a nuanced 
understanding of each algorithm's performance in different contexts, ensuring that industrial maintenance 
practices remain at the forefront of safety and efficiency. In summary, the research findings offer a roadmap for 
implementing advanced predictive maintenance strategies in industrial settings. By leveraging the strengths of 
specific algorithms and addressing their limitations, organizations can enhance safety, optimize maintenance 
practices, and foster a culture of continuous improvement in the realm of industrial maintenance and safety. 
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3. Methodology 

The proposed methodology consists of the following steps as shown in Fig. 7 below. 
 

 

Fig. 7 Methodology flow of classification 

An example of algorithm model for the classification is shown in Fig .8. 
 

 

Fig. 8 Ensemble algorithm model 

3.1 Data Collection 

The dataset consisting of pump-related sensor data was provided by Kaggle and was utilized in this study. The 
data collection contains a timestamp, 52 sensor data, and machine status. In this section, the data from the 
sensors is recorded once every minute, and the state of the machine is also presented. There are 222,0320 data 
points and 55 characteristics included in the dataset. Within these 55 features, the timestamp and the machine 
status both belong to the object datatype, all sensor data belongs to the float datatype, and the Unnamed: 0 
feature is an int datatype. Our investigation revealed that there are no overlapping records. The label data 
includes three different values for the machine state. The BROKEN status indicates that the machine has failed. 
The RECOVERING status indicates that the machine is attempting to recover from a failed state. The machine is 
operating normally, as indicated by the status indicator NORMAL. 

3.2 Data Cleaning 

The objective of machine learning (ML) and data mining (DM) is to extract actionable insights from sets of real-
world data. Real-world data often comprises extraneous or inconsequential information known as "noise," 
which can have a substantial impact on a variety of data analyses Association analysis, classification, and 
clustering are machine learning tasks. It is evident that this the confusion must be addressed, as it negatively 
impacts virtually every type of data analysis. In machine learning datasets, two distinct forms of noise may be 
present: attribute noise, which affects the predictive attributes, and class noise, which affects the target 
attribute. Noise introduced into a dataset has the potential to augment the intricacy of models and lengthen the 
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learning process, thereby impairing the efficacy of learning algorithms [2]. Consequently, it is essential to detect 
and manage this disturbance in data sets.  

Since the given data is highly imbalanced, further preprocessing procedures are required. This is since 
unbalanced data has a major effect on the ML model and this will highly affect the accuracy of the prediction 
[216]. Hence, to fill in the missing gaps, and rectify the unbalanced nature of the data, the forward fill method is 
adopted in this study for the feature engineering as presented in section 4.1.3. 

After studying the pattern of the missing data, the forward fill data imputation was used to fill the missing 
data instances. The reason for adopting the forward fill method for processing the data is that the pattern of the 
missing data was moving in a forward direction. Therefore, the forward fill will be the best option to employ for 
filling the missing gaps before the data is being trained in the ML model. 

3.3 Normalize Value 

The objective of normalization is to scale numerical data from various columns to a common scale. Standard 
Scaler normalization is employed. A standard Scaler normalizes a characteristic by removing the mean and then 
scaling to unit variance. Unit variance is calculated by dividing every value by the standard deviation. 

3.4 Encode Label 

The category value is changed to a numerical value in this step. The machine status values of NORMAL are 
mapped to 1, RECOVERING, and BROKEN are each mapped to the number 0, respectively. 

3.5 Feature Selection 

Feature selection is another method for reducing the number of features in a dataset. The feature selection 
method seeks to rank the value of existing characteristics in the dataset and eliminate less significant ones (no 
new features are created). Lowering the number of features used in a statistical analysis may result in numerous 
benefits including increased accuracy, risk of overfitting is reduced, increased training speed, improved data 
visualization, and improved model's explainability [217]. In this study, the principal component analysis (PCA) 
feature selection technique is used, and after that, the Synthetic Minority Over-Sampling Technique (SMOTE) 
technique is employed to smoothen the data. The primary difficulty encountered when utilising Principal 
Component Analysis (PCA) on a dataset is the determination of the optimal number of principal components. 
The process of optimising hyperparameters, despite its apparent complexity, can be effectively accomplished by 
utilising the GridSearchCV function within the sklearn module. The process of determining the optimal number 
of principal components is commonly referred to as a hyperparameter tuning procedure, wherein the 
hyperparameter n-components [218] is selected to achieve optimal performance. The present study utilises 
Principal Component Analysis (PCA) to derive both nonlinear and linear representations of the initial dataset 
within a reduced-dimensional space. 

After the application of PCA for the feature selection, and the Synthetic Minority Over-Sampling Technique 
(SMOTE) is carried out to fine tune the data, the model is trained and tested again with the algorithms 
considered in this study. SMOTE is a method used in classification tasks to address the issue of imbalanced data 
[219]. In imbalanced data, the number of instances belonging to one class (the minority class) is significantly 
lower than the number of instances belonging to another class (the majority class). This can lead to biased 
models, where the majority class dominates the prediction results. SMOTE addresses this issue by oversampling 
the minority class by creating synthetic examples that are similar to the existing minority class examples. The 
synthetic examples are generated by interpolating between minority class examples, creating new samples that 
are located on the line segment connecting two existing minority class samples. The steps of the SMOTE method 
are as follows: 

1. Select a minority class example to oversample. 
2.  Select one of its k nearest minority class neighbours. 
3. Generate a synthetic example by interpolating between the selected example and its neighbour. 
4. Repeat steps 1-3 until the desired number of synthetic examples have been generated. 

 
After applying SMOTE, the dataset will be more balanced, and the classifier can be trained on the 

oversampled dataset. This approach can help to improve the classifier's performance on the minority class. 
Afterwards, the datasets are trained and tested using the intended algorithms for the study. 

3.6 Selection and Validation of Models 

Using a web exploration and the k-fold cross-validation method, the hyperparameters of the machine learning 
model were optimized. The accuracy of the model's performance in real-world scenarios was assessed during 
the results validation process using K-fold cross-validation, which also served to prevent overfitting. The loop 
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repeats k times, using a different training set and validation set for each iteration. By averaging the results 
across all iterations, the scoring criteria for the model are established. The value of the k parameter was selected 
in such a way as to ensure that each fold of the k equal-sized subsets contains at least one failure event. As a 
result, data samples that occurred prior to the occurrence of a failure event were not divided across the folds. 
Due to the data's non-uniform distribution of failure events, an ideal value for k has been determined. A more 
thorough illustration of the system model for fault detection and classification is provided in the diagram below 
in Fig. 9. 
 

 

Fig. 9 Fault detection and classification model 

3.7 Fault Classification 

Faults are separated into their appropriate groups, and the classification accuracy percentage indicates the 
performance of the classifier. The flow of the classification process is shown in Fig. 10 below. 
 

 

Fig. 10 Workflow for training classification models 

3.8 Classification Accuracy 

 As a performance measure, the classification accuracy of the algorithms selected for the study is calculated 
using the equation 3.1 below. The accuracies of the trained and tested algorithms are presented in section 4, 
Table 1. 
 

 
(1) 

4. Results and Discussion 

This section provides a discussion of the obtained results from the study. Five different algorithms were 
employed to determine the fault of the pump and the results were assessed based on the classification 
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accuracies (TPR/FNR, ROC AND AUC) and the classification accuracies were obtained using the formular 
provided in equation 3.1. The following sub sections explain the results obtained for the failure prediction for 
each algorithm. 

4.1 Receiver Operating Characteristic (ROC) 

The Receiver Operating Characteristic (ROC) Curve is an additional popular tool for depicting the accuracy of a 
classification algorithm. This study is the outcome of comparing the true negative rate to the false positive rate 
while changing the decision threshold. However, the precision and recall values for all five classifiers are not 
significantly differentiated from each other, and also there is no dominating relation between ROC curves in the 
entire range. In this situation, AUC (Area Under Curve) provides a good summary for comparing the classifiers. 
Ling et al. [85] also compared the accuracy and the AUC with different classifiers in various datasets. They 
conclude that the best tool for classifier comparison is AUC which helps users to better understand the 
performance of the classifiers. Table 2 depicts the comparison of the results obtained from the classification 
algorithms used in this study. 

Table 2 Comparison of the classification methods from classification learner 

Algorithm  Class  Training 
Accuracy  

Test 
Accuracy  

Area Under 
Curve 
(AUC) 

Decision tree Fine tree 91.2% 74% 0.80 
Medium tree 87.7% 70.4% 0.74 
Course tree 84.7% 53.5% 0.69 
Linear discriminant 65% 67.4% 0.75 

Ensemble  Bagged trees  94.9% 99.9% 1.00 
Subspace discriminant  78% 68.3% 0.78 
RUS boosted trees 89% 72.6% 0.78 
Boosted trees 89.4% 72.2% 0.79 

Neural network Narrow NN 56.4% 77.4% 0.85 
Medium NN 71.4% 81.9% 0.83 
Trilayered NN 60.4% 79.1% 0.86 
Wide NN 72% 89.8% 0.97 
Bilayered NN 63.9% 78.2% 0.86 

SVM Cubic SVM 70.2% 84.8% 0.92 
Coarse gaussian SVM 66.3% 72% 0.81 
Fine gaussian SVM 72.2% 94.6% 0.99 
Medium gaussian SVM 69.4% 81.8% 0.89 
Quadratic SVM 69.3% 80.3% 0.87 
Linear SVM 61.1% 68.1% 0.77 

KNN Coarse KNN 71.7% 81.5% 0.90 
Cosine KNN 74.4% 93.3% 0.90 
Fine KNN 74.4% 99.9% 0.94 
Medium KNN 74.4% 93.2% 0.99 
Weighted KNN 74.3% 99.9% 1.00 

 
The table is a summarized form of the results obtained for comparison of the performance of the algorithms 

used in the study. The five columns represent the algorithms employed in this study, the class of each algorithm 
used, the training accuracy, test accuracy, and the AUC. From the table, the Decision tree (Fine tree with training 
accuracy of 91.2%, test accuracy of 74%, and AUC 0.80. Medium tree with training accuracy of 87.7%, test 
accuracy of 70.4% and AUC 0.74). Ensemble (Bagged trees with training accuracy 94.9%, test accuracy 99.9%, 
and AUC 1.00. RUS-boosted trees had a training accuracy of 89%, test accuracy of 72.6%, and AUC of 0.78. while 
Boosted trees had a training accuracy of 89.4%, test accuracy of 72.2%, and AUC of 0.79. According to the results 
presented in the table, amongst the five algorithms implemented for this particular study, in terms of correctly 
classifying the defects, the DT and En algorithms were the most accurate. The rest of the algorithms (SVM, ANN, 
and KNN) showed lower performance.  

Decision Trees (Fine and Medium) are known for their interpretability and ease of understanding. The fine 
tree, with higher accuracy, performed better on the test set than the medium tree. However, there is a trade-off 
between complexity and performance. Meanwhile, bagging (Bootstrap Aggregating) typically improves the 
stability and accuracy of a model. In this case, the ensemble of decision trees achieved high accuracy on both the 
training and test sets, with an AUC of 1.00, indicating excellent performance. Furthermore, both RUS-boosted 
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and Boosted trees performed similarly, with accuracies and AUC values falling between those of the Decision 
Trees and the Ensemble. The implication on the obtained result is Decision trees, especially the fine one, and the 
ensemble of bagged trees stand out in terms of accuracy and AUC. These models seem well-suited for defect 
classification in this particular study. In comparison with Other Algorithms (SVM, ANN, KNN), the results 
indicate that SVM, ANN, and KNN showed lower performance compared to Decision Trees and the Ensemble. 
Table 3 on the other hand, shows the comparison of the true positive and false negative rate accuracies of the 
compared algorithms employed for the study. 

Table 3 TPR, FNR comparison 

Algorithm  Class  TPR FNR 

  Broken  Normal  Recovering  Broken  Normal  Recovering  
Decision 
tree 

Fine tree 71.4% 79.5% 37.5% 28.6% 20.5% 62.5% 

Medium tree 63.6% 80.1% 22.7% 36.4% 19.9% 73.3% 

Course tree 0.1% 100.% 0% 99.9% 0.0% 100% 

Linear 
discriminant 

51.7% 83.7% 24.4% 48.3% 16.3% 75.6% 

Quadratic 
discriminant 

77.1% 62.2% 99.4% 22.9% 37.8% 0.6% 

Ensemble  Bagged trees  99.8% 99.9% 100% 0.2% 0.1% 0% 

Subspace 
discriminant  

43.5% 91.2% 29.8% 56.5% 8.8% 70.2% 

RUS boosted 
trees 

71.4% 71.1% 99.7% 28.6% 28.9% 0.3% 

Boosted trees 58.1% 88.2% 18.4% 41.9% 11.8% 81.6% 

Neural 
network 

Narrow NN 74.1% 78.2% 97.3% 25.9% 21.8% 2.7% 

Medium NN 78.4% 83.0% 99.5% 21.6% 17.0% 0.5% 

Trilayered NN 72.1% 82.8% 99.1% 27.9% 17.2% 0.9% 

Wide NN 88.7% 89.8% 99.7% 11.3% 10.2% 0.3% 

Bilayered NN 72.3% 81.0% 98.4% 27.7% 19.0% 1.6% 

SVM Cubic SVM 77.2% 89.3% 99.8% 22.8% 10.7% 0.2% 

Coarse gaussian 
SVM 

61.5% 84.3% 27.4% 38.5% 15.7% 72.6% 

Fine gaussian 
SVM 

93.4% 95.1% 99.9% 6.6% 4.9% 0.1% 

Medium 
gaussian SVM 

74.4% 85.9% 99.3% 25.6% 14.1% 0.7% 

Quadratic SVM 74.2% 83.3% 99.7% 25.8% 16.7% 0.3% 

Linear SVM 52.9% 83.4% 31.4% 47.1% 16.6% 68.6% 

KNN Coarse KNN 72.8% 87.2% 94.4% 27.2% 12.8% 5.6% 

Cosine KNN 93.2% 92.9% 99.7% 6.8% 7.1% 0.3% 

Fine KNN 99.9% 99.9% 100% 0.1% 0.1% 0% 
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Medium KNN 92.8% 93.0% 99.7% 7.2% 7.0% 0.3% 

Weighted KNN 100% 99.8% 100% 0% 0.2% 0% 

 
The comparison results affirm the study's success in advancing methodologies for vibration data analysis. 

The utilization of Decision Tree, Ensemble, Support Vector Machine, Neural Networks, and k-Nearest Neighbor 
techniques showcases a comprehensive approach to handling the challenges posed by the rapid growth and 
irregularity of vibration data. The models' varied performances suggest that the Decision Tree and Ensemble 
approaches offer particularly effective solutions. The achieved accuracy rates, as indicated in the results, signify 
a notable improvement in identifying and understanding patterns related to pump failure, supporting the notion 
that a diversified approach enhances the robustness of the analysis. The study's emphasis on evaluating 
classifier performance metrics, including true positive rate, false negative rate, and area under the curve, 
manifests as a significant contribution to the field. The results indicate that the Ensemble method outperformed 
others in terms of accuracy, with a near-perfect test accuracy of 99.9%. The meticulous comparison of different 
classification algorithms on the vibration dataset provides practitioners with valuable insights into algorithmic 
strengths and weaknesses. This empirical evaluation guides the selection of the most suitable algorithm for real-
world applications, facilitating informed decision-making in predictive maintenance strategies. The study's 
classification of vibration data into categories of NORMAL, BROKEN, and RECOVERING yields rich insights into 
pump failure dynamics. The results highlight the effectiveness of the Ensemble method in achieving a flawless 
AUC of 1.00, emphasizing its capability to distinguish patterns associated with different failure modes. This 
understanding of pump failure dynamics is a crucial step towards proactive maintenance strategies. The fine-
grained classification offered by the Ensemble method enables targeted interventions, potentially reducing 
downtime and enhancing operational efficiency. The study not only provides accurate predictions but also 
translates these predictions into actionable insights for effective decision-making in industrial settings. 

5. Conclusion and Future Work 

Classification algorithms for predicting pump failure were compared in this research. In the pursuit of accurately 
classifying defects, our study employed five distinct algorithms: Fine Decision Tree, Medium Decision Tree, 
Bagged Trees (Ensemble), RUS-Boosted Trees, and Boosted Trees. The analysis of the results revealed nuanced 
performances across these models. The Fine Decision Tree exhibited a commendable training accuracy of 91.2%, 
with a test accuracy of 74% and an AUC of 0.80. Its medium counterpart, while slightly less accurate, still 
demonstrated a respectable performance with a training accuracy of 87.7%, a test accuracy of 70.4%, and an 
AUC of 0.74. These results emphasize the reliability and interpretability of decision trees, with the fine-grained 
version proving particularly effective in defect classification. The Ensemble approach, represented by Bagged 
Trees, emerged as a standout performer, boasting a remarkable training accuracy of 94.9%, an almost perfect 
test accuracy of 99.9%, and a flawless AUC of 1.00. This underscores the efficacy of aggregating decision trees to 
enhance predictive accuracy and model robustness. On the boosted front, both RUS-Boosted Trees and Boosted 
Trees demonstrated comparable performances, each achieving a training accuracy of around 89%, test 
accuracies of 72.6% and 72.2%, respectively, and AUC values of 0.78 and 0.79. These results affirm the boosting 
methodology as a valuable technique, albeit with slightly lower accuracy compared to the Ensemble. In 
comparison, Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbors (KNN) 
lagged behind in terms of performance, according to the provided information. However, specific details about 
their results were not provided, limiting a comprehensive understanding of their relative strengths and 
weaknesses. 

In conclusion, our findings suggest that, for defect classification in our specific context, the Fine Decision 
Tree, the Ensemble of Bagged Trees, and Boosted Trees stand out as the most accurate models. The Ensemble 
approach, in particular, exhibited exceptional accuracy and robustness. Future work could involve delving 
deeper into misclassifications, assessing the interpretability of models, and evaluating their generalization to 
external datasets. Moreover, a more detailed comparison with other algorithms would provide a holistic 
perspective on the strengths of each approach. These results pave the way for informed model selection and 
optimization in defect classification applications, contributing to the advancement of predictive modeling in this 
domain.  
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