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Abstract

Many safety-critical systems such as aircraft, space crafts, and large power plants are required to

operate in a reliable and efficient working condition without any performance degradation. As a

result, fault diagnosis and prognosis (FDP) is a research topic of great interest in these systems.

FDP systems attempt to use historical and current data of a system, which are collected from

various measurements to detect faults, diagnose the types of possible failures, predict and manage

failures in advance.

This thesis deals with FDP of safety-critical systems. For this purpose, two critical systems

including a multifunctional spoiler (MFS) and hydro-control value system are considered, and some

challenging issues from the FDP are investigated. This research work consists of three general

directions, i.e., monitoring, failure diagnosis, and prognosis. The proposed FDP methods are based

on data-driven and model-based approaches.

The main aim of the data-driven methods is to utilize measurement data from the system and

forecast the remaining useful life (RUL) of the faulty components accurately and efficiently. In

this regard, two different methods are developed. A modular FDP method based on divide and

conquer strategy is presented for MFS system. The modular structure contains three components:1)

fault diagnosis unit, 2) failure parameter estimation unit and 3) RUL unit. The fault diagnosis unit

identifies types of faults based on an integration of neural network (NN) method and discrete wavelet

transform (DWT) technique. Failure parameter estimation unit observes the failure parameter via a

distributed neural network. Afterward, the RUL of the system is predicted by an adaptive Bayesian

method.

In another work, an innovative data-driven FDP method is developed for hydro-control valve

systems. The idea is to use redundancy in multi-sensor data information and enhance the perfor-
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ABSTRACT

mance of the FDP system. Therefore, a combination of a feature selection method and support

vector machine (SVM) method is applied to select proper sensors for monitoring of the hydro-valve

system and isolate types of fault. Then, adaptive neuro-fuzzy inference systems (ANFIS) method

is used to estimate the failure path. Similarly, an online Bayesian algorithm is implemented for

forecasting RUL.

Model-based methods employ high-fidelity physics-based model of a system for prognosis task.

In this thesis, a novel model-based approach based on an integrated extended Kalman filter (EKF)

and Bayesian method is introduced for the MFS system. To monitor the MFS system, a residual

estimation method using EKF is performed to capture the progress of the failure. Later, a trans-

formation is utilized to obtain a new measure to estimate degradation path (DP). Moreover, the

recursive Bayesian algorithm is invoked to predict the RUL. Finally, relative accuracy (RA) measure

is utilized to assess the performance of the proposed methods.

Keywords: Failure Diagnosis and Prognosis; Multifunctional spoilers; Hydro-control Valve Sys-

tem; Remaining Useful Life; Failure degradation.
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Chapter 1

Introduction

1.1 Thesis Motivation

Safety and reliability are vital issues for safety-critical systems. Fault diagnosis and

prognosis (FDP) can significantly enhance the security of modern systems by isolat-

ing incipient faults and forecasting the future status of the faulty systems [12–14].

However, it is extremely hard or sometimes impossible to design an FDP system to

predict an accurate behavior of the faulty systems due to complex nature of a fault

or uncertainty inherited in the prediction horizon of the degradation failure.

Traditional approaches to maintenance such as corrective or preventive mainte-

nance, which are based on a specific time schedule are conservative, and, thus they

are not cost-efficient [15,16]. Furthermore, they cannot grantee safety of systems as a

failure may occur between the maintenance time interval. In safety-critical systems, a

real-time health management system (HMS) with detection, isolating and predicting

capability of incipient failures is required [17].

Condition monitoring (CM) is a hot research area in critical infrastructures that

watches processes and prevents catastrophic failures in systems. Built-in test (BIT)

1



1. INTRODUCTION

and external test equipment (ETE) are two common CM techniques which are nor-

mally used for the task of fault detection and isolation (FDI). But, these techniques

can only identify pre-defined and straightforward faults and may fail to recognize

complicated faults or unknown faults due to the complexity of a system or multi-

functionality of a fault [18].

The outcomes of the CM can be considered for condition-based maintenances

(CBM) that usually save energy and reduce maintenance cost [19]. The CBM method-

ologies provide a higher level of reliability in comparison with traditional maintenance

methods.

FDP as an essential step of CBM procedure is crucial and fundamental in success-

ful CBM [20, 21]. The FDP information is utilized to settle a maintenance action.

Besides, it is necessary to start maintenance immediately if the progress of failure

grows sharply to a critical zone. Moreover, the FDP information can also be used in

other sections such as performance monitoring, performance assessment, cost-benefit

management, or even product recycling to earn more profit from systems [22].

Hence, monitoring, fault diagnosis, and failure prognosis play a significant role in

the safe utilization of critical systems. In safety critical systems, isolating an incipient

fault, and then, prediction of future behavior of faulty components has the highest

priority for the system. In particular, it is required to know how much further the

system can function with a proper response. Moreover, the accuracy of prediction

is paramount in the optimal operation of the system. Therefore, as safety-critical

systems grow in complexity, new FDP methods are needed to provide better reliability

for systems.

Although there are lots of methods in the field of fault diagnosis, failure prognosis

is a relatively new area of research that needs further development to deal with the

safety demand of complex systems. The main objective of this thesis is to deepen the

insight into the shortcomings and existing methods and also introduce new modern

methods for health monitoring of safety-critical systems.
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1.2 Thesis Objective

The primary research objective of this thesis is to introduce new FDP methods for

safety-critical systems. For this aim, we investigate various monitoring, fault diag-

nosis, failure prognosis methods for health monitoring of systems to enhance current

estimation, improve detectability, and increase the reliability of perdition of FDP sys-

tems. Notably, we focus on two popular FDP methodologies: 1) data-driven methods

and 2) model-based methods.

1.2.1 Data-driven Methods

Data-driven methods invoke historical data and identify a black box model of systems

without knowing detailed information about the mathematical model of system or

degradation model of failure. In this research work, two significant industrial cases

are investigated: 1) critical systems in which only a few limited sensors are available

and 2) systems with multi-sensor with redundancy in measurements.

Developing data-driven FDP approach using a few measurements

We consider multifunctional spoiler (MFS) system that only has two measurements

of linear variable displacement transducer (LVDT) sensor and control feedback signal

available for monitoring goal. The MFS systems are control surfaces on wings of an

aircraft and depending on how they are deployed change the direction of the aircraft

and lead to rolling motions. As such, MFS systems are a critical part of aircraft and

health monitoring of them are vital to ensure the safety of a flight. The MFS systems

consist of several highly nonlinear systems with uncertainty in their structures which

make monitoring task challenging, especially in case of only two measurements. In

this research work, we propose a novel method via divide and conquer strategy to

ease the computational complexity and improve the performance capability of FDP

system. For this aim, the fault diagnosis and prognosis is split into three smaller tasks

known as fault detection and diagnosis (FDD) task, failure parameter estimation
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task, and remaining useful life (RUL) prediction task. An integrated methodology

based on discrete wavelet transform and neural network is introduced to isolate types

of failures. After identifying the failure type, a distributed system of three neural

networks is developed to observe failure parameter of the MFS system. We show that

the distributed structures of the networks help to improve the accuracy of estimation

and lead to less error. Then, to perform RUL prediction task, an adaptive Bayesian

method is developed to forecast the lifetime of the system from estimated failure

parameter data. The proposed adaptive Bayesian method recursively takes the real-

time data of estimated failure parameter and provides an accurate value for RUL of

the system.

Developing data-driven FDP approach using a multi-sensor data information

In another research work, an innovative FDP method is developed for a hydro-control

valve system. The hydro-control valve under study is a critical system of space

launch vehicle propulsion systems, which is responsible for regulating the pressure in

spacecraft. The structure of the valve includes four components which are nonlinear

and sensitive. Hence, the complexity in construction makes the health monitoring

difficult. A combination of feature selection and classification method is presented

to select proper sensors and isolate types of failures in the system. For the feature

selection, a pairwise incremental correlation method is considered. Then, the selected

features are fitted as inputs into classifier block to classify the possible failure based on

support vector machine (SVM). Similarly, a distributed system of ANFIS networks

are considered to estimate failure parameter in the system. Finally, an adaptive

Bayesian method is proposed to have an optimal prediction for RUL of the system.

It is shown that the proper use of multi-sensor data enhances the capability of the

suggested FDP system.
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1.2.2 Model-based FDP approach using integrated EKF method and

Bayesian algorithm

A novel FDP system based on EKF method and an adaptive Bayesian algorithm is

considered using a high-fidelity model of MFS system. For this purpose, a residual

estimation method via EKF method is developed to capture any nonlinearity in the

failure dynamics. Then, a new measure called degradation path (DP) is introduced

by a transformation formula to model the degradation patch. Finally, a recursive

Bayesian algorithm is applied to the real data of the DP to predict the RUL of the

system.

The proposed model-based structure improves the accuracy of the prediction and

brings more reliability to the system. Moreover, the suggested failure prognosis cannot

only forecast single type of failures, but also it can predict concurrent failures.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 illustrates definitions

of the health monitoring system and provides a literature review of FDP methods.

Safety-critical systems are demonstrated in Chapter 3. Then, the MFS system and

hydro-control valve system are described as two popular safety-critical systems, and

their mathematical models are given. Chapter 4 introduces a data-driven method

based on divide and conquer for the MFS system. This FDP method is based on

three significant tasks of fault diagnosis using data fusion method, failure estimation

and remaining useful life prediction. An innovative data-driven method using redun-

dancy in multi-sensor data information is developed in Chapter 5. It is shown that if

redundant measurement data is accessible, they can be considered in fault diagnosis

and failure estimation tasks and enhance the accuracy of classification and estima-

tion. Chapter 6 introduces a novel model-based method for failure prognosis using a

high fidelity model of the MFS system. Chapter 7 draws the conclusion of the thesis,
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and it also glances over open problems and possible developments. Finally, a faulty

mathematical model of the MFS system is given in Appendix A.
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Chapter 2

Literature Review

Process condition monitoring (CM), fault diagnosis, and prognosis are essential ca-

pabilities in complex engineering systems with many benefits such as prevention of

catastrophic failures, greater safety, and reliability, positive economic and environ-

mental impacts, etc. A prominent benefit of a CM system is that the information

obtained during the process can be used for condition-based maintenance (CBM),

hence, reducing the operation and maintenance cost [23].

CBM and prognostic health management (PHM) systems always entail the follow-

ing tasks: (a) fault detection, (b) fault isolation, (c) fault diagnosis, (d) predictive

prognostic, (e) remaining useful life (RUL) estimation, (f) time-to-failure (TTF) pre-

dictions, (g) performance degradation, and (h) fault accommodation [24].

Diagnosis is defined as identification of characteristics of a fault including its oc-

currence, type, etc., whereas prognosis is the prediction of the future status of the

faulty components and estimation of the remaining useful lifetime based on available

information. The prognosis task allows predicting a state of damage in future, rather

than diagnosing the current state of damage. It can be established by calculating

the likelihood of failure as a function of future time with available information from
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current and past times.

The information obtained by fault diagnosis and prognosis (FDP) may be used

to monitor the system and to schedule a maintenance action. It may be necessary

to start a maintenance program if degradation level reaches a critical safe operating

zone [25,26].

A proper FDP system needs accurate fault detection and diagnosis, suitable proba-

bilistic models of the fault propagation, sufficient numbers of failure datasets. There-

fore, different methods can be applied to a system based on available information. Un-

doubtedly, development of prognostic systems depends on the type of failure data [27].

Approaches to FDP can be divided into three main groups: 1) model-based, 2)

data-driven, and 3) knowledge-based strategies. There are several works that review

fault prognosis tasks [28,29]. Kan et al. [30] provide a review of prognosis methods for

rotating machines in non-stationary condition. The general conditions with nonlinear

models are considered, and challenges for design implementation are discussed. A

literature review on prognosis methods is illustrated in [22] for statistical processes

to forecast lifetime of systems. In another work, a review of design implementation

of prognosis methods on machinery systems is discussed [31].

2.1 Model-based FDP methods

Model-based techniques for prognosis can be applied whenever a mathematical model

of degradation is available. Obtaining model of failure requires specific knowledge

about the system and its failure. This model is capable of incorporating a physical

understanding of the monitored system into the design of a suitable prognosis system.

Furthermore, in many cases, the parameters of the model, with the progress of failures

can be employed to design a prognosis system [32–35].

After identifying a proper model, this model is considered to obtain a prediction

of the future status of the faulty components and infers the remaining useful time of

the system. The model-based methods result in the most precise prognosis system.
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However, the challenge is that a mathematical model of a system or failure dynamic is

not always available, and it is hard to obtain a proper mathematical model of failure

in real time complex systems.

This group contains many methods such as Kalman filter (KF) [36], extended

Kalman filter (EKF) [37], unscented Kalman filter (UKF) [38]), particle filter (PF)

[39–42] and observer-based methods [43,44].

Various types of Kalman filter such as KF, EKF, and UKF are considered for

the task of prognosis. A new failure prognosis method based on EKF method is

introduced in [45] for predicting RUL of bearings. They employ both experimental

and computational approaches using multiple sensors to obtain a relationship between

bearing current discharge events and bearing vibrations for forecasting the lifetime of

bearings. Then, a model is identified based on exponential curve-fitting. Meanwhile,

RUL of the bearing is recursively predicted by EKF method. The proposed method

shows a satisfactory timing complexity and decent accuracy of the prognosis method

over experimental data of the bearing system. A robust RUL prediction method based

on constrained Kalman filter is introduced in [46] for noisy environments. The robust

KF method imposes a set of inequality constraints to achieve the desired accuracy in

prediction in presence of noise in the system. A model-based prognosis method via

unscented Kalman filter is presented in [47]. The unscented Kalman filter assists to

model nonlinear degradation path and reaches a lower computational complexity by

calculating mean and variance of the nonlinear system. The RUL can be predicted by

transforming the mean and covariance of the distribution into future. The proposed

unscented Kalman filter is examined on a solenoid valve, and the RUL performance

is accurate with lower computational complexity.

Particle filters are popular methods for determining RUL of systems. They can

even be utilized in processes which are not Gaussian and have accurate estimation and

prediction responses [48]. A model-based approach using particle filters is presented

in [49] for predicting the RUL of the battery. For this aim, a state space of the cell is
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Figure 2.1: The proposed observer-based prognosis method. [1].

obtained by applying voltage and current of the system. Then, state-of-charge (SoC)

of the battery is predicted by the particle filter using the state space model of the

system. Finally, new risk management of battery failure is provided to evaluate the

performance of the prognosis system. The proposed risk index indicates the risk of

battery failure as well as a reliable measure which shows a confidence interval on

prognosis algorithm. Similarly, Pola et. al. [50] developed a prognosis method using

PF-based technique for predicting RUL of batteries. For estimation stage, a particle

filter is developed. Then, a Markov Chain is applied to predict the RUL of the system.

Experimental results using Li-Ion 26650 and two Li-Ion 18650 cells indicate a high

performance of the proposed prognosis method. A new PF-based prognosis method

is presented in [51]. First, multiple models of degradation system are obtained in the

state space form. Then, particle filtering is utilized for estimation and prediction of

RUL of the system. A partial Gibbs resample-move strategy along with a stratified

sampling approach is also applied to reduce the computational complexity of the

PF method. Moreover, the proposed multiple-phase modeling allows enhancing the

accuracy of the prognosis system. Several numerical studies are examined to evaluate

the prognosis system. Test results show high efficiency of the proposed particle filter

method.

Observer-based methods are also considered for the task of prognosis. A new

prognosis method using high gain observer is presented in [1] for prognosis of a battery.

Figure 2.1 depicts the proposed observer-based prognosis method. It is noted from

Figure 2.1 that the prognosis task is performed in three steps. In the first step, an

unknown damage trajectory is estimated. Then, in the second step, a slowly varying
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parameter of the system is observed using high gain observer. Finally, an RUL is

predicted by Monte Carlo methodology, and a confidence interval is obtained. Test

results on battery system show an excellent performance of the proposed prognosis

method.

Model-based prognosis has been considered in different areas [52–54]. A model-

based method using Kalman filter is considered in [55] to predict the RUL of tensioned

steel. The main aim is to model the crack growth with Kalman filter. Then, this

model is utilized to predict the likelihood and time of failure in the steel. As another

example, in [39], a particle filter is utilized to predict the discharge time of lithium-

ion batteries. They implement an empirical state-space model, inspired by battery’s

electrochemical model, and particle-filtering algorithms to estimate the state of charge

(SoC) and other unknown model parameters in real-time. A state estimation and

prediction method based on EKF is developed in [56]. They use a nonlinear stochastic

model of fatigue crack dynamics and design a fault diagnosis and prognosis system to

estimate the current damage state and also to predict the RUL at each sampling time.

A model-based fault detection and prognosis is presented in [57] for a bearing system

application. An EKF filter is considered to track the nonlinear bearing degradation

model and to predict the RUL of the system. A prognosis method using a UKF

and relevance vector regression (RVR) is developed in [58] to predict the RUL and

short-term capacity of batteries. The RVR model is applied as a nonlinear time-

series prediction model for the lithium-ion batteries. Then, the performance of the

system is evaluated by the experimental data to prove its prediction accuracy. A

model-based prognosis method based on particle filter is designed in [2]. Figure 2.2

depicts the proposed model-based prognosis method based on particle filter. The

proposed model-based prognosis method involves two steps: First, a state-parameter

estimation is developed for observation task. Second, state estimation is projected in

future time to predict RUL, and End of Life (EOL) using particle filter.
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Figure 2.2: The proposed model-based prognosis method based on particle filter [2].

2.2 Data-driven methods

Data-driven methods are preferred in complex systems where a precise mathematical

model is not available. The main advantage of data-driven methods is their capa-

bility to provide a mapping from high dimensional noisy data to lower dimensional

information for prognosis decision. However, a significant amount of data over a wide

range of operating region of the system must be provided to have a precise estimation

and prediction. Moreover, some methods exist that do not apply the explicit model

and utilize only process data of sensors. For instance, intelligent methods which are

widely applied to prognosis task and have shown proper results in most cases.

Neural network (NN) [59–62], adaptive neuro-fuzzy inference system (ANFIS) [63–

65], Markov model method [66], probability theory methods [67–69] and support

vector machine (SVM) [70], regression methods [71–77] are some examples of data-

driven methods. It should be noted that the accuracy of the methods relies on the

historical data of the systems.

The RUL of the system can be predicted in data-driven methods by multivari-
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ate pattern matching process from the data to the remaining life or via considering

damage estimation followed by extrapolation to damage progression up to the failure

threshold. It must be noted that the second approach requires to set up some rules

for standard reasoning. The main aim is to produce an accurate prediction by con-

sidering various sources of uncertainty like process noise or measurement noise. It is

noted that the uncertainty propagates in prediction horizon and creates a significant

amount of uncertainty in long-term prediction, which must be addressed.

Regression-based methods have been used for the task of prognosis. An autore-

gressive (AR) method is developed in [78] for prediction of RUL of the lithium-ion

batteries. To predict the RUL, degradation path is obtained by curve fitting and it is

added to AR model to extend the AR model and forecast the lifetime of the batteries.

An auto-regressive moving average (ARMA) model is presented in [79] for prediction

of the RUL using historical data of the system. The ARMA method is then evaluated

on an elevator door motion system. A data-driven prognosis system based on regres-

sion technique is developed in [80] for the aging problem of underground cable. First,

useful features are selected which are four features of spikes. Afterwards, a regression

method based on sliding window is utilized to predict the RUL of the cables. For this

aim, the RUL is determined by forecasting the time for the cumulative effect of the

features to reach a pre-set value known as a threshold. Field data set of current is

considered which has been collected over three years from distributed power system

in residential areas. The test results show a satisfactory performance of the suggested

prognosis method.

Intelligent methods such as NN and ANFIS have been considered for the task

of prognosis [81, 82]. The intelligent methods are powerful tools to model complex

systems with high nonlinearity in their structures, where other methods may fail to

provide a proper solution due to the complexity of the systems and lack of a precise

mathematical model. A recurrent neural network (RNN) approach was introduced

in [60] for machine condition monitoring. An appropriate clustering of input data is
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used as preprocessing to enhance the accuracy of long-term prediction. Furthermore,

the clustering helps the RNN system to better recognize the trend of degradation path.

The RNN system with the suggested clustering shows a smaller error in comparison

with common neural networks. An intelligent method using feedforward neural net-

work is introduced in [83] for failure prognosis of pump vibration data. For this aim,

a variation of KaplanMeier (KM) estimator and a degradation-based failure proba-

bility density function (PDF) is computed. Then, it is used as a training target for a

feed-forward neural network. The test result using pump vibration data from Irving

Pulp verifies the high performance of the prognosis method. A data-driven prognosis

method is presented in [84] for bearing systems. For this aim, a neuro-fuzzy model is

trained on the system failure. After this, to predict the RUL of the system, the PDF

of the neuro-fuzzy residual between the system and predicted output is estimated and

based on this residual, the neuro-fuzzy model is updated. Finally, the RUL is deter-

mined via Bayesian method. The experimental results from bearings of a gearbox of a

helicopter are considered to validate the system. Test results indicate a high accuracy

of the proposed method. A combination of empirical mode decomposition (EMD),

particle swarm optimization (PSO) and support vector machine (SVM) methods is

proposed in [85] for failure prognosis of an axial piston pump. The EMD method is

considered to calculate the health state of the pump. Then, this health state is used

to predict the RUL of the pump based on PSO and SVM methods. The parameters

of SVM kernel is optimized using PSO method during the training phase. The test

results show a high performance of the proposed method. Wavelet neural networks

(wavenets) as intelligent methods have been also considered for fault prognosis [86].

A data-driven FDP method is introduced in [3] for an industrial chiller. The proposed

FDP system includes a virtual sensor and a dynamic wavelet neural network. Figure

2.3 demonstrates the structure of the FDP system based on dynamic wavelet neural

transform.

It is noted from Figure 2.3 that a wavelet neural network is used to diagnose the
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Figure 2.3: The structure of the FDP system based on dynamic wavelet neural transform [3].

type of fault. Then, virtual sensor is constructed using selected features to be used

in a dynamic wavelet neural network and predict time to failure of the system.

Probability theory methods provide excellent prognosis techniques due to their

suitable structures which are proper to be used for predicting RUL of systems. A

prognosis method using PDF method is developed in [87]. For this aim, a state

space model of the system is obtained by Markov method. Then, an algorithm is

presented to calculate RUL of the system condition to some observations using a

Bayesian algorithm. Simulation tests on two case studies of spring-mass system and

a pneumatic valve system show a decent accuracy of the proposed prognosis method.

Markov model methods can construct an accurate model of failure using the avail-

able data. Therefore, they can be applied to prognosis methods. A new prognosis

approach based on hidden Markov model (HMM) is developed in [88] for health

monitoring in machinery systems. The proposed HMM method make an explicit re-

lationship the hidden state values with actual health states to explore a model of

failure path. Then, the model is used for parameter estimation and to predict the

RUL of the system. To validate the performance of the proposed HMM method,

several tests are performed using real data of a CNC (computer numerical control)-

milling machine. Test results indicate a higher performance of the proposed method

in comparison with ANN methods such as multilayer perceptron and Elman network.

A new prognosis method using adaptive hidden semi-Markov model (AHSMM) is

introduced in [4]. Figure 2.4 shows the proposed prognosis system using adaptive
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Figure 2.4: The proposed prognosis system using adaptive hidden semi-Markov model [4].

hidden semi-Markov model.

It is noted from Figure 2.4 that AHSMM algorithm is considered using multi-

sensor information to reduce the computational complexity and to predict the RUL

of the system. BaumWelch algorithm of AHSMM is applied. Meanwhile, maximum

likelihood linear regression (MLLR) transformations technique is utilized to estimate

all of the unknown parameters duration distributions. In fact, the AHSMM algorithm

allows to model degradation path in the form of state space indirectly using measured

data of multi-sensor array. Then, this recursive model is utilized to predict the RUL

based on MLLR transformations technique. In test studies, the proposed method can

accurately forecast the RUL of a hydraulic pump from Caterpillar Inc.

Data-driven methods in health monitoring have been considered for a variety of

applications [89, 90]. An online prognosis method is developed in [5] for Tennessee

Eastman (TE) process. For this aim, multi-scale parallel supported vector machine

(MSPO-SVM) method is designed to predict the RUL of the system. Figure 2.5 shows

the proposed online prognosis method.

The proposed online structure improves the prediction efficiency of the RUL method.
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Figure 2.5: The proposed online prognosis method [5].

The experimental results on TE process show the accuracy of the technique. A data-

driven fault prognosis is developed in [6] for bearings on one shaft driven by a motor

and coupled by rub belts. Figure 2.6 presents the block diagram of the ANFIS prog-

nosis method.

A variety of features are extracted by time domain and frequency domain and

a mixture of time and frequency domain (wavelet transform) are used to build a

rich dataset for prediction using ANFIS method. The method is implemented with

Labview software on the motor. Experimental tests show a better result in comparison

with RBF method for training and test of the prognosis method. A data-driven

approach based on hidden Markov and grey models are presented in [91] to predict the

RUL of pump systems. To obtain the hidden Markov model, features of the vibration

signal are extracted via wavelet analysis. Afterwards, the wavelet coefficients are

applied in the inputs of Markov model. Then, the hidden Markov method is extended

using aging factor to predict the deterioration of the system. Simulation tests are

performed by injecting clouds of dust in the pumps to be degraded during a period

of time. Meanwhile, the proposed method forecast the lifetime of the system.

Unfortunately, often in practice, the sufficient data is scarce, especially for a com-

plex system or newly designed system for which feedback data is non-existent [92].
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Figure 2.6: The block diagram of the ANFIS prognosis method [6].

2.3 Knowledge-based FDP methods

The knowledge-based methods can be implemented when adequate knowledge of

experts are accessible. It covers a variety of methods such as fuzzy logic (FL)

[93,94], event-based methods using graph theory [95–97] and signal processing meth-

ods [98–100].

Signal processing techniques as powerful methodologies are also considered for

the tasks of diagnosis and prognosis. Signal processing techniques enable analyzing

signals in both time and frequency domains and enhance the accuracy of fault diagno-

sis. In the field of fault prognosis, although considering signal processing techniques

are relatively new in comparison with fault diagnosis. However, it can lead to a

more accurate prediction of the RUL by investigating the time and frequency domain

properties of the faulty signal and including a precise severity of the failure [101].

Ibrahim et al. [102] present a new prognosis method using signal processing for fuel

cell systems. For this aim, signals are decomposed by discrete wavelet transform
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Figure 2.7: The data deriven prognosis method using signal processing method [7].

(DWT). Afterwards, appropriate coefficients are chosen to depict the original signal

in a smaller number of observations. Meanwhile, the RUL of the system is predicted

by well-known regression models such as autoregressive integrated moving average

(ARIMA) and polynomial regression. The proposed signal processing based progno-

sis method provides a suitable analytical system which does not need a training part.

Test results indicate an accuracy of less than 3% in prediction error for the RUL of

the system. A new data-driven multivariate fault prognosis method is introduced

in [7] for Tennessee Eastman process. Figure 2.7 demonstrate the proposed progno-

sis method based on signal processing technique. First, the magnitude of the faulty

signal is reconstructed by DWT technique to de-noise the signals. Later, a vector

auto-regressive (AR) model is obtained to forecast the RUL of the process.

Fuzzy logic methods as well-known knowledge-based methods are considered in

prognosis system. A knowledge-based prognosis method is developed in [103]. If-then

fuzzy rules are produced to isolate a fault. Then, prognosis task is performed by

projecting the future status of the system using current and past values. Thumati et

al. [104] develop a multiple model prognosis method based on fuzzy logic for a two-

tank system. For this aim, they construct the model of the system using a class of

Takagi-Sugeno (T-S) fuzzy systems. Afterwards, they design an observer to generate
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the residual output. They show that the amount of this residual is proportional to the

progress of the failure. Majidian and Saidi [105] develop a knowledge-based prognosis

method via fuzzy logic to predict RUL of boiler reheater tubes. They set several rules

with statistical properties of the wall thickness of the boiler such as minimum, initial,

and the measured wall thickness to predict the lifetime of the boiler. Test results

show a higher accuracy in comparison with an ANN method.

Finally, it is noted that rules defined by experts are easy to understand and results

can be interpreted appropriately. However, for complex systems, obtaining a complete

set of rules are hard. Notably, a failure can be caused by multiple factors. Therefore,

identifying all roots of a failure sometimes are not possible. Thus, implementing

knowledge-based methods are not straightforward.

Unfortunately, the knowledge of the experts are always expensive and may not be

available. Therefore, developing a knowledge-based prognosis method may be very

challenging, and only a few works are available in the literature.

Knowledge-based methods are widely combined with model-based and data-driven

approaches to facilitate the design procedure of prognosis task and construct a hybrid

structure for prognosis methods. In the following, hybrid methods for designing

prognosis systems are discussed.

2.4 Hybrid methods

Several methods exist that apply a combination of model-based, data-driven and

knowledge-based methods to predict RUL of systems [106–110]. Liao and Kottig [8]

review hybrid methods for failure prognosis. Figure 2.8 illustrates possible hybrid

methods using different combinations of prognosis tasks.

It is noted from Figure 2.8 that there are five categories for hybrid prognosis meth-

ods. For instance, H4 prognosis method includes a combination of data-driven and

model-based methods [8]. A hybrid FDP approach using a combination of knowledge-

based and data-driven methods is introduced in [111] to predict RUL of a 3-tank pro-
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Figure 2.8: Possible hybrid methods using different combinations of prognosis tasks [8].

cess system. For this aim, a fuzzy logic system is produced based on expert knowledge

to diagnose faults. Then, a dynamic wavelet neural network is developed to forecast

RUL of the system.

Applying expert knowledge via fuzzy logic assists to predict the dynamics of failure

in various operating conditions and results in decreasing uncertainty in the system

and leads to an accurate RUL prediction. A hybrid FDP method using Kalman

filter and fuzzy logic is introduced in [112] to predict a crack growth in tension steel

bands. The Kalman filter is used for prediction, and fuzzy logic is considered to

adjust failure threshold with respect to different operating conditions. An integrated

multilayer perceptron (MLP) and radial basis function (RBF) neural networks is

developed in [113] for the task of RUL forecasting. The suggested neural networks

create a mapping from sensor measurements to state space. Then, a Kalman filter is

applied to obtain RUL of the system.

An integration of model-based and data-driven methods are also common for con-

structing prognosis systems. A new hybrid prognosis method using particle filters and

neural networks methods are developed in [114] for predicting the health condition

of a gas turbine engine. In the suggested structure, the states and health parameters
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of the system are estimated by particle filters. Meanwhile, neural networks are em-

ployed to determine the RUL of the system. The proposed neural network adaptively

tracks nonergodic changes in profiles due to failure parameters. This observation is,

then, considered in the particles filters to forecast the system states and health pa-

rameters. The proposed hybrid methodology allows choosing appropriate signatures

that are suitable for predicting the RUL of the system based on hidden state/ pa-

rameters. The simulation study on the gas turbine indicates a high accuracy of the

hybrid prognosis method. Liu et al. [115] introduce a combination of data-driven and

model-based approaches for failure prognosis of lithium batteries. For this purpose,

a particle filter is considered for state estimation. In addition to, a recurrent neural

fuzzy model is applied to predict the future status of measurements and update the

particle filter to obtain RUL of the system. A failure prognosis method based on a

combination of ANFIS and high-order particle filtering is presented in [116] to track

the time evolution of a crack in an epicyclic gear system. The method considers

historical data of the gear system and develops hidden Markov model for the fault

propagation process. Then, a particle filter is used to make a time prediction using

this Markov model. The results indicate better performance in prediction accuracy

compared to RNNs, or ANFIS.

Hybrid techniques can sometimes be developed by a combination of some data-

driven methods (group H3). This group is also known as ensemble methods. They

can be constructed from a combination of estimations and predictions of a set of

individual models. Each model is set in a region of parameter space. Then, they

are integrated into a unique framework using a fusion methodology. It is noted that

the performance of the ensemble methods is superior to that of the single individual

methods. An ensemble data-driven prognosis method is developed in [117] to predict

RUL of an electric cooling fan system. They integrate multiple algorithms using a

weighted sum formula. Then, k-fold cross validation is utilized to obtain the weighting

factors of summation. The experimental test results show a higher performance of

22



2. LITERATURE REVIEW

Figure 2.9: The procedure for predicting the RUL of the bearing [9].

the fusion method in comparison with other methods like SVM or RNN. A hybrid

fault prognosis method using a mixture of Gaussians hidden Markov models and a

Bayesian algorithm is introduced in [9] to predict the RUL of bearings. For this

aim, the proper features of the monitoring data are extracted. Then, the mixture of

Gaussian hidden Markov models is obtained by transforming extracted features to a

relevant physical model of degradation failure path. Figure 2.9 explains the procedure

for predicting the RUL of the bearing [9].

It is noted from Figure 2.9 that the prognosis method includes two phases: 1) a

learning phase, and 2) an exploitation phase. During the learning phase, the param-

eters of the Gaussian hidden Markov models are trained. Then, in the second phase,

the trained model of the Gaussian hidden Markov models are utilized to forecast the

RUL of a new bearing. The performance of the prognosis method is verified by prog-

nostic metrics like accuracy, precision, and prediction horizon, and test results show

high efficiency of the prognosis method. A hybrid FDP method using a combination

of the model-based and data-based method is introduced in [118] to predict RUL of a

battery system. Firstly, a fault is identified by estimating the state of charge (SOC).

Then, RUL of the battery is predicted by a Bayesian algorithm. Simulation test study

is performed, and test results show a high performance of the proposed method.
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2.5 FDP methods for safety-critical systems

Safety-critical systems (SCSs) such as aircraft or spacecraft often have several me-

chanical and electrical components that play a crucial role in the functionality of the

entire system. Actuators are the most critical mechanical component of SCSs which

are highly vulnerable to failure. The actuator failure could lead to total failure in

SCSs.

There are only a few works available in the literature for fault prognosis of safety-

critical systems [119,120]. A linear regression prognosis method is presented in [121]

for forecasting the RUL of an aircraft engine fuel pumping system. The regression

method is easy to implement. However, this method may not be a proper option

in noisy conditions or a time-varying system in which operating condition rapidly

changes over time. In these conditions, the performance of the RUL predictor may

decline in long-term prediction horizon. A fault prognosis method based on particle

filters is presented in [122] to predict the degradation of fault for electromechani-

cal actuators. They develop a particle filter for fault prognosis using a nonlinear

mathematical model of the electromechanical actuator. A fault prognosis method is

introduced for the electromechanical actuator system to determine the RUL of the

actuator in aircraft [123]. For this purpose, an NN is considered to identify the fault in

the system. Then, a regression method is utilized to predict the RUL of the system. A

model-based prognosis method via Kalman filter is used in [124]. The model param-

eter of the system is constructed using regression method. Afterwards, the identified

model is employed to develop a prognosis system. A prognosis method is presented

in [125] for actuator system of aircraft. They develop a two-step approach to deter-

mine RUL of the system. At the first step, a particle filter is developed to monitor the

system and diagnose any faults. Then, at the second step, the RUL is predicted by

Monte Carlo simulation. A data-driven fault prognosis method is presented in [119]

for the actuator of A/F-18 aircraft. The proposed data fusion method is a combi-

nation of neural network, along with fuzzy logic classifier and Kalman filter state
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Figure 2.10: The proposed prognosis method based on unscented Kalman filter [10].

space predictor. The developed data fusion method is tested using electro-hydraulic

servo valve data (EHSV), and results are very accurate. A model-based method using

particle filters is introduced in [10] to predict the RUL of a pneumatic valve. Figure

2.10 explains the proposed prognosis method based on based on unscented Kalman

filter.

The model of the system is obtained using a joint state-parameter estimation.

Then, this state parameter is propagated in the future time to predict the RUL of

the system. Simulation test results show the accuracy of the system under a limited

number of sensors.
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Chapter 3

Safety critical systems

3.1 Introduction

There has been a dramatic shift to monitoring and maintenance of safety-critical sys-

tems such as aircraft in recent years. Many complex engineering systems, including

safety-critical systems, need to perform reliably, efficiently, safely and securely for ex-

tended periods of time without any interruption or degradation in their performance.

As a result, FDP in complex systems is a critical area of study that has attracted

much attention in recent years [13].

Safety-critical systems are vital systems whose malfunctions or failure may lead

to, at least, one of the following catastrophes:

• Severe damage to the system

• Serious injury to people

• Environmental disaster

In this project, two safety-critical systems including a multifunctional spoiler

(MFS) and hydro-control valve (HCV) systems are investigated in the following sec-
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tions.

3.2 Multifunctional spoiler (MFS) system

This section briefly outlines the MFS system and its components. It also illustrates

the mathematical model of the main components [126,127].

3.2.1 Description of the MFS System

There is one MFS system per wing of the aircraft, and for each MFS, there is a

hydraulically powered and electronically controlled power control unit (PCU) that

actuates the surface of the MFS system. Finally, a spoiler electronic control unit

(SECU) controls and monitors the operation of the MFS system. The MFS system

consists of five main components which are highly nonlinear with uncertainty in their

model parameters. Figure 3.1 shows the SECU and its components including the

MFS systems and communication between the SECU and the MFS.

The MFS’s PCU is a servo actuator and consists of the following components [126]:

1. Electro-Hydraulic Servo Valves (EHSV):

The MFS actuator is controlled by the EHSV. It takes its commands from the

SECU and constructs a control signal which is proportional to the command and

finally applies the control signal to the actuator. The EHSV dynamics consists

of a dead zone, a hysteresis, a first-order dynamic system, and saturation.

2. MFS actuator or power control unit (PCU):

The actuator structure includes a cylinder and a piston. The actuator converts

the hydraulic pressure in its input to the mechanical movement of its piston. It

can be represented by a second-order nonlinear dynamic system for the move-

ment of the piston plus two first order dynamic systems for the pressure equa-

tions. Furthermore, the impact of the aerodynamic on pressure is represented

by a feedback path. It can be represented by a nonlinear static gain which is
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Figure 3.1: The SECU and the MFS system.

implemented by a look-up table. It should be noted that the actuator is driven

by the EHSV.

3. Shut off valve (SOV):

The SOV triggers the EHSV and allows the hydraulic pressure to reach the

EHSV. The operation mechanism of the SOV can be modeled by an on/off valve

which can be presented by a threshold, rate limiter and a relay. The SOV leads

the hydraulic pressure to the EHSV and is activated by the SECU.

4. Linear variable displacement transducer (LVDT) sensor:

The LVDT sensor is installed on the actuator, and it measures the linear piston

position of the MFS.

5. Anti-cavitation check valve:

The Anti-cavitation check valve is installed between the EHSV and the PCU

actuator bore port to suck in the flow from return line in case of sudden assisted
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Figure 3.2: The internal diagram of the EHSV. [11].

movement of the actuator in the extended direction due to an aiding load.

3.2.2 Mathematical Modeling of the MFS

The mathematical model of the MFS system is provided in this subsection. Towards

this, EHSV and PCU are modeled. The shut-off valve is considered to be always

open, and thus, its dynamics are neglected. Sensor dynamics are also considered to

be sufficiently fast and are ignored in the MFS model development [126].

EHSV Model

Figure 3.2 illustrates the internal diagram of the EHSV. A simple mathematical model

of the EHSV can be formulated by a first-order dynamic system. The input of the

system is the command current, Icmd, and the position of the second spool is the

output, Xv, as follows:

Xv =
Kv

sτehsv + 1
(Icmd + I0) (3.1)
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Figure 3.3: The PCU Block Diagram.

where Kv and I0 are the EHSV gain and null bias current, respectively. Parameter

τehsv is the time constant. The second stage spool must have a bias to be able to

retract. Thus, the flow is not null at zero current command. The value of the bias is

about 0.25 of the maximum retraction flow. It is noted that SOV must be open to

command the EHSV.

PCU Model

Figure 3.3 depicts the block diagram of the PCU. The EHSV is the element controlling

piston actuation, by metering fluid to and from the actuator chamber in response to

SECU electrical signals. The anti-extension check valve is pressure-operated and

ensures that the surface remains in the retracted position in case of loss of hydraulic

pressure, preventing surface upfloat. The valve is situated in the hydraulic cross-port

to the actuator retraction chamber, between the EHSV and the cylinder chamber.

The mathematical models of these parts are discussed in the following.

The flow in the oil gallery between EHSV and actuator bore side has a first order
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dynamics as follows:

V01 + AboreXp

β

dP1

dt
= QC1 − Abore

dXP

dt
− CL(P1 − P2) +QANTI (3.2)

where P1 denotes the pressure between the extended gallery and bore chamber, and P2

presents the pressure between the retract gallery and annulus chamber. Parameters

Abore and β denote the actuator bore area of the MFS and the oil bulk modulus,

respectively. Parameter V01 is the oil volume of the extended (bore) chamber at the

extended position. Therefore, V01+AboreXp is the extended chamber volume at piston

position, Xp. Moreover, CL is the leakage coefficient. QC1 and QANTI represent the

EHSV flow in port C1 and the flow in the anti-cavitation value, respectively. Their

equations are written in the following:

QC1 = −Kboreretstdby

√
P1 − PRret (3.3)

QANTI =

 0, PR − P1 ≤ PCR

KANTI

√
PR − P1 − PCR, PR − P1 > PCR

(3.4)

Parameter Kboreretstdby represents the nominal equivalent K factor at bore port in free

retraction. Furthermore, K factor is related to the restriction property of the valve.

The term PRret shows the return pressure whenever MFS retract. The value of PRret

is nonlinear, and it requires to be calculated by interpolation equation. Parameter

KANTI denotes the K factor of the anti-cavitation valve. The PR and PCR represent

the return pressure and the cracking pressure of the anti-cavitation value, respectively.

In the same way, the flow of the oil gallery between EHSV and actuator annulus

side can be determined by a first-order equation as follows:

V02 − AannXp

β

dP2

dt
= −QC2 + Aann

dXP

dt
+ CL(P1 − P2) (3.5)

where Aann and V02 denote the actuator annulus area of the MFS and the oil volume

of the retract (annulus) chamber at the retracted position, respectively. Therefore,
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V02 − AannXp provides the retracted chamber volume at position Xp. It is noted that

QC2 is the EHSV flow in port C2 which can be computed as follows:

QC1 = +Kannretstdby

√
PRret − P2 (3.6)

The constant Kannretstdby represents the nominal equivalent K factor at annulus

port in free retraction. The piston dynamic is modeled as follows:

MP
d2XP

dt2
= −BV

dXP

dt
−BCsign(

dXP

dt
)

+ AboreP1 − AannP2 −KATT (XP −XS)

(3.7)

where variable XP is piston position or system output. Constants BV and BC de-

note the viscous friction coefficient and the Coulomb friction coefficient, respectively.

Parameter MP presents the piston rod-end mass. Parameter KATT indicates the

equivalent stiffness of the actuator which is in series with the rode-surface attach-

ment. Furthermore, XS is the linear surface displacement that can be provided as

follows:

XS = θSr (3.8)

where r can be given by a nonlinear function of θS which is computed as follows:

r = 8.888889× 10−9θ2S + 1.091905× 10−2θS + 1.388057 (3.9)

Finally, the MFS surface, θP , is a multi degree load system which is formulated by a

second order spring mass damper system:

d2θP
dt2

= KATT (XP −XS)r =
1

J
(TS −BS

dθP
dt
− TL) (3.10)

where J is the surface inertia of the actuator and BS denotes the MFS structural

damping coefficient. Furthermore, TS is the input torque and TL represents the

aerodynamic moment.
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Figure 3.4: The HCV System.

Figure 3.5: The HCV internal block diagram.

3.3 Hydro-Control Valve (HCV) System

This section illustrates the HCV system and its components. The HCV system con-

sidered in this research is used as a pressure regulator in the space launch vehicle

propulsion system [128]. Figure 3.4 shows the HCV system.

It is noted from Figure 3.4 that the valve system has four main sections including

control part, amplifying part, adjusting part, and pre-adjusting part. Figure 3.5

and Table 3.1 demonstrate the internal block diagram of the valve system and its

components.

The control part consists of an inlet, control orifice, and outlet. This part regu-

lates the pressure by altering the control orifice area. The amplifying part contains

control piston, control subap, and drain pipe. The primary duty of the amplifying

part is to strengthen the signal provided by the adjusting part. The adjusting part
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Table 3.1: Components of the HCV system

numbers components

1 Inlet

2 Outlet

3 Control subap

4 Control piston

5 Control orifice

6 Sense zone

7 Feedback pipe

8 Filter

9 Adjusting subap

10 Adjusting zone

11 Friction device

12 Adjusting spring

13 Adjusting screw

14 Connecting pipe

15 Adjusting orifice

16 Separation device

17 Piston front zone

18 Piston back zone

19 Drain pipe
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includes feedback pipe, connecting pipe, filter, adjusting orifice, adjusting subap, and

a separation device. The adjusting part is responsible for sensing the feedback signal

and sending a command to amplifying part. The pre-adjusting part is composed of

friction device, adjusting spring, and adjusting screw. This part is used to manually

set the system via adjusting screw.

The valve system function is to maintain the outlet pressure at a desired value. To

illustrate the mechanism of this process assume that the inlet pressure (1) is increasing

(See Figure 3.5). This leads to an increase in the pressure of the sense zone (6), as

continence of the pressure in the feedback pipe (7) and adjusting zone (10). Thus,

the adjusting orifice (15) begins to open which forces piston in the amplifying part

and leads to closing the control orifice (5). This process readjusts the sense zone (6)

to go back to the previous value and regulates the outlet pressure.
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Chapter 4

Data-driven FDP Method for an MFS

System

4.1 Introduction

Development of FDP systems highly depends on the type of data, the data size, and

accuracy. Therefore, different approaches can be considered with respect to system

information and availability of the data. In this chapter, a novel data-driven FDP

system is introduced for the MFS system.

The MFS systems consist of five main nonlinear components with uncertainty in

their structures. Moreover, only two measurements including control feedback signal

and LVDT sensor are available for monitoring purposes. Therefore, fault diagnosis

and prognosis of these systems are very challenging due to these facts.

To overcome the above difficulties, this chapter introduces a novel modular design

methodology for FDP of the MFS system. Assumptions for this research work are

listed below:

1. The numbers of measurements are insufficient. Indeed, only LDVT sensor and
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control feedback signal are accessible.

2. These measurements are very precise, and they are less affected by noise. There-

fore, we add only 2% white noise to these measurements to mimic more realistic

conditions.

3. Only one type of fault occurs in the system at a time period. The fault gradually

grows in the system and finally leads to a complete failure.

The objective of this study is to isolate three significant faults consisting of null

bias current, actuator leakage coefficient, and internal leakage in the MFS system.

Then, the future statuses of faulty components are predicted. For this aim, first, three

parallel blocks are developed to detect and isolate the mentioned faults. In each block,

a new data fusion approach based on an integration of artificial neural network (ANN)

and discrete wavelet transform methods are designed. Second, a parameter failure

estimation unit is developed to estimate the failure parameter. Third, an RUL unit

is constructed to predict the remaining useful life of the system using the estimated

failure parameter via Bayesian theory. Finally, the relative accuracy is applied as a

performance index to evaluate the efficiency of the proposed system.

In the next sections, the proposed FDP methods are illustrated. Then, design

implementation and test results are explained. Finally, a summary of results is high-

lighted.

4.2 The proposed methods for the fault diagnosis and prog-

nosis of the MFS

The proposed data-driven approach for fault diagnosis and prognosis (FDP) of the

MFS is presented in this section. Figure 4.1 depicts the block diagram of the proposed

FDP system.

It is noted from the Figure 4.1 that the proposed fault FDP system consists of

three components including fault detection and diagnosis (FDD) unit, failure param-
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Figure 4.1: The structure of the proposed FDP system.

eter estimation unit, and remaining useful life (RUL) unit. The FDD unit identifies

failure types, and then, activates the failure parameter estimation unit. The failure

parameter is estimated in the failure parameter estimation unit based on FDD signal.

Concurrently, the RUL unit forecasts the lifetime of the system with the estimated

failure parameter. In the following, the MFS faults set of interest in this study is

defined, and design procedures are introduced.

4.2.1 Faults set for the MFS system

Three types of faults can occur in the MFS which include mechanical faults, electrical

faults, and sensor faults. However, electrical and sensor faults are instantaneous, and

failure in them are fast and impossible to track [129]. Therefore, the mechanism

of mechanical faults is only analyzed and studied in this thesis. A list of the MFS

failures is collected in Table 4.1.

It is indicated that this list of failures consists of the posteriori effects which can be
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Table 4.1: The MFS System Fault Types.

Failures parameter Description

∆I0 Null current bias shift

∆CL Actuator leakage coefficient degradation

∆Q Internal leakage

caused by one or more priori factors. For example, null bias current could represent

either aging in the components or change in spring stiffness. It may cause smooth

degradation of the PCU over time. Therefore, the null bias requires a new calibration.

On the other hand, actuator leakage coefficient is created by the structure degradation

of nozzle or flapper or even orifice [11]. Whenever actuator leakage coefficient failure

occurs, it can lead to a fast deterioration in the PCU in a short period of time.

Another failure is internal leakage which can occur due to effects such as wear on the

spool corners.

Diagnosing of all a priori failures is prohibitively difficult to achieve since they

can exhibit similar fault signatures where only a few measurements are available to

observe the system. Furthermore, when a fault develops, it may lead to other faults

which make it hard or impossible to recognize a priori main factors. In this study,

three failures of EHSV null bias current (∆I0), actuator leakage coefficient (∆CL) and

internal Leakage (∆Q) in PCU which are the most common mechanical degradations

in the MFS, have been considered.

4.2.2 The proposed data fusion method for the FDD unit

In this section, a parallel fusion structure is developed to identify the type of faults.

Figure 4.2 shows the proposed fusion structure for the FDD unit.

It is indicated from Figure 4.2 that three parallel fusion blocks are constructed

to isolate null bias current failure, actuator leakage coefficient and internal leakage,

respectively. In each block, a fusion method based on a combination of the ANN and

DWT methods is utilized to capture the failure dynamic type and identify the failure.
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Figure 4.2: The structure of the proposed fusion FDD unit.

The methodologies are discussed in the following.

The discrete wavelet transform method

Wavelets are short-wave signals with localized properties in time and frequency [130].

Discrete wavelet transform (DWT) is a transformation which is constructed by dis-

crete wavelets. The DWT has important advantages over Fourier transform which is

its capability to capture both frequency and location information of the signal. There-

fore, the DWT is a proper tool for fault diagnosis in industrial applications [131–133].

The DWT builds a signal with a combination of scaling functions and their wavelets

at different locations (position) and scales (duration) [134]. Consider f(t) ∈ L2(R) as

a signal which can be constructed by the linear combinations of orthogonal wavelets

and their scaling functions as follows:

f(t) =
+∞∑

k=−∞

a0,kφ0,k(t) +
0∑

m=−∞

+∞∑
k=−∞

dm,kψm,k(t) (4.1)

φm,k(t) = 2
−m
2 φ(2−mt− k);m, k ∈ Z (4.2)

ψm,k(t) = 2
−m
2 ψ(2−mt− k);m, k ∈ Z (4.3)

40



4. DATA-DRIVEN FDP METHOD FOR AN MFS SYSTEM

Figure 4.3: The block diagram of signal decomposition.

where φ(t) and ψ(t) represent the scaling function and their orthogonal wavelets, re-

spectively. In this project, Daubechies scaling functions and Daubechies wavelets are

considered. Moreover, m and k indicate dilation and translation factors, respectively.

The fraction 2
−m
2 is utilized to provide a normalization. Sequence a0,k and dm,k can

be calculated as follows:

a0,k =< f, φ0,k > (4.4)

dm,k =< f, ψm,k > (4.5)

The sequence a0,k and dm,k express the approximation and details coefficients of the

signal at different levels and provide a decomposition of the signal. These coefficients

are considered to identify a faulty signal. Figure 4.3 displays the block diagram of

the decomposition of a signal.

(CD1, CD2, . . . , CDm) in the Figure 4.3 are detail coefficients and (CAm) is ap-

proximation coefficient at level m. If a fault occurs in the system, the magnitude of

the detail coefficients will jump up at the time of faults. Thus, the type of the failure

can be isolated by on-line analyzing of these coefficients.
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The artificial neural network

Artificial neural network (ANN) is widely considered in fault diagnosis [135–138]. The

ANN provides a significant computational power which is provided by the function

of the nerve cells in the brain. Therefore, it is highly recommended for estimating

complex non-linear functions. It constructs a mapping between input and output of

a system through training of the system using available datasets [139]. The mathe-

matical model of the ANN is provided in the following:

ONNI0
(t) = NNI0(Y (t), U(t))

ONNCL
(t) = NNCL

(Y (t), U(t))

ONNQ
(t) = NNQ(Y (t), U(t))

(4.6)

where NNI0 , NNCL
and NNQ denote neural network FDD function for null bias

current, actuator leakage and internal leakage failures, respectively. Variables Y (t)

and U(t) symbolize LVDT sensor and control feedback signals, respectively. ONNI0
(t),

ONNCL
(t) and ONNQ

(t) are outputs of the ANN for null bias current, actuator leakage

and internal leakage, respectively.

The neural network FDD function uses a multilayer perceptron (MLP) in its struc-

ture which is usually a three-layer network including input, hidden and output layers.

The inputs and outputs contain buffer and linear function. The hidden layer utilizes

a nonlinear function like sigmoid. Various data sets at different operating points with

healthy and faulty conditions are collected to train the system. The number of neu-

rons in the hidden layer is set by trial and error. The output of the networks is set

to 0 for healthy data and 1 for faulty data.

In the operating range conditions, any value of the output in a range of −0.5 to

0.9 is considered as a healthy condition where the range of +0.9 to +1.5 is assumed

as a faulty situation, and any other value outside of −0.5 to +1.5 is supposed as an

unknown failure. These values have been chosen by monitoring the system in various

set points to minimize the false alarm rate. Moreover, to increase the reliability, the
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Figure 4.4: The internal diagram of the FDD unit based on fusion method.

same failure should occur ten times in a row to isolate that failure.

Fusion system based on ordered weighted averaging (OWA) operator

Data fusion method combines information from different sources to achieve a more

precise decision with higher reliability due to complementariness existing in infor-

mation resources. The fusion methodology are widely considered in fault diagno-

sis [140–143]. This chapter integrates the decision made by DWT and ANN methods

with OWA operator. Figure 4.4 shows the internal diagram of the FDD unit based

on fusion method.

It is indicated from the Figure 4.4 that three parallel blocks are built to identify

failures in null bias, actuator leakage coefficient and internal leakage. In each block,

a decision made by ANN and DWT methods are integrated into a unique framework

using OWA approach. The OWA method provides a variety of operators like min,

max, and average [144]. The OWA operator is considered as a tool in decision making,

function approximation, and control [145, 146]. The fused outputs of the blocks are

formulated as follows:
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OOWAI0
(t) = wNN,I0 ×ONNI0

(t) + wDWT,I0 ×ODWT (t)

OOWACL
(t) = wNN,CL

×ONNCL
(t) + wDWT,CL

×ODWT (t)

OOWAQ
(t) = wNN,Q ×ONNQ

(t) + wDWT,Q ×ODWT (t)

(4.7)

subject to the following constraints:

wNN,I0 + wDWT,I0 = 1

wNN,CL
+ wDWT,CL

= 1

wNN,Q + wDWT,Q = 1

(4.8)

whereOOWAI0
(t), OOWACL

(t) andOOWAQ
(t) are outputs of theOWA operator for null

bias current, actuator leakage and internal leakage, respectively. ODWT (t) denotes the

output of the DWT block. Moreover, wNN,I0 and wDWT,I0 are the weighting factors

of the NN and DWA method for fusion FDD in null bias block. wNN,CL
and wDWT,CL

are the weighting factors of the NN and DWA methods for fusion FDD in the actuator

leakage coefficient block. wNN,Q and wDWT,Q are the weighting factors of the NN and

DWA methods for fusion FDD in internal leakage block. The main remaining task

is how to obtain these weighting factors. They can be determined by optimizing the

following cost function:

Min

M∑
j=1

(W (oj1, . . . , o
j
n)− T j)

2
(4.9)

where W is a vector of weighting factors, oij is the information of jth classifier at ith

iteration and T i is the ideal outcome for ith iteration.

4.2.3 Failure parameter estimation unit

This section develops a parameter estimation unit to observe the failure parameter.

Figure 4.5 shows the proposed failure parameter estimation unit.

It should be noted from the Figure 4.5 that FDD unit identifies the failure type

first, and then sends a signal to activate the corresponding failure parameter esti-
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Figure 4.5: The proposed failure parameter estimation unit.

mation unit(s). If the FDD unit detects a failure but cannot isolate the failure to a

specific type, the failure parameter estimation unit will not be activated. Therefore,

in this condition, the FDD system can only identify an unknown failure and set up

an warning alarm in the system.

The mathematical models of the failure parameters are formulated as follows:

Î0(t) = gI0(Y (t), U(t))

ĈL(t) = gCL
(Y (t), U(t))

Q̂(t) = gQ(Y (t), U(t))

(4.10)

where Î0(t), ĈL(t) and Q̂(t) are estimated null bias current, actuator leakage coeffi-

cient and internal leakage. gI0 , gCL
and gQ are nonlinear function using MLP network

for observing null bias current, actuator leakage coefficient and internal leakage. Like

the NN FDD, the same datasets and procedures can be performed for the training

and test of the failure parameter estimation unit. The only difference is that the

output of the networks in this unit is set to failure parameter data.
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Figure 4.6: The proposed RUL method using Bayesian theory.

4.2.4 The remaining useful life (RUL) unit

The RUL is defined as the prediction of the remaining operational time of the faulty

system before reaching a complete failure situation. The complete failure indicates

the inability of the system to perform a given task [147]. The prognosis algorithm

consists of two stages. The first stage includes the health monitoring of the system

before a fault occurs. The second stage begins from the time when the fault has been

isolated by the FDD to the time that system reaches the complete failure defined

by an appropriately chosen criterion. The RUL is computed as the time difference

between the predicted end of life, tfailure and the time at which the prediction is

made, tprediction, as follows:

RUL = tfailure − tprediction (4.11)

To predict the RUL, a recursive Bayesian method is introduced in this research work.

The proposed Bayesian algorithm is suitable to capture uncertainty in the system and

predict the lifetime. Figure 4.6 illustrate the proposed RUL method using Bayesian

theory.
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It is indicted from Figure 4.6 that uncertainty propagates in the system and grows

up with respect to prediction horizon, j. A sliding window is moved on the estimated

parameter over time, and an optimal affine function of time is identified in the sliding

window as follows:

yt = m̂t+ n̂+ et (4.12)

where et ∼ N(0, σ2) denotes a Gaussian white noise error with zero mean and variance

σ2. Therefore, yt0 ∼ N(m̂t0 + n̂, σ2). Furthermore, ŷt0+j is a j step ahead prediction

with the following Gaussian distribution property:

ŷt0+j ∼ N(ŷ0 +mj, (j + 1)σ2) (4.13)

Assume a failure model can be displayed by a non-stationary Bernoulli process [148].

Therefore, a sequence of process including healthy and faulty condition are assumed

as follows:

Ωfailure = {Ht0 , Ht0+1, . . . , Ht0+j−1, Ft0+j} (4.14)

where Ωfailure is probability space which consists of a Bernoulli sequence. Variable Ht

presents a healthy condition at time t and variable Ft denotes a complete failure at

time t. Equation (4.14) implies that the sequence stays healthy until time t0 + j − 1.

A complete failure occurs at t = t0 + j. The probability of failure at t = t0 + j can

be formulated by a conditional probability as follows:

p(Ft0+j) =
p(Ft0+j, Ht0:t0+j−1)

p(Ht0:t0+j−1|Ft0+j)
(4.15)

where p(Ft0+j) is probability of failure at t = t0 + j. p(Ft0+j, Ht0:t0+j−1) illustrates

the probability of staying healthy until t = t0 + j − 1 and failed at t = t0 + j.

p(Ht0:t0+j−1|Ft0+j) denotes the probability of staying healthy conditional to a failure

at t = t0+j. It is noted that in real process, a failure occurs only one time. Therefore,

p(Ht0:t0+j−1|Ft0+j) is equal to one. Thus, Using joint probability formula, Equation

4.15 is rewritten as follows:

p(Ft0+j) = p(Ft0+j|Ht0:t0+j−1)p(Ht0:t0+j−1) (4.16)
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where p(Ht0:t0+j−1) is probability of staying healthy until t = t0 + j − 1. Probability

p(Ft0+j|Ht0:t0+j−1) is likelihood which is computed as follows:

p(Ft0+j|Ht0:t0+j−1) = p(yt0+j > FC)

= Q(
FC − [m̂(t0 + j) + n̂]

σ
√
j + 1

)
(4.17)

where Q is the tail of the standard probability Gaussian distribution which is provided

by probability Gaussian lookup table or can be coded in Matlab software. Moreover,

FC is abbreviation of failure criterion.

Finally, function p(Ht0:t0+j−1) is determined by probability properties:

p(Ht0:t0+j−1) = [1− p(Ft0+1|Ht0)]× [1− p(Ft0+2|Ht0:t0+2)]

· · · × [1− p(Ft0+j−1|Ht0:t0+j−2)]
(4.18)

The failure probability, p(Ft0+j), j = 1 . . . n, is a monotonically increasing sequence

until it reaches to a maximum. The maximum point is the RUL of the system.

4.3 Simulation Study & Results

In this section, simulation studies and results are demonstrated. For this aim, first,

our proposed failure scenario is developed. Then, simulation studies and measured

performances are illustrated, and test results are evaluated.

4.3.1 Fault scenarios

This thesis considers three failures of null bias, actuator leakage coefficient and inter-

nal leakage in the MFS system. Table 4.2 presents the healthy values and complete

failure criteria for these failures.

It is noted that null bias current has a healthy value between 1.6mA to 2.4mA.

A failure is recognized if I0 is out of this range, and the amount of I0 = 4.5mA is

identified as the complete failure. This failure follows a slow degradation path from

the start of the fault to complete failure. The actuator leakage coefficient and internal
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Table 4.2: Healthy values and failure criteria

Failure parameter Healthy value Complete failure

I0 2± 0.4(mA) 4.5(mA)

CL 0(cis/psi) 2(cis/psi)

Q 0(cis/psi) 1(cis/psi)

leakage take a value of 0(cis/psi) in healthy conditions, and they reach to complete

failures in amounts of 1(cis/psi) and 2(cis/psi), respectively.

Moreover, to perform the failure studies, various ramp function with different

slopes are injected into simulation models, and faulty data for the system are gathered.

4.3.2 Simulation studies and performance evaluation

The design criteria of the neural network FDD system and failure parameter NN

system are considered. Second, discrete wavelet transform (DWT) design procedure

will be discussed. Third, the fusion design criteria are investigated. Finally, an online

performance index for the RUL prediction is introduced.

NN FDD system and failure parameter NN system

The system is operated in different operation conditions between Xpref = 1 and

Xpref = 1.45 and different healthy datasets are gathered. Moreover, many failures

with ramp functions are injected into the model, and faulty dataset is obtained. Then,

the whole datasets are divided into two groups of training and test data. Levenberg

Marquardt method [149] is considered for the training of the system and mean square

error (MSE) is used for the evaluation of the networks. Table 4.3 presents the MSE

measure for the training and test phases.

It is noted from the Table 4.3 that the NN FDD for the CL provides the best

performance with the lowest MSE while NN parameter estimation system for Q has

the lowest MSE.

49



4. DATA-DRIVEN FDP METHOD FOR AN MFS SYSTEM

Table 4.3: The performance of the networks based on MSE evaluation.

Network Training (MSE) Test (MSE)

NN FDD for I0 0.1375 0.2178

NN FDD for CL 0.0335 0.0396

NN FDD for Q 0.0890 0.0949

I0 estimation network 0.0274 0.0289

CL estimation network 0.0473 0.0492

Q estimation network 0.0181 0.0184

Table 4.4: The performance evaluation for testing neural network FDD method.

Failure isolated as I0 isolated as CL isolated as Q isolated as unknown

Failure in I0 69% 18% 0 13%

Failure in CL 6% 83% 0 11%

Failure in Q 0 0 86% 14%

Furthermore, several tests were carried out to evaluate the accuracy of the system

for different failures. Table 4.4 illustrates the results of the isolation test.

It is indicated from the Table 4.4 that the NN FDD method isolates the null bias

failure in 69% of occasions correctly. However, 18% of the null bias failure is misclas-

sified as actuator leakage failure and 13% of the null bias failure is identified as an

unknown failure. Similar rates for the actuator leakage and the internal leakage are

higher indicating better classification of those faults. It is noted that the isolation

rates obtained the proposed neural network are not sufficiently high. In the follow-

ing subsections, the fusion method using OWA operator is applied to enhance the

accuracy of the fault isolation.

The DWT design procedure

Detail coefficients in discrete wavelet transform are used to identify the failure. The

detail coefficients show rapid changes upon occurrence of the faulty signal and thus

can be exploited to detect the faults. To analyze the behavior of failure by the DWT
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Figure 4.7: The approximation and detail coefficients of a failure for the LVDT sensor.

method, an actuator leakage coefficient with ramp function with a slope of 10−5 is

considered in this section where the fault starts at t = 20sec. Figure 4.7 and Figure

4.8 show the behavior of the approximation and detail coefficients of the failure for

the LVDT sensor and control signal.

It is noted from the figures that the details coefficients sharply jumps after the

injection of failure. The detail coefficient 1 (CD1) contains sudden changes in the

signal which indicates very high-frequency signals. Therefore, it may be affected by

noise in the system. The detail coefficients 2 and 3 (CD2 and CD3) include high

frequencies and fast changes in the signal and can be used for failure identification.

The DWT identification mechanism is straightforward. Null bias failure creates
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Figure 4.8: The approximation and detail coefficients of a failure for the control signal.
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prolonged changes, and they are always unobservable at the start of the failure. The

actuator leakage coefficient failure and internal leakage failures, on the other hand,

cause sharp effects. Thus, these failures lead to much higher detail coefficients. This

feature is considered to distinguish the null bias failure and actuator leakage, internal

leakage failures from each other. Therefore, the following conditions are utilized for

the fault isolation via the DWT method:

if CD2 in control signal is higher then 2× 10−5 and

CD3 in control signal is higher then 10−4 and

CD3 in LVDT sensor is higher then 4× 10−7 and

isolate the failure as actuator leakage or internal leakage.

(4.19)

If the condition in Eq. (4.19) is satisfied, the system identifies an actuator leakage

or internal leakage fault in the system. However, the DWT method cannot isolate

the null bias failure.

Remark 4-1: The if-then rules in Eq. (4.19) are chosen by carefully monitoring

various failures in the MFS system to maximize the accuracy of failure diagnosis

method.

The DWT method can be combined with the ANN method to improve the accuracy

of the FDD unit.

The OWA operator

Fusion block combines the decision of the DWT and ANN blocks. The fusion block

diagram is shown in the Figure 4.4. The only task is to determine the weighting

factor in the Eq. (4.7). The DWT cannot isolate the null bias failure. Therefore, the

NN block is only used for isolating null bias failure. But, the DWT and ANN are

considered to isolate the actuator leakage and internal leakage failures. The weighting

factors of these block are determined by optimization method formulated in Eq. (4.9).

Table 4.5 presents the weighting factors of the fusion method.
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Table 4.5: Weighting factors of the OWA method for different failure.

weighting factors value

wNN,I0 1

wDWT,I0 0

wNN,CL
0.43

wDWT,CL
0.57

wNN,Q 0.38

wDWT,Q 0.62

Table 4.6: The performance evaluation for testing OWA FDD method.

Failure isolated as I0 isolated as CL isolated as Q isolated as unknown

Failure in I0 84% 6% 0 10%

Failure in CL 2% 91% 0 7%

Failure in Q 0 0 97% 3%

Moreover, several tests are performed to evaluate the accuracy of the fusion method

for different failures. Table 4.6 illustrates the results of the isolation test.

It is noted from the Table 4.6 that the fusion method enhances the accuracy of the

FDD unit in comparison with the proposed neural network. The OWA FDD method

can isolate 84% of the null bias, 91% of the actuator leakage and 97% of the internal

failure, correctly.

The online performance index

In the simulation test, relative accuracy (RA) is considered to measure the perfor-

mance of the RUL method in online situations [58, 150]. This index is computed as

follows :

RA = 1− |RULreal(t)−RULpredicted(t)|
RULreal(t)

(4.20)

where RULreal denotes the real value of the RUL which can be calculated after

the system has reached its end of the lifetime. RULpredicted indicates the predicted
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Figure 4.9: The experimental data and the estimated data of the LVDT sensor.

value of the RUL in real time. The RA is in the range of 0 and 1. The larger the RA

signifies a better performance of the system.

4.3.3 The accuracy of the mathematical model

It is noted that the mathematical model of the MFS system was validated by our

industrial partner in [126]. However, and for the sake of completeness, a comparison

between the estimated data and the experimental data of the MFS system is made in

this subsection. For this purpose, the experimental data of the MFS system is utilized.

The data is gathered from the SECU system of LearJet 200 (LJ-200) aircraft during

flight and consists of the control feedback signal and LVDT sensor data. To have a

fair comparison, the experimental data of the control feedback signal is used in the

mathematical model and the estimated LVDT sensor data is collected. Figure 4.9.

presents the experimental data and the estimated data of the LVDT sensor.

It is seen from Figure 4.9 that there is a little difference between the experimental

data of the LVDT sensor and the estimated data in transient response, but, the steady

state behaviour of the estimated LVDT sensor and the experimental data of the

system is very close. Moreover, different errors such as mean absolute error (MAE),
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Table 4.7: The error values in various response condition in the MFS system.

Error Max |e| Min |e| MAE

Response Error 0.0285 1.0482e−5 0.0031

lower bound error (Min |e|) in steady state condition and upper bound error (Max |e|)

in transient condition are obtained to evaluate matching between the experimental

data and the estimated data of the MFS system. Table 4.7 illustrates the error values

under various response condition in the MFS system.

The error of the MFS system in steady state condition at different set points is

1.0482e−5, which indicate a high fidelity of the model in steady state condition. Thus,

the mathematical model can be considered at a certain set point when the system is

at the steady state condition.

It is noted from the data validation test that the MFS system must not be con-

sidered for the failure diagnosis and prognosis during the transient condition. The

transient data belongs to the time period that the aircraft change a direction such

as a take-off or landing. However, the aircraft is cruising most of the time during its

flight. Therefore, the MFS system is in steady state condition and hence, the math-

ematical model is highly accurate and valid, and the failure diagnosis and prognosis

can be performed on the MFS system during this period.

4.3.4 Test results

In the following, the test results of the null bias, actuator leakage, and internal leakage

failures are discussed.

1. Null bias current

Consider a null bias failure with a slope of 0.001 at t = 10 sec as follows:
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Figure 4.10: Failure caused by null current bias shift-measurements.

∆I0 =

 0 t ≤ 10

0.001t t > 10
(4.21)

The setpoint of the system is Xpref = 1.2. Figure 4.10 indicates behaviors of the

LVDT sensor and feedback control signal when a failure occurs.

Figure 4.11 shows the estimated null bias, the fusion FDD unit and RUL of the

system under degradation of the null bias failure.

It is noted that the FDD unit identifies the failure at t = 724.6sec. This delay

is due to the observability of this failure for the small value of fault. After

the isolation of null bias failure, the FDD unit activates the failure parameter

estimation unit. This unit can track the null bias. The value of the estimated

null bias reaches 4.5mA at t = 2510sec. However, the real value of null bias is

4.5mA at t = 2621sec. The RUL predicts a value of t = 1415sec at t = 1025sec.

The RA performance index is 86.99% at t = 1415sec. Moreover, Figure 4.12

demonstrates the proposed Bayesian algorithm results at t = 21940 sec.
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Figure 4.11: Failure caused by null current bias shift-monitoring units.
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Figure 4.12: Bayesian algorithm-The null bias failure.
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Figure 4.13: Failure caused by actuator leakage coefficient degradation with slope of 10−5.

It is noted that likelihood reaches to 1, and the probability of failure is maxi-

mum at prediction horizon of 1415 sec which indicates a lifetime of the system

at t = 1025 sec.

2. Actuator leakage coefficient degradation

Assume an actuator leakage failure with a slope of 10−5 with the following equa-

tion:

∆CL =

 0 t ≤ 10

10−5t t > 10
(4.22)

Figure 4.13 illustrates the LVDT sensor and control feedback signal under this

failure.

This failure has a severe effect, and even with a small value of the failure, the

LVDT sensor and control feedback signal can be effected sharply. Figure 4.14
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Figure 4.14: Failure caused by actuator leakage coefficient degradation with slope of 10−5.

presents the FDD signal in the ANN, DWT and OWA block under the leakage

coefficient degradation.

All the FDD unit isolate the failure fast due to the severity of the failure. The

DWT and OWA block have a faster response in comparison with the ANN

block. These blocks only need 1.79sec to identify the failure. Figure 4.15 shows

the estimated actuator leakage coefficient and RUL of the system.

The failure parameter estimation unit successfully observes the actuator leakage.

The estimated leakage reaches to 2psi at t = 1286sec while the real value of

leakage is 2psi at t = 1297sec. The RUL forecasts a value of 1148sec at t = 46sec.

At this time, the RA index is 91.7%.

Now, the slope of the actuator coefficient failure is reduced to 10−6. Figure 4.16

demonstrates the FDD signal of the ANN, DWT and OWA blocks under the

actuator leakage coefficient with the slope of 10−6.

DWT FDD provides the fastest isolation at t = 13.85sec. The OWA identifies the

failure at t = 30.94sec which is still faster then ANN block. It should be noted
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Figure 4.15: Failure caused by actuator leakage coefficient degradation with slope of 10−5.
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Figure 4.16: Failure caused by actuator leakage coefficient degradation with the slope of 10−6.
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Figure 4.17: Failure caused by actuator leakage coefficient degradation with the slope of 10−6.

that the OWA block provides more reliability in identification which is another

advantage for the proposed system. Figure 4.17 shows the failure parameter and

the RUL of the system under the mentioned failure.

The RUL unit predicts 11575sec which is acceptable behavior because the slope

of the failure is decreased ten times. Therefore, the lifetime should be almost

ten times larger. The RA index is 90.76% at t = 238sec.

3. Internal leakage

Consider an internal leakage failure with a slope of 0.001 in the system as follows:

∆Q =

 0 t ≤ 10

0.001t t > 10
(4.23)

Figure 4.18 illustrates the LVDT sensor output and control feedback signal.

The LVDT sensor and control feedback signal reveal a fast degradation in the

system. Figure 4.19 illustrates the ANN, DWT and OWA blocks under the

internal leakage failure.
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Figure 4.18: Failure caused by internal leakage.
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Figure 4.19: Failure caused by internal leakage.
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Figure 4.20: Failure caused by internal leakage.

Similarly, the OWA unit acts faster than ANN unit and isolates the failure at

26.5sec. Figure 4.20 shows the estimated internal leakage and RUL of the system

under the internal leakage failure.

The estimated value of leakage reaches to 1psi at t = 1003sec which closely

follows the real value, only two seconds delay between them. The RA is 66.67%

at t = 93sec.

4.4 Conclusion

A modular structure is proposed to perform the task of fault diagnosis and prognosis

in the MFS system. For this purpose, a novel data fusion method is designed by a

combination of ANN and DWT blocks using OWA operator. The proposed fusion

methodology improves the reliability and decreases the fault isolation time in the

system. Then, the failure parameter estimation unit observes the failure parameters

via a parallel neural network framework. The suggested structure helps to increase the
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accuracy of the estimations. Finally, an optimization method via Bayesian algorithm

is developed to forecast the lifetime of the system.

The main advantage of the FDP system was its proposed structure based on di-

vide and conquer which improved the accuracy of the system. Moreover, the parallel

networks reduced the complexity of the networks, lowered errors and consequently

enhanced the speed and precision of the system. The proposed RUL unit captured

an optimal model of the failure parameter and provided a remaining lifetime of the

system based on a Bayesian algorithm which was suitable for real-time implementa-

tion. Moreover, several simulation tests were performed, and RA index was utilized

for the evaluation which showed a high accuracy of the system.

66



Chapter 5

Data-driven FDP Approach Using a

Multi-sensor Data Information

5.1 Introduction

Data-driven FDP methods rely on historical data. Therefore, redundancy in mea-

surements helps to improve the accuracy of failure estimation and prediction. In this

chapter, an FDP method is developed based on multi-sensor data information for the

hydro-control valve (HCV) system, where several sensors are available to monitor the

system.

The HCV system considered in this study is an important system in space launch

vehicle propulsion systems and is responsible for regulating the pressure in space-

craft. Healthy operation of this unit is vital for the safe and reliable operation of the

spacecraft. The HCV system consists of several subsystems with nonlinearity and

uncertainty in their model, which make the condition monitoring of this system a

challenging task.

To overcome the above complexities, this chapter introduces an innovative modular
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structure to utilize the redundancy in sensors and reach a higher precision in the

prediction of the RUL.

Assumptions for this research work are listed below:

1. Multiple sensors exist in the system that can be employed in health monitoring

system.

2. These measurements are precise, and they are less affected by noise. Therefore,

we add only 2% white noise to these measurements to mimic more realistic

conditions.

3. Only one type of fault occurs in the system at a time period. The fault gradually

grows in the system and finally leads to a complete failure.

The objective of this research work is to develop an FDP system for the HCV

system. For this purpose, the analytical redundancy afforded through sensor mea-

surements from the HCV system is employed using a feature selection technique to

develop the FDP system. The proposed FDP system includes three parts, namely

an FDD unit, a PE unit, and an RUL unit. The FDD unit is designed based on a

feature selection technique and SVM method to isolate the type of a fault. Whenever

the FDD unit identifies the type of failure, it sends a signal to activate the PE unit.

In the PE unit, the failure parameter (resistance coefficient) is estimated using a dis-

tributed ANFIS network. Meanwhile, The RUL unit forecasts the remaining lifetime

of the system using estimated failure parameter via an adaptive Bayesian algorithm.

In the next sections, a preliminary theory of the proposed FDP is introduced.

Then, design implementation and test results are provided. Finally, a summary of

results is given.
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Figure 5.1: The proposed fault diagnosis and prognosis System.

5.2 A preliminary theory of the proposed fault diagnosis and

prognosis method

This section introduces the preliminary theory of the proposed modular FDP method.

Figure 5.1 shows the proposed FDP System.

The proposed FDP system includes FDD unit, PE unit, and RUL unit. In the

following, various HCV failures are discussed, and brief underlying theories of the

proposed techniques are presented.

5.2.1 The HCV failures

Three most common failures in the HCV system are considered as follows: piston

leakage, drain blockage, and filter malfunction [11]. It must be noted that two areas

in the front (zone 17 in Figure 3.5) and back (zone 18 in Figure 3.5) of the piston

are sealed from each other. If there is a leakage in the sealed area around the piston,

it leads to performance degradation of the system, and eventually, instability in the

operation of the system. The drain blockage is a result of any congestion in the drain

pipe (zone 19 in Figure 3.5). The drain pipe can get congested by impurities in the

fluid, even though, the filter (zone 8 in Figure 3.5) is responsible for extracting the

suspended impurities in the liquid. However, if the contamination gradually passes
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through the filter over a long period, it may lead to congestion in the drain pipe. Filter

malfunction can occur due to filter degradation. This happens due to the impurities

in the fluid.

5.2.2 The fault detection and diagnosis (FDD) method

This section introduces the design methodology for the FDD unit. The main aim is

to detect and identify the types of the failures. The proposed FDD method includes

feature selection technique and SVM method. The feature selection technique is

utilized to choose proper measurements for the input of SVM method. The SVM

method is considered as a classifier to isolate the type of a failure in the system.

Feature selection

Pre-processing of data and proper feature selection are often necessary steps in ma-

chine learning applications where a significant amount of data or measurements are

available. It is often the case that data pre-processing, and judicious feature selection

can lead to more accuracy and less computational complexity in the classification

scheme, see, e.g., [151]. In this work, correlation analysis is used to select relevant

measurements of the sensors to be used in monitoring. For this aim, the Pearson

product-moment rank correlation coefficient is formulated as follows [152]:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(5.1)

where xi is a variable which is desired to determine its dependency on output vari-

able, yi. Variables x̄ and ȳ are the mean values of xi and yi, respectively. Parameter n

is the number of each variable. Variable r is correlation coefficient which get a value

in range of [−1, 1]. An absolute value near one signifies a high dependency between

variables, and the value near zero reveals a weak dependency or independence.
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Support vector machine (SVM) classifer

Support vector machine (SVM) is a powerful classification technique based on sta-

tistical learning theory [141]. In SVM classifier, a line or a hyperplane is found

based on optimization to maximize separability between classes. The SVM classifi-

cation has been originally introduced for two class problems (binary SVM). Consider

{(x1, y1), (x2, y2), · · · , (xm, ym)} that xi ∈ Rn are inputs, selected measurements, and

yi ∈ {−1, 1} are class labels. The optimization problem can be formulated as follows:

minw
1

2
wTw + c

m∑
i=1

ξi

yi(wφ(xi) + b) ≥ 1− ξi; ∀i = 1, · · · ,m; ξi ≥ 0

(5.2)

where w is a normal vector to the hyperplane, and c ≥ 0 is a penalty parameter.

Variables ξi are positive slack. Function φ(0) is a feature mapping rule. Eq. (5.2)

can be solved by Lagrange method, and a hyperplane is obtained as follows:

f(x) = sgn(
m∑
i=1

yiαiK(xi, xj) + b) (5.3)

where K(xi, xj) = φ(xi)φ(xj) is known as a kernel of SVM classifier. The hyper-

plane, f(x), is a surface which separates classes from each other. Different kernels

can be used for the SVM methods such as linear, Gaussian, RBF. If more than two

classes exist, binary SVM cannot directly solve the classification problem. In this

case, There are two popular approaches which attempt to combine binary SVM to

solve the problem. These are commonly known as “one against one” and “one against

all” [153].

5.2.3 The parameter estimation (PE) method based on ANFIS networks

The ANFIS was introduced by Takagi and Hayashi [154] and benefits from a combina-

tion of fuzzy logic and neural network structure. ANFIS is chosen for the parameter

estimation since it can provide accurate results for this task.
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Figure 5.2: A Typical ANFIS Network with two inputs.

ANFIS network is an adaptive network that applies a supervised learning algorithm

with an inference system similar to Takagi-Sugeno and is computationally efficient

[151]. A set of rules are derived with respect to Sugeno fuzzy model as follows:

Rule 1: If x1 is A1 and x2 is B1, then f1 = p1x1 + q1x2 + r1

Rule 2: If x1 is A2 and x2 is B2, then f2 = p2x1 + q2x2 + r2

where Ai and Bi are the membership functions of input x1 and x2, respectively, and

pi, qi and ri denote adaptive parameters. Figure 5.2 shows a typical ANFIS network

with two inputs and one output. As indicated in Figure 5.2, the ANFIS network

contains five layers with a feed-forward structure. The mathematical representation

of each layer is given as follows [141]:

Layer 1: Each adaptive node has a linguistic label, and the output of the node is

the membership function of that label:

O1,i = µAi
(x1), i = 1, 2.

O1,i = µBi−2
(x2), i = 3, 4.

(5.4)

Layer 2: Each node in this layer is fixed. Each node of this layer depicts a firing

strength (wi) for each rule. A T-norm operator like “AND operator” is considered to
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compute the output:

O2,i = wi = µAi
(x1)× µBi

(x2) i = 1, 2. (5.5)

Layer 3: Similar to layer 2, every node in this layer is fixed. A normalization is

made in this layer to obtain relative firing strengths (w̄i) as follows:

O3,i = w̄i =
wi∑2
j=1wi

i = 1, 2. (5.6)

Layer 4: Each node is adaptive in this layer. A Multiplication of the relative

firing strengths and the adaptive parameters are considered to formulate the outputs

as follows:

O4,i = w̄ifi = w̄i(pix1 + qix2 + ri) i = 1, 2. (5.7)

Layer 5: This layer has only one node whose output is the summation of all

signals obtained by the previous layer:

O5,1 =
2∑

i=1

w̄ifi =

∑2
i wifi∑2
i wi

(5.8)

Backpropagation algorithm or hybrid learning which combines gradient descent and

the least-squares schemes can be used to train the ANFIS network. These algorithms

optimize the adaptive parameters in layers 1 and 4 to achieve a minimum error in the

output of the network.

5.2.4 The remaining useful life (RUL)

The RUL task is to predict the remaining lifetime of the system before complete

failure occurs. In here, a similar Bayesian algorithm like the one introduced in the

previous chapter is applied to compute the RUL of the system.

5.3 Simulation studies and test results

This section introduces the structure of the proposed FDP system and considers

several test studies to investigate the performance of the system. In the following,
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Table 5.1: Failure parameters with the healthy values and complete failure criteria.

Failure Failure parameter Healthy value failure

Piston leakage Piston resistance( kg
m4s ) 7.7e+11 4.5 e+11

Drain blockage Drain resistance( kg
m4s ) 2.4e+11 3.5e+11

Filter damage Filter resistance( kg
m4s ) 5.2e+10 7.5 e+11

failure scenarios are considered. Then, the structure of the FDP system is developed.

Afterwards, the accuracy of the Simulation model is demonstrated using experimental

data of the HCV system. Finally, few test studies are discussed.

5.3.1 Failure scenarios

Three prominent HCV failures, i.e., piston leakage, drain blockage, and filter malfunc-

tion are examined in the sequel. It is noted that piston leakage, drain blockage and

filter malfunction lead to gradual changes in the piston leakage resistant coefficient,

drain resistance coefficient and filter resistance coefficient, respectively. Therefore,

degradations can be simulated through a change in these parameters. Six hundred

ramp functions with different slopes are injected into the Simulink model to create

failures in the system. Table 5.1 displays the healthy value of these parameters as

well as complete failure criteria.

Remark 5-1: Complete failure criteria are chosen by carefully monitoring the

system to ensure safety in the HCV system. However, different complete failure

criteria may be selected in different types of spacecraft.

5.3.2 The proposed FDD unit

The proposed approach for FDD is accomplished in two-stage consisting of feature

selection and SVM classification. Fourteen measurements from sensors, e.g., pressure

gauges, flow Meters, and position sensor are available. However, using all of them
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Table 5.2: Correlation coefficients for the feature selection in FDD unit

Measurement Correlation

Pressure in inlet (1) 0

Pressure in outlet (2) 0

Pressure in drain (19) 0

Pressure in control orifice zone (5) -0.59

Pressure in piston front zone (17) -0.60

Flows in inlet (1) 0.25

Flows in outlet (2) -0.10

Flows in drain (19) -0.59

Flows in control orifice zone (5) -0.44

Flows in connecting pipe (14) -0.24

Flows in feedback pipe (7) -0.57

Piston position in x direction (xp) 0.56

Piston position in y direction (yp) 0.17

Piston position in z direction (zp) 0.19

may not necessarily result in a more accurate classification ability and will result in

added computational burden. Hence, feature selection using the correlation coefficient

formula introduced in Eq. (5.1) is considered to select the measurements with the

highest impact on the failures. Table 5.2 presents measurements and their correlation

coefficient with the failures for the task of fault diagnosis.

It is noted from Table 5.2 that the pressure in piston front zone, the pressure in

control orifice zone, the flows in feedback pipe and piston position in x-direction have

highest correlation coefficients, and hence, they are selected as the input of SVM

classifier.

To design SVM classifier, RBF kernel is utilized. Furthermore, three types of faults

must be investigated. These three types of failures along with the healthy operating

condition result in four different classes. To design the SVM classifier, six binary

SVMs are developed using one against one approach to construct four classes.
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Table 5.3: The performance of the proposed FDD system in isolating type of failure.

Failure classified 1 classified 2 classified 3

Piston leakage (1) 96% 4% 0%

Drain blockage (2) 14% 82% 4%

Filter damage (3) 0% 12% 88%

Moreover, 100 new tests are performed to evaluate the accuracy of the FDD

method. Table 5.3 illustrates the performance of the proposed FDD unit in isolating

the type of failure.

As indicated in Table 5.3, the proposed FDD system correctly isolates 96% of the

Piston leakage (fault #1), whereas accuracy of drain blockage (fault #2) and filter

malfunction (fault #3) are 82% and 88%, respectively.

5.3.3 The proposed PE unit

After a fault is isolated by the FDD unit. A signal is sent from the FDD unit to

activate the PE unit ( See Figure 5.1). The PE unit estimates the degradation path

of the failure parameter. To observes the degradation paths of failures, it is common

to monitor changes in the parameters that are proportional to the degradation paths.

In this study, piston leakage resistant coefficient, drain resistance coefficient, and filter

resistance coefficient are considered as parameters to monitor piston leakage, drain

blockage and filter malfunction, respectively. Then, a network of three ANFIS is

developed to observe these parameters using available online measurements. Figure

5.3 shows the proposed parameter estimation unit.

It is noted that once a fault is detected and isolated, only one of these ANFIS blocks

corresponding to the fault is activated. The number and types of measurements

used as inputs of the ANFIS blocks are chosen via correlation analysis presented

by Eq. (5.1). The outputs are set to failure parameters. For training, a hybrid

method which is a combination of the gradient descent method and the least-squares

scheme is considered. The proposed parallel PE structure increases the accuracy of
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Figure 5.3: The proposed parameter estimation (PE) unit.

Table 5.4: Parameter estimation error of the distributed ANFIS method.

Parameter Training error Test error

Piston resistant 0.0327 0.0387

Drain resistant 0.0066 0.0069

Filter resistant 0.0527 0.0594

the estimation as each network has its own training phase. Furthermore, parallel

processing reduces computational time at each step and makes it suitable for online

implementation. Table 5.4 demonstrates parameter estimation error of the distributed

ANFIS networks in training and test phases based on mean absolute percentage error

(MAPE) criterion.

It is noted from Table 5.4 that the drain resistant has the best result with least

error.

Remark 5-2: To evaluate the performance of the proposed distributed ANFIS

method in PE unit, a comparison with a centralized ANFIS network is made in Table
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Table 5.5: Parameter estimation error of the centralized ANFIS method.

Parameter Training error Test error

Piston resistant 0.1073 0.1227

Drain resistant 0.0902 0.1027

Filter resistant 0.0826 0.0938

5.5. The centralized ANFIS method is developed using one ANFIS network. All the

five measurements used in the decentralized method are considered as the inputs of

the estimation unit. Moreover, only one output is considered in the output layer. The

healthy and faulty values of the failure parameters are used in the output layer for

training and test of the network. It is noted from Table 5.5 that the failure parameters

have higher errors in comparison with the distributed ANFIS method.

5.3.4 The proposed RUL unit

The RUL unit takes the estimated data of the failure parameter from the PE unit

and forecasts the remaining lifetime of the system ( See Figure 5.1). For this purpose,

an optimal affine model of failure parameter is identified by using Eq. (4.12). Then,

The likelihood and probability of failure t = t0 + j are calculated by Eqs. (4.17) and

(4.16), respectively. The prediction horizon that maximizes the probability of the

failure is the RUL of the system.

Furthermore, to evaluate the accuracy of the RUL unit, a relative accuracy measure

is considered as follows [58,155]:

RA = 1− |RULreal(t)−RULpredicted(t)|
RULreal(t)

(5.9)

where RULreal(t) is the real amount of RUL which can be obtained after the

complete failure of the system. RULpredicted(t) is a predicted value for the RUL which

is provided by the RUL unit. RA is in a range of [0, 1]. The larger value of RA

indicates a higher accuracy of the system.
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Figure 5.4: The simulink model of HCV system and its FDP system.

5.3.5 The accuracy of the Simulation model

In this research work, the Simulink model of the HCV system is utilized to apply for

health monitoring purposes. Figure 5.4 shows the Simulink model of HCV system

and its FDP system.

This Simulink model is constructed by considering a nonlinear model of the HCV

system using Bond Graph method. The Simulink model takes different non-linear

effects into accounts such as hydraulic resistances, flow forces, Coulomb friction and

fluid chamber compressibility. For this aim, sets of non-linear state equations are ex-

tracted by the Bond Graph method. Then, various operating conditions are simulated

(See [128] for more details about the high fidelity of the Simulink model).

To validate the accuracy of Simulink model, the response of the real HCV system

is compared to the response of the Simulink model in this section. Figure 5.5 presents

the real response of the HCV system in comparison with the simulated model.
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Figure 5.5: The real response of the HCV system in comparison with the simulated model.
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To verify the high fidelity of the Simulink model, we consider several positive

stepwise rises in the inlet pressure (Upper blue line) until the HCV reaches to the

upper saturation state. The green line indicates the simulated outlet pressure of the

system. This pressure is recorded from where the pressure sensor can be mounted.

The experimental data from the pressure sensor is depicted as a red cross-point line.

As it is seen, the simulated outlet pressure is desirably verified with the experimental

results showing high accuracy of the Simulink model. In all operating conditions,

the error of Simulink model is less than 0.1% which indicates a high accuracy of the

Simulink model.

5.3.6 Test results

In this subsection, several tests are developed to evaluate the performance of the

proposed method.

1. Piston leakage failure

A piston leakage failure is injected into the system through a ramp function with

a slope of −5 × 10−6 in piston resistant coefficient at t = 2000 sec. Figure 5.6

shows the measurements applied to the input of the PE unit (ANFIS 1) in the

piston leakage failure.

It is noted from Figure 5.6 that all the measurement data start changing after the

onset of piston leakage fault. Reducing the piston leakage resistant coefficient will

cause a leakage in the piston, which can be seen from the increase in the flow of

the connecting pipe. The piston pressure balance thus is altered resulting in the

opening of the control orifice, and consequently, increased outlet pressure. This

behavior is clearly illustrated in Figure 5.6. The change in the piston leakage

resistant coefficient of the system, in fact, can change the design parameter of the

system so that it directly affects the operational condition of the system. Figure

5.7 displays the FDD unit, PE unit and RUL unit under the piston leakage
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Figure 5.6: The measurements applied in the input of the PE unit (ANFIS 1)-The piston leakage

failure.
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Figure 5.7: The FDD unit, PE unit and RUL unit under the piston leakage failure.

failure.

The FDD unit isolates the piston leakage failure at t = 2960 sec. Then, the

FDD unit activates the PE unit. The PE unit observes the failure parameter.

However, there is a little fluctuation in the estimated failure parameter which

is due to disturbance in the measurement of the HCV system. The length of

the sliding window in the RUL unit is adjusted to 4000 samples. The RUL is

38910 sec at t = 21940 sec which indicates an RA of %54. Furthermore, at

t = 68720 sec, the estimated piston friction parameter reaches to 4.5e11 which

implies the end of the lifetime of the HCV system. Furthermore, the RUL unit

shows a value of zero for the system at t = 68790 sec which only has a delay of
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Figure 5.8: The proposed Bayesian algorithm-The piston leakage failure.

70sec in announcing the correct value for the end of life of the system. Figure

5.8 demonstrates the proposed Bayesian algorithm results at t = 21940 sec.

It is noted that likelihood reaches to 1, and the probability of failure is maximum

at prediction horizon of 38910 sec which indicates a lifetime of the system at

t = 21940 sec.

2. Drain blockage failure

A drain blockage failure is injected into the system via a ramp function with a

slope of 10−6 in drain resistance parameter at t = 2000 sec. Figure 5.9 shows
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Figure 5.9: The measurements applied in the input of the PE unit (ANFIS 2)-The drain blockage

failure

the measurements applied at the input of the PE unit (ANFIS 2) in the drain

blockage failure.

Similarly, the proposed measurements start deviation from healthy conditions

after the drain blockage failure. This failure directly affects the piston pressure

balance in amplifying part. The gradual blockage of the drain pipe leads to

an increase in the hydraulic pressure in the piston back zone, thus pushing the

piston toward opening the control orifice. As a result, the pressure loss in the

control zone decreases and the outlet pressure rises. Figure 5.10 illustrates the

FDD unit, PE unit and RUL unit under the drain blockage failure.
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Figure 5.10: The FDD unit, PE unit and RUL unit under the drain blockage failure.
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The FDD method identifies the drain blockage failure at t = 13290 sec. A

particular explanation for this delay can be provided by considering the impact

of the failure on the design parameters of the FDD method and the performance

of the chosen HCV system. Unlike the previous failure, drain blockage does not

cause design parameter alteration in the system. Thus, the system would be

able to compensate the effect of this failure. Given the chosen HCV system is

indeed a regulator, it will perform toward compensation of the failure. Therefore,

depending on the severity of the failure, the consequent might remain hidden.

Therefore, this failure is hard to capture.

It is noted that the estimated drain resistance can successfully track its real

value in the PE unit. The length of the sliding window in RUL unit is set to

100 samples. The RUL unit shows a value of 92340 sec at t = 14290 sec which

indicates an accuracy of RA = %93. Moreover, the estimated drain resistance

arrives at 3.5× e11 at t = 100690 sec that it indicates the end of the lifetime of

the HCV system. The RUL also shows a value of zero at t = 100750 sec, again,

a small delay in announcing the end of the lifetime for the RUL system. Figure

5.11 illustrates the proposed Bayesian algorithm results at t = 14290 sec.

The probability of the failure is maximum at prediction horizon of 92340 sec

which implies the RUL for time 14290 sec.

3. Filter failure

A filter failure is injected into the system by changing filter resistance using a

ramp function with a slope of 2×10−5 at t = 2000 sec. Figure 5.12 demonstrates

the measurements applied at the input of the PE unit (ANFIS 3) in the filter

failure.

It is seen from Figure 5.12 that the measured data begins changing with the

growing failure. Filter resistance failure, in fact, changes the operational condi-

tions in the adjusting part of the HCV system, which is the commander for the
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Figure 5.11: The proposed Bayesian algorithm-The drain blockage failure.
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Figure 5.12: The measurements applied in the input of the PE unit (ANFIS 3) in the filter failure.
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amplifying part. Therefore any changes in this part will dictate corresponding

changes in the amplifying part. The anticipated consequence for the considered

failure is an increased outlet pressure; however, the outlet pressure rise would

compensate the increased pressure loss induced by the acknowledged failure. Al-

though one may expect a reduction, this can explain why there is no change in

feedback flow. However, the creepy backward motion of the piston can be as a

indicator for outlet pressure increase. Overall, one can see the affected behavior

of the HCV system is mainly due to the interactive dynamics of the HCV’s inter-

nal moving components (control and adjusting subap). It should be mentioned

that in the development of this interactive dynamic the Coulomb friction plays

a significant role. Considering the slope of the implemented failure, these forces

will cause fluctuations in the results which may affect further analysis. Figure

5.13 indicates the FDD unit, PE unit and RUL unit under the filter failure.

The FDD unit isolates the failure at t = 10770 sec. The estimated filter re-

sistance tracks its real value. However, there is a fluctuation in the parameter

estimation which is due to disturbances and oscillation in the measurements.

The RUL forecasts a value of 33610 sec at t = 34180 sec. The RA measure

at this time is %96. Furthermore, the estimated parameter reaches 7.5× e11 at

t = 67480 sec which is near the value of the RUL unit for the end of the lifetime

(t = 67640 sec). It must be noted that the RUL takes more time to initialize and

reach a maximum at t = 34180 sec. The particular reason for this is that the

measurements have disturbance and oscillation. Therefore, we adjust the length

of sliding window to 5000, which leads to slow initialization of the RUL unit.

Figure 5.14 illustrates the proposed Bayesian algorithm results at t = 34180 sec.

Similarly, the failure sequence has a maximum of 33610 sec which can be treated

as the RUL of the system.
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Figure 5.13: The FDD unit, PE unit and RUL unit under the filter failure.
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Figure 5.14: The proposed Bayesian algorithm-The filter failure.
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5.4 Conclusions

In this chapter, we presented a new health monitoring system for an HCV system.

Three main failures consisting of piston leakage, drain blockage, and filter malfunction

were considered in the HCV system. Then, a new FDP method based on redundancy

in multi-sensor data information was designed to monitor the system. The proposed

FDP system had a modular structure and included an FDD unit, a PE unit, and

an RUL unit. The FDD unit isolated the fault type using a combination of feature

selection and SVM methods. The PE unit observed the failure parameter via a

distributed network of three ANFIS. The RUL unit computed the remaining useful

life of the system via a recursive Bayesian method. Several simulation studies were

performed, and RA index was employed to evaluate the performance of the proposed

method. The RA measure showed a high accuracy of the proposed methods.

The main advantage of the proposed FDP method was in its modular structure

which improved the accuracy of the prognosis system. Moreover, proper feature se-

lection allowed the FDD unit and PE unit reach a higher performance in the tasks of

fault isolation and parameter estimation, respectively. Furthermore, the distributed

structure of the PE unit decreased the computational complexity and consequently

improved the accuracy of the parameter failure estimation in comparison with cen-

tralized design methodology.
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Chapter 6

Model-based FDP Approach Using an

Integrated EKF Method and Bayesian

Algorithm

6.1 Introduction

If a suitable model of the failure is available or can be estimated, this model can be

considered to predict the RUL of the system. In this chapter, a model-based fault

prognosis of MFS system is developed.

The MFS system consists of five main components with highly non-linear dynamics

in their structure. Furthermore, only two measurements including control feedback

signal and LVDT sensor are available for monitoring the system. Therefore, the

condition monitoring of this system is very challenging due to these facts.

To tackle the above complexities, this chapter introduces a novel model-based

prognosis method for predicting the RUL of the MFS system. Assumptions for this

research work are listed below:
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1. A very accurate model of the system is available. In fact, we have shown the

MFS system is accurate in chapter 3.

2. These measurements are precise, and they are less affected by noise. Therefore,

we add only 2% white noise to these measurements to mimic more realistic

conditions.

3. One type of fault or multiple faults can concurrently occur. The fault gradually

grows in the system and finally leads to a complete failure.

The objective of this research work is to develop a prognosis system for the MFS

system. For this purpose, This chapter introduces a novel fault prognosis of MFS sys-

tems based a combination of extended Kalman filter (EKF) and Bayesian approach.

For this purpose, the EKF is employed to identify the progress of fault using residual

generation. Then, a transformation is utilized to obtain nonlinear degradation path

(DP) for the system. Afterwards, an adaptive predictor based on Bayesian approach

is applied to the estimated degradation path to forecast the RUL of the system.

In the following sections, a preliminary theory of proposed model-based fault prog-

nosis is introduced. Then, design implementation and test results are discussed. Fi-

nally, a conclusion is illustrated.

6.2 Preliminary Theory of Model-based Fault Prognosis of

MFS System

Fault prognosis design methodology for the MFS system is discussed in this section.

The objective is to introduce a prognosis system strategy to detect some common

faults and predict the remaining useful life of the system. For this purpose, the

progress of the failure is identified by an EKF and is fed to the next stage to estimate

the degradation path (DP) of the system. Finally, the prediction of the RUL is

obtained using an adaptive Bayesian algorithm. The block diagram in Figure 6.1

illustrates the various subsystems/tasks in the proposed prognostic system.
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Figure 6.1: The structure of the proposed prognosis system.

6.2.1 MFS System Faults

In general, three types of faults, i.e., mechanical, electrical, and sensor faults can

occur in the MFS System. Due to the instantaneous occurrence of the electrical and

sensor faults and their abrupt effect on the behavior of the system, they cannot be

evaluated for failure degradation analysis [129]. Therefore, only mechanical faults

have been considered in here.

Table 6.1 illustrates a list of potential failures in the MFS system. However, a

posteriori effects of the faults are addressed here as failures. These effects could be

initiated by one or more priori factors. For instance, the null current bias shift fault

is usually caused by altering the stiffness of the spring or by component’s aging. This

fault always causes a slow degradation path in the MFS. However, the MFS system

needs to be re-calibrated after this failure to operate healthy again. Another critical

failure is actuator leakage coefficient which could be caused by different primary

factors such as nozzle deformation, restructuring in flapper or even orifice [11]. The

actuator leakage induces a fast nonlinear degradation dynamic in the PCU. Internal
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Table 6.1: The MFS System Fault Types.

Failure parameter Description

∆I0 Null current bias shift

∆CL Actuator leakage coefficient degradation

∆Q Internal leakage

leakage is another failure which can usually be the result of spool corners wearing.

Identifying a priori factors causing failures is not an easy task since a number of

failures may have the same fault signatures on the measurements. Moreover, when

a failure occurs, it may, in turn, lead to other failures. Therefore, isolating the main

factor or root cause of the problem is prohibitively difficult. This thesis considers

three broad failures: a) the EHSV null bias current (∆I0), b) actuator leakage coeffi-

cient (∆CL), and c) internal leakage (∆Q) which are the most prominent mechanical

degradations in the MFS. In the appendix, the mathematical model of the faulty

component is provided.

6.2.2 The EKF method

Kalman Filter [156, 157] is an optimal filter with respect to a linear quadratic cost

function. Given a linear system described in state space form in the presence of

uncorrelated plant and measurement Gaussian noise, the KF algorithm only requires

present measurements and the previously estimated state of the system to provide

optimal state estimation. The algorithm is well suited for real-time applications and

can be applied to nonlinear systems using the Extended Kalman Filtering (EKF)

approach.

The discrete KF algorithm involves a two-step process including prediction and

updating. The KF algorithm estimates the current state variables with their un-

certainties in the prediction step. Then, the state estimate is corrected when the

next set of measurements becomes available. However, the continuous Kalman filter

known as the Kalman-Bucy filter must be applied to the continuous systems. The
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main difference between the continuous KF and the discrete KF is that the two-step

process in the discrete algorithm are combined together and cannot be distinguished

from one another in the continuous case [158].

The continuous EKF algorithm considers the system model as a differential non-

linear equation in state space form as follows:

ẋ(t) = f(x(t), u(t)) + w(t) (6.1)

z(t) = h(x(t)) + v(t) (6.2)

where x(t) is a vector of the state variables, u(t) is the control signal or system

input, z(t) is the measurement/outputs. Functions f(x(t), u(t)) and h(x(t)) are non-

linear functions representing the system and output dynamics, respectively. Moreover,

w(t) is a zero-mean, Gaussian distributed process noise and v(t) is also a zero-mean,

Gaussian distributed measurement noise which is uncorrelated with w(t). The state

estimation using the continuous EKF algorithm can be obtained as follows:

˙̂x(t) = f(x̂(t), u(t)) +K(t)[z(t)− h(x̂(t))] (6.3)

where x̂ denotes the estimated state and K(t) is Kalman Gain at each sampling time.

The Kalman Gain is computed as follows:

Ṗ (t) = F (t)P (t) + P (t)F (t)T −K(t)H(t)P (t) +Q(t) (6.4)

K(t) = P (t)H(t)TR(t)−1 (6.5)

where F (t) and H(t) are linearised system and output matrices, respectively, and can

be obtained as follows:

F (t) =
df

dx
|x̂(t),u(t)

H(t) =
dh

dx
|x̂(t)

(6.6)
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Furthermore, Q(t) and R(t) are the covariance matrices of the process noise and

measurement noise at each sampling time, respectively. Matrix P (t) denotes the state

covariance at each sampling time.

In this study, the healthy model is employed in the EKF algorithm. Therefore, the

observation made by the EKF are not affected by faults or degradation of the system

parameters. Hence, assuming that the system’s mathematical model is an accurate

representation of the actual system, any difference between the system’s actual output

and that estimated by the EKF can be attributed to the presence of a fault. This

difference, known as residual or innovation process of the filter, is defined as follows:

res = z(t)− h(x̂(t)) (6.7)

where z(t) is system output and h(x̂(t)) is estimated system output.

6.2.3 Transformation for estimating the degradation path (DP)

The residual obtained in Eq. 6.7 shows the progress of the failure in the system. It is

noted that the severity of the failure is a nonlinear function of residual and system’s

set point. Moreover, the slope of the residual profile generated is dependent on the

set point value and the fault scenario in the system.

In the literature, different transformations are performed in prognosis task [159–

161]. In this chapter, we introduce a new transformation to facilitate the prediction

of RUL. The transformation, DP (degradation path), is defined as follows:

DP = (1−
∣∣∣∣ res

setpoint

∣∣∣∣)× 100 (6.8)

where res is the residual of the system output. The DP, as defined above, is a

performance assessment measure for the system and quantifies how close the system

is functioning with respect to the healthy system.
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6.2.4 The remaining useful life (RUL) unit

The RUL task is to predict the remaining lifetime of the system before a complete

failure. The complete failure is considered as an inability of the system to satisfactorily

perform its duty [147]. The prognosis algorithm is divided into two stages. The first

stage is the health monitoring of the system before the onset of a fault in the system.

The second stage starts from the first detection time until the system reaches complete

failure state defined by an appropriately chosen criterion. The RUL is formulated as

the time difference between the predicted end of life, tfailure and the time at which

the prediction is made, tprediction, as follows:

RUL = tfailure − tprediction (6.9)

An adaptive algorithm is developed by Bayesian theorem to predict the RUL using

available data of the degradation path. The proposed method is suitable for online

prediction of the future status of the faulty system with uncertainty exists in the

prediction horizon. Figure 6.2 presents the proposed RUL method based on Bayesian

theory.

It is noted that a recursive optimal affine function of time is identified in a sliding

window as follows:

yt = m̂t+ n̂+ et (6.10)

where et ∼ N(0, σ2) represents a Gaussian white noise error with zero mean and

variance σ2. Thus, yt0 is a Gaussian random variable with the distribution N(m̂t0 +

n̂, σ2), and j step ahead output prediction is also a Gaussian random variable with

the following distribution characteristics:

ŷt0+j ∼ N(ŷ0 +mj, (j + 1)σ2) (6.11)

Assume a fault is diagnosed in the system at time t0 and the system is still func-

tioning and healthy until it reaches a complete failure. Thus, a probability space can

100



6. MODEL-BASED FDP APPROACH USING AN INTEGRATED EKF METHOD AND BAYESIAN ALGORITHM

Figure 6.2: The proposed RUL method based on the Bayesian theory.

be considered as follows:

Ωfailure = {Ht0 , Ht0+1, . . . , Ht0+j−1, Ft0+j} (6.12)

where Ωfailure presents the probability space with all healthy and failure samples.

Variable Htk is a healthy condition at time tk, and variable Ftk is faulty condition

at time tk. These variable conditions can be modelled as Bernoulli sequence which

is remained healthy until a complete failure at time t0 + j. Then, the probability of

failure at t = t0 + j is formulated using conditional probability as follows [148]:

p(Ft0+j) =
p(Ft0+j, Ht0:t0+j−1)

p(Ht0:t0+j−1|Ft0+j)
(6.13)

where p(Ft0+j) indicates probability of failure at t = t0+j. Function p(Ft0+j, Ht0:t0+j−1)

is the probability of staying healthy until t = t0 + j − 1 and occurring a failure at

t = t0 +j. Function p(Ht0:t0+j−1|Ft0+j) is the probability of staying healthy subject to

a failure at t = t0 + j. If a failure occurs at t = t0 + j, the times before the occurrence

of the failure, the system is healthy. Because, a complete failure can happen only one
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time. Therefore, p(Ht0:t0+j−1|Ft0+j) is equal to one. Due to these fact and using joint

probability definition Equation 6.13 can be simplified as follows:

p(Ft0+j) = p(Ft0+j|Ht0:t0+j−1)p(Ht0:t0+j−1) (6.14)

where p(Ht0:t0+j−1) represents probability of being healthy until t = t0 + j− 1. Prob-

ability p(Ft0+j|Ht0:t0+j−1) is known as the likelihood function is computed as follows:

p(Ft0+j|Ht0:t0+j−1) = p(yt0+j > FC)

= Q(
FC − [m̂(t0 + j) + n̂]

σ
√
j + 1

)
(6.15)

Function Q represents the tail of the standard probability Gaussian distribution

which is provided by normal distribution probability look-up table or can be com-

puted with a Matlab software code. Parameter FC is the complete failure criterion.

Remark 6-1: Parameter FC is selected with respect to the type of the failure.

It is noted that the type of failure can be identified by fault diagnosis method. In

this research, we consider that the type of failure is known and only prognosis task

is required to be performed due to space limitation.

After computing the likelihood function, Function p(Ht0:t0+j−1) can be obtained

using the properties of probability theory as follows:

p(Ht0:t0+j−1) = [1− p(Ft0+1|Ht0)]× [1− p(Ft0+2|Ht0:t0+2)]

· · · × [1− p(Ft0+j−1|Ht0:t0+j−2)]
(6.16)

The failure probability sequences, p(Ft0+j), is a monotonically increasing sequence

until reaching a maximum at a prediction horizon j. That maximum is the RUL of

the system.
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Figure 6.3: The DP curve and the chosen criterion for fault prognosis.

6.3 Design implementation and test results

In this section, different test studies have been developed to verify the performance

of the proposed fault prognosis system. First, we shall outline the suggested faulty

scenarios. Then, the design implementation is illustrated. Finally, different simulation

tests are performed, and the results are discussed.

6.3.1 Faulty scenarios

Various failure paths including null current bias shift, actuator leakage or internal

leakage are injected into the simulation model of the MFS system to generate different

faulty scenarios. The estimated DP curve is utilized to define different criteria for

condition monitoring (CM) maintenance. Figure 6.3 depicts the DP curve and the

chosen criterion for fault prognosis.

Different failures can be initiated by various root causes. Therefore, they are dis-

tinct in nature and manifest themselves differently with different dynamic behaviors.

For instance, null current bias shift has a slow effect on the output. The health system
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Table 6.2: Healthy values and failure criterions

Failure parameter Healthy value Criterion at set point 1.4 Complete failure criterion (FC)

I0 2± 0.4(mA) 6(mA) 98%

CL 0(cis/psi) 3(cis/psi) 97%

Q 0(cis/psi) 1.4(cis/psi) 97%

has a null bias of 2± 0.4(mA), and changes in the null bias in the range of 1.6 to 2.4,

do not affect the output of the MFS in a considerable way, and thus, such effects are

not normally observable. The output, however, starts to degrade with a mild slope,

if the null bias is out of the range [1.6, 2.4] reaching to 98% of the set-point when null

bias is 6.0(mA) at set point 1.4. It is noted that the system is nonlinear, and the

null bias has a different value within the range of [5.0, 6.0](mA) when the output of

the system is 98% with respect to different set points. In this study, the threshold of

2% of degradation with respect to set-point is chosen as the criterion to recognize a

complete failure in the null bias. Table 6.2 illustrates the healthy values and criteria

for the various failures.

The healthy value for actuator leakage coefficient is 0(cis/psi). The actuator

leakage failure leads to a sharp degradation of the output and when output degrades

to 96.6, the failure dynamic drops abruptly. Therefore, the failure criterion of 97%

is selected for the actuator leakage coefficient failure which occurs at 3psi for the set

point of 1.4. Finally, the same criterion is selected for internal leakage.

To avoid and eliminate the effect of the disturbance and noise on RUL estimation,

degradation is considered to have occurred once DP estimated curve declines to 99.8%.

For any value of DP ≥ 99.8, the system is considered to be healthy and no RUL

estimation is launched.

6.3.2 The design implementation of the proposed prognosis method

In this subsection, design implementation is demonstrated. The proposed method

takes the input signal (the command current, Icmd) and the system output (LVDT
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sensor data, XP (t)) and estimates the state variables using EKF method formulated

in Eq. (6.3) and Eq. (6.6). Then, residual is calculated by the system output (LVDT

sensor data, XP ) and estimated state variable X̂P (t) using Eq. (6.7). Meanwhile,

the DP curve is constructed using transformation by Eq.(6.8). Afterward, an optimal

affine function of time is identified by Eq. (6.10). Then, the likelihood and probability

of failure t = t0 + j are computed by Eqs. (6.15) and (6.14), respectively. Finally, the

prediction horizon j at which the failure probability is maximum is the RUL of the

system.

To evaluate the proposed prognosis method, the relative accuracy (RA) measure

is employed as follows [58,150]:

RA = 1− |RULreal(t)−RULpredicted(t)|
RULreal(t)

(6.17)

where RULreal is the real amount of the RUL calculated when the system has reached

its end of life and RULpredicted is the predicted RUL at real time. The RA is a positive

value between 0 and 1, and larger value of the RA signifies a better accuracy of the

RUL method.

6.3.3 Simulation Results

In the following, five different fault scenarios are considered in the MFS system and

the performance of the system is discussed.

1. Null current bias

(a) Fast Fault

A null current bias shift with a slope of 0.01 is injected in the MFS at

t = 5 sec (see Eq. 6.18). The setpoint is adjusted on Xpref = 1.4. Figure 6.4

depicts the output of the LVDT sensor, the EKF estimator, and progress of

the failure based on residual estimation.
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Figure 6.4: Failure caused by null current bias shift (fast fault).

∆I0 =

 0 t ≤ 5

0.01t t > 5
(6.18)

It can be seen from the Figure 6.4 that the measured output of the system

begins to degrade after t = 18.32 sec. However, the estimated output by the

EKF method tracks the setpoint value with a very small influence caused

by fault due to the fact the system model employed in EKF algorithm is

healthy, and the controller compensates for the fault. Therefore, the differ-

ence between the measured output and the estimated output known as the

residual starts to increase as the fault progresses. The estimated residual is

considered as the progress of the failure. Figure 6.5 shows the estimated DP

and RUL of the system under the injected null bias failure.

The DP curve reaches the value of 99.8% at t = 22.12 sec. The RUL

initiates the estimation of the useful remaining life at t = 24 sec. However,

the RUL method takes 1.88 sec to estimate a meaningful value for the

remaining useful life. This gap depends on the nature of the degradation
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Figure 6.5: Failure caused by null current bias shift (fast fault).

dynamics, the set point and also the size of the sliding window for the

regression method. The RUL of the system is estimated to be 392 sec at

t = 24 sec which decreases as the time progresses. The RUL estimates the

end of system lifetime at t = 432 sec which is almost near the DP value at

98%. Furthermore, the RA performance index of the system calculated by

Eq. 6.17 is 96% at t = 24 sec.

Figure 6.6 shows the proposed RUL method based on the Bayesian algorithm

at t = 24 sec.

It is indicated from Figure 6.6 that likelihood reaches to 1 at 392 sec.

Moreover, the failure probability sequence has a maximum probability at

t = 392 sec which denotes the RUL of the system at t = 24 sec.

(b) Moderate Fault

Another failure dynamic like Eq. (6.18) with a slope of 0.001 is considered

in null bias. Figure 6.7 shows the MFS LVDT sensor, the EKF estimation

and the progress of the failure.
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Figure 6.6: Failure caused by fast null current bias shift (Bayesian algorithm).
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Figure 6.7: Failure caused by null current bias shift (Moderate fault).
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Figure 6.8: Failure caused by null current bias shift (Moderate fault).

It is noted that although the failure starts at t = 5 sec, residual dynamics

reacts at t = 672.1 sec due to lack of the observability while the null bias

lies in the range of 2 ± 0.4(mA). Figure 6.8 presents the DP and RUL of

the system.

Accordingly, the DP reaches to 99.8% at t = 694.4 sec, and the RUL predicts

t = 3575 sec at t = 706 sec for the lifetime of the MFS. It is interesting

to note that this value is in compliance with the results achieved for fast

null-bias fault. The failure dynamics reduces with a slope ten times slower

than the fast failure, and therefore we expect to reach the end of life of the

system ten times slower compared to the fast failure which is actually what

has been attained here.

Similarly, Figure 6.9 presents the prognosis method based on the Bayesian

algorithm at t = 706 sec. It is seen from Figure 6.9 that likelihood increases
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Figure 6.9: Failure caused by moderate null current bias shift (Bayesian algorithm).

to 1 at 3575 sec. Furthermore, the probability of failure reaches a maximum

at t = 3575 sec which indicates the RUL at t = 706 sec.

2. Actuator leakage coefficient degradation

(a) Moderate Fault

An actuator leakage fault with a slope of 10−5 is considered by the following

equation:

∆CL =

 0 t ≤ 5

10−5t t > 5
(6.19)

The actuator leakage coefficient failure causes rapid degradation. Therefore,

the failure with the slope of 10−5 may cause a moderate effect. Figure 6.10

displays the output of the LVDT sensor, the EKF estimator and the progress

of the failure.

It is noted from the Figure 6.10 that the actuator leakage coefficient failure
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Figure 6.10: Failure caused by actuator leakage coefficient degradation (Moderate fault).

has a sharp residual growing. Figure 6.11 presents the DP and RUL of the

system.

The DP has the value of 99.80% at t = 27.72 sec and the prognosis system

detects the fault at t = 29 sec with the RUL of t = 1075 sec. The DP

becomes 97% at t = 1255 sec at which time the lifetime of the system is

ended. The RA index at t = 29 sec is 97%.

(b) Slow Fault

A slow failure with a slope of 10−7 is considered in the actuator leakage

coefficient. Figure 6.12 displays the output of the LVDT sensor, the EKF

estimator and the progress of the failure.

The residual shows a very smooth degradation path. This is due to the slow

slope of the failure dynamics. Figure 6.13 presents the DP and RUL of the

system.

It is clear from the Figure 6.13 that the DP has a prolonged rate with a

value of 99.8 at t = 2177 sec which initiates the RUL unit. The RUL
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Figure 6.11: Failure caused by actuator leakage coefficient degradation (Moderate fault).
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Figure 6.12: Failure caused by actuator leakage coefficient degradation (Slow fault).
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Figure 6.13: Failure caused by actuator leakage coefficient degradation (Slow fault).
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Figure 6.14: Failure caused by internal leakage.

predicts a time of 106900 for the lifetime at t = 2351 sec. It is noted that

the predicted lifetime in this slow degradation is almost 100 times longer

than the moderate one which is the result of lowering down the slope of the

failure by 100 times.

3. Internal leakage

An internal leakage fault path with a slope of 0.001 is injected into the system

by the following equation:

∆Q =

 0 t ≤ 5

0.001t t > 5
(6.20)

Figure 6.14 illustrates the output of the LVDT sensor, the EKF estimator and

the estimated residual of the output.

Similarly, the residual has a sharp slope as internal leakage progresses fast in the

system. Figure 6.15 depicts the DP and RUL of the system.
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Figure 6.15: Failure caused by internal leakage.

The DP reaches 99.8% at t = 26.65 sec and the proposed fault prognosis detects

the starting time of the failure. However, the RUL predicts a value of 1735 sec

for the lifetime of the system at t = 38 sec. The RA index at t = 38 sec is 99%

which indicates an accurate prognosis system.

4. Null current bias + actuator leakage coefficient

The proposed prognosis system can handle simultaneous failures. To examine

this property, two dynamic faults formulated by Eqs.(6.18) and (6.19) are con-

sidered in the system. Figure 6.16 displays the output of the LVDT sensor, the

EKF estimator, and the residual estimation.

It is indicated from the figure that rate of changes in residual is more than the

changes in individual suggested failures. Figure 6.17 displays the DP and RUL

of the system.

It is noted the criterion for the RUL is chosen 97.5 which is the average of the

two individual proposed failures. The value of DP is 99.8% at 14.31s sec, a faster

detecting in comparison with the individual fault. The RUL method forecasts a
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Figure 6.16: Failure caused by an actuator leakage coefficient and a null current bias.
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Figure 6.17: Failure caused by an actuator leakage coefficient and a null current bias.
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Figure 6.18: The performance of the system under set point tracking.

value of 252sec for the system at 15 sec. The RA index for the MFS at 15 sec

is 95%.

5. Performance of the prognosis system under setpoint tracking

An internal leakage is injected in the system by Eq. (6.20), and a square-wave

set point is considered where the setpoint is changed from 1.1in to 1.3in at

t = 120sec and goes back to 1.1in after 30sec. Figure 6.18 displays the output

of the LVDT sensor, the EKF estimator, and the residual estimation.

It is clear from the Figure 6.18 that the output of the system and the EKF

observer can track the signal. However, there is a jump in the residual whenever

the setpoint is changed. Figure 6.19 displays the DP and RUL of the system.

It can be seen from the Figure 6.19 that the RUL has a value of 1865 sec just

before changing the set point at t = 120sec. Then, it goes to zero due to a sharp

increase in the DP curve. The RUL recovers itself with a value of 2303sec after

7sec at t = 127sec. However, it should be noticed that this value is different

from the previous value which is due to the nonlinear behavior of the system at
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Figure 6.19: The performance of the system under setpoint tracking.

different set points. Finally, RUL goes back to 1827 sec at 153 sec as a result of

returning to the previous setpoint. It is worthwhile to note that the RUL unit

can maintain its performance under changes in the setpoint which is likely to

occur in practice.

6.4 Conclusions

A model-based prognosis method was introduced to discover the degradation model

of the failures in the MFS system. An EKF was used to generate residuals and to

capture the progress of the failure. Then, a transformation was made to estimate the

degradation path (DP) in the system. Then, the RUL of the system was predicted

by using a recursive Bayesian method.

The main advantage of the fault prognosis system was its model-based method

which improved the accuracy of the system using residual generation and then trans-

formation. Furthermore, the RUL algorithm identified an optimal affine function of

time using available data of the degradation path (DP) and provided a remaining
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lifetime of the system based on Gaussian probability theory which was suitable with

uncertainty inherited in the prediction horizon and it was also proper for real-time

implementation of the system.

Moreover, RA measure was utilized to evaluate the performance of the proposed

prognosis method. The simulation results showed the capability of the proposed

prognosis system not only for the different individual failures but potentially for

simultaneous failures.
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Chapter 7

Conclusions and Future Work

Suggestions

We believe that fault diagnosis and failure prognosis are essential fields of study for fu-

ture of safety-critical systems. They present an opportunity to move from the current

methodology of maintenance which is based on constant time interval to advanced

condition-based maintenance. The new maintenance method may have a better cost-

benefit and even provide more reliable framework due to effective monitoring of the

system. To reach this goal, however, the existing challenges regarding the monitoring,

and safety should be adequately addressed. Thus, this area provides an exciting field

of research with enticing challenges and numerous opportunity. Our hope is that this

thesis may shed some light on the monitoring, fault diagnosis and failure prognosis

challenges for safety-critical systems, and planted some ideas that might grow to be-

come mainstream in the future. In this chapter, we summarize and point out the

main results that have been achieved in this thesis. Besides, several directions and

ideas for future research are presented.
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7.1 Conclusions and Contributions

In this thesis, the problem of fault diagnosis and failure prognosis for safety-critical

systems was investigated from multiple angles. In this regard, three novel approaches

were examined on two safety-critical systems. The concluding remarks of each devel-

oped methodology would be briefly outlined in the following sections.

7.1.1 Data-driven FDP Approach Using a Few Numbers of Measure-

ments

A new data-driven method based on divide and conquer strategy was employed for

the fault diagnosis and prognosis in MFS system. The MFS system included several

highly nonlinear components with uncertainty in their structures. It also had two

measurements available for monitoring purposes. Therefore, health monitoring of

this system was extremely difficult and challenging work. The proposed methodology

could split the FDP task into three subtasks named fault detection and diagnosis

(FDD) task, failure parameter estimation task, and remaining useful life (RUL) task.

The proposed structure reduced the computational complexity and increased pre-

ciousness of both fault diagnosis and failure prognosis systems.

The proposed FDD method was developed by a combination of NN and DWT

methods. The DWT applied wavelet transform and obtained the decomposition se-

quences of the measurement signal and analyzed them using fuzzy rules to isolate a

fault in the system. We showed that the DWT could only detect actuator leakage

and internal leakage in the system, but failed to identify null bias failure. However,

when the DWT combined with the NN method, the accuracy of the system increased

in comparison with implementing the NN method alone. Moreover, we had more

reliability in isolating types of failures.

After isolating the type of the failure, failure parameter estimation unit observed

the failure parameter using a distributed system of three parallel neural networks. It

was shown that the distributed system enhanced the accuracy of the failure parameter
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in comparison with a centralized neural network. Finally, the lifetime of the system

was predicted using an optimal Bayesian method. The accuracy of the RUL was

investigated by relatively (RA) index.

7.1.2 Data-driven FDP Approach Using a Multi-sensor Data Information

Multi-sensor data integration is the best choice whenever several sensors are available

for health monitoring systems. A novel FDP approach was designed for hydro control

valve system. The primary goal was to utilize real-time information of system through

measurements of multiple sensors and improved the accuracy of the FDP system.

For this purpose, first, type of a fault was identified based on feature selection and

SVM methods. An incremental feature selection method using correlation formula

was used to choose highly correlated sensors as the inputs of the SVM classifier. For

classification task, RBF nonlinear function was considered along with one against

one strategy to perform the problem of the multi-classes. The proposed FDD system

could raise the accuracy of isolation unit and provided a highly reliable system. Then,

a distributed ANFIS network was used to estimate the failure parameter. Similarly,

a recursive Bayesian algorithm was developed to forecast the lifetime of the system.

It was also shown that the proper sensor selection could significantly increase the

performance of the prognosis task.

7.1.3 Model-based FDP Approach Using an Integrated EKF Method and

Bayesian Algorithm

Model-based methods could provide an accurate prognosis results if a high fidelity

model of the system is available. A novel prognosis method was proposed in this thesis

for MFS system. For this aim, a residual estimation method using extended Kalman

filter was implemented to capture the nonlinearity of the failure dynamic. Then,

a new measure, DP, was defined using a transformation to model the degradation

path. After this stage, the DP is considered to forecast the RUL of the system via
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the Bayesian algorithm. The Bayesian algorithm is cooperatively in touch with the

real-time data of the DP to provide an optimal prediction of the RUL.

7.1.4 Contributions

The most important contributions of this thesis are summarized as follows:

1. To the best of our knowledge, the proposed data-driven method based on di-

vide and conquer strategy was the first attempt to split the FDP tasks and

increase the performance of the FDP system. The nature of the algorithm made

it possible to employ subtasks to ease the problem and achieved more accurate

results.

2. Using a distributed system for failure parameter estimation unit reduced com-

putational complexity and also decreased the error of the system in training and

testing phases in comparison with a centralized system. It is worth to mention

that the estimated parameter was used to identify an optimal model for the pre-

diction of the RUL. Therefore, a higher accuracy of the estimation task would

result in an increase in the performance of the prognosis task.

3. Applying real-time optimal Bayesian algorithm led to an effective approach for

prediction of the RUL. Furthermore, this unit was recursively in touch with

the real-time data of degradation path that helped to enrich the quality of the

prediction.

4. Utilizing multi-sensor data information for the FDP system led to more accurate

and reliable isolation in FDD unit and also improved the accuracy of parameter

estimation and finally helped to have a accurate measure of RUL.

5. Another main novelty was to apply the concept of residual estimation for captur-

ing the nonlinearity of the degradation dynamic using EKF method. It helped

us to cope with complicated dynamics of the MFS system and had an accurate

prediction.
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6. Considering transformation was another contribution of the thesis. The proposed

transformation assisted in modeling the degradation path.

7.2 Future Work

We believe that health monitoring of safety-critical systems would be an important

field of research in the years to come and have the potential to provide a safe and

appropriate framework for condition-based maintenance. In the following, we review

some directions that seem promising for future research efforts in this field.

1. Concurrent failures

Considering concurrent failures occurs in the system and developing methods to

isolate them and predict the RUL of the system.

2. Considering complex dynamics for failures

Dynamics of the failure can have more complex structure and lead to more

difficulties for the prognosis task. We modeled a failure with ramp function and

identified it with an optimal linear affine function of time using the Bayesian

algorithm. However, nonlinear failures can occur and also, a failure may lead to

another failure which makes the prognosis task more difficult to solve.

3. Apply particle filter for the task of prognosis

Particle filter is a proper method for the task of fault diagnosis and failure prog-

nosis. This method is perfect to capture the nonlinear dynamics and achieve an

accurate result. However, it should be noted that it also increases the compu-

tation which may be a negative aspect for the real-time implementation of the

method.

4. Utilizing fuzzy logic method for prognosis task

Fuzzy logic membership functions can be applied to obtain multiple models

to capture the nonlinear dynamics of the degradation path and improve the
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performance of the prediction.

5. Using an online performance monitoring with the task of the prognosis

The prognosis task is always unreliable due to uncertainties exist in the prediction

horizon of the failure. Therefore, it is often desirable to perform an online

performance assessment to evaluate the accuracy of the prognosis.
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Appendix A-Degraded Dynamic Model of

Multifunctional Spoiler Systems

The degraded model is considered by injecting failures in the dynamic model of the

MFS as follows:

Xv =
Kv

sτehsv + 1
(Icmd + I0 + ∆I0)

V01 + AboreXp

β

dP1

dt
= QC1 − Abore

dXP

dt
−

(CL + ∆CL)(P1 − P2) +QANTI + ∆Q

V02 − AannXp

β

dP2

dt
= −QC2 + Aann

dXP

dt
+

(CL + ∆CL)(P1 − P2)−∆Q
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