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The quotes below express lessons learnt through this trip to knowledge. 

 

Hoping to motivate. 

 

‘Πάντα κατ’ αριθμόν γίγνονται.’ (Πυθαγόρας, 580-490 π.Χ., αρχαίος Έλληνας 

φιλόσοφος) 

μετάφραση: Τα πάντα γίνονται σύμφωνα με αριθμούς. 

‘Number rules the universe.’ (Pythagoras, 580-490 BC, ancient Greek philosopher) 

 

‘ἓν μόνον ἀγαθὸν εἶναι, τὴν ἐπιστήμην, καὶ ἓν μόνον κακόν, τὴν ἀμαθίαν.’ (Σωκράτης, 

470-399 π.Χ., αρχαίος Έλληνας φιλόσοφος) 

μετάφραση: Υπάρχει ένα μόνο καλό , η γνώση και ένα κακό, η αμάθεια. 

‘Τhere is only one good, knowledge and one evil, ignorance.’ (Socrates, 470-399 BC, 

classical Greek philosopher) 

 

‘Ανέχου και απέχου.’ (Επίκτητος, 50-138 μ.Χ., Έλληνας φιλόσοφος) 

μετάφραση: να έχεις υπομονή και αντοχή. 

‘Well thriveth that well suffereth.’ (Epictetus, 55 – 138 AD, Greek philosopher) 
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ABSTRACT 

There is no doubt that recent years, maritime industry is moving forward to novel and 

sophisticated inspection and maintenance practices. Nowadays maintenance is 

encountered as an operational method, which can be employed both as a profit 

generating process and a cost reduction budget centre through an enhanced Operation 

and Maintenance (O&M) strategy. In the first place, a flexible framework to be 

applicable on complex system level of machinery can be introduced towards ship 

maintenance scheduling of systems, subsystems and components. This holistic 

inspection and maintenance notion should be implemented by integrating different 

strategies, methodologies, technologies and tools, suitably selected by fulfilling the 

requirements of the selected ship systems. In this thesis, an innovative maintenance 

strategy for ship machinery is proposed, namely the Probabilistic Machinery 

Reliability Assessment (PMRA) strategy focusing towards the reliability and safety 

enhancement of main systems, subsystems and maintainable units and components. In 

this respect, the combination of a data mining method (k-means), the manufacturer 

safety aspects, the dynamic state modelling (Markov Chains), the probabilistic 

predictive reliability assessment (Bayesian Belief Networks) and the qualitative 

decision making (Failure Modes and Effects Analysis) is employed encompassing the 

benefits of qualitative and quantitative reliability assessment. PMRA has been clearly 

demonstrated in two case studies applied on offshore platform oil and gas and selected 

ship machinery. The results are used to identify the most unreliability systems, 

subsystems and components, while advising suitable practical inspection and 

maintenance activities. The proposed PMRA strategy is also tested in a flexible 

sensitivity analysis scheme. 

Keywords: Maintenance, maritime industry, reliability, dynamic state modelling, 

data mining, Bayesian Belief Network (BBN)  
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1. INTRODUCTION 

1.1. Chapter outline 

In this Chapter, the dissertation background is demonstrated. Initially, a brief 

introduction into the shipping industry is presented and crucial notion definitions are 

identified. Furthermore, the maritime transportation challenges are presented. This 

Chapter layouts the content and the research structure introducing the reader into the 

essence of the thesis. 

1.2. The background of maritime industry 

For hundreds of years, shipping serves the global economy by transporting goods all 

over the world. Nowadays, shipping provides a sophisticated transportation mode to 

every part of the globe. Maritime industry incorporates complex technical, operational 

and economic aspects through a competitive international trade. 

Historical records of the world fleet are suitable for identifying the past and current 

shipping industry growth through time. Furthermore, historical records can be utilised 

in order to scrutinise and examine future prospects of the industry. Therefore, 

International Union of Marine Insurance (IUMI, 2016b) presents recent records of the 

average age of the world fleet considering the tanker, bulk carrier, container and gas 

carrier ship types. 

The reported figures for the period of 2000-2015 as well as the predictions for 2016-

2018 reveal an increase of the average age of the world fleet with respect to container 

and tanker ship types. Nevertheless, bulk carrier and liquid ship types declare a 

decrease of the average age of these vessel types. On the other hand, the overall world 

fleet average age shows an almost stable ship lifecycle of approximately 20 years. 
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Figure 1.1 Seaborne trade demand for transport (IUMI, 2016a) 

Notwithstanding the almost stable average age of the world fleet, historical figures and 

statistical predictions confirm the raise of the global seaborne tonnage demand (IUMI, 

2016a). This increased trade demand verifies the consecutive global seaborne growth, 

while ensuring the shipping market progress and development. Additionally, the 

expansion of tonnage demand assures the maritime industry stability through time, 

especially for merchant ships such as dry bulk, liquid bulk and container as shown in 

Figure 1.1. The greatest tonnage increase demand since 1990s is recorded and 

forecasted for dry and container cargos respectively. However, the second largest 

seaborne trade demand for transportation is recorded for liquid bulk, while the demand 

expansion seems almost steady over the past decades. Hence, the overall merchant 

ship tonnage demand increased through the past years, especially the former decade. 

All of the above records, and their continuous increase, clearly indicate that shipping 

plays a significant role in the transportation of commodities worldwide. 

Moreover, the world fleet has to be examined with respect to the available gross 

tonnage by ship type. In other words, the worldwide ship supply has to be assessed 

and integrated with the historical records and predictions of the seaborne trade 

demand. The combination of these two sources, such as seaborne trade supply and 

demand, will provide a respectful indication of existing and future market growth 

expectations. According to recent statistical data (Equasis, 2014), 80% of the world 
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gross tonnage of ships consists of bulk carriers (35.9%), oil and chemical tankers 

(25.7%) and container ships (18.4%). The remaining 20% of world fleet in gross 

tonnage includes gas tankers, Ro-Ro cargo, general cargo, offshore vessels and 

passenger ship types. These historical recorded figures, integrated with the seaborne 

trade demand for transportation, demonstrate the global commodity trade and the ship 

type market growth. As the maritime industry growth and expansion is proven on 

specific ship types such as bulk carrier, tanker and container ships, this historical 

research sets the grounds for operational and functional concern investigation. 

As stated by Hunt (1995), making decisions under conditions of risk and uncertainty 

has always been the shipowners’ challenge. Expanding this statement, the author’s 

belief is that risk and control of uncertainty as well as safety awareness is the 

responsibility of all involved maritime stakeholders contributing actively towards 

safety enhancement. As a matter of fact, the development and establishment of safety 

regulatory frameworks in the maritime industry is led by lessons learnt from hazardous 

incidents and accidents. Several marine and offshore casualties took place in the last 

decades such as Titanic (1911), Derbyshire (1980), Herald of Free Enterprise (1987), 

Piper Alpha (1988), Exxon Valdez (1989), Scandinavian Star (1991), Estonia (1994), 

Petrobras P-36 (2001), Star Princess (2006), Deepwater Horizon (2010), Costa 

Concordia (2012), among others. 

The most recent casualty statistics for the period 2000-2014, published by the 

International Union of Marine Insurance (IUMI, 2015), present that the causes leading 

towards total or serious losses are listed as weather, grounding, fire/explosion, 

collision/contact, hull damage and machinery failure. The dominant causes triggering 

serious losses are recorded among machinery damage, grounding and collision/contact 

(Figure 1.2). Especially, machinery failure reports over 35% of all losses for the 

period. Hence, more than one third of the losses caused due to machinery failure. It is 

worth noting than the losses since 2000-2004 period are negligibly reduced by 

approximately 1%. 
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Figure 1.2 Ship serious losses by cause for all vessel types 2000-2014 vessels 500 GT 

and above (IUMI, 2015) 

On the other hand, IUMI (2016b) published the latest casualty and world fleet 

statistics. The causes of total ship losses for vessels larger than 500 GT list weather, 

grounding, fire/explosion, collision/contact and hull and machinery damage as shown 

in Figure 1.3. 

 

Figure 1.3 Ship total losses by cause for all vessel types 2000-2014 vessels 500 GT 

and above (IUMI, 2016b) 
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Hence, ship machinery and systems are vital and leading reason for serious ship losses 

as shown from the latest records. It is crucial to highlight that machinery failures 

causing total ship loss are enormously less compared to serious ship losses, however 

they present an increase the last 5 years. Additionally, Allianz (2015) publishes that 

major cause of loss leading to marine claims higher than €1.0m is related to machinery 

damage and breakdowns. In the UK alone of all hull and machinery claims, 60% is 

caused due to machinery damage, with the majority of these attributed due to human 

negligence. 

Specifically oriented towards the causes of oil spills, as these affect the environment 

as well as humans’ lives, International Maritime Organization (IMO) reports that most 

spills from tanker ships are a result of routine operations and human errors such as 

loading, discharging and bunkering (IMO, 2012). Furthermore, IMO clarifies that the 

major reasons, causing oil spills, are related to machinery failures, hull failures, 

groundings, collisions and explosions respectively. The existing brief research reveals 

that the majority of incidents or accidents occurred due to machinery failure and/or 

human errors in the onboard operations. Hence, the necessity of establishing inspection 

and maintenance standardisation methods that can effectively control the risk of 

machinery failure is needed. Furthermore, automation in shipping operational 

applications and onboard functionalities targeting human error elimination should be 

considered as leading goal. 

Before exploring the latest inspection and maintenance methodologies and 

applications in maritime industry, it is crucial to identify the functionality of 

maintenance. In this respect, several definitions are provided by various authors, 

summarising the notion that maintenance is a set of technical, administrative and 

managerial actions targeting to retain or restore the state of a system to function as 

required (Dikis et al., 2014). Furthermore, appropriately selected inspection and 

maintenance practices will enhance ship machinery reliability and availability by 

ensuring safety and functionality. Especially focused towards safety, maintenace 

impact affects the environment, humans such as crew members and passengers as well 

as assets, the ship herself and third parties’ properties. 
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Moreover, parametres such as reliability, availability, risk of failure, uncertainty and 

machinery downtime also affect operational expenses. Hence, control of technical, 

managerial and costs aspects, through selected inspection and maintenance activities, 

contributes towards enhancement of business reputation by providing smooth 

transportation of commodities services and eliminating commercial penalties. In 

further, nowadays maintenance is encountered as an operational method, which can be 

employed both as a profit generating process and a cost reduction budget centre 

through an enhanced Operation and Maintenance (O&M) strategy. 

Inspection and maintenance implementation in industry takes place at different levels, 

considering multiple aspects, functionalities and requirements. Practices are 

established through strategies and methodologies. Their applicability and 

implementation is illustrated through technologies and tools. Furthermore, the 

necessity for standardisation of inspection and maintenance practices is proven 

through the continuous development towards maintenance guidelines and regulations. 

These standardisation guidelines are introduced by British and European Standards 

(BS) and International Organisation for Standardisation (ISO) and regulations 

established by regulatory bodies such as International Maritime Organization (IMO) 

and International Association of Classification Societies (IACS). 

As identified in literature, inspection and maintenance activities have been reformed 

from reactive to proactive. Hence, the notion of failure prevention and risk control is 

introduced. Specifically in shipping industry, where vessel availability and 

accessibility are vital. This maintenance reformation is achieved through maintenance 

strategies such as corrective, preventive and most recent predictive strategy. The 

implementation strategies in industry takes place by utilising multiple maintenance 

methodologies. The most known can be classified among Reliability Centred 

Maintenance (RCM), Total Productive Maintenance (TPM), Total Quality 

Management (TQM), Maintenance Risk Based Methodologies for Inspection and 

Maintenance (i.e. RBI and RBM respectively) as well as Asset Management (AM) and 

Computerised Maintenance Management System (CMMS). The maintenance 

methodologies’ investigation leads to the latest one Condition Based Maintenance 

(CBM). The investigation of inspection and maintenance practices is performed by 
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assessing research and applications from multiple industries and transportation modes. 

These involve aviation, nuclear, offshore energy and oil and gas, manufacturing, rail 

and automotive. 

Inspection and maintenance practices are developed through time by introducing and 

enabling control and assessment of factors such as reliability, criticality with respect 

to operational priorities, production and quality. The notion of risk assessment is 

implemented in both inspection and maintenance. Likewise, inspection automation 

and computerised approaches are introduced targeting on-condition assessment in the 

latest CBM methodology. 

The up-to-date inspection and maintenance approaches are the result of decades of 

experience and efforts of a number of stakeholders such as ship owners, operators, 

service providers, classification societies, shipyards and manufacturers. Additionally, 

stakeholders such as insurers, flag states, ports, cargo owners, charterers as well as 

research developers and academics contributed in this effort by introducing solid and 

innovative inspection practices. 

Moreover, collaborations of various maritime stakeholders focusing towards 

inspection and maintenance automation and safety enhancement are introduced 

through multiple European funded research projects such as MINOAS (2012), 

RISPECT (2013) and INCASS (2014a). Hence, research and development, concerning 

ship operations’ automation, inspection and maintenance practices and safety 

enhancement, is under continuous investigation and novel practices are assessed. 

On the other hand, market competition has grown gradually due to continuous increase 

in production demand, resulting in the implementation of mechanised and automated 

systems. This enhances targeted appropriate delivery time, quality and quantity of 

supply. The automation of operational processes and equipment mechanisation forces 

the development and implementation of maintenance functions and Asset 

Management (AM) control in order to manage failure uncertainty, reduce risk and 

enhance safety. 

Nowadays, in maritime industry, maintenance structure is transformed from budget 

gain perspective to investment for continuous and reliable asset service. It is 



8 

commonly found that inspection and maintenance departments in shipping companies 

are the largest in work force and expense. Hence, there is available potential for 

development of new inspection and maintenance practices. 

Safety requirements, operational demand and inspection and maintenance concerns 

have to be considered as prerequisites ensuring the ultimate performance. A unified , 

robust and flexible risk-based approach has not been introduced yet in the maritime 

field for identifying inspection and maintenance schedules and activities by ensuring 

safety of personnel, environment and property (Rizzo and Nigro, 2008). International 

Safety Management (ISM) Code from International Maritime Organisation (IMO) and 

Tanker Management and Self-Assessment (TMSA) from Oil Companies International 

Marine Forum (OCIMF) are risk-based practices offering international standards for 

the safe management and operation of ships and for pollution prevention, however 

they provide minimum requirements. 

Furthermore, it is the author’s opinion that innovative and automated unified risk-

based practices should be established in maritime transportation mode, aiming at safety 

enhancement, unavailability reduction and control of uncertainty, which leads to 

hazardous consequences. Moreover, by applying the appropriate maintenance 

sequence onboard a ship, cost reduction of inspection, maintenance and operational 

expenses can be achieved. 

This research study contributes within the major vessel fleet including merchant ships, 

passenger vessels and general service vessels. Ships utilise similar installed machinery 

onboard enabling the implementation of unified inspection and maintenance 

framework. These functional and practical similarities set the grounds for introducing 

a flexible framework for tackling the challenges concerning inspection and 

maintenance practices of selected machinery. The dissertation Chapter layout is shown 

in the next section that will introduce the major research areas and achievements. 

1.3. Dissertation layout 

The present thesis consists of ten Chapters as outlined in Figure 1.4. Each chapter is 

included in the outline below allowing the reader to identify what can be expected 
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from each chapter, by introducing key information. Each chapter includes a summary 

section highlighting key achievements and novelties. The thesis layout is shown in 

Figure 1.4 below. 
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Chapter 1. Introduction
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Aim & Objectives
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Literature review of current 

research and practices

Chapter 3b. 

Literature review of known 

industrial applications 

Chapter 4. 

Methodology & Modelling

Chapter 5. 

Case study of 

processed data

Chapter 6. 

Case study of raw data

Chapter 7. 

Case studies results

Chapter 8. 

Sensitivity analysis

Chapter 9. 

Discussion & Conclusions

Chapter 10. 

Recommendations for 

future research
 

Figure 1.4 Chapters of thesis layout 
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Chapter 1. Introduction 

The first chapter sets out the essence of the thesis by introducing the background as 

well as the motivation for this proposed and developed research work. This chapter 

briefly introduces the shipping industry by exposing its growth through time, 

operational and decision challenges and concerns to be taken into account. 

Chapter 2. Aim & objectives 

This chapter sets the main aim that will be achieved through the performed research. 

The objectives present the major challenging achievements reflecting the foremost 

study aim. 

Chapter 3. Literature review 

The research background through an extensive literature review is presented in 

Chapter 3. This chapter reviews the latest literature on maintenance strategies, 

methodologies and technologies of ship’s main and auxiliary machinery systems 

oriented towards research and industrial applications. The research considers 

European standards, industry guidelines as well as the International Maritime 

Organization (IMO) regulatory framework. The review aims to present the 

significance of maintenance and Asset Management (AM). It assesses technologies 

and optimization research approaches by identifying research gaps and motivating 

further improvement. The investigation takes place in maintenance industrial 

implementation timeline focused on research optimization tools of diagnostics and the 

latest prognostics for Condition Monitoring (CM) technologies. 

Chapter 4. Methodology and modelling 

As the evaluation of the existing novel literature review led to the identifying of 

research gaps, this chapter is focused towards the theoretical framework. The 

considered and developed tools and methods are demonstrated by introducing the 

modelling principles. The functionality and novelties of the methodology are 

explained in depth by clarifying design assumptions.  

Chapter 5. Case study of processed data 
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The fifth chapter evaluates the proposed and developed reliability assessment 

methodology through multiple systems applied in a case study. The implementation 

involves multiple marine machinery units such as a marine diesel engine, turbocharger 

and various electrically and steam powered driven pumps. This chapter’s target is to 

evaluate the risk analysis tool’s ability of predicting the reliability performance on 

system, subsystem and component levels. Processed input data are sourced by the 

Offshore Reliability Database (OREDA). 

Chapter 6. Case study of raw recorded input data 

Complementing the applicability of the previous chapter, this chapter aims to assess 

the overall developed research methodology through an application including 

statistical data clustering and classification, Probabilistic Risk Assessment (PRA) and 

decision making. The predictive reliability assessment framework utilises raw onboard 

collected input data. This chapter establishes the overall risk and reliability framework 

as well as the decision support system by introducing innovative achievements, 

considerations, challenges and key assumptions. 

Chapter 7. Case studies results 

In this chapter, particular focus is given to the case studies results. An in depth analysis 

takes place assessing the outcomes of each part of the proposed methodology as an 

independent tool as well as integrated within the demonstrated framework. The results 

and their assessment aim to present and validate the applicability and accuracy of the 

reliability assessment methodology. 

Chapter 8. Sensitivity analysis 

The sensitivity analysis explores and proves that the suggested maintenance strategy 

performs efficiently under different operating conditions, which are also important for 

the testing process of the developed methodology. 

Chapter 9. Conclusions 

An in depth summary of the key learning points of this research is presented in 

conclusions chapter. Furthermore, the contribution to knowledge and science through 



13 

theoretical and practical aspects is demonstrated by highlighting the research novelty 

and its results. 

Chapter 10. Recommendations for future research 

The performed research contributes directly to science as well as to industry. In this 

respect, this chapter highlights future research suggestions setting the ground and 

motivating researchers and professionals for further research work. These 

recommendations provide observations and considerations for further research and 

development in both scientific and industrial features. 

1.4. Chapter summary 

In this Chapter, the introductory section presents the potential of further growth and 

expansion of maritime industry and world trade demand respectively. Furthermore, 

this Chapter highlights the importance of inspection and maintenance operations by 

ensuring safety onboard and ship machinery availability, hence, profitable business 

functioning. The various challenges in shipping industry are also demonstrated and 

this dissertation aims to bring solutions at some points of these difficulties. Thereafter, 

the Chapter thesis outline is provided, allowing the reader to identify what to expect 

from each Chapter. The Chapter allocation is structured in such a way to be smooth 

for the reader and introduce the topic. Lastly, dissemination activities performed 

during the development of this research are listed. 
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2. AIM & OBJECTIVES 

2.1. Chapter outline 

The second Chapter presents the identified main aim and objectives of the present 

thesis. The planned research and development tasks are listed and described next. 

2.2. Aim & objectives 

The main aim of this thesis is to tackle the issue of optimal ship machinery 

maintenance strategy by establishing a novel dynamic, predictive, probabilistic 

reliability assessment strategy. The objectives related to the above mentioned aim are 

given below: 

1. Investigate and critically review the existing maintenance strategies, 

methodologies and applied approaches in literature by assessing the state-of-

the-art of Research and Development (R&D) and industrial/commercial 

applications and define similarities, advantages, limitations and research gaps. 

2. Propose an innovative maintenance strategy for ship machinery by establishing 

novel data analysis methods as well as forecasting reliability assessment 

modelling. 

3. Develop an innovative and adaptable predictive reliability assessment tool for 

processed data. 

4. Propose a methodology for raw input data analysis to transform data into 

probabilistic measures that can be utilised by the developed reliability tool 

proposed above. 

5. Demonstrate the applicability of the developed tools on selected ship 

machinery by utilising processed as well as raw onboard recorded input data. 
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6. Verify and test the suggested strategy through a Sensitivity Analysis (SA) 

scheme. 

2.3. Chapter summary 

In this Chapter, the research aim and the related objectives are identified by setting the 

principles of the planned work tasks and expected achievements. The specified thesis 

aim and objectives will be addressed in the forthcoming Chapters. Hence, the next 

Chapter demonstrates the literature and critical review that has taken place for this 

study identifying existing research practices, industrial applications and research gaps. 
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3. CRITICAL LITERATURE REVIEW 

3.1. Chapter outline 

In this Chapter, the literature review is demonstrated incorporating research 

background considerations and tendencies. The research topic of this dissertation is 

oriented towards inspection and maintenance strategies and practices for ship 

machinery. Hence, the present research and development awareness contributes in 

research science as well as industry and commercial applications. This Chapter 

examines inspection and maintenance field with respect to strategies, guidelines and 

regulations, methodologies, recent condition monitoring technologies as well as 

maintenance optimisation tools. Therefore, it refers to efforts demonstrating the 

evolution and reformation of maintenance from corrective to preventive and then to 

latest predictive strategy. In parallel, the significance of inspection and maintenance 

operations is ensured by revising up-to-date guidelines and regulatory bodies’ 

standardisation frameworks. Furthermore, major inspection and maintenance 

methodologies are assessed taking into account factors such as reliability, production 

control, quality assurance, risk based and on-condition assessment as well as 

automation and computerised asset management. Furthermore, this Chapter, as shown 

in Figure 3.1, clarifies research gaps related to the latest tendencies of machinery 

maintenance condition monitoring. It identifies data mining methods, well known and 

innovative reliability assessment tools by leading to decision making and prioritisation 

tools. Moreover, the second section outlines in a generic form the pillar of the research 

methodology. All of the above performed research targets to obtain a clear perception 

of the existing inspection and maintenance practices by identifying existing gaps and 

introducing the innovative maintenance framework suggested in this thesis. 
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Figure 3.1 Literature on maintenance strategies of marine engineering systems 

Abbreviations: BS: British Standards, ISO: International Standards Organisation, IMO: International Maritime Organisation, IACS: International Association of Classification Societies, RCM: Reliability 

Centred Maintenance, TPM: Total Productive Maintenance, TQM: Total Quality Management, RBI/RBM: Reliability Based Inspection/Maintenance, CBM: Condition Based 

Maintenance, CMMS: Computerised Maintenance Management System, AM: Asset Management, CM: Condition Monitoring, ANNs: Artificial Neural Networks, ES: Expert Systems, 

EAs: Evolutionary Algorithms 
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3.2. Maintenance strategies 

Recent studies show that competition in the shipping market is influenced by factors 

such as cost, flexibility, quality, priorities and product’s capabilities (Pinjala et al., 

2006). On the other hand, Madu (2000) supports that business’ competition 

incorporates time, price, technology, innovation, quality, reliability and information 

management. Hence, the necessity of retaining business competitive profile introduces 

the prerequisite of well-planned and controlled maintenance policy. This business 

policy approach is known as maintenance strategy. 

Literature indicates that maintenance strategies are classified differently by various 

researchers. Garg and Deshmukh (2006), Ahuja and Khamba (2008), and Dowlatshahi 

(2008) combine maintenance strategies and techniques by identifying them with 

respect to their applicability and characteristics. On the other hand, Wang (2002) 

approaches maintenance in the commonly cited types of corrective and preventive 

strategies. This section classifies the maintenance strategies between corrective, 

preventive, predictive and proactive maintenance. 

3.2.1. Corrective maintenance 

The most fundamental maintenance strategy is known as corrective maintenance 

(Shreve, 2003), (Arunraj and Maiti, 2007). This strategy has been implemented in 

industry since the beginning of industrial revolution and is often described as “fix it 

when it breaks” expressing its reactive side (Kobbacy and Murthy, 2008). It is routine 

maintenance strategy, oriented on the replacement of components after failure. An 

exploration of published material shows that the recent applications are limited, 

because this strategy leads to expensive component replacement solutions instead of 

proactive maintenance actions. Mobley et al. (2008) explain the unpopularity of 

corrective maintenance by presenting the major limitations of corrective maintenance 

as poor planning and incomplete repair resulting in the repair of obvious failures while 

ignoring the root cause of the failure. The combination of both limitations causes a 



19 

significant increase in repair expenditures, up to three to four times more, compared 

with a well-planned strategy. 

In shipping industry, leading factors influencing vessels’ smooth functioning are 

availability and sailing trustworthiness. Corrective maintenance strategy does not 

seem to be suitable to the marine industry’s challenging characteristics due to high risk 

of machinery uncontrolled failures, which will consequently lead to unavailability of 

the ship. However, Fedele (2011) asserts that corrective maintenance is suitable for 

non-critical, inexpensive and easily replaced components that their replacement will 

not affect the efficiency of a plant’s operation. Hence, specified components can be 

selected to be stocked onboard the ship’s inventory for immediate use if required. 

3.2.2. Preventive maintenance 

This maintenance strategy is identified as a second generation policy (Shreve, 2003). 

Preventive Maintenance (PM) is introduced in industry at the beginning of 1950s 

classified as Time Based Maintenance (TBM) or the first time-driven management 

program (Arunraj and Maiti, 2007). Similarly, Márquez (2007) outlines this strategy 

as an operation arranged in predefined periods satisfying given criteria in order to 

reduce the likelihood of failure or the affection of critical functions due to equipment 

degradation. Correspondingly, Mobley et al. (2008) identify PM as specific task 

approach, which aims to avoid corrective actions by extending the useful life of capital 

and supplementary assets. More specifically, Kobbacy and Murthy (2008) define PM 

as the strategy which tends to replace, overhaul or remanufacture components at 

predetermined intervals regardless of its condition at the time. 

A demanding research and development task related to PM is the specification of the 

inspection and maintenance intervals. Multiple explorations are offered in literature, 

while failure rate measures are assessed and maintenance activities are considered for 

risk prevention. Regarding the establishment of the interval maintenance periods, 

Fedele (2011) and Yi et al. (2012) present the bathtub curve, verifying three regions 

within the operational life cycle of equipment. The first period named ‘infant 

mortality’ associates with failures that may occur due to possible design, planning or 
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installation errors. The next phase is the ‘steady state’ in which the failure rate is 

constant within time, while in the last ‘wear out’ period, failures are expected and 

replacement should be carried out. 

Preventive maintenance has wide applicability in industry contributing in technical 

and economic aspects as well. Therefore, a PM planning approach is presented by Oke 

and Charles-Owaba (2006) redefining the maintenance intervals related to cost 

function considering vessels’ design and technical characteristics from recorded data. 

The dynamic state modelling notion (i.e. consideration of time dependency) as well as 

the multi-component concept are integrated in a PM model assessing maintenance 

from the value perspective (Liu et al., 2014). PM strategy is the foundation of the well-

known and widely applied Planned Maintenance Systems (PMS), where maintenance 

actions are applied according to defined operational hours. 

Summarising the characteristics of this maintenance approach, PM enables higher risk 

control and uncertainty assessment compared to corrective maintenance by utilising 

predefined inspection and maintenance interval activities. Nonetheless, due to 

ignorance of the system’s condition, components’ replacement could take place earlier 

or later than required, leading to loss of money or unexpected failures respectively. 

3.2.3. Predictive maintenance 

This is the third generation of maintenance strategies introduced into market between 

1960s and 1970s (Shreve, 2003) and (Arunraj and Maiti, 2007). This maintenance 

strategy is characterised by the non-destructive reactive mode of testing a system, 

determining the condition of equipment and subsequently considering the maintenance 

plan. Fedele (2011) supports that Predictive Maintenance (PdM) is on-condition 

assessment of assets, employing real time programming by avoiding unnecessary 

downtime, inspections, and reactive failures due to human mistakes. Specifically, he 

states that the majority of failures take place due to gradual deterioration rather than 

due to sudden break down, and specifies that condition measures result in output data, 

sourced from visual inspection, non-destructive controls and functional tests without 

disassembling the system. 
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Similarly, Mobley et al. (2008) present PdM as total production performance 

management program and regular condition-driven monitoring of mechanical state of 

equipment. An alternative view is presented by Márquez (2007). He classifies this 

strategy as division of PM, categorising the latter one as predetermined and Condition 

Based Maintenance (CBM). Despite this, CBM is considered as diagnostic and 

predictive maintenance concept due to the forecasting and evaluating factors, which 

are linked to the system’s degradation. A more technical definition is given by 

Kobbacy and Murthy (2008) specifying PdM as integration of data, information and 

processes combining diagnostic and performance data from various sources leading to 

successful PdM implementation. 

A prominent concept of PdM is presented by Gossling and Wollschlaeger (2007). They 

integrated a wide range of information sources setting a flexible framework. This 

attempt introduced a strategy for scheduling maintenance actions before failure takes 

place and not far earlier than required, which will signify inefficient planning. This 

consideration of setting the appropriate time for maintenance leads to the concept of 

Condition Monitoring (CM). Comparatively, ABB (2012a) presents predictive 

maintenance as 30-40% more cost efficient than corrective maintenance and 8-12% 

than preventive maintenance. 

3.2.4. Proactive maintenance 

As already defined, PdM is the latest strategy oriented towards the on-condition-driven 

concept of providing alert signals through data collection, aiming to schedule the 

correct maintenance actions. Fedele (2011) extends PdM by presenting proactive 

maintenance. This maintenance notion considers the pre-alert actions discovered from 

system’s performance malfunctions that may lead to machinery’s deterioration. This 

strategy analyses the root causes of breakdown events setting the acceptable 

operational limits of the predetermined factors. In addition, Shreve (2003) presents 

proactive strategy as a tool focused on failure modes of equipment intending to reduce 

maintenance costs by involving proactive skills and technologies. PdM strategy plays 

a key role in this thesis by selecting and developing innovative diagnostic and 

predictive functionalities within the proposed maintenance strategy. 
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3.3. Maintenance guidelines and regulations 

The complexity of machinery installed onboard ships nowadays, combined with the 

environmental and operational safety awareness and the market competitiveness 

generate the need for standardisation of the inspection techniques and maintenance 

practices. This section demonstrates guidelines and regulations provided by competent 

bodies setting the basis for standardised inspection and maintenance framework 

regulations. 

The concept of integrated and unified regulatory framework is confirmed in maritime 

industry and specifically with respect to safety aspects. However, the implementation 

of risk assessment in ship machinery is limited. An initial attempt is performed by 

IMO and IACS. They proposed a structured risk analysis process named Formal Safety 

Assessment (FSA) to assess the risk of failure in occasions that may lead to 

catastrophic consequences (Devanney, 2009a). Moreover, International Safety 

Management (ISM) code ensures safety at sea, prevention of human injury or loss of 

life, and avoidance of damage to the environment, in particular to the marine 

environment and to property (Maritime Coastguard Agency, 2015). 

3.3.1. British Standards (BS) and ISO 

The key role of British Standards (BS) and International Organization for 

Standardization (ISO) is to set up criteria for controlling risk and quality of goods and 

services. A research on standards, related to inspection and maintenance practices of 

machinery, provides a series of criteria that identify condition monitoring parameters 

for signal measurement, data collection and analysis. 

The significance of machinery maintenance is assessed by BS/ISO 13613 (2011) 

emphasising on the reduction of risk and ensuring ship propulsion and 

manoeuvrability. Specific standardisation effort on container ships’ machinery is 

given by BS/ISO 17905 (2014) identifying the requirements for installation, inspection 

and maintenance of container securing devices. 
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The material, lubrication and operational assessment of rotating machinery such as 

bearings, gears and rotors is examined by multiple BS and ISO reports. This 

assessment involves the employment of vibration analysis condition monitoring 

technique. Current effort on BS and ISO reports determines the vibration data 

gathering equipment (i.e. sensors), the unit of raw data collection and the suitable 

operating speed that these sensors can be employed ensuring accurate analysis. 

Therefore, BS/ISO 7919 (1996) provides guidelines on vibration measurement and 

assessment of rotating shafts. It considers signal changes and monitors the radial 

clearance between components. The second sub-section of this BS report guides for 

radial shaft vibration measurement of bearings for large steam turbines and generators. 

The vibration’s magnitude and its changes are identified by specifying warning alarms 

of vibration limits by detecting the magnitude after which malfunctions may occur. 

Similarly, the third sub-section of BS/ISO 7919 (1996) provides instructions for 

transverse shaft vibration data acquisition. This standard is applied in fluid-film 

bearings utilised in steam turbines, turbocompressors, turbogenerators, turbofans, 

electric drives and gears and turbo pumps. The fourth sub-section is applied on radial 

vibration measurement collection of the shaft axis for heavy-duty gas turbines with 

fluid-film bearings. It describes on output higher than 3 MW and operating speed 

between 3,000 and 30,000 rev/min. 

On the other hand, guideline and regulation effort through BS and ISO is given on 

input unification by integrating technical measures. Multiple input data parametres are 

considered leading to condition monitoring diagnostics. Hence, BS/ISO 17359 (2011) 

outlines the foundation of input data integration measuring machinery vibration, 

temperature, flow rates, contamination, power and speed, evaluating equipment 

performance and quality of operation. In further detail, BS/ISO 13379 (2012) sets the 

baseline parameters and data interpretation for indicators, alarm values and 

malfunction determination on turbines, compressors, pumps, generators, electrical 

motors, blowers, gearboxes and fans. 

Lastly, the consideration of an overall standardisation framework is provided by 

BS/ISO 13381 (2015) allowing users to consider vital data and characteristics for 
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efficient malfunction prognosis. It also outlines optimum prognostic method 

development and introduces various conceptions for future systems and their training. 

3.3.2. International Maritime Organisation (IMO) 

The International Maritime Organisation (IMO) is the United Nations specialized 

agency with responsibility for the safety and security of shipping and the prevention 

of marine accidents. As safety being the agent of the United Nations, IMO plays 

significant role in the global standardisation effort. IMO’s active contribution aims to 

enhance safety, security and environmental performance of international shipping. 

This framework aims to set standards in multiple functional levels so ship operators 

cannot enforce cost reductions by compromising safety, security and environmental 

performance. Major areas that IMO dedicates effort include safety of environment and 

humans, fire prevention, lifesaving appliances, navigation systems and radio 

communication. 

As mentioned above, the development and establishment of safety regulatory 

frameworks in maritime industry is led by lessons learned from hazardous incidents 

and accidents. Extending this perception, Devanney (2009b) expresses the problems 

of non-controlled records of ship casualty data. The creation of a consortium of port 

states is recommended, which will provide freely available ship casualty data. The data 

is suggested to be categorised among collision, contact, grounding, fire, explosion and 

Non-Accidental Structural Failure (NASF). Furthermore, flexible event identification 

is deliberated as sequence of the classified incidents and accidents may lead to 

catastrophic consequences, instead of single independent event examination. 

In addition, Devanney (2009a) presents Formal Safety Assessment (FSA), a process 

through which regulations from IMO have to be assessed. FSA determines quantitative 

ranking considering safety measurements, while ensuring safety assessment 

objectiveness and cost-effectiveness respectively. Likewise, IMO (2006) illustrates 

FSA as presented by IACS in MSC 75. FSA consists of multiple identification and 

assessment levels. This framework involves hazard identification, risk analysis by 

employing risk control options. FSA examines performance by utilising Cost Benefit 
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Analysis (CBA) and leads to decision-making activity suggestions. In order to perform 

risk assessment and achieve the desired risk/safety level, the Health and Safety 

Executive’s (HSE) framework demonstrates the As Low As Reasonable Practicable 

(ALARP) concept. ALARP comprises of three regions the unacceptable, tolerable and 

broadly acceptable (HSE, 2001b). This risk assessment tool enables the investigation 

of current practice’s risk and targets to lowest reasonable practicable. 

3.3.3. International Association of Classification Societies (IACS) 

This section examines the contribution in safety and risk assessment of the 

International Association of Classification Societies (IACS). This is a regulatory 

member dedicated to safety on ships and protected environment. IACS contributes to 

maritime safety and regulation through technical support and research and 

development performed by Classification Societies (also known classes). These 

members lead a global network of well qualified surveyors’ providing feedback of 

technical data, generating an internationally suitable management system. 

According to historical records of each IACS member, classes identify safety 

importance and system criticality prioritisation with respect to their available records. 

Furthermore, the classes focus their interest on operational accuracy by certifying 

safety and functionality. Due to the fact of maintenance transformation from reactive 

to proactive strategies (i.e. corrective, preventive, predictive), classes through research 

and development develop standardisation guides and regulations following the market 

and industrial requirements. 

For instance, ABS (2013) specifies critical areas such as the main machinery and 

shafting system. On the first place, these systems ensure the ship’s functionality and 

secondly they can be affected by operational vibrations along the length generated by 

the propeller. With respect to data collection for condition monitoring applications, 

DNV-GL (2008) distinguishes the measurement sampling methods as fixed and 

portable by employing periodic sampling. 

Targeting to establish automated inspection and maintenance methods, where 

technical, managerial, practical and economic aspects are considered, classes outline 
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condition monitoring among specific assessment phases. Hence, the assessment takes 

into account the system functional description, quantitative measures identification, 

data gathering methods to be applied, data handling and data analysis. Along these 

lines, classes such as ClassNK (2014), LR (2014) and DNV-GL (2014) have also 

introduced Condition Assessment Programs (CAP) for surveying machinery and cargo 

systems on oil tankers, chemical carriers and bulk carriers. 

Moreover, MARPOL 73/78 Condition Assessment Scheme (CAS) provides 

international standard to meet the requirements of regulations of the International 

Convention for the Prevention of Pollution from Ships (LMA, 2005). Additionally, Oil 

Companies International Marine Forum (OCIMF) introduces the Tanker Management 

and Self-Assessment (TMSA) framework. The TMSA programme is based on 

different elements of management practice. These elements involve management and 

accountability, reliability and maintenance standards, navigation safety, cargo, ballast 

and mooring operations, safety and environmental management and emergency 

planning, measurement analysis and improvement (OCIMF, 2008). 

Concluding, international associations, authorities and regulatory bodies introduce 

frameworks and programs aiming to enhance safety of personnel, environment and 

assets. The reviewed sources aim to tackle the issue of risk in ship operations by 

considering standardisation measures and practices. Moreover, the proposed 

frameworks establish elements such as management, economics, reliability, 

maintenance, navigation as well as safety and emergency planning. However, these 

elements are assessed on an independent basis. Consequently, the integration and 

relation of these elements is proposed by connecting input and results among them 

through an overall unified framework. 

3.4. Maintenance methodologies 

By focusing towards the applicability of maintenance strategies, methodologies enable 

their implementation in industry. Maintenance methodologies are empowered with 

specific features that will be evaluated in this section, pointing out the elements they 

are contributing. Fedele (2011) identifies these methodologies as policies indicating 
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the entire business orientation. An extended research shows the classification of 

maintenance methodologies as presented by various researchers. This section targets 

to explore the most-known and widely applied Reliability Centred Maintenance 

(RCM), Total Productive Maintenance (TPM) and Total Quality Management (TQM). 

Furthermore, the risk assessment notion is introduced in inspection and maintenance 

field through Risk Based methodologies (RBI and RBM respectively). Finally, the 

most recent Condition-Based Maintenance (CBM) methodology scrutinises the on-

condition assessment of systems providing valuable input to Computerized 

Maintenance Management Systems (CMMS) and contributing towards the overall 

concept of Asset Management (AM). 

3.4.1. Reliability Centred Maintenance (RCM) 

One of the most applicable and widely explored maintenance frameworks is Reliability 

Centred Maintenance (RCM). This framework was introduced in the beginning of 

1970s by a maintenance steering group of commercial airline company (United 

Airlines) and applied on the newly introduced at that time Boeing 747 aircraft. The 

major target of this methodology is the reduction of downtime due to maintenance. 

Furthermore, RCM aims the reduction of operational expenses, while enhancing flight 

safety. According to Deshpande and Modak (2002b), RCM offers the greatest 

available technique for preventive maintenance optimisation and provides 

identification of system’s failure modes. 

Vital notions of risk and reliability are utilised by Nowlan and Heap (1978), Sandtorv 

and Rausand (1992) and Moubray (1997) stating that RCM employs failure and risk 

analysis for prioritisation of maintenance actions. Expanding this observation, 

Moubray (1997) asserts that by gaining reliability assessment control using RCM, the 

failure consequences can be examined as well. The implementation of integrating risk 

and reliability assessment tools is presented by Eisinger and Rakowsky (2001). Two 

primary tools are employed in order to specify uncertainty that may lead to non-

optimum maintenance strategies. These tools are Failure Mode, Effects and Criticality 

Analysis (FMECA) and RCM advancing of both qualitative and quantitative analysis 

aspects, respectively. The proposed integration encompasses multiple assessment and 
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stages. Firstly, the required data are collected, followed by evaluation of criticality 

through FMECA and risk analysis using RCM. The integration of outcomes from 

FMECA and RCM is exploited for decision-making and maintenance strategy 

suggestion. The overall methodology proposal is confirmed through the 

implementation of feedback for performance comparison. 

Literature offers a wide range of applications, where reliability assessment is 

introduced in inspection and maintenance regime especially in maritime and offshore 

oil and gas industries. A practical identification of this methodology is given by 

Deshpande and Modak (2002a) declaring that RCM maintains system’s functionality 

by preventing failures and collapses. This is achieved by considering minor activities, 

compared to risk of failure, such as inspections and replacements in various failure 

modes. The inspection and maintenance movement from preventive actions of RCM 

to on-condition assessment is attempted in offshore industry and especially on subsea 

oil pipelines (Castanier and Rausand, 2006). Systematic condition measurements are 

generated in predefined intervals aiming to check the quality of the internal pipe 

coating. 

Providing a flexible RCM framework, Cheng et al. (2008) suggest the Intelligent RCM 

Analysis (IRCMA), led by processes established on Case-Based Reasoning. The 

proposed model identifies the appropriate PM program for the specific equipment. The 

input of this framework is the description of equipment demanding RCM analysis, 

whilst the output is the PM requirements of the machinery. On the other hand, Lazakis 

et al. (2010) introduce a novel holistic maintenance management approach by referring 

in the appraisal of the reliability and criticality characteristics of a vessel. Well-known 

tools are used such as FMECA and Fault Tree Analysis (FTA). The developed 

maintenance management approach is applied on the machinery space of a cruise ship. 

Concluding, Reliability and Criticality Based Maintenance (RCBM) framework is 

verified on Diving Support Vessels (DSV). This methodology optimises the 

maintenance regimes onboard DSVs. The maintenance optimisation method 

investigates the reliability and criticality of selected systems such as propulsion, 

lifting, anchoring & hauling and diving systems using RCBM (Lazakis et al., 2012). 
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The validation of this methodology is achieved through the time-dependent risk 

assessment tool of Dynamic FTA (DFTA). 

3.4.2. Total Productive Maintenance (TPM) 

Total Productive Maintenance (TPM) is one of the core maintenance frameworks that 

is centred to maintenance regime and is applied in various industries and cases 

worldwide. TPM was introduced in the Toyota, a Japanese car manufacturer in the 

1970s. The definition of this methodology reflects in three critical functional 

statements as zero defects, zero accidents and zero breakdowns (Nakajima, 1988), 

(Hartmann, 1992) and (Willmott, 1994). Hence, TPM involves practices with respect 

to humans as well as technology in scheming and eliminating failures, incidents and 

accidents. 

According to Kennedy (2006), this methodology integrates Total Quality Control 

(TQC), Just-In-Time (JIT) and Total Employee Involvement (TEI) practices. Hence, 

TPM confirms the fusion of quality assessment in different phases of the production, 

ensuring in time delivery of goods or services and active involvement of all employees, 

in all industrial and production levels. TPM is developed concept of Total Quality 

Management (TQM) that will be examined next and targets zero production defects 

applied on critical equipment, involving highly top management support, sense of 

ownership and responsibility of operators and maintenance workers  (Tajiri and Gotoh, 

1992). Comparing the already introduced RCM with TPM, the first one can be 

considered as a maintenance improvement strategy. On the contrast, TPM is 

implemented on a holistic level to ensure productivity and defects’ control without 

assessing technical aspects into the detail of reliability improvement. An application 

of TPM by Waeyenbergh and Pintelon (2004) proves that successfully implemented 

TPM increased machineries’ productivity by 83%. 

As can be seen above, TPM is defined from various authors, distinguishing aspects 

and advantages. However, a research gap is found in implementing guidelines aiding 

continuous improvement in plants. In addition, the main obstacles of TPM as presented 

by Bakerjan (1994) and Davis (1997) are the absence of management support and 
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understanding, insufficient training and failure to allow adequate time for evolution. 

Concluding the considerations for future investigation, further effort should be 

invested in the human aspects at any level of production and involvement by gaining 

out of employs’ expert judgment. 

3.4.3. Total Quality Management (TQM) 

As previously stated, Total Quality Management (TQM) is predecessor of TPM. 

Outlining TQM, Hellsten and Klefsjö (2000) define it as a managerial system 

combining values, techniques and tools for enhancement of customer satisfaction and 

minimisation of resources. According to Hackman and Wageman (1995) and Powell 

(1995), TQM aims customer satisfaction through continuous improvement of 

operational processes by sustaining quality through management, workforce and 

suppliers. A research on TQM, JIT and TPM is presented by Cua et al. (2001) stating 

that TQM incorporates cross-functional product design, process management, supplier 

quality management and customer involvement, reducing defects and rework by 

developing quality and product delivery. However, JIT involves set-up time reduction, 

schedule observance and delivery control by minimising inadequate inventory and 

flow time (Brown and Mitchell, 1991). 

From the drawbacks side, the most reported interventions are these of TQM and 

Business Process Reengineering (BPR) (Hipkin and De Cock, 2000). The limitations 

are showing difficulties of implementation, lack of guidance on procedures, 

inadequate training, difficult measures of performance and lack of top management 

support. In conclusion so far RCM, TPM and TQM frameworks are presented and 

assessed. All methodologies consist of qualitative and quantitative assessment 

measures focusing on technical and managerial features. However, RCM is 

mathematical-based approach allowing the reliability assessment by involving mostly 

objective measures. In contrast, TPM and TQM enable the overall production 

evaluation involving human performance and production quality. These two subjective 

parameters require further determination and guidance in introducing analytical 

implementation techniques by considering human training and retaining practices. 
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3.4.4. Risk based Inspection / Maintenance (RBI and RBM) 

This section introduces the most significant parameter, which affects safety, system 

operational efficiency, control of functioning and business profitability and it is known 

as risk. This parameter is widely explored and assessed in literature. Risk is defined 

by Hecht and An (2004) as the product of Probability of Failure (PoF) and its 

consequences, whilst by Arunraj and Maiti (2007) as the expected loss or damage 

associated with the occurrence of a possible undesired event. 

Literature as well as industry examine the risk of occurrence of incidence 

independently for inspection and maintenance. From the Classification Societies 

perspective (DNV-GL, 2002), RBI is split in qualitative and quantitative analysis. The 

first one involves assessment scales, whereas the latter involves quantitative 

information measurements of probability of failure by taking into account their 

consequences as well. In a similar manner, Ablitt and Speck (2005) define Risk Based 

Inspection/Maintenance (RBI/RBM respectively) as a monitoring technique involved 

in inspection, maintenance, operations and safety, forming the most accurate 

quantitative probabilistic assessment tool. Summarising the definition assessment, 

ABS (2003), HSE (2001a) and Biasotto and Rouhan (2004) state that RBI aims to 

minimise the risk at network level, optimise the inspection resources and efforts, 

oriented towards critical areas or identification of suitable inspection methods. 

Literature offers a wide range of risk based applications, for instance, the development 

of Risk Based Life Management (RBLM) presented by Jovanovic (2003). RBLM 

compared to RBI evaluates and plans pre-inspection processes. Furthermore, it 

contributes in reducing operational expenses by minimising or eliminating 

unnecessary inspections actions such as overhauling. A novel risk-based model is 

developed by Thodi et al. (2013) scheduling the replacement of offshore components 

by utilising the likelihood of failure and its consequences. The time-driven risk 

assessment of system degradation is taken place utilising the Bayesian theorem, 

whereas the consequences are expressed in monetary values and cost of resources. 

In a similar manner, Hecht and An (2004) utilise the failure likelihood as a function of 

inspection frequency and effectiveness. The developed model is verified on a cargo 
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vessel. An alternative study on Integral Risk-Based Inspection (IRBI) is presented by 

(Goyet et al., 2004). This study is focused on the risk acceptance criteria regarding risk 

to personnel, environmental and economic considerations for an FPSO by involving 

critical, recorded information on repair strategies, which can subsequently lead to the 

estimation of failures. On the other hand, (Chien et al., 2009) develop a semi-

quantitative RBI strategy performing Plan, Do, Correct and Act (PDCA) cycle, 

utilising test data and statistical analysis of aging conditions for Pressure Safety Valves 

(PSVs) in lubricant process units. On the contrast of the presented RBI machinery 

practices, one of the latest implementations (Moura et al., 2015) combines RBI with a 

Multi-Objective Genetic Algorithm (MOGA). The model achieves avoidance of users’ 

requirement to specify risk, reducing the estimation of consequences of failures and 

controllable inspection expenditures. In addition, the model provides control on 

efficient inspection of budget management. The evaluation of the proposed model 

involves an oil and gas separator vessel affected by internal and external corrosion. 

Involvement in risk assessment is also discovered in EU funded research projects. An 

instance of this input is Risk-Based Inspection and Maintenance for European 

Industries ‘RIMAP’ EU project (Kauer et al., 2004). The project suggests a generic 

model widely acceptable by the European industry which exploits existing risk 

methods, tools and standards proving its significant role and setting the ground for 

Risk Based Maintenance (RBM). 

In the manner of enhancing RBI with maintenance aspects, Arunraj and Maiti (2007) 

considered the risk of all probable failure modes by developing a maintenance strategy 

for minimisation of occurrence of critical failures. RBM implementation consists of 

phases such as hazard analysis, likelihood of failure and consequence assessment, risk 

estimation, and maintenance planning. Khan and Haddara (2003) propose an RBM 

planning method, setting accurate risk factors related to the harmfulness of 

consequences and accuracy of estimates of probability of failures. The method 

combines failure analysis by considering consequences and risk evaluation, involving 

the As Low As Reasonable Practicable (ALARP) approach. In addition, the integration 

of financial and reliability levels through a model is proposed by Garbatov and Guedes 

Soares (2001) quantifying repair costs, which affect RBM strategies. 
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3.4.5. Condition Based Maintenance (CBM) 

The most recent methodology offering control of risk and uncertainty is known as 

Condition Based Maintenance (CBM). The fundamental idea of this framework is the 

on-condition assessment of systems or structures by considering specified record 

measurements that will potentially lead to risk or reliability state identification. This 

state identification is separated into two major areas of on-condition assessment the 

diagnostics and prognostics. In the first place, diagnostics allow the identification of 

occurred failure modes, whereas, in the second case prognostics aim to forecast the 

future risk performance. CBM is broadly utilised in various industries including 

maritime as well. However, leading literature provides techniques sourced from high 

risk applications such as aviation, offshore oil and gas and nuclear power stations. 

The scope of CBM and fault diagnosis as defined by Mechefske (2005) is to detect the 

upcoming failure before even incipient failures take place, aiming to enhance 

machinery’s availability, reliability, efficiency and safety, by reducing maintenance 

costs through controlled spare part inventories. A survey (Prajapati et al., 2012) on 

CBM applications highlights the key aspects as data collection, artificial intelligence, 

and statistics allow intelligent maintenance and prediction of consequences using past 

and current data. 

A subsection of CBM is the data gathering and assessment of vibration signal, 

collected mostly from rotating machinery. This technique is known Vibration Based 

Maintenance (VBM). This on-condition assessment technique offers an extensive 

range of research and applications. Major scope of published VBM practices is the 

enhancement of diagnostic accuracy though sophisticated vibration signal analysis. In 

this respect, a practical application on CBM strategy is presented by Al-Najjar (1996) 

integrating vibration and age-based maintenance oriented towards quality control and 

environmental condition. 

In the industrial domain, SKF, a leading global product, services and technology 

provider, supports that CBM aims to identify risks and predetermination of strategic 

actions (SKF, 2012a). Hence, implementation of CBM should lead to reliability 

enhancement and cost reduction by integrating information and management of critical 
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components for time reduction of expensive and challenging maintenance phases such 

as dry-docking. With respect to critical component and system selection for on-

condition assessment, SKF (2009) states that the criticality of onboard equipment 

depends on the type of ship and its operation. However, according to SKF’s historical 

records, the most critical systems that should be under on-condition assessment are 

listed among gearboxes, turbochargers, thrusters and propulsion steam turbines. 

In order to layout CBM and the processes that consists of; Tsang et al. (2006) suggest 

a data structure leading to decision analysis according to machinery’s condition, 

proposing a method for data-driven CBM achieving data preparation, model 

assessment, decision-making and sensitivity analysis. Similarly, as highlighted by 

Kyrtatos (1989), an improved CBM model for ship propulsion management should 

consist of condition and performance monitoring, fault diagnosis as well as 

maintenance optimisation modules. In conclusion, Shreve (2003) presents the 

difficulties and requirements of implementing CBM, supporting that the major reason 

of lack of applicability is based on managers’ weak training. Moreover, the integration 

of latest and most complex technology creates the need for skilled and well-trained 

personnel as well as business investment in terms of equipment and training. 

3.4.6. Computerised Maintenance Management Systems (CMMS) 

As equipment onboard the ships becomes more complex and the market gets more 

competitive, the need for implementation of automated maintenance management 

systems is presented. Computerised Maintenance Management Systems (CMMS) is 

the latest framework which allows machinery functionality, reliability and availability 

enhancement and uncertainty control by employing computerised, flexible tools for 

managing critical assets.  

According to Shreve (2003), CMMS suggests maintenance planning as it assists using 

critical data for equipment, workforce and recorded conditions. Fernandez et al. (2003) 

present the functionality of CMMS in order to gain information from raw data and 

enhance decision-making by automating existing iterative assessment processes. On 

the other hand, Monostori et al. (2006) state by summarising mobile solutions for 



35 

maintenance applications that CMMS employs continuous connectivity including 

active data management, web-based interaction, access to knowledge and information 

and enhancement of communication systems. 

In contrast, Chryssolouris et al. (2004) explore the difficulties arising from the 

integration of partners’ heterogeneous/incompatible IT systems on ship repair industry 

by presenting a solution for connectivity of various modern IT systems. This 

applicability is achieved through the implementation of neutral data format provided 

by the Extensible Mark-up Language (XML). On the other hand, a conceptual IT 

maintenance management model is proposed by Kans (2008). It determines the 

business goals and current state of maintenance by identifying possible improvements 

and IT requirements. In addition, Hamada et al. (2002) outline inspection data under 

various conditions integrated with a Computer Integrated Manufacturing (CIM) 

system for ship’s structural information; calculating the damage-finding probability 

and generating damage and inspection state. 

As stated by Sherwin (2000), maintenance has to be considered as key factor within 

the business as changes in its processes affect various interrelated functions. 

Originated from this view, Kans and Ingwald (2008) present the benefits of an 

integrated database and the significant role of maintenance performance in economic 

improvement. One step further, Gabbar et al. (2003) propose the integration of RCM 

process with CMMS motivated by the major difficulties arising from involving vast 

amount of resources. 

3.4.7. Asset Management (AM) 

An innovative and widely applicable methodology spread over in the maintenance 

evolution is Asset Management (AM). This practice targets the business oriented 

implementation by concentrating on the overall asset performance. AM is extensively 

assessed and introduced into multiple industries and nowadays successfully in 

maritime by leading machinery manufacturers. AM integrates notions, tools and 

features from risk based assessment methods, CBM and CMMS as already presented. 
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Through a literature review focusing on the cost benefits of maintenance strategies and 

methodologies, (Eti et al., 2006) summarises that maintenance and AM can achieve 

growth of profile by decreasing running costs and increasing capability and 

availability. ABB is a global leader in power and automation technologies (ABB, 

2010) proposing the basis of an ultimate AM tool integrating CMMS with real-time 

CM which collects data from various sources and alerts on failure detection. 

Furthermore, Asset Health Centre (AHC) is presented by ABB as well (ABB, 2012b). 

AHC performs as an entire business asset supervision system utilising reliability, 

performance, prioritising maintenance actions, and minimising Operations and 

Maintenance (O&M) expenditures. AHC’s innovation is the integration of Operation 

Technology (OT) and Information Technology (IT) by enhancing decision-making on 

asset’s existing condition. 

On the other hand, Emmanouilidis et al. (2009) extend the AM notion and flexibility 

of data access by presenting the advantages of wireless solutions for engineering asset 

and maintenance management processes. AM offers solutions for remote management 

of complex and high risk capital intensive assets. Hence, Emmanouilidis et al. (2008) 

highlight that smart transducers enable capabilities for self-identification, self-

description, self-diagnosis, self-calibration, location-awareness, time-awareness, data 

processing, reasoning, data fusion, alert notification (warnings), standard-based data 

formats, and communication protocols, supported by the so called TEDS (Transducer 

Electronic Data Sheets). The current research work and the proposed methodology 

target to explore and develop some of these aspects. This thesis is oriented towards 

innovative methods by accomplishing capabilities beyond the presented diagnostics, 

hence considering working state risk and reliability prognostics of ship machinery. 

This section reviewed applications of different maintenance methodologies. Each 

methodology is oriented towards elements such as reliability, criticality, production, 

quality and condition as well as risk in inspection and maintenance levels of 

machinery. A methodology transition from assessing specific elements to holistic view 

of resources is initially introduced through AM. The complexity of systems and 

technology expansion led to the introduction of computerised automated systems (i.e. 

CMMS) as well as the on condition assessment (i.e. CBM). Hence, vast amount of 
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recorded data per system and components has to be handled and processed by utilising 

different methodologies and analysis techniques. In other words, the systems’ 

complication and technological growth require the integration of different 

methodologies by employing and incorporating necessary elements for the creation of 

flexible and efficient inspection and maintenance frameworks and tools advancing 

features from all above examined methodologies. 

3.5. Condition Monitoring (CM) technologies and tools 

As already defined, CBM is the latest maintenance methodology, which assesses 

machinery and equipment risk of failure performance, while functioning. In this case, 

Condition Monitoring introduces technologies and tools that are employed for the on-

condition assessment. CM technology is applied through various tools, recording and 

evaluating measurable parameters that will be reviewed in this section. These 

measured parameters comprise the signal gathering, from which several data 

processing methods can be considered with respect to machinery recorded input data. 

Precisely, Eder (2012) defines health assessment as method measuring wear and 

system performance. 

CM is identified by Delvecchio (2012) in steps such as data acquisition, signal 

processing and feature extraction, signal analysis and fault detection, leading to 

decision-making and failure prognostics. Moreover, Jiang and Yan (2008) present the 

most popular CM tools as lubrication oil testing, vibration and Acoustic Emissions 

(AE). Expanding CM concept, Hall and Llinas (1997), Al-Najjar (2000b) and 

Brotherton et al. (2002) propose the integration of various techniques detecting faults 

that is difficult to be achieved from a single sensor. They utilise Artificial Intelligence 

(AI), pattern recognition and statistical estimation by enhancing effectiveness and 

accuracy of decision-making. This subsection evaluates the most-known and broadly 

applicable CM technologies such as vibration monitoring, thermography, lubrication 

oil analysis, visual inspection and acoustic/ultrasonic monitoring. Furthermore, 

monitoring diagnostic and prognostic applications are demonstrated by taking into 

account research and commercially available condition monitoring systems. 



38 

3.5.1. Vibration monitoring 

This is the most known and well applied technique. Vibration-Based Maintenance 

(VBM) methodology offers early indication of machinery malfunctions involving 

parameters as rotational speed, loading frequency, and material state (Al-Najjar, 1996). 

These parameters can be measured and evaluated by employing different data 

gathering equipment (sensors) such as displacement, velocity and acceleration sensors. 

Displacement transducers are sensitive in lower frequency range; velocity transducers 

which are ideal for optimised sensitivity over the frequency range; and accelerometers 

which are more sensitive in higher frequency range (Mechefske, 2005). 

Representative application of VBM allows fault detection of electric motors. Lamim 

et al. (2007) integrate the advances of motor monitoring with electric current, vibration 

monitoring of bearings leading to malfunction and failure diagnostics. The assessment 

of causes of cracking sourced from vibration modes for diesel engine’s alternator set 

is presented by Clarke et al. (2011) using Operational Modal Analysis (OMA) tool. 

Data are collected during start-up, shutdown and running conditions at various power 

levels. 

In addition, the vibration modes of cracked shaft detection and diagnostic techniques 

are classified by Sabnavis et al. (2004) between crack initiation stage, crack 

propagation and failure stage. An alternative view on rotating machinery is presented 

by Sassi et al. (2007) simulating the dynamic performance of ball bearings by 

localising surface defects, considering bearing rotation, load distribution, material 

elasticity and oil film characteristics. 

Expanding CM diagnostic notion into the forecast field, Paris’ law contributes for 

prediction of residual fatigue life. Xu et al. (2012) present the relationship between the 

machinery’s condition values of vibration signals and the variable in Paris equation 

which describes the health of machine. Al-Najjar (2000a) examines the relation of 

bearing failure modes to the recorded vibration spectra and their development patterns 

over the bearings’ lifecycle. 
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Due to deficiency of shaft speed measurement, vibration signals can be weak in quality 

to detect malfunction and material deterioration. Hence, Cardona-Morales et al. (2013) 

introduce a novel Order Tracking (OT) system, established on the state space model, 

which avoids speed reference signals. Similarly, Sundstrom (2013) states that CM of 

rotating bearings at lower speeds than 100 rpm is challenging because of lack of useful 

signals produced from spalls and cracks as they are indicated from low energy content. 

Sundstrom (2013) proposes a method, allowing the analysis of speeds within the 1-

20,000 rpm range using high performance low-noise electronic components and 

extensive signal processing which allows malfunction detection even on well 

lubricated bearings. 

3.5.2. Thermography 

Thermography in CM is a technique, applicable to both electrical and mechanical 

equipment, and is deployed to identify hot and cold spots providing early signs of 

equipment failure. As claimed by Bagavathiappan et al. (2013), Infrared 

Thermography (IRT) is one of the most accepted CM tools. Due to the non-contact 

function is suitable for detecting structural, machinery, electrical and material 

malfunctions. The key advantage of IRT compared to other CM tools is the real-time 

representation of pseudo colour coded image. 

Presenting machinery defects, Budweg (2012) reveals that uncontrolled heat can be 

generated due to reasons as overloading, phase imbalance, power factors, corrosion 

and poor electrical connections and this is a warning of loss of energy. Moreover, heat 

is a parameter that can shorten machinery’s lifecycle up to 85%. The suitable CM 

technique presented for electrical circuits is thermal imaging snapshots through 

Infrared (IR) inspection under full load. This technique can capture the degradation 

conditions in a quick and limited data set manner. 

Nevertheless, in line with various professionals the ideal monitoring solution is under 

continuous inspection, unfortunately the lack of trends seems to be a barrier for this 

application. The main disadvantages of this monitoring technology, as indicated by 

Chandroth (2003), are the influence of accuracy due to high humidity and ambient 
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temperatures and that electric circuits have to be loaded in order malfunctions to be 

detected. Hence, an integrated CM system considering vibration, lubrication of oil, and 

thermographic images seems to enhance the dimension of information and accuracy 

of measured factors compared to independent technological selections. 

3.5.3. Lubrication oil analysis 

Oil analysis is achieved through laboratory concentration investigation in lubricant, 

known as debris analysis, which deals with shape, size, composition of wear particles 

and lubricant degradation analysis for physical and chemical characteristics (Jiang and 

Yan, 2008). Lubricants’ monitoring seems to be the most efficient diagnostic tool as 

from a small amount of fluids the condition of the entire lubricant in each machinery 

can be determined. Typical tests of lubricants are divided into phases such as visual 

testing, viscosity at 40°C and pH value, supplementary dealing with viscosity at 

100°C, and optional counting particles. Each test phase has to take place twice to 

achieve higher accuracy. 

However, the existing oil analysis of lubricants requires the integration of lab-based 

filtration methods involving reagent, solvent costs, testers and time-consuming work 

with hazardous chemicals. Integrating oil analysis and computerised technologies, 

Casale et al. (1993) analyse the key aspects of monitoring marine lubricants through a 

computerised Expert System (ES) named EXXCARE. This system deals with the 

efficiency of lubricants in diesel engines and related machinery. In a manner of solving 

this limitation, Walsh (2013) presents FluidScan Q1000, a handheld IR spectrometer, 

which measures parameters such as lubrication contamination, degradation and cross-

contamination at the point of use. This device achieves analysis and completion of test 

results in 2.5 minutes at the machinery’s location leading to accurate and repeatable 

process and reducing cost of manpower by 25% and cost of analysis by 75%. Lastly 

by setting the ground for further analysis and presenting the lack of publications in 

performance analysis of steam turbine generators, Beebe (2003) promotes that 

vibration and oil debris analysis can show efficiency and output reduction such as 

deposits on blades and erosion of internal clearances. 
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3.5.4. Visual inspection 

This inspection method is the simplest option, employing human senses on assessing 

machinery. DNV-GL (2007) presents the applicability of Non-Instructive Inspection 

(NII) in comparison with the existing Internal Visual Inspection (IVI) on pressure 

vessels and pressure systems, which require periodic testing ensuring their continuous 

safe and reliable operation. According to this analysis, NII decreases employees’ 

access, initiation of possible hazardous occasions, shutting down the entire operation 

and allows inspection when potential problem is identified. Furthermore, visual 

inspection allows the employment of expert judgement as well as immediate additional 

examination if required. In contrast, human visual inspection relies on the human’s 

subjective criticism, which may mislead to overestimation or underestimation of the 

examined case. In other words, expensive unnecessary activities may take place or 

vital inspection and maintenance actions may be ignored leading to hazardous failures. 

3.5.5. Acoustic and ultrasonic monitoring 

The applicability and efficiency of ultrasonic condition monitoring is confirmed by 

IACS as this technique is authorised from Classification Societies for surveys and 

certifications. Specifically, acoustic and ultrasonic monitoring is utilised in the well-

known Ultrasonic Thickness Measurements (UTM) (IACS, 2004), (IACS, 2006). 

In practice, Kim and Lee (2009) propose a real-time diagnostic system for high speed 

Acoustic Emission (AE) signal analysis assessing wear condition of cylinder liners in 

marine large two-stroke diesel engines. Furthermore, Mirhadizadeh and Mba (2009) 

focus on understanding the relation between speed and load generated of 

hydrodynamic bearings by monitoring AE. The results indicate that increase of 

operating speed produces higher AE activity compared to the increase in bearing load 

due to power losses from shearing of lubrication film. The innovative implementation 

in recording AE data for the connection of piston rings and cylinder liners in diesel 

engines is presented (Douglas et al., 2006), considering lubricant flow and blowby 

obtained from tests. Input data is gathered using a small HSDI diesel engine and large 

2-stroke marine diesel engines. Similarly, the wear level of cylinder liners in marine 
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diesel engines is studied by Kim and Lee (2009) as well, developing a real-time 

diagnostic system for analysis of high speed AE signals. 

Expanding AE applicability, Vervloesem (2013) explores the user-friendliness and 

accessibility of ultrasounds on non-rotational equipment breakdowns that exist 

onboard ships by advancing the ease of manual data collection and the direct sourced 

result. However, an unknown aspect of this CM tool compared to traditional vibration 

analysis is discovered the ability of performing on high and slow speed rotating 

machinery as low as 0.25 RPM. 

On the other hand, SKF (2012b) researching on AE enveloping develops a solution in 

order to detect the lubrication problem in bearings by achieving early alarm signs 

before damage arises extending the warning time to failure. Whereas, Carlton and 

Rogers (2008) review that during 1990s AE was implemented for structural integrity 

assessment of offshore applications and corrosion studies for water ballasting 

arrangements aiming failure detection. Finally, development of this method results in 

using it on rolling bearing failures of POD propulsion systems. 

3.6. Condition Monitoring (CM) functionality and applicability 

On-condition assessment targets to evaluate the state of degraded ship machinery and 

equipment. This subsection identifies and examines the major Condition Monitoring 

(CM) functionalities and the available commercial applications. The CM 

functionalities are classified among diagnostics and prognostics, whereas, leading 

software applications and industrial solutions are reviewed. 

3.6.1. Condition Monitoring (CM) diagnostics 

As already defined, CM is the technology of assessing the state of machinery without 

interrupting the operation. Presenting the CM layout, it consists of phases as data 

gathering utilising sensors (on-line or off-line devices), data analysis, whilst leading 

to decision-making. The systematic automation in industry, the need for safety 

enhancement and control of risk enforced the implementation of monitoring 
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diagnostics which aim to determine and specify the fault type as well as the reasoning 

that led to this failure. 

In line with Delvecchio (2012), fault diagnosis is severe requiring the determination 

of type, size, location and time of detected faults. Supporting the importance of 

accurate and early fault diagnosis, Refocus (2005) states that a specific maintenance 

issue can be the replacement of a $5,000 bearing turning into a $220,000 project 

concerning cranes, service crew and power loss. A typical example (Mortada et al., 

2011) of rotating machinery diagnostics, hence feature extraction from frequency and 

time-based signals, assesses the performance of a supervised method called Logical 

Analysis of Data (LAD). LAD identifies malfunctions in rotating machinery by using 

VBM targeting decision function enhancement. According to SKF (2012b), an 

important factor of managing marine online data for diagnostics is the input data 

categorisation to be arranged in load groups for similar trend comparison. In other 

words, the data classification should be considered in correlation to the machinery’s 

operational load. 

On the practical side of diagnostics, various models suitable for marine diesel engines 

are developed. A thermodynamic modelling approach is proposed for Internal 

Combustion Engines (ICE), involving components such as filters and compressor 

modules (Barelli et al., 2013). The developed model simulates the performance 

degradation while taking into account the effect of compensation and assessing failures 

using Mamdani fuzzy inference. Similarly, Watzenig et al. (2009) introduce two 

thermodynamic models detecting common failures as increased blowby and 

compression ratio failures of large diesel engines. 

On the other hand, a diagnostic method for diesel engines is proposed by Wang et al. 

(2013). The methodology integrates Adaptive Wavelet Threshold (AWT) de-noising, 

Ensemble Mode Decomposition (EEMD) and Correlation Dimension (CD) for non-

stationary vibration signals. Artificial Intelligence is employed by Logan et al. (2002) 

introducing Neural Networks (NNs) for real-time machine learning. The proposed 

methodology is known as Cerebellar Model Articulation Controller (CMAC) and 

tested on a normal and faulty engine simulator 
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Chandroth (2004) integrates data from independent sources in order to implement a 

unified robust diagnostic system for diesel engines. Data is gained from cylinder 

pressures and vibrations. Different ANNs classifiers are improved and statistical 

models are applied for evaluating the diversity within the methodologies creating these 

classifiers. Additionally, Logan (2005) reviews intelligent real-time diagnostic 

software agents serving onboard vessels for gas turbines and diesel machinery plants 

by utilising NN diagnostic inference and short-term prognostics. In conclusion, 

according to Rattenbury (2008), while a ship engine operates beyond the 

recommended continuous power output range (extreme engine load conditions), 

careful analysis should be carried out. In order to ensure engine’s reliability 

performance, various parameters have to be taken into account such as fuel quality, 

lubricating oil consumption and power/speed conditions. This statement sets the 

grounds for critical measurement considerations enabling further research, 

development and in practice implementation. 

3.6.2. Condition Monitoring (CM) prognostics 

An innovative and newly introduced maintenance concept on CM technology 

expansion of diagnostics is the prognostics. This notion scopes to predict, whether a 

failure will occur by considering the Remaining Useful Life (RUL) of systems. As 

defined by Lee et al. (2013), Prognostics and Health Management (PHM) combines 

health condition and RUL prediction for an overall system and its associated 

components. On-condition assessment of systems typically use fault detection and 

diagnostic technologies, which extend from single thresholding to rule-based 

algorithms (Byington et al., 2002). Additional prognostic approaches involve 

experienced-based modelling and physics-based also known as first principle analysis 

prognostics. Prognostics offer limited literature, as they are recently established. 

However, different forecasting techniques are already developed. 

A methodology predicting the RUL of natural gas export compressor is proposed by 

Nystad and Rasmussen (2010) integrating Technical Condition Index (TCI) 

parameters, historical data with PHM and the general maximum-possibility theory. 

The performance of diesel engine prediction simulation is presented by Benvenuto and 
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Campora (2007) employing a two-zone cylinder combustion outline, calculating the 

thermodynamic processes inside the cylinders and considering the performance of the 

turbocharger, intercooler, manifolds and fuel pump. Furthermore, Hountalas (2000) 

develops a simulation model for prediction of marine diesel engine performance 

considering different faults and applies it successfully on a slow speed two stroke 

marine diesel engine. On the contrary, Zhang et al. (2003) present the Unequal Interval 

Revised Grey Model (UIRGM) based on grey system theory, which allows to 

determine whether the information for wear prediction studies is known or unknown. 

The model is designed for prediction element collection and tested diesel engine. 

The requirement for an improved prognostic CM maintenance concept develops the 

multi-component modelling. This notion incorporates the risk assessment of different 

components of a system by allowing an overall performance monitoring compared to 

independent evaluation. Therefore, Liu et al. (2012) expand the prediction concept by 

proposing an innovative data-fusion prognostic framework. This concept improves the 

accuracy of long term condition forecasting by combining the advantages of data-

driven prognostic method and the model-based particle filtering approach in system 

state prediction. 

Similarly, Niu and Yang (2010) propose an intelligent CM prognostics method based 

on data-fusion strategy. The algorithm consists of stages such as vibration signal 

collection and trend feature extraction, feature normalization and use of NN for 

feature-level fusion, data de-noising and wavelet decomposition for reduction of 

fluctuation and selection of trend information. Likewise, Kacprzynski et al. (2001) 

develop a prognostic model on naval gas turbines using standard instrumentation 

combining probabilistic analysis of fouling test outputs. The prognostic section 

forecasts the compressor performance degradation rate resulted from salt deposit 

ingestion, while determining the optimal time for online waterwashing or crank 

washing according to cost benefit parameters. 

As data fusion for multi-component applications is under continuous development, 

Tian and Liao (2011) propose a multi-component system by utilising CBM policy and 

employing Proportional Hazards Model (PHM). A numerical algorithm is developed 

exacting cost evaluation of the PHM based multi-component CBM policy. On the 



46 

other hand, Niu and Yang (2010) suggest an intelligent CM and prognostics system 

based on data-fusion strategy. The prognostic module is initiated and time-series 

prediction is performed by employing multi-nonlinear regression models once 

degradation curve crosses the determined alarm threshold. In further analysis, Niu et 

al. (2010) integrate the features of a novel CBM system with RCM mechanism, 

optimising maintenance costs, achieving health assessment and prognostics by 

employing data fusion strategy. An innovative bearing fault diagnostic method is 

presented by Safizadeh and Latifi (2014) which employs the fusion of accelerometer 

and load cell sensors. The condition-based monitoring system is built on six phases 

such as sensing, signal processing, feature extraction, classification, high-level fusion 

and decision-making. 

As the prognostics scope is to forecast future states of machinery, CBM combined with 

DSS aims to propose maintenance actions for components and systems life extension. 

A research on probabilistic prognostics is presented by Dikis et al. (2014). The 

probabilistic risk assessment of CM for marine diesel engines is assessed by utilising 

Bayesian Belief Networks (BBNs). Latest research from Ramírez and Utne (2015) 

proposes a dynamic Bayesian network which examines the life extension of repairable 

systems. The model’s applicability is oriented towards decision-making related to 

system’s maintenance by utilising historical data. Finally, data-driven prognostics are 

researched by (Xi et al., 2014) through a method which involves offline training and 

online prediction processes. The first one (offline) is built by structuring a statistical 

relationship between the failure time and the recognition time, while the online 

prediction forecasts the probable failure times for online testing based on the offline 

statistical model. 

3.6.3. Commercially available condition monitoring systems 

Condition monitoring systems are widely spread in maritime industry and they are 

under continuous investigation and development focusing on the market and business 

competence factors concerning environmental, maintenance, operational and financial 

considerations. Commercially, various developers and providers offer in market CM 

software tools such as machinery and equipment manufacturers, Classification 
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Societies, operators and service providers. Each of these maritime stakeholders 

suggests and offers CM applications, which target to fulfil specific requirements 

identified with respect to their priorities and necessities. 

Firstly by investigating engine manufacturers, MAN (2012a) presents Engine 

Management Concept (EMC) for operation and maintenance of main and auxiliary 

engines. EMC enhances availability, scheduling, quality and cost commitment at 

optimum performance by substituting shipowners’ technical management function 

with MAN Diesel & Turbo. Furthermore, MAN (2012b) provides the Intelligent 

Remote Diagnostic System (IRDS) to increase the operating reliability. IRDS manages 

data collection and transition periodically (approximately 10MB/day), while analysing 

and presenting automatically or manually impending faults at an early stage. 

On the other hand, Wartsila presents Dynamic Maintenance Plan (DMP), a CM system 

which integrates the data collected from equipment using sensors and crew members. 

DMP reports in unscheduled manner, when required, and input data is collected within 

scheduled inspections (Klockars et al., 2010). In addition, the same manufacturer 

introduces one more system the Wartsila Intelligent Combustion Monitoring (ICM) 

(Rolle and Wiesmann, 2011). Wartsila ICM system assesses firing and compression 

cylinder pressure data. The innovation of this system is the consideration and 

integration with the Fuel Quality Setting (FQS) system, which assesses the fuel quality 

combined with the cylinder performance. 

Another example from Wartsila is the Propulsion Condition Monitoring Service 

(PCMS), a real-time solution on engine and thruster monitoring. PCMS involves 

database storing and transmission features as well as information gathered from 

vibration, hydraulic pressure and temperature sensors integrating operational 

conditions such as vessel’s pitch, speed, rate of turn and draught (Pakarinen R., 2011). 

A system combining monitoring and control services is introduced by Rolls-Royce 

(2012), called Synchro Autotrawl. This system is designed to manipulate and monitor 

winches onboard by offering alarm warnings, monitoring control and automatic 

communication, with net sensors as well as graphical and dynamic representation of 

gears. 



48 

Kongsberg is an international technology corporation that supplies reliable, advanced 

technological solutions that improve the reliability, safety and efficiency of complex 

operations and under extreme conditions. Hence, Kongsberg (2014) presents Engine 

Monitoring Systems (EMS) built on K-Chief hardware and software. K-Chief 

comprises of elements such as bearing material wear and bearing temperature 

monitoring of crank-train bearings, water in oil, cylinder liner temperature and shaft 

power monitoring. On the other hand, Katsikas et al. (2014) present a monitoring 

system, named LAROS. The system is flexible, adaptable, scalable and easily 

installed. According to the authors, LAROS is the only system of this kind available 

in the global market for shipping and especially for monitoring ship’s engines. 

Concluding this section, the significant points have to be highlighted leading to 

commercially available application gaps. The majority of onboard ships machinery 

and equipment manufacturers provide appropriate in-house developed CM tools for 

the systems they produce and provide. Furthermore, it is noticeable that manufacturers 

offer different independent software CM tools suitable for their functionalities, 

priorities and offered equipment. Hence, independent diagnostic monitoring tools 

examine the systems’ performance without taking into account the machinery 

interdependencies. This ship Engine Room (ER) leads to condition monitoring 

management system inefficiency, because the systems’ interaction and influence in 

functioning is not considered so far in research and proposed applications. On the other 

hand, multiple CM software interactions may lead to compatibility issues, fault alarm 

disruption and delay of data manipulation. An available solution could be the creation 

of larger flexible monitoring systems customised and installed to each client. 

Lastly, through this research is identified that Classification Societies and international 

safety agents are mostly interested in structural monitoring systems development. An 

uncontrolled incident of machinery break down can lead to structural collapse and 

significant failures, which are harmful for humans, environment and property. An 

analytical list of commercially available condition monitoring systems is presented in 

Appendix A.1. Well-known applications are examined with respect to latest features, 

functions and specifications. 
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3.7. Maintenance input data optimisation tools 

As already analysed, there are different CM technologies suitably introduced on ship 

machinery and equipment associated with the functional operation and the type of 

considered measured parameters. In this subsection, review will be carried out for the 

maintenance optimisation tools, signal processing, failure and risk analysis as well as 

decision-making methods from various researchers highlighting strengths and 

weaknesses to develop accurate CM strategy tools. 

Presenting the layout of maintenance optimisation models, Garg and Deshmukh 

(2006) outline Bayesian approach, Mixed Integer Linear Programming (MILP) 

formulation, Multiple Criteria Decision Making (MCDM), Fuzzy Linguistic (FL), 

Markovian probabilistic models, Analytic Hierarchy Process (AHP) and maintenance 

organisation modelling, whilst integrating business aspects with engineering asset 

management. In contrast, Sikorska et al. (2011) summarise the available prognostic 

modelling options for RUL estimation between knowledge-based (ES and fuzzy), life 

expectancy (stochastic and statistical) Artificial Neural Networks (ANNs) and 

physical or first principle cases. 

3.7.1. Artificial Intelligent (AI) approaches 

According to Fiippetti and Vas (1998), AI assists equipment degradation assessment, 

statistical failure analysis, prognostics and intelligent diagnosis for CM tasks and fault 

detection. Al-Najjar and Alsyouf (2000) state that Intelligent Monitoring (IM) system 

matching with human monitoring actions should have indirect sensing, signal 

conditioning, parallel processing of information and knowledge learning in order to 

make precise decisions. Henceforth, most of the input data analysis and optimisation 

tools are integrated in literature. The major reason is the need to establish flexible and 

accurate CM tools, aiming the greatest achievable performance of failure recognition 

and system state prognostics. The foremost AI and associated approaches investigated 

in this study involve the Artificial Neural Networks (ANNs), Expert Systems (ES), 

fuzzy logic and Evolutionary Algorithms (EAs).  
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A. Artificial Neural Networks (ANNs) 

According to Sinha et al. (2000) most of research on ANNs is oriented towards static 

Feedforward Neural Networks (FNNs) operating directly without considering time 

delay causes. A solution motivated from neurobiology field recommends the 

development of Dynamic NNs (DNNs) offering better computational capabilities in 

comparison with the static networks. On the other hand, an analytical model by Lei et 

al. (2008) proposes an intelligent fault diagnosis by integrating statistical analysis, 

evaluating distance technique and Adaptive Network-based Fuzzy Inference System 

(ANFIS). It consists of three stages, the first stage is dealing with time-domain, 

frequency domain statistics and Empirical Mode Decomposition (EMD), gaining 

detailed fault information. The second stage comprises the most superior features from 

an initial feature set and in third and final stage, these selected features are imported 

into ANFIS for identification of malfunctions. The outcome is utilised on bearings for 

fault diagnosis which shows its reliability on fault categorisation and severity 

recognition. Mizutani and Jang (1995) develop Co-Active Neuro-Fuzzy Inference 

System (CANFIS) merging Fuzzy Systems (FSs) as an expanded case of ANFIS by 

utilising multiple input and output pairs. 

B. Expert Systems (ES) 

The second approach of AI under investigation is ES, involved in CM. In line with Al-

Najjar and Alsyouf (2000), ES consists of three key elements, a knowledge base, an 

inference engine and a database. An integration of tools is aspired by Yimin and Nezu 

(1995) developing an AI, which combines ES with the Degree of Creditability of 

Parameter value Variations (DCPV factor) aiming to face the difficulties of online 

monitoring of bearings affected by intrusive vibration signals. The results show a 

practical system with superior potential, being quick and flexible to build up. 

C. Fuzzy logic systems 

Expanding the capabilities of Boolean logic, fuzzy logic handles the concept of partial 

truth values ranging between the complete truth and false (0 or 1). According to Dmitry 

and Dmitry (2004), data mining can be handled by introducing fuzzy logic in control 
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systems for applications in the domain of pattern recognition. However, the state-of-

the-art technique is neuro-fuzzy approach to automate the problem of selecting fuzzy 

sets and appropriate rules due to experts’ difficulties of controlling it. Various methods 

are presented for this problem such as, Genetic Algorithms (GAs) and data clustering. 

An alternative study by Khan et al. (2004) challenges the problem of variation in the 

results sourced from different inspection agencies. The study outlines an RBI 

maintenance methodology and employs fuzzy logic integrated with the probability of 

occurrence and consequence estimating the risk. The method focused on the risk 

aspects and decision support involving semi-quantitative and quality parameters 

employing fuzzy logic for translation of qualitative data into numerical readings. The 

study presents the construction and evaluation of a scheme assessing the probability 

of failure by eliminating the adaption of assumptions. 

D. Evolutionary Algorithms (EAs) 

Recently, ship maintenance scheduling is considered by Deris et al. (1999) through 

Constraint Satisfaction Problem (CSP) perspective for the needs of Royal Malaysian 

Navy by utilising effective Genetic Algorithms (GAs). CSP parameters involve start 

times and its domain values the initiation and horizon of the schedule. The 

methodology of solving this maintenance scheduling takes into account Constraint-

Based Reasoning (CBR), which involves start times of initial activities of maintenance 

cycles. Moreover, the study suggests further exploration of estimating the time 

between planned and actual maintenance cycles reinforcing maintenance planning by 

adjusting delays and maintenance activities which are postponed until resources are 

available. Rafiul Hassan et al. (2012) propose the integration of tools such as Hidden 

Markov Model (HMM), fuzzy logic and multi-objective Evolutionary Algorithm (EA) 

for estimation of non-linear time series data. Multi-objective EA scopes to find a range 

of optimal solutions between the number of fuzzy rules and the prediction accuracy. 

However, experimental results accomplish reduction of fuzzy rules by achieving 

equivalent efficiency with the existing fuzzy models. 
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3.7.2. Signal processing and optimisation methods 

This subsection is focused towards rotational machinery and mostly vibration signal 

analysis. One of the most critical stages within the CM framework arrangement is 

signal processing. This stage is mostly responsible for the accuracy of the failure 

detection as it consists of signal de-noising processes, through which collected data 

are analysed and unnecessary information is removed from them. This processing level 

allows accurate filtering and preparation of the signal for the upcoming feature 

extraction process (i.e. pattern recognition form of dimensionality reduction). Various 

optimisation methods are proposed and tested in literature and their applicability varies 

due to signal type specification and output requirements. Wu and Chen (2006) 

summarise Short-Time Fourier Transforms (STFT), Wigner-Ville Distributions 

(WVD) and Continuous Wavelet Transforms (CWT) as widely used methods for 

detection of fault conditions and practical fault diagnosis of rotational machineries. 

An application is developed by Halim et al. (2008) proposing Time Domain Averaging 

across all Scales (TDAS) by combining time averaging and Wavelet Transforms (WT), 

extracting noisy vibration signals from various periodic waveform scales. The results 

present successful noise clean up and detection of local and distributed faults 

identifying gear missing and chipping tooth as large peak and peak with parallel side 

at the meshing frequency respectively. On the other hand, Estocq et al. (2006) present 

the importance of de-noising vibration signals gathered from ball bearings by spectral 

subtraction in different frequency bands which improves sensitivity of the temporal 

indicators and enhancing the reliability and diagnosis efficiency. In the analysis of the 

de-noised signal results, Lin et al. (2004) express that existing wavelet de-noising 

methods use orthogonal wavelets, causing problematic matching with information on 

the impulse. A different technique implements Morlet wavelet as basic wavelet 

corresponding to impulse by using maximum likelihood estimation and utilising prior 

information on the probability density of the impulse. This technique shows ultimate 

performance with low signal to noise ratio. 

Alternatively, Utsumi et al. (2001) present a novel model of ferrographic analysis to 

diagnose bearings through local spatial frequency analysis using WT. Gabor function 
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is selected as main function of WT as it is effective in distinguishing particles along 

the magnetic force lines on the ferrogram particles. Fuzzy system theory is applied to 

classify the particles and present the effectiveness of the proposed method. An 

integration for transient vibration signal fault detection method is proposed by Zhu et 

al. (2009) which combines CWT in time-scale plane representation and Kolmogorov-

Smirnov (K-S) test for detection of equipment failure which is applied on gearbox. 

The method is tested on vibration signals of cone bearings with fault detection in the 

inner, outer race and rolling elements. 

Bearing performance degradation is assessed by Pan et al. (2010) based on lifting 

wavelet packet decomposition and fuzzy c-means clustering method. Normal and 

failure data is used for training, developing model’s degradation indication. Finally, 

Shi et al. (2004) propose an Adaptive Time-Frequency Decomposition (ATFD) 

method which analyses vibration measurements. This method clarifies accurately 

complex signals using different time-frequency analysis tools. ATFD’s results show 

accuracy and efficiency in monitoring rotating machinery by identifying critical speed 

and accelerating rates during stable operation, run up and shut down phases. 

3.7.3. Risk of failure identification and analysis methods 

In the previous sections, AI and signal processing methods are examined. According 

to Russell and Norvig (2003), AI is a flexible rational mediator that observes the 

operational environment and takes actions that maximize its chance of success at an 

arbitrary goal. Similarly, signal processing is an enabling technology that transfers 

information contained in different formats designated as signals (Moura, 2009). In this 

section, the information gained from AI, signal processing or data mining methods is 

examined with respect to risk and reliability assessment and failure identification. 

Risk, failure and uncertainty are crucial factors influencing the functionality of ship 

machinery, and systems, hence businesses by affecting the environment, humans and 

assets. The risk of failure identification and analysis can be examined through 

qualitative and quantitative approaches. Each of these offers different features, 
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advantages and limitations. This subsection identifies and examines well-known and 

applied failure identification and analysis methods. 

Backlund and Hannu (2002) highlight the importance of maintenance by focusing on 

market competition. One of the parameters ensuring that a plant succeeds this 

challenge is to handle maintenance costs efficiently. A major tool that decision makers 

use to prioritise planning inspection and maintenance actions is risk analysis. 

According to Tuzku et al. (2006), risk assessment is a process comprising statistics 

and historical data. Nevertheless, in conditions that statistical data does not exist or 

they are inadequate, information is gained by using expert judgement. On the other 

hand, a summative research by Tixier et al. (2002) reviews various risk analysis 

methodologies by separating them in identification, evaluation and hierarchisation. 

According to Delia and Rafael (2008), system degradation should be included in the 

risk analysis models, due to the fact that systems, while they operate, deteriorate. 

Furthermore, various failure types have to be considered and evaluated independently 

as well as dependently leading to sequential failure reasoning assessment. Expanding 

this idea, Devanney (2006) states that the difference between hull and machinery 

failures is oriented in the function. In the case of the hull, failure can arise due to an 

independent cause, whereas in the machinery case, failures take place due to influences 

from more dependent factors. 

A comparative research by Aksu et al. (2006) and Aksu et al. (2007) presents the risk 

and reliability assessment methodology on four-pod propulsion system. It utilises 

Failure Mode and Effect Analysis (FMEA) for qualitative analysis, which provides a 

valuable foundation for quantitative reliability and availability analyses. Fault Tree 

Analysis (FTA) is employed for qualitative and quantitative information, allowing the 

examination of multiple failures and Markov Analysis (MA) by solving Dynamic FTA 

(DFTA) capturing sequences and combining events. Another proposed model by 

Čepin and Mavko (2002) extends FTA with time requirements proving that DFTA 

reduces system unavailability by expanding and upgrading knowledge gained from 

probabilistic safety assessment including time dependent information. 
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FMEA is also employed by Cicek and Celik (2013) to determine the maintenance time, 

achieve cost reduction and reliability enhancement to prevent crankcase explosion 

failure on board. In addition, Carmignani (2009) extends FMEA to an advanced 

expression of Failure Mode, Effects and Criticality Analysis (FMECA) model 

considering the factor of the corrective action cost. Priority-Cost FMECA (PC-

FMECA) allows the calculation of a new Risk Priority Number (RPN) by introducing 

the concept of profitability related to action cost. 

A predictive maintenance strategy utilising FMECA and FTA is presented by Lazakis 

et al. (2010) to achieve the upgrade of the existing ship maintenance regime to an 

overall strategy including technological advances and DSS by combining existing ship 

operational and maintenance tasks with the advances stemming from new applied 

techniques. On the other hand, Turan et al. (2011) develop maintenance strategy based 

on criticality and reliability assessment using DFTA. An alternative line is proposed 

by Gamidov et al. (2009) to assess the reliability of marine diesel engines using a 

mathematical model on Markov Chains (MC), which allows reliability estimation of 

components and systems, and the likelihood of effective operation at specific time. In 

a similar manner, Xu et al. (2006) propose a dynamic mathematical model for marine 

main engine systems, which improves operation through fault tolerant control system 

by employing ANN. The advantages of user modelling from multi-sensor information 

sources are presented by Oliver and Horvitz (2005), where Dynamic Bayesian 

Networks (DBN) and Hidden Markov Model (HMM) are assessed leading to crucial 

differences and benefits of each modelling approach. 

In addition to mathematical modelling, material analysis is used by Hassan and Alam 

(2010) to identify the root cause of failure of gearbox and clutch shaft from a marine 

engine by employing metallurgical failure analysis and assessing the surface fracture. 

The study presents that the gearbox shaft affected by rotational bending, while the 

clutch shaft is affected by torsional and corrosion. The RUL of bearings is predicted 

through a proposed model by Kim et al. (2012). This model uses health state 

probability estimations and historical data. Support Vector Machine (SVM) classifier 

is employed for condition probability estimation of machine’s degradation process 

providing long-term predictions. Jardine et al. (1997) present a parametric approach 
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using Weibull hazard function and time-dependent stochastic covariates by combining 

monitoring data in systems’ reliability through Proportional Hazard Modelling (PHM). 

Markov model is used by Artana and Ishida (2002) as well. They set reliability and 

availability as constants to determine the optimal maintenance and failure frequency 

stating that it is applicable to systems having constant hazard rate, while the transition 

probability between two states remains constant (discrete time-dependencies). 

Alternatively, Rougé et al. (2014) link for first time viability and reliability. Hence, 

proving that time-variant reliability and stochastic viability focus on same problems 

from different perspective. The connection of these two terms is expressed by 

describing reliability as the evaluation of probability of failure with regards to 

uncertainty and stochasticity. Viability scopes to maintain and control the systems 

dynamically within specified functional levels. In line with the notion and motivation 

of authors’ viewpoint, Fiondella and Xing (2015) present a method to consider 

reliability of systems by involving identically correlated components. Discrete and 

continuous models are developed and explored through a series of examples. 

Furthermore, Yu (2013) develops a Generative Topographic Mapping (GTM) and 

contribution analysis-based method for health degradation assessment of turbine 

engine’s bearings utilising Bayesian-Inference-based Probability (BIP) for failure 

likelihood consideration. Moreover, an alternative arrangement for probabilistic 

analysis is emphasized. According to Kaplan and Garrick (1981), five steps have to be 

followed for Probabilistic Risk Assessment (PRA) including the expansion of various 

scenarios, improvement of models, estimation of factors, ranges and uncertainties, 

performance calculations and clarification of outputs. 

Lastly, INCASS (Inspection Capabilities for Enhanced Ship Safety) project introduces 

a probabilistic multi-component prognostic CM model for ship machinery inspection 

and maintenance scheduling known as Machinery Reliability Analysis (MRA).  Part 

the present thesis research work has been utilised in INCASS project. INCASS 

integrates MRA with a DSS for critical ship machinery by taking into account 

technical as well as economic parameters (INCASS, 2014a), (INCASS, 2014b) and 

(INCASS, 2014c). 
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3.7.4. Decision making methods 

Decision-making is the final stage of the CM framework. This phase aims to suggest 

inspection and maintenance actions by prioritising critical systems, subsystems and 

components. The scope of this decision-making stage is to assist professionals by 

automating operational and functional processes. 

A Decision Support System (DSS) is presented by De Boer et al. (1997) to improve 

the process and capacity planning of large repair projects supported by the Royal 

Netherlands Navy Dockyard, which performs repairs, overhaul and modification 

projects for several classes of navy ships. Andersen and Rasmussen (1999) present a 

basic cost-risk model sourced from technical health information for short-term 

maintenance scheduling by deliberating costs of postponed PM. An intelligent 

CBM/DSS for maintenance deficiency on planning issues is developed by utilising 

fuzzy sets for diagnostic modelling and machine reasoning through expert knowledge 

(Du et al., 2012). On the other hand, Lazakis and Olcer (2015) introduce an overall 

novel Reliability and Criticality Based Maintenance strategy by employing an existing 

fuzzy multiple attributive group decision-making technique, which is further enhanced 

with the employment of Analytical Hierarchy Process (AHP). The outcome of this 

study indicates that preventive maintenance is ideal approach closely followed by 

predictive maintenance, hence, avoiding the ship corrective maintenance framework 

and increasing overall ship reliability and availability. 

Multiple difficulties arise in handling large database sources from continuous CM 

activities. Hence, Gento (2004) presents decision techniques through Rough Set (RS) 

theory scoping to extract knowledge from these information and establish decision 

rules for maintenance processes achieving reduction of unnecessary data. Similarly, 

Pawlak (1982) supports that RS theory extracts rules, reduces data and increases the 

effectiveness of maintenance department. However, the implementation of RS theory 

technique requires great amount of input data and extensive time for development. On 

the other hand, Al-Najjar and Kans (2006) analyse the construction of database by 

mapping technical and financial effectiveness of production for cost-effective 

maintenance decisions. From this exploration, a generic guideline shows that there is 
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a connection between technical and economic associated factors, such as productivity, 

performance efficiency, quality rate, availability and production cost as well as the 

strategic level expressed by the company’s profit and competitiveness. Additional 

decision making 

A review by Hofmann (2011) presents commercial and under development DSS, 

oriented on operation and maintenance planning of offshore wind farms. However the 

major limitations are discovered similarly with the maritime industry on the absence 

of models covering the entire life cycle of equipment. Through an exploration of 

research and commercial applications, Juuso and Lahdelma (2013) combine 

maintenance and operation by integrating process and condition monitoring data with 

performance measures. The key result of this approach is that control, condition, 

maintenance and performance monitoring interact in closed loops (feedback) 

arrangement. Lastly, Dikis et al. (2016) presents the development of Machinery Risk 

and Reliability Assessment Decision Support System (MRA-DSS) as part of INCASS 

FP7 EU funded project (INCASS, 2015b). MRA DSS analysis demonstrates failure 

predictions through a user-friendly Graphical User Interface (GUI). The user has 

available information related to cost analysis, maintenance actions, reliability 

performance predictions and symptoms due to reliability loss. 

3.8. Identification of research and development direction 

This Chapter assesses existing literature with respect to inspection and maintenance 

strategies, methodologies, guidelines, regulations and standardisation policies/rules. 

Hence, this literature review identifies the research and development tendency for ship 

machinery inspection and maintenance. Critical outcomes of this review are 

summarised in this section and utilised for structuring the proposed Probabilistic 

Machinery Reliability Assessment (PMRA) maintenance strategy, targeting to 

accomplish this research aim and objectives. 

First of all, the need for an overall adaptable inspection and maintenance framework 

is identified. Hence, a framework to be applicable on complex system level of 

machinery can be introduced towards maintenance scheduling of systems, subsystems 
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and components. This holistic inspection and maintenance notion should be 

implemented by integrating different strategies, methodologies, technologies and 

tools, suitably selected, as the requirements per system may vary. Specifically, the 

implementation of maintenance strategies in industry as well as the research interest is 

aligned with the lately established predictive and proactive maintenance strategies. 

Henceforward, inspection and maintenance challenges are conformed to operational 

and failure diagnostics, prognostics and failure forecasting as well as the root cause 

analysis of malfunctions and abnormal functioning. 

Along these lines, multiple guidelines, regulations and policies are established by 

different standardisation and regulatory bodies. Fundamental guidelines that support 

the structure of the proposed research methodology of this dissertation are correlated 

to BS/ISO 17359 (2011) and BS/ISO 13381 (2015). The first general guideline sets 

the grounds for machinery Condition Monitoring (CM) with respect to diagnostics. On 

the other hand, the second guideline introduces general rules and procedures for 

machinery CM diagnostics and prognostics. These two BS/ISO standards are 

employed for guiding generic aspects of the proposed maintenance strategy procedure 

flow. 

With regards to the maintenance methodologies, the research awareness is oriented 

towards the latest on-condition assessment through non-distractive inspection 

methods. Hence, Condition Based Maintenance (CBM) is currently the state-of-the-

art, especially the integration of Condition Monitoring (CM) technologies and tools. 

This on-condition assessment through automated procedures generates the 

requirement for multiple data/information source management and analysis. In other 

words, features from Computerised Maintenance Management Systems (CMMS) are 

incorporated with CBM. Additionally, the newly-introduced holistic viewpoint of the 

overall system inspection and maintenance scheduling enables the consideration of 

technical, economic and managerial assessment aspects. Therefore, CBM 

characteristics are integrated with Asset Management (AM). 

Considering these research findings with respect to the generic maintenance strategies’ 

tendency, it is vital to highlight specific technical research gaps. Summarising, 

fundamental research issues remain the development of an inspection and maintenance 
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strategy for accurate Condition Monitoring (CM) prognostics. Current methods solve 

the failure prediction problems of single components, however performance 

assessment and degradation prediction is needed. Hence, specific single component 

diagnostic and prognostic approaches exist in industry and research. However, a 

generic adaptable prognostic methodology for complex ship machinery is required. On 

the other hand, the integration of CM techniques with cost-effective applications 

should be combined for complex ship machinery. This flexible CM framework should 

aim of forecasting accurate failure warnings (alarms) before a fault reaches specific 

critical operational levels, schedule repairs and plan inspection and maintenance 

actions as well as control the fault tolerance. 

Additionally, except of the failure prediction, ship machinery health degradation can 

be examined integrated with failure modes. This performance degradation assessment 

will allow the performance loss identification through time, before failures or signs of 

malfunctions appear. Along these lines, the sooner the abnormal functioning is 

identified the more available time to plan the maintenance actions and the more 

financial efficient solution can be obtained. Therefore, predictive maintenance can 

incorporate both Time-to-Failure (TTF) and the Probability of Failure (PoF) in future 

time. TTF is a random evaluation measure of systems’ reliability. This value arises out 

of performance measurements, operational conditions as well as information out of the 

functioning environment, so the inspection and maintenance decision should be risk-

based. 

In particular, risk-based assessment, evaluating the PoF of systems for failure 

interaction, is missing from literature. In other words, the examination of the systems, 

subsystems and components operational interdependencies should be introduced, in 

order the failure and malfunction root cause analysis to be identified. From a technical 

perspective, the working state reliability performance estimation should be introduced 

integrating multiple p-step-before filtering methods with multiple p-step-ahead 

forecasting for prediction accuracy enhancement. 

Lastly, the state-of-the-art in inspection and maintenance of ship machinery reflects 

the establishment of performance degradation assessment. Currently, the failure 

prediction issue is tried to be solved on specific component level. However, tools for 
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system performance assessment and degradation prediction are not well addressed. 

Henceforward, ship system holistic view by integrating CM with equipment 

performance monitoring is required for accurate and reliable risk assessment. 

In conclusion summarising the key findings of this literature review and setting the 

ground for the proposed methodology, PMRA establishes an adaptable ship machinery 

methodology for complex systems. Probabilistic Machinery Reliability Assessment 

(PMRA) introduces multiple level assessment on system, subsystem and component 

analysis. Moreover, PMRA considers operational interdependencies among systems, 

subsystems and components targeting the failure root cause assessment. Furthermore, 

PMRA methodology structure complies with BS/ISO 17359 (2011) and BS/ISO 13381 

(2015) guidelines fulfilling requirements of already certified standards. 

PMRA methodology directs towards holistic perspective of ship machinery inspection 

and maintenance by incorporating fundamental aspects of Asset Management (AM). 

Additionally, PMRA examines the reliability degradation of ship machinery through 

time before warnings and failures appear. Last of all, a research gap that PMRA will 

examine and try to cover is related to p-step-before assessment and multiple p-step-

ahead reliability prediction, expecting to enhance prediction accuracy. 

3.9. Chapter summary 

In this Chapter, the literature review of this dissertation has been presented. Firstly, 

the overview of the maintenance classification has been identified as implemented in 

industry including corrective, preventive, predictive and proactive maintenance 

strategies. The research interest is mostly oriented towards the latest introduced 

predictive and proactive strategies. This Chapter introduces guidelines and regulations 

provided by competent bodies setting the basis for standardised inspection and 

maintenance framework regulations. These regulatory bodies include British 

Standards (BS) and International Standards Organisation (ISO), International 

Maritime Organization (IMO) regulations and guidelines from the International 

Association of Classification Societies (IACS). The implementation of various 

maintenance methodologies is assessed by identifying advantages and limitations. The 
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considered methodologies include Reliability Centred Maintenance (CBM), Total 

Productive Maintenance (TPM), Total Quality Management (TQM), Risk Based 

Inspection/Maintenance (RBI and RBM respectively) Condition Based Maintenance 

(CBM), Computerised Maintenance Management System (CMMS) and Asset 

Management (AM). The latter three (i.e. CBM, CMMS and AM) set the grounds for 

system inspection and maintenance automation by taking into account computerised 

approaches. Hence, further research on the on-condition inspection and maintenance 

methods is undertaken by investigating widely applied and novel Condition 

Monitoring (CM) technologies and tools such as vibration monitoring, thermography, 

lubrication oil analysis, visual inspection and acoustic and ultrasonic monitoring. 

Moreover, the main CM functionalities are presented such as the fault detection and 

diagnostics and the state-of-the-art prognostics, which targets the time-to-failure 

forecasting before failure occurs. On-condition assessment has wide applicability in 

industry. Hence, the presented literature review considers well-known commercially 

available CM systems. Lastly, maintenance input data optimisation tools are examined 

and demonstrated considering Artificial Intelligence (AI) approaches, signal 

processing methods, risk of failure identification and analysis methods and decision 

making tools. Concluding, as this Chapter aims to specify research and development 

tendencies and gaps, a sample of this comparative investigation can be found in 

Appendix A.2. This input evaluates multiple sources and specifies the current research 

gaps that the proposed dissertation methodology will examine and try to cover. Hence, 

the most critical sample of publications has been placed in Appendix A.2, which led 

to decisions taken for the methodology structure, data processing and reliability 

modelling method selection. Also these publications guided for listing the future 

research work. Additionally, the table added in Appendix A.2 intends to guide 

researchers and professionals in an efficient way of identifying research gaps and 

evaluating recent research. The proposed methodology will be presented in Chapter 4 

demonstrating Probabilistic Machinery Reliability Assessment (PMRA). 
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4. PROPOSED PREDICTIVE INSPECTION AND 

MAINTENANCE STRATEGY FOR SHIP 

MACHINERY 

4.1. Chapter outline 

In the previous Chapters, the maritime transportation challenges were presented by 

specifying the comprehensive goals of shipping. Additionally, the identification of 

research gaps and development direction with respect to undistracted inspection and 

maintenance of ship machinery was demonstrated setting the foundations for this 

Chapter. The proposed Probabilistic Machinery Reliability Assessment (PMRA) 

strategy is established in this Chapter by introducing novel predictive methods and 

data analysis techniques. It is essential to highlight that PMRA strategy is capable and 

suitable for providing reliability predictions of both processed and raw data. An 

introduction into data mining field takes place outlining methods, which allow to 

extract information from a dataset and transform it into an understandable structure for 

further use. Multiple data clustering practices are assessed leading to the utilised k-

means algorithm, also referred as Lloyd’s algorithm, which is based on the generalised 

form of Expectation-Maximisation (EM) algorithm. Next, the implementation of 

specific operational safety thresholds set the limits for acceptable functioning. These 

safety thresholds combined with the output from the utilised data clustering algorithm 

(k-means) transform the gathered raw input data into probabilistic indices. 

Subsequently, these indices are fed into Bayesian Belief Networks (BBN). 

Furthermore, time-dependency is considered and BBN is integrated with the adaptable 

process of Markov Chains (MC), which introduces the dynamic aspects allowing 

predictive transitions from one state to another on a state space. Lastly, Decision 

Making (DM) has been achieved employing expert judgement and the qualitative tool 

of Failure Modes and Effects Analysis (FMEA). 
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4.2. Introduction of the PMRA strategy 

4.2.1. Research gaps in maintenance practices on ship machinery 

Chapter 3 examined different maintenance methodologies and practices as presented 

in literature and in industry. These practices aim to bridge the distance between the 

theoretical development of maintenance and its applications. Nevertheless, multiple 

research and development gaps are identified through this critical literature review. 

This section demonstrates the research gaps that the proposed Probabilistic Machinery 

Reliability Assessment (PMRA) strategy will try to tackle. 

First of all with respect to maintenance strategies, corrective and preventive share wide 

applicability. The first one is carried out after a failure occurs. Hence, this leads to 

impractical and costly inspection and maintenance solutions by increasing the risk of 

unexpected failures. On the other hand, preventive maintenance is applied through 

planned maintenance activities in predefined time intervals. This strategy allows safer 

ship machinery to corrective maintenance. However, preventive maintenance may lead 

to over-maintained equipment by premature component replacement or unexpected 

failures, before planned maintenance actions take place, due to extreme operational 

conditions. Consequently, if the maintenance time-interval can be specified according 

to the ship machinery condition, the maintenance plan will lead to optimum solutions. 

Therefore, on-condition assessment is the optimal practice that will allow maintenance 

activities to take place when decided by experts or suggested by integrated Decision 

Support Systems (DSS). 

Critical literature review, demonstrated in the previous Chapter, shows that on-

condition assessment for equipment and components involves failure or abnormal 

functioning diagnostics and prognostics. Current literature provides a wide range of 

sources, methodologies and practices for single component diagnostics and more 

limited for single component prognostics. Furthermore, literature on condition 

monitoring assessment on multiple components and multiple equipment prognostics 

does not exist. CM diagnostic and prognostic assessment examines the occurrence of 

failure, Time-to-Failure (TTF) and Remaining Useful Life (RUL). However, all of 
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these estimations remain challenging tasks for data analysts and engineers. An 

innovative equipment and component assessment can establish the reliability 

performance and degradation evaluation leading to accurate forecasting before 

operational safety thresholds are exceeded or failures occur. 

Moreover, an overall holistic methodology of assessing multiple complex ship 

machinery should be introduced. This methodology can integrate accurate CM 

diagnostics and prognostics as well as performance monitoring by evaluating 

degradation through time. According to the latest critical literature review, 

fundamental issues in CM prognostics remain the accurate failure predictions, 

performance assessment and degradation forecasting. Specific component and 

equipment prognostic approaches exist, however a generic adaptable CM prognostic 

framework is required as research presents space for further investigation and 

development. 

The implementation of CM of multiple complex ship machinery generates the 

necessity for further research and development on data fusion gathered from various 

sensors and sources. Existing practices perform CM diagnostics and prognostics of 

components whilst single input data is processed and analysed. The innovative aspects 

of data fusion enable flexibility in risk assessment, enhancement of accuracy in 

predictions and integration of different methodologies and tools. On the other hand, 

the assessment of multiple complex systems combined with the data fusion features 

will allow the investigation of failure interaction among different systems, subsystems 

and components. 

Additionally, the establishment of practices integrating data of various ship machinery 

empower the necessity for automated data management systems such as Computerised 

Maintenance Management Systems (CMMS). This CMMS practice can facilitate 

management of data such as raw gathered data, expert information, historical input, 

event occurrence, diagnostic and predictive features and descriptions targeting the 

formation of long-term asset data file. Concluding, the core research gaps on 

inspection and maintenance, a scalable and adaptable predictive methodology 

(toolbox) applicable on various ship machinery should be introduced enabling 

monitoring of multiple systems, while taking into account past, current and forecasted 
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operational states. According to the latest critical literature review, the present thesis 

contribution is focused towards the establishment of an efficient maintenance strategy 

for machinery fulfilling the following requirements: 

 Scalable and adaptable structure of maintenance strategy facilitating multiple 

different ship machinery by integrating accurate Condition Monitoring (CM) 

diagnostics and prognostics. 

 Integration of Condition Monitoring (CM) aspects should incorporate raw data 

processing, predictive reliability analysis, degradation drop and economic 

impact further than the technical concerns. 

 Essential CM prognostic features should involve raw data analytics and feature 

extraction utilising novel data mining methods. These methods introduce 

diagnostic features into the methodology. 

 Risk and reliability assessment should take place on system, subsystem, 

component levels targeting root cause analysis of failures. 

 Consideration of system, subsystem and component operational dependence as 

degradation or failure of one can lead to failure of multiple others (failure 

interaction). 

 Effective, practical and reliable input data fusion leading to accurate and robust 

CM diagnostics and prognostics. 

 Multiple sources of input data should be considered gaining information from 

various sources (i.e. historical data, expert judgement, raw sensor data) 

enhancing the predictive aspects such as accuracy, efficiency and diagnostic 

precision. 

 Integration of different input data processing methods and combination of 

various diagnostic and prognostic practices can enhance the overall target of 

flexibility and prediction accuracy. 

4.3. PMRA strategy framework 

In the previous section, core research gaps in maintenance practices on ship machinery 

are identified setting the prerequisites for the proposed strategy. The suggested 

Probabilistic Machinery Reliability Assessment (PMRA) strategy aims to enhance 
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ship machinery reliability by offering accurate reliability predictions. These 

predictions enable the suggestion and scheduling of maintenance actions at the right 

time at the right place. Having the above gaps and requirements in mind, this section 

presents the overall PMRA strategy framework as this can be applied in the maritime 

sector. The proposed PMRA strategy will be demonstrated in two stages as shown in 

Figure 4.1. 

PMRA strategy 

functionality

Identification of what 

PMRA should perform

PMRA strategy raw data

Identification of how it is 

done 

PMRA strategy 

processed data

Identification of how it is 

done 
 

Figure 4.1 Stages of PMRA strategy implementation 

At the first stage, the fundamental aspects of PMRA are identified setting the grounds 

for further analysis. This first stage of assessment involves the identification of the 

major PMRA strategy features. PMRA has been oriented towards a predictive 

reliability assessment capable of utilising the processed and raw data. In this Chapter, 

the PMRA strategy framework is presented classifying the processes for analysing 

processed and raw data targeting dynamic predictive reliability assessment. 

The processed data assessment introduces the fundamental aspects fulfilling main gaps 

of the latest literature presented in Chapter 3. At the second stage, the principle 

considered methods are classified and the suitable methods and tools are selected for 

utilising raw data. Lastly, the proposed PMRA strategy will be established 

demonstrating specific selected algorithms and methods. Moreover, the stages 

represented in Figure 4.1 refer to the implementation of the predictive reliability 

assessment tools as well as the innovative solutions introduced through PMRA in each 

involved stage that will be presented next. It is essential to clarify in advance that 

PMRA strategy embeds flexible technical aspects integrating features for predictive 

reliability assessment based on processed and raw data. This decision has been made, 

because shipping stakeholders utilise their data in one of these two data types (i.e. 
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processed or raw). Therefore, applicability and flexibility is a leading characteristic of 

the novel PMRA strategy framework. 

1. Selection

2. Collection

Raw data

Sensor data 

collected in actual 

sailing conditions

External sources 

of processed data Processed data

Data mining

Consideration of 

safety thresholds

Alarm and 

warning levels

Dynamic state modelling (time-dependent) utilising 

Markov Chains (MC)

Utilisation of data 

clustering method

Data preparation

Input data

Dynamic predictive reliability assessment through 

Bayesian Belief Networks (BBNs)

Processed input 

decision making

Raw input 

decision making

1. FMEA

2. Experts

1. Experts

2. FMEA

START

FINISH

STAGE 1

Data collection/

selection

STAGE 2

Data processing

STAGE 3

Predictive 

reliability 

assessment

STAGE 4

Decision making

 

Figure 4.2 PMRA strategy framework 

The overall PMRA strategy framework consists of four stages such as the data 

collection, data processing, predictive reliability assessment and decision making. 

These stages refer to both processed and raw data implementation. In the following 

sections, the PMRA strategy framework is demonstrated analytically for both data type 

cases (processed and raw). The fundamental aspects of PMRA strategy framework will 

be presented next and in the following sections each data type and processing method 

will be demonstrated analytically. 
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STAGE 1: Data collection 

This stage refers to data gathering from any data source such as sensors, which provide 

raw data or databases and particular shipping stakeholders (i.e. service providers, ship 

owners and operators, Classification Societies etc.) for providing processed data. In 

this stage, the selected input data has been identified regarding the type and collection 

interval. The gathered data has been fed into the following level of data processing. 

STAGE 2: Data processing 

The second stage of PMRA strategy framework takes into account data processing 

techniques. These have been separated between processed and raw data approaches. 

The first data type has been already processed by external data developers such as 

shipping companies, Classification Societies and stakeholders, which provide or share 

data and records in percentages such as failure rates. The latter data type is raw and 

PMRA strategy incorporates an innovative data mining method for processing and 

extracting useful information. Once the raw data has been transformed into 

percentages figures (which is compatible to the following reliability assessment tool), 

these are fed into the dynamic predictive reliability assessment stage. 

STAGE 3: Predictive reliability assessment 

The reliability assessment stage takes into account figures in the format of percentage, 

which are processed for providing dynamic reliability predictions. This particular stage 

employs the dynamic state modelling aspects (time-dependencies) and reliability 

assessment through the appropriate network arrangement. The predictive reliability 

assessment stage is common in structure, and functionality for both processed and raw 

data. The scope of this processing stage is to obtain the predicted reliability states on 

system, subsystem and component. Once these figures have been acquired decision 

making actions can be proposed. 

STAGE 4: Decision making 

This is the latter stage of the PMRA strategy framework. It involves practical features 

offering inspection and maintenance action suggestions, by taking into account the 

current and predicted reliability performance as acquired by the previous processing 
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stage. Overall, decision making has been developed into a qualitative manner by 

incorporating expert judgment of ship owners, service providers, Classification 

Societies, chief crew members and chartered engineers and valuable contribution from 

Original Equipment Manufacturers (OEMs) manuals and reports. A qualitative risk 

assessment tool known as Failure Modes and Effects Analysis (FMEA) has been 

introduced in guiding the user for identification of failure modes, effects, damaged 

equipment and components and appropriate failure causes.  

Summarising, PMRA strategy framework is capable in providing reliability 

performance predictions for processed and raw input data. It is essential to highlight 

that processed data PMRA strategy is simpler in structure and method arrangement. 

The main reason is based on the fact that data processing has been taken place by 

external developers and data providers. Therefore, the processed data has already 

formatted in percentage figures, which is prerequisite for the predictive dynamic 

reliability assessment. 

4.4. PMRA strategy for processed data 

Data processing of PMRA strategy is demonstrated in the flow diagram shown in 

Figure 4.2. These stages are associated in hierarchical order, whilst each process feeds 

data the following with the required input. The referred processes are analytically 

presented in the following subsection. Overall, PMRA strategy for processed data has 

been initiated by selecting the required input data in processed form. 

This processed data has been provided by external databases or data and process 

providers such as ship owners, operators, service providers, and Classification 

Societies. The following procedure involves the data processing. In this stage, the 

provided input data is transformed in figures that fulfil the requirements of the 

predictive reliability assessment stage, which takes place next. The third stage of 

PMRA strategy integrates innovative solutions for the dynamic state modelling (time-

dependencies) and the predictive reliability assessment. Lastly, the acquired 

predictions from the previous stage have been combined with the qualitative decision 

making functionality of expert judgement and FMEA tool. 
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4.4.1. Input Data Selection & Collection 

The first processing stage involves the selection of the required input data types. 

Overall, PMRA strategy merges historical data, expert judgment, and raw/real-time 

sensor data. However, the processed data PMRA strategy implements historical 

processed data (instead of raw) for the appropriate machinery. This historical data 

incorporates failure rates, and number of failures per component and failure mode. 

Additionally, at this state, the selection of the optimal source (i.e. experts and 

professionals, sensor type etc.) has to be considered. Data collection should deliberate 

in advance all the necessities and requests for the overall Condition Monitoring (CM) 

PMRA strategy up to the latest stage of maintenance actions suggestion. 

4.4.2. Data Processing and Preparation 

The second stage of PMRA strategy regarding the processed data is simpler in 

structure and functionality compared to raw data case. The reason behind this 

simplicity is described by the fact that external data providers have been already 

processed the data. Therefore, the data mining method developed for the PMRA 

strategy has not been employed in the processed data case. However, data preparation 

can be required, which can be specified once the processed data is known. This stage 

aims to set the grounds for the input data in order to fulfil the requirements of the 

following predictive reliability assessment tool. Analytical data preparation of 

processed data has been discussed in Chapter 5. 

4.4.3. Machinery Risk & Reliability Assessment 

Ship functioning encompasses high level of uncertainty due to operation of multiple 

complex machinery and equipment (i.e. main engine, diesel generators, various 

pumps, purifiers, boilers among others) in different weather, sea state, ship sailing, 

cargo loading and engine load conditions. Machinery reliability evaluation, with 

respect to risk of failure and abnormal functioning, can be tackled by concerning first 

principle assessment or probabilistic reliability assessment practices. The first 
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approach involves fundamental laws of science and engineering such as mathematics, 

physics, fluid mechanics, thermodynamics and material science in order to assess the 

reliable operation of ship machinery. First principles assessment is time-consuming, 

may requiring enormous amount of man-months (depending on the detail level), 

including programming, automation and other challenging tasks. 

On the other hand, the complexity and variety of the involved parameters, as listed 

above (i.e. multiple complex machinery, weather, sea state, sailing, cargo loading and 

engine load), lead to operational parametric assumptions. These assumptions reduce 

the risk and reliability assessment flexibility by examining specific conditions. 

Furthermore, operational and conditional parametric assumptions limit the ability of 

system reliability assessment over a holistic/overall viewpoint, which is the 

fundamental idea of the proposed PMRA strategy. 

Therefore, the PMRA strategy is oriented towards the selection and implementation of 

a novel probabilistic reliability assessment tool. This research domain is known as 

Probabilistic Risk Analysis (PRA) also called Quantitative Risk Analysis (QRA) or 

Probabilistic Safety Analysis (PSA) is a supportive tool for management and decision 

making, establishing a new domain in risk management (Bedford and Cooke, 2001). 

Various risk and reliability assessment tools are demonstrated in literature as shown in 

Chapter 3. These tools tackle risk and reliability assessment in qualitative and 

quantitative manner. In the first place, well-known qualitative tools are listed among 

HAZID, HAZOP, SWIFT, FMEA and FMECA. On the other hand, quantitative risk 

and reliability assessment includes ETA, FTA and BBNs tools among others. Each of 

these risk and reliability assessment tools contributes towards operational evaluation 

from a different perspective. However, qualitative tools provide subjective output, 

whereas, quantitative tools are objective by employing specific measurable indices. 

Hence, PMRA strategy is oriented towards objective practices, where specific input 

data can be recorded, processed and evaluated through an accurate, flexible and robust 

approach. Therefore, PMRA strategy integrates qualitative and quantitative aspects for 

accomplishing the CM, input data processing, information extraction, predictive 

reliability performance and decision making tasks. 
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4.4.4. PMRA Decision Making 

The outcomes of the machinery predictive reliability assessment process level will be 

integrated with historical data from external reliability data sources and expert 

judgment, where required, providing technical input to the following PMRA decision 

making. At this level of analysis, the reliability predictions, delivered by the previous 

machinery reliability assessment process (above), are utilised in order to suggest 

maintenance activities. The suggested maintenance actions aim to enhance ship safety 

and machinery reliability. This historical and expert data has been used as well in 

creating a qualitative risk assessment tool known as Failure Modes and Effects 

Analysis (FMEA). 

4.5. PMRA strategy raw data 

At this stage of analysis and evaluation, while structuring the raw data PMRA strategy, 

the available data mining, safety thresholds and reliability assessment tools are 

compared and the selected ones are demonstrated. PMRA strategy incorporates 

various procedures, methods and tools for accomplishing the required CM predictive 

features as shown in the flow diagram of Figure 4.3. First of all, the raw input data is 

gathered, followed by the recorded raw data mining. The latter is split among recorded 

input dataset clustering and the applied k-means algorithm, established in literature as 

Lloyd’s algorithm (MacQueen, 1967). 

In the following level of analysis, the safety thresholds are identified for each of the 

selected raw sensor data. The machinery reliability assessment integrates the benefits 

of Markov Chains (MC) with the advantages of Dynamic Bayesian Belief Networks 

(DBBNs) in order to provide reliability performance predictions. Lastly, the forecasted 

reliability performance is combined with historical data and expert judgment providing 

decision-making maintenance suggestions. 
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1. Raw Input Data Collection

2a. Recorded Input Data Set Clustering

2b. k-means/Lloyd’s Algorithm

2c. Safety Thresholds (Indices)

3a. Markov Chains (MC)

3b. Predictive Probabilistic Reliability Assessment

4. PMRA Decision Making
 

Figure 4.3 PMRA strategy method and tool selection flow diagram for raw data 

4.5.1. Raw Input Data Collection 

The collected input data consists of three data types such as historical, expert, raw/real-

time sensor data. The historical input includes information such as inspection and 

maintenance actions, maintenance intervals, Plant Maintenance System (PMS) reports, 

drawings and layouts of each deck of the Engine Room (E/R), survey reports and 

specific logbook records, voyage reports as well as booklets and manufacturers’ 

manuals with information related to machinery. Historical data is supplementary in 

Condition Monitoring (CM) methods providing additional information related to 

current inspection and maintenance practices. For instance, PMS reports are valuable 

source of input as they provide information related to frequency of inspection and 

maintenance actions (the smaller the time interval, the higher importance of action) on 

component level per machinery. 

On the other hand, expert data involves failures and related measures including 

consequences, technical and economic impact sources by Classification Societies’ 

reports, inspection findings by crewmembers, ship operators and superintendents. 

Specifically, expert data utilises Failure Rates (FR) per system, subsystem and 

components, data such as incidents per ship and Mean Time To Fail (MTTF). 
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Additionally, expert data contribution incorporates personal judgment, operational 

difficulties and knowledge gained through experience. 

The third and critical data group is the raw/real-time monitoring data type 

corresponding to onboard measurements and records gathered while the vessel 

operates. Parameters that can be recorded onboard the vessel vary including 

operational parameters per trip, ship sailing condition parameters, environmental 

parameters per day, and ship machinery condition monitoring measurements. In the 

case of operational parameters, multiple records can be collected such as date, time in 

port, voyage time (port-to-port), ship sailing time, manoeuvring time and last dry dock 

date among others. Ship sailing data consists of parameters such as vessel speed, 

direction and position, rudder angle and draft (fore/aft). On the other hand, 

environmental records can include weather, wind speed and direction, sea state, current 

speed, current direction, and ambient temperature and pressure. The last and more 

crucial raw input data group involves ship machinery condition monitoring 

parameters. These parameters consist of performance measurements such as 

temperature and pressure in various locations on the ship as well as flow rates of fuel 

oil, lube oil, and water supply, vibration measurements, thermography, lube oil 

analysis and noise records (INCASS, 2014c). 

Probabilistic Machinery Reliability Assessment (PMRA) strategy is oriented towards 

raw sensor data. Specifically, PMRA utilises raw performance measurements of ship 

machinery such as pressure and temperature parameters. These are valuable input 

sources of indicating the reliable operation of ship machinery and providing data for 

analysis and evaluation. 

4.5.2. Recorded Input Dataset Clustering 

The second level of processing takes into account the raw sensor gathered data. At this 

stage, selected data mining methods aim to extract hidden information from the 

recorded datasets and transform it into useful and understandable structure for further 

elaboration (Witten et al., 2011). In other words, data mining is the practice of 

investigating patterns such as similarities and differences in collected data. From the 
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perspective of scientific research, data mining is a relatively new notion in marine 

engineering that has been imported from studies in other fields such as computing, 

statistics, and data analytics (Giudici, 2005). Henceforth, the newly introduced and 

innovative “big data” notion is considered in maritime industry by PMRA strategy as 

well enabling large datasets to be analysed computationally revealing patterns and 

trends. 

As stated above, data mining consists of processes aiming to extract hidden 

information from the recorded datasets and transform it into useful information. Data 

mining is a step in Knowledge Discovery in Databases (KDD) procedure that 

incorporates data analysis and information extraction algorithms generating particular 

enumeration of patterns over the gathered data (Fayyad et al., 1996b). 

Data mining algorithms in practice achieve prediction (forecasting future values) and 

performance description (finding patterns of describing the dataset) of the collected 

data. The two targets of data mining such as prediction and description can be achieved 

utilising different methods. Literature presents a wide range of data mining methods 

such as classification, regression, clustering, summarisation, dependency modelling 

and change and deviation detection as shown in Figure 4.4 MacQueen (1967), Fayyad 

et al. (1996a), Estivill-Castro (2002) and Gerardo et al. (2005). 
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Figure 4.4 Data mining taxonomy 

 Dependency modelling 

Evaluating each of the available data mining methods, dependency modelling 

investigates the relationships between variables (Fayyad et al., 1996b). In other words, 

it examines the input data interdependencies. This is a valuable and innovative 

consideration because this modelling approach allows the assessment of the effects on 

failure interaction. PMRA strategy considers these dependencies and their evaluation 

will take place in the following probabilistic predictive reliability assessment level by 

utilising the appropriate reliability tool. On ship machinery, data dependencies are 

already known, because machinery interacts while functioning. Therefore, these input 

data dependencies do not require a tool in order to be investigated. However, they 

require evaluation that PMRA strategy fulfils through the reliability assessment tool 

that will be presented next. 

 Summarisation modelling 

Summarisation data mining method provides a compact representation of the recorded 

dataset or a subpopulation of each set. Typical examples of summarisation methods 

involve parameters to represent the dataset or subsets such as mean and standard 
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deviations. In maritime industry, the availability of raw sensor data is limited, thus, 

out of inadequate or incomplete data sources summarisation (attempting to compact 

information) does not seem reasonable tool to extract information. 

 Regression modelling 

Additionally, regression modelling is separated in linear and nonlinear. Regression 

methods depend on making initial parameter assumptions (Freedman, 2009). 

However, these assumptions can be tested, if sufficient quantity of data is provided. 

Regression methods are beneficial even in cases that unsuccessful assumptions are 

taken place, however, they may not perform optimally and provide misleading 

outcomes (Cook and Weisberg, 1982). Therefore, the limited source of raw sensor data 

in maritime industry causes practical difficulties in testing and verifying the 

assumptions of regression data mining methods. 

 Change and deviation detection modelling 

Change and deviation (also known anomaly) detection data mining method addresses 

the identification of observation that do not comply to an expected pattern of the 

recorded dataset (Chandola et al., 2009). These anomalies are associated with noise, 

deviations and exceptions and they are recorded from the operational environment of 

the ship machinery and equipment (Hodge and Austin, 2004). In contrast to the 

remaining data mining methods, various change and deviation practices exist such as 

unsupervised, supervised and semi-supervised. Furthermore, popular change and 

deviation techniques include density-based techniques, Support Vector Machines 

(SVMs), Neural Networks (NNs) and fuzzy logic. Literature offers a wide range of 

applications and practices involving these techniques, thus, anomaly detection is 

placed a potential option for further development and investigation or comparison 

involved in PMRA strategy Demetgul et al. (2009), Chen and Vachtsevanos (2012) 

and Fazlollahtabar et al. (2015). 

 Data classification and clustering modelling methods 

These methods involve various groups of algorithms. Estivill-Castro (2002) states that 

there is no objective decision making process of selecting the correct classification or 
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clustering algorithm, because each dataset may require different classification or 

clustering method for feature identification or information mining. The decision of 

selection is related to the developer’s opinion satisfying specific requirements of the 

input data. 

Data classification and clustering aim to separate (i.e. classify and cluster respectively) 

in groups (subpopulations such as classifiers or clusters) of similar statistical features 

and characteristics the recorded observations (parameters) and members of a dataset. 

In the case of data classification, the algorithms are known as supervised, whereas, in 

the case of data clustering as unsupervised. Supervised data classification algorithms 

require a training phase before data mining takes place for the recorded datasets. In 

this training procedure, a sample of the recorded dataset will perform the algorithm in 

order to create the structure of the subpopulation/classification groups (classifiers), 

where observations/indices of the actual dataset will be allocated accordingly. Hence, 

the training phase of supervised classification algorithms imposes the existence of 

extensive and large amount of input data observations in order to satisfy the training 

and classification requirements. 

On the other hand, data clustering algorithms are simpler in structuring the required 

clusters compared to data classification practices. Data clustering is the general task to 

be solved placing observations in the appropriate cluster as defined by the 

characteristics of each cluster. In addition, Jung et al. (2014) highlights that clustering 

is an important unsupervised learning problem, as this method intends to structure the 

separation of unlabelled data. Furthermore, data clustering incorporates notions of 

clusters including subpopulations with small distances among the observations, dense 

areas of the data space and intervals or particular statistical distributions. Vital point is 

stated by Witten et al. (2011) that clustering methods are utilised when the instances 

of the gathered datasets are divided into natural groups. 

Summarising with respect to the selection of data mining methods, PMRA strategy is 

oriented towards data clustering (also known automatic classification). Various 

reasons led to this decision. First of all, data mining does not require training procedure 

as it relies on unsupervised algorithms. This is critical point as in maritime industry 

large raw input datasets (i.e. long term records) cannot be easily provided to others by 
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shipping companies, owners, operators, service providers or Classification Societies 

due to confidentiality issues. Hence, the simplicity and flexibility that data clustering 

offers for information extraction out of limited data sources place data clustering a 

valuable tool to be employed. On the other hand, the implementation of clusters upon 

decision of the developer enables flexibility in implementation according to the format 

and characteristics of the utilised input data types. Therefore, input data inclination 

and deviation clusters can be implemented, where clusters can be identified out of 

acceptable and warning operational levels. 

 Data clustering characteristics and criteria of selection 

Essentially, Giudici (2005) specifies that cluster analysis aims n gathered observations 

to be allocated into k subpopulations (with k<n). Hence, data clustering algorithms 

regulate the allocation of these observations into the clusters, the number of clusters 

involved in this process as well as the characteristics of the clusters in separating these 

observations. In order to identify and select the suitable data clustering algorithm, it is 

necessary to classify them according to fundamental functional features. 

Data clustering algorithms can be distinguished among multiple criteria and the 

appropriate descriptions are provided next. First of all, clusters can be divided in hard 

and soft clustering techniques. The first one allows elements or observations of the 

dataset to belong to one specific cluster or not, whereas, soft (also known fuzzy 

clustering) allows each element to belong to each cluster to a certain degree. Hence in 

soft clustering, characteristics of an observation can be inherited to more than one 

clusters. PMRA strategy is oriented towards hard clustering as the observations of the 

recorded raw sensor data (i.e. pressure and temperature) are classified in specific 

clusters such as acceptable and warnings. Additional information and reasons related 

to this decision are provided in the safety threshold process of PMRA strategy (see 

Figure 4.3). 

Another functional criterion of data clustering methods involves the agglomerative and 

divisive aspects. Agglomerative practice initiates clustering with each data pattern in 

a distinct cluster and then progressively merges clusters until a specified criterion is 

met. Alternatively, divisive practice splits the patterns until a criterion is satisfied. 



81 

Additionally, monothetic and polythetic aspects affect the decision of selecting data 

clustering algorithm. A monothetic algorithm considers features sequentially (one by 

one) dividing the provided dataset of patterns. On the other hand, most algorithms are 

polythetic, where features analysed according to calculated distances between patterns 

and these computations take place simultaneously (Jain and Dubes, 1988). Moreover, 

data clustering methods are classified according to incremental or non-incremental 

features. Since datasets get larger through technological development and analysis 

requirements increase as well, constraints on execution with respect to time or 

computational memory space affect the architecture of the algorithm. 

 Data clustering: Hierarchical vs. Partitional 

Data clustering methods are classified among hierarchical and partitional (also known 

non-hierarchical) as demonstrated in Figure 4.4. Hierarchical clustering is 

characterised by nested sequence of partitions, whereas, partitional clustering performs 

a single partition. A feature of hierarchical clustering is the graphical representation 

through a dendrogram, which enables the visual assessment of the merged objects into 

clusters. Hierarchical data clustering methods are mostly popular in biological, social 

and human behavioural sciences due to the fact of constructing taxonomies. 

On the other hand, partitional methods are employed in engineering practices where 

single partitions are required (Jain and Dubes, 1988). Furthermore, experimental 

studies show that hierarchical clustering (dendrograms) is impractical to large datasets 

and complicated patterns. Conversely, partitional clustering methods are suitable for 

representation and compression of large datasets. 

Therefore, PMRA strategy is oriented towards partitional (non-hierarchical) data 

clustering methods as they are suitable for engineering applications. Moreover, the 

ability of partitional clustering methods to compress and represent large datasets 

provides flexibility in case excessive quantity of data is provided. As shown in Figure 

4.4, partitional data clustering methods consist of squared error, graph theoretic, 

mixture solving and mode seeking algorithms. 

 Square error and graph theoretic algorithms 
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Squared error algorithms are most intuitive and frequently utilised as they perform 

well with isolated and compact clusters. The most-known representative is the k-means 

as it is the simplest satisfying a squared error criterion (MacQueen, 1967). According 

to Jain and Dubes (1988), different geometric structures and graphs established useful 

algorithms for examining multidimensional patters. Graph theory is applicable in both 

hierarchical and partitional (non-hierarchical) data clustering methods. Graph theoretic 

practice involves arrangements of nodes and edges. The nodes represent the patterns 

to be clustered, whereas, the edges correspond to the relations between the nodes (Jain 

and Dubes, 1988). Hence, graph theory in data representation has direct applicability 

in k-means data clustering method. 

 Mixture-solving and mode-seeking algorithms 

On the other hand, mixture-solving and mode-seeking algorithms rely on the 

assumption that the patterns are clustered utilising one of several probability 

distributions. The majority of the published work assumes that individual components 

are drawn using Gaussian distribution. Therefore, the process aims to identify the 

individual Gaussians. Expectation Maximisation (EM) algorithm, stems from 

Gaussian Mixture Model (GMM), is established for missing-data problems and 

estimation of the Gaussian parameters. In other words, EM algorithm estimates 

through the patterns the parameters of the component densities. 

 k-means vs. Expectation Maximisation algorithms 

Two well-known algorithms and widely applied in different research fields are the k-

means and EM algorithm. They share common aspects such as the iterative clustering 

procedure of guessing parameters targeting convergence according to predefined 

criteria. However, the main differences among k-means and EM algorithm are related 

to the clustering practice and the calculation of the distances. Firstly, k-means employs 

hard clustering, whereas, EM soft. Furthermore, k-means method implements the 

Euclidean distance while calculating the distance between items, whereas, EM utilises 

statistical methods (Jung et al., 2014). On the other hand, EM algorithm assigns the 

points in the clusters, when convergence is reached, whereas, k-means reallocates them 

at each point until convergence (Hand et al., 2001). A comparative research study 
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between k-means and EM algorithm performed by Jung et al. (2014) shows that k-

means provides more accurate data clustering, especially when the number of clusters 

is small (Williams and Simoff, 2006), whereas, EM algorithm is faster in processing. 

Estivill-Castro (2002) comments that “the nature of clustering is exploratory than 

confirmatory”, highlighting that “one person’s noise could be another person’s signal” 

(Han et al., 2011). 

Concluding, in this section multiple considerations and aspects of the examined data 

clustering methods are demonstrated. Due to accuracy, efficiency, simplicity and 

flexibility, k-means method will be utilised by the PMRA strategy in order to partition 

the recorded observations provided by the onboard sensors. Summarising, k-means 

algorithm offers the following advantages that will benefit the raw sensor data 

processing of PMRA strategy: 

 Unsupervised data mining method, that does not require supplementary input 

data for training and classification 

 Partitional method employed in engineering practices where single partitions 

are required 

 Hard data clustering (not overlapping) simplifies calculation processes as each 

observation belongs to one cluster or not 

 Suitable for excessive data quantity (if available) as it is easily programmed  

 Computational efficiency when number of clusters is small 

4.5.3. k-means/Lloyd’s Algorithm 

In this part of the second stage of PMRA strategy, the employed k-means data-

clustering algorithm is demonstrated. The method of k-means partitioning belongs to 

square error, partitional data clustering. This method separates data into clusters 

creating strong association among members of the same cluster and weak between 

different clusters (Gerardo et al., 2005). In other words, it creates definite association 

of the data point to the particular cluster, where it shares statistical characteristics only 

with the remaining members of the same cluster. 
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Data clustering of k-means was firstly used by MacQueen (1967). Moreover, the 

clustering procedure was examined and presented by various authors such as Jain et 

al. (1999), Gerardo et al. (2005), and (Williams and Simoff, 2006) among others. 

Hence, k-means input data clustering uses of the following steps: 

 Identify number of k clusters. 

 Initiate the calculation of means from μ1 until μk of k clusters. 

 Generate random selection of objects. 

 Assign each pattern to the closest cluster centre. If the data point is closest to 

its own cluster centroid, proceed to the following data point. If not, move it 

into the closest cluster. 

 Calculate minimum Euclidean distance determining the membership for the 

respective clusters. 

 Determine the membership and assign each point to corresponding cluster. 

 Iterate until the criterion function converges. During iteration process 

recalculation of μ1-μk is taken place until there is no change in the value of 

mean. 

4.5.4. Safety Thresholds (Indices) 

The following process level introduces the safety thresholds. These are values, which 

aim to set operational warning/alarm thresholds. These thresholds classify the recorded 

input data among acceptable and abnormal functioning levels. In maritime industry, 

safety and warning thresholds can be assigned by various stakeholders and experts 

such as ship machinery and equipment manufacturers, ship owners, operators and 

service providers as well as Classification Societies. Safety thresholds are utilised as 

reference points in order to compare the recorded, the predicted and the safety levels. 

In this selection, the physical measurements’ thresholds are classified and selected. In 

other words, the safety indices are considered in order to set acceptable operational 

levels (reference points). These safety levels identify the acceptable and warning limits 

of the physical measurements that the system should function. Various stakeholders in 

maritime industry can contribute in order to provide valuable input in setting the 
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appropriate safety/warning operational levels such as ship machinery and equipment 

manufacturers (manuals), Classification Societies (standards), ship owners, operators 

and service providers (reports, requirements, and expert judgment). 

Due to the fact that input from Classification Societies, ship owners, operators and 

service providers requires expert judgment and subjective decision making, the 

establishment of safety thresholds from these stakeholders may lead to technical 

assumptions. Therefore, in the case of PMRA, the safety thresholds (i.e. safety indices) 

are identified through the machinery manufacturer’s manual and the sea trials reports. 

These safety indices are selected as they fulfil the manufacturer’s requirements and 

sea trials provide the ideal available reference points for the required comparison. The 

establishment of safety levels in the PMRA strategy triggers the identification and 

assessment of the tendency the recorded input to downgrade and lead to alarm/warning 

levels before failures or malfunctions appear. 

The integration of the data clustering analysis (previous process level) with the 

identification of the safety thresholds introduces the probability of occurrence the 

observed (recorded) input data to perform within the predefined acceptable functional 

levels. This probabilistic measure in percentage generates the input for the following 

Markov Chain (MC) process and Dynamic Bayesian Belief Networks (DBBNs). 

4.5.5. Markov Chains (MC) 

Having in mind as fundamental notion that systems functioning degrade, the data 

processing level of PMRA examines different states of reliability assessment. These 

states are classified among static and dynamic modelling. In the first place, static 

modelling practice considers reliability input as fixed input that remains unchanged 

within the timeline. This modelling approach is simple and suitable to provide an initial 

indication of the ship machinery reliability performance. 

However, static state reliability modelling opposes the fundamental statement that 

degradation takes place almost continuously while systems operate. Therefore, a 

multiple-state assessment has to be introduced examining the variation of reliability 

within time. This type of assessment is known as dynamic or time dependent. 
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A well-known and widely applied process, established by Andrey Markov, is the 

Markov Chain (MC) or Discrete-Time Markov chain (DTMC) (Norris, 1998), which 

examines the state variation into a discretised timeline. MC is a flexible process that 

relies on memoryless Markovian state space analysis as it requires little information 

under simple hypothesis (Fort et al., 2015). According to Ghahramani (2001), MC 

model is tool for representing probability distributions over sequences of recorded data 

points denoting the observation at time t and the variable Yt. 

In the case of dynamic modelling, the time dependencies and state division of the 

reliability input are developed in parallel with the reliability assessment tool that will 

be presented next. Regarding the dynamic state modelling, PMRA strategy employs 

the mathematical tool of First-order Markov Chains (MC) (Yan et al., 2011), (Fort et 

al., 2015). First-order MC is mathematical system that undergoes transitions from one 

state to another within the state space. Furthermore, MC is selected, as it is flexible to 

set up by allowing different levels of state sequence complexity. In order to represent 

this dynamic modelling practice, a schematic diagram is shown in Figure 4.5. 

 

Figure 4.5 Dynamic probabilistic network arrangement 

In Figure 4.5, a risk assessment network is represented, where specific technical and 

practical details of this will be provided in the following PMRA level. This 

arrangement demonstrates the simplest network structure consisting of three nodes in 

each time step such as C1 corresponding to component 1, C2 for component 2, and S1 

for subsystem 1. The presented subsystem network arrangement includes in total three 

states within the timeline. Firstly, processed input data (i.e. reliability indices) from 

the previous time slice is provided shown as t-1. The current state t is calculated, 

whereas the predictive state is shown as future state t+1. As shown in Figure 4.5, each 

time slice (t-1, t, t+1) in first-order MC depends only on the previous state. This single 
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state transition from past to present and then to forecasted future is known as Markov 

property. 

First-order MC process is utilised in PMRA strategy in order to connect the results 

acquired by k-means data clustering method and the implementation of safety 

thresholds with the following dynamic reliability assessment tool. Therefore, k-means 

clustering and safety indices specify the normality of functioning by transforming the 

recorded input data into probabilistic indices (i.e. percentages). These values are fed 

into the first-order Markov Chain (MC) process in order to generate the time 

dependencies, state transition of the predefined intervals, within the timeline. The 

sequence of MC outcomes (i.e. past, present, future) is then utilised in the following 

reliability assessment tool. 

4.5.6. Predictive Probabilistic Reliability Assessment 

In this process level of the second stage of PMRA strategy, the available in literature 

reliability assessment tools are demonstrated and evaluated leading to the selected one. 

PMRA strategy is oriented towards quantitative assessment as offers subjective 

judgement without involving objective decision making, which may lead to 

insufficient or problematic solutions. Before evaluating these tools, it is crucial to 

define two principal terms such as reliability. Firstly, risk is defined by Nieuwhof 

(1985) as the expected loss or damage associated with the occurrence of a possible 

undesired event. More precisely, the International Electrotechnical Commission (ICE) 

outlines risk as the combination of frequency or probability of occurrence and the 

consequence of a specified hazardous event (IEC 60300, 1995). On the other hand, 

Fazlollahtabar et al. (2015) define reliability as the probability that a system works 

until time t. therefore, if a ship machinery or equipment breaks down, it can be dealt 

as failure. A desired level of reliability can be achieved by regulating the Probability 

of Failure (PoF). This approach of controlling reliability is known as the method of 

chance constraints in the context of mathematical programming. 

Literature presents various failure, risk and reliability analysis methods that will be 

presented next. The majority of these methods visualize failure occurrence as 
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independent event for each considered component of a system. The most known, well-

applied and capable quantitative risk and reliability modelling tools involve the Event 

Tree Analysis (ETA), Fault Tree Analysis (FTA) and the lately introduced in the 

engineering regime Bayesian Belief Networks (BBNs). FTA and BBNs present 

dynamic state modelling practices as well, such as DFTA and DBBNs respectively, 

taking into account time dependencies of risk and reliability variation. 

 Fault Tree Analysis (FTA) 

Fault Tree Analysis (FTA) is a well-known reliability tool used in various research 

studies for different applications since its original introduction in reliability analysis 

in the ‘60s and ‘70s. A Fault Tree is a detailed and organised structure consisting of a 

top event (or in technical terms top gate), intermediate gates/events and basic events 

showing the dependability steps and process under which the latter (basic events or 

causal factors) lead to the failure of a top event. The Fault Tree structure identifies all 

the independent factors, which influence the occurrence of the top event/gate and 

consequently the reliability of the top event/system under investigation. 

According to Bedford and Cooke (2001), FTA is a modelling tool employed as part of 

quantitative analysis of systems. It is basic tool in system analysis, which allows 

pictorial representation of statement in Boolean logic (i.e. 0 or 1, yes or no etc.). A 

FTA develops a deterministic description of the occurrence of an event (the top event). 

Fault Trees analyse the component failure which contributes towards system failure. 

Furthermore, FTA most usually employs the Boolean operations (also known as 

logical gates) AND, OR and NOT among others (Kumamoto and Henley, 1996). The 

most-known logical gates are the AND and OR and they are described as shown in 

equations (4.1) to (4.4) (Lazakis, 2011): 

𝑃𝐴𝑁𝐷𝑔𝑎𝑡𝑒(𝑡) = 𝑃 {𝐶1 ⋂ 𝐶2 ⋂ 𝐶3 … ⋂ 𝐶𝑛} = 𝑃(𝐶1)𝑃(𝐶2) … 𝑃(𝐶𝑛) (4.1) 

𝑃𝐴𝑁𝐷𝑔𝑎𝑡𝑒(𝑡) = 𝑃(𝑒1)𝑃(𝑒2) … 𝑃(𝑒𝑛) (4.2) 
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𝑃𝑂𝑅𝑔𝑎𝑡𝑒(𝑡) = 𝑃 {𝐶1 ⋃ 𝐶2 … ⋃ 𝐶𝑛}

= 1 − [1 − 𝑃(𝐶1)][1 − 𝑃(𝐶2)] … [1 − 𝑃(𝐶𝑛)] 

(4.3) 

𝑃𝑂𝑅𝑔𝑎𝑡𝑒(𝑡) = 1 − [1 − 𝑃(𝑒1)][1 − 𝑃(𝑒2)] … [1 − 𝑃(𝑒𝑛)] (4.4) 

 

Figure 4.6 Sample of Fault Tree structure (Lazakis, 2011) 

In Figure 4.6, a typical Fault Tree structure is presented. The arrangement is developed 

from top to bottom, while the calculations of the failure case scenarios are generated 

from the bottom basic events determining the failure of the top event. The sequence of 

events is built by logic gates. Furthermore, the possible routes of failing events are 

named ‘cut sets’. The failure scenario that involves the least of components’ failures 

in order the top event to fail is known as ‘minimal cut set’. 

In the case of Dynamic Fault Tree Analysis (DFTA), Probability of Working (PoW) 

input is updated continuously by changing their condition and value through time. In 

other words, time dependencies of the operational conditions are introduced. 

Moreover, the dynamic risk modelling of FTA employs dynamic logic gates. These 

gates utilise continuously new values of the considered reliability input, while they are 

calculated the updated results according to the constantly developed system state. 

FTA and DFTA are capable risk and reliability assessment tools, however potential 

limitations in the use of FTA include the requirement of specific knowledge of the 
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system under investigation. Expert’s knowledge on modelling is essential leading to 

subjective assessment. Furthermore, FT structure examines the failure occurrence of a 

single main/top event each time, hence, multiple top events need to be examined 

separately in the FT modelling structure. 

 Event Tree Analysis (ETA) 

Event Tree Analysis (ETA) is used for the identification of risks originating especially 

in the case of technical systems. In contrast with FTA, ETA utilises ‘forward logic’ 

structure and assessment as shows in Figure 4.7. Hence, it begins by considering an 

initiating event (i.e. non-standard functional case) and propagates this event through 

the system by considering all possible routes/options that can affect the behaviour of 

the system (Bedford and Cooke, 2001). 

Therefore, ETA is modelled starting from an initial undesired event/failure (shown on 

the left side) and then proceeds with the description of several branches denoting the 

failure possibilities (shown on the right side), most usually in a binary manner. 

Eventually, conditional probability values are assigned to each of the branches created 

with the summation of all the values of each branch (success and failure) being one or 

100%. In order to calculate the probability values for the end-events of the Event Tree, 

multiplication of all the intermediate values takes place, with the summation of all the 

values of all outcomes being one as well. 

 

Figure 4.7 Sample of event tree structure (Bedford and Cooke, 2001) 
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FTA and ETA tools are fundamental quantitative modelling tools which allow the risk 

study of fault or event occurrence. Both tools are suitable for risk analysis of simple 

systems by allowing minimum data and structured failure case scenarios. However, 

PMRA strategy aims to assess the risk and reliability performance through time of 

complex multicomponent ship machinery and equipment. Hence, the implementation 

of a flexible risk tool is required, which can model various systems, subsystems and 

components. 

 Bayesian Belief Networks (BBNs) 

The third and most critical under consideration quantitative risk tool is the Bayesian 

Belief Networks (BBNs). A Bayesian Belief Network (BBN) is represented as a Direct 

Acyclic Graph (DAG), which consists of nodes (variables) showing the different 

system states and a given set of arrows (edges), which represent the probabilistic 

dependence among the variables and interconnect the nodes. Various features of this 

risk and reliability assessment tool render BBNs the most suitable tool fulfilling 

PMRA strategy requirements. The main advantage of this tool is the flexible 

arrangement of the involved systems, subsystems and components as well as the 

considered real time input data (or failure modes) represented by different nodes (Dikis 

et al., 2014). 

BBNs allow the adjustment of size, shape and connections (links or arrows) by 

introducing more systems, subsystems, components, input sources and failure modes 

or removing them if required without reconsidering the remaining structure of the 

model (Figure 4.8). Moreover, network arrangement allows the innovative notion of 

interconnections among different systems, subsystems and components by introducing 

and assessing functional dependences. Furthermore, they can simulate real models by 

satisfying the condition that systems and components, while they operate, affect each 

other. Additionally, BBNs combine technical, economic and decision-making features 

by introducing functions of cost and decision through utility nodes. 

An example of a BBN model is presented in Figure 4.8 for a diesel Main Engine (M/E). 

This model demonstrates an extract of a case study designed and performed, while 

PMRA strategy was initially developed. In this extract, various groups of nodes can 
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be recognised representing the M/E and two subsystems such as the engine internal 

components and the engine external components. Moreover, multiple components are 

involved such as cylinders, injectors, exhaust (valve and receiver combined failure 

rate), pistons, bearings etc. as well as various failure modes and consequences (i.e. 

overheating, noise, vibration etc.). 

 

Figure 4.8 Sample of Bayesian Belief Network (BBN) structure (Dikis et al., 2014) 

The involved members (units) of this network are presented in nodes demonstrating 

the input gates. On the other hand, the arrows present the connections between the 

failure modes and the components/subsystems and main system. Hence in the 

graphical representation of BBNs in Figure 4.8, the nodes from which an arrow 

originates are called the ‘parent’ nodes (e.g. Cylinder is the ‘parent’ node of engine 

internal components) while for the ones to which the arrow ends are called the ‘child’ 

nodes (e.g. Main Engine Diesel node is ‘child’ of Engine Internal Components). 

Lastly, ‘root’ nodes signify that there are no arrows leading to them (e.g. top nodes 

representing the involved failure modes). 
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4.5.7. Overall PMRA strategy for raw data 

In the previous section, PMRA strategy development was presented in two stages of 

implementation as shown in Figure 4.1. Firstly, the principle aspects of PMRA were 

presented fulfilling research gaps investigated in the latest literature. In the second 

stage of the strategy implementation, the selected PMRA methods and tools were 

demonstrated focusing towards the advantages and innovation achieved through the 

proposed inspection and maintenance strategy. Therefore, in this section, PMRA 

strategy structure is proposed combining all involved methods and tools as applied and 

programmed. 

This section is mainly focused towards the overall PMRA strategy with respect to 

processing algorithms, methods applied and tools utilised. It is essential to highlight 

that two levels of procedures for input data selection and collection of processed and 

raw data are taken place as demonstrated in Figure 4.2 and Figure 4.3 respectively. 

These data considerations and related procedures will be discussed in the case study 

Chapters (5 & 6 respectively), where specific offshore oil and gas platform and ship 

machinery are employed for testing the proposed PMRA strategy. 

Therefore, Figure 4.9 presents the analytical PMRA strategy for ship machinery for 

raw input data. The proposed strategy consists of four distinct stages, which form the 

core of PMRA. These stages involve the (1) data processing, (2) data transformation, 

(3) dynamic predictive risk assessment and (4) decision-making. It is essential to 

highlight that this stage arrangement fulfils requirements and guidelines of European 

standardisation regulatory bodies such as British Standards (BS) and International 

Standards Organisation (ISO). More specifically, PMRA strategy is developed guided 

by BS/ISO 17359 (2011) and BS/ISO 13381 (2015), where the processing flowcharts 

of these guidelines can be found analytically in Appendix B confirming the appropriate 

similarities. 

At first place, data processing stage utilises the recorded real time input data in order 

to mine information with respect to ship machinery functioning. This process stage 

allows the identification of performance trend and pattern recognition (i.e. 

degradation, measurement variation etc.). The data transformation process is followed, 
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which performs a transition from natural measurements (i.e. temperature and pressure) 

to reliability input values (i.e. percentage). This second stage connects the raw input 

data information extraction with the benefits of probabilistic reliability assessment. 

The third stage involves risk assessment, where dynamic state modelling is integrated 

with a flexible reliability assessment tool. The latter combines information from 

various sources providing predictions with respect to reliability performance on 

system, subsystem and component levels. 

START

Identify number of k clusters

Initiate calculations for each 

identified cluster

Calculate Euclidean distance

Reassign each point to 

corresponding cluster

Recalculate means for each 

identified cluster

Criterion function 

converged?
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Introduce Markov Chains to 

generate dynamic state modelling

Implement DBBNs into input 

nodes combining all involved data

Utilise predictions for decision 

making
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Data processing stage:

Real time input data processing level 

for information extraction

Data transformation stage:
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1. FMEA
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Figure 4.9 Suggested PMRA strategy for raw ship machinery data 

 Data processing stage 
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Assuming that raw input sensor data (e.g. temperature and pressure datasets) is 

collected from various sources, the PMRA strategy is initiated by utilising the data 

processing stage. PRMA strategy employs k-means data clustering algorithm. The 

three major operational phases of k-means involve initialisation, transfer evaluation 

and repetition of the previous two phases until a predefined criterion is met. 

PMRA strategy assesses the reliability performance of ship machinery, hence, the 

predefined clusters categorise the recorded objects by monitoring the increase or 

decrease of performance inclination. The data mining method of k-means will perform 

for PMRA strategy consisting of 2 clusters (k=2). This decision enables higher 

accuracy and clustering performance when the number of clusters is small (Williams 

and Simoff, 2006). The involved clusters separate recorded data in decreasing and 

increasing segments/groups considering as their performance origin the overall 

gathered input dataset. 

Therefore, k-means data clustering algorithm for PMRA strategy requires an initiation 

dataset referred as ds. Dataset ds includes n number of total recorded objects known 

as indices i (i refers to the particular position of an object in ds, initiated at index 

number 1 and reaches the maximum number n). The overall ds has mean value μds and 

calculated as shown in equation (4.5). 

𝜇𝑑𝑠 =  
∑ 𝑑𝑠𝑛

𝑖=1

𝑛
 (4.5) 

Furthermore, initialisation phase requires the calculation of dataset ds standard 

deviation referred as σds. Firstly, the squared deviation D of each data point i has to be 

calculated known as Di as show in equation (4.6). 

𝐷𝑖→𝑛 = (𝑑𝑠𝑖→𝑛 −  𝜇𝑑𝑠)2 (4.6) 

The calculation of standard deviation σds requires the implementation of variance σ2 

for dataset ds known as 𝜎𝑑𝑠
2  shown in equation (4.7). 

𝜎𝑑𝑠
2 =  

∑ 𝐷𝑛
𝑖=1

𝑛
 (4.7) 
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When in fact as shown in equation (4.8), the standard deviation (σds) is equal to the 

square root of variance (𝜎𝑑𝑠
2 ). 

𝜎𝑑𝑠 =  √𝜎𝑑𝑠
2  (4.8) 

In the first place, dataset ds consists of n observations, where, the mean (μds) and 

standard deviation (σds) are calculated as reference points related to the initial gathered 

information. Dataset ds is separated in two almost equal initial in index size clusters. 

If n is even number, then clusters (i.e. k=1 and k=2) will be equal in size (included 

number of observations), else initial arrangement of cluster k=1 will include one more 

observation (data point) compared to k=2. The initial arrangement of clusters will be 

updated once k-means first iteration takes place. Therefore, out of dataset ds, two 

clusters are created such as ds1 and ds2 corresponding to cluster 1 and 2, respectively. 

The indices (data points) of each of these clusters ds1 and ds2 are classified in two 

groups according to predefined criteria. The first classification criterion identifies data 

points of ds1 that i≤μds (or i<μds), whereas the second criterion data points where i>μds 

(or i≥μds). This data point classification takes place for the second dataset ds2 as well. 

𝜇𝑑𝑠1𝐿 =  
∑ (𝑖 ∈ 𝑑𝑠1 < 𝜇𝑑𝑠)

𝑛𝑑𝑠1
𝑖=1

𝑛𝑑𝑠1𝐿
 (4.9) 

𝜇𝑑𝑠1𝐻 =  
∑ (𝑖 ∈ 𝑑𝑠1 ≥ 𝜇𝑑𝑠)

𝑛𝑑𝑠1
𝑖=1

𝑛𝑑𝑠1𝐻
 (4.10) 

𝜇𝑑𝑠1𝐿 =  
∑ (𝑖 ∈ 𝑑𝑠1 ≤ 𝜇𝑑𝑠)

𝑛𝑑𝑠1
𝑖=1

𝑛𝑑𝑠1𝐿
 (4.11) 

𝜇𝑑𝑠1𝐻 =  
∑ (𝑖 ∈ 𝑑𝑠1 > 𝜇𝑑𝑠)

𝑛𝑑𝑠1
𝑖=1

𝑛𝑑𝑠1𝐻
 (4.12) 

Hence, equations (4.9) and (4.10) are utilised, when the measurements under data 

clustering analysis have upper warning limits (not exceeding the defined threshold), 

whereas equations (4.11) and (4.12) are employed in the case of lower warning limits 

dataset clustering (not dropping below the defined limit). Additionally, 𝜇𝑑𝑠1𝐿 denotes 

the mean value of ds1 for the data points having magnitude lower L than 𝜇𝑑𝑠. Similarly, 
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𝜇𝑑𝑠1𝐻 represents the mean value of ds1 for the data points having magnitude higher H 

than 𝜇𝑑𝑠. 

According to ship machinery manufactures and guide manuals (further details will be 

provided in the following section and the case study chapter), a group of performance 

measurements utilise upper safety threshold limit (i.e. alarms and warnings) such as 

not exceeding a particular value during operation. On the other hand, another group of 

measurements employs lower safety limits. PMRA strategy prognostic features are 

oriented towards the examination and evaluation of ship machinery reliability 

degradation. Consequently, performance increase and decrease are vital indications of 

anticipated malfunctions or abnormal functioning. Furthermore, PMRA strategy aims 

to evaluate measurement deviation before reaching or exceeding the predefined 

acceptable operational levels (i.e. alarm/warning levels). 

𝜇𝑑𝑠2𝐿 =  
∑ (𝑖 ∈ 𝑑𝑠2 < 𝜇𝑑𝑠)

𝑛𝑑𝑠2
𝑖=1

𝑛𝑑𝑠2𝐿
 (4.13) 

𝜇𝑑𝑠2𝐻 =  
∑ (𝑖 ∈ 𝑑𝑠2 ≥ 𝜇𝑑𝑠)

𝑛𝑑𝑠2
𝑖=1

𝑛𝑑𝑠2𝐻
 (4.14) 

𝜇𝑑𝑠2𝐿 =  
∑ (𝑖 ∈ 𝑑𝑠2 ≤ 𝜇𝑑𝑠)

𝑛𝑑𝑠2
𝑖=1

𝑛𝑑𝑠2𝐿
 (4.15) 

𝜇𝑑𝑠2𝐻 =  
∑ (𝑖 ∈ 𝑑𝑠2 > 𝜇𝑑𝑠)

𝑛𝑑𝑠2
𝑖=1

𝑛𝑑𝑠2𝐻
 (4.16) 

In a similar manner, equations (4.13) and (4.14) refer to mean calculation (ds2) for 

upper threshold limits and equations (4.15) and (4.16) to mean values (ds2) for lower 

threshold limits. In order to calculate the distance between the observations (data 

points) and the centroids of the groups, PMRA strategy and k-means algorithm utilise 

the squared Euclidean distance as shown in equation (4.17) (Gerardo et al., 2005), 

(Hand et al., 2001). 

𝑑𝑑𝑠𝑗
2 =  ∑ ∑‖𝑐𝑖

(𝑗)
−  𝜇𝑑𝑠𝑗𝑔‖

2
𝑛𝑗

𝑖=1

𝑘

𝑗=1

 (4.17) 
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The squared Euclidean distance is calculated by taking into account the involved 

clusters j, the included clustered data points 𝑐𝑖
(𝑗)

 belonging to the jth cluster and the 

relevant selected mean value (centroid) per cluster j (cluster 1 or 2) and segment/group 

g (lower L than 𝜇𝑑𝑠 and higher H than 𝜇𝑑𝑠) as denoted in equations from (4.9) to (4.16) 

(Jain et al., 1999). The calculation procedure takes place iteratively until no 

observations are reassigned to another cluster. Hence, convergence is achieved and ds 

is clustered accordingly. Additional information and the iterative process of the utilised 

data clustering method is provided in Appendix C. 

 Data transformation stage 

This section demonstrates the data transformation stage through which raw sensor data 

is expressed in probabilistic indices. Data transformation stage is utilised to generate 

input indices for the following dynamic reliability assessment tool. Therefore, the 

clustered groups of observations within the appropriate clusters are employed in order 

to identify the probability of occurrence of data points exceeding the acceptable 

operational levels. As stated in the PMRA strategy method and tool selection 

development phase, the alarm functioning levels are identified by employing ship 

machinery manufacturers’ manuals as well as the ship trial report. 

PMRA strategy considers as raw sensor input data performance measurements. 

Henceforth in particular cases, the predefined safety threshold (i.e. alarm/warning 

limit) refers to the highest acceptable operational level (not exceeding), whereas in 

other cases, it sets the lowest satisfactory. Data transformation stage utilises the results 

of k-means data clustering method and the predefined safety thresholds. Through these 

input sources, the normality of each cluster is identified with respect to the reference 

point that is set for each measurement. Hence, the proportion of healthy data in a 

dataset is identified compared to the selected reference point. In the case of PMRA 

strategy, OEMs have been selected for identification of alarm levels. In other words, 

the number of clustered observations is considered within the acceptable limits and out 

of these. A ratio (percentage), among these, is created demonstrating the level of 

satisfactory and warning operation through the entire real time sensor dataset ds as 

shown in equations (4.18) and (4.19). 
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𝑃𝑑𝑠(𝑤𝑡) = 100
∑ ∑ (𝑐𝑖

(𝑗)
< 𝑙)

𝑚𝑗

𝑖=1
𝑘
𝑗=1

𝑚𝑗
 (4.18) 

𝑃𝑑𝑠(𝑓𝑡) = 100
∑ ∑ (𝑐𝑖

(𝑗)
≥ 𝑙)

𝑚𝑗

𝑖=1
𝑘
𝑗=1

𝑚𝑗
 (4.19) 

Equation (4.18) presents the probability of working state (occurrence of acceptable 

indices/measurements) for dataset ds at t timeframe 𝑃𝑑𝑠(𝑤𝑡), in case of upper threshold 

limit selection. On the other hand, equation (4.19) demonstrates the probability of 

failing state (occurrence of measurements exceeding the limits). In these mathematical 

expressions, 𝑐𝑖
(𝑗)

 denotes the clustered input data point, result of k-means, l represents 

the predefined limits (i.e. safety thresholds) and 𝑚𝑗 the entire number clustered 

indices. 

𝑃𝑑𝑠(𝑤𝑡) = 100
∑ ∑ (𝑐𝑖

(𝑗)
> 𝑙)

𝑚𝑗

𝑖=1
𝑘
𝑗=1

𝑚𝑗
 (4.20) 

𝑃𝑑𝑠(𝑓𝑡) = 100
∑ ∑ (𝑐𝑖

(𝑗)
≤ 𝑙)

𝑚𝑗

𝑖=1
𝑘
𝑗=1

𝑚𝑗
 (4.21) 

In a similar manner, equations (4.20) and (4.21) present the probability of working and 

failing states respectively, in the case of lower threshold selection (not acceptable drop 

lower than particular point) considering the relations with the selected limits l. 

 Risk assessment stage 

This section demonstrates the dynamic (time dependent) state modelling aspects and 

the probabilistic reliability assessment of PMRA strategy. The risk assessment stage 

incorporates the time dependent modelling by employing the MC process and 

implements the Dynamic Bayesian Belief Networks (DBBNs) for the reliability 

assessment. Risk assessment stage of PMRA strategy utilises the final converged 

results of data transformation stage such as Pds(wt) and Pds(ft) from equations (4.18) to 

(4.22). 

Therefore, regarding the time dependencies, PMRA strategy employs the MC process. 

This is a mathematical procedure which undergoes transitions from one state to another 
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on a state space (Dikis et al., 2015a). MC performs single state transitions, hence, each 

time slice depends only on the previous one. This single state transition from past to 

present and then to forecasted future is known as Markov property. The time-

homogeneous MC (or stationary MC) are processed utilising equation (4.23). 

𝑃(𝑋𝑛+1 = 𝑥 |𝑋𝑛 = 𝑦) = 𝑃(𝑋𝑛 = 𝑥 |𝑋𝑛−1 = 𝑦) (4.23) 

In MC sequential arrangement of random variables X = (X1, X2, …, Xn) a joint 

distribution is specified by the conditionals P(Xi | Xi-1, Xi-2, …, X1) (Fosler-Lussier, 

1998). As Markov property states in the simplest form of MC, the dependency of 

current variable is associated explicitly only to previous variable. Moreover, Blake et 

al. (2011) highlights that the dependency of current state is also linked inherently to 

all previous states. This is the first-order MC model arrangement as shown in equation 

(4.24) Blake et al. (2011). 

𝑃(𝑋𝑖|𝑋𝑖−1, 𝑋𝑖−2, … , 𝑋1) = 𝑃(𝑋𝑖|𝑋𝑖−1) (4.24) 

𝑃(𝑋0 = 𝑥0, … , 𝑋𝑛 =  𝑥𝑛) = 

𝑃(𝑋0 = 𝑥0) ∏ 𝑃(𝑋𝑡 = 𝑥𝑡|𝑋𝑡−1 = 𝑥𝑡−1, … , 𝑋0 = 𝑥0)

𝑛

𝑡=1

 
(4.25) 

Therefore, a generalised form of MC of order m (m stands for memory), is process 

satisfying: 

𝑃(𝑋𝑛 = 𝑥𝑛|𝑋𝑛−1 =  𝑥𝑛−1, 𝑋𝑛−2 =  𝑥𝑛−2, … , 𝑋1 =  𝑥1) 

=𝑃(𝑋𝑛 = 𝑥𝑛|𝑋𝑛−1 =  𝑥𝑛−1, 𝑋𝑛−2 =  𝑥𝑛−2, … , 𝑋𝑛−𝑚 =  𝑥𝑛−𝑚) 

for n>m 

(4.26) 

Major and innovative benefit of DBBNs involves the consideration of system, 

subsystem and component interdependencies. Therefore, interconnections among any 

nodes can be considered (acyclic). This key feature of DBBNs is significant and 

innovative, compared to the remaining quantitative risk and reliability methods (i.e. 

FTA, ETA etc.), as it allows the simulation of functions and operations on actual 

modelling environment. The BBN is defined as probabilistic graphical model as shown 
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in equation (4.27) involving conditional dependencies arranged into Directed Acyclic 

Graphs (DAG) and it is expressed as presented in (Dikis et al., 2015b). 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (4.28) 

Where P(A) and P(B) are the probabilities of events A and B, while A given B and B 

given A are conditional probabilities. Furthermore, innovative features of BBNs 

involve the utilization of decision-making and cost functions. 

Each system, subsystem and component, hence each node such as parent or child (not 

root nodes), is linked with a certain number of events or failure modes that varies per 

node. Therefore, multiple probabilistic failure case scenarios are formed among the 

associated nodes. Assuming that a child node has k parent nodes receiving input from, 

the generated number of probabilistic failure case scenarios is demonstrated in 

equation (4.29). 

𝑚 =  2𝑘 (4.29) 

The simplest form expressing the probabilistic event case scenarios is presented in 

(4.30). In this expression, P1 denotes the Probability of Survival (PoS) due to one event 

scenario, where w presents the Probability of Working (PoW) state and f the 

Probability of Failure (PoF). On the other hand, en1 denotes the event e due to the 

involved parent node 1 n1 (subscript indication). 

𝑃1 = {
𝑤: 100 −  𝑒𝑛1

𝑓:                𝑒𝑛1
; (4.30) 

𝑃2 = {
𝑤: 100 −  𝑒𝑛2

𝑓:                𝑒𝑛2
; (4.31) 

𝑃3 = {
𝑤: 100 − (𝑒𝑛1 𝑒𝑛2)
𝑓:               (𝑒𝑛1 𝑒𝑛2)

; (4.32) 

𝑃𝑚 = (𝑒𝑛1 𝑒𝑛2 𝑒𝑛3  … 𝑒𝑛𝑘) (4.33) 

𝑓 = 100 − 𝑤 (4.34) 
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Similarly, equation (4.31) demonstrates another probability event scenario (P2) by 

involving a different parent node en2. Accordingly, in equation (4.32), the combination 

of two event scenarios is demonstrated such as en1 and en2. Assuming that k=2, hence, 

two parent nodes are involved, the overall number of probabilistic case scenarios is 

four by utilising equation (4.29). Comparing BBNs with the closest competitor of FTA 

and the utilised logical gates (i.e. AND, OR, NOT etc.) (Lazakis, 2011), BBNs enable 

the calculation of multiple events considering simultaneously both AND and OR 

logical gates. Equations (4.30) and (4.31) refer to OR gate such as participation of one 

event in order the failure event of child node to take place, whereas, equation (4.32) 

acts as AND logical gate by involving both events. Therefore, this network 

arrangement of DBBNs is flexible and capable of modelling multiple operations and 

failure or malfunction events effectively. It is crucial to highlight that in case of k=2, 

the fourth probabilistic event scenario does not involve any failure or any event to take 

place. This event case mathematically is not provided as it equals to probability 100%. 

Moreover, equation (4.33) presents the generic form of event case scenario 

implementation. In this mathematical expression, m denotes the total number of case 

scenarios considered, while k refers to the total number of parent nodes linked. The 

relation of working and failing states performance w and f respectively is shown in 

equation (4.34). 

In addition to the analytical expression of equations (4.30) to (4.33), (Ghahramani 

(2001)) considers four random variables such as W, X, Y, and Z. From fundamental 

probability theory, the joint probability is known as the product of conditional 

probabilities shown in equation (4.35). 

𝑃(𝑊, 𝑋, 𝑌, 𝑍) = 𝑃(𝑊)𝑃(𝑋|𝑊)𝑃(𝑌|𝑊, 𝑋)𝑃(𝑍|𝑊, 𝑋, 𝑌) (4.36) 

 Decision making stage 

The final stage of PMRA strategy involves the decision making process. This stage 

offers inspection and maintenance suggestions by utilising the prediction results 

sourced from the risk assessment stage. Overall PMRA strategy examines the working 

state reliability performance of ship machinery on system, subsystem and component 

level. This approach aims to examine the root cause of failures or abnormal 



103 

functioning. The establishment of working state reliability predictions on component 

level allows to introduce inspection and maintenance action recommendations. These 

suggestions are integrated in the qualitative risk and reliability tool known as Failure 

Mode and Effects Analysis (FMEA) by employing information sourced by expert 

judgement and manufacturers’ manuals. 

FMEA is a valuable qualitative assessment tool, which will actively contribute towards 

decision making in PMRA strategy. It integrates essential information, knowledge and 

expertise sourced from machinery manuals, engine operators’ handbooks, onboard 

crewmembers, superintendents, engineers, ship operators, service providers and 

Classification Societies. This technical information has been collected as part of 

PMRA strategy, while various technical meetings with experts have been taken place. 

Therefore, the FMEA tool provides manually professional and expert level of 

information on inspection and maintenance action suggestions. The FMEA is 

structured from the perspective of the considered and collected input data. Hence, if 

deviation is noticed on the predicted reliability performance, the FMEA correlates 

forecasted figures with the failure mode and the related effect on system and 

component level. 

4.6. PMRA strategy features in development 

Condition Monitoring (CM) applications are newly introduced in maritime industry as 

investigation in academic research and commercial practices show. PMRA strategy 

introduces innovative solutions in this field considering processes from the very initial 

data acquisition point up to reliability assessment enhanced with practical decision 

making recommendations. The fundamental idea is to establish PMRA strategy 

without employing commercial software for the development. Therefore, the entire 

development takes place in-house by utilising Java Object Oriented Programming 

(OOP) language. 

Java language is chosen due to combination of different aspects and features. The 

language’s popularity offers a wide range of well-established program developers to 

publish functional and tested codes and tools for Java programming. An example of 
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these Java code developers is the APACHE software foundation, which provides 

software for the public good (APACHE, 2016). These codes are known as libraries 

can contribute towards PMRA accuracy and efficiency in programming. On the other 

hand, Java language is cross platform performing on different Operating Systems (OS) 

such as Windows, Macintosh, Linux distributors and smart/handheld devices such as 

Android, iOS and tablets. Hence, compatibility features enable development, 

implementation and functionality among any system. 

PMRA strategy is programmed in order automated raw input data to be imported and 

results to be exported. Therefore, Input/Output (I/O) file processing and exchange is 

performed on an independent level supporting separate files for input and output 

utilising platforms such as Microsoft Excel (.xlsx) and text (.txt). Additionally, 

executable files (i.e. .exe and .dmg) have been created and PMRA strategy has been 

tested on both Windows and Macintosh Operating Systems (OS) satisfying the initial 

consideration of compatibility. 

Tree structure programming is applied on the method and tool development for the 

data processing, dynamic state modelling and the reliability assessment tool. 

Moreover, tree structure arrangement is considered on the case study as well 

performing programming on system, subsystem and component level allowing flexible 

and efficient adjustments of the particular reliability assessment tool. This decision 

enables to adopt changes on the methodology for further development as well as on 

the Dynamic Bayesian Belief Networks (DBBNs) by adjusting components, 

subsystems and systems. Further description on the source code development can be 

found in Appendix D. 

4.7. Chapter summary 

In this Chapter, the suggested PMRA strategy for ship machinery is presented. First of 

all, research gaps are identified through the literature in maintenance of ship 

machinery. The establishment of PMRA strategy takes place in two stages. The 

principle aspects of PMRA strategy are presented first, followed by the method and 

tools selection. In the second stage, a structured analysis of data mining taxonomy 
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examines core categories of data analysis and information extraction algorithms 

leading to the most suitable (k-means data clustering method) for the PMRA 

requirements. On the other hand, various quantitative risk and reliability assessment 

tools are evaluated leading to the use of flexible Bayesian Belief Networks (BBNs) 

capable in modelling complex ship machinery systems. BBNs allow dynamic state 

modelling (time dependent), system, subsystem and component level of reliability 

evaluation by considering interdependencies and failure interaction. The proposed 

PMRA strategy consists of data selection and acquisition phase, data clustering, 

dynamic state modelling and reliability assessment. The suggested methodology is 

supported by additional information included in Appendices B, C and D, where core 

areas of BS/ISO 17359 and BS/ISO 13381 guidelines, the structure of data clustering 

pseudocode and the Java source code structure analysis are placed respectively. 
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5. CASE STUDY OF PROCESSED DATA 

5.1. Chapter outline 

In the previous Chapter, the development of the research methodology and the overall 

proposed Probabilistic Machinery Reliability Assessment (PMRA) strategy were 

demonstrated. In this Chapter, the initial application and some technical aspects of the 

PMRA strategy are presented. This application includes the demonstration of a case 

study of the primary developed dynamic reliability assessment tool as part of PMRA 

strategy. Therefore, this case study introduces the Markov Chain (MC) time 

dependences (i.e. dynamic state modelling) and establish the Dynamic Bayesian Belief 

Networks (DBBNs). Multiple independent main systems are considered such as the 

diesel generator (D/G), turboexpander and various electric powered pumps such as the 

seawater lift, oil export, cooling water, water firefighting and the crude oil handling. 

This study examines the dynamic reliability performance on main system, subsystem 

and component levels by incorporating various recorded failure modes. The involved 

data acquisition source employs, at this initial implementation stage of PMRA 

strategy, the Offshore Reliability Database (OREDA), which is oriented towards 

processed input data. This case study examines the dynamic state modelling as well as 

the selected reliability assessment tool. Additionally, this case study contributes 

towards the research and development of the network arrangement and the features 

and techniques of program design flexibly and efficiently in Java Object Oriented 

Programming (OOP) language setting the grounds for the overall PMRA strategy. 

Moreover, expert information is gained through OREDA source related to frequent 

failures, failure modes and critical systems, which is evaluated and considered further 

in PMRA strategy. 
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5.2. PMRA strategy case study arrangement 

The Probabilistic Machinery Reliability Assessment (PMRA) strategy consists of 

multiple analysis levels such data mining, transformation, time-dependent state 

modelling, and predictive reliability assessment. PMRA incorporates phases such as 

data acquisition, data clustering method for information extraction, dynamic state 

modelling, reliability assessment and initial implementation of decision making for 

maintenance action suggestions. The application of PMRA strategy takes place in two 

stages through case studies. Each stage of implementation examines different technical 

aspects of the PMRA strategy. In the first place, multiple systems are performed 

utilising processed input, sourced by Offshore Reliability Database (OREDA, 2002). 

At the second stage of implementation, raw sensor data is utilised testing the overall 

performance of PMRA strategy. 

The benefits of OREDA-based case study include critical points as follows: 

 Development of networks considering multiple complex systems, subsystems, 

various components and failure modes. 

 Development and testing of dynamic state modelling. 

 Implementation of the selected dynamic reliability assessment tool as 

demonstrated in Chapter 4 ‘Proposed Maintenance Strategy for Ship 

Machinery’. 

 Expert information extraction of a leading reliability analysis records source in 

maritime and offshore sectors. 

 Establishment of automation in the suggested methodology through 

programming Markov Chain (MC) process and Dynamic Bayesian Belief 

Network (DBBN) in Java programming language. 

The second stage of implementation of the PMRA strategy application utilises raw 

sensor data. This case study benefits the PMRA strategy development as follows: 

 Utilisation of raw actual sensor gathered data. 

 Acquire PMRA predictions on real data by testing the overall performance of 

the entire suggested methodology. 
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 Examine the procedure of the selected data clustering method. 

 Establish fully in-house developed reliability assessment networks by 

considering system, subsystem and component functional dependencies and 

independencies. 

 Investigate the applicability and performance of the dynamic state modelling 

integrated within the reliability assessment tool. 

 Coding the entire PMRA strategy in Java language by considering 

Input/Output (I/O) features, data exchange characteristics and programming 

optimisation. 

 Integration of PMRA strategy programmed application with the commercial 

platform of Danaos one for data acquisition. 

5.3. Case study systems selection 

As examined in Chapter 4, demonstrated in Appendix B and in accordance to BS/ISO 

17359 (2011), one of the initial stages of Condition Monitoring (CM) procedures 

involves the equipment audit. Hence, this critical stage identifies machinery that CM 

practices are applied on. The performed case study involves critical complex 

machinery systems such as the diesel generator (D/G), turboexpander and multiple 

electric powered pumps such as seawater lift, oil export, cooling water, water 

firefighting and the crude oil handling pump. 

The considered criteria, which led to the selection of these systems, involve technical, 

managerial/business, economic and safety aspects. Additionally, these aspects employ 

parameters related to continuous ship operation (i.e. operational hours), environment, 

property and the ship herself, cost of inspection and maintenance in case of 

malfunction or failure, redundancy and impact to commercial reputation (i.e. delay of 

cargo delivery in case of failure). Each system takes into account different components 

and failure modes as recorded by OREDA. Therefore, each system demonstrates 

different reliability performance. 
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5.4. Input data source 

In an attempt to initiate the development and programming of PMRA strategy process, 

input data is required to feed and test the designed methodology. The first step of the 

PMRA strategy development encompasses the dynamic state modelling and the 

reliability assessment tool. These processes require input data in the form of 

percentage (%) because the overall assessment takes place in probabilistic format. A 

valuable and trustworthy, initial source of input data in this format is Offshore 

Reliability Database (OREDA) for reasons that will be explained next. In this section, 

the utilised input data gathering source of OREDA and method of implementation are 

demonstrated. These set the grounds for the case study and the analysis undertaken 

related to Markov Chain (MC) process and Dynamic Bayesian Belief Networks 

(DBBNs). 

5.4.1. What is OREDA? 

OREDA stands for Offshore Reliability Database and is utilised as initial source of 

processed input data for PMRA strategy. OREDA is developed under the contribution 

of leading oil and gas companies such as Total, Statoil, Shell, Pretrobras, Engie, 

Gassco, ENI and BP. 

This source of information includes Reliability, Availability, Maintenance and Safety 

(RAMS) indices of offshore oil and gas machinery such as machinery, electric and 

mechanical equipment, control and safety equipment and subsea systems. 

Furthermore, the equipment classes incorporated by the OREDA database include 

rotating machinery, static equipment, additional topside systems, miscellaneous and 

subsea equipment (i.e. pipelines, manifolds etc.) as shown in Appendix E. RAMS 

provide a valuable foundation for decision making actions in offshore engineering and 

will be employed as initial quantitative input data in PMRA case study 

implementation. Characteristics of the utilised information include the record of data 

while machinery operate in steady-state time period (OREDA, 2002). 
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The equipment data is classified among topside and subsea systems. PMRA strategy 

processed input data case study extracts information from the topside systems as they 

share similarities in functioning. Each OREDA-based considered topside unit is 

presented followed by information such as: 

 Boundary definition drawing. 

 Subdivision in subunits the maintainable items. 

 List of recorded failure modes. 

 Observed number of failures for each failure mode. 

 The aggregated observed time in service for the equipment unit, identified as 

calendar and operational time. 

 Repair time estimate. 

 Supplementary information such as number of items and installations. 

 A cross-tabulation of maintainable items versus failure modes. 

In contrast to the published handbook, the released detailed information is 

demonstrated in a generic form anonymously rendered. So far, OREDA project 

publishes failure data strictly collected on hardware systems and components. 

Information related to human errors and interaction has not been considered yet. 

However, it is unknown if component failures are caused due to human error and 

implicitly these are included in the recorded failure rates. 

The mathematical definition of failure rate function (λ) (also known as hazard rate or 

force of mortality) is provided by OREDA (2002) and shown in equation (5.1). This 

definition states that failure rate is equivalent to the probability that the item will fail 

in the time interval (t, t + Δt), while the component is still operating at time t. 

Additionally, failure rate is identified as the probability that the component that has 

reached the age t will fail in the following interval, defined as (t, t + Δt). 

𝜆(𝑡)𝛥𝑡 ≈ Pr(𝑡 < 𝑇 ≤ 𝑡 + 𝛥𝑡 | 𝑇 > 𝑡) (5.1) 

It is crucial to highlight that the life of a component or item is split into three regions 

of expected failure behaviour known as burn-in (or infant mortality) phase, useful life 

and wear-out phase. These three phases are demonstrated in a curve known as bath-

tub shape, which represents the failure rate function through time. 
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5.4.2. Data acquisition and preparation 

As identified above, the source of processed input data for the initial PMRA 

application is OREDA. However, an input data preparation process is undertaken prior 

to the implementation. In this section, this data process is demonstrated which 

generates input for the dynamic state modelling process and the reliability assessment 

tool. This input data preparation phase utilises indices and data records as shown in 

Appendix E and the extracted table samples of OREDA. 

Each system involves various identified and recorded failure modes fm (from i=1 to 

n), where n denotes the maximum number of failure modes each topside system has 

been affected. On the other hand, each system consists of maintainable components c 

(from j=1 to m), where m indicates the maximum number of components each topside 

system consists of (according to recorded failures). Each failure mode holds a specific 

proportion out of the overall recorded modes per system and a different proportion per 

component (as each component may fail due to different failure modes) in relation to 

the likelihood of occurrence. The summarised percentage of occurrence of each failure 

mode fmiSUM, by considering figures of every involved recorded component, is shown 

in equation (5.2) below: 

𝑓𝑚𝑖𝑆𝑈𝑀 =  ∑ 𝑐𝑖

𝑚

𝑗=1

 (5.2) 

If cij denotes the failure rate index of component cj involving failure mode i (see 

Appendix E), then the recorded failure proportion pcij per component per total failure 

rate of each mode is expressed by equation (5.3). 

𝑝𝑐𝑖𝑗 =  
𝑐𝑖𝑗

𝑓𝑚𝑖𝑆𝑈𝑀
 (5.3) 

On the other hand, each failure mode fmiOP is expressed in relation to the system 

aggregated time in service t, the mean failure rate index of failure mode i denoted as 

μfri and the total component’s failure rate proportion out of all involved components in 

the system cjSUM. The mathematical relation is shown in equation (5.4). 
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𝑓𝑚𝑖𝑂𝑃 =  
𝑐𝑗𝑆𝑈𝑀

𝑖  𝜇𝑓𝑟𝑖

𝑡
 (5.4) 

Therefore, the failure rate of each component per failure mode by taking into account 

the aggregated time t is denoted as λij as shown in equation (5.5). Moreover, the failure 

rate of each component, by considering all failure modes that the particular unit can 

fail, is expressed in equation (5.6). 

𝜆𝑖𝑗 =  𝑝𝑐𝑖𝑗 𝑓𝑚𝑖𝑂𝑃 100 (5.5) 

𝜆𝐽 =  ∑ 𝜆𝑖𝑗

𝑛

𝑖=1

 
(5.6) 

This section combined with supplementary information attached in Appendix E 

demonstrates the processed data preparation of figures mined from the OREDA 

database. The results of this process set the grounds for system, subsystem and 

component level failure rate to be utilised by the dynamic state modelling process and 

the reliability assessment tool. These results take into account the proportion of failure 

rates per failure mode and the involved maintainable components. 

5.5. Case study network development 

In the previous section, the processed input data preparation phase was demonstrated 

which employs reliability figures and records from OREDA database. This section 

presents the Bayesian Belief Network (BBN) layout as structured in system, subsystem 

and component level by considering various failure modes. In total seven main systems 

are utilised for this case study such as the 4-stroke diesel generator (D/G), 

turboexpander and multiple pumps such as the seawater lift, oil export, cooling water, 

water firefighting, and the crude oil handling. 

5.5.1. Diesel Generator (D/G) system 

In this section, the diesel generator (D/G) case study is presented. This system is 

modelled to examine its reliability performance, as it is complex and its functioning is 



113 

crucial. It is essential to clarify in advance that OREDA database involves 4-stroke 

diesel engines (known as diesel generators) for energy supply requirements, whereas 

large ships are equipped with larger 2-stroke diesel engines for their propulsion 

requirements. The common aspects of these power generators (i.e. 2-stroke and 4-

stroke) create a fruitful ground for implementation of the initial application on 4-stroke 

diesel engines. Therefore, at this initial level of PMRA application, D/G are utilised, 

whereas ship application of PMRA, demonstrated next in Chapter 6, employs 2-stroke 

diesel engine. The D/G is vital in functioning system integrating a diesel engine with 

an electric generator to produce electrical energy. This application is oriented towards 

the diesel engine of the D/G as it shares common aspects and features with the 2-stroke 

marine diesel engines. 

Suitable inspection and maintenance planning of the D/G can eliminate the risk of 

failures and malfunctions, which can be harmful for humans and dangerous for the 

environment. Hence, Figure 5.1 illustrates the different unit levels consisting of the 

main system, subsystems and maintainable components and units. The main system is 

the D/G, which includes subsystems such as the lubrication, starting, control and 

monitoring, engine internal and external components and the cooling system. Each of 

these subsystems consists of different maintainable components and items. For 

instance, the lubrication system includes the oil, cooler and pressure instrument. On 

the other hand, various Failure Modes (FM) are recorded and introduced that can affect 

these components/subsystems/systems. 

The analytical list of failure modes is presented in Table 5.1 incorporating leakages of 

fluids, operational malfunctions, overhearing, noise, vibration and structural damage. 

These failure modes refer to recorded incidences as identified per maintainable unit or 

component. Furthermore, the D/G network arrangement includes multiple 

maintainable components among instruments, fuel items, cylinders, exhaust and 

bearings as listed in Table 5.2. Each of these components belongs into one of the 

consisted subsystems as shown in Table 5.3. 

Overall, the identified subsystems consist of the lubrication, starting, control 

monitoring, engine internal and external components and the cooling. However, 

OREDA database arranges the involved components and maintainable units among 
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starting, engine, control and monitoring, lubrication, and cooling subsystems. The 

major difference among these approaches involves the engine subsystem. In the 

OREDA arrangement, engine comprises of nine components and maintainable units. 

On the other hand, PMRA strategy divides these into two subsystems such as the 

engine internal and external components respectively. This is an attempt to optimise 

the calculation time, efficiency and programming effort. The mathematical 

explanation behind this decision has been provided in equation 4.27. In other words, 

the more the parent nodes feed input a child node, the greater the number of failure 

case scenarios will have to be developed. 

During the research and development period, different technical meetings have been 

taken place with professionals such as ship owners, operators, Classification Societies, 

service providers, consultants, onboard personnel/crewmembers and captains. These 

meetings offered valuable information from professionals that is sourced from years 

of experience, knowledge and actual/practical operational conditions in the field. The 

node selection (as shown in Figure 5.1) is combined with criteria such as system 

redundancy, number of failures per component and involved failure modes extracted 

from external source (OREDA from previous case study), and practical impact in case 

of failure. Additionally, expert judgment has been extracted from resources such as 

OEMs, technical reports, sea and shop trials, maintenance reports and engine 

operational manuals. Therefore, the utilised expert information has been selected, 

while taking into account the lowest possible subjective judgement. 

Furthermore, the dependencies of the provided network have been examined and 

validated by experts through the validation scheme obtained as part of the INCASS 

EU FP7 project (INCASS, 2014a). Lastly, it is essential to clarify that particular 

maintainable units and components have been congregated in single nodes such as 

injections, cylinders, pistons and radial bearings. OREDA database integrates gathered 

failure records of similar components and maintainable units and provides reliability 

figures into aggregated format. This decision of reliability representation is related to 

the input reliability figures OREDA provides. The failure records of OREDA have 

been collected by various oil and gas stakeholders summarising figures of similar or 

identical maintainable units and components (as listed above). 
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Figure 5.1 Diesel Generator (D/G) PMRA strategy network case study 
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Table 5.1 Failure mode list of PMRA strategy for D/G case study 

Failure Mode Abbreviation Meaning 

AIR Abnormal Instrument Reading 

ERO Erratic Output 

ELF External Leakage – Fuel 

ELU External Leakage – Utility Medium (i.e. lubricant, 

cooling water) 

FTS Fail to start on demand 

INL Internal Leakage 

SER Minor in-service problems 

NOI Noise 

OHE Overheating 

STD Structural Deficiency 

VIB Vibration 

 

Table 5.2 Component list of PMRA strategy for D/G case study 

Diesel Generator Component List 

Air Inlet Pistons 

Control Unit Pressure Instrument 

Cooler Radial Bearing 

Cylinders Shaft 

Exhaust Speed Instrument 

Fuel Filter Start Control 

Fuel Pump Start Energy 

Injections Starting Unit 

Level Instrument Temperature Instrument 

Oil Valve 

Piping  
 

Table 5.3 Subsystem list of PMRA strategy for D/G case study 

Diesel Generator Subsystem List 

Control & Monitoring 

Cooling 

Engine External Components 

Engine Internal Components 

Lubrication 

Starting 
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5.5.2. Turboexpander system 

The second case study involves the reliability assessment of the turboexpander. The 

reliability performance of this system is examined independently of the diesel 

generator (D/G) as this processed input data arrangement is provided according to the 

data source. The network arrangement is demonstrated in Figure 5.2. From top to 

bottom, turboexpander is structured into multiple nodes. Firstly, parent nodes of failure 

modes lead to components and maintainable units and these to subsystems. 

This system is divided in four subsystems such as the expander and recompressor 

turbine, control and monitoring, lubrication and the shaft and seal as shown in Table 

5.6. OREDA database separates expander turbine and recompressor subsystems. 

However, both subsystems are associated with five maintainable units and components 

and PMRA strategy combines them in this predictive reliability assessment. This 

decision has been made because the majority of the involved components (in expander-

recompressor turbine subsystem) are instruments such as pressure, speed and 

temperature. As long as failure records have been gathered, their reliable performance 

is significant. However, applied CM practices (which is the research orientation of 

PMRA strategy) for instruments are impractical and PMRA strategy is not oriented 

towards these maintainable units and components. 

Each of these subsystems consists of multiple related in function components and 

maintainable units such as instruments, oil, piping, seal, bearings and valves among 

others. Analytical list of turboexpander maintainable items and components is 

provided in Table 5.5. Lastly, eight failure modes are recorded to affect the optimal 

functioning of turboexpander as shown in Table 5.4. The presented BBN arrangement 

and particularly the node associations have been validated by academic experts on 

probabilistic risk assessment, chartered and onboard chief engineers from ship service 

providers and shipping companies, and Classification Societies. Similarly as in D/G 

case, the network arrangement has been validated by the INCASS FP7 EU project 

validation scheme. According to the feedback gained, the structure of the demonstrated 

network fulfils the practical/operational and research requirements. 
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Figure 5.2 Turboexpander PMRA strategy network case study 
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Table 5.4 Failure mode list of PMRA strategy for turboexpander case study 

Failure Mode Abbreviation Meaning 

AIR Abnormal Instrument Reading 

ERO Erratic Output 

ELP External Leakage – Process Medium (i.e. oil, 

gas, condensate, water) 

ELU External Leakage – Utility Medium (i.e. 

lubricant, CW) 

FTS Fail to start on demand 

SER Minor in-service problems 

UST Spurious Stop 

VIB Vibration 

 

Table 5.5 Component list of PMRA strategy for turboexpander case study 

Turbocharger Component List 

Actuator Pressure Instrument 

Control Unit Seal 

Filters Speed Instrument 

Flow Instrument Subunit 

General Instrument Temperature Instrument 

Monitoring Thrust Bearing 

Oil Valves 

Piping Vibration Instrument 

 

Table 5.6 Subsystem list of PMRA strategy for turboexpander case study 

Turbocharger Subsystem List 

Control Monitoring 

Expander Re-compressor 

Turbine 

Lubrication 

Shaft & Seal 

 

5.5.3. Seawater lift pump system 

In this section, the working state reliability performance of the seawater lift pump is 

assessed. This system has been selected as it shares similarities in function and service 
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as the ship ballast water pump. These systems’ reliable performance is crucial as they 

ensure the appropriate conditions for stability control through seawater supply in the 

ship application case and water supply for the oil and gas platform practices. This 

pump type records thirteen occurred failure modes by involving seventeen components 

and maintainable items/units that have been associated with the failure modes. The 

failure modes and components are represented in the BBNs in nodes, while they are 

arranged in subsystems according to their function. In agreement with OREDA 

database, these components and maintainable units have been arranged in subsystems 

such as the controller, shell, cooling, couples and mechanical power. 

Technical meetings, discussions and publications have been taken place as part of this 

research thesis. On the other hand, the validation scheme of INCASS FP7 EU project 

have contributed towards the testing of the present case study model. Hence, the 

represented structure, node and connections arrangement have been validated as well 

through the same procedure, experts and professionals as in the Diesel Generator 

(D/G) and Turbocharger cases. Therefore, chartered engineers and onboard crew 

members as well as engineers from Classification Societies have confirmed the 

seawater lift pump network structure. Additionally, the node structured fulfils the 

OREDA database structure ensuring accurate implementation. The network structure 

is demonstrated in Figure 5.3. On the other hand, the analytical list of failure modes is 

shown in Table 5.7, the components and maintainable items in Table 5.8 and the 

subsystems in Table 5.9. 
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Figure 5.3 Seawater lift pump PMRA strategy network case study 
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Table 5.7 Failure mode list of PMRA strategy for seawater lift pump case study 

Failure Mode Abbreviation Meaning 

AIR Abnormal Instrument Reading 

BRD Breakdown 

ELP 
External Leakage – Process Medium 

(i.e. oil, gas, condensate, water) 

ELU 
External Leakage – Utility Medium 

(i.e. lubricant, cooling water) 

FTS Fail to start on demand 

INL Internal Leakage 

NOI Noise 

OHE Overhearing 

PDE Parametre Deviation 

SER Minor in-service problems 

STD Structural Deficiency 

UST Spurious Stop 

VIB Vibration 

 

Table 5.8 Component list of PMRA strategy for seawater lift pump case study 

Seawater Lift Pump Component List 

Actuator Impeller 

Bearing Lubrication 

Cabling Monitoring 

Casing Piping 

Check Valve Radial Bearing 

Control Unit Seals 

Coupling Driven Shaft 

Coupling Driver Thrust Bearing 

Filter   

 

Table 5.9 Subsystem list of PMRA strategy for seawater lift pump case study 

Seawater Lift Pump Subsystem List 

Controller 

Shell 

Cooling 

Couplers 

Mechanical Power 
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5.5.4. Oil export pump system 

The following considered main system is the oil export pump and its reliability 

degradation is examined. This pump has been selected as it shares common functional 

aspects as the cargo pumps of the tanker ships. The purpose of the cargo pumps is to 

load and unload the cargo tanks, whereas the scope of oil export pumps is to discharge 

the tanks of the oil and gas platforms. The oil export pump type has been assessed as 

it is installed for similar operational requirements as the cargo pumps. However, it is 

vital to clarify that tanker ship cargo pumps are steam-powered, whereas the power 

requirements of the oil export pumps of OREDA database are not specified. 

This system is selected in order to assess the working state reliability performance as 

its optimum functioning ensures safety on the platform as well as efficiency in 

discharging the oil storage tanks. Overall, the oil export pump consists of five 

subsystems such as the controller, shell, cooling, couplers and mechanical power. 

These subsystems involve vital in functioning maintainable units and components, 

where failures have been recorded. These components are associated with at least on 

failure mode. Similarly as in the D/G, turboexpander and seawater lift pump, the 

network arrangement and node modelling have been validated by leading maritime 

stakeholders and INCASS FP7 EU project research members. On the other hand, risk 

assessment academic experts have been validated the demonstrated structure, as well 

as experienced engineers. 

Its network structure is illustrated in Figure 5.4. Furthermore, Table 5.10 lists the 

involved failure modes recorded. Furthermore, sixteen components and maintainable 

items are recorded that has been failed as shown in Table 5.11. These units belong to 

one of the arranged subsystems as listed in Table 5.12. As long as various failures have 

been recorded by leading oil and gas stakeholders, there is research space for reliability 

and safety enhancement. This case study attempts to provide inspection and 

maintenance activity guidelines. 
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Figure 5.4 Oil export pump PMRA strategy network case study 
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Table 5.10 Failure mode list of PMRA strategy for oil export pump case study 

Failure Mode Abbreviation Meaning 

AIR Abnormal Instrument Reading 

BRD Breakdown 

ELU External Leakage – Utility Medium 

(i.e. lubricant, cooling water) 

ERO Erratic Output 

FTS Fail to start on demand 

INL Internal Leakage 

NOI Noise 

OHE Overhearing 

SER Minor in-service problems 

STD Structural Deficiency 

VIB Vibration 

 

Table 5.11 Component list of PMRA strategy for oil export pump case study 

Oil Export Pump Component List 

Actuator Filter 

Bearing Impeller 

Cabling Lubrication 

Casing Monitoring 

Check Valve Radial Bearing 

Control Unit Seals 

Coupling Driven Shaft 

Coupling Driver Thrust Bearing 

 

Table 5.12 Subsystem list of PMRA strategy for oil export pump case study 

Oil Export Pump Subsystem List 

Controller 

Cooling System 

Couplers 

Mechanical Power 

Shell 
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5.5.5. Cooling water pump system 

This case study introduces the cooling water pump. This pump type is electrically 

powered and has the same functional purpose for both applications of offshore oil and 

gas platforms and ships. In Figure 5.5, the network arrangement is demonstrated, 

structured in nodes which denote the recorded failure modes, maintainable units and 

components, subsystems and the main system. As Figure 5.5 illustrates three failure 

modes are involved in this system, such as abnormal instrument reading, fail to start 

on demand and noise (Table 5.13).  

Therefore, cooling water pump demonstrates a narrowed range of failure modes 

compared to the previously presented seawater lift and oil export pumps. In total, seven 

maintainable units and components are recorded to be associated with failure modes 

as listed in Table 5.14. Lastly, four nodes denote the subsystem level such as the 

controller, valve, coupling driven and mechanical power (Table 5.15). Similarly, the 

cooling water pump network structure has been validated in regards to node 

arrangement and connections among them. The validation campaign of INCASS FP7 

EU project has provided feedback for applying the PMRA strategy on the presented 

network below (Figure 5.5). Along the same lines, experts and professionals have 

validated the network arrangement of cooling water pump. 

 

Figure 5.5 Cooling water pump PMRA strategy network case study  
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Table 5.13 Failure mode list of PMRA strategy for cooling water pump case study 

Failure Mode Abbreviation Meaning 

AIR Abnormal Instrument Reading 

FTS Fail to start on demand 

NOI Noise 

 

Table 5.14 Component list of PMRA strategy for cooling water pump case study 

Cooling Water Pump Component List 

Actuator 

Bearing 

Cabling 

Control Unit 

Monitoring 

Radial Bearing 

Shaft 

 

Table 5.15 Subsystem list of PMRA strategy for cooling water pump case study 

Cooling Water Pump Subsystem List 

Controller 

Check Valve 

Coupling Driven 

Mechanical Power 

5.5.6. Firefighting pump system 

An important system which ensures safety onboard the offshore oil and gas platforms 

and ships is the water firefighting pump. It is crucial to be well-maintained and in 

functional condition for immediate operation if needed. Firefighting pumps have vital 

in safety duty, however they are operated seldom. Therefore, typical testing of these 

systems involves periodic switch-on check and infrequent overhauling. 

Despite the fact that firefighting pumps are seldom to be operated, many and major 

failure modes have been recorded by oil and gas stakeholders in OREDA database. 

Therefore, the existing maintenance plan is inadequate to offer reliable condition for 

an important onboard system. This system’s network structure (Figure 5.6), as 
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processed input data extracted from OREDA, shows poor reliability performance 

recording various failure modes, which are listed in Table 5.16. The affected, from 

these failure modes, maintainable units and components are analytically provided in 

Table 5.17 and the involved subsystems that these belong in Table 5.18. 

According to existing practices and experts’ judgment CM practices are impractical 

on water firefighting pumps. Because CM requires effort, equipment installation, data 

analysis, hence resources, on-condition assessment has not been applied. However, it 

is promising to examine the predicted reliability assessment of the OREDA database 

figures in regards to the firefighting pump. The forecasted result will indicate the most 

significant failure modes, the most frequent failed components and the involved 

subsystems. 

In Figure 5.6, the network arrangement of the water firefighting pump has been 

presented. In a similar manner as the D/G, turboexpander, seawater lift, oil export and 

cooling water pumps, the firefighting pump’s network structure has been validated in 

regards to node arrangement and involved associations. Therefore, various shipping 

stakeholders such as chartered and chief onboard engineering, Classification Societies, 

risk assessment academic experts and the INCASS FP7 EU projects have been 

assessed the present network arrangement. 
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Figure 5.6 Firefighting pump PMRA strategy network case study 
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Table 5.16 Failure mode list of PMRA strategy for firefighting pump case study 

Failure Mode Abbreviation Meaning 

AIR Abnormal Instrument Reading 

ELU External Leakage – Utility Medium 

(i.e. lubricant, cooling water) 

ERO Erratic Output 

FTS Fail to start on demand 

INL Internal Leakage 

OHE Overhearing 

SER Minor in-service problems 

STD Structural Deficiency 

STP Fail to stop on demand 

UST Spurious Stop 

 

Table 5.17 Component list of PMRA strategy for firefighting pump case study 

Firefighting Pump Component List 

Actuator 

Bearing 

Cabling 

Casing 

Control Unit 

Filter 

Impeller 

Lubrication 

Monitoring 

Radial Bearing 

Seals 

Shaft 

Thrust Bearing 
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Table 5.18 Subsystem list of PMRA strategy for firefighting pump case study 

Firefighting Pump Subsystem List 

Controller 

Cooling 

Coupling Driven 

Mechanical Power 

Shell 

5.5.7. Crude oil handling pump system 

Lastly, the crude oil handling pump is the final system for predictive reliability 

assessment at this initial level of the technical implementation of PMRA strategy. 

Crude oil handling pump is electrically powered and share common functional and 

structural aspects with the ship fuel oil pump. This system’s reliable and efficient 

operation affects directly the crude oil and fuel oil supply respectively. 

In a similar manner, reliability input figures have been provided by OREDA database 

by taking into account various failed maintainable units and components and occurred 

failure modes. These are structured into subsystems such as the controller, shell, 

cooling, couplers and mechanical power. In Figure 5.7, the network arrangement 

structure is demonstrated consisting of multiple nodes denoting the main system, the 

involved subsystems (Table 5.21) and various failed maintainable units and 

components (Table 5.20). On the other hand, the associated recorded failure modes are 

listed in Table 5.19. 

The crude oil handling pump’s network layout has been confirmed by maritime 

stakeholders such as engineers, the INCASS FP7 EU project validation scheme, as 

well as risk assessment academic experts. The received feedback confirms the 

presented structure for further development by applying the PMRA strategy. 
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Figure 5.7 Crude oil handling pump PMRA strategy network case study 
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Table 5.19 Failure mode list of PMRA strategy for crude oil handling pump case study 

Failure Mode Abbreviation Meaning 

AIR Abnormal Instrument Reading 

BRD Breakdown 

ELU External Leakage – Utility Medium (i.e. 

lubricant, cooling water) 

ERO Erratic Output 

INL Internal Leakage 

OHE Overhearing 

SER Minor in-service problems 

UST Spurious Stop 

VIB Vibration 

 

Table 5.20 Component list of PMRA strategy for crude oil handling pump case study 

Crude Oil Handling Pump Component List 

Actuator 

Bearing 

Cabling 

Casing 

Control Unit 

Coupling Driven 

Coupling Driver 

Filter 

Impeller 

Lubrication 

Monitoring 

Radial Bearing 

Seals 

Shaft 

Thrust Bearing 

 

Table 5.21 Subsystem list of PMRA strategy for crude oil handling pump case study 

Crude Oil Handling Pump Subsystem List 

Controller 

Cooling 

Coupling Driven 

Mechanical Power 

Shell 
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5.6. Failure modes effects and analysis 

As already discussed, the decision making stage of PMRA strategy takes into account 

qualitative input such as expert judgement from chief onboard crew members, 

chartered engineers, ship owners, operators, service providers and Classification 

Societies. Therefore, as part of the present PhD thesis, various technical meetings have 

been taken place in order to gather useful information from experts, professionals, and 

various stakeholders of maritime industry. 

On the other hand, valuable input has been extracted by OEMs, and ship machinery 

manuals. This input is utilised for structuring a qualitative risk assessment tool known 

as Failure Modes and Effects Analysis (FMEA). Therefore, FMEA has been employed 

for providing essential guidelines regarding the defected subsystems, particular 

involved failure modes, effects of failure, damaged equipment and components as well 

as malfunctions and failure causes. 

A sample of this FMEA tool has been demonstrated in Table 5.22, where particular 

maintainable units and components of the engine have been incorporated. More 

specifically, the camshaft bearings (aft and fore), thrust bearing and intermediate shaft 

bearings have been included. For each bearing, the operational temperature has been 

recorded listing failure modes, effects and probable damaged equipment and 

components in case of malfunction. Analytical representation of this FMEA including 

more systems and measurements has been attached in Appendix F. 
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Table 5.22 Sample of FMEA for PMRA strategy case study 

Subsystem Measurement Parameter 
Failure 

Mode 

Effect of 

Failure 

Damaged 

Equipment 

Damaged 

Component 

Malfunction/ 

Failure Cause 

Engine 

Camshaft 

Bearing (aft) 
Temperature 

Overheating 

of bearing  
Engine damage Camshaft 

Bearings 

Camshaft 
Wear & Tear 

Camshaft 

Bearing (fore) 
Temperature 

Overheating 

of bearing 
Engine damage Camshaft 

Bearings 

Camshaft 
Wear & Tear 

Thrust bearing 

LO outlet 
Temperature 

Improper 

lubrication 
Engine damage 

Thrust 

bearing 
LO Piping Leak 

Shaft 

malfunctioni

ng 

Engine slow 

down 
Crankshaft Thrust bearing Wear & Tear 

Intermediate 

shaft bearing 
Temperature 

Overheating 

of bearing 
Engine damage Shaft Bearing Wear & Tear 
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5.7. Outcomes of processed data type case study 

This section aims to summarise and present the key findings of the acquired results of 

the processed data type case study. The results are presented on system level by taking 

into account weaker subsystems, components and maintainable units and the relation 

to particular failure modes. Furthermore, this section provides recommendations with 

respect to inspection and maintenance actions according to the observed reliability 

performance predictions. 

The summarised results of each main system are provided in significance order of the 

most probable subsystems, components and involved failure modes to cause 

malfunctions and failures. For instance as shown in Table 5.23, starting subsystem 

acquired results set this more probable to fail compared to engine internal. Similarly, 

starting energy is more probable to fail than level instrument. Additionally, starting 

energy’s involved INL failure mode is predicted to be more likely to occur than FTS 

and the latter more likely than SER, AIR and ELU respectively. Hence, the 

subsystems, components and failure modes are placed in the tables below in 

probabilistic order to lead in failures as the results are acquired by the PMRA strategy. 

Therefore, the summarised forecasted reliability performance results of the D/G place 

starting subsystem the most likely to fail followed by engine internal and external 

subsystems respectively. Starting subsystem’s maintainable units’ and components’ 

predicted reliability performance show that the most likely component to fail is the 

starting energy followed by the level instrument, starting unit and lastly the starting 

control. The involved failure modes comprise of AIR, ELU, FTS, INL and SER. The 

majority of these failure modes such as AIR, FTS and SER do not provide a specific 

indication or information related to the failure observed. 

However, ELU and INL are recorded due to leakages (i.e. fluids), which did not allow 

the sufficient pressure for initiating the D/G. Therefore, particular interest should be 

focused towards pressure measurements, which will allow the monitoring of the 

conditions required for starting the D/G. 
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Table 5.23 Summary of diesel generator (D/G) processed data type case study results 

System Subsystem Component Failure Mode 

D/G Starting Starting Energy INL, FTS, SER, AIR, ELU 

  Level Inst. SER, AIR, FTS 

  Starting Unit FTS, SER, ELU, AIR 

  Starting Control FTS, AIR 

 Engine Internal Injections SER, INL, ELU, ERO, OHE 

  Exhaust SER, STD, ELF, NOI, ELU 

  Cylinders STD, FTS, INL, ELU 

  Radial Bearings NOI 

  Pistons VIB 

 Engine External Air Inlet SER, STD 

  Fuel Filter SER, ERO, FTS, ELF, INL 

  Fuel Pump INL, ELU 

  Shaft VIB 

 

Furthermore, the second in order subsystem as shown in Table 5.23, for occurrence of 

probable failures or malfunctions, is the engine internal components subsystem. In this 

case various components and maintainable units are involved such as the injections, 

exhaust, cylinders, radial bearings and pistons. The developed FMEA diagnostic 

qualitative table of PMRA strategy (Appendix F) provides description per failure 

mode, effect of failure, damaged equipment and component as well as cause of 

malfunction. In regards to fuel injection equipment, the probable causes of failure are 

associated to leakages and worn fuel pumps. The predicted leakages may take place 

due to damaged fuel valves. Hence, the valves should be checked visually or by 

pressure testing. 

On the other hand, the malfunction or failure of exhaust system is more complex as it 

is associated to more complicated functions and operational conditions. Therefore, low 

output flow will lead to loss of performance and the indication is low temperature of 

exhaust gases. The fuel supply equipment will be affected and particular components 

such as the suction pipe or inlet valve. Alternatively, if increased exhaust gas 

temperature is identified then damage could occur in the fuel injectors, cylinder, air 

coolers and the turbocharger. Particular components damaged can either be piston 

rings or exhaust valves. 
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Cylinders can be investigated by monitoring the gas outlet temperature and liner 

pressure (i.e. worn) among others. In regards to cylinder JCFW, two measurement 

indices can be recorded the JCFW outlet temperature and the inlet pressure. In the first 

place, higher fresh water temperature may damage the engine due to failure or 

malfunction of the JCFW pump. Additionally, lower fresh water supply can lead to 

loss of redundancy due to the motor of the JCFW pump of the pump. 

In the case of the bearings, the lubrication oil outlet temperature should be analysed, 

in order to identify increase before malfunctions occur. Furthermore, thermography 

can be introduced for monitoring the temperature of the entire bearing, which will 

allow the localisation of the temperature increase. Another option for the bearing’s 

defect assessment is vibration analysis. This method is not considered in this PhD 

research thesis; however, vibration analysis benefits can be integrated with the 

advantages of lubrication oil temperature monitoring and thermography for optimising 

the predicted results. Lastly, the proper condition of the pistons can be recognised from 

the condition of piston rings and the piston crown (per cylinder). Measurements that 

sign improper condition of the piston rings and crown are the exhaust gas outlet 

temperature and the compression pressure. 

The second main system under reliability assessment is the Turboexpander as shown 

in Table 5.24. In this case, the most likely subsystem to cause failures and abnormal 

functioning is the expander/recompressor turbine. More specifically, components such 

as the temperature and pressure instrument, piping, thrust bearing and the speed 

instrument acquired the lowest reliability performance. 

Table 5.24 Summary of Turboexpander processed data type case study results 

System Subsystem Component Failure Mode 

Turboexpander 

Exp./Recomp. 

Turbine Temperature Inst. AIR, SER, ELP, UST, ELU 

  Pressure Inst. AIR, FTS, ELU 

  Piping SER, ELU 

  Thrust Bearing UST 

  Speed Inst. AIR 
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The instruments such as temperature, pressure and speed are devices utilised for data 

gathering. Therefore, implementation of condition monitoring practices will be 

financially inefficient and practically demanding for controlling and processing 

additional data. According to the developed FMEA (Appendix F), T/C can be 

monitored by analysing the exhaust gas temperature. The temperature increase will 

indicate fouling of the turbine or the compressor side. 

Various pumps are installed onboard merchant ships. These ensure the optimum 

transfer of liquids such as sea and fresh water, fuel and lubrication oil among others 

for different functional requests. The processed input data type case study involves the 

seawater lift (SW), oil export (OE), cooling water (CW), water firefighting (FF) and 

the crude oil handling (CH) pump. Therefore, Table 5.25 demonstrates commonalities 

and differences in regards to the most probable, to cause failures and malfunctions, 

subsystems, maintainable units and components and involved failure modes. The 

summarised pump results are provided in significance order of the most probable units 

to cause malfunctions and failures. 

Table 5.25 Summary of pumps processed data type case study results 

System Subsystem Component Failure Mode 

SW Shell Seals ELU, SER, INL, STD, OHE, BRD 

  Casing BRD, STD, ELP, ELU, OHE 

  Filter SER, PDE, ELU, STD, INL 

  Lubrication ELU 

  Valve NOI, ELP 

OE Shell Casing STD, BRD, ELU, OHE 

  Seals ELU, SER, STD, INL, BRD, OHE 

  Filter SER, ELU, STD, INL 

  Lubrication ELU 

  Valve NOI 

CW Couplers Coupling Driven NOI 

FF Controller Control Unit AIR, SER, STP, ERO, UST 

  Monitoring AIR, SER, ERO, STP 

  Actuator SER, AIR, ERO 

  Cabling AIR, UST 

CO Controller Control Unit AIR, ERO, UST, SER 

  Monitoring AIR, ERO, SER, UST 

  Actuator SER, AIR, ERO 

  Cabling AIR, UST 
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SW and OE acquired similar forecasted results on subsystem level. Hence, shell 

subsystem is expected as the most probable to cause malfunctions and failures, 

whereas involved components and maintainable units are seals, casing, filter, 

lubrication and valve. It is essential to clarify that in the SW case, seals are less reliable 

than casing, whereas in OE case, seals are more reliable than casing. The order of 

subsystems, maintainable units and components as well as the failure modes indicates 

the most likely to fail to the least. 

In all discovered pump cases, seal damage can be identified by detecting low liquid 

supply (or no flow) by measuring the inlet pressure. Moreover, no flow or low supply 

can be also caused due to blockage of the filter. In both cases, loss of redundancy is 

expected. Furthermore, OHE can be detected by implementing thermography 

monitoring, especially in the particular case of the pump rotors. According to expert 

judgment and historical information gathered through technical discussions 

undertaken as part of this PhD research project, pumps are monitored by measuring 

the input/output flowrate, applying vibration monitoring for the bearings, 

thermography for the rotor and the pump and measuring the pump’s rotor current by 

utilising ammeter (ampere-meter). 

Concluding the outcomes of the processed input data type case study as part of the 

PMRA strategy development and implementation, there should be highlighted 

essential points related to the utilised input and its relationship to the acquired 

predictions. The acquired predicted reliability performance results illustrate result 

uniformity among similar systems such as the pumps. This uniformity can be described 

as data and reliability records are provided in a summarised format by combining 

measurements from various similar systems installed in different offshore 

applications. 

In other words, OREDA database provides reliability records by combining input and 

historical measurements from various systems collected in certain period of data 

gathering. Furthermore, data records are integrated for similar components. Therefore, 

reliability figures for maintainable units and components (e.g. cylinders, pistons, 

bearings etc.) are provided for the entire historical record and not for 

single/independent items. 
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Additionally, the forecasted results present high reliability performance. In many of 

the failure cases, results exceed 99% of reliability. The reason is mainly focused 

towards the implementation of aggregated time in service, which is considered by 

OREDA at 106 hours. Moreover, accumulated reliability input records are provided by 

summarising the reliability performance on particular groups of similar systems and 

maintainable units. Therefore, the independent unit/component reliability performance 

is unknown according to the provided input. Lastly, many recorded failure modes 

direct to generic descriptive causes such as abnormal instrument reading, breakdown, 

minor in-service problems, and parameter deviation among others. 

The scope of this case study is to indicate the most probable failure case scenarios by 

taking into account-recorded failure modes. The implementation of processed 

reliability input data enables the testing and programming of the initial technical 

aspects of PMRA strategy such as the dynamic state modelling and the reliability 

assessment tool of Bayesian Belief Networks (BBNs). 

5.8. Chapter summary 

In this Chapter, the initial technical implementation of the dynamic state modelling 

process and the reliability assessment tool as parts of the PMRA strategy is 

demonstrated in detail. The selection of seven main systems demonstrates the 

applicability of the above in terms of evaluating the reliability performance on system, 

subsystem and component levels. This initial technical implementation takes place by 

performing a case study on different offshore platform oil and gas systems. This study 

considers systems such as the diesel generator (D/G), turboexpander and various 

electric powered pumps among the seawater lift, oil export, cooling water, water 

firefighting and the crude oil handling pump. Moreover, initial input data is extracted 

from OREDA, which provides reliability figures on system and maintainable 

component/item level by taking into account various failure modes. This Chapter 

presents the OREDA handbooks features and structure as preliminary input data 

source of PMRA strategy. On the other hand, input data gathered from this source is 

processed in order to be suitable for the PMRA strategy requirements.
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6. CASE STUDY OF RAW DATA 

6.1. Chapter outline 

In this Chapter, the second stage of PMRA strategy implementation takes place 

involving a holistic study of the entire suggested methodology. This case study 

considers all data processes, methods and techniques of PMRA strategy such as the 

data acquisition, data clustering and safety threshold implementation, reliability 

assessment and the initial aspects of decision-making. On the other hand, compared to 

the previous case study as presented in Chapter 5, the current study utilises raw input 

data such as temperature and pressure gathered from actual ship operational 

conditions. This decision of utilising raw input data has been made because of different 

reasons. The majority of the presented reliability assessment methods utilise reliability 

figures and failure records in the form of percentage without presenting the processing 

method. Hence, processed input data incorporates major assumptions. On the other 

hand, the input data source’s processing methodology is unknown, leading to trust to 

the data provider. Secondly, the developed methodology relies on the input data 

source, which leads to dependence to external data processing developers. Therefore, 

this study intends to evaluate the entire PMRA strategy performing reliability 

performance predictions by employing raw input data. The structure of the developed 

PMRA strategy network consists of various nodes. These nodes denote the raw input 

data measurements, maintainable units and components, subsystems, and the main 

systems. Overall, the PMRA raw input case study takes into account systems such as 

the fuel, jacket cooling fresh water, lube oil, air supply, bearing drive and cylinders. It 

is essential to clarify that the entire PMRA strategy development has been taken place 

in Java Object Oriented Programming (OOP) language. 
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6.2. Input Data Acquisition and safety thresholds 

As already mentioned, this case study utilises raw input data. The data has been 

gathered by the automatically created report of Danaos 1 data collection platform. It is 

important to highlight that the developed in Java language PMRA strategy is 

compatibly programmed in acquiring data directly from the automatic Danaos 1 

platform generated report. Overall, different performance measurements have been 

gathered originating from a total of 37 temperature and pressure measurement 

locations of ship machinery. 

The overall data collection period involves one month of operation from the 1-30 of 

April 2016. The condition monitoring and data acquisition process involve hourly 

collected data. Hence, input data observations are uniform in time step (interval) 

ensuring uniformity in the performed reliability performance predictions. The 

automatically created report by Danaos 1 platform provides some fundamental 

statistical figures of the acquired data incorporating values such as average, time 

integral, maximum increase and decrease rate, variance, deviation and minimum and 

maximum-recorded values. These values provide useful initial indication of the ship 

machinery condition; however, they are not enough in order to acquire time-dependent 

predictive reliability assessment. 

Table 6.1 provides a sample of the raw input data gathered onboard. The demonstrated 

input denotes the lube oil outlet temperature (°C) of the thrust bearing. According to 

manufacturer’s manual and expert judgment, the optimum temperature range is 55-70 

°C, whereas the alarm limit has been defined at 90 °C. As shown in Table 6.1 the 

provided raw input data sample shows almost steady temperature values within the 

suggested limits. More specifically, the temperature reaches the lowest acceptable 

limits. Additional provided information includes the precise time stamp at which each 

observation is collected. 
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Table 6.1 Sample of thrust bearing lube oil outlet temperature input data 

Time Thrust Bearing LO Outlet Temperature (°C) 

01/04/2016 13:10:10 50.3 

01/04/2016 14:10:10 50.2 

01/04/2016 15:10:10 50.2 

01/04/2016 16:10:10 50.2 

01/04/2016 17:10:10 50.2 

01/04/2016 18:10:10 50.1 

01/04/2016 19:10:10 49.9 

01/04/2016 20:10:10 49.9 

01/04/2016 21:10:10 49.9 

01/04/2016 22:10:10 50.0 

 

With regards to the alarm point, the establishment of warning level at 90 °C ensures 

the safest possible functioning. Hence, this alarm limit prevents of overhearing caused 

by improper lubrication of the thrust bearing, which will lead to malfunctions, material 

wear and may cause failure (see Appendix F). Moreover, normal functioning of the 

bearing requires optimum lubrication of the moving parts. As the operational range is 

defined at 55-70 °C and the warning threshold at 90 °C, the latter defines the highest 

acceptable input measurement. 

The identification of warning at higher exceeded levels of temperature, according to 

manufacturers and experts, prevents of failure or malfunctions. However according to 

the thesis author and ship onboard chief engineers and experts, the temperature records 

lower than 55 °C may indicate over-lubrication, which leads to expensive or 

financially inefficient solutions of retaining low operational temperature. In other 

words, warnings should be considered for the lowest band of data points as well. This 

research study intends to enhance safety onboard the ship through the suggested 

predictive reliability assessment. Therefore, the warnings and alarm limits that are 

implemented come in agreement to the manufacturer’s indications. Additional 

information related to gathered raw input data and their safety thresholds can be found 

in Appendix F. 



145 

6.3. BBN arrangement of case study 

Ship machinery is complex in structure, functioning and maintenance consisting of 

multiple components, maintainable units, subsystems and main systems. Therefore, 

the structure of this network arrangement is challenging in order to demonstrate an 

actual/realistic model of the critically selected measurements and maintainable units. 

Furthermore due to this complexity, the list of units and components can be assumed 

as “unlimited”, hence specific criteria are required in order to set the baseline of the 

network structure and the involved nodes. 

First of all, Figure 6.1 demonstrates the overall PMRA strategy case study network 

arrangement. This network consists of groups of nodes denoting the raw sensor input 

data, the maintainable units and components, the subsystems that these units belong to 

and the overall reliability performance of PMRA case study model. The selection of 

raw input data measurements is identified according to information extracted from 

machinery manufacturers’ reports and manuals. 

As part of this thesis, various technical discussions and meetings have been taken place 

identifying essential ship machinery, maintainable units and components as well as 

key input data measurements. Professionals from different maritime stakeholders such 

as ship owners, operators, service providers, Classification Societies, onboard crew 

members and ship machinery condition monitoring experts contributed with their 

valuable knowledge and expertise in the field of marine engineering and inspection 

and maintenance practices. The gathered input from experts has been utilised in 

structuring the network arrangement as presented in Figure 6.1. Lastly, this case study 

network structure and arrangement is influenced by the knowledge and experience 

gained from the previously designed and performed OREDA-based case study (see 

Chapter 5). 

PMRA strategy case study network model consists of six systems as shown in Figure 

6.1. These systems clarify major functions that their reliable operation affects 

parameters such as safety onboard for humans and the environment, and economic and 

business reputation aspects. The considered systems are listed among fuel, jacket 

cooling fresh water, lube oil, air supply, bearing drive and the cylinder as shown in 
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Table 6.2. Each of these systems has been considered to contribute to the overall 

PMRA strategy assessment equal percentage quantities. In other words, no weighting 

factors have been introduced into these subsystems. 

It is important to highlight in advance, that the research assumptions incorporated in 

this thesis will be discussed analytically in Chapter 9. More specifically related to the 

BBN arrangement, as long as a child node has been associated to multiple parent nodes 

each input has equal contribution to the child node. For instance, in case a child node 

has two parent nodes affecting it, the contribution is 50% per input. This decision has 

been made as neutral (equal) weighting factors demonstrate the actual reliability 

degradation without the implementation of quantitative (subjective) factors. The idea 

behind PMRA strategy is to eliminate subjective judgment and this has been tried to 

be applied in all development aspects. 
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Figure 6.1 Overall PMRA strategy network case study
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Table 6.2 PMRA strategy systems examined in case study 

Systems 

Fuel System 

JCFW System 

Lube Oil System 

Air Supply System 

Bearing Drive System 

Cylinders System 

 

PMRA strategy has been tested through this case study, while collecting input data 

from a Panamax container ship. The vessel has been equipment with an 8-cylinder 2-

stroke slow speed marine diesel engine (MAN B&W 8K90MC-C). In Figure 6.1, the 

six systems combine various nodes, which denote the maintainable units and 

components and the raw input data. In this section, the systems’ network arrangement 

will be demonstrated considering all involved nodes per system. It is important to 

clarify in advance that the demonstration of these systems takes place independently. 

However, the potential functional interdependencies among the raw input data 

measurements and the maintainable units are considered and will be identified and 

described as well. Therefore, PMRA strategy benefits from node interconnections as 

established by the Bayesian Belief Networks (BBNs) and they will be demonstrated in 

detail below. 

6.3.1. Fuel system 

First of all the fuel system (also known fuel oil system) manages the precisely designed 

fuel oil feeding process. The reliable functioning of this system will lead to financially, 

and technically efficient performance. This system’s operation is directly linked to fuel 

consumption expenses and safety for crew and the environment. Hence, it is important 

to appreciate the processing involved before identifying the required raw input data 

and maintainable units (Taylor, 1996). 

The fuel temperature has to be progressively increased reaching the appropriate 

viscosity before delivery to injectors and burners. Moreover, attention should be paid 

on the filters as cleanliness of fuel is essential. Therefore, specific treatment of fuel 



149 

oils is required before reaching the engine. This treatment involves storage, heating 

and separation of water. Fine filtering and centrifuging utilising purifiers are necessary 

for removing solid particles and separating two liquids such as oil and water. The 

removal of solid particles and water from the fuel oil ensures efficiency and reduction 

of wear. 

As defined above, the initial processes of fuel oil preparation involve centrifuges and 

heating oil. The clean heated fuel oil is pumped into the daily service tank. The oil is 

transferred to a mixing tank and flow meter records the fuel consumption. The booster 

pumps lead oil through the heaters, viscosity regulators and the engine-driven fuel 

pumps. Hence, the fuel pumps transfer high-pressure fuel to the appropriate injectors. 

The fuel system is structured in two main subsystems the fuel supply and return as 

shown in Figure 6.2. The maintainable units and components that these subsystems 

consist, include valves, pipes, the fuel booster pump and the fuel filter. On other hand, 

the considered input data measurements involve the fuel oil inlet pressure and 

temperature and the cylinder exhaust gas outlet temperature. The latter raw 

measurement belongs to cylinder system and will be presented next. Therefore, this is 

the first introduced interconnection linking nodes of different systems (i.e. fuel and 

cylinder systems). Analytical lists of the input data requirements and the considered 

maintainable units and components can be found in Table 6.3 and Table 6.4. 

 

Figure 6.2 Fuel system of PMRA strategy network case study 
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Table 6.3 Fuel system input list of PMRA strategy case study 

Fuel System Input 

Fuel Oil Input Temperature 

Fuel Oil Input Pressure 

Cylinder Exhaust Gas Outlet Temperature 

 

Table 6.4 Fuel system maintainable units list of PMRA strategy case study 

Fuel System Maintainable Units 

Fuel Booster Pump Fuel Inlet Valve 

Fuel Supply Pump Fuel Pressure Limit Valve 

Fuel Suction Pipe Stream Inlet Valve 

Fuel Isolating Valves Fuel Supply System 

Fuel Filter Fuel Return System 

Fuel Return Pipe  

6.3.2. Jacket Cooling Fresh Water (JCFW) system 

The second considered system is the Jacket Cooling Fresh Water (JCFW). It is 

responsible for retaining the required temperature of the cylinder jackets, the cylinder 

heads, turbo-blowers and cooling the pistons. According to Taylor (1996), a fresh 

water cooling system for a slow-speed diesel engine is split in two systems. The first 

system is responsible for cooling the cylinder jackets, heads and turbo-blowers, 

whereas the second system for cooling the pistons. 

The cylinder jacket cooling fresh water is connected to a sea-water-circulation cooler 

and then into the jacket-water circulating pumps. The following process involves the 

cooling of the cylinder jackets, cylinder heads and turbo-blowers. A header tank 

expands and water is fed into the system. Vents release air from the cooling water. A 

heater facilitates in a warming of the engine before the starting process by circulating 

hot water. On the other hand, the piston cooling system uses similar components. The 

piston cooling system is separate to eliminate contamination from piston cooling 

glands to the piston cooling system. 

The JCFW system network designed for the PMRA strategy case study is 

demonstrated in Figure 6.3. In total nine raw input data measurements are required 
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such as the JCFW outlet temperature for cylinders 1 to 8 and the cylinder JCFW inlet 

pressure. The key maintainable unit considered is the JCFW pump and components 

that consists of such as the shaft, housing, rotor and impeller. Analytical lists of the 

raw input data and the maintainable units and components are demonstrated in Table 

6.5 and Table 6.6. 

 

Figure 6.3 Jacket cooling fresh water system of PMRA strategy network case study 

Table 6.5 Jacket cooling fresh water system input list of PMRA strategy case study 

Jacket Cooling Fresh Water System Input 

JCFW Outlet Temperature 1 

JCFW Outlet Temperature 2 

JCFW Outlet Temperature 3 

JCFW Outlet Temperature 4 

JCFW Outlet Temperature 5 

JCFW Outlet Temperature 6 

JCFW Outlet Temperature 7 

JCFW Outlet Temperature 8 

Cylinder JCFW Inlet Pressure 
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Table 6.6 Jacket cooling fresh water system maintainable units list of PMRA strategy 

case study 

Jacket Cooling Fresh Water System Maintainable Units 

JCFW Pump Inlet Strainer 

JCFW Pump Wear Rings 

JCFW Pump Shaft 

JCFW Pump Inlet/Outlet Valve 

JCFW Pump Housing 

JCFW Pump Impeller 

JCFW Pump Seal 

JCFW Pump Rotor 

JCFW Pump 

6.3.3. Lube Oil (LO) system 

An essential system onboard the ship is the lubrication one. This system provides a 

supply of lubricating oil to moving parts and components in the engine retaining 

temperature within the desired range. Lubrication oil’s purpose is the creation of a film 

of oil between the moving parts. This lube oil film decreases friction and eliminates 

material wear. In some cases, lubrication oil is utilised as coolant. 

First of all, the lubrication oil is placed in the bottom of the crankcase (sump) or in a 

drain tank. A lube oil pump inlet strainer drains oil from the tank to a pair of pumps 

and then to a pair of filters. The oil is led into a seawater cooler and then to the various 

branch pipes of the engine. The branch pipes pass lube oil to the main bearing of a 

particular cylinder, leading to a drilled port in the crankshaft to the bottom end bearing 

and then in the connecting rod gudgeon pin or the crosshead bearing. Moreover, an 

alarm system located at the end of the lube oil distribution pipe secures that the 

appropriate pressure is retained by the pump. 

The pumps and filters are allocated in pairs allowing redundancy and standby use, 

while one is cleaned, the second can be operated. The lubrication system performs in 

closed-loop enabling re-use of the lube oil. Hence, after a lubrication cycle is 

completed the oil drains back to the sump or drain tank, where it is pumped again. A 

level instrument (gauge) provides readings of the available lubrication oil in the drain 
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tank. On the other hand, a centrifuge ensures the lube oil cleanliness in the system and 

if required clean oil is fed from a storage tank. The seawater oil cooler operates at a 

lower pressure than the oil, therefore probable failure will lead to oil leak and not 

contamination of the lubrication circulation system by seawater. Lastly, if the engine 

has oil-cooled pistons, lube oil is provided from the system as well at higher pressure 

by employing booster pumps (e.g. Sulzer RTA engine) (Taylor, 1996). 

The lubrication system of PMRA strategy case study is demonstrated in Figure 6.4. 

This system consists of four subsystems such as the lube oil pump and its rotor, the 

lube filter and the cooler. Each of these maintainable units includes various 

components as listed in Table 6.8 and these are linked to the considered and recorded 

raw input data as shown in Table 6.7. 

 

Figure 6.4 Lube oil system of PMRA strategy network case study 
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It is essential to highlight that large slow-speed diesel engines are installed with 

separate lubrication system for the cylinder liners. Oil is mechanically provided 

between the liner and the piston in each cylinder and the process is not recovered. 

However, PMRA strategy is oriented towards the model arrangement described above. 

Table 6.7 Lube oil system input list of PMRA strategy case study 

Lube Oil System Input 

Main LO Inlet Pressure 

Main LO Inlet Temperature 

 

Table 6.8 Lube oil system maintainable units list of PMRA strategy case study 

Lube Oil System Maintainable Units 

LO Pump Inlet Strainer LO Cooler Plates 

LO Pump Electric Conductor LO by Pass Valve 

LO Pump Shaft LO Rotor Bearing 

LO Pump Inlet/Outlet Valve LO Self Cleaning Control 

LO Pump Impeller LO Regulation Flow Valve 

LO Pump Bearing LO Pump 

LO Pump Rotor LO Rotor 

LO Pump Seal LO Filter 

LO Pump Housing LO Cooler 

LO Filtering Elements  

6.3.4. Air supply system 

The most fundamental and important in efficiency functions of internal combustion 

engines are the supply of fresh air and the removal of exhaust gases. This cyclic 

process is known as gas exchange. The reliability assessment of the involved 

maintainable units and components involved in both of these functions are considered 

in the PMRA strategy case study. The separation of these two functions is challenging 

task and is taken place among the air supply system and the cylinders as shown in 

Figure 6.1. 

However due to the cyclic process between air supply and gas removal, 

interdependencies of raw input measurements and maintainable units’ reliability are 
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utilised. This network arrangement allows in a flexible manner the implementation of 

connecting nodes of different systems. This technique of interconnections and 

integration of nodes of various systems produces an overlapping of information among 

the air supply and the cylinder systems, hence each section supplements the other. The 

removal of exhaust gases by blowing fresh air is known as scavenging. Modern 

engines have installed exhaust gas driven Turbochargers (T/C) for scavenging and 

supercharging processes (i.e. removal of exhaust gases and supply of fresh air for 

compression respectively). 

Improper scavenging can cause collection of fuel oil in the scavenging space of the 

engine. Hence, unburned fuel may be blown into the scavenge space due to damaged 

piston rings, faulty timing or damaged injectors. This faulty incidence can lead to 

scavenge fire. Therefore, engine power will be reduced diagnosed from higher exhaust 

gas temperature at the affected cylinders. Further information related to defects, 

diagnostics and engine inspection and maintenance suggestions due to improper 

scavenging and increased exhaust gas temperature can be found in Appendix F. 

 

Figure 6.5 Air supply system of PMRA strategy network case study 

As stated above, this section presents the air supply system reliability assessment. Its 

structure is demonstrated in Figure 6.5. This case study of PMRA strategy takes into 
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account multiple raw input data measurements as listed in Table 6.9 integrating input 

data from both air supply and cylinder systems. On the other hand, the involved nodes 

which denote the considered maintainable units and components are listed in Table 

6.10. 

Table 6.9 Air supply system input list of PMRA strategy case study 

Air Supply System Input 

Scavenging Air Receiver Temperature 1 Cyl. 1 Exhaust Gas Outlet Temperature 

Scavenging Air Receiver Temperature 2 Cyl. 2 Exhaust Gas Outlet Temperature 

Scavenging Air Receiver Temperature 3 Cyl. 3 Exhaust Gas Outlet Temperature 

Scavenging Air Receiver Temperature 4 Cyl. 4 Exhaust Gas Outlet Temperature 

Scavenging Air Receiver Temperature 5 Cyl. 5 Exhaust Gas Outlet Temperature 

Scavenging Air Receiver Temperature 6 Cyl. 6 Exhaust Gas Outlet Temperature 

Scavenging Air Receiver Temperature 7 Cyl. 7 Exhaust Gas Outlet Temperature 

Scavenging Air Receiver Temperature 8 Cyl. 8 Exhaust Gas Outlet Temperature 

Scavenging Air Manifold Pressure Main Engine Control Air Inlet Pressure 

 

Table 6.10 Air supply system maintainable units list of PMRA strategy case study 

Air Supply System Maintainable Units 

Piston Rings 1 Manifold Relief Valve 1 

Piston Rings 2 Manifold Relief Valve 2 

Piston Rings 3 Manifold Relief Valve 3 

Piston Rings 4 Manifold Relief Valve 4 

Piston Rings 5 Manifold Relief Valve 5 

Piston Rings 6 Manifold Relief Valve 6 

Piston Rings 7 Manifold Relief Valve 7 

Piston Rings 8 Manifold Relief Valve 8 

Injector 1 Injector 5 

Injector 2 Injector 6 

Injector 3 Injector 7 

Injector 4 Injector 8 

Injectors Manifold Relief Valves 

Air Piping  
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6.3.5. Bearing drive system 

The following system presented in this section is the bearing drive, which ensures the 

appropriate functioning of the air supply and scavenging. Most of the moving parts are 

armed through bearings in order to transfer the generated kinetic energy to the shaft 

and the propeller. The probable failure or malfunction of bearings will lead to engine 

slow down (inefficiency) or damage, material wear or entire bearing collapse. 

Therefore, sufficient lubrication of the bearing’s moving parts will ensure its 

functioning. The bearing drive network arrangement for the PMRA strategy case study 

is illustrated in Figure 6.6. Analytical list of the input data requirements is provided in 

Table 6.11, whereas the maintainable units and components are shown in Table 6.12. 

 

Figure 6.6 Bearing drive system of PMRA strategy network case study 

Table 6.11 Bearing drive system input list of PMRA strategy case study 

Bearing Drive System Input 

Camshaft Bearing Aft Temperature 

Camshaft Bearing Fore Temperature 

Intermediate Shaft Bearing Temperature 1 

Intermediate Shaft Bearing Temperature 2 

Intermediate Shaft Bearing Temperature 3 

Thrust bearing LO Outlet Temperature 
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Table 6.12 Bearing drive system maintainable units list of PMRA strategy case study 

Bearing Drive Maintainable Units 

Camshaft Bearings 

Thrust Bearing 

Intermediate Shaft Bearings 

6.3.6. Cylinder system 

The last system involved in the PMRA strategy case study is the cylinder. This network 

part collaborates with the air supply system, where both manage the required fresh air 

supply and the scavenging. Analytical description of this cyclic process is provided in 

the air supply system section above. However, it is necessary to highlight that the 

utilised engine is the MAN B&W 8K90MC-C. Therefore, eight cylinders are arranged 

in this study and reliability network arrangement. 

 

Figure 6.7 Cylinders of PMRA strategy network case study 
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The system’s network structure is provided in Figure 6.7 incorporating maintainable 

units and components of the air supply system such as the piston rings and the injectors 

for cylinders 1-8. The overall involved cylinders’ system input data requirements are 

listed in Table 6.13, whereas the considered maintainable units and components are 

provided in Table 6.14. 

Table 6.13 Cylinder input list of PMRA strategy case study 

Cylinders Input 

Cyl. 1 Exhaust Gas Outlet Temperature 

Cyl. 2 Exhaust Gas Outlet Temperature 

Cyl. 3 Exhaust Gas Outlet Temperature 

Cyl. 4 Exhaust Gas Outlet Temperature 

Cyl. 5 Exhaust Gas Outlet Temperature 

Cyl. 6 Exhaust Gas Outlet Temperature 

Cyl. 7 Exhaust Gas Outlet Temperature 

Cyl. 8 Exhaust Gas Outlet Temperature 

 

Table 6.14 Cylinder maintainable units list of PMRA strategy case study 

Cylinders Maintainable Units 

Exhaust Valve 1 Cylinder 1 

Exhaust Valve 2 Cylinder 2 

Exhaust Valve 3 Cylinder 3 

Exhaust Valve 4 Cylinder 4 

Exhaust Valve 5 Cylinder 5 

Exhaust Valve 6 Cylinder 6 

Exhaust Valve 7 Cylinder 7 

Exhaust Valve 8 Cylinder 8 

Piston Rings 1 Injector 1 

Piston Rings 2 Injector 2 

Piston Rings 3 Injector 3 

Piston Rings 4 Injector 4 

Piston Rings 5 Injector 5 

Piston Rings 6 Injector 6 

Piston Rings 7 Injector 7 

Piston Rings 8 Injector 8 
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6.4. Raw data and effects assessment 

As explained above and more analytically in Chapter 4, PMRA strategy consists of 

multiple processing levels such as the data selection and collection, data mining for 

information extraction and pattern recognition, safety threshold implementation, 

predictive reliability assessment and the fundamental aspects of decision making. This 

section demonstrates the developed qualitative risk and reliability assessment tool of 

Failure Modes and Effects Analysis (FMEA). The obtained FMEA aims to guide the 

decision making process and root cause analysis of the gained PMRA prediction 

results. 

In other words, the reliability assessment tool provides forecasted reliability 

performance figures on system, subsystem and maintainable unit and component level. 

The predicted reliability values clarify the importance in introducing specific 

suggestions for maintenance activities. These suggestions have been identified by 

taking into account a wide range of sources, experts and professionals. The provided 

information in the FMEA is extracted from sources such as Pulkrabek (1997), 

McGeorge (1998), Taylor (1996), Anish (2016), INCASS (2014a), INCASS (2014b), 

INCASS (2014c), INCASS (2015a) and INCASS (2015b). Moreover, engine 

manufacturers’ reports and manuals are utilised for information exploration and 

extraction including Kawasaki (2000), (Hyundai-MAN, 2010a) and (Hyundai-MAN, 

2010b) among others such as results the report of sea trial testing. 

The developed FMEA as demonstrated in Table 6.15 consists of information on 

subsystem level by taking into account the collected raw input measurement, 

parameter (i.e. temperature or pressure), failure mode, effect of failure, damaged 

equipment and component and the associated failure cause. This information has been 

manually linked to the developed FMEA strategy, when the predicted reliability 

performance on system, subsystem and component level has been obtained. 

 



161 

Table 6.15 Sample of FMEA for PMRA strategy case study 

Subsystem Measurement Parameter 
Failure 

Mode 

Effect of 

Failure 

Damaged 

Equipment 

Damaged 

Component 

Malfunction/ 

Failure Cause 

Fuel Oil FO Inlet 

Pressure 

Insufficient 

pumping 
Engine stop Fuel Supply 

Suction pipe 

Fuel Supply Pump 

Fuel Booster Pump 

Heavy leak 

Obstruction 

(particles) 

Damage of 

filter 

Loss of 

redundancy 
Fuel Supply Filter Blocking 

Lower 

output flow 

Loss of 

performance, 

Low 

temperature 

exhaust gases 
Fuel Supply 

Suction pipe 

Leak 

Obstruction 

(particles) 

Fuel 

leakage 

Loss of 

performance 
Inlet valve 

Leak 

No Flow 

Higher fuel 

pressure 

Lower 

performance to 

prevent failure 

Fuel Return 

Fuel self-pressure 

limiting valve 
No Flow 

Isolating valves No Flow 

Lower fuel 

pressure 

Loss of 

performance 
Fuel Return 

Fuel pressure 

limiting valve 
Leak  

Fuel return pipe Leak 

Return isolating 

valve 
Leak 

Temperature 
Lower fuel 

temperature 

Unexpected 

engine stop/ 

Loss of 

performance 

Heating 

Tracers 
Inlet valve No Flow 
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6.5. Outcomes of raw data type case study 

This section aims to summarise the outcomes of the raw data type case study 

performed as part of the PMRA strategy implementation. This case study examined 

the entire suggested methodology of Probabilistic Machinery Reliability Assessment 

(PMRA) strategy by utilising raw collected input data. This data is gathered in real 

operational environment, while a Panamax container ship was sailing. The reliability 

performance assessment is taken place by considering essential in functioning systems 

such as fuel, jacket cooling fresh water, lube oil, air supply, bearing drive and 

cylinders. 

Overall, this ship machinery is examined on system, subsystem and particular 

component or maintainable unit level. The reliability performance results are 

demonstrated in two segments of time such as the data gathering timeline (i.e. one 

month of hourly data collection) and the predicted period (i.e. following two and a half 

months). The results, as presented above, indicate reliable functioning of all systems 

and subsystems. The collected and predicted figures are found within the acceptable 

operational limits as they are predefined by the manufacturers’ manuals. However, 

specific subsystems and maintainable units acquired lower reliability (still acceptable 

for functioning) as identified above. In this section, these particular subsystems are 

summarised per system by suggesting in advance (as results are forecasted) inspection 

and maintenance actions and activities extracted by the developed FMEA table 

attached in Appendix F. 

The first ship machinery arrangement under consideration in the PMRA strategy 

application involves the fuel system. More specifically, the lowest reliability 

performance is brought by the fuel supply system, which has been mainly identified 

by the cylinder exhaust gas outlet temperature predicted figures. In regards to the fuel 

oil system in correlation with cylinder exhaust gas outlet temperature, the most 

probable case scenario of failure or malfunction is the worn fuel pumps. The fuel inlet 

valves have to be checked visually and by pressure testing control (monitoring). It is 

essential to clarify that in the particular examined case, the fuel supply system operates 

within the acceptable limits as the predictions show. 
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However, according to the manufacturer’s instruction book for maintenance and expert 

judgment, there are four potential failure modes. In order to identify them, the cylinder 

exhaust gas outlet temperature and fuel oil inlet pressure are prerequisites, hence, both 

are considered in the case study above. The potential failure modes identified utilising 

the FO inlet pressure prediction involve inadequate pumping, loss of filter, reduced 

output flow (than required) and fuel leakage. In the first case of inadequate pumping, 

the effect will lead to stop the engine by affecting the fuel supply system. More 

specifically, components probably affected are the suction pipe, fuel supply pump and 

the fuel booster pump. In the case of loss of filter, the redundancy will be lost due to 

blockage. The reduced output flow of fuel oil will lead to derating engine or low 

temperature of exhaust gases, which are caused by leakage in suction pipe or 

obstruction in lines. Lastly, fuel leakage will affect the engine power due to damaged 

fuel oil inlet valve which can be caused due to leakage or no flow (excessive example). 

The following under reliability assessment system is the jacket cooling fresh water 

(JCFW). According to the predicted results, the JCFW pump acquired the lowest 

reliability. On component level, the JCFW housing presents reliable and undistracted 

operation, however the lowest performance in the JCFW system (above 99%). At this 

performance level, there are not required any inspection and maintenance actions as 

the raw input data and their predictions vary within acceptable operational limits. Two 

input data sources are required such as the JCFW outlet temperature and the cylinder 

JCFW inlet pressure. The JCFW housing can be detected by identifying high 

temperature of fresh water and/or less flow of fresh water than expected due to pump’s 

condition. The input data collected vary within safety functional limits, therefore there 

has not been expected malfunctions or failures. The reason identified for this lower 

reliability loss is related to the wider amplitude (not dense) of recorded data points 

within the dataset. 

The third system examined by implementing PMRA strategy is lube oil, which 

incorporates maintainable units and components such as the lube oil pump, rotor, filter 

and the cooler. All associated subsystems and components retain high and acceptable 

reliability. Therefore, the involved raw measurements of main lube oil inlet pressure 

and temperature vary within the safety limits without reaching or exceeding the 
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predefined alarm points. Moreover, the operation of lube oil system according to the 

recorded and predicted reliability figures ensure undistracted functioning. However, it 

is essential to identify the component with the lowest performance as it intends to cause 

malfunctions or failures first. 

Among the involved lube oil subsystems and maintainable units and components, lube 

oil pump presents the lowest performance (over 97%). There are two cases taken place 

that clarify this minor (within acceptable limits) reliability loss. The first case is related 

to negligible lube oil inlet pressure drop and the second to minor lube oil inlet 

temperature increase, both inclinations are acceptable for ensuring regular functioning. 

There are overall three potential failure modes involved. In the case of lube oil inlet 

pressure, the probable scenarios implicate observation of no or low flow, whereas in 

the case of lube oil inlet temperature to be identified increased of the recorded indices. 

In the excessive cases of no or low flow (pressure drop), the potential effect of failure 

is loss of redundancy. The LO pump’s components affected are listed among impeller, 

seal, inlet/outlet valve, bearing and shaft, whereas the potential causes are related to 

shaft wear or seized bearing. On the other hand, if higher lube oil inlet temperature is 

observed, the engine power will be reduced (slow down), whereas the lube oil shaft or 

housing will be affected due to bent shaft or misalignment respectively. 

The following system utilised as part of the PMRA strategy application is the air 

supply, which comprises components such as the piston rings, injector and the 

manifold relief valves. The maintainable units and components performing the lowest 

(however acceptable and safe) reliability are the injectors and pistons rings. Both units 

are associated with the scavenging air receiver temperature measurements per cylinder 

and the cylinder exhaust gas outlet temperature. In the first place, inclination of air 

receiver temperature denotes improper scavenging leading to loss of engine power and 

high exhaust gas outlet temperature at the affected cylinder. The defected components 

are the piston rings and injectors, whereas the potential causes are related to faulty 

timing, blow-by and unburned fuel. 

Bearing drive system comprises of the camshaft (i.e. aft and fore), intermediate (i.e. 1 

to 3) and thrust bearings. The acquired results confirm lowest performance by the 
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second intermediate shaft bearing. This reliability drop indicates variation in the 

collected temperature measurements as in the predicted. Therefore, potential failure 

mode directs towards bearing overheating causing material wear and tear, which can 

lead to engine damage or failure. 

Lastly, cylinders are considered as dependent system of the main engine, which has 

direct association with all the remaining systems of the PMRA strategy application. 

More specifically, cylinder exhaust gas outlet temperature measurements are 

connected with nodes such as subsystems and maintainable units and components of 

different systems. These are known as interconnections, which enable dependencies 

among any node/member of the developed network. The overall system acquired 

results fulfil the manufacturer’s criteria and predefined acceptable levels ensuring 

further undistracted operation. However, cylinder exhaust gas outlet temperature is 

essential source of information for the entire combustion process as it affects various 

systems, subsystems and components. The increase of exhaust gas temperature affects 

ship systems and equipment such as the fuel injectors, cylinders, air coolers, 

turbocharger and the fuel oil system. In the particular case of cylinders, the piston rings 

are affected leading to blow-by effect. Typical guidelines and suggestions in regards 

to cylinders incorporate actions such as to compare the compression pressures from 

the indicator and draw diagrams, while during engine standstill carry out scavenging 

port inspection and check exhaust valve. 

In conclusion, this section summarised the outcomes of raw input data case study 

performed as part of the PMRA strategy implementation. Overall, the reliability 

assessment of six main ship systems is demonstrated of the fuel, jacket cooling fresh 

water, lube oil, air supply, bearing drive and the cylinders. The acquired results ensure 

acceptable reliability performance levels allowing further undistracted operation 

without the consideration of any inspection or maintenance actions. It is essential to 

highlight that the utilised raw input data vary within the identified acceptable limits. 

Therefore, the forecasted predictions obtain high reliability performance. According 

to these forecasted figures, inspection and maintenance suggestions have been 

provided in regards to the subsystems and maintainable units and components that 

brought the lowest reliability performance. 
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6.6. Chapter summary 

In this Chapter, the second stage of PMRA strategy application takes place involving 

a holistic case study of the entire suggested methodology. This case study considers 

all data processes, methods and techniques of PMRA strategy such as the data 

acquisition, data clustering and safety threshold implementation, predictive reliability 

assessment and the initial aspects of decision-making. The demonstrated case study 

utilises raw input data gathered from a Panamax container ship, while sailing in actual 

operating conditions. The vessel has been equipped with a two-stroke slow speed 

marine diesel engine (MAN B&W 8K90MC-C). The safety thresholds have been 

employed as reference points, which define the acceptable operating levels. For this 

crucial task, the manufacturer’s engine manual and the sea trials have been exploited. 

The network arrangement is demonstrated structured among six functional systems 

such as the fuel oil, jacket cooling fresh water, lubrication, air supply, bearing drive 

and cylinder for scavenging. Various maintainable units and components are employed 

per system as well as the required raw input data. A novel aspect of the present thesis 

involves the subsystem, maintainable component and raw data interdependencies. This 

feature allows the interconnection, hence the transmission of input from any node to 

another. These interdependencies or interconnections are novel as they enable the 

connection of nodes that belong to different subsystems or systems. Furthermore, a 

qualitative assessment is demonstrated incorporating a Failure Modes and Effects 

Analysis (FMEA) research study followed by qualitative diagnostic input for the 

PMRA strategy case study. These two qualitative assessment sources of information 

aim to assist the final part of PMRA strategy providing the initial aspects of decision-

making suggestions. Supplementary information and work performed for this Chapter 

is attached in Appendix F. This attachment incorporates information regarding the 

alarm and warning levels, the developed FMEA and diagnostic qualitative input for 

the implementation of the fundamental aspects of the decision making tool. 
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7. CASE STUDIES RESULTS 

7.1. Chapter outline 

In this Chapter, the results of the performed applications of the Probabilistic 

Machinery Reliability Assessment (PMRA) strategy in the maritime industry are 

demonstrated. These applications are structured among two groups of case studies 

involving different input data types, while testing the different data processing 

methods and tools of the predictive PMRA strategy. The first case study group of 

systems implements and assesses fundamental technical aspects of the PMRA strategy 

such as the dynamic state modelling and the predictive reliability assessment tool. 

These modelling tools involve the implementation of Markov Chain (MC) process and 

Dynamic Bayesian Belief Networks (DBBNs). The first application approach takes 

into account-processed data extracted from OREDA database. Multiple independent 

main systems are considered such as the diesel generator (D/G), turboexpander and 

pumps such as the seawater lift, oil export, cooling water, water firefighting and the 

crude oil handling. This case study through these systems initiated the development of 

the networks’ arrangement. Flexible features and efficient programming techniques 

have been applied in Java Object Oriented Programming (OOP) language. The second 

case study involves the application of the entire suggested PMRA strategy by utilising 

various ship machinery such as the fuel system, the jacket cooling fresh water system, 

the lube oil system, air supply system, bearing drive and cylinders of an eight cylinder 

2-stroke marine diesel engine installed on a Panamax container vessel. Raw input data 

such as temperature and pressure is gathered through actual operational conditions. 

Both groups of case studies provide results in the form of predictions of reliability 

performance. 
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7.2. Case study of processed data 

As introduced above, this section demonstrates the results acquired by the case study 

applied on various systems, which performed as part of the Probabilistic Machinery 

Reliability Assessment (PMRA) strategy development. This case study involves 

offshore oil and gas platform machinery such as the diesel generator (D/G), 

turboexpander and pumps including the seawater lift, oil export, cooling water, water 

firefighting and the crude oil handling. The presented results provide predictions of 

the reliability performance on system, subsystem and component levels. Furthermore, 

the processed data reliability case study utilises input extracted by OREDA database. 

It is crucial to highlight that the processed data reliability case study aims to assess 

some fundamental technical aspects of the PMRA strategy such as the dynamic state 

modelling and the reliability tool. In parallel to this technical development, practical 

aspects have been investigated involving features in programming the network 

reliability model, while optimising the node arrangement. The acquired experience and 

benefits from this case study set the grounds for the PMRA strategy raw input 

reliability application that will be demonstrated next. 

OREDA stands for Offshore Reliability Database, hence reliability input data 

extracted from this source are related to machinery installed into offshore applications 

such as oil and gas platforms. Therefore, the system, subsystem and mainly component 

arrangement may differ compared to ship machinery. However, offshore systems 

through OREDA database can provide a valuable initial input for the PMRA strategy 

by involving similar systems and operational environment as in maritime industry. 

This input data source has been employed for the initial application of PMRA strategy 

due to scarcity of data at the time of development. 

On the other hand, OREDA database provides static input data (i.e. single failure rate 

indices), where time of record or interval of the recording period has not been 

specified. Therefore, the calculated and provided reliability performance predictions 

are expressed into unitless time intervals. In other words, as long as the time record 

interval points are not known (for this processed data reliability case study), the 

predictions lie within a unitless timeline. OREDA provides failure records per 
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occurred failure mode. Each failure mode holds a specific proportion out of the overall 

recorded modes per system and a different proportion per component (as each 

component may fail due to different failure modes) in relation to the likelihood of 

occurrence. 

Initially, the summarised percentage of occurrence of each failure mode has been 

introduced, and then the recorded failure proportion per component per total failure 

rate of each mode has been calculated. Each failure mode is expressed in relation to 

aggregated time in service per system, the mean failure rate index of failure mode and 

the total component’s failure rate proportion out of all involved components in the 

system. The involved failure rate of each component per failure mode by taking into 

account the aggregated time has been calculated and analytical calculation procedures 

can be found in Chapter 5. The failure rate of each component has been calculated by 

considering all failure modes that the particular unit can fail. Lastly, it is essential to 

clarify in advance the plotted curves in the processed data case study demonstrate both 

the existing and predictive reliability performance. Therefore, in each timeline, point 

1 indicates the existing performance and points 2-5 the predicted ones. 

7.2.1. Diesel Generator (D/G) case study 

The first case study examines the reliability performance of the diesel generator (D/G) 

system. Offshore applications such as these incorporated into OREDA database 

involve for various facilities and energy requirements 4-stroke Diesel Generators 

(D/G). This case study employs processed data gathered from different D/G. This 

engine structure arrangement consists of subsystems such as the Lubrication (LUB), 

Starting (STR), Engine Internal Components (EIC), Engine External Components 

(EEC), Cooling (COO), and Control Monitoring (MON). 

In Figure 7.1, the reliability performance for the considered subsystems of the D/G is 

demonstrated. According to the gathered reliability input data and the PMRA strategy, 

STR subsystem (85.7%) is the most likely to cause malfunctions and failures followed 

by the EIC (92.4%), COO (94.5%), LUB (98.2%), EEC (98.5%) and MON (99.3%). 

It is essential to clarify in advance that the first point in the timeline is the obtained 
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reliability through the OREDA input data, whereas the points 2-5 are the predicted 

ones. 

 

Figure 7.1 Reliability performance of diesel generator (D/G) subsystem level 

The OREDA input data provides reliability records (failures) incorporating indices 

from various similar 4-stroke diesel engines. Therefore, this data contribution does not 

take into account operational conditions as well as past inspection and maintenance 

plans and actions. The obtained reliability prediction results are suitable for indicative 

utilisation by specifying particular unreliable subsystems and components According 

to the gathered failure records and the acquired predictions; STR subsystem causes 

major reliability instability. 

However, particular components of other subsystems may have low reliability as well. 

Therefore, reliability performance analysis should be undertaken on component level 

for all of the considered subsystems of the D/G. More specifically, Figure 7.2 

demonstrates the reliability performance (current and predicted) of failure case 

scenarios involving the recorded failure modes of Abnormal Instrument Reading 

(AIR) at 99.8%, External Leakage of Utility (ELU) (i.e. lubricant, cooling water) at 

96.8% and Failure To Start on demand (FTS) and minor in-service problems (SER) at 
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approximately similar probability of 94.6%. The first point in the timeline (position 1) 

denotes the current reliability performance, whereas the following four the predictions. 

 

Figure 7.2 Reliability performance of diesel generator (D/G) starting unit 

Therefore, the most probable failure modes that can lead to failure or malfunctions of 

the starting unit are the minor-service problems (SER) and the Failure To Start on 

demand (FTS). SER is an unspecified failure mode, hence particular inspection and 
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units and components identified as the oil, cooler and the pressure instrument. The 

latter component is a device for collecting measurements of pressure. Therefore, this 

is not included as no interest in applying proactive condition monitoring techniques 

collecting performance data for an instrument. However, the instrument’s reliability 

performance has been taken into account through this PMRA strategy case study. 

On the other hand, oil and cooler are functional maintainable unit and component 

respectively, while their reliable operation is vital for ensuring the appropriate 

lubrication. Oil has been identified as maintainable unit by OREDA as it is a medium, 

which requires inspection and replacement (maintenance). In other words, because oil 

degrades through time, it has been considered as unit. Firstly, Figure 7.3 illustrates the 

reliability performance of oil. There are two failure modes involved in the oil reliability 

drop, the minor in-service problems (SER) at 96.3% and the External Leakage of Fuel 

Oil (ELF) at 93.7%. The case of leakage leads to failures or malfunctions due to 

improper lubrication, whereas minor in-service problems are unspecified and 

inspection and maintenance solutions cannot be provided. However, SER can be 

assumed as failures or malfunctions due to minor human error such as a closed valve, 

which led to low or no pressure. Therefore, there is no actual failure; however, an in-

service distraction has been recorded. 

 

Figure 7.3 Reliability performance of Diesel Generator (D/G) oil 
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However, the most common measurement that signifies deterioration of the D/G or 

particular components (i.e. bearings) due to improper lubrication is the increase of 

operating temperature. Another option of monitoring the oil is the technique of 

lubrication oil analysis; which deals with the shape, size, composition of wear particles 

and lubricant degradation analysis for physical and chemical characteristics. 

Cooler is the following maintainable unit considered in the lubrication subsystem. The 

recorded failure mode affecting its suitable operation is External Leakage of Utility 

Medium (ELU) such as lubricant or cooling water. Its reliability loss due to ELU can 

be identified by pressure drop in the lube-oil piping network. According to OREDA 

records and the obtained forecasted results, the cooler piping network has to be 

inspected occasionally in order to prevent leakages, which lead to pressure drop. 

 

Figure 7.4 Reliability performance of Diesel Generator (D/G) cooler 
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and FTS (99%). There are not particular inspection and maintenance actions to be 

suggested as the provided failure modes illustrate generic/unspecified malfunctioning.  

The following D/G components and maintainable units such as injections, cylinders, 

exhaust, pistons, radial bearings, fuel pump, air inlet, fuel filter and shaft are separated 

into two subsystems. These maintainable units form the engine internal and external 

components subsystems respectively. Engine internal components subsystem consists 

of maintainable units related to the main functioning of the combustion engine block, 

whereas external to the fuelling and propulsion. 

More specifically, Engine Internal Components (EIC) subsystem consists of 

injections, cylinders, exhaust, radial bearings and pistons. The input data records 

failures and reliability indices providing reliability values per group of similar 

components and maintainable units. Hence, provided information does not represent 

the reliability of a single cylinder, bearing, piston or injection unit. However, 

summarised figures are provided for the entire reliability performance of all cylinders, 

bearings, pistons and injections recorded and processed by OREDA database. In other 

words, the reliability assessment of these components is oriented towards a holistic 

attempt to examine and analyse them as gathered through the operational timeline. 

 

Figure 7.5 Reliability performance of Diesel Generator (D/G) cylinders 
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In Figure 7.5, the reliability performance predictions of D/G cylinders are presented 

related to failure modes such as Internal Leakage (INL) at 97.3%, Structural 

Deficiency (STD) and Fail To Start on demand (FTS) at 91.7% and External Leakage 

of Utility Medium (ELU) (i.e. lubricant, cooling water) at 98.4%. According to the 

acquired predicted results, STD and FTS are the most probable to occur and deteriorate 

the cylinders. In the case of FTS, cylinder can fail to start due to different reasons, as 

long as the reasons are unspecified by OREDA, assumption include failure to control 

system or malfunction of the starting system among others. 

However, failure in the cylinders may lead to failure in starting the engine. On the 

other hand, STD is a significant failure mode as this can be caused due to improper 

lubrication, increase of temperature, material tear and wear among other reasons. 

Multiple measurements and performance indices can prevent the occurrence of this 

failure mode. More importantly, catastrophic consequences can be avoided by 

applying suitable condition monitoring methods. The most common and indicative 

measurements are the cylinder exhaust gas temperature, scavenging air receiver 

temperature and scavenging air manifold pressure. These measurements are 

analytically explained in Chapter 6. 

 

Figure 7.6 Reliability performance of Diesel Generator (D/G) radial bearings 
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Radial bearings are the following maintainable components of EIC subsystem. PMRA 

strategy provides reliability at 94.6% and predictions at 92.2% related to noise (NOI) 

failure mode. NOI can be caused due to improper bearing lubrication, which will lead 

to material tear and wear. Except of lubrication issues and malfunctions, material 

damage can be caused due to age of material, while heading towards the end of the 

lifecycle. According to preventive inspection and maintenance actions, in predefined 

intervals, bearings have to be overhauled for visual inspection of the internal 

components and its races. Predictive condition monitoring techniques can be applied 

in order to prevent and forecast malfunctions and failures while avoiding catastrophic 

collapse. Regarding the radial bearings, various condition monitoring of lube oil 

temperature will ensure the suitable lubrication of the bearing’s moving parts. 

Additionally, in predefined intervals, normally once in six months, vibration 

monitoring can be applied in order to identify the material wear. 

 

Figure 7.7 Reliability performance of Diesel Generator (D/G) pistons 

Lastly for EIC subsystem, pistons are related to vibration failure mode. In the case of 

OREDA input data, pistons achieve predicted reliability at approximately 90%. 

Furthermore, pistons have a direct functional relation with the piston rings, cylinder 

liner, exhaust gases and combustion process as well as the lubrication and fuelling 

procedures. Diagnostics related to pistons, piston rings and piston crowns are attached 
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analytically in Appendix F. However, it is essential to mention that the incorporated 

information involved CM approaches by taking into account measurements and 

indications such as the exhaust gas temperature, compression pressure and improper 

scavenging (due to high exhaust gas temperature). 

The following subsystem structuring the reliability network of the D/G is the Engine 

External Components (EEC). This subsystem consists of the fuel pump, fuel filter, air 

inlet and the propulsion shaft. In Figure 7.8, the fuel filter predicted reliability 

performance is demonstrated involving failure modes such as ELF at 97.8%, INL at 

96.8%, FTS and ERO at almost the same 94.6% and SER at almost 91%. SER is a 

generic failure mode expression, where the particular recorded minor in-service causes 

are not provided. Therefore, inspection and maintenance actions cannot be suggested. 

On the other hand, ERO and FTS gain reliability predictions at 94.6%. The major 

reason that fuel filter can fail due to ERO and FTS is due to blockage. Hence, flow rate 

measurements can be collected as well as pressure indices. In case of low flow rate, 

firstly the fuel filters have to be cleaned or replaced. 

 

Figure 7.8 Reliability performance of Diesel Generator (D/G) fuel filter 
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7.2.2. Turboexpander case study 

The second main system that PMRA strategy is employed for predicting the reliability 

performance on system, subsystem and component level is the Turboexpander. This 

system consists of four subsystems such as the expander/recompressor turbine (ERT), 

the control monitoring (CMN), the lubrication (LUB) and the shaft/seal (SHS). 

According to the recorded historical reliability input data and the predicted results of 

the PMRA strategy, ERT performs the lowest reliability at approximately 94.4% 

followed by the SHS at 98.6%, the CMN at 99% and the LUB at 100% as shown in 

Figure 7.9. 

 

Figure 7.9 Reliability performance of Turboexpander subsystem level 
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On the other hand, speed, pressure and temperature instruments are devices for 

gathering operational information. Sensor installation and probabilistic data analysis 

for instruments will lead to financially non-viable applications. In the case of ERT 

subsystem, the forecasted reliability performance of turboexpander piping involves 

predictions of ELU failure mode at 99.99% and SER at 99.97%. Summarising the ERT 

subsystem reliability performance, small number of failures are recorded and predicted 

related to thrust bearing and piping. However these failures can be dangerous and 

critical with respect to safety and functioning respectively such as the failure or 

malfunction of the thrust bearing or leakage of lube oil due to failure of the piping. 

The second subsystem of the turboexpander network is the CMN, which consists of 

the control unit, general and flow instruments, actuator and turboexpander monitoring. 

The instruments/sonsors are not considered in the reliability assessment. Furthermore, 

the following maintainable unit involved in the failure records of OREDA related to 

turboexpander is the monitoring, which has been affected by AIR, ELU, FTS and UST. 

In all involved failure case scenarios, the reliability performance is greater than 99%.. 

According to the performed reliability predictions Figure 7.10, the most likely failure 

mode to cause failure or malfunctions is AIR, however the acquired results illustrate 

reliable performance and the probability of failure is negligible. 

 

Figure 7.10 Reliability performance of Turboexpander monitoring 
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The third subsystem of turboexpander is the lubrication one. According to OREDA, 

two maintainable units have been failed due to SER failure mode, the filter and the 

lube oil (i.e. degradation of quality or minor leakage). The failure records of filter and 

lube oil are minor in amount, however they are critical for ensuring the required quality 

of turboexpander lubrication and functioning. Their quality is vital and one interacts 

with the other one (quality of oil to filter). The most suitable measurement that should 

be applied is the pressure control. If pressure drop has been identified then blockage 

of filter can lead to lose of itself. 

Lastly, the fourth subsystem, structuring the relations among components and recorded 

failure modes, is the turboexpander shaft/seal (SHS). This subsystem consists of four 

components and maintainable units such as the seal, valves, subunit and the vibration 

instrument. The latter belongs to the measurement devices that PMRA strategy will 

not be applied for reasons explained above as in various other instruments (i.e. level, 

pressure, temperature instrument etc.). 

In regards to the reliability assessment and failure mode predictions on component 

level of the turboexpander, seals are vital units on the turboexpander. Seals ensure 

optimal functioning while separating the compressor impeller from the thrust bearing 

and the turbine impeller from the shaft. If the seals and the thrust bearing retain 

acceptable condition, overhauling of the turboexpander can be avoided. Therefore, by 

avoiding overhauling, human errors can be prevented such as undesired assembly 

mistakes. According to Figure 7.11, seals are recorded to be affected by AIR, ELP, 

ELU and SER failure modes. All reliability predictions reach high level of 

performance. More specifically, ELU achieves 99.98%, ELP at 99.99%, SER at 

99.97% and AIR at 99.94%. 

AIR refers to misleading instrument reading due to malfunctioning of the seals. On the 

other hand, ELP and ELU are failure modes related to leakages due to process medium 

(i.e. gas, condensate, water) and utility medium (i.e. lubricant, CW) respectively. It is 

crucial to highlight that most of the recorded failure modes, in case of occurrence 

require overhauling of the turboexpander and reassembly. This traditional visual 

inspection technique is risky for causing damages due to human error, they require 

great amount of downtime and may lead to expensive mistakes. 
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Figure 7.11 Reliability performance of Turboexpander seals 

The following maintainable component of turboexpander SHS subsystem is the 
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compared to the proportion of pressure valve recorded for the ELU case. 
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presented in this section next. Furthermore, the failure cause assessment is taken place 

by investigating particular failure modes that led to failure or malfunctions these 

components. Firstly, on subsystem level, COU has reached predicted reliability 

performance at 99.99%, MEC at 99.65%, COO at 98.0%, CTL at 98.4% and SHL at 

97.4%. As seen in Figure 7.12, all of the involved subsystems accomplish high level 

of reliability. However, it is crucial to explore and identify particular components and 

specific failure modes that are probable to cause potential malfunctions. 

 

Figure 7.12 Reliability performance of seawater lift pump subsystem level 

The first subsystem of the seawater lift pump under reliability assessment is CTL, 

which consists of components and maintainable units such as the actuator, cabling, 

control unit and the monitoring. In Figure 7.13, the reliability performance of the 

actuator is demonstrated. In total, three failure modes are recorded for this 

maintainable unit such as AIR, SER and UST achieving predicted reliability greater 

than 99.9%. 

It is essential to highlight that UST presents the lowest reliability performance and the 

faster drop as well. This is explained because the mean failure rate index of SER is 

greater than AIR and UST and the proportion of actuator in SER is greater as well than 

in AIR and UST failure modes. 
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Figure 7.13 Reliability performance of seawater lift pump actuator 

Control unit is another maintainable unit of CT. It reaches similar reliability 

performance as the actuator, however, more FM are associated with this component. 

The FMs probable to cause malfunctions are AIR, FTS, PDE, SER and UST. AIR 

presents the lowest reliability performance, followed by FTS. FTS can be caused due 

to power loss of the control unit. The FMs PDE, SER and UST perform higher 

reliability, declining slower compared to AIR and FTS. Therefore, PDE, SER and UST 

have smaller mean FR index and smaller proportion per FM for the control unit. 
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Figure 7.14 Reliability performance of seawater lift pump control unit 

It is important to highlight that STD, ELP and ELU present similar reliability drop on 

different reliability performance levels. This similarity in pattern has been occurred 

because the mean failure rate index of these failure modes is almost the same 

(negligible variation). However, the proportion (weighting factor) of each of these 

modes to casing component differs, therefore they achieve different reliability 

performance levels. The lowest among them is ELP. Pump filter is component, which 

requires high quality or replacement if required for reliable operation of the system. 

OREDA database failure records involve various failure modes such as ELU, INL, 

PDE, SER and STD. 
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Figure 7.15 Reliability performance of seawater lift pump filter 

First of all, STD and INL present the highest reliability performance, where it is almost 

steady. Therefore, these failure modes employ almost the same mean failure rate 

indices and proportion (weighting factor) per failure mode for the pump filter. In the 

case of seawater lift pump filter, the reliability performance predictions reach 99.9%. 

It is import to highlight that STD, INL and ELU perform almost steady reliability 

forecasts, whereas in case of SER and PDE a drop is expected in the next period of 

time. The generic definition of SER and PDE failure modes does not allow to provide 

specific maintenance solutions for preventing failures and malfunctions as well as 

achieving slower reliability drop through time. The highest mean failure rate and 

weighting factor has been shown regarding SER failure mode. SER is unspecified 

failure mode, however it is assumed that these minor in-service issues have been 

occurred due to negligible blockage. 

The seawater lift pump couplers (COU) subsystem is responsible for the movement 

transmission involving two maintainable components, which cooperate for achieving 

this function. These components are the coupling driver and the coupling driven. The 

predicted reliability performance of the latter involves failure modes such as VIB, 

STD, UST and NOI. All of these failure modes denote component’s material 

deficiency due to inefficient lubrication and material tear and wear. Further reliability 
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drop can be prevented by monitoring the operating temperature of the pump and its 

lube oil as well as the operating pressure. 

The final subsystem of seawater lift pump is mechanical power (MEC). This 

subsystem involves the moving parts, which retain the functioning of the system such 

bearings (i.e. radial and thrust bearings), impeller and the shaft. Firstly, the predicted 

reliability performance of the impeller and the shaft is taken into consideration as both 

components cooperate while are attached to each other. Therefore, common failure 

modes and causes of malfunctions and failures are expected. 

Shaft’s failure mode list consists of AIR, BRD, NOI, OHE and VIB. All of these 

modes achieve high reliability due to low failure rate records, however, the lowest 

performed failure mode is the unspecified breakdown (BRD). In a similar manner, the 

impeller presents the forecasted reliability performance of impeller maintainable 

component. The recorded failure modes consist of STD, UST and VIB. Additional 

reliability predictions, components and involved failure modes of MEC components 

(i.e. bearings) are attached in Appendix G, because they present similarly high 

reliability performance. 

7.2.4. Oil export pump case study 

In this section, the second pump type of processed input data case study of PMRA 

strategy is presented. This system involves the oil export pump, an essential equipment 

for offshore applications and tank ships, which unloads the crude oil cargo from the 

cargo/storage tanks. The reliability input data utilised for this study is gathered from 

the OREDA database. 

The network arrangement of the oil export pump takes into account five subsystems 

such as the controller (CTL), shell (SHL), cooling (COO), couplers (COU) and 

mechanical power (MEC). Each of these subsystems consists of various maintainable 

units and these are associated to at least one or multiple recorded failure modes. The 

forecasted reliability performance on subsystem level is demonstrated in Figure 7.16. 

Overall, SHL is the least reliable subsystem performing 97.1% reliability followed by 

the COO at 98.5%, CTL at 98.8%, MEC at 99.8% and almost 100% for COU. 
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Figure 7.16 Reliability performance of oil export pump subsystem level 

The first subsystem of oil export pump under reliability assessment is the controller. It 

consists of four maintainable components such as the actuator (ACT), cabling (CAB), 

control unit (CTL) and monitoring (MON). The lowest forecasted reliability 

performance is presented by CTL followed by MON, ACT and CAB. 

More specifically, Figure 7.17 presents the reliability performance of control unit 

(point 1 current, points 2-5 predicted in the timeline). This maintainable unit is 

associated to four failure modes such as AIR, ERO, FTS and SER. All failure case 

scenarios achieve high reliability (i.e. greater than 99.4%), however AIR failure mode 

performs the least reliable by presenting the fastest reliability loss within the timeline. 

This failure mode is associated to failure or malfunction of an instrument. Additional 

results on component level related to COO subsystem are attached in Appendix G 

providing a better picture of the overall reliability performance. 
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Figure 7.17 Reliability performance of oil export pump control unit 

The following oil export pump subsystem is SHL, which consists of five maintainable 

units such as the casing, valve, filter, lubrication and the seals. The most indicative 

maintainable units of this subsystem are the filter, lubrication and seals. For instance 

Figure 7.18 presents the reliability performance predictions of seals, where various 

failure modes have been recorded such as STD, SER, ELU, INL, OHE and BRD. 

According to the forecasted reliability performance the most likely failure mode 

leading to failure or malfunction is ELU, hence, external leakage of utility medium. 

This failure mode can be identified to material tear and wear, which leads to damage 

and consequently to leakage. SHL subsystem involves various components and 

maintainable units. Therefore, multiple failure case scenarios can provided in-depth 

reliability assessment. Additional reliability prediction results related to oil export 

pump filter and lubrication can be found in Appendix G. 
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Figure 7.18 Reliability performance of oil export pump seals 

Progressing towards the reliability assessment of the oil export pump on subsystem, 

component and failure mode levels, the couplers subsystem consists of coupling driven 

and coupling driver (as explained in seawater lift pump case study). As shown in 

Figure 7.19, coupling driven has been diagnosed in past with failure mode records such 

as noise (NOI), structural deficiency (STD) and vibration (VIB). According to 

predictions, STD is the most probable failure mode to cause failures or malfunctions. 

This failure mode utilises the lowest mean failure rate index and the higher proportion 

(weighting factor) among the involved modes. STD has not been specified by OREDA, 

however it can be assumed that occurred due to material damage. 

However, noise (NOI) and vibration (VIB) are failure modes that should be identified 

before STD occurs. Therefore, if active and efficient condition monitoring applications 

are established on the most likely to fail components of the selected, under assessment 

systems, malfunctions can be forecasted and failures will be avoided. 
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Figure 7.19 Reliability performance of oil export pump coupling driven 

The reliability records provided by OREDA with regards to oil export pump 

mechanical power subsystem present a negligible number of failures as the predicted 

failure rates are expected to be higher than 97.1%. MEC subsystem consists of 

maintainable units such as bearings (i.e. radial and thrust), impeller and the shaft. More 

specifically, the radial bearing has been affected by BRD, NOI, FTS and VIB. On the 

other hand, the thrust bearing has been failed by BRD, ELU, OHE, STD and VIB. 

Additionally, the shaft is associated with failure modes such AIR, BRD, FTS, NOI, 

OHE and VIB, whereas, the impeller with STD and VIB. 

7.2.5. Cooling water pump case study 

PMRA strategy is applied on various systems aiming to identify common aspects 

among the involved systems of the case study, difficulties and receive valuable 

practical and technical input. The fifth subsystem that PMRA strategy is developed 

and currently tested is the cooling water pump. Compared to the previously presented 

pump systems (i.e. seawater lift and oil export pumps), this study is simple in network 

structure and failure case scenario arrangement, because a small number of 

components have been failed involving a smaller number of recorded failure modes. 
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More specifically, cooling water pump network consists of two subsystems such as the 

controller (CTL) and the mechanical power (MEC) and two independent components 

such as the valve (VLV) and the coupling driven (CDN). It is essential to clarify that 

these components depend on the pump’s reliability performance and entire system 

functioning but are not considered within a particular subsystem. 

 

Figure 7.20 Reliability performance of Cooling Water pump (CW) subsystem level 

Therefore, Figure 7.20 presents the reliability performance of the cooling water pump 

in regards to the developed network arrangement, the gathered processed input data 

and the acquired reliability performance. Coupling driven (CDN) reaches reliability at 

98.5%, MEC subsystem at 99.7%, VLV at 99.85 and CTL almost 100%. 

CTL is the first subsystem under reliability assessment. It consists of multiple 

maintainable units and components such as the actuator (ACT), cabling (CAB), control 

unit (CTL) and monitoring (MON). Control unit achieves high reliability performance 

at 99.99%, while it is associated by two failure modes such as AIR and FTS. The first 

failure mode at almost 99.99% lowest predicted reliability performance is linked to 

damaged instrument, whereas FTS (99.99%) can be due to power loss, damaged or 

destroyed cable among others. 
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Furthermore, the valve and coupling driven are two more maintainable units of cooling 

water pump. Valve has been diagnosed with noise (NOI) failure mode and forecasted 

reliability performance at 99.85%. On the other hand, coupling driven maintainable 

unit has been recorded with NOI failure mode as well, while its reliability performance 

is expected to be at the first predicted time step at 98.5%. NOI detected in the case of 

the coupling driven can be caused due to excessive vibration. A valuable CM practice 

for detecting NOI and VIB failure modes is the vibration analysis as well as measuring 

the pressure different (inlet/outlet) for detecting pressure drop. 

Lastly, cooling water pump includes mechanical power (MEC) subsystem, which 

consists of bearing (BER), radial bearing (RBR) and shaft (SFT) maintainable units. 

BER and RBR components achieve reliability at approximately 99% the first time step 

of the predicted timeline. Additional information on failure mode level, both 

components (i.e. BER and RBR) are linked with FTS and NOI. The most common 

causes that can lead to these modes are associated with material wear, tear, overall 

collapse and inefficient lubrication of the moving parts. Direct functional relation with 

the bearings has the shaft component. In this case, AIR, FTS and NOI are recorded 

with regards to SFT for failure reasons related with these of BER and RBR. 

7.2.6. Firefighting pump case study 

A system onboard the ships and the offshore oil and gas platforms, which ensures 

safety is the firefighting pump. This system is inspected and maintained periodically, 

because it is not often operated. However, various components have been failed due 

to different failure modes. As long as the scope of this system is to ensure safety, its 

reliable functioning has to be confirmed. OREDA database provides failure records 

and involved failure modes for firefighting pumps as well. This section presents the 

reliability performance (current and predicted) results acquired by the PMRA strategy. 

Therefore, reliability assessment is taken place on subsystem and component levels by 

considering all the recorded failure modes. 
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Figure 7.21 Reliability performance of Firefighting Pump (FP) subsystem level 

Firstly, Figure 7.21 presents the reliability performance on subsystem level of the 

involved controller (CTL), cooling (COL), mechanical power (MEC), shell (SHL) 

subsystems and coupling driven (COU) maintainable component. The first point in 

timeline represents the current reliability performance, whereas points 2-5 the 

forecasted one. According to the PMRA strategy forecasted results, the least reliable 

subsystem is CTL reaching 94.39% reliability performance followed by SHL at 98.2%, 

COU and COL at approximately similar 98.6% and MEC at almost 100%. Figure 7.21 

confirms that CTL subsystem and its maintainable units and components gained the 

highest proportion of the recorded failure records. 

The first subsystem of firefighting pump under reliability assessment is CTL, which 

consists of multiple maintainable units and component such as the actuator (ACT), 

cabling (CAB), control unit (CTL) and monitoring (MON). The forecasted reliability 

assessment of the actuator is presented in connection with three failure modes such as 

AIR, ERO and SER. The lowest reliability performance is obtained by SER at 98.9% 

followed by AIR at 99.3 and ERO at 99.99%. Another essential maintainable unit of 

firefighting pump involved in various failure modes is the control unit. As seen in 

Figure 7.22 below, the predicted reliability performance is retained almost higher than 

98%. However, multiple failure modes have been recorded causing failures or 
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malfunction such as AIR, ERO, FTS, SER, STP and UST. The most likely failure 

mode to cause failures and malfunctions have been predicted to be AIR because it has 

the highest mean failure rate index and the highest proportion in control unit. 

 

Figure 7.22 Reliability performance of Firefighting Pump (FP) control unit 

SHL is the second subsystem considered in the firefighting pump network structure 

incorporating maintainable units such as casing (CAS), seals (SLS), lubrication (LUB) 

and filter (FLT). CAS has been recorded to be connected with failure modes such as 

ELU, OHE and STD, whereas, SLS with STD, INL, SER, ELU and OHE. On the other 

hand, LUB is associated with ELU and FLT with STD, INL, SER and ELU. The 

obtained reliability of these components retains performance greater than 98%. 

Furthermore, these components have been discussed in the previous pump systems 

(seawater lift, oil export, and cooling water). 

Lastly, MEC consists of moving/rotating maintainable components such as bearing 

(BER), radial (RBR) and thrust bearing (THB), shaft (SFT) and impeller (IMP). 

Firstly, bearing acquires reliability performance higher than 99.97% by taking into 

account FTS and UST failure modes. On the other hand, radial bearing reaches 99.98% 

due to FTS, whereas thrust bearing higher than 99% due to ELU, OHE and STD. Shaft 
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and impeller achieve reliability predictions greater than 99.97% due to AIR and FTS 

and SRD and UST respectively. 

7.2.7. Crude oil handling pump case study 

The last main system involved in the processed input data type case study is the crude 

oil handling pump. Its reliable operation is essential as this system retains the supply 

of crude oil pumps. This pump’s failure rate records involve various subsystems, 

maintainable components and units and multiple failure modes. On the subsystem 

level, similarly as in the previous pump systems of the processed input case study 

presented, the controller (CTL), shell (SHL), cooling (COO), couplers (COU) and 

mechanical power (MEC) subsystems are considered. The lowest reliability 

performance predictions are presented by CTL at 97.73%. This reliability performance 

is followed by SHL at 98.21%, COO at 98.55%, MEC at 99.71% and the most reliable 

is COU at almost 100%. 

 

Figure 7.23 Reliability performance of crude oil handling pump subsystem level 

On subsystem level, controller incorporates components and maintainable units such 

as actuator (ACT), cabling (CAB), control unit (CTL) and monitoring (MON). Firstly, 

control unit has been connected with failure modes such as AIR, ERO, SER and UST. 
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Figure 7.24 Reliability performance of crude oil handling pump control unit 

All involved failure modes reach reliability performance predictions higher than 

99.8%. The lowest forecasted prediction is presented by AIR followed by ERO, UST 

and SER. The high levels of reliability performance and the negligible reliability drop 

set the grounds for further functioning without any inspection or maintenance actions 

considerations. The remaining components and maintainable units of CTL subsystem 

retain reliability performance higher than 99%. The predicted reliability has been 

acquired within high performance levels (above 99%), so additional results are 

attached in Appendix G. 

Similarly as in controller subsystem, SHL maintainable units and components acquire 

acceptable reliability performance predictions. More specifically, SHL consists of 

casing (CAS), filter (FLT), lubrication (LUB) and seals (SLS). CAS has been 

associated with BRD, ELU and OHE failure modes, whereas FLT with ELU, INL and 

SER modes, LUB unit with ELU and SLS components with SER, ELU, OHE, BRD 

and INL. These components and maintainable units have been discussed above as well 

as the reasons leading to this reliability drop, hence supplementary results are included 

in Appendix G. 
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The current and forecasted reliability performance of coupling driven and coupling 

driver components are taken into account as well. The first one has been recorded to 

be affected by failure modes such as UST and VIB, whereas the latter by VIB. The 

predictions indicate reliability higher than 99.9%, however operational issues due to 

vibration have been detected. Therefore, further investigation on the components 

lubrication should be taken place in order to prevent or avoid material degradation and 

potential damage or even catastrophic collapse. The most suitable condition 

monitoring practices involve pressure measurement at inlet/outlet of the pump in order 

to detect pressure drop as well as vibration monitoring for misalignment and material 

tear and wear. 

Lastly, radial and thrust bearing (RBR and THB respectively) are rotational/moving 

components of MEC subsystem. Their efficient and reliable operation ensure the 

functioning of the pump. RBR has been detected to be caused by BRD and VIB, 

whereas THB by ELU, OHE and VIB. Both component reach forecasted reliability 

performance higher than 99.8%. However, the occurrence of failure modes such as 

external leakage of utility medium (ELU), overheating (OHE) and vibration (VIB) 

lead to failure or malfunction causes due to improper lubrication of the moving parts, 

misalignment of shaft through the bearings and material tear and wear. 

7.3. Raw data reliability case study 

In this section, the forecasted reliability performance results of the raw input data case 

study are demonstrated and examined. This application is developed as part of the 

PMRA strategy implementation by utilising raw input data gathered onboard a 

container ship, while sailing in actual/real operational conditions. The raw input case 

study of the Probabilistic Machinery Reliability Assessment (PMRA) strategy 

involves mainly six systems such as the fuel, jacket cooling fresh water, lube oil, air 

supply, bearing drive and the cylinders. The reliability performance assessment takes 

place on system, subsystem (if applicable), component and maintainable unit 

assessment as well as raw input data probabilistic processing and forecasting. 
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It is essential to clarify in advance that the involved input data is raw recorded within 

a continuous timeline of almost a month. Therefore, reliability performance 

predictions are demonstrated by taking into account specific time intervals. The time 

recorded interval is set as one measurement per operational hour. Furthermore, the 

results that will be demonstrated next in this section provide the recorded and predicted 

reliability figures. More specifically, the acquired results are plotted in monthly 

intervals. The first two points within the arranged timeline of the x-axis denote the 

reliability performance in regards to the recorded period of time. The first point (at 0.5 

position) signifies the recorded reliability performance of cluster 1 as acquired by the 

data mining method, whereas the second point at 1.0 the second cluster. Overall, both 

points represent the reliability performance (tendency of deviation) of the first month 

(recording time). On the other hand, the following points in the timeline (i.e. 1.5 to 3.5 

months) signify the acquired predicted reliability performance of the upcoming period 

of time. Moreover, points 1.5 and 2.0 represent the reliability performance prediction 

of the following month, 2.5 and 3.0 of the second predicted month and point 3.5 the 

reliability performance of the first cluster of the third predicted month. 

7.3.1. Fuel system 

The first onboard system under reliability assessment of the PMRA strategy raw input 

case study is the fuel system. It is structured among the fuel supply and the fuel return 

subsystems. Mainly two measurement sources are considered for this subsystem the 

fuel oil inlet temperature and pressure (respectively). The major benefit of Bayesian 

Belief Network (BBN) probabilistic assessment tool is the implementation of 

interconnections among node members, which belong to different system or 

subsystem. Hence, the first introduced interdependence involves the connection of 

cylinder exhaust gas outlet temperature with the performance of fuel supply system. 
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Figure 7.25 Reliability performance of fuel system – raw data 

According to the acquired results, the weakest reliability performance is demonstrated 

by the fuel supply system followed by the fuel return system as shown in Figure 7.25. 

The reliability of the first is initiated at 99.88% the first two weeks of recording (0.5 

month), whereas it is dropped as recorded at 99.68% the second two weeks of the first 

month. This reliability drop is confirmed by two observations, the temperature increase 

and pressure drop in the second half of the data gathering period. 

It is essential to highlight that the recorded datasets for both measurement indices (i.e. 

fuel inlet temperature and pressure) align within the predefined acceptable operational 

limits. In other words, the alarm points are not reached or exceeded within this period. 

Therefore, they demonstrate a fully reliable condition according to the reliability and 

warning criteria. In the case of fuel return system, the reliability performance initiated 

at 99.93% and dropped to 99.88%. The predefined warning levels are not reached or 

exceeded, therefore non-destructed operation can be ensured. 

7.3.2. Jacket cooling fresh water system 

The second system under reliability assessment utilising the PMRA strategy is the 

jacket cooling fresh water (JCFW), which consists of the JCFW pump and the JCFW 
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rotor. Various raw input data sources are considered in the case of this subsystem such 

as the JCFW outlet temperature for cylinders 1 to 8 and the cylinder JCFW inlet 

pressure. JCFW pump comprises of maintainable units and components such as the 

seals, impeller, wear-rings, housing, inlet/outlet valve, shaft and the strainer. On the 

other hand, JCFW pump rotor is directly connected with the cylinder JCFW inlet 

pressure measurement node. 

 

Figure 7.26 Reliability performance of jacket cooling fresh water system – raw data 

On system level, Figure 7.26 presents the reliability performance of both involved 

main subsystems. The demonstrated results incorporate the reliability figures of the 

recorded input data (i.e. 0.5 and 1 month) and the forecasted period (i.e. 1.5 to 3.5 

months). Overall, the JCFW pump indicates the weakest and quickest reliability drop 

due to the various associated input data sources and multiple maintainable units and 

components linked. The fast reliability drop is approved by the characteristics of the 

recorded input datasets. Firstly, the second half of the data gathering period confirms 

temperature increase and pressure drop. Therefore, all recorded input sources incline 

towards the predefined safety thresholds. At this point, it is essential to clarify that all 

recorded figures range within the appropriate safety limits. Hence, the demonstrated 

reliability performance inclination indicates tendency of trend change but not 

unsafe/unhealthy functioning. On the other hand, JCFW pump rotor show almost 
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stable reliability performance among the collected and the forecasted period. The 

demonstrated prediction is confirmed by the almost steady (unchanged) cylinder 

JCFW inlet pressure input data collected. Further JCFW system reliability prediction 

results are placed in Appendix G enabling the investigation on subsystem level. 

7.3.3. Lube oil system 

In this section, the third considered system of PMRA strategy application is 

demonstrated. This is the lube oil system, which consists of the lube oil pump, rotor, 

filter and cooler. More specifically, the lube oil pump incorporates input from various 

maintainable units and components such as the seals, impeller, bearing, shaft, 

inlet/outlet valve, inlet strainer and the pump housing. The lube oil pump rotor is 

associated with the rotor bearing and electric conductor. Furthermore, the lube oil 

pump filter has operational connection with the lube oil pump inlet/outlet valve, 

filtering elements, lube oil by-pass valve and the self-cleaning control. The fourth 

maintainable unit is the cooler, which is associated with components such as the lube 

oil inlet/outlet valve, cooler plates and the regulating flow valve. Two raw input data 

sources are involved in the lube oil system the main lube oil inlet pressure and 

temperature. 

The reliability performance of the lube oil subsystems is presented in Figure 7.27. 

More specifically, the lube oil pump achieved reliability at 99.86% and dropped at 

99.76%. The weakest reliability performance, among the involved subsystems, is 

forecasted for the following period of time ranging from 99.61% to 97.26%. 
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Figure 7.27 Reliability performance of lube oil system – raw data 

The lube oil pump subsystem is followed by the filter, which ranges from 99.92% to 

99.85% the recorded period of time and from 99.76% to 98.29% the predicted. The 

lube oil rotor and the cooler present the same reliability performance. Initially, they 

reached 99.93%, which decreased at 99.88%. This collected information is utilised for 

predicting the following two and a half months, which presented reliability ranged 

from 99.88% to 98.6%. 

7.3.4. Air supply system 

The following system is responsible for the appropriate transfer procedure of 

clean/fresh air supply within the engine cylinder units by removing and cleaning the 

exhaust gases. This procedure is known as scavenging. It is essential to clarify that 

scavenging and exhaust gas control are examined in cooperation of two engine 

systems, as defined in the PMRA strategy application, the air supply and the cylinders. 

This section is oriented towards the reliability assessment of the air supply system, its 

subsystems and maintainable units and components. Firstly, air supply system consists 

of piston rings, injectors and manifold relief valves per cylinder and the air piping. 

Different sources of raw input data are involved in the air supply system such as the 
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scavenging air receiver temperature per cylinder, scavenging air manifold pressure and 

main engine control air inlet pressure. Another node interconnection is required for the 

reliability performance assessment of piston rings and injectors by taking into account 

the cylinder exhaust gas outlet temperature per cylinder in parallel with the scavenging 

air receiver temperature per cylinder. This measurement input is mainly utilised in the 

cylinder subsystem, which will be presented next. 

 

Figure 7.28 Reliability performance of air supply system – raw data 

More specifically, Figure 7.28 presents the reliability performance of piston rings, 

injectors, air piping and manifold relief valves, while data has been recorded as well 

as the predicted values of the following two and a half months. Injectors and piston 

rings obtain the weakest reliability performance, which is initiated at 99.8% and 

dropped to 96.2%. These maintainable components are associated with the scavenging 

air receiver temperature and cylinder exhaust gas outlet temperature. Manifold relief 

valves present reliable operation from 99.84% to 96.91% while they are linked with 

the scavenging air manifold pressure. Lastly, air piping is the most reliable 

maintainable unit reaching figures from 99.99% to 99.67%. 

It is necessary to clarify that all collected raw input datasets fulfil the safety 

requirements demonstrating reliable functioning without reaching or exceeding the 
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manufacturer’s warning levels. However, the datasets of the collected temperature 

indices increase the second half of the first (recorded) month, whereas the pressure 

measurements negligibly dropped. The recorded input data for the entire data gathering 

timeline as well as the predicted indicate reliable operation without the requirement of 

introducing inspection or maintenance actions. However, it is essential to continue 

monitoring the piston rings and injectors by ensuring that the presented reliability drop 

lies within the acceptable limits. 

7.3.5. Bearing drive system 

The following system incorporates the moving/rotating bearings, which are 

responsible for the motion transfer to the propeller. Bearing drive system consists of 

the thrust bearing, intermediate shaft bearings 1-3 and camshaft bearings (i.e. aft and 

fore). Due to their function of maintaining rotational motion, the control of suitable 

operational temperature ensures the appropriate reliable role by preventing 

malfunctions, overheating, material tear and wear and entire component collapse. 

 

Figure 7.29 Reliability performance of bearing drive system – raw data 

Therefore, the introduced raw input data requirements involve the thrust bearing lube 

oil outlet temperature, intermediate shaft bearing temperature (per bearing from 1 to 
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3) and the camshaft bearings’ temperature monitoring. According to the PMRA 

strategy acquired results, as presented in Figure 7.29, the intermediate shaft bearings 

obtain the lowest reliability performance from 99.98% to 99.53%. These figures 

denote the performed reliability, while data was collected as well as the forecasted for 

the following two and a half months. The camshaft bearings range performance from 

99.99% to 99.6%, whereas the thrust bearing from almost 100% to 99.88%. 

All of the considered bearings indicate reliable operation by retaining almost stable 

temperature. Slight increase is presented causing negligible reliability drop, however 

the recorded and predicted figures ensure functioning lower than the predefined safety 

thresholds. It is essential to denote that among the weakest intermediate shaft bearings, 

the second bearing acquired the highest predicted temperature (lowest reliability), 

followed by the first and third bearing respectively. Clearly stating that all three 

bearings perform below the alarm points allowing undistracted operation for the 

predicted period of time. 

7.3.6. Cylinders 

The final arrangement of maintainable units and components can be assumed as system 

and it is known as cylinders. PMRA strategy application involves an eight cylinder, 2-

stroke marine diesel engine. Therefore, raw input data measurements are collected per 

involved cylinder. More specifically, cylinders system consists of units such as 

cylinder 1 to 8. Each of these units integrates input from the particular cylinder exhaust 

valve, injector and piston rings. 

Functional and crucial interconnection among different nodes is utilised in the case of 

cylinders by incorporating input from maintainable units (i.e. piston rings and 

injectors) of air supply subsystem. This option of flexibly arranging the network and 

combining input among every required node is gained by the implementation of the 

Bayesian Belief Networks (BBNs). In particular, injector and piston rings nodes are 

associated with scavenging air receiver temperature and cylinder exhaust gas outlet 

temperature. On the other hand, exhaust valves are connected with the involved 

cylinder exhaust gas outlet temperature. 
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Figure 7.30 Reliability performance of cylinder 1 – raw data 

As shown in Figure 7.30, the reliability performance of cylinder 1 is demonstrated for 

the involved marine diesel main engine. It is essential to highlight that the acquired 

results present almost the same reliability performance in the entire timeline, while 

gathering the raw data as well as in the predicted time segment for all involved 

cylinders. The acquired results show initial reliability performance at 99.92%, which 

is dropped at 99.86% during the data gathering period of time. In the following 

predicted timeline, the reliability varies from 99.77% to 98.4%. 

The uniformity of the cylinders’ results has to be explored further, in order to identify 

common aspects of the collected datasets. In Figure 7.31, the exhaust gas outlet 

temperature per cylinder is provided. More specifically, the average, maximum and 

deviation figures of temperature datasets per cylinder are presented. The plotted curves 

declare uniformity in pattern of the dataset characteristics. Therefore, each dataset per 

cylinder seems to perform similarly to the remaining as the maximum, average and 

deviation values denote. 

It is worth mentioning that according to the main engine manufacturer manual the 

maximum acceptable cylinder exhaust gas outlet temperature is at 500°C, whereas the 

alarm is set at 520°C. According to Figure 7.31, the maximum reached temperature is 
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found on cylinder 8 at 361°C, which is much lower than the maximum acceptable and 

the predefined alarm. Therefore, the collected data as well as the acquired predictions 

lead to slow steaming operation in order to reduce fuel consumption and the sailing 

speed (approximately service speed is at 18 knots). 

 

Figure 7.31 Cylinder exhaust gas outlet temperature – raw data records 

7.4. Chapter summary 

In this Chapter, the results of the case studies are presented. Two groups of case studies 

are performed involving different input data types, data gathering sources and various 

offshore application and ship machinery. The demonstrated and analysed results of the 

performed case studies are grouped among the processed input and the raw input 

reliability assessment respectively. In the first case study and the involved group of 

systems, processed input data is utilised exported by the OREDA database. This source 

of data is selected because it incorporates failure records as gathered by leading 

industrial stakeholders of the oil and gas field combining expertise and records since 

the first published OREDA handbook in 1984. 

On the other hand, the selected systems share common structural and functional 

aspects as some of the installed systems onboard the merchant ships. The OREDA-
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based systems selected for the scope of this case study involve the 4-stroke engines, 

turbocharger and various pumps. The reliability assessment achieves performance 

predictions on system, subsystem and component levels by taking into account various 

recorded failure modes. More specifically, this case study implements the initial 

technical aspects of reliability prediction tool of PMRA such as the time dependent 

state modelling by employing the Markov Chains (MC) and the reliability network 

arrangement of Bayesian Belief Networks (BBNs). The second case study introduces 

raw input data collected onboard a Panamax container ship, while operating in actual 

sailing conditions. The scope of this case study is to assess the overall suggested 

Probabilistic Machinery Reliability Assessment (PMRA) methodology. The reliability 

performance predictions in this case study utilise systems such as the fuel, jacket 

cooling fresh water, lube oil, air supply, bearing drive and the cylinders. 

The reliable and accurate performance of the suggested PMRA strategy has been 

validated utilising various commercial software. Firstly, the BBN’s predictive feature 

has been assessed with GeNIe 2.0 and Hugin software. The results demonstrate exactly 

the same reliability performance as these obtained by the PMRA strategy. On the other 

hand, the time dependencies modelled by the Markov Chains combined with the 

DBBN have been tested by employing Reliability Workbench software. The tests 

undertaken obtained the same results; therefore, the reliability assessment tool has 

performed accurately according to leading software and applications in the field. 
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8. SENSITIVITY ANALYSIS 

8.1. Chapter outline 

The robust PMRA methodology has been presented in the previous chapters providing 

a flexible solution in predicting the reliability performance of ship machinery. The 

acquired reliability performance predictions indicate acceptable reliability 

performance in all involved systems, subsystems and maintainable units and 

components. The collected raw input data and predicted reliability performance prove 

reliable function as the obtained results vary within the acceptable operational levels 

as predefined by OEMs. However, it is essential to explore and prove that the 

suggested PMRA strategy performs efficiently under different operating conditions, 

which are also important for the testing process of the developed methodology. In this 

context, a detailed sensitivity analysis is performed presenting the level of change in 

the predicted reliability performance, when there is change in the provided input data. 

The results of this study examine the flexibility in input data deviation, ensuring 

accuracy in prediction and safety in operation. 

8.2. Description of sensitivity analysis process 

The sensitivity analysis and methodology testing are challenging tasks, because they 

involve modelling of complex ship machinery which consist of various subsystems, 

components and maintainable units. Therefore, testing the compound suggested 

inspection and maintenance strategy requires the implementation of specific sensitivity 

case scenarios which are applied on particular ship machinery. Even when a model or 

methodology is tested and validated uncertainty in the acquired predicted reliability 

performance results still exists (Baio and Dawid, 2015). Hence, in this section 

Sensitivity Analysis (SA) scenarios are introduced in order to quantify and qualify the 

uncertainty underlying the forecasted results acquired in the previous chapter. 
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According to Saltelli et al. (2004), in risk assessment research, SA is defined as the 

study which examines “how uncertainty in some model output can be apportioned, 

qualitatively or quantitatively, to different sources of uncertainty in the model input”. 

Literature offers various techniques and scenarios in order to examine the sensitivity 

of risk assessment tools. Particularly in the case of Bayesian Belief Networks (BBNs), 

Parmigiani (2002) recommends three forms of SA such as marginalisation, scenario 

analysis or Deterministic Sensitivity Analysis (DSA), and Probabilistic Sensitivity 

Analysis (PSA). Marginalisation is the process whereby a selected part of the recorded 

dataset is shifted towards particular limits by reaching or exceeding these. Therefore, 

this SA process examines the flexibility of the developed methodology in introducing 

partial deviation of the utilised input data. In other words, marginalisation enhances 

predominantly a phenomenon by which a subset of the overall dataset is increased, 

decreased or excluded (deviation of subset). This SA approach examines specific 

performance states in order to determine particular reliability forecasted results. 

The following SA approach is the scenario analysis, which is also known as 

Deterministic Sensitivity Analysis (DSA). In this assessment concept, the developer 

selects values and scenarios, where the methodology is evaluated by acquiring 

expected results. According to Parmigiani (2002), this procedure is simple to be 

implemented when the number of parameters involved is relatively small as well. The 

third SA approach considers all involved parameters as random quantities, which tests 

the methodology while enabling different repetitive simulations. This is a useful 

testing method, however randomisation of the involved parameters eliminates the 

probability of controlling uncertainty as long as factors are selected in an arbitrary 

order. In this Chapter, the SA scheme performed for testing the PMRA strategy is 

presented employing assessment aspects and features from the DSA and the 

marginalisation approaches. The major benefit of marginalisation and DSA 

approaches is that they enable the strategy testing for specific operational profiles 

(cases and scenarios) by simulating conditions that can be observed in actual sailing 

states. These SA approaches are oriented towards specific assessment scenarios, which 

simulate probable operational cases of the utilised ship equipment. 
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8.2.1. Selecting the base ship machinery case 

The implementation of an analytical and effective SA examining all involved complex 

ship machinery is impractical and almost impossible as these include the fuel, jacket 

cooling fresh water, lube oil, air supply, bearing drive and the cylinders. This ship 

machinery takes into account a complex structure incorporating various nodes which 

denote many subsystems, maintainable units and components and associations among 

them. This complex structure makes SA a challenging task. Therefore, the 

implemented SA has to be performed on a particular component or maintainable unit, 

which will allow efficient and effective testing enabling the input data adjustments as 

required and will be demonstrated next. 

An essential component for achieving the ship sailing functioning is the thrust bearing, 

which permits rotation between parts, while they are designed to support 

predominately axial load. The thrust bearing (also thrust block) is placed right after the 

ship Main Engine (M/E) as shown in Figure 8.1 and transfers the thrust from the 

propeller to the hull of the ship. Therefore, it has to be solidly manufactured, assembled 

and mounted on a solid frame to perform its task by withstanding normal and shock 

loads. According to Hyundai-MAN (2010b), due to the friction in the thrust bearing, 

the shaft power is approximately 1% less than the effective engine power. As stated 

by McCarthy (2006), thrust bearings are difficult to dismantle for inspection and 

maintenance activities, while their improper functioning will lead to wasted power due 

to friction. Hence, the friction will result in overheating the moving thrust bearing 

elements. 
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Figure 8.1 Ship shaft transmission layout engine to propeller (Taylor, 1996) 

Additionally, as shown in Figure 8.1, various bearings are installed between the Main 

Engine (M/E) and the propeller such as the thrust bearing, intermediate or tunnel 

bearings to support the shaft from below, aftermost tunnel bearing to support the shaft 

from above and below and the sterntube bearings to support the shaft and the propeller. 

In regards to access for overhauling or partial dismantling, the casing consists of two 

halves (i.e. upper and lower/fixed) which are joined by fitted bolds. An oil 

scraper/skimmer removes the oil from thrust collar and directs it to the pad stops, 

whereas the oil level indicator displays the lube oil state and quantity by preventing 

unexpected lube oil leakage (Figure 8.2). 

 

Figure 8.2 Thrust block (Taylor, 1996) 
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In this respect, PMRA network arrangement incorporates the bearing drive system, 

which consists of three intermediate shaft bearings, two camshaft bearings (i.e. aft and 

fore) and the thrust bearing as shown in Figure 8.3. For each of these maintainable 

units an hourly interval raw data is gathered. More specifically, the thrust bearings’ 

suitable condition can be ensured by monitoring the lube oil outlet temperature. In 

other words, the lubrication of the component confirms the adequate cooling of the 

moving parts that this consists of. Therefore, proper bearing lubrication prevents 

overheating, which will consequently lead to material wear and tear of the inner and 

outer races and the rotating elements. Accordingly, the condition monitoring of the 

thrust bearing, taking into account lube oil outlet temperature measurements, ensures 

efficient functioning. Therefore, efficient functioning of the thrust bearing will 

eliminate or delay the necessity for inspection through overhauling by decreasing the 

probability of human error during dismantling. As a result, the entire detailed SA will 

be carried out by taking into account the thrust bearing component. Raw lube oil outlet 

temperature measurements were collected, while a Panamax container ship was sailing 

in actual operational conditions. This dataset and its acquired reliability predicted 

results are utilised as reference points for further SA. 

 

Figure 8.3 Selection of maintainable unit for sensitivity analysis (sample of network 

demonstrated in Chapter 6) 
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8.3. Deterministic Sensitivity Analysis (DSA) 

Overall, PMRA strategy has been applied in two groups of case studies such as the 

processed and raw data respectively. Especially in the case of the raw data case study, 

all ship systems, subsystems and maintainable units and components achieve 

acceptable reliability performance in the data gathering and predictive period of time 

as well. It is essential to highlight that none of the systems or components reached or 

exceeded the predefined OEM’s safety thresholds. 

In this section, an analytical deterministic sensitivity analysis scheme is demonstrated 

taking into account different operational scenarios. The entire approach considers the 

raw data as baseline of further assessment. Moreover, the developed scenario analysis 

is applied by adjusting the raw dataset simulating actual operational conditions that 

may lead to failure or malfunctioning of the thrust bearing. The objectives of this 

sensitivity analysis are listed below: 

 Examine the suggested PMRA strategy and its ability to process data and 

perform predictions that differ from the existing raw data 

 Assess the forecasted reliability performance and provide indicative 

measurement conditions that will lead to unreliable predictions 

 Investigate unreliable data states by utilising unhealthy input data while 

performing simulations through PMRA strategy 

8.3.1. Assessment of gradual temperature increase 

In order to examine various operational scenarios while controlling uncertainty and 

adjusting appropriately the raw dataset, a specific data modification plan has to be 

introduced. This SA scheme employs the actual raw dataset of the thrust bearing, 

which is named real-data (i.e. refers to initial ship measurements). The real-data is 

incremented by 10% in each iteration until the forecasted results illustrate a fully 

unreliable state (reaching almost 0% predicted reliability performance). The scenario 

cases are denoted as real-data increased by the particular percentage (i.e. real +10%, 

real +20% etc.). 
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First of all, it is essential to highlight that various testing and verification iterations 

have been carried out of increasing increments at 1% and 5%. Hence, it has been 

noticed that in these cases, the reliability performance predictions have not been 

affected, therefore no failures or malfunctions have been identified. More specifically, 

in cases of increment 1% and 5%, there is no deviation in the acquired predicted 

results. This stable predicted state confirms reliable operating condition of the thrust 

bearing, because real-data are a lot lower than the defined alarm/warning point. 

According to the testing cases undertaken, the following decided plan involves 

scenarios of real-data increase by +10%. This attempt intends to examine the input 

data deviation associated with the acquired predictions. The implemented DSA cases 

are listed in Table 8.1 below and performed for reasons that will be explained 

analytically in this section. 

Table 8.1 Cases of implemented Deterministic Sensitivity Analysis (DSA) 

No DSA Case Result Description/Remarks 

1 real-data (reference point) collected onboard, reliable state 

2 real +10% stable performance, reliable state 

3 real +20% stable performance, reliable state 

4 real +30% stable performance, reliable state 

5 real +40% stable performance, reliable state 

6 real +50% minor deviation, reliable state 

7 real +51% partially unreliable state 

8 real +52% partially unreliable state 

9 real +53% partially unreliable state 

10 real +54% excessive unreliable state 

11 real +55% excessive unreliable state 

12 real +56% fully unreliable state 

13 real +57% fully unreliable state 

14 real +58% fully unreliable state 

15 real +59% fully unreliable state 

16 real +60% fully unreliable state 

17 real +61% fully unreliable state 

 

As shown in Table 8.1, seventeen DSA cases have been introduced for testing the 

predictive reliability performance of PMRA strategy and the methodology itself. 

Initially, it is important to clarify that the timeline has been divided into three state 

sections (segments). The first one involves the first month of data gathering, the second 
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segment the first predicted month and the third section the second predicted month. 

These segments of time will be used to define the remarks of Table 8.1. 

 Stable performance 

This description refers to the performance (current and predicted), which has been 

obtained identically the same for all involved DSA cases. Minor reliability drop is 

assumed as stable performance (i.e. from 100% to 99.88%). It has been identified only 

in fully reliable state cases (reliable states in current and predicted timeline). 

 Reliable state 

It denotes the reliability performance, which has been acceptable (below threshold) for 

the entire timeline. In other words, no failures or malfunctions are obtained or 

predicted. 

 Minor deviation 

A negligible reliability drop has been identified, compared to previous cases (below 

threshold, small deviation). 

 Partially unreliable state 

This state denotes to both existing and forecasted states. Partially unreliable means that 

degradation and unreliable figures have been acquired in the predicted timeline only. 

The higher the temperature increase the faster the reliability drop. 

 Excessive unreliable state 

The entire predicted timeline (both forecasted months) have been within the unreliable 

range, below the alarm/warning threshold. 

 Fully unreliable state 

This state describes entirely unreliable performance for both existing and forecasted 

timeline sections. In other words, failure measurements have been recorded in the data 

collection period of time. More specifically in Figure 8.4, the reliability performance 

of the thrust bearing is demonstrated in increasing intervals of 10% up to 61%. The 
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real-data refers to the initial dataset as collected onboard, while the ship was sailing. 

This dataset consists of indices i, which in total are 696 (measurement/data points). 

This process involves the escalation by the particular percentage of each recorded data 

point (i: index) within the overall dataset (origin of real-data). 

As shown in Table 8.2 below, the thrust bearing presents identical reliability 

performance utilising the real-data as well as in the cases of 10% up to 40%. This 

similarity in the acquired results occurs due to low operational thrust bearing lube oil 

outlet temperature, which leads to reliable predictions. On the other hand, negligible 

deviation of the obtained results is presented in the case of 50%, where 10% reliability 

drop is forecasted at the end of the second predicted month of functioning. At this 

state, it is essential to highlight that 10% reliability drop in actual operational 

conditions is not minor decrease. The DSA plan involves 10% increment of the real-

data, it has been noticed 87% reliability drop from real-data +50% to real-data +60%. 

Therefore, the 10% reliability drop for the cases real-data +40% to real-data +50% is 

denoted regarding the SA scheme as minor or negligible. 

The timeline involves monthly intervals. The first month (points 0.5 and 1) refers to 

the data collection time, whereas points 1.5 to 3 denote the following two predicted 

months. 

Table 8.2 DSA reliability results (%) for cases real-data +10% to +40% 

Months real-data real +10% real +20% real +30% real +40% 

0.5 100 100 100 100 100 

1 99.99 99.99 99.99 99.99 99.99 

1.5 99.98 99.98 99.98 99.98 99.98 

2 99.96 99.96 99.96 99.96 99.96 

2.5 99.93 99.93 99.93 99.93 99.93 

3 99.88 99.88 99.88 99.88 99.88 

 

On the other hand, negligible deviation of the obtained results is presented in the case 

of 50% as shown in Table 8.3, where 10% reliability drop is forecasted at the end of 

the second predicted month of functioning. The following level of sensitivity 

investigation involves increase at 60% of the existing real data. In this case, the 

reliability drop is immediate, which starts at 80.9% and decreases down to 2.19% 
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(analytical values will be presented next). Due to this excessive reliability drop, further 

SA investigation has been carried out in intervals of 1%, between the cases of 50% 

and 60%. This detailed assessment explores the reliability drop and PMRA strategy 

performance in gradual sensitive (as it is narrowed at 1%) real-data increase. 

The scenario analysis of the demonstrated outcomes indicates gradual/continuing 

reliability degradation, while the lube oil outlet temperature has been increased. 

Therefore, the first intermediate scenario above 50% examined involves 51% increase 

of the initial real-data temperature. Therefore, additional cases have been obtained 

such as real +51% to +53% as presented in Table 8.3, in order to identify the gradual 

reliability decrease in smaller increasing intervals of temperature (1% interval). 

Table 8.3 DSA reliability results (%) for cases real-data +50% to +53% 

Months real +50% real +51% real +52% real +53% 

0.5 99.3 98.1 96.8 95.5 

1 98.59 96.19 93.59 90.99 

1.5 97.20 92.53 87.59 82.79 

2 95.82 88.99 81.97 75.33 

2.5 93.13 82.33 71.79 62.36 

3 89.23 73.26 58.84 46.96 

 

The examined DSA cases of real +51% to +53% demonstrate a gradual reliability drop, 

where unreliable input data have not been utilised yet. However, experimentally it has 

been confirmed that reliability performance below 80% incorporates unreliable data. 

This statement of the reliability threshold will be clarified in case the analytical 

discussion of real +56% next. Therefore, case real +51% is the first scenario, which 

associates unreliable prediction in the third month (73.26%). Gradually, this reliability 

drop to unhealthy states has been transferred to earlier predicted points in the timeline. 

More specifically, real +52% presents the second forecasted month to be unreliable as 

in real +53% case as well. 
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Table 8.4 DSA reliability results (%) for cases real-data +54% to +55% 

Months real +54% real +55% 

0.5 94.6 93.4 

1 89.21 86.82 

1.5 79.75 75.52 

2 71.14 65.56 

2.5 56.72 49.51 

3 40.34 32.45 

 

In cases such as real +54% and real +55% (Table 8.4), excessive unreliable state has 

been identified. As defined above, the entire predicted period of time has been in 

unreliable state. However, the data collection time (months 0.5 and 1) consists of 

reliable measurement below the warning threshold. 

Table 8.5 DSA reliability results (%) for cases real-data +56% to +61% 

Months 
real 

+56% 

real 

+57% 

real 

+58% 

real 

+59% 

real 

+60% 

real 

+61% 

0.5 90.9 88.7 85.9 82 80.9 76.1 

1 81.86 77.48 72.17 64.28 61.95 53.37 

1.5 67.28 60.27 52.82 41.64 38.52 29.24 

2 55.07 46.69 38.11 26.76 23.86 15.60 

2.5 37.05 28.14 20.13 11.14 9.19 4.56 

3 20.40 13.14 7.67 2.98 2.19 0.71 

 

In Table 8.5, the cases of real-data +56% up to 61% have been shown. It is essential 

to clarify that real +56% is the first examined scenario, which involves in the recorded 

input data unreliable measurements. More specifically, 22 out of 696 (total size of 

dataset) unreliable measurements have been incorporated by increasing the real-data. 

The first two reliability processed points at plotted positions 0.5 and 1 reach 90.9% 

and 81.86% respectively. These two points denote the reliability performance of real-

data, while it is increased by 56% for the first month of the data gathering period. As 

long as real-data +56% is the first dataset, which includes unhealthy points, 

performance at 90.9% and 81.86% (which is not predicted yet) defines the percentage 

threshold at almost 80%. In other words, reliability performance lower than 80% 

ensures recorded data points at 90 °C or higher.  
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Table 8.6 DSA cases number of unreliable data points 

Case No of data points ≥ warning level @90 °C 

real +56% 22 out of 696 

real +57% 69 out of 696 

real +58% 70 out of 696 

real +59% 70 out of 696 

real +60% 71 out of 696 

real +61% 114 out of 696 

 

More analytically, the major reliability drop, in cases where the current data are 

unreliable as well, has been identified in cases real-data +56% to +61%. In Table 8.6, 

the number of data points (in the data collection time) above the warning level at 90 

°C have been presented for the cases real-data +56% to +61%. Summarising the 

presented results of the developed DSA scheme, Figure 8.4 presents all involved 

scenarios assessed above. All previous examined scenarios from real-data up to real-

data +55% of temperature (inclusive) are processed, while consisting of healthy 

recorded data points. However, the reliability drop of these scenarios indicates 

unhealthy predicted conditions in states of lower than 80% performance. Moreover, 

scenario analysis from real-data up to real-data +55% demonstrates the steady and 

progressive drop from healthy to unhealthy and unreliable predicted states. It is 

essential to clarify that the first two points in timeline (points 0.5 and 1) denote the 

recorded input data, whereas points 1.5 to 3 the predicted ones. 
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Figure 8.4 Incremental scenario analysis of thrust bearing 

Summarising, the key finding of this sensitivity analysis scenario scheme includes the 

following: 

 PMRA strategy is capable of processing reliability performance predictions by 

considering raw data 

 Deterministic sensitivity analysis proves the capability of PMRA strategy to 

process successfully various datasets incorporating healthy and unhealthy data 

points 

 The suggested DSA approach verifies the PMRA strategy in processing 

datasets, while confirming degradation of the reliability performance in 

increasing intervals of 1% and 10% of the involved temperature measurements 

 According to existing real-data and the DSA scheme performed, temperature 

increase up to +50% indicates reliable operation for the entire predicted period 

of time 

 For sensitivity scenarios of 51% to 53% (temperature increase) signs of 

unreliable predictions have gradually appeared, particularly in forecasted 

figures lower than 80% of reliability 

 Implementation of unhealthy input data points has been taken place, where 

PMRA strategy has successfully detected these 
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Except of the PMRA strategy testing, the sensitivity analysis practically determines 

the flexibility level in deviating of the initial raw data. Therefore, it demonstrates the 

reliable, partially reliable and fully unreliable cases by providing a DSA for an early 

warning assessment. 

8.3.2. Comparative assessment of gradual temperature increase 

The idea of increasing the recorded real data, in order to examine reliable and partially 

reliable and gradually reliable states is demonstrated in Figure 8.5 and examined in 

this section. More specifically, this section employs a colour-coded approach. Three 

dataset states/scenarios are illustrated below including: 

 Real-data (blue curve) 

 Real-data +50% (green curve) 

 Real-data +51% (red curve) 

These case scenarios have been selected to be compared and discussed, because they 

present the most sensitive predicted states. They demonstrate the transition from the 

reliable state modelling to the gradually unreliable as real +51% case obtained the first 

unreliable performance in the second predicted month. The intermediate scenarios (i.e. 

10% to 50%) are demonstrated and discussed analytically in the previous section. 

However, there is not particular interest in these cases as they present almost stable 

reliability performance. The idea deliberates the continuous input data increase by 

retaining similar data features, while ensuring the overall uniformity with the actual 

recorded dataset. Continuing increase of the real-data will lead to illustration of the 

implemented 52% to 61% (as discussed previously). Therefore, Figure 8.5 illustrates 

the thrust bearing lube oil outlet temperature scenarios analysis. 
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Figure 8.5 Thrust bearing lube oil outlet temperature scenarios analysis 

In the plotting arrangement below as well as in Figure 8.5, the green curve 

demonstrates the scenario analysis of the real +50%, whereas the red curve the real 

+51%. These dataset present the most sensitive performance due to transition from the 

reliable state to the partially reliable. Comparatively, Figure 8.6 presents the reliability 

performance of all involved bearings incorporated into the bearing drive system. 

Therefore, aggregated reliability performance of the camshaft bearings (aft and fore) 

and the three intermediate shaft bearings have been introduced. These components 

(camshaft and intermediate shaft bearings) have been demonstrated in an aggregated 

format, because the PMRA SA examines the reliability performance of a single 

component as defined above (i.e. simplicity and flexibility in testing and modelling). 

The components involved in the bearing drive system include the camshaft bearings 

(aft and fore), intermediate shaft bearings (1 to 3) and the tested thrust bearing for the 

scenarios of real-data +50% and 51% respectively. In Figure 8.6 below, the reliability 

performance of the camshaft bearings and the intermediate shaft bearings demonstrate 

almost identical predictions at 100% because they employ the real-datasets per 

component. These rea-datasets include temperature measurements a lot lower than the 

warning thresholds, hence predictions are almost perfect. 
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Figure 8.6 Reliability performance of various bearings and scenarios 

The results of the unreliable thrust bearing presented in Figure 8.6 illustrate the gradual 

reliability performance drop, while the temperature is increased. Therefore, it 

summarises and confirms the fundamental notion that the lower the temperature the 

more reliable condition of the component is. 

As presented in Chapter 6, the PMRA bearing drive system includes components such 

as the camshaft bearings (aft and fore), three intermediate shaft bearings and the thrust 

bearing. The following figure below examines the overall system reliability 

performance, while one of the involved components has declined performance due 

temperature increase. In this particular case, all of the bearings utilise the actual real-

data, whereas the thrust bearing employs the sensitive defined cases of real-data +50% 

and +51% respectively. In other words, this study examines the reliability performance 

on system level, while one component presents degraded performance. 
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Figure 8.7 Reliability performance of bearing drive for different thrust bearing 

scenarios 

Additionally, Figure 8.7 encompasses the reliability performance on system level, 

while introducing different scenarios of the Thrust Bearing (THB). Three reliability 

conditions of the bearing drive system are shown by taking into account the actual 

collected data of the camshaft bearings (aft and fore) and threw intermediate bearings. 

On system level, the fundamental notion stated above is confirmed as well, the lower 

the temperature, the higher the reliability performance is. 

8.4. Marginalisation Sensitivity Analysis (MSA) 

As stated above, marginalisation is the sensitivity analysis process, which examines 

the flexibility of the developed methodology by implementing partial deviation of the 

utilised input data. This deviation can be achieved by increasing or decreasing 

particular subsets/groups of data within the dataset in order to move data points 

towards predefined limits (such as the safety thresholds) by reaching or exceeding 

these. On the other hand, marginalisation can be implemented by excluding a particular 

subset of the dataset. 
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This SA approach examines specific performance states in order to determine 

particular reliability forecasted cases. In this section, two cases of Marginalisation 

Sensitivity Analysis (MSA) are presented by taking into account both options. The 

involved MSA cases that will be demonstrated next in Table 8.7. 

Table 8.7 MSA introduced approaches 

MSA approach Description 

1. MSA of increasing selected input 

subset 

Examine the reliability performance of 

the thrust bearing by deviating 

(increasing) a particular subset of the 

real-data 

2. MSA of excluding selected input 

subset 

Investigate the prediction accuracy of 

the suggested PMRA strategy by 

utilising two subsets of the overall 

dataset 

8.4.1. MSA of increasing selected input subset 

More specifically, the first case investigates the reliability performance of the thrust 

bearing in three different operational levels. As dataset base line, the real +50% is 

employed, because it is sensitive enough to demonstrate unreliable states (reliability 

performance lower than 80%). In Figure 8.8, the input data of the three involved cases 

is demonstrated. Firstly, the real data increased by 50% is shown (real +50% in blue) 

and the real +51% (green). It is important to prompt that each dataset consists of data 

points i (i: stands for index or data point) having length of 696 recorded points. The 

newly introduced case incorporates aspects of both real +50% and real +51% cases 

and is denoted as real +50% (@ i:191-262 real +51%). 

More analytically, the real-data has been increased by 50%, where a particular subset 

(index i: 191-262) has been increased by 51%. This subset is selected as it obtains the 

highest recorded figures within the data gathering timeline. Therefore, marginalisation 

of this group of points aims to investigate the importance of data population in different 

operational cases. 
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Figure 8.8 Thrust bearing lube oil outlet temperature MSA 

In Figure 8.9, the acquired reliability performance results are presented for the three 

involved operational cases. The highest reliability for the recorded and predicted 

period of time is presented by the real-data +50% case (blue curve). The outcomes 

illustrate expected performance as the utilised dataset (real-data +50%) consists of the 

lowest temperature measurements among the involved plotted scenarios. 

On the other hand, the lowest reliability performance among the plotted scenarios in 

Figure 8.9 is shown by the real +51% case (green curve). This case utilises the highest 

temperature records within the overall employed dataset. Hence, reliable functioning 

is shown up to the second month, whereas initiation of unreliable performance (82.3% 

and 73.3% respectively) in the third month. 

An intermediate case is presented with the red curve, where the entire dataset has been 

increased by 50% and a subset (@ i: 191-262 real +51%) of the overall dataset includes 

increased values by 51%. Therefore, these MSA cases prove the capability of PMRA 

strategy to process reliably various datasets, while there have been partial or overall 

input modifications and changes. This is important point in the implementation of 

PMRA strategy, because the current methodology enables flexibility in assessing 

various scenarios without consideration of introducing code or method changes. 
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On the other hand, this study proves that the reliability has been affected by the 

population of the unreliable data points. In the case of real +51%, more data points 

have been increased reaching the safety/warning threshold than in the case of the real 

+50% (@ i: 191-262 real +51%) as the predicted results confirm. In conclusion, it has 

proven that the more the recorded data is, the more reliable the predictive performance 

will be. In other words, the population of the gathered input data has significant impact 

to the obtained results. 

 

Figure 8.9 Thrust bearing MSA reliability performance 

Before proceeding to the following MSA case study, it is necessary to clarify that the 

involved datasets such as the real-data +50%, +51% and +50 (@ i: 191-262 real +51%) 

have been processed into monthly intervals. Therefore, the entire dataset of the 696 

data points has been considered as one set of records and has been utilised for acquiring 

the particular predictions. As shown in Figure 8.10 below, the data gathering process 

has been initiated at record point 0 and ended at point 696. All these data records 

illustrate almost a month of processing. This dataset processing arrangement has been 

utilised for real-data +50%, +51% and +50 (@ i: 191-262 real +51%) case scenarios. 
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Figure 8.10 MSA increasing subset scenario processing of monthly intervals 

8.4.2. MSA of excluding selected input subset 

The following study implements the Marginalisation Sensitivity Analysis (MSA) in 

order to verify the predictive accuracy of the suggested PMRA strategy. More 

specifically, the real-data has been amended by +50% for this study. In the previously 

presented sensitivity assessment studies, the input data has been processed in monthly 

intervals by utilising the overall hourly recorded 696 data points (almost a month). 

However, in this study the dataset is split in two parts as shown in Figure 8.11 as input 

data subset (a) and (b) respectively. Part (a) involves the first half of the hourly 

recorded dataset (i.e. 348 data points or two weeks), whereas part (b) the second half 

of the real-data +50% case. This decision has been made attempting to prove the 

reliability performance prediction accuracy. Therefore, the idea of this case scenario 

is to acquire predictions of input data subset (a) and compare them with the results 

obtained of subset (b). According to the results obtained in the previous SA, the higher 

the dataset population the more accurate the predictions are. Hence, splitting the 

collected dataset in two subsets, it can be assumed that the data will achieve higher 

prediction accuracy than in splitting in three or more subsets. 

 

Figure 8.11 MSA excluding subset scenario processing of half monthly intervals 
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This study aims to examine the accuracy of PMRA strategy forecasting the reliability 

performance. More specifically, the predicted results acquired by the PMRA strategy 

of real +50% (a) are compared to the results obtained by the real +50% (b) subset of 

input data. Therefore, the first stage of this comparative case scenario is to separate the 

real-data +50% in two equal subsets. Each of these subsets has been processed by 

PMRA strategy independently and their results have been compared. 

Figure 8.12 demonstrates the reliability performance results for real-data +50% (a), 

whereas, Figure 8.13 for the real-data +50% (b). It is essential to mention that the case 

scenario demonstrated in Figure 8.12 employs the subset (a) and excludes from 

processing the subset (b), and vice versa for Figure 8.13. In regards to the reliability 

performance curves (blue and red), it is essential to highlight that real-data +50% (a) 

initiated earlier in the timeline as it refers to the first half of the recorded data. Hence, 

real +50% (a) initiates at point 0.25 (1/4 of a month), whereas part (b) at point 0.75 

(3/4 of a month). 

 

Figure 8.12 Thrust bearing MSA excluding case scenario involving subset (a) 

The first two points of the reliability curves in the timeline (0.25, 0.5 and 0.75, 1 

respectively) demonstrate the reliability performance of the recorded period, whereas 

the following points show the predicted values (description provided in Table 8.8). 
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The comparative study takes into account the points in timeline/x-axis 0.75, 1, 1.25 

and 1.5 among the real-data +50% (a) and (b) subsets. In the case of real-data +50% 

(a) subset (blue curve), these reliability figures represent predicted reliability 

performance, which utilised input from the 0.25 and 0.5 points. 

 

Figure 8.13 Thrust bearing MSA excluding case scenario involving subset (b) 

On the other hand in regards to subset (b), points 0.75 and 1 in timeline illustrate the 

reliability in data gathering period of second half of the recording month. Additionally, 

points from 1.25 to 2 (months) in the timeline illustrate the upcoming predictions 

arising from the processing states of 0.75 and 1. The prediction error among the 

involved datasets is represented in the table below. The predictive error is reasonably 

low for the entire forecasted timeline, which indicates error of maximum 0.52% at the 

end of the second predicted month. The plotted values in Figure 8.12 are analytically 

clarified in Table 8.8. In conclusion, the presented predictions comparing subset (a) 

and (b) identify non-sensitive results for the entire forecasted period of time as the 

maximum error has been calculated at 0.52%. 
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Table 8.8 Thrust bearing verification through MSA reliability performance 

Month 
real +50% 

(a) 

real +50% (a) 

State 

real +50% 

(b) 

real +50% (b) 

State 
Error 

0.25 100.00% current - - - 

0.5 99.99% current - - - 

0.75 99.98% predicted 99.95% current 0.03% 

1 99.96% predicted 99.79% current 0.17% 

1.25 99.93% predicted 99.58% predicted 0.35% 

1.5 99.88% predicted 99.36% predicted 0.52% 

1.75 -  98.94% predicted - 

2 -  98.29% predicted - 

8.5. Chapter summary 

In this Chapter, a detailed sensitivity analysis is performed in order to present the 

performance of the developed PMRA strategy under different input configurations. A 

description of the SA process is provided by investigating and selecting the base ship 

machinery for introducing the SA scheme. The assessment implemented deterministic 

(scenario) and marginalisation sensitivity analysis practices in order to investigate the 

performance of the suggested strategy under various ship operational states. A 

verification modelling approach confirmed the accurate predictive capabilities of the 

suggested inspection strategy. In conclusion, it is essential to clarify that sensitivity 

analysis of compound condition monitoring strategies, while utilising complex ship 

machinery is a challenging task. Therefore, it is believed that similar testing modelling 

approaches have to be introduced in larger extend certifying the forecasting 

capabilities in different operational states. 
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9. DISCUSSION AND RESEARCH CONCLUSIONS 

9.1. Chapter outline 

In this Chapter, the overall discussion and review regarding the innovative PMRA 

strategy is presented in the following sections. Furthermore, the novelty of the 

performed research work and the suggested PMRA strategy is demonstrated. The 

contribution of this research to theory and practice is highlighted and the 

accomplishment of research aim and objectives is summarised. Lastly, the research 

assumptions undertaken into this study are listed contributing towards the 

implementation of the suggested PMRA strategy. 

9.2. Review of the overall thesis 

The present research has elaborated on the subject of reliability assessment of 

inspection and maintenance in offshore oil and gas and more specifically in the 

maritime transportation mode. The thesis has been initiated by presenting in Chapter 

1, the background of maritime industry and increasing seaborne trade demand for 

transportation of various types of commodities. Through recorded historical accidents 

in the oil and gas and maritime sector, some lessons have been learnt, which prioritise 

the importance for further research and development towards safer seaborne 

transportation. The establishment of the research aim and objectives have been 

addressed in Chapter 2 by identifying the study goals for the upcoming research thesis. 

Once the industrial requirements have been investigated and the research objectives 

defined, the following step is to scrutinise existing studies performed. This assessment 

is achieved undertaking a thorough and critical literature review, presented in Chapter 

3, on inspection and maintenance in both academic research and industrial practices. 

The examined and presented critical literature review is divided in six major sections. 
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The first one (§3.2) overviews the maintenance strategies into major categories such 

as corrective, preventive, predictive and proactive approaches. The second section 

presents the significance of precise and well-planned inspection and maintenance 

practices through maintenance guidelines and regulations (§3.3). Extensive 

investigation in regulatory bodies such as British Standards (BS) and International 

Organization for Standardization (ISO), International Maritime Organization (IMO) 

and International Association of Classification Societies (IACS) is taken place in 

regards to machinery maintenance. 

The outline of maintenance implementation in various industrial sectors is 

demonstrated in the third section of the critical literature review (§3.4) through 

methods such as Reliability Centred Maintenance (RCM), Total Productive 

Maintenance (TPM), Total Quality Management (TQM), Risk Based Inspection and 

Maintenance (RBI and RBM respectively), Condition Based Maintenance (CBM), 

Computerised Maintenance Management System (CMMS) and the holistic approach 

of Asset Management (AM). The advantages of the lately introduced methods such as 

CBM, CMMS and AM set the ground for further research and development towards 

the establishment of a novel and flexible inspection and maintenance strategy in 

maritime industry. 

Therefore, the fourth section of the presented literature review (§3.5) evaluates the 

most-known and broadly applicable Condition Monitoring (CM) technologies such as 

vibration monitoring, thermography, lubrication oil analysis, visual inspection and 

acoustic/ultrasonic monitoring. Furthermore, monitoring diagnostic and prognostic 

applications are demonstrated by taking into account research and commercially 

available condition monitoring systems. Additionally, the fifth section of the literature 

review (§3.6) identifies and examines the major Condition Monitoring (CM) 

functionalities and the available commercial applications. The CM functionalities are 

classified among diagnostics and prognostics, whereas, leading software applications 

and industrial solutions are reviewed. 

Having examined the above, the sixth section (§3.7) assesses the state-of-the-art of the 

maintenance optimization tools, signal processing, failure and risk analysis as well as 

decision-making methods from various researchers highlighting strengths and 
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weaknesses to develop accurate CM strategy tools. In this section, different qualitative 

and quantitative approaches have been presented such as Artificial Neural Networks 

(ANNs), Expert Systems (ES), fuzzy logic and Evolutionary Algorithms (EAs). 

Additional, signal processing and optimisation methods assessed include different 

applications of Fourier Transforms (FT). 

On the other hand, risk of failure identification and analysis methods has essential 

impact into this research by considering tools such as Failure Mode and Effect 

Analysis (FMEA), Fault Tree Analysis (FTA), Dynamic FTA (DFTA), 

implementation of Markov Analysis (MA) and the lately introduced Bayesian Belief 

Networks (BBNs). Decision-making is the final stage of the CM framework. This 

phase aims to suggest inspection and maintenance actions by prioritising critical 

systems, subsystems, components. In this subsection, a variety of methods have been 

assessed consisting of Analytical Hierarchy Process (AHP) and Rough Set (RS) among 

others. 

The critical literature review concludes by identifying the latest research and 

development direction. Hence, this review identifies the research and development 

tendency for ship machinery inspection and maintenance. Brief critical outcomes of 

this review include aspects such as holistic view of ship machinery, data fusion (i.e. 

various sources), flexibly developed predictive reliability assessment and 

implementation of decision making features. These technical characteristics are 

utilised for structuring the proposed maintenance strategy, targeting to accomplish the 

predefined aim and objectives. 

As long as the identification of research gaps and development direction with respect 

to inspection and maintenance of ship machinery is demonstrated the foundations for 

Chapter 4 are allocated. The proposed Probabilistic Machinery Reliability Assessment 

(PMRA) strategy is established by introducing the employed data analysis algorithm 

and reliability assessment tool. At first, an introduction into data mining field takes 

place outlining methods, which allow to extract information from a data set and 

transform it into an understandable structure for further use. The development of 

PMRA strategy takes place on different levels initiated by introducing the principle 

aspects of the suggested strategy. The model development continues by selecting the 
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appropriate methods and tools leading to the overall establishment and proposal of 

PMRA strategy. 

The implementation of the proposed PMRA takes place at two levels of application. 

These applications are separated in case studies and presented in Chapters 5 & 6 

respectively. First of all, Chapter 5 includes the demonstration of case study of the 

primary developed dynamic reliability assessment tool as part of PMRA strategy. This 

case study employs processed data and introduce the Markov Chain (MC) for 

elaboration of the time dependences (i.e. dynamic state modelling) and establish the 

Dynamic Bayesian Belief Networks (DBBNs). Multiple independent main systems are 

considered such as the Engine, Turboexpander and various pumps. This case study 

contribute towards the research and development of the network arrangement by 

investigating various features and techniques of programming flexibly and efficiently 

in Java Object Oriented Programming (OOP) language. Additionally, the case study 

introduced in Chapter 5 sets the grounds for the overall PMRA strategy that will be 

presented next. 

In Chapter 6, the second stage of PMRA strategy implementation takes place involving 

a holistic study of the entire suggested methodology. This case study considers all data 

processes, methods and techniques of PMRA strategy such as the data acquisition, data 

clustering and safety threshold implementation, reliability assessment and initial 

qualitative aspects of decision making. The current study utilises raw data such as 

temperature and pressure gathered from actual ship machinery operational conditions. 

Henceforth, this study intends to evaluate the entire PMRA strategy in regards to 

working state reliability performance predictions by employing real functioning 

figures. The structure of the developed PMRA strategy network consists of various 

raw data measurements, maintainable units and systems that the input data affects. 

Moreover, subsystems and maintainable units incorporate ship systems such as the 

fuel, jacket cooling fresh water, lube oil, air supply, bearing drive and cylinders. 

The above case studies are analytically presented and assessed related to the obtained 

results in two major subsections of Chapter 7. The first subsection involves the 

processed data case study, whereas the second the raw data. Each subsection is 

concluded by critically presenting the outcomes and the benefits gained out of the 
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study. In Chapter 8, a detailed Sensitivity Analysis (SA) is performed resenting the 

level of change in the predicted acquired results, when there is alteration in the 

provided input data. This SA has been introduced due to multiple reasons. First of all, 

the raw data gathered as well as the forecasted figures declare almost stable reliability 

performance, because the ship was functioning in slow steaming condition. Therefore, 

an analytical assessment has been introduced to confirm the accurate and efficient 

predictive capabilities of PMRA strategy. The performed SA applies marginalisation 

and Deterministic Sensitivity Analysis (DSA) scenario assessment. The results of 

these studies examine the flexibility in input data deviation, while ensuring accuracy 

in prediction. 

9.3. Novelty of presented research 

The novelty of the presented research comes from the developed PMRA strategy, and 

the ability of assessment that is accomplished in its implementation. First of all, the 

critical literature review is performed through a detailed analysis approach where 

various inspection and maintenance aspects of different industries are examined. The 

presented research review is oriented towards three sectors such as the evaluation and 

critical assessment of academic/research achievements, industrial and commercial 

applications and practices as well as the latest standardisation reports from leading 

international regulatory bodies. Therefore, the presented critical literature review has 

vital impact on theory and practice too. It examines strategies, methods, practices and 

tools by involving technological aspects such as hardware and software as well. 

On the other hand, the developed PMRA strategy introduces a variety of novelties in 

regards to processing techniques, practical and modelling features and flexibility in 

implementation. Firstly, PMRA strategy achieves reliability performance assessment 

of ship machinery beyond diagnostics by establishing prognostic reliability state 

modelling. The suggested strategy recommends an individual methodology for 

inspection and maintenance of ship machinery. PMRA strategy integrates the 

assessment of the reliability performance of various onboard installed machinery 

provided by different manufacturers and suppliers. Therefore, this is a novel solution 
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to combine and process information from various systems targeting a holistic view of 

the reliability and safety on board the ship. 

Another novel feature of the suggested maintenance strategy is the utilisation of raw 

data for performing reliability predictions. Furthermore, an innovative data analysis 

and processing algorithm have been introduced for pattern recognition, which creates 

the ground for time-dependent (dynamic) state modelling. PMRA strategy embeds an 

accurate and flexible reliability assessment network arrangement for predicting the 

reliability performance of selected ship machinery. Additionally, this assessment takes 

place in an adaptable manner on system, subsystem and component level, while 

allowing the investigation of root cause assessment and failure interaction through the 

establishment of system/subsystem/component functional interdependencies. 

In conclusion, various data sources such as historical, expert and raw data have been 

combined in the different levels of PMRA implementation. Moreover, the benefits of 

qualitative and quantitative assessment have been integrated in PMRA strategy 

gaining from the features of both. Lastly, it is essential to highlight that overall PMRA 

strategy consists of processing stages such as data selection, data clustering, safety 

index implementation, time-dependent modelling, predictive reliability assessment 

and lately fundamental aspects of decision making. All of these stages are adaptable 

and flexibly modelled allowing further investigation, testing, research and 

development. 

9.4. Research contribution 

Condition Based Maintenance (CBM) also known on-condition assessment has direct 

impact to industrial applications as plethora of commercial practices confirm. 

However, this on-condition assessment requires implementation of sophisticated 

processes, methods and tools. Therefore, CBM practices as the suggested PMRA 

strategy have direct contribution to theory and practice. 

The thesis has presented a dynamic probabilistic assessment strategy for predicting the 

reliability performance of ship machinery. In particular, a novel strategy has been 

developed integrating benefits and aspects of data selection and collection, data mining 
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methods such as k-means (Lloyd algorithm), dynamic state modelling by Markov 

Chains (MC), reliability assessment by Dynamic Bayesian Belief Networks (DBBNs) 

and decision making through Failure Modes and Effects Analysis (FMEA). Overall, 

qualitative and quantitaive input data types have been utilised same as assessment 

practices (i.e. FMEA and DBBN respectively). Lastly, sensitivity analysis has been 

obtained applying Marginalisation Sensitivity Analysis (MSA) and Deterministic 

Sensitivity Analysis (DSA), techniques suitable for testing Bayesian Belief Networks 

(BBNs). 

The application of PMRA strategy is tackled in two cases studies, which consist of 

different systems. The first case study incorporates systems such as 4-stroke engine, 

turbocharger and various pumps, which sourced from the offshore oil and gas industry. 

More specifically, OREDA database provided reliability and failure records on system 

and component level by taking into account various failure modes. This case study 

introduced principal technical aspects of PMRA such as the time-dependent modelling 

and the reliability assessment through network arrangement. The second case study 

utilised raw data gathered onboard a Panamax container ship, while sailing in actual 

operational conditions. This study has been applied on the fuel, jacket cooling fresh 

water, lube oil, air supply, bearing drive and cylinders systems. Overall, PMRA 

strategy aims to assist onboard crew members and operators in regards to past, current 

and future reliability performance. The establishment of this robust strategy directs 

decision makers and ship machinery operators towards safer ship functioning by 

deciding on necessary inspection and maintenance actions. 

9.5. Accomplishment of research aim and objectives 

The scope of this research is to contribute towards theory and presents actual/practical 

applications in regards to offshore platform oil and gas and ship machinery reliability 

performance predictions. The theoretical contribution is confirmed by implementing 

sophisticated algorithms, methods and tools, while improving the knowledge in the 

industrial and practical field. In this section, it is essential to summarise the objectives 

that were defined in Chapter 2 and discuss the progress that led to their 

accomplishment. 
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Objective 1: Investigate and critically review the existing maintenance strategies, 

methodologies and applied approaches in literature by assessing the 

state-of-the-art of Research and Development (R&D) and 

industrial/commercial applications and define similarities, advantages, 

limitations and research gaps 

This objective has been achieved by investigating existing and latest maintenance 

strategies, methodologies, technologies and tools. The overall critical assessment led 

to identification of research gaps and directions. Thorough and meticulous critical 

review of the state-of-the-art clarified theoretical and practical requirements. Through 

this study as shown in Chapter 3, benefits and drawbacks of practices have been 

investigated, which contributed towards the establishment of the suggested PMRA 

strategy. In parallel with the theoretical and practical (commercial/industrial) critical 

review, various international standardisation and regulatory bodies have assisted this 

study guiding towards the latest CM practices. Through detailed analysis, the necessity 

for an adaptable predictive CM strategy has been identified suitable for various ship 

machinery. As maritime industry is undeveloped in the implementation of automated 

diagnostic and prognostic tools, various major gaps are identified in this industry. 

Objective 2: Propose an innovative maintenance strategy for ship machinery by 

establishing novel data analysis methods as well as reliability 

assessment modelling 

This is achieved by proposing and developing the Probabilistic Machinery Reliability 

Assessment (PMRA) strategy (Chapter 4). It integrates the advantages of pattern 

recognition through the employed novel and efficient data mining method. Therefore, 

raw data are utilised for the reliability assessment. This method is combined with the 

benefits arise by the implemented reliability tool. The overall PMRA strategy 

considers the reliability variation through the operational timeline, hence, an 

innovative and adaptable process has been established dealing with the time-

dependencies. 

Objective 3: Develop an innovative and adaptable predictive reliability assessment 

tool for processed data 
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Extensive research in regards to existing reliability assessment of machinery involves 

well-known qualitative and quantitative tools such as FMEA, FTA and ETA. These 

tools are capable in modelling machinery, however they are deficient to model 

complex systems and inflexible to be adapted if necessary. Therefore, PMRA strategy 

introduces the innovative and flexible network arrangement offered by Bayesian 

Belief Networks (BBNs) (Chapter 4). These networks allow the consideration of more 

systems or any possible adaptation in the assessment if needed. The overall reliability 

investigation takes place on system, subsystem and component level, while utilising 

reliability figures such as percentages. BBNs are integrated with the innovative and 

adaptable Markov Chains (MC). This tool is based on the Markov process and enables 

transition in time. MC modelling approach is also known dynamic or time-dependent 

state modelling. The integration of MC and DBBNs is novel in engineering field and 

particularly in maritime applications. Additionally, it is essential to highlight that the 

flexibility that both tools offer, enable further research and development by adapting 

the existing the existing effort. 

Objective 4: Propose a methodology for raw data analysis to transform data into 

probabilistic measures that can be utilised by the developed reliability 

tool proposed above 

So far the majority of the presented research and suggested methodologies utilise 

reliability assessment methods that employ reliability figures and failure records in the 

form of percentage. Hence, processed input data incorporates major assumptions. First 

of all, the input data source’s processing methodology is unknown, leading to trust to 

the data provider. Secondly, the developed methodology relies on the input data 

source, which leads to dependence to external data processing developers. Therefore, 

the suggested PMRA strategy leads the CM and reliability assessment beyond the 

known techniques. It offers and integrates a data mining method for information 

extraction through the achieved pattern recognition as presented in Chapter 4. 

Moreover, the implementation of safety thresholds allows the determination of 

acceptable operational levels as defined by leading stakeholders in the maritime 

industry. PMRA strategy is oriented towards various systems provided by different 
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suppliers (i.e. main engine, turbocharger and pumps). Therefore, OEMs are suitable as 

the predefined warning/alarm levels fulfil the requirements of the manufacturers. 

Objective 5: Demonstrate the applicability of the developed tools on selected ship 

machinery by utilising processed as well as raw onboard recorded input 

data 

PMRA strategy has been implemented in two application levels. In the first case as 

shown in Chapter 5, processed data has been involved extracted by the external data 

source of OREDA database. The case study carried out on processed data, which refer 

to reliability figures per system and maintainable unit and components involved. 

Additionally, failure modes have been recorded and associated with each component 

(at least one per unit). These studies were applied on offshore oil and gas platform 

systems such as 4-stroke engine, turbocharger and various pumps, where they share 

common aspects as these of ship machinery. The major benefits of these studies are 

incorporated in the development of the time-dependent state modelling approach in 

parallel to the reliability assessment tool of DBBNs. On the other hand, valuable input 

technical input has been provided by OREDA, which set the ground for further 

development. 

The second application involves the predictive reliability assessment of various ship 

systems such as fuel, jacket cooling fresh water, lube oil, air supply, bearing drive and 

cylinders (Chapter 6). In this case, raw data has been gathered onboard a Panamax 

container ship, while operating in actual conditions. These studies examined PMRA 

strategy holistically and forecasted the reliability performance on system, subsystem 

and component levels. It is essential to highlight that both case study arrangements 

have been entirely developed in Java Object Oriented Programming (OOP) language. 

This language selection enables further flexibility in development, while allowing 

testing of PMRA on any operating system. The result representation and analytical 

discussion has taken place as well in Chapter 7. According to the acquired results, 

inspection and maintenance suggestions have been provided exploiting the developed 

FMEA. 
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Objective 6: Verify and test the suggested strategy through a Sensitivity Analysis 

(SA) scheme 

This objective has been tackled extensively in Chapter 8. PMRA strategy has been 

tested, while introducing various input data scenarios. Mainly three sensitivity analysis 

approaches are explored known as Marginalisation Sensitivity Analysis (MSA) (2 

concepts incorporated) and Deterministic Sensitivity Analysis (DSA). These SA 

methods explored and proved that PMRA strategy performs efficiently under different 

operating conditions. In this context, a detailed sensitivity analysis is performed 

presenting the level of change in the predicted reliability performance, when there is 

change in the provided input data. The results of this study examine the flexibility in 

input data deviation, ensuring accuracy in prediction and safety in operation. 

9.6. Assumptions of the present thesis 

In research and development, it is usual that specific assumptions are considered in 

order to eliminate development errors and problematic modelling as improvement is 

established gradually. This is the case with the thesis in hand, where some assumptions 

have been applied. Particularly in the processed data case study (Chapter 5), the 

applied assumption is related to the reliability performance of the predicted time steps. 

More specifically, each forecasted time step is associated with the previous one 

(Markov process). The first plotted point in time (in all figures of Chapter 5) refers to 

known input data sourced by OREDA and considered as historical record. All the 

following points denote predicted reliability performance. Therefore, a static historical 

input point has been utilised for dynamic state modelling (only in Chapter 5 case 

study). It is essential to highlight that this assumption has been accepted, because the 

PMRA strategy development was at a preliminary stage of implementing the time-

dependent modelling arrangement and the reliability assessment tool. 

Additionally, the time-dependent state modelling has been managed by first and 

second-order Markov Chain (MC) processes. According to Markov process, each time 

step is associated only to the previous state (i.e. single state MC modelling), whereas 
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in second-order to the previous two time steps. These two modelling approaches 

assume that older recorded input data is independent to current and future states. 

In the raw data case study (Chapter 6), the range of different engine loads, while the 

ship operates, has been considered within the acceptable operational limits. However, 

input data has been assumed to refer to sailing and not port conditions. Lastly, as long 

as a child node in the BBN arrangement has been associated to multiple parent nodes 

each input has equal contribution to the child node. For instance, in case a child node 

has two parent nodes affecting it, the contribution is 50% per input. This decision has 

been made as neutral (equal) weighting factors demonstrate the actual reliability 

degradation without the implementation of quantitative (subjective) factors. The idea 

behind PMRA strategy is to eliminate subjective judgment and this has been tried to 

be applied in all development aspects. 

9.7. Chapter summary 

In this Chapter, the overall discussion and the research conclusions of the present thesis 

have been presented. More specifically, a review of the overall thesis has been 

demonstrated summarising the key points of the performed research. The novelty of 

PMRA strategy has been highlighted, while the contribution to theory and practice is 

clarified. Additionally, the Chapter has been concluded by confirming the 

accomplishment of the proposed research aim and objectives and the discussion of 

deliberated assumptions. 
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10. RECOMMENDATIONS FOR FUTURE RESEARCH 

10.1. Chapter outline 

Notwithstanding the recent improvements achieved in maritime industry, while 

considering as well the contribution of PMRA strategy, there is substantial space for 

further research and development. The majority of these improvements can improve 

the scope of this thesis. However, there are also particular future research plans that 

further work has to be undertaken in order to improve current achievements. In this 

Chapter, these improvements and recommendations for future research and 

development are presented. 

10.2. Recommendations and further research activities 

The present thesis demonstrates the undertaken research as part of the Probabilistic 

Machinery Reliability Assessment (PMRA) strategy. This research introduced and 

established a novel probabilistic predictive reliability assessment tool for inspection 

and maintenance planning of ship machinery. Overall, PMRA strategy incorporates 

technical aspects such as data selection, gathering, processing and reliability 

assessment in time-dependent state modelling. Moreover, the following research areas 

and improvements can contribute further towards the research and development 

direction of PMRA strategy. 

 In regards to data selection and gathering, the involvement of more data points 

and measurements have to be considered. The performed sensitivity analysis 

in Chapter 8 confirms that the population of the recorded data has a major role 

in the prediction accuracy. On the other hand, the larger the datasets are the 

more flexible research can be accomplished for training purposes of data 

classification methods, validation and verification. 
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 In addition, the main engine load has to be recorded in parallel to all involved 

performance measurements such as temperature and pressure. This 

measurement will generate the initiation of a detailed CM reliability 

assessment tool. The main engine operating profile can be created taking into 

account the level of the measured load collected. Therefore, correlation among 

the input data and the engine load can achieve dynamic assessment, where the 

safety thresholds will be specified according to the engine load range (known 

as performance profile in literature). 

 So far literature related to ship applications and data mining method 

implementation has been limited. PMRA strategy innovatively established a 

data clustering method for information extraction and pattern recognition 

before the reliability assessment level. However, the enlargement of the 

datasets and the measurement points may require more complicated data 

mining methods. Therefore, further testing and validation should be necessarily 

required. 

 In addition to the previous point, data fusion and source integration has become 

a major improvement in technological development and especially shipping 

industry (known as big data). The selection, collection and processing of big 

data possibly will require integration of various data extraction algorithms. In 

other words, combination of methods can potentially lead to accuracy and 

efficient enhancement. 

 In regards to identification of safety thresholds and alarm/warning levels, 

PMRA strategy employs OEMs as these embed the expertise of manufacturers. 

However, sensitivity analysis and consideration of additional expert judgment 

(i.e. operators and onboard crewmembers) can lead to implementation of more 

flexible safety thresholds than the provided by the machinery suppliers by 

fulfilling the requirements of the performance profile as suggested above. 

 The time-dependencies have been conducted utilising the Markov process. It 

should be highlighted that this adaptable tool enables the arrangement of more 

complex chain layouts (i.e. higher than second-order). Nonetheless, the more 

complex the MC process is, the more programming effort and processing time 

is required. Therefore, a balanced solution can integrate simpler chain 
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arrangements, while reliability fulfils safety requirements and adaptation to 

more complex, if reliability drop exceeds particular levels. 

 Bayesian Belief Networks (BBNs) offer flexibility in arrangement, 

programming and integration to other methods and processing tools. Along 

these lines, adaptation of the networks can be achieved fulfilling the 

requirements of additional systems (i.e. modelling of 6-12 cylinder engines, 1-

2 turbochargers etc.). 

 Decision making tool is a major function of CM systems. The present thesis is 

oriented towards the technical aspects of CM accomplishing accurately and 

flexibly reliability performance predictions. Furthermore, an FMEA tool has 

been developed as part of PMRA strategy for fundamental decision making. 

An automated decision making tool can be integrated within PMRA utilising 

the predictions acquired considering the decision features of BBN or any 

external method such as AHP. 

In conclusion as stated in Chapter 1, it is the author’s opinion that innovative and 

automated unified reliability-based practices should be established in maritime 

transportation mode, aiming at safety enhancement, increasing availability and control 

of uncertainty, which leads to hazardous consequences. However, control of these 

factors is a challenging task and requires further research, development and effort. 
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APPENDIX A – RESEARCH AND DEVELOPMENT 

DIRECTION 

Appendix A provides additional information related to Chapter 3 and the performed 

critical literature review. More specifically, literature research and its critical review 

are assessed with respect to commercially available software, programmed online 

platforms and applications and the latest presented research. 

Commercially available condition monitoring applications 

The considered information demonstrates the commercially available condition 

monitoring systems and applications. This section outlines benefits, features, 

characteristics and functions of available industrial software as shown in Table A.1. 

These features are mostly oriented towards data acquisition, data management, 

condition monitoring diagnostics, prognostics, decision making, Graphical User 

Interface (GUI), output extraction to customer/user. 

The supplementary provided information in Appendix A.1 summaries contribution in 

ship machinery condition monitoring by leading stakeholders such as engine 

manufacturers (MAN B&W, Wartsila), ship owners/ operators (DANAOS) and 

Information Technology (IT) service providers (Kyma, Laros) as well as software and 

technology developers and providers (ABB, Kongsberg), Classification Societies 

(ABS) among others. For the reason that ship machinery condition monitoring is under 

continuous development in science and industry, the demonstrated investigation sets 

the grounds for further research and development with respect to technologies, 

methodologies and functionalities. 
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Table A.1 Commercially available condition monitoring systems and applications 

Manufacturer/ 

Developer 
Name Description and features Remarks 

ABB Asset Health Centre (AHC) 

 Achieve reliability, performance and compliance goals 

 Prioritize equipment and/or facilities for repair/replacement 

 Optimize work force productivity, efficiency and effectiveness 

 Minimize maintenance and repair costs 

 Maximize network performance 

 Reduce risk of asset failure 

 An enterprise-wide, end-to-end asset health 

management solution enables utilities to align 

business strategy and tactics 

AD TEK Pte Ltd. 

Singapore 

Jotron Consultas 

AS 

Consultas 

Maritime 

Software 

Solutions 

CONSULTAS 

 Assist and support the crew with typical ship management tasks onboard 

 Sending selected reports to shore offices for further processing on a fleet level 

 Built-on an SQL platform the database contains a rewrite of previous solutions 

 Connecting ships and shore offices 

 Bridge the gap between the maritime and IT 

industries 

 Fleet management software 

 Applicability on 3D hull arrangement 

 C-Maintenance function: graphical timeline view 

of previous, current and future maintenance plan 

 Calendar and running hour intervals considerations 

 Fixed monthly maintenance plan 

 C-budget function: support for periods of month, 

quarter and year 

American Bureau 

of Shipping 

(ABS) 

ABS-NS (NS5 Enterprise) 

 Modules in software: Maintenance Manager, Drydock, Hull Inspection & 

Maintenance 

 Fleet management software available for class and operational functionality 

 Handles functions of operational management and maintenance, supply chain, 

workforce, environmental and safety 

 Tracking and purchasing inventory, evaluating costs and overdue jobs, conducting 

audits and managing additional assets without increasing staff 

 Maintenance manager involves preventive maintenance plan, asset hierarchy, 

incorporate manufacturers' specifications, generate technical and cost reports, open 

counter use of calendar, running hours, fuel consumption, data collected by users, 

readings from specialists from 3rd party software can be imported manually 

 Drydock module provides a standardized method for drydock planning, budgeting and 

document preparation across an entire fleet 

 Achieve enhanced efficiency and promote cost 

effectiveness 

 Introduce KPIs, diagnostics and real-time 

operating information 

 Minimize downtime by monitoring maintenance 

trends, streamline purchasing, budgeting and 

inventory processes 

 Increase administrative efficiency, reduce risks 

through simplified safety management, and 

streamline data collection and reporting for 

environmental regulatory requirements 

 Generates reports in PDFs 

 Cooperation with third party software and tools is 

available 

 Can lead to more predictive maintenance if needed 
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Manufacturer/ 

Developer 
Name Description and features Remarks 

 Traffic light system and use of FR, MTBF, MTTF 

by identify failure causes and MTTR 

BASS 

Streamlining 

Maritime 

Operations 

BASSnet Maintenance 

 Standardise job practices, procure materials and report equipment conditions 

 Improve management of maintenance and repairs, work practices and condition 

monitoring of equipment as well as defects on parts and components of the vessel 

under warranty 

 Certified by BV, DNV/GL, NKK, LR, Microsoft 

 Manage their global stock of spare parts 

 Handles assigned cargos and trade, and 

significantly reduces the lifecycle costs of 

equipment and machinery 

DANAOS 
DANAOS 1 Planned 

Maintenance System (PMS) 

 Flexible specification of required maintenance integrated with spares usage features 

 Integrates maintenance with class surveys 

 Semi-annual concise maintenance and survey planning and full maintenance plan for 

any required period 

 Spare parts usage monitoring and future requirements prediction 

 Creation of the entire PMS 

 Features: planning reports, rescheduling, CM maintenance, alert notification, spare 

parts future prediction, critical equipment monitoring, weather routing, crew 

selection, risk control 

Future steps and goals: 

 Incorporation of business goals in a unique and 

measurable way is the next step 

 Continuous monitoring of goal achievement, the 

identification of deviation, the monitoring of 

corrective actions and their results is the following 

step 

 Final step is to evaluate the risk of not achieving 

the goal at every operation and take the necessary 

cost effective controls to minimise the risk 

 The above steps are the key elements of the 

continuous improvement process (i.e. Improve-

Plan-Measure-Act) 

Kongsberg 
Bearing Wear Condition 

Monitoring (BWCM) 

 Crank and crosshead temperature: Measures continuously the temperature of the 

bearings. The BWCM system uses two sensors mounted in each cylinder 

compartment, measuring every time the crosshead passes Bottom Dead Centre. The 

KONGSBERG BWCM sensors are compensated for engine speed, engine load and 

engine crank case temperature 

 Water in oil: Sensor gives continuous measurement of moisture in oil and oil 

temperature. Water activity indicates directly whether there is a risk of free water 

formation which causes corrosion of the bearings. The measurement is also 

independent of oil type and age 

 Cylinder liner temperature: Monitors piston running performance by measuring the 

temperature of cylinder liners 

 Bearing wear: Measures the combined wear of crosshead, crank and main bearing and 

provides early warning of bearing seizure 

 Main bearing temperature: On 2-stroke engines the sensors are mounted on the main 

bearing girder with the tip of the sensor in direct contact with the bearing shell. The 

sensor measures the combined temperatures of the bearing shell and of the lubrication 

Main benefits: 

 Approved to avoid open-up inspections 

 Unique long-term measuring accuracy 

 Compact and simple cabling and installation on the 

engine 

 Full integration and compatibility with 

KONGSBERG K-Chief and Autochief system 

 Dual sensor for continuous measurement of 

moisture in oil and oil temperature 
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Manufacturer/ 

Developer 
Name Description and features Remarks 

oil that flows from the bearing. On 4-stroke engines the sensors are inserted in the 

main bearing cap 

 Shaft power: Calculates torque and power 

LAROS Prisma Electronics SA 

 LAROS can be installed easily, fast and with much lower cost than wired solutions 

due to fact that it uses wireless network technology 

Due to its innovative hardware design and intelligent communication protocol LAROS 

is the only monitoring solution comparing to competition that at the same time is: 

 -compatible with all types of sensors/devices 

 -redundant to all existing monitoring systems 

 -deployed in all parts of the vessel 

 -one solution for all types of vessels 

 -one platform for all types of measurements 

Fully customized remote monitoring data analysis 

 Unique intelligent algorithms, LAROS provides real-time analytics and reports 

directly to the administration headquarters which can be fully customized depending 

on the user needs. 

 Once installed LAROS solution can be easily expanded on a cost much lower than a 

wired solution. 

So far, LAROS system has been installed and 

operates in various types of vessels worldwide. Ship 

owners report that they experience reduced fuel 

consumption, everyday operational cost, data entry 

on board, repair time and maintenance cost, 

breakdowns and docking down time. Furthermore, 

ship owners report enhanced green shipping, 

increased operation awareness, savings on insurance 

costs, improved vessels’ operational efficiency and 

increased operational availability. 

LAROS applications include main engine and 

electrical generators performance analysis, voyage 

and weather information, ballast room monitoring, 

bridge parameters monitoring, burner, boiler, air 

compressors, smart fuel consumption analysis, smart 

engine efficiency analysis, motors and pumps 

condition monitoring, tanks pressure monitoring, 

exhaust economizers & health analysis, turbo 

chargers monitoring, inner gas monitoring, smart 

cargo monitoring 

MAN B&W CoCoS-EDS 

 Unique feature, application is supplied with comprehensive data about the particular 

diesel engine plant 

 Extensive database supplied by MAN B&W Diesel saving time and resources for 

required input data 

 Designed for diesel engine surveillance, performance evaluation and to aid fault 

diagnosis on single and multiple engine plants 

 Reduces the costs of operating today’s diesel engines by improved planning and 

optimised maintenance procedures 

 Objectives: effectively plan preventive and corrective maintenance work, perform 

CBM, create comprehensive work orders, report resource allocation and use, handle 

stock control and ordering, process documentation as required by Classification 

Societies 

 Features: easy to use system for multiple users, web scrollable application areas that 

facilitate on-site, mouse-click activation of utilities, comprehensive graphics interface 

 The program forecasts the consumption of spare 

parts and work hours 

 Orders can be made and monitored at any time 

 Spare part catalogue contains multilevel part lists 

to help with overall planning. The identification of 

parts is helped by the inclusion of detailed 

graphics. Each part has accompanying in-depth 

information 
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for the easy interpretation of engine and maintenance data, off-line and on-line support 

from MAN B&W Diesel concerning maintenance instructions, spare parts catalogues, 

spare parts ordering, engine hardware, program software and technical support 

MAN B&W 

PrimeServ (Premium 

Services and includes 

generic services delivered 

by MAN) 

SaCosone 

 Qualified failure analysis on the basis of quasi real-time data 

 Determination of specific fault rectification measures 

 Machinery and equipment performance evaluation 

 Short/long term residual life evaluation 

 More precise preparation of maintenance measures 

 Improvement of start-up reliability and availability and cost efficiency and repair 

intervals 

 MAN PrimeServ provides the latest monitoring, 

diagnostic and maintenance tools available 

 There is no standard duration for an Engine 

Management Concept (EMC) agreement – the 

length is as agreed between the partners – but 

payments are generally made monthly for an 

agreement's length 

 EMC supplies predictable capacity, meaning that 

MAN Diesel & Turbo equipment performs with 

optimal effectiveness and reliability 

 Since 2000, all MAN Diesel & Turbo engines have 

been delivered with integrated data interfaces, 

which can be upgraded to complete local systems 

for engine monitoring (CoCoS EDS) 

 PrimeServ Online Service transmits key engine 

data from any place in the world via secure data 

connections 

 PrimeServ experts analyse the data and provide 

valuable recommendations for 

maintenance/repairs of the engine or turbocharger 

 They can also provide the operator with remote 

support by accessing real-time engine data 

SpecTec 

Asset Management 

Operating System (AMOS)/ 

AMOS Maintenance & 

Procurement (M&P) 

Allows maintenance, spare parts and stock control, purchasing and procurement, quality 

and safety documentation management, voyage management (for shipping) and 

personnel management 

 AMOS Quality & Safety  implements risk 

management with the ISO 31000 standards 

 Track equipment performance, availability and 

reliability to optimise maintenance strategy 

 Manage failures and collect reliability data as per 

ISO 14224 
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Teledata Marine 

Solutions 

Maritime 

Leadership 

ShipManager 7.0 SaaS 

 Alerts, notifications and dashboards 

 Web-based application giving large flexibility to traveling managers 

 Access to third party users and ship's crew on leave on a selective basis 

 Even with limited shipboard internet, web access is achieved from the ship and shore 

and data transfer from the ships to the hosted server 

 Rent software/month than purchasing it, adjust it according to company's needs 

 Exclusive offline and online access to course 

library by fleet personnel 

 Online, anytime-anywhere access available to 

ships and fleet personnel on leave or ashore 

 Huge cost-savings in the logistics of current 

training arrangements 

 Main features: rich analytics using easy-to-use 

interactive dashboards, pro-active detection and 

alerts, advanced reporting and publishing 

TERO MARINE TM Maintenance 

 Involvement of inventory module, tool for managing spare parts, consumables and 

inventories 

 Extensive tools for trend analysis, enabling you to benchmark the performance of an 

individual vessel against another ship or entire fleet 

 Compare trends based on data from various equipment on board, such as NOx and 

CO2 emissions, compare component running hours with other component 

measurements, and trend consumption and condition for a number of different 

components 

 The outcome of trend analysis is graphically displayed and reported 

 Dry docking module allows to plan and execute complete dry docking projects 

 The database solution employs ADO.NET, and data is exchanged using the XML 

structure 

 For integration purposes, TM Master uses ADO to communicate with Microsoft SQL-

server 

 Innovative maintenance tips: built-in tools to 

standardise the database from ashore in 

combination with good co-operation from Tero-

Marine 

 Grid and filtering features are integrated in the 

system for the components' specifications 

 Complete overview of all the information related 

to each individual component, including jobs, 

spare parts history and certificates 

 The module comes with flexible tools for 

maintenance and repairs, budgeting, tender 

comparison, procurement and reporting 

 Pre-warning of jobs due, disabling/enabling, 

postponing jobs to project 

 Inventory control: spare parts control, function 

hierarchy of components, stock control with 

consumption overview 

ULYSSES 

SYSTEMS 
Task Assistant 

 Personal username and password accessing system, with the ability to 

view/control/access other roles depending on customizable authorization levels 

 Particular system (ship/office)/ role/ task/ context and voyage specific information 

 Automated ship to shore communications managing the full documentation (manuals, 

forms, check lists etc.) requirements of ISM, TMSA, and ISO 

 Advanced word search facilities for manuals 

 Support of information path data forms for cheaper transmission and statistical 

analysis of data 

 Set-up of components, activities and spares 

 Critical spares management 

 Scheduling activities by calendar or running hours 

(including long-term view) 

 Reporting, analysing and scheduling defects 
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Manufacturer/ 

Developer 
Name Description and features Remarks 

VECTOR 

MARINE 

Vector Maritime Suite 

(VMS) 

Vector Maintenance 

Manager 

 Unified message manager feature: corporate mailbox forwards and stores all messages 

in a central database, optional web interface allows remote access to messages 

 Work-flow based, maritime asset management and resource planning software 

platform 

 Basic features: planned maintenance, defect management, classification and optional 

modules 

 Manages planned maintenance, defect monitoring, 

repairs, work specification, dry-docking and 

follow up 

 Work is planned at equipment, system or vessel 

level by calendar periods and/or running hours 

 Job definition includes a task breakdown with 

instructions (i.e. skills, spares etc.) 

 Automated job schedule preparation, based on the 

running hours data, taking into account shifts in 

machinery utilisation 

 Extensive reporting tools (both static and dynamic) 

 Registration of defects, with detailed classification 

on the coding of the defect, its origin 

 The detailed task breakdown with the associated 

particulars and component history presents the 

manager a solid evaluation and DSS 

 Optional modules: photo, video logs, ultrasonic 

logs, parameters monitoring and chemical analysis 

monitoring 

Wartsila 
Dynamic Maintenance Plan 

(DMP) 

 The quantifiable advantages of DMP are direct to operating cost reduction. Average 

savings are in the 3% range through reduced fuel/lube oil consumption, and from 5% 

to 15% through reduced maintenance costs 

 Because components are monitored constantly, dynamic maintenance localises trends 

in decreasing performance. Service at the appropriate time increases component life 

 Example: Wartsila 46 engine’s overhaul target was 

recently increased from 16,000 to 20,000 hours, 

running on HFO, and with continuous monitoring 

the expectation is to reach a target of 24,000 hours 

Wartsila 

Propulsion Condition 

Monitoring Service 

(PCMS) 

PCMS system comprises the following installations on board the vessel: 

 the advisory monitor (monitor the condition of mechanical parts, such as gears and 

bearings, but can also detect, thruster blade damage) 

 one or more cabinet(s) each containing: 6 accelerometers (50 kHz), 4 pressure 

transmitters, 1 oil monitoring unit, 1 torque measurement system (100 Hz) 

 PCMS tracks down incipient failures early so that customers can arrange for 

component replacements in a timely fashion 

 The data is sent by satellite to Wartsila's Propulsion Services offices, where it is 

continuously processed by the PCMS central core and analysed on a daily basis 

 The required data comes from sensors measuring vibration, hydraulic pressures and 

lubricant condition and the findings are compared with operational parameters, 

including set point and signal feedback 

 Lubrication and hydraulic oils are monitored by 

measuring temperature, the oil-water saturation 

and any oil contamination 

 It can take months for a small bearing crack to 

develop into a big crack, which may lead to an 

expensive breakdown 

 Concept of input data integration: vibration almost 

always increases as power is raised, but abnormal 

levels of vibration can really only be seen properly 

when the relevant monitoring parameters are 

linked together 
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Manufacturer/ 

Developer 
Name Description and features Remarks 

 System output report and findings: The report outlines important findings and 

recommendations, and describes the condition of the propulsion equipment, as well 

as the equipment and vessel operational profiles. The data analysts are backed by 

Wartsila's mechanical system, hydraulic system, control system and metallurgical 

experts 

 LR is one of three major Classification Societies 

have given PCMS the seal of approval with 

service-level recognition. The other two are the 

ABS and DNV-GL. 

 Savings: Wartsila estimates savings as USD $3.9m 

+ $16.3m = $20.1m - as the investment for PCMS 

is $680,000, the manufacturer clams net savings 

over the 10 years of operation could be as much as 

$19.42m 

Wartsila 

Propulsion Condition 

Monitoring Service 

(PCMS) 

PCMS provides ship owners and/ or operators the ability to: 

 base operational decisions on the actual condition of the equipment 

 assess risks for upcoming contracts based on the projected reliability of the propulsion 

equipment 

 maximize the availability of the installation by performing overhauls only when 

needed, and by dramatically reducing the likelihood of unscheduled breakdowns 

 be informed of faults (such as cracks in bearings or gears) well before they lead to 

breakdowns 

 reduce the total cost of ownership and maximize profitability 

 increase the lifetime and preserve the good condition of the equipment through 

PCMS monitors vibrations, hydraulic pressures, lubrication oil temperatures, 

contamination, lubrication oil-water saturation, system performance parameters, torsion 

vibration, dynamic behaviour and sailing/ weather/ nautical information 

Benefits of using PCMS: known machinery condition, better risk assessment and 

evaluation, solid base for operational decisions, enables dynamic maintenance 

schedules, faults detected at an early stage, reduced risk of consecutive damage, 

optimized maintenance logistics and planning, periodic internal inspection of thrusters 

no longer required, total cost of ownership reduced, analysis by propulsion experts 

certified in vibration analysis 

Vibrations: Three low-speed accelerometers 

mounted in x-, y- and z-direction on top of the 

propulsion machinery. Angular and parallel 

misalignments will create peaks at 1x, 2x and 3x the 

shaft frequency. The difference, however, is that in 

the case of parallel misalignment, the peak at 2x shaft 

frequency is the highest, whilst for angular 

misalignment the peak at 1x shaft frequency is the 

highest. 

Pattern recognition algorithms scan the frequency 

spectra for predefined faults such as: 

 Types of misalignment 

 Types of looseness 

 Gear tooth wear and gear misalignment 

 Different stages of bearing failure 

 Electric motor broken rotor bars 

 Electric motor eccentric rotor 

Shaft speed: Measures shaft rotation speed with an 

inductive proximity sensor. 

Analogue load measurement: For electric motor 

driven applications the load is acquired from the 

variable frequency drive as 4-20 mA signal. 

Oil measurements: An oil monitoring unit that 

measures the oil contamination- and oil water 

saturation levels and temperature in the (propeller) 

gearbox. 
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Manufacturer/ 

Developer 
Name Description and features Remarks 

Hydraulic pressures: Steering and pitching (when 

applicable) actuation pressures are measured with 

pressure transmitters. 

Vibrations on electric motor: Three low-speed 

accelerometers mounted on the electric motor. 

High speed torque measurement: High speed torque 

measurement system able to detect torsional 

vibrations due to for example wind milling and 

ventilation. 

Wartsila 
WiMon wireless condition 

monitoring system 

 Due to the cost efficiency, small size and ease of mounting and installation of the 

WiMon 100 sensor, continuous vibration monitoring can now be realized for all types 

of rotating machines. The autonomous WiMon 100 unit comprises a vibration sensor, 

a temperature sensor, a long-life battery and a WirelessHART™ radio 

WiMon Data Manager has the following main 

functionalities: 

 System browser 

 WiMon system commissioning and main 

 Automated data acquisition 

 Storage of waveforms and dynamic data (velocity, 

envelope and temperature) 

 Operator interface for showing vibration 

waveforms, trends and temperatures 

 Waveform export support for interfacing analysis 

packages such as ABB Analyst 
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Research and development direction 

Appendix A.2 presents a sample of the assessed literature sources that contributed 

towards setting up the dissertation’s aim and objectives as well as the outline of the 

proposed maintenance strategy methodology. Each of the examined sources is 

assessed with respect to advantages of the author’s/authors’ proposed methodology, 

disadvantages or lessons learnt, key points for further research work and identified 

gaps as demonstrated in Table A.2. 
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Table A.2 Research and development direction of literature review 

Source Advantages Shortcomings Key points / Identified gaps 

Al-Badour et al. (2011) 

 Wavelet transform allows superior efficiency to fast and 

slow-time Fourier transform for non-stationary signals 

(accurate detection and localization of faults) 

 Fourier Transform time-based & frequency-based domain 

are suitable for stationary signal analysis 

 Wigner-Ville Distribution (WVD) good efficiency in 

time-frequency 

 Wavelet performs well at local analysis and zoom on 

intervals of time without losing information contained, 

revealing hidden aspects of data, Morlet and Gaussian 

wavelet good for discontinuity representation 

 Wavelet Transforms assessed are listed as Continuous 

(CWT), Discrete (DWT) and Wavelet Packet Transform 

(WPT). CWT best for singularity detection, WPT 

decomposes approximate and detailed components of 

signals for low and high frequency for non-stationary and 

stationary characteristics, best analysis for vibration 

signals and fault detection 

 Wavelet more accurate than FFT for short time signals 

 Wavelet may have poor frequency resolution in 

the higher regions of analysis 

 Fast Fourier (FFT) lack of analysing extreme 

frequency changes yielding errors, leading to 

time-frequency processing through Short Time 

Fourier (STFT) and Wigner-Ville Distribution 

(WVD) 

 Wavelet Packet Transform (WPT) powerful tool for 

detailed feature extraction 

 Integration of WPT and CWT can be effective method for 

impulsive faults 

 No optimal way for best mother wavelet selection, one 

approach is to compare the shape of fault under 

consideration with the wavelet function to be used 

 Detection of cracked gear teeth or blade vibration 

problems could be gained by windowing the signal into 

numbers of shaft revolutions and analysing them 

separately 

 Signal splitting approach for shorter computational time 

and smaller memory requirements, potential for parallel 

computational comparison 

Brotherton et al. (2002) 

 Two prediction considerations: (i) short term time 

prediction (ii) Remaining Useful Life (RUL) before a 

particular fault occurs and how much time is available 

before replacement 

 Typically data is saved when a fault is detected 

and this stage is late for useful prognostics 

development 

 Data fusion saves cost and weight and reduces false alarms 

 Data integration allows prognostics and low signal-level 

information enables fault detection at earlier stages 

Catherall and Williams 

(2006) 

 Short-time Fourier transform (STFT) traditional signal 

processing method is suitable for stationary properties 

 Fractional Fourier Transform (FrFT) better time-

frequency resolution, non-suitable for multiple non-

stationary components 

 Wavelet transforms and Wigner-Ville 

distribution produce false signals due to cross-

term interference 

 

Chen and Vachtsevanos 

(2012) 

 Interval Type-2 Fuzzy Neural Network (IT2FNN) 

proposed for multi-step-ahead condition prediction of 

faulty bearings integrating fuzzy logic with multi-layer 

neural network 

 Adaptive Neuro-Fuzzy Inference System (ANFIS) most 

widely used neuro-fuzzy system in prediction 

  Comparison between IT2FNN with ANFIS shows the first 

one performing with higher prediction accuracy 
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Source Advantages Shortcomings Key points / Identified gaps 

Chen et al. (2012) 

 Proposed the Integration of RUL using ANFIS and high-

order particle filtering for time forecasting of fault 

estimating the Probability Density Function (pdf) of RUL, 

p-stet-ahead prediction via particle sets 

 Multiple p-step-before states consideration compared 

with Markov model (only 1 previous step), high-order 

hidden Markov model is employed 

 ANFIS reliable and robust condition predictor 

only for short-term conditions by missing RUL 

studies 

 Lack of integration between multiple p-step-before 

filtering method with multiple p-step-ahead prediction for 

prediction accuracy enhancement 

Demetgul et al. (2009) 

 Adaptive Resonance Theory 2 (ART2) and Back 

propagation (Bp) ANNs excellent performance for perfect 

and faulty conditions 

 ART2 unsupervised NN monitoring process without any 

training, being easiest to use 

 Bp supervised ANN requiring training to allow algorithm 

selecting proper parameters 

 Bp requires extensive and careful training with 

artificial generated data covering large number 

of possibilities lasting for long as it makes 

millions of iterations 

 Bp most commonly used ANN 

Dunn (2002) 

 Outline of key business opportunities and trends of 

condition monitoring 

  Holistic view of integrating CM with equipment 

performance monitoring needing accurate and reliable 

assessment and prediction methods 

 Integration of CM techniques with cost-effective 

applications of performance 

 Combination of CM with CMMS and process control 

Estocq et al. (2006) 

 De-noising signals methods assessed for bearing 

diagnostics: (i) Self-Adaptive Noise Cancellation (SANC) 

(ii) synchronous averaging (iii) wavelet method 

 Kurtosis and crest factor sensitive indicators to signal 

shape, kurtosis better indicator than crest considering that 

results coming from weaker measures 

 STFT limitations/requirements: (i) useful signal 

must be slightly present within the measured 

signal (ii) noise must be stable (iii) noise and 

signal spectrum must be different 

 Neither kurtosis nor crest factor can detect 

defects in a wide frequency band (i.e. 0-20 kHz) 

or in narrow bands (0-5, 5-10 etc. kHz) before 

the spectral subtraction of signal 

 Spectral subtraction method based on STFT allowing to 

remove stationary noise of signals 

 Kurtosis performs more accurately than crest indicator for 

detection of impulsive defects 

Farrar et al. (2003) 

 The proposed model is divided between: (i) active and 

local sensing, (ii) passive global sensing assessing system-

level response and loading conditions (iii) development of 

sensing methodology for failure mode and degradation 

mechanism 

  For robustness of monitoring time-varying non-stationary 

processes are used: (i) Auto-Regressive (AR) and Auto-

Regressive with Exogenous Input (ARX) models, (ii) 

Time-dependent Auto-Regressive Moving-Average 

(TARMA) and (iii) evolutionary spectral analysis 

Jang (1993) 

 Fuzzy inference system implemented in framework of 

adaptive networks (ANFIS) 

 Purpose of hybrid ANFIS, the human knowledge mapping 

input-output using IF-THEN rules 
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APPENDIX B – PMRA STRATEGY BRITISH 

STANDARDS AND SUPPORTIVE GUIDELINES 

The author’s intention with respect to PMRA strategy is to suggest a stand-alone 

Condition Monitoring methodology for ship machinery integrating data analysis, 

reliability assessment incorporating aspects of decision making. PMRA strategy 

provides a flexible methodology which is programmed in a structural attempt to allow 

further development on the existing performed work. Therefore, guidelines for 

standardising this methodology according to unified rules have to be introduced. 

PMRA strategy is developed by following suggestions provided in BS/ISO 17359 

(2011) and (BS/ISO 13381, 2015). The first report provides general guidelines with 

respect to Condition Monitoring and diagnostics of machines, whereas, the second 

related to diagnostics and prognostics of machinery. Appendix B provides useful 

supportive information which inspired and guided the PMRA strategy development. 

B.1. Guidelines of BS/ISO 17359 (2011) 

This report provides guidelines for condition monitoring and diagnostics of machines 

utilising input and evaluation parameters such as vibration, temperature, flow rates, 

contamination, power, and speed typically associated with performance, condition, 

and quality criteria. Therefore, PMRA strategy is oriented towards temperature and 

pressure. Furthermore, this report highlights that the evaluation of machine function 

and condition may be based on performance, condition or product quality. The 

overview of condition monitoring procedure as provided in the report is demonstrated 

in Figure B.1. 
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Figure B.1 BS/ISO 17359 (2011) Condition Monitoring (CM) procedure suggestion 

As Figure B.1 demonstrates, machinery CM procedure is suggested to be divided in 

research and application sectors including Cost Benefit Analysis (CBA), equipment 
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selection, reliability audit, selection of appropriate maintenance strategy and 

monitoring method, data acquisition and analysis techniques selection, determination 

of maintenance action suggestion and review of effectiveness. 

PMRA strategy is focused towards almost all the above mentioned relevant 

investigation areas. First of all, Cost Benefit Analysis (CBA) is considered to identify 

effectiveness of CM applications and maintenance suggestion comparing existing 

maintenance strategies with the newly introduces CM practices. On the other hand, 

critical machinery, subsystems, components and measures are taken into account as 

literature and experts identify and suggest. It is crucial to highlight that experts and 

professionals contributed with their experience having expertise from onboard and 

onshore applications as well. 

FMEA table is created utilising multiple sources such as engine manuals, reports, 

expert judgment, guidelines and regulations from Classification Societies. This FMEA 

table is demonstrated in the appropriate performed case study and the related provided 

supportive material. Additionally, the selection of the appropriate monitoring methods 

is identified through the variety of input data types such as performance measurements 

of pressure and temperature in critical machinery locations. These measurements are 

collected utilising Engine Room’s control systems, DANAOS 1 Planned Maintenance 

System (PMS) and the integrated Laros software developed by Prisma Electronics SA. 

Further information related to these two platforms (i.e. DANAOS and Laros) can be 

found in Appendix A ‘Condition Monitoring Systems’, where commercially available 

tools and practices are demonstrated. 

Lastly, maintenance actions are suggested according to the current and forecasted 

working state reliability performance of the selected ship machinery. Therefore, 

BS/ISO 17359 (2011) is considered in various levels of PMRA strategy taking into 

account suggestions of provided procedures and method functionalities by optimising 

the overall proposed PMRA research methodology. 
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B.2. Guidelines of BS/ISO 13381 (2015) 

This report provides guidelines with respect to five distinct identified phases such as 

detection of problems (deviations from normal conditions), diagnosis of the faults and 

their causes, prognosis of future fault progression, recommendation of maintenance 

actions and evaluation of applied methodology. According to BS/ISO 13381 (2015), 

machine health prognosis demands prediction of future machine integrity and 

deterioration. Prognostic processes require statistical approaches to be adopted by 

integrating foreknowledge of the probable failure modes and understanding of the 

relationships between failure modes and operating conditions. 

The report considers areas of analysis such as data requirements, prognostic concepts, 

failure and deterioration analysis as well as generic prognostic processes. Therefore, 

data requirements incorporate input related to: 

 monitoring parameters 

 current and future operating and maintenance environments 

 expert knowledge of baseline 

 identification of all existing failure modes 

 alarm limits 

 environmental data 

 manufacturer’s configuration and ideal operational/functioning data 

Prognostic concepts and processes included refer to: 

 determination or estimation of parameters or descriptor behaviours and the 

expected rate of deterioration 

 estimation of current state 

 estimation of Remaining Useful Life (RUL) 

 establishment of the desired prognostic event horizon 

The latest available BS/ISO 13381 (2015) considers and suggests various failure and 

deterioration models to be utilised for prognostics such as: 

 Failure Mode Effects Criticality Analysis (FMECA) 



284 

 Event/Fault Tree Analysis (ETA and FTA respectively) 

 Risk and hazardous assessment methods (multiple are defined and examined 

in Chapter 3 ‘Literature Review’ 

 physics-based damage initiation and progression models (first principle 

analysis) 

 RUL defined as a function of acceptable confidence level and risk 

Henceforth through the development of PMRA strategy, various prognostic and 

deterioration models are examined. PMRA strategy tackles the prognostic aspects 

utilising probabilistic approaches and especially the latest and most innovative 

Bayesian Belief Networks (BBNs). Competitors of BBNs are ETA and FTA and 

analytical reasons of selection of BBNs can be found in Chapter 4 ‘Proposed 

Maintenance Strategy for Ship Machinery’. 
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APPENDIX C – PMRA STRATEGY DATA CLUSTERING 

METHODOLOGY PSEUDOCODE 

Appendix C provides supplementary information and mathematical formulation 

related to PMRA strategy. Specifically, this additional material aims to support the 

suggested methodology as demonstrated in Chapter 4 ‘Proposed Maintenance Strategy 

for Ship Machinery’. The data processing phase of PMRA strategy requires iterative 

procedures (i.e. convergence criteria etc.). Therefore, the representation of the iterative 

part of PMRA strategy through the developed and performed pseudocode is presented 

below. The provided part of code considers as prerequisite and already known the 

formulation provided in Chapter 4 such as the equations from (4.1) to (4.17). 

 PMRA strategy data processing stage prerequisites 

ds: data set 

dsj: data set clusters (j: 1, 2) for cluster 1 or cluster 2, total number of clusters k=2 

μds: mean (or centroid) of data set ds 

σds: standard deviation of data set ds 

μds1L: data set ds, cluster 1, lower L mean value 

μds1H: data set ds, cluster 1, higher H mean value 

μds2L: data set ds, cluster 2, lower L mean value 

μds2H: data set ds, cluster 2, higher H mean value 

d2
dsj: distance calculated utilising squared Euclidean formula for both involved clusters 

 

 PMRA strategy data processing stage pseudocode 
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Perform PMRA strategy up to equation 4.12. 

Generate three arrays: 

r1[500], r2[500], and r3[500] having size of 500 random indices from 0 to 1. 

These arrays create uniformity in size among clusters. The size of arrays is predefined 

at 500 indices per array. Various investigations were undertaken while PMRA strategy 

was developed (i.e. i=50, 100, 1000). Through this investigation, the precision of 

𝑃𝑑𝑠(𝑤𝑡) and 𝑃𝑑𝑠(𝑓𝑡) results was achieved at 10 decimal places. On the other hand, low 

array index was performing weak results at maximum 1 decimal place. It is crucial to 

highlight that the predefined array size utilised for clustering the gathered data is 

related to the size of the recorded input data. 

Generate the inverse Cumulative Distribution Function (CDF) of normal cumulative 

distribution of the equation: 

𝑐𝑖
(𝑗)

=  
1

2
 [1 + erf (

𝑥 − 𝜇

𝜎√2
)] (B.1) 

Calculate 𝑐𝑖
(1)

 which corresponds to clustered value belonging in cluster 1: 

if r1[i++] ≥ α 

then 

inverse of (B.1) ci
(1)

 for values [r2[i++], μds1L, σds] 

else if r1[i++] < α 

then 

inverse of (B.1) ci
(1)

 for values [r2[i++], μds2L, σds] 

Calculate 𝑐𝑖
(2)

 which corresponds to clustered value belonging in cluster 2: 

if r1[i++] ≥ α 

then 
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inverse of (B.1) ci
(2)

 for values [r3[i++], μds1H, σds] 

else if r1[i++] < α 

then 

inverse of (B.1) ci
(2)

 for values [r3[i++], μds2H, σds] 

Alpha value α denotes the proportion of clustered observations (data points): 

𝛼 =  
∑ (𝑑𝑑𝑠1

1 <  𝑑𝑑𝑠2
2 )

𝑚𝑗

𝑖=1

𝑚𝑗
 (B.2) 

The selected data clustering method performs multiple iterations in order to reassign 

the data points within the selected clusters. At the first iteration, alpha proportion α 

value is assumed to be 0.5. Therefore, half of the observations are assumed to belong 

in the first cluster and half in the second. Each time an iteration takes place until 

convergence, the alpha value updates according to the actual current proportion as 

formed within the clusters. It is crucial to state that in case a new data set ds is provided 

to be analysed utilising PMRA strategy sourced from the same vessel and 

measurement point (e.g. temperature of intermediate bearing 1) the initial alpha for the 

new set of iterations is the last alpha gathered at the last achieved convergence. 

Therefore, the assessment uniformity among past and new data sets is remained, by 

transferring the alpha proportional value, allowing elimination of assumptions (no 

need to initiate PMRA strategy considering α=0.5). 

PMRA strategy utilises k-means data clustering algorithm for recognising the patterns 

of the recorded observations (data points) such as real time sensor data. This data 

clustering method (k-means) iterates between two states by reassigning the 

observations in the considered clusters until a criterion is satisfied. Specifically, the 

iteration initiates by guessing (randomly) the mean values of clusters 1 and 2, for lower 

and higher, than the overall data set ds, groups (i.e. μds1L, μds2L, μds1H, and μds2H). 

Ones the k-means process begins the expected (randomly guessed) mean values are 

substituted by the next calculated mean values (according to current cluster 

arrangement). The iteration progresses until guessed and next mean values are 
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converged. Additionally, k-means convergence can be reached by considering and 

setting criteria with respect to the Euclidean distance demonstrated in Chapter 4 

‘Proposed Maintenance Strategy for Ship Machinery’. Therefore, the calculated 

following mean values can be calculated by following iteratively the provided 

pseudocode below. 

Calculate next mean value for data set ds, cluster 1, group having lower L mean than 

the centroid of the overall ds: 

if d2
ds1 < d2

ds2 

then 

𝑀𝑑𝑠1𝐿 =  
∑ 𝑐𝑖

(1)𝑚𝑗

𝑖=1

𝑛𝑚𝑑𝑠1
 (B.3) 

Calculate next mean value for data set ds, cluster 1, group having higher H mean than 

the centroid of the overall ds: 

if d2
ds1 < d2

ds2 

then 

𝑀𝑑𝑠1𝐻 =  
∑ 𝑐𝑖

(2)𝑚𝑗

𝑖=1

𝑛𝑚𝑑𝑠2
 (B.4) 

Calculate next mean value for data set ds, cluster 2, group having lower L mean than 

the centroid of the overall ds: 

if d2
ds1 > d2

ds2 

then 

𝑀𝑑𝑠2𝐿 =  
∑ 𝑐𝑖

(1)𝑚𝑗

𝑖=1

𝑛𝑚𝑑𝑠1
 (B.5) 

Calculate next mean value for data set ds, cluster 2, group having higher H mean than 

the centroid of the overall ds: 

if d2
ds1 > d2

ds2 
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then 

𝑀𝑑𝑠2𝐻 =  
∑ 𝑐𝑖

(2)𝑚𝑗

𝑖=1

𝑛𝑚𝑑𝑠2
 (B.6) 
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APPENDIX D – PMRA STRATEGY SOURCE CODE 

STRUCTURE ANALYSIS 

Appendix D demonstrates briefly the structure of the developed Java source code. The 

main scope of this analysis is to set the grounds for further research and development 

as well as to indicate an approach of efficient source code structure. The entire 

development of PMRA strategy is taken place in Java utilising the NetBeans IDE 8.0 

Java code compiler. As Error! Reference source not found. shows, the source code 

s developed in thirteen major java classes (.java). These consist of CaseStudy, 

Configuration, DataMining, Main, NodeOrder1, NodeOrder2, NodeOrder3, 

NodeOrder4, NodeOrder6, NodeOrder7, NodeOrder8, Table and TableRow. 

Firstly, PMRA strategy and case study are developed separately. In CaseStudy Java 

class the calculation node orders are included, where specific classes and methods are 

called and executed sequentially fulfilling the mathematical requirements of the case 

study model. On the other hand, Configuration class includes variables and predefined 

values such as safety thresholds. This class controls entirely values that may need to 

be adjusted for sensitivity analysis. Configuration class simplifies the structure of the 

code by gathering all variables together. Moreover, DataMining class consists of the 

iterative processes of k-means data clustering method. Main class triggers the 

calculations by passing the values from class to class and the final results demonstrated 

to user. 

The Java classes NodeOrder1, NodeOrder2, NodeOrder3, NodeOrder4, NodeOrder6, 

NodeOrder7 and NodeOrder8 incorporate the Markov Chain calculations as well as 

the Dynamic Bayesian Belief Network (DBBN) equations. Each node order class 

refers to the number of parents each node has. Hence, if a component, subsystem or 

system has 4 parent nodes, the calculations will be executed through NodeOrder4 

class. Lastly, Table and TableRow classes read and write input and output (results) 

respectively from and to Excel and text. 
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Therefore, the structure of the Java source code separates the case study model and the 

PMRA strategy. On the other hand, the suggested PMRA strategy is developed in 

processing segments such as configuration, data clustering, dynamic reliability 

assessment and Input/Output (I/O) procedures. Adjustments and further development 

can be considered on the existing source code. 
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APPENDIX E – PROCESSED DATA SOURCE 

Appendix E includes supplementary information related to processed input data 

gathered by OREDA (2002). Firstly, the available information taxonomy of machinery 

derived mostly from the offshore installations is demonstrated in Figure E.1. The 

equipment classification consists of rotating machinery, static equipment, additional 

topside systems, miscellaneous and subsea equipment. 

 

Figure E.1 Equipment classes list in OREDA Handbooks 

As the topic of this research study is oriented towards applications in maritime 

industry, the initial technical implementation of PMRA strategy involves only rotating 

machinery similar in structure and function as these of maritime industry. Therefore, 
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reliability records, system information and related failure modes are extracted from the 

rotating machinery class such as gas turbines, compressors, combustion engines, 

pumps, turboexpanders, electric generators and motors. 

 

Figure E.2 Sample of combustion diesel engines reliability data table 

More specifically, Figure E.2 presents a sample of reliability data table, extracted form 

machinery system class involving combustion diesel engines. The various 

demonstrated entries of the data table are listed below: 
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 Taxonomy number and item: Identification number 

 Population: Total number of items forming the published estimation 

 Installations: Total number of installations 

 Number of demands: Total number of times an item is required to perform its 

function during the calendar year 

 Aggregated time in service: Calendar time or operational time 

 Failure mode: Brief description of failure occurred 

 Number of failures: Total number of failure events 

 Failure rate (mean, lower & upper, standard deviation σ, total number of 

failures) 

 Active repair time (hours): Average time (hours) to repair and return the item 

to a state where it functions. Actual time of repair not including time to shut 

down the unit, issue work order, wait/delay for spare parts 

 Repair (manhours): Min, mean and max hours required for repairing and 

restoring the function 

Additional, failure rate records are provided as demonstrated in Figure E.3. The sample 

provided figures the maintainable item versus failure mode for combustion diesel 

engines, therefore the relative contribution from each maintainable item to the total 

failure rate is extracted. The indices/records in Figure E.3 refer to the percentages of 

occurrence for each combination of failure mode and maintainable item. Henceforth, 

the row sum demonstrate the total percentage of failures that are recorded in relation 

to the specific maintainable item. On the other hand, the column sum refers to the 

contribution of each failure in percentages in relation to the entire system, in the case 

of Figure E.3 the combustion diesel engines. 
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Figure E.3 Sample of maintainable item versus failure mode table for combustion 

diesel engines 

Setting equations (5.2) to (5.6) to be known and their results prerequisites for the 

processed input data preparation, the following mathematical expressions provide the 

initial failure rate figures per subsystem and system. 

λj: failure rate per component j, considering all involved failure modes 

for each 𝜆𝑗→𝑧 ∈ 𝑢𝑘→𝑙, k=1 to l maximum number of subsystems in system and z 

maximum number of components in subsystem k. Hence, the calculation of the initial 

recorded failure rate of subsystem uk denoted as λuk is given by equation (E.1): 
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𝜆𝑢𝑘 =  ∑ 𝜆𝑗

𝑧

𝑗=1

 (E.1) 

On the other hand, the proportion of component’s j failure, where j ∈ 𝑢𝑘 is given by 

equation (E.2): 

𝜆𝑗∈𝑢𝑘
 =  

𝜆𝑗

𝜆𝑢𝑘
 (E.2) 

The initial overall system’s failure figure is given by equation (E.3): 

𝜆𝑠 =  ∑ 𝜆𝑗

𝑚

𝑗=1

 (E.3) 

Lastly, the subsystem’s percentage of failure out of the overall system’s reliability 

performance is given by equation (E.4): 

𝜆𝑢𝑘𝑝  =  
𝜆𝑢𝑘

𝜆𝑠
∗ 100 (E.4) 

On the other hand, equations (E.5) to (E.7) present the generic expressions of the 

probability of working state at component, subsystem and main system levels 

respectively. The equations include all possible failure scenarios (m: total amount of 

failure scenarios) and the summation of all considered failure types (ftf(i)) (k: total 

amount of failure types), all considered components (cf(x)) (l: total amount of 

components) and all considered sub-systems (sf(y)) (n: total amount of sub-systems). 

In addition, the relations of m and k, l and n are presented in equations (E.8) to (E.10). 

 

𝑃(𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡) = ∑(∑ 𝑃(𝑓𝑡𝑓(𝑖) , 𝑓𝑡𝑓(𝑗)))

𝑘

𝑖=1

𝑚

𝑗=1

 (E.5) 

 

𝑃(𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚) = ∑(∑ 𝑃(𝑐𝑓(𝑥) , 𝑐𝑓(𝑗)))

𝑙

𝑥=1

𝑚

𝑗=1

 (E.6) 

 
𝑃(𝑚𝑎𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚) = ∑(∑ 𝑃(𝑠𝑓(𝑦) , 𝑠𝑓(𝑗)))

𝑛

𝑦=1

𝑚

𝑗=1

 (E.7)  

 𝑚 = 2𝑘 (E.8)  

 𝑚 = 2𝑙 (E.9)  
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 𝑚 = 2𝑛 (E.10)  
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APPENDIX F – RAW DATA SOURCE 

Appendix F provides additional information related to Chapter 6 and the performed 

case study utilising raw data. This case study employs data which recorded onboard 

the ship in actual operational conditions. 

F.1. Alarm and warning levels 

Probabilistic Machinery Reliability Assessment (PMRA) strategy makes use of 

reference/optimal operational levels as well as alarm/warning points identified by 

manufacturer’s manuals and sea trials. More specifically, these implemented safety 

thresholds are listed below in Table F.1 as identified by the sources and utilised in the 

in-house Java language developed PMRA strategy. 

Table F.1 Raw data warning and operational levels 

Measurement Limits Value 

Camshaft Bearings Temperature Alarm 75.0 

Camshaft Bearings Temperature Min 50.0 

Camshaft Bearings Temperature Max 70.0 

Cylinder Exhaust Gas Outlet Temperature 1-8 Alarm 520.0 

Cylinder Exhaust Gas Outlet Temperature 1-8 Min 380.0 

Cylinder Exhaust Gas Outlet Temperature 1-8 Max 500.0 

Cylinder JCFW Inlet Pressure Alarm 2.0 

Cylinder JCFW Inlet Pressure Min 3.5 

Cylinder JCFW Inlet Pressure Max 4.5 

Fuel Oil Inlet Pressure Alarm 6.5 

Fuel Oil Inlet Pressure Min 7.0 

Fuel Oil Inlet Pressure Max 8.0 

Fuel Oil Inlet Temperature Min 105.0 

Fuel Oil Inlet Temperature Max 150.0 

Intermediate Shaft Bearing Temperature 1-3 Alarm 70.0 

Intermediate Shaft Bearing Temperature 1-3 Min 45.0 

Intermediate Shaft Bearing Temperature 1-3 Max 65.0 
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Measurement Limits Value 

JCFW Outlet Temperature 1-8 Alarm 90.0 

JCFW Outlet Temperature 1-8 Min 80.0 

JCFW Outlet Temperature 1-8 Max 85.0 

Main Lube Oil Inlet Pressure Alarm 1.9 

Main Lube Oil Inlet Pressure Min 2.3 

Main Lube Oil Inlet Pressure Max 2.6 

Main Lube Oil Inlet Temperature Alarm 55.0 

Main Lube Oil Inlet Temperature Min 40.0 

Main Lube Oil Inlet Temperature Max 47.0 

Main Engine Air Cooler CW Inlet Pressure Min 1.0 

Main Engine Air Cooler CW Inlet Pressure Max 5.5 

Main Engine Control Air Inlet Pressure Alarm 5.5 

Main Engine Control Air Inlet Pressure Min 6.5 

Main Engine Control Air Inlet Pressure Max 7.5 

Main Engine Exhaust Valve Spring Air Pressure Alarm 5.5 

Main Engine Exhaust Valve Spring Air Pressure Min 6.5 

Main Engine Exhaust Valve Spring Air Pressure Max 7.5 

Main Engine Start Air Pressure Min 15.0 

Main Engine Start Air Pressure Max 30.0 

Scavenging Air Manifold Pressure Min 0.1 

Scavenging Air Receiver Temperature 1-8 Alarm 65.0 

Scavenging Air Receiver Temperature 1-8 Min 25.0 

Scavenging Air Receiver Temperature 1-8 Max 51.0 

Thrust bearing LO Outlet Temperature Alarm 90.0 

Thrust bearing LO Outlet Temperature Min 55.0 

Thrust bearing LO Outlet Temperature Max 70.0 

F.2. Raw data and effects assessment 

Table F.2 presents an attempt of a Failure Modes and Effects Analysis (FMEA) 

research study performed in order to provide additional qualitative information on the 

developed PMRA strategy and the case study as shown in Chapter 6. This FMEA table 

aims to guide the decision making process and root cause analysis of the gained PMRA 

prediction results. On the other hand, Table F.3 provides diagnostic information and 

inspection and maintenance suggestions with respect to possible causes of failures or 

malfunctions. 
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The provided information in Table F.2 and Table F.3 is extracted from various sources 

such as Pulkrabek (1997), McGeorge (1998), Taylor (1996), Anish (2016), INCASS 

(2014a), INCASS (2014b), INCASS (2014c), INCASS (2015a) and INCASS (2015b). 

Moreover, engine manufacturers’ reports and manuals are utilised for information 

exploration and extraction including Kawasaki (2000), (Hyundai-MAN, 2010a) and 

(Hyundai-MAN, 2010b) among others such as results of sea trial testing. Vital 

importance in the creation of these tables gains the expert judgment and discussions 

that taken place as part of this PhD research study with onshore professionals, chief 

engineers and crew members. Professionals from different maritime stakeholders such 

as ship owners, operators, service providers, Classification Societies, onboard crew 

members and condition monitoring experts contributed with their valuable knowledge 

and expertise in the field of marine engineering and inspection and maintenance 

practices. 
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Table F.2 Failure modes and effects analysis of PMRA strategy case study 

Subsystem Measurement Parameter Failure Mode Effect of Failure 
Damaged 

Equipment 

Damaged 

Component 

Malfunction/Failure 

Cause 

Fuel Oil FO Inlet 

Pressure 

Insufficient pumping Engine stop Fuel Supply 

Suction pipe 

Fuel Supply Pump 

Fuel Booster Pump 

Heavy leak 

Obstruction (particles) 

Damage of filter Loss of redundancy Fuel Supply Filter Blocking 

Lower output flow 
Loss of performance, Low 

temperature exhaust gases 
Fuel Supply 

Suction pipe 
Leak 

Obstruction (particles) 

Fuel leakage Loss of performance Inlet valve 
Leak 

No Flow 

Higher fuel pressure 
Lower performance to 

prevent failure 
Fuel Return 

Fuel self-pressure 

limiting valve 
No Flow 

Isolating valves No Flow 

Lower fuel pressure Loss of performance Fuel Return 

Fuel pressure limiting 

valve 
Leak  

Fuel return pipe Leak 

Return isolating valve Leak 

Temperature Lower fuel temperature 
Unexpected engine stop/ 

Loss of performance 
Heating Tracers Inlet valve No Flow 

Jacket 

Water 

Cooler 

Cylinder 

JCFW Outlet 
Temperature 

Higher fresh water 

temperature 
Engine damage JCFW pump 

Shaft 

Housing 

Bent Shaft 

Misalignment 

Cylinder 

JCFW Inlet 
Pressure 

No flow Loss of redundancy 
JCFW pump 

Output/Supply line 
Inlet/Outlet valve No flow 

Lower fresh water supply 

due to pump 
Loss of redundancy 

Motor of JCFW pump 

 

JCFW pump 

Electric conductor 

Rotor Bearing 

Rotor 

 

Inlet/Outlet valve 

Pump seal 

Wear rings 

Impeller 

Housing 

Degradation 

Wire break 

Failure 

Loss of efficiency 

 

Leak 

Wear 

Fouling 
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Subsystem Measurement Parameter Failure Mode Effect of Failure 
Damaged 

Equipment 

Damaged 

Component 

Malfunction/Failure 

Cause 

Lube Oil M/E LO Inlet 

Pressure 

No supply due to pump Loss of redundancy 

Motor of LO pump 

 

LO Pump 

Electric conductor 

Rotor Bearing 

Rotor 

 

Impeller 

Seal 

Inlet/Outlet valve 

Bearing 

Shaft 

Degradation 

Wire break 

Failure 

Loss of efficiency 

 

Wear 

Shaft wear 

Seized bearing 

No flow of oil due to 

filter blockage 
Loss of redundancy LO filter Filter Blocking 

Low supply due to pump Loss of redundancy LO Pump 

Impeller 

Seal 

Inlet/Outlet valve 

Bearing 

Shaft 

Wear 

Leak 

Shaft wear 

Damaged bearing 

Low supply due to filter 

blockage 

Loss of redundancy 

Unexpected stop of engine 

Engine damage 

LO Filter 

Inlet/Outlet valve 

Self-cleaning 

controller 

Filtering elements 

By-pass valve 

Leak 

Blocking 

Temperature 

Lower LO temperature 
Loss of efficiency 

(slowdown) 
LO Cooler Regulating flow valve Control 

Higher LO temperature  
Loss of efficiency 

(slowdown) 

LO Pump 

 

LO Cooler 

Shaft 

Housing 

 

Regulating flow valve 

Bent shaft 

Misalignment 

 

No flow 

Leak 

Loss of control 

Air Cooler 

Scavenging 

air receiver 
Temperature Improper scavenging 

Loss of engine power & 

High exhaust temperature at 

affected cylinders 

Turbocharger 
Piston rings 

injectors 

faulty timing 

unburned fuel 

Scavenging 

air manifold 
Pressure 

Lower pressure of inlet 

air 

Loss of performance/ 

Engine damage 
Manifold 

Air flap 

 

Relief valve 

Leak 

Flow back 

 

Leak 

Improper Flow 
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Subsystem Measurement Parameter Failure Mode Effect of Failure 
Damaged 

Equipment 

Damaged 

Component 

Malfunction/Failure 

Cause 

Higher pressure of inlet 

air 

Engine damage/ 

Turboblower damage 
Manifold Relief valve Improper Flow 

M/E control 

spring air 
Pressure Air Leakage Derating Engine   Piping and Joints Leak 

Engine 

Camshaft 

Bearing (aft) 
Temperature Overheating of bearing  Engine damage Camshaft 

Bearings 

Camshaft 
Wear & Tear 

Camshaft 

Bearing (fore) 
Temperature Overheating of bearing Engine damage Camshaft 

Bearings 

Camshaft 
Wear & Tear 

Thrust bearing 

LO outlet 
Temperature 

Improper lubrication Engine damage Thrust bearing LO Piping Leak 

Shaft malfunctioning Engine slow down Crankshaft Thrust bearing Wear & Tear 

Intermediate 

shaft bearing 
Temperature Overheating of bearing Engine damage Shaft Bearing Wear & Tear 
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Subsystem Measurement Parameter Failure Mode Effect of Failure 
Damaged 

Equipment 

Damaged 

Component 

Malfunction/Failure 

Cause 

Cylinders 
Exhaust gas 

outlet 
Temperature 

Increased Exhaust Gas 

Temperature 
 

Fuel Injectors 

Cylinder 

Air coolers 

Turbocharger 

Fuel oil 

Piston rings 

Exhaust valves 

leaking or incorrectly 

working fuel 

worn fuel pumps 

blow-by, piston rings 

leaking exhaust valves 

fouled air side 

fouled water side 

fouling of turbine side 

fouling of compressor side 

type and quality of fuel oil 

 

Recommendations: 

For each cylinder check and 

compare fuel indices and 

fuel valves visually and 

pressure testing. 

For cylinder condition, 

compare the compression 

pressures from the indicator 

and draw diagrams. During 

engine standstill carry out 

scavenging port inspection 

and check exhaust valve. 

Check cooling capability 

and check cooling water 

and ER temperature. 

For fuel oil quality, if poor 

combustion properties exist, 

a reduction of Pmax can 

occur. 
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Table F.3 Diagnostic qualitative input of PMRA strategy 

Indication Possible Cause Diagnosing 

Increased exhaust gas temperature 

Fuel injection equipment: 

-leaking or incorrectly working fuel 

-worn fuel pumps 

As these faults occur in individual cylinders, compare: 

-fuel indices 

Check the fuel valves: 

-visually 

-by pressure testing 

Cylinder condition: 

-blow-by, piston rings 

-leaking exhaust valves 

These faults occur in individual cylinders. 

-Compare the compression pressures from the indicator and 

draw diagrams 

-During engine standstill: 

Carry out scavenge port inspection 

Check the exhaust valves 

Air coolers: 

-fouled air side 

-fouled water side 

Check cooling capability 

Climatic conditions: 

-extreme conditions 
Check cooling water and ER temperatures 

Turbocharger 

-fouling of turbine side 

-fouling of compressor side 

Use T/C synopsis methods for diagnosis* 

Fuel Oil: 

-type and quality 

Using heavy fuel oil will normally increase temperature by 

approx. 15 °C, compared to the use of gas oil. 

Further increase of Temperature will occur when using fuel 

oils with particularly poor combustion properties. In this 

case, a reduction of Pmax can also occur. 

Compression pressure 

Piston rings: 

-leaking 

Diagnosis: See Table Increased Exhaust Temperature Level 

– Fault Diagnosing 

Piston crown: 

-burnt 
Check the piston crown 

Cylinder liner: 

-worn 
Check the liner by means of the measuring tool 

Exhaust valve: 

-leaking 

-exhaust temperature rises 

Check: 

– Cam lead 
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Indication Possible Cause Diagnosing 

-hissing sound can possibly be heard at reduced load 

-timing 

– Hydraulic oil leakages, e.g. misalignment of high pressure 

pipe between exhaust valve actuator and hydraulic cylinder. 

– Damper arrangement for exhaust valve closing. 

Piston rod stuffing box: 

-leaking 

air is emitted from the check funnel from the stuffing box 

Small leakages may occur due to erosion of the bronze 

segments of the stuffing box, but this is normally considered 

a cosmetic phenomenon. 

Remedy: Overhaul the stuffing box 

Improper scavenging/result of high exhaust 

temperature 

Defected: 

-piston rings 

-faulty timing 

-injectors 

1. Affected T/C may surge and sparks will be seen at the 

scavenge drains 

2. Result loss of engine power and high exhaust temperature 

at affected cylinders 

3. Unburned fuel and carbon may blow into scavenge space 

ACTIONS 

1. Once fire is detected the engine should be slowed down, 

fuel shut off from the affected cylinders and cylinder 

lubrication increased 

2. All scavenge drains should be closed 

3. A small fire will quickly burn out, but where the fire 

persists the engine must be stopped 

4. A fire extinguishing medium should then be injected 

through the fittings provided in the scavenge trunking 

5. Scavenge trunking should be regularly inspected and 

cleaned if necessary 

6. Where carbon or oil build up is found in the scavenge, its 

source should be detected and the fault remedied 

7. Scavenge drains should be regularly blown and any oil 

discharges investigated at the first opportunity 

Fluctuation in the engine RPM or not start from 

standstill 
Stuck fuel rack 

Solution: All the mechanical links of the fuel rack must be 

well lubricated and greased before starting the main engine. 

If after starting the main engine, the engine rpm is constantly 

fluctuating even at lower speed in calm weather, check all 

the fuel rack as one or more of them must be stuck. 

Leakage of starting air valve 

Leakage from the starting air valve will lead to hot gasses going back to 

the engine air-line, which may contain thin oil film (not common though 

nowadays) 

Solution: Normally, there is no remote monitoring of 

temperature for the air-line supplying air to starting air valve. 

The best way to determine such fault is to check the 

temperature of the air-line manually during manoeuvring. 

This problem is more likely to occur when the engine is 
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Indication Possible Cause Diagnosing 

started frequently and not when engine is running 

continuously. 

Fuel leakage/fuel valve malfunction 

1. Problem in the fuel system 

2. Deviation in temperature of one unit, the fuel system, especially the fuel 

valve needs to be checked 

3. Overhauling and pressure testing of fuel valve. If the engine is 

maneuvered in diesel oil, there are chances of leakage from the pump seals. 

Also if the fuel treatment is improper and the fuel temperature is not 

maintained, it can lead to cracks and leakages in high pressure fuel pipe. 

Solution: Any leakage in the main engine fuel oil system can 

be determined from the “high pressure leak off tank” level 

and alarm. 

Sparks in the main engine exhaust at funnel 

1. Sparks coming out from the funnel, which is the main engine exhaust 

2. Sparks from funnel occur due to slow steaming and frequent 

manoeuvrings, which build unburnt soot deposits on the Exhaust Gas 

Boiler (EGB) 

Solution: Frequent cleaning (monthly) of the exhaust gas 

boiler to be preferred by the ship staff to avoid this problem. 

Starting air leakage 

1. The control air supplies air to different parts and systems of the main 

engine. It is always in open condition when the engine is in use. Small 

leakages are normal and can be rectified only by tightening or replacing 

the pipes or joints 

Solution: When the E/R machinery is in working condition 

it is difficult to hear any air leakage sound. The best way is 

to trace all the air-lines and feeling all the connections/joints 

by hand for air leakage. The easiest way to find air leakages 

is when there is an intentional black out done for any job. At 

this moment all the machinery will be in “stop” position and 

leakage sound (a hissing noise) will be loud and clear. Note 

the leakage area to perform the repairs later. 

Stuck air distributor 

Air distributor is responsible for maintaining the air supply which opens 

the starting air valve in the engine cylinders. Since it’s a mechanical part, 

it is prone to malfunctioning, especially getting stuck. The main engine 

will not start if air distributor does not supply air to open the starting air 

valves as no air will be present in the cylinder to commence fuel 

combustion 

Solution: Many engines such as MAN B&W have their air 

distributor located at the end, with inspection cover, which 

can be opened when the engine is not running for inspection 

and lubrication to avoid this problem. 

*Turboexpander is not considered in the case study demonstrated in Chapter 6. Hence, T/C information diagnostic information is not extracted 

and analysed for PMRA strategy.
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APPENDIX G – RESULTS OF CASE STUDIES 

Appendix G provides additional results related to Chapter 7 and the performed case 

studies. The designed and coded Dynamic Bayesian Belief Networks (DBBNs) 

provide analytical reliability performance results. Therefore, supplementary results of 

both case study groups are placed in Appendix G below. Furthermore, DBBNs enable 

the calculation of any probably failure case scenario by combining input from all 

involved parent nodes in all probable arrangement and will be presented next. 

G.1. Results of processed data reliability case study 

 Diesel Generator (D/G) case study 

In this section, supplementary working state reliability performance prediction results 

for the Diesel Generator (D/G) acquired by the PMRA strategy are illustrated. The 

acronyms utilised in this case study are listed below. 

Table G.1 Acronym list of diesel generator (D/G) maintainable units and components 

Acronym Meaning 

AIE Air Inlet 

CLI Cylinders 

COL Cooler 

CUM Control Unit 

EXI Exhaust 

FFE Fuel Filter 

FPE Fuel Pump 

IJI Injections 

LIS Level Instrument 

OIL Oil 

PIN Pressure Instrument 

PPC Piping 

PSI Pistons 

RBI Radial Bearings 

SCS Starting Control 
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Acronym Meaning 

SES Starting Energy 

SFE Shaft 

SIN Speed Instrument 

SUS Starting Unit 

TIN Temperature Instrument 

VVC Valve 

 

 

Figure G.1 Reliability performance of Diesel Generator (D/G) starting subsystem 

Starting system (Figure G.1) incorporates four maintainable units and components 

such as the starting unit (SUS), starting control system (SCS), starting energy system 

(SES) and the level instrument (LIS). 
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Figure G.2 Reliability performance of Diesel Generator (D/G) lubrication subsystem 

In Figure G.2 the reliability performance predictions of the lubrication subsystem are 

presented. More specifically, lubrication (lube oil) system consists of maintainable 

units and components such as the oil (OIL), cooler (COL) and the pressure instrument 

(PIN). 

On the other hand, Figure G.3 demonstrates the achieved reliability performance 

predictions on subsystem level of the Diesel Generator (D/G) for the control and 

monitoring. In particular, the overall reliability performance forecasted values for the 

incorporated speed instrument (SIN), temperature instrument (TIN) and the control 

unit for monitoring (CUM) are demonstrated. 
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Figure G.3 Reliability performance of Diesel Generator (D/G) control monitoring 

subsystem 

On the other hand, Figure G.4 illustrates the reliability prediction of the engine external 

components. 

 

Figure G.4 Reliability performance of Diesel Generator (D/G) engine external 

components subsystem 
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This node in the developed Dynamic Bayesian Belief Network (DBBN) represents a 

group of components and maintainable units such as the air inlet (AIE), fuel pump 

(FPE), fuel filter (FFE) and the shaft (SFE). Additionally, the working state reliability 

performance predictions of the engine internal components subsystem are provided in 

Figure G.5, Figure G.6 and Figure G.7. The involved components and maintainable 

units include the injections (IJI), cylinders (CLI), exhaust (EXI), pistons (PSI) and 

radial bearings (RBI). 

 

Figure G.5 Reliability performance of Diesel Generator (D/G) engine internal 

components subsystem (involving one component) 
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Figure G.6 Reliability performance of Diesel Generator (D/G) engine internal 

components subsystem (involving two components) 

 

Figure G.7 Reliability performance of Diesel Generator (D/G) engine internal 

components subsystem (involving three, four and five components) 

Lastly, the cooling subsystem is demonstrated in Figure G.8 Two maintainable units 

are considered in this arrangement such as the valve (VVC) and the piping (PPC). 
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Figure G.8 Reliability performance of Diesel Generator (D/G) cooling subsystem 

 

Figure G.9 Reliability performance of Diesel Generator (D/G) control unit 

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

0 1 2 3 4 5 6

R
el

ia
b

ili
ty

 P
er

fo
rm

an
ce

 (
%

)

Time Steps (Unitless)

VVC

PPC

PPC, VVC

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

0 1 2 3 4 5 6

R
el

ia
b

ili
ty

 P
er

fo
rm

an
ce

 (
%

)

Time Steps (Unitless)

FTS

AIR



315 

 

Figure G.10 Reliability performance of Diesel Generator (D/G) cylinders (involving 

two components) 

 

Figure G.11 Reliability performance of Diesel Generator (D/G) cylinders (involving 

three and four components) 
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Figure G.12 Reliability performance of Diesel Generator (D/G) injections (involving 

one and two components) 

 

Figure G.13 Reliability performance of Diesel Generator (D/G) exhaust (involving one 

and two components) 
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Figure G.14 Reliability performance of Diesel Generator (D/G) fuel pump 

 

Figure G.15 Reliability performance of Diesel Generator (D/G) air inlet 
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Figure G.16 Reliability performance of Diesel Generator (D/G) valve 

 

Figure G.17 Reliability performance of Diesel Generator (D/G) piping 
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 Turboexpander case study 

Table G.2 Acronym list of Turboexpander maintainable units and components 

Acronym Meaning 

ACT Actuator 

CNT Control Unit 

FIN Flow Instrument 

FLT Filters 

GIN General Instrument 

MON Monitoring 

OIL Oil 

PIN Pressure Instrument 

PIP Piping 

SIN Speed Instrument 

TBR Thrust Bearing 

TIN Temperature Instrument 

 

 

Figure G.18 Reliability performance of Turboexpander lubrication subsystem 
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Figure G.19 Reliability performance of Turboexpander expander/recompressor 

turbine subsystem 

 

Figure G.20 Reliability performance of Turboexpander shaft and seal subsystem 
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 Seawater lift pump case study 

Table G.3 Acronym list of seawater lift pump maintainable units and components 

Acronym Meaning 

ACT Actuator 

BR Bearing 

CAB Cabling 

CAS Casing 

Cdriven Coupling Driven 

Cdriver Coupling Driver 

CHC Check Valve 

CON Control Unit 

FLT Filter 

IMP Impeller 

LUB Lubrication 

MON Monitoring 

RBR Radial Bearing 

SHF Shaft 

SLS Seals 

THR Thrust Bearing 

 

 

Figure G.21 Reliability performance of seawater lift pump controller subsystem 
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Figure G.22 Reliability performance of seawater lift pump cooling subsystem 

 

Figure G.23 Reliability performance of seawater lift pump couplers subsystem 
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Figure G.24 Reliability performance of seawater lift pump mechanical power 

subsystem 

 

Figure G. 25 Reliability performance of seawater lift pump seals 
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Figure G.26 Reliability performance of seawater lift pump coupling driver 

 

Figure G.27 Reliability performance of seawater lift pump radial bearing 
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Figure G.28 Reliability performance of seawater lift pump thrust bearing 

 Oil export pump case study 

Table G.4 Acronym list of oil export pump maintainable units and components 

Acronym Meaning 

ACT Actuator 

BER Bearing 

CAB Cabling 

CAS Casing  

CDN Coupling Driven 

CDR Coupling Driver 

COL Cooling 

CTL Control Unit 

FLT Filter 

IMP Impeller 

LUB Lubrication 

MON Monitoring 

RDB Radial Bearing 

SFT Shaft 

SLS Seals 

THB Thrust Bearing 

VLV Valve 
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Figure G.29 Reliability performance of oil export pump cooling subsystem 

 

Figure G.30 Reliability performance of oil export pump couplers subsystem 
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Figure G.31 Reliability performance of oil export pump mechanical power subsystem 

 

Figure G.32 Reliability performance of oil export pump shell subsystem 
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Figure G.33 Reliability performance of oil export pump filter 

 

Figure G.34 Reliability performance of oil export pump lubrication 
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Figure G.35 Reliability performance of oil export pump impeller 

 

Figure G.36 Reliability performance of oil export pump shaft 

99.99%

99.99%

99.99%

99.99%

99.99%

99.99%

99.99%

99.99%

99.99%

99.99%

0 1 2 3 4 5 6

R
el

ia
b

ili
ty

 P
er

fo
rm

an
ce

 (
%

)

Time Steps (Unitless)

STD

VIB

99.97%

99.98%

99.98%

99.99%

99.99%

100.00%

100.00%

0 1 2 3 4 5 6

R
el

ia
b

ili
ty

 P
er

fo
rm

an
ce

 (
%

)

Time Steps (Unitless)

VIB

OHE

BRD

FTS

NOI

AIR



330 

 

Figure G.37 Reliability performance of oil export pump radial bearing 

 Cooling Water Pump (CW) case study 

Table G.5 Acronym list of cooling water pump maintainable units and components 

Acronym Meaning 

ACT Actuator 

BER Bearing 

CAB Cabling 

CDN Coupling Driven 

CTL Control Unit 

MON Monitoring 

RBR Radial Bearing 

SFT Shaft 

VLV Valve 
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Figure G.38 Reliability performance of Cooling Water Pump (CW) mechanical power 

subsystem 

 

Figure G.39 Reliability performance of Cooling Water Pump (CW) coupling driven 
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Figure G.40 Reliability performance of Cooling Water Pump (CW) controller 

subsystem 

 

Figure G.41 Reliability performance of Cooling Water Pump (CW) valve 
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 Firefighting Pump (FP) case study 

Table G.6 Acronym list of firefighting pump maintainable units and components 

Acronym Meaning 

ACT Actuator 

BER Bearing 

CAB Cabling 

CAS Casing 

CTL Control Unit 

FLT Filter 

IMP Impeller 

LUB Lubrication 

MON Monitoring 

RBR Radial Bearing 

SFT Shaft 

SLS Seals 

TBR Thrust Bearing 

 

 

Figure G.42 Reliability performance of Firefighting Pump (FP) mechanical power 

subsystem 
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Figure G.43 Reliability performance of Firefighting Pump (FP) coupling driven 

 

Figure G.44 Reliability performance of Firefighting Pump (FP) shell subsystem 
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Figure G.45 Reliability performance of Firefighting Pump (FP) casing 

 

Figure G.46 Reliability performance of Firefighting Pump (FP) seals 
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Figure G.47 Reliability performance of Firefighting Pump (FP) thrust bearing 

 Crude oil handling pump case study 

Table G.7 Acronym list of crude oil handling pump maintainable units and 

components 

Acronym Meaning 

ACT Actuator 

BER Bearing 

CAB Cabling 

CAS Casing 

CDriven Coupling Driven 

CDriver Coupling Driver 

COL Cooler 

CTL Control Unit 

FLT Filter 

IMP Impeller 

LUB Lubrication 

MON Monitoring 

RBR Radial Bearing 

SFT Shaft 

SLS Seals 

TBR Thrust Bearing 
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Figure G.48 Reliability performance of crude oil handling pump controller subsystem 

 

Figure G.49 Reliability performance of crude oil handling pump cooling subsystem 
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Figure G.50 Reliability performance of crude oil handling pump couplers subsystem 

 

Figure G.51 Reliability performance of crude oil handling pump mechanical power 

subsystem 
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Figure G.52 Reliability performance of crude oil handling pump shell subsystem 

 

Figure G.53 Reliability performance of crude oil handling pump monitoring 
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Figure G.54 Reliability performance of crude oil handling pump casing 

 

Figure G.55 Reliability performance of crude oil handling pump filter 
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Figure G.56 Reliability performance of crude oil handling pump seals 

 

Figure G.57 Reliability performance of crude oil handling pump cooling system 

(failure mode level) 
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Figure G.58 Reliability performance of crude oil handling pump impeller and shaft 

(IMP and SFT) 

 

Figure G.59 Reliability performance of crude oil handling pump radial and thrust 

bearing (RBR and THB) 
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G.2. Results of raw data reliability case study 

 Fuel system 

 

Figure G.60 Reliability performance of fuel supply – raw data 

 

Figure G.61 Reliability performance of fuel return – raw data 
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 Jacket cooling fresh water system 

 

Figure G.62 Reliability performance of JCFW pump – raw data 

 

Figure G.63 Reliability performance of JCFW rotor – raw data 
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Figure G.64 Reliability performance of JCFW pump housing – raw data 

 Lube oil system 

 

Figure G.65 Reliability performance of lube oil pump filter – raw data 
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 Air supply system 

 

Figure G.66 Reliability performance of air piping – raw data 

 Bearing drive system 

 

Figure G.67 Reliability performance of camshaft bearings– raw data 
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Figure G.68 Intermediate shaft bearing temperature records 

 Cylinders 

 

Figure G.69 Reliability performance of Cylinder 1 – raw data 
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