2,806 research outputs found

    Ecohydrological Controls on Grass and Shrub Above-ground Net Primary Productivity in a Seasonally Dry Climate

    Get PDF
    Seasonally dry, water‐limited regions are often co‐dominated by distinct herbaceous and woody plant communities with contrasting ecohydrological properties. We investigated the shape of the above‐ground net primary productivity (ANPP) response to annual precipitation (Pa) for adjacent grassland and shrubland ecosystems in Southern California, with the goal of understanding the role of these ecohydrological properties on ecosystem function. Our synthesis of observations and modelling demonstrates grassland and shrubland exhibit distinct ANPP‐Pa responses that correspond with characteristics of the long‐term Pa distribution and mean water balance fluxes. For annual grassland, no ANPP occurs below a ‘precipitation compensation point,’ where bare soil evaporation dominates the water balance, and ANPP saturates above the Pawhere deep percolation and runoff contribute to the modelled water balance. For shrubs, ANPP increases at a lower and relatively constant rate across the Pa gradient, while deep percolation and runoff account for a smaller fraction of the modelled water balance. We identify precipitation seasonality, root depth, and water stress sensitivity as the main ecosystem properties controlling these responses. Observed ANPP‐Paresponses correspond to notably different patterns of rain‐use efficiency (RUE). Grass RUE exceeds shrub RUE over a wide range of typical Pa values, whereas grasses and shrubs achieve a similar RUE in particularly dry or wet years. Inter‐annual precipitation variability, and the concomitant effect on ANPP, plays a critical role in maintaining the balance of grass and shrub cover and ecosystem‐scale productivity across this landscape

    Evaluation of biospheric components in earth system models using modern and palaeo-observations: The state-of-the-art

    Get PDF
    PublishedJournal ArticleEarth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate-carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process-and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes. © 2013 Author(s).This paper emerged from the GREENCYCLESII mini-conference “Evaluation of Earth system models using modern and palaeo-observations” held at Clare College, Cambridge, UK, in September 2012. We would like to thank the Marie Curie FP7 Research and Training Network GREENCYCLESII for providing funding which made this meeting possible. Research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2007–2013) under grant agreement no. 238366. The work of C. D. Jones was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). N. R. Edwards acknowledges support from FP7 grant no. 265170 (ERMITAGE). N. VĂĄzquez Riveiros acknowledges support from the AXA Research Fund and the Newton Trust

    Ericaceous vegetation of the Bale Mountains of Ethiopia will prevail in the face of climate change

    Get PDF
    Climate change impacts the structure, functioning, and distribution of species and ecosystems. It will shift ecosystem boundaries, potentially affecting vulnerable ecosystems, such as tropical Africa's high mountain ecosystems, i.e., afroalpine ecosystems, and their highly susceptible uniquely adapted species. However, ecosystems along these mountains are not expected to respond similarly to the change. The ericaceous woody vegetation, located between the low-elevation broadleaf forests and high-elevation afroalpine vegetation, are anticipated to be affected differently. We hypothesize that projected climate change will result in an upward expansion and increasing dominance of ericaceous vegetation, which will negatively impact the endemic rich afroalpine ecosystems of the extensive Sanetti plateau. Hence, we modeled the impact of future climate change on the distribution of ericaceous vegetation and discussed its effect on bordering ecosystems in the Bale Mountains. We applied four familiar correlative modeling approaches: bioclim, domain, generalized linear methods, and support vector machines. We used WorldClim’s bioclimatic variables as environmental predictors and two representative concentration pathways (RCPs) of the IPCC Fifth Assessment Report climate change scenarios, namely RCP4.5 and RCP8.5 for future climate projection. The results indicate increased ericaceous vegetation cover on the midaltitude of northwestern and northern parts of the massif, and the Sanetti plateau. We observed upward range expansion and increase of close ericaceous vegetation in midaltitudes, while receding from the lower range across the massif. Moreover, the current ericaceous vegetation range correlates to the temperature and precipitation trends, reaffirming the critical role of temperature and precipitation in determining species distributions along elevational gradients. The results indicate the high likelihood of considerable changes in this biodiversity hotspot in Eastern Africa

    2016 International Land Model Benchmarking (ILAMB) Workshop Report

    Get PDF
    As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistryclimate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial uncertainties in 21st century climate change projections
    • 

    corecore