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Abstract

Savannah biomes are home to a great diversity of flora and fauna species whose

survival depend on the inherent heterogeneity within the savannah landscape. In

southern African savannahs, grazing lawn patches play a central role in ecosystem

dynamics via their influence on herbivory and fire regimes. The extent and distribution

of grazing lawns therefore have important cascading impacts on habitat heterogeneity,

biodiversity and important ecosystem processes such as nutrient cycling. Despite the

keystone nature of grazing lawns in savannah ecosystems, there is limited knowledge

on their extent and distribution. There is substantial empirical evidence of the factors

that drive the formation and persistence of grazing lawns. However, no broad-scale

approach exist to monitor grazing lawns and enable investigations into changes in

their distribution and the impacts on broader ecosystem dynamics. Ground-based

monitoring of grazing lawns is laborious and inefficient over large spatial and temporal

scales.

This research uses high-resolution satellite remote sensing to characterize grazing

lawns and investigate dynamics in their cover and structure in southern African savan-

nahs. This is achieved through a series of analysis that addresses three main object-

ives including (i) developing methods for accurate detection and mapping of savannah

grazing lawn distribution using high-resolution satellite imagery and machine learning

techniques; (ii) identifying changes in cover and structural distribution of grazing lawns

over space and time; and (iii) Identifying the dominant drivers of change in grazing

lawn cover and structure. For the analysis, a robust machine learning workflow is

developed to identify grazing lawns in mesic and semi-arid savannah landscapes

using WorldView-3 imagery; a cost effective approach for high resolution grazing lawn

monitoring is developed via fusion of open access Planet and Sentinel-2 imagery;

multi-temporal high-resolution satellite images from 2002, 2014 and 2019 are used

to identify changes in grazing lawn cover and structure under different savannah

landscape conditions, including the effect of drought stress; and lastly, spatio-temporal

analysis of grazing lawn occurrence and change trajectory is used to identify the

dominant drivers of grazing lawn dynamics.
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High grazing lawn detection accuracies were achieved with all machine learning al-

gorithms. Random Forest, Multilayer Perceptron and Support Vector Machine algorithms

had similar accuracies and marginally outperformed Classification and Regression

Trees algorithm. The results demonstrate the utility of high-resolution satellite im-

ages for overcoming savannah heterogeneity challenges to classification, leading to

accurate grazing lawn detection. WorldView-3 with its high spatial resolution and

broad array of vegetation sensitive spectral bands is particularly ideal for grazing

lawn monitoring, and could be used for targeted investigations due to acquisition

cost. Alternatively, fusion of open-access planet and Sentinel-2 images provide a

cost effective option for operational management applications. In the absence of

drought stress, grazing lawn extent increase uniformly, signaling to possible grazer

population increase between 2002 and 2014. Most of the increase tend to occur

as an expansion to existing patches or in close proximity to existing patches. The

impact of drought stress on grazing lawns depends on local landscape character-

istics, particularly related to water availability. Gains and losses in grazing lawn cover

largely occur as transitions to and from tall grass swards, further highlighting tall grass

vegetation as the main competitor for space. Woody encroachment was found not to

be an immediate threat to grazing lawn cover, but could gain more significance with

projected increase in drought frequency and intensity. In terms of the dominant drivers

of grazing lawn dynamics, this study found the presence of water points as resource

hot-spots to be an important determining factor of grazing lawn spatial distribution

within the savannah landscape. Overall, grazing lawn dynamics was inferred to be

primarily driven by grazers, the pattern and nature of which depends on factors that

act to alter grazer population and behavior.

This research makes vital methodological contributions to grazing lawn and overall

savannah vegetation monitoring. A pioneering remote sensing based methodology for

monitoring grazing lawn dynamics is developed. Additionally this research contributes

to literature on grazing lawn ecology. A greater knowledge of grazing dynamics has

been achieved, contributing to a better understanding of habitat heterogeneity in

southern African savannahs. Overall, this research provides important tools and novel

ecological insights to guide conservation management in savannah ecosystems.

Keywords: savannahs, southern Africa, grazing lawns, remote sensing, image fusion,

machine learning, image classification, change detection, herbivory, fire, drought.
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Lay Summary

Grazing lawn patches play a central role in savannah ecosystem dynamics via their

influence on herbivory and fire. Dynamics in grazing lawn cover therefore have im-

portant cascading impacts on habitat heterogeneity, biodiversity, and ecosystem pro-

cesses such as nutrient cycling. Yet, there is limited knowledge of their extent and

distribution. Importantly, no broad-scale approach exists to monitor grazing lawns

and enable investigations into changes in their distribution and impacts on broader

ecosystem dynamics. Ground based monitoring of grazing lawns is laborious and

inefficient over large spatial and temporal scales. This research uses satellite remote

sensing to map and investigate dynamics in grazing lawn cover and structure in

southern African savannahs. To achieve this, a robust machine learning workflow

is developed to identify grazing lawns using WorldView-3 imagery. A cost-effective

approach for high resolution grazing lawn monitoring is developed by fusing open

access Planet and Sentinel-2 imagery. Multi-temporal very high-resolution satellite

images are used to identify changes and drivers of change in grazing lawn cover and

structure, including the effect of drought stress under different landscape conditions.

This research provides pioneering evidence of the use of remote sensing for grazing

lawn monitoring. High-resolution satellite imagery with an array of vegetation sensitive

spectral bands helped to overcome savannah heterogeneity challenges to classific-

ation, leading to accurate grazing lawn detection. Gains and losses in grazing lawn

cover largely occurred as transitions to and from tall grass swards. In the absence of

drought stress, grazing lawn extent increased uniformly, as an expansion to existing

patches or near existing patches. Drought impact on grazing lawns varied depending

on local landscape characteristics, mainly, water availability. This research found the

presence of water points as resource hot spots to be an important determining factor

of grazing lawn spatial distribution. Overall, grazing lawn dynamics was inferred to

be primarily driven by grazers and shaped by factors that act to alter grazer pop-

ulation and behavior. This research provides important tools and novel ecological

understanding for conservation management in savannah ecosystems.
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Chapter 1

General Introduction

1.1 Savannahs in Africa

Savannahs constitute the world’s largest terrestrial biome and extends over nearly

33 million square-kilometers, accounting for approximately 20 % of the earth’s land

surface area (Devine et al., 2015; Sankaran & Ratnam, 2013). They occur widely

across Africa, Asia, Australia and South America and support a great diversity and

density of flora and fauna communities (Sankaran & Ratnam, 2013). Savannahs also

play a substantial role in human economies with the presence of rangelands that

supports majority of the world’s livestock biomass (Sankaran & Anderson, 2009).

Savannah biomes are widespread in Africa, covering about 50 % of the continent’s

land area (Osborne et al., 2018). They extend from west to east Africa sandwiched

between the Sahara desert to the north and the rainforest to the south, and then

round the Congo basin to Namibia (Shorrocks & Bates, 2015). This extensive cover

of savannah vegetation however exhibits considerable variation in structure creating

diverse gradients of grass-shrub and / or grass-tree matrix (Sankaran & Ratnam,

2013). The gradient of wooded vegetation stretches to more open grasslands with

increasing distance from the Congo basin both northwards towards the Sahara desert

and southwards through the miombo woodland to the drier regions of Namibia and

South Africa (Osborne et al., 2018; Shorrocks & Bates, 2015). The grassy vegetation

persists mainly due to natural boundaries to the spread of woody cover imposed

by water availability (i.e. rainfall), fire and herbivory (Bond, 2008; Marston et al.,

2019; Sankaran et al., 2005). Woody plant recruitment is also negatively impacted

by competition from grasses for nutrients and light (Osborne et al., 2018).
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The woody component in the drier west (i.e. with 100-600 mm mean annual precipita-

tion (MAP)) is dominated by shrub forms including Acacia laeta and Balanites aegyp-

tiaca, while annual species like Aristida stipoides and Cenchrus biflorus dominates

the grass layer (Sankaran & Ratnam, 2013). Towards the east around southern Kenya

and the Maasai dry lands of Tanzania (with 600-800 MAP), perennial grasses such

as Panicum coloratum, Themeda triandra and Andropogon sp. dominate (Huntley,

1982; Sankaran & Ratnam, 2013). In southern Africa, savannah vegetation forms a

grass-shrub transition between the northern mopane and the southern deserts, with

more open vegetation occuring towards the south (Sankaran & Ratnam, 2013). Karoo

shrubs such as Acacia newbrownii and Parkinsonia africana dominate the shrub layer

whereas tufted grasses dominated by the genus Stipagrostis forms the scattered

grass layer (Huntley, 1982).

1.2 Drivers of Vegetation Structure in African Savan-

nahs

The factors that promote co-existence of grass and tree life forms and shape the

relative distributions of vegetation structure has been a subject of much research.

The availability of resources such as water and soil nutrients and the persistence

of disturbance factors including fire and herbivory has been identified as critical in

shaping the balance of this grass-tree matrix (Archibald, 2008; Sankaran & Ratnam,

2013). However, there is no consensus on the roles or relative importance of these

factors to structural dynamics in savannah vegetation. Using data from 854 sites

across Africa, Sankaran et al. (2005) showed that the proportion of woody cover in

arid and semi-arid savannahs (i.e. with less than 650 mm MAP) is mainly controlled

by water availability and increases with increasing MAP. The results further revealed

that below the threshold MAP of 650 mm, fire, herbivory and soil properties interact

to further reduce woody cover or suppress tree seedling recruitment, thus shifting

the balance to grass dominance. In contrast, areas with more than 650 mm MAP

were found to be dominated by woody vegetation, and grassy vegetation could only

co-exist after disturbance events (herbivory and fire). In a related study, Sankaran

et al. (2008) identified MAP as the most important predictor of woody cover, followed

by fire return periods, soil characteristics and herbivory regimes. Levick et al. (2009)

observed that herbivory predominantly exerted more influence on three-dimensional

structure of vegetation than fire in Kruger National Park, where areas protected from
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herbivory had more tree cover and tall canopy layers than control areas. Fire on the

other hand mainly restricted the growth of tree seedlings within 0 - 3 m in height in

the presence or absence of herbivory. The study however offered no control for the

influence of soil nutrients which is known to influence forage quality and hence herb-

ivory (Grant & Scholes, 2006). Other studies attribute the displacement of grasses

by woody vegetation to global change factors, with Buitenwerf et al. (2012) showing

the consistency of increasing CO2 concentration with increasing tree density when

keeping all disturbance factors constant.

1.3 Global Change and Impacts on Savannah Ecosys-

tem Structure and Functioning

Earth’s changing climate poses significant stress to natural ecosystems globally. For

savannahs, current evidence points to major changes in ecosystem structure and

functioning as a result of global change phenomena such as erratic precipitation

regimes, increased atmospheric carbon dioxide (CO2) and atmospheric nitrogen (N)

and phosphorus (P) deposition, which threatens ecological integrity (Midgley & Bond,

2015; Parr et al., 2014).

Savannahs are inherently characterized by pronounced dry periods and highly sea-

sonal rainfall regimes. As such, savannah vegetation has evolved diverse disturbance

resistance and resilience traits as strategies to cope with such variability (Penning-

ton et al., 2018; Sankaran, 2019). Nevertheless, current and projected increase in

drought severity and frequency could shift tree-grass competition dynamics and alter

disturbance drivers such as fire and herbivory, with consequences for vegetation com-

position, structure and overall ecosystem functioning (Fensham et al., 2009; Staver

et al., 2019). Drought stress coupled with warmer temperatures increase evaporative

demand on savannah vegetation and hastens susceptibility to mortality (Sankaran,

2019).

Wide-spread tree die-back in response to drought stress has been extensively docu-

mented in savannahs (Case et al., 2019; Fensham et al., 2009; O’connor, 1998). Case

et al. (2020) showed that trees that have relatively low investment in non-structural

carbohydrates (e.g. Dichrostachys cinerea) suffered most from drought-induced mor-

tality, resulting in significantly limited distribution and abundance in drought-frequent

savannah landscapes. In contrast, drought tolerant tree species could benefit from
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attenuated fire (frequency and intensity) and competition (for limited soil moisture) due

to drought-induced reduction of surrounding grass biomass (February et al., 2013).

Even so, increasing drought frequency disrupts resistance and resilience mechan-

isms of drought-tolerant species including cavitation fatigue and reduced capacity to

replenish stored reserves (Sankaran, 2019). Such physiological damage negatively

impacts recovery through resprouting, reduces seed production which impacts recol-

onization (Hartmann et al., 2018) and can lead to directional shifts in tree species

composition through individual mortality and overall exclusion.

As in the case of trees, savannah grasses show a strong physiological response to

water stress. Although grasses may have better recovery response to low-to-moderate

drought episodes than trees (Sankaran, 2019), evidence suggests that they are equally

or even more sensitive to intense droughts (Ghannoum, 2009), with substantial im-

pact on mortality relative to woody plants (Walker et al., 1987). Grasses also exhibit

a range of physiological drought tolerance and avoidance strategies which varies

among species. Studying 426 grass species distributed over a range of climatic and

phylogenetic affinities, Craine et al. (2013) showed that species with higher photo-

synthetic rates (17.0± 0.5 µmol m-2s-1) and higher stomatal conductance (0.185±
0.008 µmol m-2s-1) were typically more tolerant to physiological drought. Further,

leaf width also showed some correlation with drought tolerance, where wide-leaved

grasses were largely drought-intolerant and narrow-leaved grasses had a range of

tolerance and intolerance abilities (Craine et al., 2013). Other significant traits that fa-

cilitate drought tolerance and avoidance in savannah grasses include extensive below

ground biomass allocation (deep roots) with arbuscular mycorrhizal fungi associations

(Nippert & Holdo, 2015), rapid leaf shedding and leaf rolling strategies (Bolger et al.,

2005).

Savannah vegetation response to drought is strongly mediated by the occurrence of

disturbance events which vary both spatially and temporally (Macgregor & O’Connor,

2002; Swemmer et al., 2018). Herbivory (including browsing and grazing) and fire

are important disturbance mechanisms that regulate growth and survival of trees and

grasses in savannah ecosystems (Archibald et al., 2005; Archibald, 2008; Donald-

son et al., 2018). As such, the extent and intensity of such disturbances, which in

themselves are influenced by droughts, significantly alter the effects of droughts on

trees and grasses. Browsing suppresses tree growth by reducing starch reserves

and increasing susceptibility to pathogen attacks with consequences for individual

tree survival during droughts (Sankaran, 2019). Similarly, grazing influences spatial
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variation in grass biomass and productivity during droughts. For example, Donaldson

et al. (2020) observed that protracted drought decoupled grazers from already estab-

lished grazing lawn patches - which are a key food resource for some mega and meso-

herbivores - leading to colonization by tussock grasses during post-drought recovery.

Additionally, Staver et al. (2019) reported severe grass declines both in droughted

areas and non-droughted refugia due to grazing and drought-induced grazer move-

ment. Interaction between drought and patterns in grazing and/or grazer behaviour

can thus result in the eventual extension of the ecological impacts of droughts even to

non-droughted areas. On the other hand, drought impacts on fire and their interactive

effects on savannah ecosystem are largely contingent on the availability of grass fuel

biomass (Sankaran, 2019). Fuel loads build up from moisture availability and may

be cumulative from preceding years. As such more intense and widespread fires are

expected early in drought seasons when droughts are preceded by above average

rainfall conditions. Fire intensity is particularly pronounced in areas with low grazing

pressure where there is high grass biomass build up, which significantly hastens tree

mortality (Donaldson et al., 2018). Conversely, protracted droughts reduce grass bio-

mass due to significant reduction in productivity coupled with early drought fire events.

This in turn minimizes frequency, intensity and extent of fires. Increasing drought

frequency is thus expected to lead to longer fire return intervals and a decrease in

total area burnt including size of individual burns (Balfour & Howison, 2002). This,

coupled with reduced browsing pressure from drought-induced herbivore mortality

(Walker et al., 1987), will likely favour recruitment of woody vegetation leading to a

shift in savannah vegetation structure and ecosystem functioning.

Global change phenomena such as increasing atmospheric CO2 have been identified

to potentially enhance widespread encroachment of woody plants in grassy savan-

nahs. Short and regular fire intervals in savannahs (every 1 - 3 years (Bond & Midgley,

2000)) control woody plant recruitment, particularly in areas with low browsing pres-

sure. As such, woody plants invest in carbon storage to survive future injury and

carbon allocation for rapid stem growth in order to escape fires and reach full size

(Bond & Midgley, 2000). Elevated CO2 conditions enhances rapid resprouting and

height growth (Ceulemans et al., 1995) leading to enhanced woody plant recruitment

rates and higher stem densities in previously open savannahs (Stevens et al., 2017),

with cascading impacts on ecosystem structure and functioning including biodiversity

(Ratajczak et al., 2012), soil carbon (Berthrong et al., 2012) and grazing potential

(Angassa & Baars, 2000).
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1.4 Grazing Lawns as Functional Components in African

Savannahs

Grazing lawns are distinct grass communities structurally typified by short-statured

grasses and exhibit stoloniferous growth pattern (Hempson et al., 2015). Their form-

ation, growth and persistence is stimulated by constant grazing which creates dense

and palatable swards that in turn attract more grazers. This cycle of regular graz-

ing is necessary to prevent invasion by tall grass species that would otherwise out-

compete grazing lawns for light. In southern African savannahs, grazing lawns repres-

ent key food resources for large mammal grazers such as wildebeest (Connochaetes

taurinus), zebra (Equus burchellii), and white rhino (Ceratotherium simum), and re-

veal a co-evolutionary history of grasses and a diversity of large herbivores (Cromsigt

& Olff, 2008; Hempson et al., 2015).

Due to their stoloniferous growth adaptation, much of the structural growth parts of

grazing lawns including stem and buds escape grazing, leaving only a rich build-up

of leaf material that is accessible to grazers. In comparison to their tall grass coun-

terparts, grazing lawn swards have higher foliar nitrogen (N) levels and low carbon

to nitrogen ratio (C:N), making them more easily digestible (Chaves et al., 2006) and

attractive to grazers. For grazers that utilize grazing lawns, seasonal availability could

play a significant role in grazer behaviour (e.g. movement) and population dynamics

(Hempson et al., 2015). For example, access to high quality forage resources on

grazing lawns during the wet season may provide females with the nutritional require-

ments to meet high energy demands of late pregnancy and lactation (Parker et al.,

2009). Additionally, improved nutrition increases the likelihood of survival in juveniles

during their first dry season (Gaillard et al., 2000). As such the presence of grazing

lawns could enhance grazer recruitment rates. In addition to the nutritional benefits,

grazing lawn patches reduces the risk of predation for grazers due to the low amount

of herbaceous cover for predators (Hempson et al., 2015).

The structural characteristics of grazing lawns also have important consequences

for fire behavior, with cascading impacts on overall ecosystem dynamics, including

herbivore movement and vegetation structure (Donaldson et al., 2018; Hempson

et al., 2019). Unlike tall grass swards, grazing lawns do not hold on to moribund growth

parts and thus, have very limited fuel biomass that could hasten fire propagation
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through the savannah landscape (Archibald et al., 2005). Thus, grazing lawn patches

effectively serve as fire breaks and influence the spread, intensity and frequency of

fires. Given their influence on herbivores and fire regime, grazing lawn effects can

extend well beyond their borders (Hempson et al., 2015).

Ultimately, grazing lawns have significant conservation value as habitat for a broad

diversity of fauna and flora species. Specialist short-grass fauna such as grasshop-

pers (Samways & Kreuzinger, 2001), spiders (Warui et al., 2005), birds (Krook et al.,

2007) and mammalian grazers (e.g. rhino, wildebeest) thrive on grazing lawn patches.

Additionally, grazing lawns shape tree community composition by supporting tree

species that are adapted to withstand heavy browsing (Staver et al., 2012) given the

diversity of ungulates that utilize lawn patches, and are also associated with diverse

grass and forb species, which altogether enhances plant biodiversity (Hempson et al.,

2015).

1.5 Dynamics in Grazing Lawn Development and Per-

sistence in African Savannahs

Grazing lawn presence may be static - occurring on nutrient hot-spots (Hempson

et al., 2015) - or dynamic - shaped by the interaction between fire and herbivory (Don-

aldson et al., 2018). Different parts of the savannah landscape may be predisposed

to grazing lawn formation due to localized availability of resources that concentrate

grazers. These include areas around water points and areas of mineral accumulation

such as around termite mounds (Hempson et al., 2015).

Grazing lawn patches are maintained by constant grazing, which results in a feed-

back of dense nutrient rich plant growth that in turn attract more grazers, creating

a feedback loop (Hempson et al., 2015). The initiation of a cycle of regular grazing

thus appears to be a critical factor for grazing lawn development and persistence.

Nonetheless, the rates and specific pathways of grazing lawn development likely

depend on factors like rainfall, fire and soil types (Archibald, 2008). Rainfall has a

strong influence on the rate of grass biomass accumulation and the height growth

of tall grass stands. The relative proportion of grazing lawns to high biomass tall

grasses is also influenced by dynamics in soil nutrients through its strong influence

on grass productivity. Under high rainfall and soil nutrient conditions, increased graz-

ing frequency is required to prevent the invasion of tall-grass light competitors. Too
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infrequent grazing increases the vulnerability of a switch to upright growth forms by

facultative lawn species (Archibald et al., 2005; Hempson et al., 2015). Conversely,

exceptionally heavy grazing may lead to degradation due to trampling and soil com-

paction, or result in the predominance of wire-grass species like Aristida sp.

Fire also consumes grass biomass and has the potential to shift grass community

composition and structure within different environmental constraints (Leonard et al.,

2010). Tall bunch grasses with low forage quality dominate fire-driven grassy systems

(Hempson et al., 2015). Additionally, post-fire regrowth can also attract grazers away

from previously established grazing lawns causing them to be invaded by tall bunch

grasses (Archibald et al., 2005).

1.6 Grassland Vegetation Monitoring

Monitoring grassland vegetation is vital for the purposes of research, management

planning and biodiversity conservation (Carlsson et al., 2005). Depending on the

available infrastructure, a number of methods exist for grassland vegetation monit-

oring (Ali et al., 2016). Such approaches however, can be broadly categorized into

ground-based and remote sensing-based methods (Ali et al., 2016; Carlsson et al.,

2005; del Pozo et al., 2006). Both methods have been widely applied complementarily

to produce precise estimates of grassland vegetation variables over extensive spatial

and temporal scales. For example, Jin et al. (2014) combined data from field sampling

and remote sensing-based vegetation indices to estimate the spatio-temporal vari-

ations in biomass of China’s temperate grassland. Additionally, Gaitán et al. (2013)

calibrated a linear regression model using field data and multiple remote sensing

indices to predict spatial variability in structure and functioning of Patagonian steppes.

However, the feasibility of such data integration (including accuracy of estimates) likely

depends on factors such as phenology, volume of field data, spatial resolution of the

remote sensing data and the congruence in acquisition dates of field and remote

sensing data (Ali et al., 2016; Casady et al., 2013; Lu, 2005).
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1.6.1 Ground-based Methods

Ground-based measurement involves in-situ data recording often at selected field

locations or in delineated areas (i.e. plots) within the landscape. In most cases, the se-

lection of field location is based on a predefined statistical sampling design (Fehrmann

et al., 2019). However, conditions such as cost, safety and spatial occurrence of target

variables may necessitate arbitrary or purposive selection of field locations for data re-

cording (Stehman & Overton, 1994; VandenBygaart, 2006). For example,VandenBygaart

(2006) identified purposive non-probability sampling as more appropriate for monitor-

ing soil organic carbon (SOC) due to the large inherent spatial variability and the

cost of SOC analysis per sample. Unlike an arbitrary selection of field measurement

locations, a design-based sampling approach allows unbiased point and interval es-

timates of target variables (Kleinn & Vilčko, 2006).

At sampling locations, methods for measuring grassland biophysical variables include

visual assessment, clipping, use of rising plate meter (RPM) and field spectrometry

(Ali et al., 2016). Data retrieval by visual assessment is generally subjective, less

accurate and lacks spatial and temporal continuity (Newnham et al., 2010). A trained

and experienced observer may achieve high accuracy in their estimates, however

studies show as much as 50 % variation between observers (Anderson & Pearce,

2003; Millie & Adams, 1999). Clipping or cut-and-dry is a popular approach in grass

vegetation assessment. This involves the harvest of grass samples which are then

dried and weighed to get dry matter fraction. Clipping offers a very accurate measure-

ment of grass biomass and is widely used in laboratory assessment of grass nutrient

status and quality (Ali et al., 2016). The method is however destructive, laborious

and costly. The use of rising plate meters such as disc pasture meter (DPM) offers an

efficient non-destructive alternative to clipping with comparable accuracy in estimating

biomass as well as grass height (Hakl et al., 2012). Another ground-based method is

the use of spectrometers held at waist level above the surface. Field spectrometry

can be used to record grassland biophysical variables such as above ground bio-

mass, leaf area index and species composition based on reflectance spectra (Ali

et al., 2016; Flynn et al., 2008). The recorded reflectance spectra however, need to

be calibrated against in-situ samples. Flynn et al. (2008) found a good correlation

between spectrometer-derived normalized difference vegetation index (NDVI) and

biomass measurements from clipping (r2 = 0.68) and rising plate meter (r2 = 0.54).
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While ground-based methods provides detailed and reliable information (also as input

for remote sensing methods) for grassland vegetation monitoring, they are subjective,

laborious, costly and are feasible only for small-scale assessment (Ali et al., 2016; Xu

et al., 2008).

1.6.2 Remote Sensing Methods

Recent technological developments in aerial and space-borne sensors enables effi-

cient, cost-effective and statistically robust wide area data collection for remote grass-

land vegetation monitoring. Using remote sensing methods, target variables of grass-

land vegetation can be monitored at spatial scales ranging from 25 cm to 1 km

(Ali et al., 2016), for satellite-based sensors, and can be finer in sensors aboard

aerial platforms or drones. Additionally, the high temporal depth of satellite remote

sensing archives such as that from the Moderate Resolution Imaging Spectrometer

(MODIS) and Landsat allows historical data collection and change analysis (see Table

1.1 for timeline of major optical Earth observation satellites). Currently, space-borne

sensors record data either actively or passively using optical (i.e. visible and near

infrared) and radar technology (i.e. microwaves). A notable exception is the recently

launched Global Ecosystem Dynamics Investigation (GEDI) lidar sensor by National

Aeronautics and Space Administration (NASA) (Patterson & Healey, 2015).

Table 1.1: Major optical civilian Earth observation satellites with global coverage.

Access policy Satellite mission Operational timeline Pixel size Revisit period Source
Open access Landsat 1-3 1972 - 1983 80 m 18 days NASA (USA)

Landsat 4-5 1982 - 2013 30 m 16 days NASA (USA)
Landsat 7 1999 - present 30 m 16 days NASA (USA)
Landsat 8 2013 - present 30 m 16 days NASA (USA)
Landsat 9 2021 - present 30 m 16 days NASA (USA)
ASTER 2000 - present 15 m tasked NASA (USA)
MODIS 2000 - present 250 - 1000 m 1 - 2 days NASA (USA)
Sentinel 2 2015 - present 10 m 5 days ESA (Europe)

Commercial SPOT 1-7 1986 - present 6 - 20 m tasked CNES/AIRBUS (France)
IKONOS 2000 - 2015 1 - 4 m tasked Digital Globe
QuickBird 2001 - 2015 2.4 m tasked Digital Globe
WorldView 1-4 2007 - present 2 m tasked Digital Globe
RapidEye 2009 - 2020 5 m tasked Planet Labs
GeoEye 1 2008 - present 2 m tasked Digital Globe
Pleiades 2011 - present 2 m tasked CNES/AIRBUS (France)
KOMPSAT 1999 - present 2.8 m tasked KARI (Korea)
SkySat 2013 - present 1 m tasked Planet Labs
ALOS 2006 - 2011 10 m tasked JAXA (Japan)
Gaofen 2013 - present 3.2 m tasked CNSA (China)
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Optical Satellite Imagery

Monitoring of grasslands with optical sensors typically combine original bands, texture

features and spectral indices to quantify biophysical vegetation features (Ali et al.,

2016). To get meaningful estimates of vegetation variables, spectral features are fitted

to field observations of the target variable using predictive models (Xie et al., 2008).

Depending on the strength of the correlation between field measurements and remote

sensing features, the models can be applied to precisely estimate target variables

over different spatial and temporal scales. He et al. (2009) developed methods to

retrieve biophysical properties of vegetation using ground-based LAI measurments

and satellite-based vegetation indices. In doing so, the authors built linear regression

models between two satellite-derived vegetation indices (i.e. renormalized difference

vegetation index (RDVI) and the adjusted transformed soil-adjusted vegetation index

(ATSAVI)) and the in-situ LAI dataset. The results showed a significant relationship

(p< 0.01) between predicted LAI and independent in-situ LAI values. In a related

study, Huang et al. (2013) found exponential function as optimal for describing re-

lationships between Landsat and MODIS vegetation indices and soil respiration in

the Tibetan alpine grasslands. Similarly, Xu et al. (2007) used exponential models to

estimate grass production using MODIS NDVI and field data. Other studies explored

optimal regression models (Long et al., 2010), power regression (Xu et al., 2008) and

logarithmic regression models (Vescovo & Gianelle, 2008) for spatio-temporal estim-

ation of grassland biophysical variables using satellite derived vegetation indices.

Multispectral sensors that are designed to record in a higher number of wavelength

bands provide details for more robust characterization of grassland vegetation (Schuster

et al., 2015). For example, in addition to the visible and near infrared bands, yellow

and red-edge bands in WorldView-3 imagery, provides the capability of reliably de-

tecting ripening or dying plants and foliar chlorophyll content respectively. Phenolo-

gical stages of grasslands can therefore be monitored (Schuster et al., 2015). Aside

enhanced spectral resolution, increased temporal availability of imagery is vital for

monitoring grassland phenology which in turn could enhance accuracy of grass cover

mapping (Huang & Geiger, 2008). Butterfield & Malmström (2009) demonstrated en-

hanced understanding of biomass-NDVI relationship when looking at different pheno-

logical stages.
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Another aspect of grassland monitoring is categorical mapping which has a long

history with the use of optical remote sensing data (Ali et al., 2016). Different grass-

dominated habitats such as pastures and rangelands have been successfully de-

lineated through land cover classification of optical imagery. For example, Munyati

& Makgale (2009) used multi-temporal Landsat data to map and quantify degraded

areas in the Bahurutshe communal grazing lands in southern Africa. Different ap-

proaches have been explored to discriminate grassland habitat types, including the

use of statistical, object-based and machine learning methods (Ali et al., 2016). For

a period, maximum likelihood classifier was the most widely used method. The max-

imum likelihood classifier assigns pixels to predefined classes based on their probab-

ility distribution (Otukei & Blaschke, 2010). Generally, statistical classifiers perform

well on normally distributed datasets and in less complex spectral feature space.

However the spectral similarity of different grassland vegetation types limits the per-

formance of these classification methods. Unlike statistical classifiers, machine learn-

ing methods make no statistical assumptions regarding data distribution and are

very efficient in non-linear classification problems (Abburu & Golla, 2015). Otukei &

Blaschke (2010) compared the performance of maximum likelihood, support vector

machine and decision trees classifiers for land cover mapping, and found that the

machine learning algorithms gave more accurate results. Generally, object oriented

approaches are preferred in mapping grassland habitats due to their ability to deal

with spectral confusion and return land cover information at the scale of real-world

objects (Ali et al., 2016; Aplin & Smith, 2011). Object-based classification has also

been proven superior particularly at very high image spatial resolution. Maxwell &

Warner (2015) used object-based machine learning classification to retrieve mine-

replaced grasslands with above 80 % user’s and producer’s accuracy. Xu et al. (2018),

showed that a combination of multitemporal images and auxiliary data (i.e. digital

elevation model (DEM) and NDVI) improved grassland type separability using object-

based classification.
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1.7 Remote Sensing Time-series Change Detection

Accurate detection and identification of habitat changes provides valuable inform-

ation for conservation planning and management and allows general insights into

key drivers of changes. Different methods exist for the detection of abrupt and subtle

changes in land cover using time-series remote sensing data, which could be adopted

to quantify changes in grassland habitats. A popular approach is the comparison of

bi-temporal imagery based on simple arithmetic operations such as subtraction or

division. The results of such operations depicts radiometric differences which could

be linked to the magnitude of changes on the ground (Tewkesbury et al., 2015). A

common practice is the transformation of image spectra into vegetation indices prior

to the application of arithmetic operations. For example, Liu et al. (2018) identified

vegetation losses in aerial imagery using NDVI image ratios, while Gandhi et al.

(2015) quantified changes in vegetation cover by differencing time-series NDVI. Fur-

ther to this, arithmetic comparisons can be enhanced beyond radiometric differences

by considering other contextual information such as texture and morphology (Tewkes-

bury et al., 2015). For example, Klaric et al. (2013) developed an automated change

detection method for very high-resolution satellite imagery based on a combination

of neighborhood spectral, textural and morphological features. In a similar approach

using Quickbird imagery, Falco et al. (2010) used morphological attribute profiles as a

basis for change detection, showing that temporal changes can be detected outside

of spectral differences.

Another established and widely used change detection approach is post-classification

change detection which involves the comparison of thematic maps from different time

periods. Peterson et al. (2004) compared historical and more recent land cover maps

alongside an analysis of transition matrix to detect the magnitude and direction of

land cover change. Post-classification techniques provide a thematic context and

can be used to locate changes in target land cover types. For example, when com-

paring multi-temporal Landsat thematic maps, Basnet & Vodacek (2015) identified

forest cover losses of 216.4 and 130.5 thousand hectares in central Africa, between

1988–2001 and 2001–2011 respectively. The advantage of this method is that no

radiometric normalization is required since both images are processed separately

(Coppin et al., 2004; Tewkesbury et al., 2015). However issues related to map pro-

duction such as misclassification or classification errors present a major constraint

to post-classification change detection. As such, the quality of input maps must be

considered if any meaningful change results are to be realized (Coppin et al., 2004).
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Direct classification approach, where multi-temporal images are stacked and treated

as one set of features in a classification process has also been used in detecting

changes in land cover (Tewkesbury et al., 2015). The method involves only one step

of image classification which is advantageous in terms of processing time and can

be particularly efficient for targeted land cover classes as demonstrated by Chehata

et al. (2011) in an object-based forest change detection study. Other change detec-

tion methods include transformation by principal component analysis (PCA) (Deng

et al., 2008) or multivariate alteration detection (MAD) (Doxani et al., 2012), change

vector analysis (CVA) (Bovolo & Bruzzone, 2007) and hybrid methods (combination

of methods) (Lu et al., 2004).

A recent trend in time series-based change detection is the transition from the conven-

tional endpoint approach (i.e., comparing temporal image pairs several years apart)

to continuous monitoring with dense time-series imagery (annual, sub-annual and

seasonal) (Woodcock et al., 2020). This has been shown to allow more precise char-

acterization of the timing and drivers of change (Arévalo et al., 2020). Such ap-

proaches typically use break detection algorithms which monitor changes in resid-

uals of forecasts from statistical models fitted to time series surface reflectance data

(Holden et al., 2016; Zhu & Woodcock, 2014). Popular continuous change detection

algorithms include the Landsat-based detection of Trends in Disturbance and Recov-

ery (LandTrendr) (Kennedy et al., 2010) and the Continuous Change Detection and

Classification (CCDC) algorithms (Zhu & Woodcock, 2014). An important challenge

of such approaches is the computational resources required for preprocessing and

dense time series analysis. However, the availability of cloud-based processing plat-

forms such as Google Earth Engine has become instrumental to their implementation

for land change monitoring.

1.8 Research Focus

Grazing lawn demographics influence fire frequency, intensity and spread; and impact

herbivore densities, movement, reproductive success (Hempson et al., 2015; Owen-

Smith, 2004) and recruitment rate (Gaillard et al., 2000). Consequently, variation in the

area covered by these grass communities have a profound impact on broader savan-

nah ecosystem functioning, including, nutrient cycling, plant community composition

and predation; as well as conservation efforts supported through game viewing. Yet,

there is limited understanding of grazing lawn distribution and of spatial and temporal
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changes in structure. More importantly, we lack a robust, broad-scale mechanism for

identifying and monitoring grazing lawn vegetation to enable investigation of distri-

bution and structural changes, their response to broader environmental change over

space and time, and the implications for overall ecosystem dynamics.

A more comprehensive broad-scale analysis of dynamics in grazing lawns and key

drivers of their distribution pattern is vital to build an enhanced understanding of the

constraints on grassland habitat distributions and heterogeneity in African savannahs.

Specifically, a remote sensing-based analysis spanning the pathways through which

proposed factors like fire, grazing, resource hot-spots and global change interact to

regulate grazing lawn dynamics is necessary to provide spatially informed indicat-

ors for managing habitat heterogeneity in the context of biodiversity conservation.

Moreover, such information will aid adoption of effective management strategies for

maintaining an optimal resource ratio (i.e. grazing lawns to bunch grass ratio) neces-

sary to support high grazer densities especially in a range land context.

1.8.1 Aim and Objectives

The overall aim of this research is to map grazing lawns and investigate dynamics in

grazing lawn cover and structure in southern African savannahs using satellite remote

sensing. The three main objectives are to:

1. Develop methods for accurate detection and mapping of savannah grazing

lawn distribution using high-resolution satellite imagery and machine learning

techniques. The research questions addressed under this objective are:

• How do current state-of-the art machine learning algorithms compare in

discrimination of grazing lawns from other savannah vegetation compon-

ents using high-resolution WorldView-3 imagery?

• How can the spatial and spectral advantages of current open access

satellite imagery be harnessed for accurate high resolution mapping of

grazing lawns in order to ensure cost effective operational monitoring?

2. Identify changes in cover and structural distribution of savannah grazing lawns

over space and time. The research questions addressed under this objective

are:

• What are the key transition pathways between grazing lawn cover and

other savannah habitat states?

• How does grazing lawn structure (spatial configuration) evolve under dif-

ferent landscape conditions?
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• How does drought stress impact changes in grazing lawn cover and struc-

ture?

3. Identify the dominant drivers of change in grazing lawn cover and structure. The

research questions addressed under this objective are:

• What are the key factors driving grazing lawn dynamics?

• How do water points as resource hots-pots in the savannah landscape

shape spatial distribution of grazing lawns.

1.9 Study Area and Fieldwork Protocol

1.9.1 Study Area

Figure 1.1 shows locations of the selected study sites in KNP used in this research.

Kruger National Park (KNP) lies between 30o53′18”E, 22o19′40”S and 32o01′59”E,

25o31′44”S in South Africa. The park spans approximately 20,000 km2, extending

about 360 km from north to south. The significant diversity in the landscape is ex-

pressed in its climate, soil, flora and fauna, making it a globally important site for

ecological studies. The climate is subtropical with maximum mean annual rainfall

between 500 mm and 700 mm in the northern and southern parts of the park, re-

spectively (Venter et al., 2003). Geologically, KNP is divided into granitic soils to

the west and basaltic soils to the east, which are separated by a narrow band of

shale from the south to the mid portion of the park and rhyolite on the eastern ex-

treme (van Wilgen et al., 2014). This, coupled with spatial and temporal rainfall gradi-

ents, as well as disturbance events, exert enormous influence on vegetation type

distribution across the landscape (Cromsigt & Beest, 2014). More open, productive

grasslands occur on the basalt, while denser bushland savannah occupy the granite.

Mopane (Colophospermum mopane), red bushwillow (Combretum apiculatum) and

silver clusterleaf (Terminalia sericea) constitute some of the dominant vegetation

types in the northern half of the park (Venter et al., 2003). The open grasslands

of the eastern plain are dominated by species like blue buffalo grass (Cenchrus

ciliaris), red grass (Themeda triandra), stinking grass (Bothriochloa radicans) and

finger grass (Digitaria eriantha), dotted with knob-thorn acacia (Acacia nigrescens)

and marula trees (Sclerocarya birrea) (Venter, 1990). Mixed broadleaf woodlands

of bushwillow (Combretum sp) with corridors of grassland cover the central-western

part of KNP, while thorn thickets (e.g., Acacia robusta), silver clusterleaf (Terminalia
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sericea) and sour grasses (Hyparrhenia filipendula) form a dominant part of the higher

rainfall southern landscape (Venter, 1990). Alongside variations in abiotic factors

which influences vegetation type distribution within the KNP landscape, the presence

of a great diversity of herbivores exert significant impact on vegetation structure.

For example, high population density of the African elephant (Loxodonta africana)

has been suggested to be the major driver of woody vegetation change in KNP

Marston et al. (2017); Munyati & Sinthumule (2016). The dominant grass consumers

(with >50% of grass in diet) includes impala (Aepyceros melampus), blue wildebeest

(Connochaetes taurinus), zebra (Equus quagga), buffalo (Syncerus caffer ) and white

rhino (Ceratotherium simum) (Kleynhans et al., 2011).

Management of KNP is generally focused on maintaining habitat heterogeneity through

adaptive fire management regimes (van Wilgen et al., 2014) alongside natural fire

events. Natural burns vary in frequency and intensity depending on rainfall patterns

and the prevalence of high grass biomass (Govender et al., 2006; Venter et al., 2003).

The consequence of varying fire regimes is the different spatial configurations of

grass productivity and biomass accumulation (Govender et al., 2006). For example,

the distribution of short grass grazing lawns whose persistence depends on positive

feedback loops associated with frequent grazing has been observed to be highly

influenced by variation in burn size and frequency (Archibald et al., 2005; Donaldson

et al., 2018).

Figure 1.1: Location of study sites in Kruger National Park, South Africa.
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1.9.2 In-situ Data Collection

Sampling and plot design

In-situ field observations and measurements were recorded at sampled locations

distributed within the study sites based on a systematic sampling approach. To avoid

the influence of edge effects on recorded data, sample points were selected in areas

100 meters away from access roads. At each sample point, a 50x4 meters south-

facing transect with 2x2 meters quadrats placed at every 10-meter distance along the

length of the transect was installed for data collection. An illustration of the plot design

used for data collection is provided in Figure 1.2.

Figure 1.2: Illustration of plot design for data collection.

Data collection procedure

Data recording was completed for each sample plot according to the following steps:

1. Navigate to the sample point using the GPS device, record the plot number,

point coordinate and take photographs of the area in the north, east, south and

west cardinal directions.

2. Roll out the two graduated 50 m ropes and set their starting pegs at a separating

distance of 4m in the eastern direction. Stretch out the ropes while walking for

50m in the southern direction and install their ending pegs 4m apart. Record

the coordinate and take photographs of the area as in step 1.
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3. Walk the 50 x 4 m transect back towards the start point while recording tree

attributes (DBH, crown diameter, height of tallest tree), shrub attributes (base

diameter of main shoot, crown diameter, number of shoots/branches, height of

tallest shrub) and number of burnt points (at every 2m marking on ropes) along

each rope.

4. Walk the 50 x 4 m transect again towards the end-point and record herbivore

dung density by counting dung droppings per herbivore species.

5. Take the last walk along the 50 x 4 m transect towards the start point, place

the 2x2 m quadrat at every 10 m along the transect and record fractions of

bunch grass, short grass and forbs as well as the maximum and minimum grass

heights in each quadrat.

6. Record the dominant land cover type.

1.10 Thesis Outline

This thesis is organized into five chapters. This includes an introductory chapter; three

analysis chapters, each of which addresses one or more of the research objectives;

and a synthesis and conclusion chapter.

1.10.1 Chapter 1: General Introduction

Chapter one introduces the overarching theme investigated in this research. It provides

general background information and a review of literature relevant to the research ob-

jectives. General contextual information is provided on African savannahs; drivers of

vegetation structure; and impacts of global change on savannah ecosystem structure

and functioning. Background information on grazing lawns as functional components

of African savannahs is provided, including dynamics in the development and persist-

ence and how that influences savannah ecosystem processes. Grassland vegetation

monitoring approaches and remote sensing in particular are introduced as valuable

tools for grazing lawn monitoring. The primary focus of this research including the

problem addressed, justification, aim, objectives and research questions are outlined.

Finally, a description of the study area and the field data collection protocol used are

provided.
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1.10.2 Chapter 2: Probabilistic Mapping and Spatial Pattern Ana-

lysis of Grazing Lawns in Southern African Savannahs Us-

ing WorldView-3 Imagery and Machine Learning Techniques

Chapter two is published in MDPI Remote Sensing Journal. The chapter explores

machine learning methods for accurate detection of grazing lawns in heterogeneous

semi-arid and mesic savannah landscapes and provides an analysis of spatial vari-

ations in grazing lawn occurrence and structure. Using spectral and texture features

derived from WorldView-3 imagery, four machine learning algorithms are paramet-

erised and assessed for general discrimination of plant functional types; the models

are subsequently compared for grazing lawn detection. Spatial metrics are used to

analyse spatial patterns in grazing lawn distribution along a gradient of distance from

waterbodies. Chapter two addresses the first research question of objective one and

the second research question of objective three.

1.10.3 Chapter 3: Spatio-temporal Analysis of Grazing Lawn Dy-

namics in Southern African Savannahs Using Multi-temporal

High-resolution Satellite Images

Chapter three uses a post-classification change detection approach to identify long-

term changes in grazing lawn cover and structure and the dominant drivers of change.

Additionally, it includes a specific analysis of the influence of protracted drought events

on grazing lawn distribution. Chapter three addresses all the research questions

under objective two and the first research question under objective three.

1.10.4 Chapter 4: Multi-sensor Optical Image Fusion for Land Cover

Classification in a Heterogeneous African Savannah: To-

ward Accurate and Cost Effective grazing Lawn Monitor-

ing

The fourth chapter explores the utility of open-access Sentinel-2 imagery and Planet

mosaics for accurate discrimination of grazing lawns from other vegetation compon-

ents at high spatial scales through an effective image fusion approach. Gram-Schmidt

transformation is used to fuse Sentinel-2 and Planet images. The datasets (i.e. Sentinel-
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2, Planet and Fused images) augmented with two spectral indices and three Haralick

texture features are compared in a multi-layer perceptron neural network classification

for grazing lawn detection. Chapter four addresses the second research question

under objective one.

1.10.5 Chapter 5: Synthesis and Conclusion

Finally, chapter five summarises and consolidates the research findings for each

objective in the context of existing literature. Additionally, chapter five provides com-

mentary on the contributions and impact of this research, research limitations, an

outlook for future research and overall concluding remarks.
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Chapter 2

Probabilistic Mapping and Spatial

Pattern Analysis of Grazing Lawns in

Southern African Savannahs Using

WorldView-3 Imagery and Machine

Learning Techniques

2.1 Introduction

Savannah ecosystems inherently exhibit a considerable degree of variability in struc-

tural and physical attributes across their range of occurrence (Sankaran et al., 2008).

In Southern Africa, they feature the coexistence of grasses and an overstorey layer

of trees with varying gradients of dominance and spatial formations (Shorrocks &

Bates, 2015). Within the grassy layer, plant forms are typified structurally by tall bunch

grasses and short grass grazing lawns (Cromsigt & Kuijper, 2011), which form a

significant component of the heterogeneity in Southern African savannah grasslands

(Cromsigt & Olff, 2008).

The relative proportions and distribution of grazing lawns and tall bunch grass re-

sources have been directly linked to important ecosystem changes such as fluctu-

ations in herbivore density (Cromsigt & Beest, 2014; Owen-Smith, 1987) and chan-

ging fire regimes (Gill et al., 2009; Waldram et al., 2008). For example, the amount

of high-quality lawn grasses has been suggested to be the primary natural limit-

ing factor to population size of mega-herbivores such as the white rhinoceros (Cer-

atotherium simum) and the hippopotamus (Hippopotamus amphibius) (Cromsigt &

Beest, 2014; Owen-Smith, 1992; Waldram et al., 2008). Additionally, the persist-
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ence of grazing lawns creates natural barriers to the spread of fire due to limited

above ground fuel biomass that may serve as fuel for the spread of fire (Donaldson

et al., 2018; Hempson et al., 2015; Waldram et al., 2008). By contrast, tall bunch

grasses keep their moribund growth forms and increase savannah grassland fuel

load (Archibald et al., 2005; Waldram et al., 2008). As such, changes in grazing lawn

coverage and distribution could potentially alter the size, frequency and intensity of

fire within the landscape (Waldram et al., 2008), with cascading effects for nutrient

cycling, plant community composition, habitat structure and biodiversity. Monitoring

the occurrence and spatial patterns of grazing lawns is therefore fundamental to

understanding the ecology of these vital grassland systems.

Grazing lawns are dynamic and maintained by constant grazing, resulting in a feed-

back of dense nutrient-rich plant growth that in turn attracts more grazing (Hempson

et al., 2015). Different parts of a landscape may also be predisposed to grazing

lawn formation due to localised availability of resources and nutrient hotspots that

concentrate grazers. These include areas around water bodies and areas of mineral

accumulation (e.g., sodium) (Hempson et al., 2015). The initiation of a cycle of regular

grazing thus appears to be a critical factor for their development and persistence

(Archibald et al., 2005; Donaldson et al., 2018; Hempson et al., 2015). Nonetheless,

the rates and specific pathways of their development likely depend on factors such

as rainfall, fire and soil types (Archibald, 2008). Rainfall has a strong influence on

the rate of grass biomass accumulation and the height of tall grass stands (Veldhuis

et al., 2016). The relative proportion of grazing lawns to high biomass tall grasses

is also influenced by dynamics in soil nutrients through their strong influence on

grass productivity. Under high rainfall and soil nutrient conditions, increased grazing

frequency is required to prevent the invasion of tall-grass competitors (Hempson

et al., 2015). Too infrequent grazing increases the vulnerability of a switch to tall

bunch grasses (Donaldson et al., 2018). Fire also consumes grass biomass and

has the potential to shift grass community composition and structure within different

environmental constraints (Leonard et al., 2010). Tall bunch grasses with low forage

quality dominate fire-driven grassy systems (Archibald et al., 2005; Donaldson et al.,

2018; Hempson et al., 2015). Additionally, post-fire regrowth can also attract grazers

away from previously established grazing lawns causing them to be invaded by tall

bunch grasses (Archibald et al., 2005; Donaldson et al., 2018). The varying spatial

and temporal nature of the key interacting factors that drive grazing lawn dynamics

urges for a robust landscape-scale approach to better understand their variation over

space and time.
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Ground-based monitoring of grazing lawn responses to the complex top-down and

bottom-up ecological processes is challenging due to the large areas involved. Al-

though ground-based methods can provide more detailed and valuable local insights

(Helman et al., 2015), they are not efficient in capturing regional-scale dynamics—

due to the high cost involved—nor do they provide any retrospective information

beyond the start of monitoring activities (Marston et al., 2017). Remote sensing tech-

nology is able to overcome the spatial and temporal limitations, which in combination

with ground-based observations, offers valuable tools for accurate, efficient and cost-

effective ways for vegetation monitoring (Jensen, 2015; Khorram et al., 2016).

Medium resolution satellite imagery such as the Landsat Operational Land Imager

(OLI) (Wulder et al., 2012) and Sentinel-2 missions (Drusch et al., 2012) are freely

available, with extensive temporal coverage which offers enormous benefits for mon-

itoring vegetation dynamics. Further, recent advances in very high spatial resolu-

tion (VHR) satellite imagery such as WorldView-3 presents opportunities to partially

overcome limitations in spatial resolution associated with medium resolution imagery,

particularly in heterogeneous savannah landscapes (Marston et al., 2017). At nadir

spatial resolution of 1.24 m (Vajsova et al., 2017), the WorldView-3 sensor is able

to identify and discriminate between different sized vegetation components such as

trees, shrubs and grass patches (Kaszta et al., 2016; Marston et al., 2017). Addition-

ally, the yellow, red-edge and two near-infrared bands in WorldView-3 imagery provide

the capability of reliably detecting photosynthetically active or dying plants and foliar

chlorophyll content (Schuster et al., 2015). As such, various phenological stages of

vegetation can be monitored, which is instrumental in dealing with spectral similarity

of different savannah vegetation composition (Kaszta et al., 2016; Whiteside et al.,

2011).

In parallel with advances in remote sensing imaging technology, free open source

software packages and increased computational power have been developed to fa-

cilitate image analysis. The combination of these factors has advanced the use of

machine learning algorithms in land cover classification (Abdi, 2020). Among the

most popular machine learning classification algorithms are Random Forest (RF)

(Breiman, 2001), Support Vector Machines (SVM) (Cortes & Vapnik, 1995), Decision

Trees (DT) (Loh, 2011) and Artificial Neural Network (ANN) (Del Frate et al., 2007).

RF, SVM, DT and ANN are nonparametric classifiers and are very efficient in dealing

with nonlinear classification problems (Abdi, 2020; Camargo et al., 2019), having

been proven to be effective in different savannah ecosystems. Camargo et al. (2019)
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demonstrated the utility of RF, SVM, DT and ANN in classifying land cover in the

Brazilian Tropical Savannah biome. RF is well known for its flexibility of application

on both continuous and categorical datasets, either as a regression or classification

algorithm, respectively (Abdi, 2020; Breiman, 2001). Symeonakis et al. (2018) used

RF to classify different land cover types in southern African savannahs and reported

a maximum accuracy of 91.1%. The SVM classifier is popular for its strong ability to

generalise in complex nonlinear feature space (Cortes & Vapnik, 1995). SVM was

used in seasonal separation of vegetation components in southern African savan-

nahs and gave the highest accuracy score under dry leaf-off conditions compared

to k-Nearest Neighbour (k-NN), Maximum Likelihood Classifier (MLC), RF and DT

classifiers (Kaszta et al., 2016). The application of DT in an eastern African sa-

vannah resulted in an increased mapping accuracy over MLC and SVM, with over

93% overall accuracy (Otukei & Blaschke, 2010). ANN classifiers have been widely

used in satellite image classification, due to the capability to adapt and generalise

different input data structures (Abdi, 2020). The successful application of ANN has

been well demonstrated in different remote sensing contexts, including classification

of endangered tree species (Omer et al., 2015) and dynamic modelling of land cover

changes in semi-arid landscapes (Silva et al., 2020).

Much of the literature on monitoring grazing lawn dynamics in southern African sa-

vannahs focuses on localised and controlled experimental studies of responses to

the mechanisms that induce their establishment and persistence (Archibald et al.,

2005; Cromsigt & Olff, 2008; Donaldson et al., 2018; Hempson et al., 2015). There is

limited evidence on whether the proposed pathways translate into broad-scale spatial

patterns in grazing lawn occurrence. Among the few empirical studies is the work

of Archibald et al. (2005) who mapped grass structural distribution and found that

the extent of grazing lawns was directly related to fire return interval. Though there

is substantial information on how different biotic and abiotic factors shape grazing

lawns, knowledge of their present cover and distribution, which is critical to under-

standing habitat heterogeneity, is lacking. More importantly, there is no robust, broad-

scale approach for detecting and monitoring grazing lawns to enable comprehensive

investigation into their dynamics over space and time, and the implications for broader

ecosystem dynamics. Against this backdrop, this study seeks to develop a robust ma-

chine learning framework for mapping grazing lawns in southern African savannahs

by (i) parameterising and assessing the quality of Random Forest (RF), Support Vec-

torMachines (SVM), Multilayer Perceptron (MLP) and Classification and Regression

Trees (CART) models for savannah land cover classification in a localised context,
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and (ii) comparing model performance for probabilistic mapping of grazing lawns on a

wider scale. Additionally, spatial patterns in grazing lawn distribution along a gradient

of proximity to water bodies, which has been hypothesised to influence grassland

spatial structure (Hempson et al., 2015; Smit & Archibald, 2019) is analysed.

2.2 Materials and Methods

2.2.1 Study Sites

Two study sites located within the Satara and the Lower Sabie regions of the park

(Figure 2.1), each covering 5.7 x 5.7 km, and extending over a range of habitat

conditions including rainfall, geology and vegetation type were used. The Satara site

is a well-studied grazing system close to the latitudinal center of KNP, and covers both

granitic and basaltic soil types interspersed with a strip of ecca shales. The landscape

is semiarid with mean annual rainfall of 400–500 mm. The granite areas to the west

are generally more wooded and undulating than the flat and more open and grassy

basaltic plains. In contrast, the Lower Sabie site falls under mesic landscape condi-

tions with mean annual rainfall of 600–700 mm. The area has an underlying granite

geology and encompasses portions of the Sabie River catchment. A number of sodic

sites are also present within the Lower Sabie study site. Sodic sites typically occur at

footslopes of catenas and are known to have high soil and vegetation sodium content

which concentrates grazers and aids the formation and maintenance of continuous

grazing lawn patches (Hempson et al., 2015).

2.2.2 Land Cover and Classification Scheme

The study sites were selected to exclude as much anthropogenic influence as pos-

sible due to the natural ecological focus of the study. Thus, natural and semi-natural

land cover features such as vegetation patches, bare soil surfaces and waterbodies

dominate the selected study sites, with the only artificial surfaces being roads and

isolated structures which serve as rest stops and picnic sites for tourists. Four plant

functional types (PFTs) were identified in order to distinguish grazing lawns from

other vegetation types (Figure 2.2). These included evergreen woody components,

deciduous woody components, bunch grasses and short grass grazing lawns.
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Figure 2.1: Map of study area showing locations of the Satara and Lower Sabie
field sites in Kruger National Park (KNP), with enlarged views of the WorldView-3
satellite scenes (False colour: NIR1, R, G) overlaid with hydrology. Inset map shows
the location of KNP within South Africa. Geological information was obtained from
South African National Parks data repository

The PFT categories were finalised following the vegetation nomenclature provided

in Marston et al. (2017) and were modified based on knowledge from dry season

field survey and the spectral reflectance properties of the different vegetation com-

ponents contained within satellite imagery. Within the landscape, woody compon-

ents are mainly trees and shrubs, which in many cases were challenging to ob-

jectively differentiate. This is a well-known dilemma in savannah landscapes due

to structural complexities such as multiple stems, varying disturbance adaptations

and height limitations (Zizka et al., 2014). The common practice has been to use

arbitrary morphological traits like diameter and height thresholds depending on re-

search objectives and ecological relevance. For example, Marston et al. (2017) used

a main trunk diameter threshold of 7 cm to distinguish between trees and shrubs,

where woody components with >7 cm diameter were classified as trees and those

with <7 cm diameter as shrubs. Moreover, optical satellite imagery only records

planar-view spectral reflectance information from surface cover with little structural

detail. This presents a further challenge for successful differentiation of vegetation
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Figure 2.2: Examples of Plant Functional Types (PFTs): (a) woody evergreen, (b)
woody deciduous, (c) bunch grass and (d) grazing lawns.

structure. The woody components were thus differentiated based on dry season

phenological differences (leaf on/off), which allowed for objective delineation both in

situ and on satellite imagery. Bunch grasses were identified as tall grass patches with

height >20 cm. In contrast, grazing lawns were identified as short grass areas with

stoloniferous growth forms and height <20 cm. Unlike bunch grasses which generally

occurred as dense patches, grazing lawns within the study sites often had a sparse

distribution and exhibit a relatively smooth texture in appearance, which aided visual

interpretation of VHR satellite imagery. In addition to the PFTs, waterbodies, bare soil

surfaces, built-up features and shadows on satellite imagery were identified, which

constituted the classes used in this study (Figure 2.3). Table 2.1 provides a summary

of the land cover classification nomenclature used.

2.2.3 Data

Satellite Imagery

Multispectral VHR imagery from the WorldView-3 satellite sensor was used in this

study. Ortho-ready standard 8-band multispectral scenes (in UTM/WGS 84 projection)

were acquired which had been processed to level 2A by the vendor (Table 2.2). The

images were acquired in the dry season, on July 1, 2019 (at 28.97o Sun Azimuth

and 19.49o off Nadir) and July 7, 2019 (at 30.98o Sun Azimuth and 1.85o off Nadir)
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Figure 2.3: Sample display of land cover types from WorldView-3 satellite image
scene (False colour: NIR1, R, G). (a) Woody evergreen; (b) Woody deciduous; (c)
Bunch grass; (d) Grazing lawn; (e) Water body; (f) Bare; (g) Built-up; (h) Shadow.

for the Lower Sabie and Satara sites, respectively, under cloud-free conditions. Dry

season imagery has previously been used to successfully discriminate vegetation

types in similar contexts (Brandt et al., 2017; Marston et al., 2017). Apart from the

reduced persistence of cloudy conditions in the dry season, which is an advantage to

optical satellite remote sensing particularly in the tropics (Symeonakis et al., 2018),

spectral differentiation is maximized due to phenological differences among different

vegetation types (Bucini et al., 2009; Marston et al., 2017). Image acquisition was

timed to coincide with our field survey season (June 26–July 21, 2019), which allowed

for the collection of consistent reference information for land cover classification and

validation.

Reference Data

Reference data on the different land cover types were generated from georeferenced

field survey locations, and were extended via further interpretation of VHR images

augmented by field photos and Google Earth satellite scenes. Overall, data from (i)

111 predefined field locations, systematically distributed within 200 m buffer beyond

100 m distance from access roads, and (ii) 5122 randomly distributed points from

augmented visual interpretation, formed the reference data points (i.e., total of 5233

points) for training (3807—i.e., 73%—reference points) and validation (1426—i.e.,

27%—reference points). Polygons of spectrally homogeneous areas were manually
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Table 2.1: Description of land cover classification nomenclature and reference data.
Numbers represent number of reference points, while figures in parenthesis represent
area of training polygons in hectares. Lower Sabie and Satara validation points are
separated by “/” (i.e., Lower Sabie/Satara).

Land Cover Reference Samples

ID Name Description Model
Training

Map
Validation

1 Woody
ever-
green

Woody vegetation components that are
adapted to retain their leaves all year
round. Classified based on dry season
field observations.

863 (3.94) 100 / 80

2 Woody
decidu-
ous

Woody vegetation components that are
adapted to retain their leaves in the wet
season and shed them in the dry season.
Classified based on dry season field ob-
servations.

1047 (3.26) 100 / 65

3 Bunch
grass

Tall grass patches with height >20 cm, and
often occur as dense patches with upright
growth form.

680 (10.12) 100 / 114

4 Grazing
lawn

Short grass patches with height <20 cm,
and often occur in sparse distribution with
stoloniferous growth form.

465 (7.99) 100 / 103

5 Water
body

Water bodies occurring within the land-
scapes including rivers, streams and
reservoirs.

58 (3.18) 100 / 38

6 Bare Bare surfaces occurring as patches of ex-
posed soil and includes dusty trails and
rocky outcrops.

464 (4.29) 100 / 74

7 Built-up Built artificial structures within the land-
scape as well as asphalt and con-
crete coated surfaces such as roads and
bridges.

37 (0.75) 100 / 64

8 Shadow Shadows of trees and other tall structures
falling on adjacent surfaces which results
in very dark or low brightness values.

193 (0.63) 100 / 88

digitised and labelled according to land cover class IDs (see Table 2.1) using the

locations of training points. The polygon extents (Table 2.1) were then used to extract

image pixels for model training. Of the many potential approaches that could be used

to extract training pixels, polygon objects have been shown to provide the most ac-

curate classification outcomes (Corcoran et al., 2015; Ma et al., 2017). Spectral plots
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Table 2.2: Description of datasets used.

Dataset Description Temporal
Coverage

Source

WorldView-
3 imagery

Multi-spectral 8-band satellite imagery with
1.24 m spatial resolution. Bands include:
Coastal (C: 400-450 nm), Blue (B: 450-510
nm), Green (G: 510-580 nm), Yellow (Y:
585-625 nm), Red (R: 630-690 nm), Red
Edge (RE: 705-745 nm), Near Infrared
1 (NIR1: 770-895 nm), Near Infrared 2
(NIR2: 860-1040 nm).

July 2019 European Space
Imaging

Reference
data

Input image pixels labeled according to
land cover classification nomenclature.
Pixels were extracted from reference poly-
gon and point features.

June 2019 -
July 2019

Georeferenced
field survey
locations; Field
photos; and
Google Earth
and VHR scenes

Auxiliary
data

OpenStreetMaps watercourses data
sourced as line vector layer for streams
and rivers, and polygon vector layer for
reservoirs.

November
2019

Openstreetmap

of the different land cover classes were examined and reviewed alongside Jefferies–

Matusita distance measures to ascertain adequate spectral separability prior to model

training (Van Niel et al., 2005). Models were parametrised and trained for prediction

based on data from a sub-area within the Lower Sabie field site (see training region

in Figure 2.1). This was necessary to ensure high model quality as a greater propor-

tion of the georeferenced field sample locations was concentrated within the training

region, while reducing computational cost. In contrast, map validation was conducted

using site-specific reference data.

Auxiliary Data

Multiple buffer distances (100 m divisions) from water source were used to ana-

lyse spatial pattern in grazing lawn distribution. Water points represent significant

resources and important predictors of grazer movement (Smit et al., 2007) and spatial

heterogeneity in general within semi-arid savannah landscapes (Marston et al., 2019).

The data (Table 2.2) was downloaded from OpenStreetMaps surface water archive

(streams, rivers and reservoirs) (Haklay & Weber, 2008) and was validated against
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a drainage network and stream order data obtained from the Scientific services of

South African National Parks. The OSM surface water layer contributed in November

2019 had the closest temporal coverage to the acquisition dates of satellite imagery

and field data, and was selected for spatial analysis.

2.2.4 Preparation of Image Features

Following acquisition, a cubic convolution resampling approach was used to upsample

images to 2 m spatial resolution, which is reflective of the average minimum patch

size of short grass grazing lawns in southern African savannahs (Cromsigt & Beest,

2014; Waldram et al., 2008). A series of spectral indices were calculated highlighting

greenness, moisture and soil properties, in order to increase utility of the spectral

information contained in the original image bands (Table 2.3). Greenness, moisture

and soil indices are derived from arithmetic combination of spectral information re-

corded in visible and near-infrared image bands and exhibit high correlation with

vegetation characteristics such as phenology (Balzarolo et al., 2016; Liu et al., 2017;

Munyati et al., 2020), biomass (Fajji et al., 2017; Guerini Filho et al., 2020; Yin et al.,

2018) and moisture content (Hunt Jr et al., 2016; Roberto et al., 2016). To com-

plement the spectral information, spatial heterogeneity measures were calculated as

a selection of simple and advanced Haralick texture features based on Gray Level

Co-occurrence Matrix (GLCM) (Haralick et al., 1973). The GLCM variables (Table

2.3) were calculated on the near-infrared band (NIR1) (see Table 2.2 for details on

image bands), which contains valuable spectral information for differentiating veget-

ation characteristics. A probabilistic quantizer, with 32 quantization levels in a 3x3

moving window, at an offset distance of 1 pixel in all directions (00, 350, 900 and

1350) was used (Pratt, 2013; Symeonakis et al., 2018). In total, 27 spectral indices

and 18 texture features were processed using the Orfeo-Toolbox remote sensing

image processing software (Inglada & Christophe, 2009) (Table 2.3). The spectral

indices as well as texture features in combination with the original image bands served

as input data in the machine learning models and analysis workflow (summarised

in Figure 2.4). Incorporating spectral and textural image features is well known to

enhance discrimination space for more accurate land cover mapping particularly in

heterogeneous savannah landscapes (Johansen & Phinn, 2004; Paneque-Gálvez

et al., 2013; Symeonakis et al., 2018).
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Table 2.3: Initial image features serving as potential predictors.

Data (abbreviation) Description

Spectral features from indi-
vidual bands (B):
B_C, B_B, B_G, B_Y, B_R,
B_RE, B_NIR1, B_NIR2

Coastal, Blue, Green, Yellow, Red, Red Edge, Near
Infrared-1, Near Infrared-2

Spectral features from vegeta-
tion (V), moisture (M) and soil
(S) indices:
V_NDVI, V_TNDVI, V_RVI,
V_SAVI, V_TSAVI, V_MSAVI,
V_MSAVI2, V_GEMI, V_IPVI,
V_LAI, M_NDWI, M_NDWI2,
M_MNDWI, S_BI2, S_BI, S_CI,
S_RI, S_NDSI, S_SI1, S_SI2,
S_SI3, S_SI4, S_SI5, S_SI6,
S_SI7, S_SI8, S_SI9

Normalized Difference Vegetation Index, Trans-
formed Normalized Vegetation Index, Ratio Ve-
getation Index, Soil Adjusted Vegetation Index,
Transformed Soil Adjusted Vegetation Index, Mod-
ified Soil Adjusted Vegetation Index, Modified Soil
Adjusted Vegetation Index-2, Global Environment
Monitoring Index, Infrared Percentage Vegetation
Index, Leaf Area Index, Normalized Difference
Water Index, Normalized Difference Water Index-
2, Modified Normalized Difference Water Index,
Brightness Index-2, Brightness Index, Color Index,
Redness Index (Inglada & Christophe, 2009), Nor-
malized Difference Salinity Index, Salinity Index-1,
Salinity Index-2, Salinity Index-3, Salinity Index-4,
Salinity Index-5, Salinity Index-6, Salinity Index-7,
Salinity Index-8, Salinity Index-9 (Elhag, 2016)

Haralick texture features (T):
T_Ener, T_Ent, T_Corr, T_IDM,
T_Iner, T_CS, T_CP, T_HCorr,
T_Mean, T_Var, T_Diss,
T_SAvrg, T_SVar,T_SEnt,
T_Dent, T_DVar, T_IC1, T_IC2

Energy, Entropy, Correlation, Inverse Distance Mo-
ment,Inertia, Cluster shade, Cluster prominence,
Haralick correlation, Mean, Variance, Dissimilar-
ity, Sum average, Sum variance, Sum entropy,
Difference of Entropies, Difference of variances,
Information correlation-1, Information correlation-2
(Inglada & Christophe, 2009)

2.2.5 Feature Selection

Remote sensing image features such as spectral indices (vegetation, moisture and

soil indices) as well as texture variables tend to exhibit high levels of collinearity.

Highly correlated features increases data redundancy and risk of overfitting, which

could have adverse consequences for algorithm performance especially for high-

dimensional datasets (Alonso et al., 2011), a problem that results from the Hughes
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Figure 2.4: Conceptual workflow showing steps in machine learning model develop-
ment and evaluation towards grazing lawn detection.

phenomenon (Hughes, 1968). Although nonparametric machine learning algorithms

are thought to be less susceptible to Hughes phenomenon, recent findings shows they

benefit from dimensionality reduction nonetheless (Pal & Foody, 2010). In this study,

the most robust predictors were targeted while reducing prohibitive computational

efforts.

Image variables were selected by combining two procedures. First, collinearity check

was conducted with the Variance Inflation Factor (VIF) using the “usdm” package

(Naimi et al., 2014) within R-programming environment (R Core Team, 2017). This

was done separately for the spectral indices (i.e., vegetation, moisture and soil) and

the Haralick texture features derived from the WorldView-3 imagery (see Table 2.3).

VIF measures the degree to which predictor variables are correlated. For example,

given k independent predictor variables, each variable is regressed with the remaining

k − 1 variables and coefficient of determination (R2) is estimated. The VIF of the

dependent variable is thus computed as

V IF =
1

1−R2 (2.1)
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Large values of VIF implies a corresponding high degree of collinearity and vice

versa. Following VIF analysis, correlated variables were subsequently removed by

considering a stepwise elimination threshold of VIF ≥ 10 (Dormann et al., 2013). The

VIF assessment resulted in six spectral indices and 15 Haralick texture features being

retained.

Second, the less correlated spectral indices and texture variables were combined

with the original image bands to select final image feature subset using Random

Forest-Recursive Feature Elimination (RF-RFE) (Granitto et al., 2006; Guyon et al.,

2002). Recursive Feature Elimination (RFE) is an iterative process that uses some

measure of feature importance to rank and select features by backward elimination

(Guyon et al., 2002). The technique basically builds a model with the entire feature

set, computes an importance score for each feature, removes the least important

features and repeats the process until a user-defined number of features subset is

reached. Feature importance scores derived from random forest out-of-bag (OOB)

error estimates were used for ranking features in the RF-RFE process. The final sub-

set of features were then determined by analysing the relationship between number of

features and accuracy scores derived from a stratified 10-fold cross-validation assess-

ment. Overall, 26 WV-3 image features achieved optimal accuracy (See Figure A.1

and Figure A.2 in Appendix A). All steps in the RF-RFE process were implemented

using Scikit-learn python library (Pedregosa et al., 2011).

2.2.6 Machine Learning Algorithms

There is a proliferation of machine learning algorithms, which, coupled with the con-

flicting reports of their performance in remote sensing classification literature (Max-

well et al., 2018), makes it challenging to select the optimal method for any specific

application. The optimal classification algorithm is generally context-specific and in

most cases depends on the landscape and classes mapped (Lawrence & Moran,

2015), parameter settings (Huang et al., 2002; Maxwell et al., 2018; Shi & Yang,

2016), nature of training data (Foody et al., 2016; Ghimire et al., 2012; Li et al., 2014;

Rodriguez-Galiano et al., 2012) and data dimensionality (Maxwell et al., 2018,1).

Lawrence & Moran (2015) recommend prior experimentation with multiple classifiers

to determine optimal performance.
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For this study, four state-of-the-art nonparametric machine learning algorithms were

tested including: Random Forest (RF) (Breiman, 2001), Support Vector Machines

(SVM) (Cortes & Vapnik, 1995), Classification and Regression Trees (CART) (Loh,

2011) and Multilayer Perceptron (MLP) (Del Frate et al., 2007). All have been shown

to achieve high performance in many remote sensing applications, and in particular,

land cover mapping (Maxwell et al., 2018). Their superiority in handling complexity

and high-dimensional data makes them ideal for application in highly heterogeneous

savannah landscape conditions (Kaszta et al., 2016). The selected algorithms were

configured and implemented in the python programming environment using Scikit-

learn python library (Pedregosa et al., 2011). Optimal parameter values (Table 2.4)

from hyperparameter tuning were used in each model. Summary descriptions of how

the algorithms work are presented below.

Table 2.4: Results of optimal hyperparameter values used in each model, from 2x5
nested cross-validation using Scikit Learn python package. Refer to the work in
(Pedregosa et al., 2011) for more details on model hyperparameters.

Model Optimal Hyper-parameter Value Description

RF

n_estimators = 2000,
max_features = ’auto’,
max_depth = 20,
min_samples_split = 2,
min_samples_leaf = 1

n_estimators = number of trees in the forest.
max_features = number of features to consider for the split,
’auto’ takes

√
No. f eatures.

max_depth = maximum depth of the tree.
min_samples_split = minimum number of samples required
to split an internal node.
min_samples_leaf = minimum number of samples required
to be at a leaf node.

MLP

hidden_layer_sizes = (150,100,50),
activation = ’logistic’,
solver = ’adam’,
max_iter = 100,
alpha = 0.0000001

hidden_layer_sizes = number of neurons in each hidden
layer (three layers in this case).
activation = activation function of the hidden layer.
solver = solver for weight optimization, ’adam’ is based on
the stochastic gradient optimizer.
max_iter = maximum number of iterations.
alpha = regularization parameter.

CART

criterion = ’gini’,
max_depth = 80,
min_samples_split = 20,
min_samples_leaf = 5

criterion = function to measure quality of split.
max_depth = maximum depth of tree.
min_samples_split = minimum number of samples required
to split an internal node.
min_samples_leaf = minimum number of samples required
to be at a leaf node.

SVM
C = 1000,
gamma = 0.001,
kernel = ’rbf’

C = regularization parameter.
gamma = kernel coefficient.
kernel = kernel type used, ’rbf’ represents radial basis
function.
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RF

The RF classifier is an ensemble of decision tree algorithms with demonstrated ro-

bustness in remote sensing image classification compared to single classifiers (Breiman,

2001; Rodriguez-Galiano et al., 2012). The algorithm relies on unit vote contributions

from each classifier within the ensemble to assign input vectors to different classes,

where the most frequently voted class is retained (Breiman, 2001). The individual de-

cision trees are parameterised using several independent random subsets of training

data sampled through bootstrap aggregation or bagging. This reduces multicollinear-

ity and generalization error (Abdi, 2020; Breiman, 2001). The input vectors that do

not form part of the bootstrap sample (i.e., “out-of-bag” (OOB) sample) are used for

evaluation and variable importance estimation (Breiman, 2001; Eisavi et al., 2015). By

design, decision tree classifiers require some measure for selecting suitable features

per class, which maximizes dissimilarities between classes (Rodriguez-Galiano et al.,

2012). The RF algorithm uses Gini Index for feature selection at each node (Breiman,

2017). When assigning an input pixel to a class (Ci), for a given training set (T),

the Gini Index measures feature impurity with respect to the different classes and is

expressed as

∑∑
i ̸= j

( f (Ci,T )/|T |)( f (C j,T )/|T |) (2.2)

where ( f (Ci,T )/|T |) is the probability that the selected pixel belongs to class Ci (Pal,

2005; Rodriguez-Galiano et al., 2012).

Each decision tree therefore grows to a maximum depth using a combination of

features. The number of features used to grow a tree at each node and the number of

decision trees are the required user-defined parameters to instantiate a RF prediction

model (Pal, 2005).

SVM

SVM was developed based on statistical learning theory (Wang & Zhong, 2003).

The algorithm creates an optimal separating hyperplane based on the location of a

small subset of training samples at class boundaries, the so-called “support vectors”

(Cortes & Vapnik, 1995). Given a simple binary linear classification problem, the SVM
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uses quadratic optimization techniques to select the optimum margin of separation

between the two classes such that the distance to the hyperplane from the closest

support vectors of both classes is maximal (Cortes & Vapnik, 1995; Foody et al.,

2016).

For a nonlinear classification problem, the algorithm selects the optimal margin by (i)

allowing some misclassification errors and (ii) transforming the original input space

into a higher dimensional feature space using nonlinear functions φ (Wang & Zhong,

2003), making linear separation possible in the new feature space. To reduce com-

putational cost, kernel functions, K(xi,x j) = φ(xi) · φ(x j), such as polynomials, ra-

dial basis and sigmoid functions, are used for the transformation (Camps-Valls &

Bruzzone, 2009). The decision function is given by

f (x) = sign

(
l

∑
i=1

αiyi(φ(xi) ·φ(x j))+b

)
(2.3)

where αi is a slack variable (Lagrange multiplier).

To classify new datasets, the algorithm uses learned parameters from the decision

function based on training data. The trade-off between margin of class separation

and misclassification errors is controlled by defining a regularisation parameter C ,

where C ∈ Z and 0 < C < ∞ (Cortes & Vapnik, 1995).

CART

CART is a decision tree algorithm that builds classification or regression trees based

on categorical or numerical attributes, respectively (Breiman, 2017). The structure of

the tree is typified by a root node and a series of internal nodes (splits) and terminal

nodes (leaves). Within this framework, the algorithm builds a model by recursively

partitioning the training dataset into increasingly homogeneous subsets using tests

applied at each node to training features (Xie et al., 2019). Given a continuous data

set, the test performed at each node is of the form

xi > c (2.4)

for decision functions based on a single feature (i.e., univariate decision trees), where

xi is a measurement in n feature space (n = 1 in this case) and c is a decision

threshold estimated from the range of xi measurements (Pal & Mather, 2003). The

threshold (c) value is determined using an impurity measure such as entropy (Quinlan,
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2014) and the Gini index (Breiman, 2017). If the decision boundaries are defined by

a combination of features (i.e., multivariate decision trees), the test takes the form

∑ i = lnaixi ≤ c (2.5)

where ai is a vector of coefficients of a linear discriminant function estimated from the

training data (Pal & Mather, 2003). The series of testing outputs form the branches

of the tree which proceeds sequentially through internal nodes until a terminal node

is reached. At each terminal node, class labels are assigned based on maximum

probabilities (Bittencourt & Clarke, 2003).

MLP

The MLP is a feedforward artificial neural network (ANN) classifier which is trained

using back-propagation (Goodfellow et al., 2016). Learning in ANN is inspired by the

functioning of neurons within the brain, which is based on parallel and distributed

processing of information (Bischof et al., 1992). Similarly, the MLP architecture is

composed of multiple layers of fully connected processing units called neurons, which

are arranged sequentially as a network of input, hidden and output layers. During

training, each unit in a hidden layer receives data from the input/previous layer, pro-

cesses it and feeds it forward to units in the next layer (Kanellopoulos et al., 1992).

This allows more abstract representations of the data to be learned until the output

layer is reached (Abdi, 2020). The connections between units carry weights, which

are modified iteratively to minimise a cost function. Apart from the input layer, the net

input to each unit is therefore the weighted sum of outputs from the previous layer

(Bischof et al., 1992; Kanellopoulos et al., 1992). The net input is wrapped in an

activation function to produce the output for that unit. The output for each processing

unit is expressed as

oi = f

(
∑

j
wi j ∗o j +bi

)
(2.6)

where oi is the output of a neuron in layer i, wi j is the connecting weight between

layers i and j, oi is output from layer j and bi is bias and f is the activation function

(Bischof et al., 1992; Kanellopoulos et al., 1992).
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2.2.7 Algorithm Calibration and Evaluation

The machine learning algorithms, namely, RF, SVM, CART and MLP, were first cal-

ibrated and evaluated for general land cover classification using data from a sub-

area within the Lower Sabie landscape (see Figure 2.1) via a nested cross-validation

approach. For each algorithm, the combination of parameters that returned the best

expected classification accuracies were then used in the prediction of grazing lawn

occurrence probabilities in the broader Lower Sabie and Satara Landscapes. The

steps employed are broadly summarised into (i) data preparation, (ii) parameterisation

training and classification and (iii) accuracy assessment. All processing was done

using Intel(R) Core(TM) i5-6200U CPU with 8GB RAM on 64 bit Windows 10 oper-

ating system, and was supplemented by leveraging the power of Google’s free GPU

hardware, using the Google Collaborator platform.

Data Preparation

The post-RF-RFE spectral and texture variables were used as input predictors for

modelling. The input dataset was then transformed by subtracting the mean and

scaling to a unit variance to generate normalised scores per feature using Equation

2.7:

zi j =
xi j −µ j

σ j
(2.7)

where xi, µ j and σ j are pixel value, mean and standard deviation of pixels in the jth

feature, respectively, and zi j is the transformed value of xi j (Singh & Singh, 2019).

Normalising input features is a crucial preprocessing technique which approximately

equalises dynamic data ranges in features for unbiased and improved learning (Singh

et al., 2015). Further, it is a common requirement prior to the training of machine

learning estimators such as Support Vector Machines and Artificial Neural Networks

(Singh & Singh, 2019).

Parameterisation, Training and Classification

Each of the selected algorithms comes with a set of hyperparameters which has to

be tuned to maximise performance during training. Algorithm training thus involved

hyperparameter optimisation whereby optimal hyperparameter sets were selected

for RF, SVM, CART and MLP algorithms from a predefined grid. The optimisation

process and selection of best model parameters were performed using randomised
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grid search in a 2x5 nested cross-validation approach with 10 iterations. Nested cross-

validation incorporates optimal hyperparameter selection and unbiased estimation of

model performance in inner and outer cross-validation loops respectively (Wainer &

Cawley, 2018). The approach is mostly recommended against traditional “flat cross-

validation” which results in biased accuracy estimates due to information leakage

and the split sample method plagued by insufficient availability of training and test

datasets (Cawley & Talbot, 2010). The chosen thresholds for tune-length and train–

test splits were deemed appropriate to provide a reasonable trade-off between ensur-

ing a robust model and computational time. Hyperparameters that returned the best

expected classification accuracies were selected and used as input parameters in the

machine learning algorithms. The algorithms were retrained with the full training data

for landscape-wide prediction of land cover occurrence probabilities in both the Lower

Sabie and Satara landscapes.

Individual image variable weights were computed using permutation feature import-

ance estimates (Pedregosa et al., 2011) in order to assess their relative contributions

in each machine learning model. Permutation feature importance (PFI) generates

variable weights based on an observed decrease in model score when a single vari-

able is randomly shuffled (Breiman, 2001). The drop in model score thus represents

the degree to which the model depends on the variable of interest. The PFI technique

is model agnostic, which makes it suitable for comparison of feature importance

estimates from RF, SVM, CART and MLP models used in this study.

The predicted occurrence probability surface for grazing lawns was selected and used

as input in an optimised probability thresholding procedure. Optimised probability

thresholding involved the selection of a single occurrence probability value (threshold)

which maximises some measure of classification accuracy (Hird et al., 2017) for the

target class. We tested a series of probability values at 0.05 intervals to determine

the threshold that maximises F-score of grazing lawn detection. Grazing lawn (G)

and non-grazing lawn (O) classes were assigned using simple relational expressions

represented by Equation 2.8 and Equation 2.9, respectively,

G = p ≥ t (2.8)

O = p < t (2.9)

41



where p is occurrence probability and t is the optimal probability threshold, t ∈ p.

Accuracy Assessment and Comparison

Model performance in discriminating different savannah land cover types during hy-

perparameter tuning was assessed using point and interval estimates of Overall Ac-

curacy (OA) and F-score, based on a 2x5 nested cross-validation approach (see

Section 2.2.7). Further, accuracy of grazing lawn/non-grazing lawn binary maps was

assessed by confusion matrix (Congalton & Green, 2019), from which precision, re-

call, F-score and OA metrics were calculated using Equations 2.10 to 2.13. Accuracy-

adjusted estimates of grazing lawn area coverage were obtained following Olofsson

et al. (2014).

Precision =
t p

t p+ f p
(2.10)

Recall =
t p

t p+ f n
(2.11)

F − score = 2∗ Precision∗Recall
Precision+Recall

(2.12)

OA =
t p+ tn

t p+ f p+ tn+ f n
(2.13)

where tp, fp, tn and fn represent the number of true positive, false positive, true

negative and false negative cases, respectively.

Marginal homogeneity between predictions from model pairs was tested at 5% level of

significance using the McNemar chi-squared (χ2) test (McNemar, 1947). The McNe-

mar test compares the error matrices of two classification methods to test the null

hypothesis that the two methods have the same error rate. The method is based on

χ2-test and provides a robust statistical comparison of class-wise predictions between

two algorithms (Roggo et al., 2003). Additionally, the estimated proportion of grazing

lawn cover (PGLC) was compared for model pairs using the two-proportion Z-test

at 5% level of significance. The two-proportion Z-test follows a χ2 distribution with

one degree of freedom (Abdi, 2020), and was used to test the null hypothesis of no

difference between PGLC for model pairs.
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2.2.8 Spatial Analysis of Grazing Lawn Distribution

Using spatial metrics, the characteristics of grazing lawn distribution were determ-

ined at landscape-scale and spatial patterns were analysed along a gradient of dis-

tance from water source in both Lower Sabie and Satara landscapes. Spatial metrics

provide vital information on landscape configuration and composition (Herold, 2001).

Spatial-contextual information such as density, shape, size and aggregation of land

cover patches can be extracted from spatial metrics to better understand ecological

processes at the landscape-scale (Herold, 2001; Mcgarigal & Marks, 1995). The

classification output with the least error properties was selected as input in the calcu-

lation of (i) Number of Patches (NP), (ii) proportion of landscape covered by grazing

lawns (PL), (iii) maximum patch area (MPA) and (iv) cohesion index (CI) (Mcgarigal

& Marks, 1995), from which patterns in grazing lawn structure were determined.

Further, Pearson’s correlation and coefficients of determination were estimated in

order to identify the nature and significance of the relationship between grazing lawn

structural attributes and proximity to water source. Calculation of the selected spatial

metrics was carried out using the “SpatialEco” package (Evans & Ram, 2019) in the

R programming environment (R Core Team, 2017).

2.3 Results

2.3.1 Model Quality for Land Cover Classification

Cross-validation accuracy results for individual models using F-score and Overall

Accuracy (OA) measures are presented in Table 2.5. Generally, all models achieved

high accuracies in differentiating the different land cover classes, with median F-

score and OA measures ranging between 92.75± 0.005% and 95.73± 0.003% and

90.92± 0.002% and 94.27± 0.003%, respectively. RF, SVM and MLP models had

similar accuracy scores and marginally outperformed CART for both F1 and OA

measures (Table 2.5).

Figure 2.5 shows land cover maps for the training region at 2 m spatial resolution. The

maps show similar representation of savannah land cover types across all models,

all of which were closely consistent with the reference satellite image scene (Figure

2.5c).

43



Table 2.5: Accuracy scores (F1 and Overall Accuracy) from 2 x 5 nested cross-
validation showing a comparison of model performance. RF = Random Forest, SVM
= Support Vector Machines, CART = Classification and Regression Trees, MLP =
Multilayer Perceptron.

Model Accuracy Metric
F-score Overall Accuracy

RF 95.73±0.004 94.16±0.004
SVM 95.64±0.002 94.02±0.002
CART 92.75±0.006 90.93±0.006
MLP 95.71±0.003 94.27±0.003

a b c

d e

Figure 2.5: Land cover classification of the training region from (a) RF, (b) SVM, (d)
CART and (e) MLP models. The WorldView-3 image scene (False colour: NIR1, R,
G) of the training region is showed in panel (c). RF = Random Forest, SVM = Support
Vector Machines, CART = Classification and Regression Trees and MLP = Multilayer
Perceptron.

Figure 2.6 shows permutation feature importance estimates across all models. A mix

of image features from original spectral bands, spectral indices and texture variables

showed high importance in each model. There was generally more agreement among

SVM, CART and MLP models in assigning relatively more importance to original
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spectral bands in terms of both magnitude of feature weight and number of features.

However, image features that exhibited high importance in the RF model were largely

dominated by texture variables (Figure 2.6). Image features that were of highest

importance in RF, SVM, CART and MLP models were S_SI5, B_G, B_R and B_Y,

respectively.

Figure 2.6: Image feature weights derived from permutation feature importance
estimates for Random Forest (RF), Support Vector Machines (SVM), Classification
and Regression Trees (CART) and Multilayer Perceptron (MLP) models. Feature
weights are sorted in an descending order across models to identify features on
high predictive importance. For the detailed names and description of image feature
acronyms, refer to Table 2.3.

A summary of the most important predictors for each feature group (i.e., spectral

bands, spectral indices and texture variables) is presented in Table 2.6. Following

Kukunda et al. (2018), identification of the most important image features considered

both the magnitude of feature weights and consistency of being assigned high import-

ance across all models. In terms of magnitude, image features that were considered
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highly important in each model were limited to the first three features, in each feature

group (Figure 2.6). Conversely, features were deemed consistent if they were as-

signed high importance in at least three models (Table 2.6). Among the most import-

ant image features were B_C and B_Y for spectral bands, V_GEMI and V_MSAVI2

for spectral indices and T_Mean and T_SAvrg for texture variables (see Table 2.6 for

features in bold).

2.3.2 Grazing Lawn Occurrence Probability Prediction and Clas-

sification

The outputs of grazing lawn occurrence probability surfaces for RF, SVM, CART and

MLP models are shown in Figure 2.7A and Figure 2.8A for Lower Sabie and Satara

landscapes respectively. The general pattern of grazing lawn occurrence probability

surfaces at both study sites is comparable among the four models. Within the Lower

Sabie site, high grazing lawn occurrence probabilities were mostly confined to the

eastern and north-eastern part of the landscape, and were similar across all models

(Figure 2.7A). The obvious qualitative difference among models is the relative lack of

many very low values in the CART probability surface compared to RF, SVM and MLP

models.

Within the Satara landscape, high grazing lawn occurrence probabilities mostly aligned

along a diagonal stretch from northwest to southeast (Figure 2.8A), which is the

interface of the granite and basalt geologies. Despite similarities in spatial distribution

of high occurrence probability values, there were noticeable qualitative differences in

range among the four models. The RF probability surface exhibited a relatively high

prevalence of a continuous range of very low to medium probability values across the

landscape, and very few distinctively high occurrence probabilities. In contrast, the

CART model predicted relatively more medium to high probability values across the

landscape, while MLP and SVM predictions were similar in the distribution of very low

and very high occurrence probability values (Figure 2.8A).

Plots of model F-score, Precision, Recall and OA values generated over a series

of predicted probabilities for the Lower Sabie and Satara landscapes are presented

in Figure 2.7B and Figure 2.8B, respectively. Analysis of the relationship between F-

score and predicted probabilities revealed the optimal threshold for classifying grazing

lawns. The optimal threshold is the probability value which maximises model F-score

of grazing lawn detection, and was found to coincide with or lie close to the equilibrium
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Table 2.6: Summary of the first three most important image features from spectral
bands, spectral indices and texture variables across all models. Image features that
appear in at least three models are in bold. For the detailed names and description of
image feature acronyms, refer to Table 2.3.

Dataset Image feature Model
RF SVM CART MLP

Spectral band B_C ⊠ ⊠ ⊠
B_B ⊠
B_G ⊠ ⊠
B_Y ⊠ ⊠ ⊠ ⊠
B_R ⊠ ⊠

B_RE
B_NIR1
B_NIR2

Spectral index V_GEMI ⊠ ⊠ ⊠ ⊠
V_MSAVI2 ⊠ ⊠ ⊠ ⊠
M_NDWI

S_SI5 ⊠ ⊠
S_SI9 ⊠ ⊠
S_BI2

Texture T_Ener ⊠ ⊠
T_Corr
T_IDM ⊠
T_Iner
T_CS
T_CP

T_HCorr
T_Mean ⊠ ⊠ ⊠
T_Var ⊠ ⊠

T_SAvrg ⊠ ⊠ ⊠ ⊠
T_Dent
T_IC1

point between model Precision and Recall. The resulting values varied across models,

with the F-score of RF, SVM, CART and MLP models peaking at 0.5, 0.4, 0.6 and 0.35,
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Figure 2.7: Grazing lawn occurrence probability surfaces (A); optimal probability
threshold plot (B); and binary map of grazing lawn and other cover (C) derived from
RF, SVM, CART and MLP models for the Lower Sabie landscape.

respectively, for Lower Sabie as seen in Figure 2.7B. Similar analysis on predicted

probability surfaces for the Satara landscape resulted in relatively lower thresholds

for RF, SVM and CART (0.35, 0.25 and 0.35, respectively) and a higher threshold for

MLP (0.6) where model F-scores were maximum Figure 2.8B.
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Figure 2.8: Grazing lawn occurrence probability surfaces (A); optimal probability
threshold plot (B); and binary map of grazing lawn and other cover (C) derived from
RF, SVM, CART and MLP models for the Satara landscape.

The grazing lawn/non-grazing lawn binary maps resulting from applying correspond-

ing thresholds to each of the four predicted probability surfaces are shown in Figure

2.7C and Figure 2.8C for both Lower Sabie and Satara landscapes, respectively. Ana-

logous to the probability surfaces, patterns of grazing lawn distribution were similar

for all classifications within both landscapes. However, local variations persisted and

were consistent with the distribution of predicted probability values for each model in

both landscapes. Overall, the Satara maps showed a considerable level of speckling

(Figure 2.8C).
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A summary of accuracy measures for grazing lawn detection is presented in Table

2.7. F-scores for Lower Sabie ranged between 0.81 for CART to 0.94 for MLP, while

SVM and RF classifications achieved F-score of 0.93 and 0.89 respectively (Table

2.7). Grazing lawn detection accuracy results were high, but relatively lower for the

Satara area compared to Lower Sabie. F-score ranged between 0.75 for CART to

0.88 for SVM, while RF and MLP achieved F-scores of 0.87 and 0.85, respectively

(Table 2.7).

Table 2.7: Model Precision, Recall and F-score metrics of grazing lawn detection in
both Lower Sabie and Satara landscapes. RF = Random Forest, SVM = Support
Vector Machines, CART = Classification and Regression Trees, MLP = Multilayer
Perceptron.

Landscape Accuracy metric Model score
RF SVM CART MLP

Lower Sabie Precision 0.95 0.93 0.87 0.92
Recall 0.84 0.93 0.77 0.97

F-score 0.89 0.93 0.81 0.94
Satara Precision 0.88 0.87 0.76 0.85

Recall 0.87 0.90 0.76 0.85
F-score 0.87 0.89 0.76 0.85

Accuracy-adjusted estimates of area covered by grazing lawns within both landscapes

are presented in Table 2.8. As expected, all model classifications gave comparable

estimates of grazing lawn cover within the Lower Sabie site, ranging between 2.46

km2 (for RF) and 2.98 km2 (for CART) (Table 2.8). In contrast, estimates of grazing

lawn cover were significantly different (p ≤ 0.05) for all models within the Satara

landscape (see test results in Table A.1 of supplementary data).

Table 2.8: Accuracy adjusted area estimates of grazing lawn cover in Lower Sabie
and Satara landscapes. Area estimates with different letters differ significantly and
vice versa in each landscape. RF = Random Forest, SVM = Support Vector Machines,
CART = Classification and Regression Trees, MLP = Multilayer Perceptron.

Landscape Area Estimate (km2)
RF SVM CART MLP

Lower Sabie 2.46±0.18a 2.64±0.13a 2.99±0.22a 2.96±0.11a

Satara 3.82±0.22a 3.61±0.21b 5.54±0.35c 3.13±0.24d
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McNemar test results presented in Table 2.9 showed statistically significant differ-

ences (p ≤ 0.05) in grazing lawn detection error rate when comparing CART to RF,

SVM and MLP models in both Lower Sabie and Satara landscapes. In contrast, no

significant differences were observed for all the other model pairs (Table 2.9).

Table 2.9: McNemar’s chi-squared test (χ2) of marginal homogeneity between model
pairs. Values in parenthesis represent p-value. Model pairs that show statistically
significant difference (p ≤ 0.05) in error rate are in bold. CART = Classification and
Regression Trees, MLP = Multilayer Perceptron, RF = Random Forest, SVM = Support
Vector Machines.

Lower Sabie Satara
Model pair χ2-test Model pair χ2-test

CART v MLP 14.667(0.000) CART v MLP 5.891(0.015)
CART v RF 10.316(0.001) CART v RF 13.395(0.000)

CART v SVM 16.000(0.000) CART v SVM 11.574(0.000)
MLP v RF 2.450(0.117) MLP v RF 1.250(0.264)

MLP v SVM 0.100(0.752) MLP v SVM 1.565(0.211)
RF v SVM 2.083(0.149) RF v SVM 0.000(1.000)

2.3.3 Spatial Patterns in Grazing Lawn Cover

Landscape-scale summary of number of grazing lawn patches, total coverage, con-

nectedness and patch size distribution are presented in Figure 2.9.

Number of grazing lawn patches was relatively higher in Lower Sabie compared to the

Satara landscape (Figure 2.9A). However, analysis of patch size distribution revealed

the Satara landscape as having relatively larger grazing lawn patches (Figure 2.9D),

and higher area coverage compared to the Lower Sabie landscape (Figure 2.9B).

Spatial connectedness of grazing lawn patches was however comparable in both

landscapes (Figure 2.9C).

Further analysis of patterns in the proportion of landscape covered by grazing lawns

(PL), maximum patch area (MPA) and cohesion (CI) revealed significant relationships

with distance from water sources in both landscapes. Grazing lawn PL, MPA and CI

showed an inverse relationship with distance from water source in both landscapes

(see correlation coefficients in Table 2.10). However, the trends were relatively less

distinct in the Lower Sabie landscape (Figure 2.10), as also suggested by the differ-
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Figure 2.9: Landscape-scale summary of grazing lawn spatial characteristics. (A)
Number of grazing lawn patches; (B) Proportion of total landscape covered by grazing
lawns; (C) Physical connectedness of grazing lawn patches; (D) Distribution of grazing
lawn patch size. Dashed horizontal line represents mean patch size.

ences in magnitude of correlation coefficients between both landscapes (Table 2.10).

Overall, grazing lawn fractional cover, patch size and spatial connectedness were

highest within 0.7 km from water sources in both Lower Sabie and Satara landscapes

(Figure 2.10).
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Table 2.10: Pearson Correlations (r) and Coefficients of Determination (r2) from the
relationship between grazing lawn spatial metrics and distance from water source. PL
= Proportion of Landscape, MPA = Maximum Patch Area and CI = Cohesion Index.
Relationships are significant at p < 0.0001 ‘***’, p < 0.001 ‘**’ and p < 0.01 ‘*’.

Landscape metric Lower Sabie Satara
r r2 r r2

PL -0.55 0.30* -0.84 0.70***

MPA -0.62 0.39** -0.68 0.46**

CI -0.65 0.42** -0.87 0.75***

2.4 Discussion

2.4.1 Model Quality for Savannah Land Cover Classification

In this study, efforts were focused on developing robust machine learning framework

for grazing lawn detection by first assessing model performance for general clas-

sification of savannah land cover types. The convergence of remote sensing and

data science techniques through machine learning offers unparalleled capacity for

more accurate processing of satellite imagery, especially for the purposes of land

cover monitoring. While this presents many advantages for remote sensing-based

ecosystem monitoring, the choice of fit-for-purpose machine learning algorithms often

requires some experimentation. This is partly due to the vast availability of options to

select from, but most importantly also due to contextual differences in application such

as varying landscape conditions, data and research objectives (Foody et al., 2016;

Lawrence & Moran, 2015). Robust evaluation of algorithm performance is therefore

vital for the selection of optimal models for application. The nested cross-validation ap-

proach used here allowed the simultaneous tuning of hyperparameters and unbiased

estimation of individual model performance. In so doing, the optimum combination of

algorithm hyperparameters which enhanced model quality could be selected. Model

quality evaluation via nested cross-validation has been proven effective in avoiding

biased accuracy estimates common in “flat cross-validation” due to information leak-

age, while preventing poor model generalisation capabilities due to data paucity—a

regular challenge of the split sample approach to model evaluation (Cawley & Talbot,

2010).
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Figure 2.10: Plots of spatial metrics showing patterns in grazing lawn spatial structure
and distribution with distance from water-points. CI = Cohesion Index, MPA =
Maximum Patch Area, PL = Proportion of Landscape.

All machine learning models (RF, SVM, CART and MLP) demonstrated high per-

formance in classifying the different savannah land cover categories. Even so, RF,

SVM and MLP marginally outperformed the CART model. The relatively lower per-

formance of CART observed in this study is consistent with widely reported inferi-

ority of single decision tree (DT)-based classifiers relative to other machine learning

algorithms for land cover classification (Camargo et al., 2019; Kaszta et al., 2016;

Rodriguez-Galiano & Chica-Rivas, 2014). For example, similar findings were reported

by Kaszta et al. (2016) in a comparative assessment of classification algorithms for

seasonal separation of southern African savannah components. The authors recor-
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ded CART as having the lowest accuracy score in both pixel-based and object-based

approaches relative to SVM and RF algorithms. Camargo et al. (2019) compared the

performance of RF, SVM, MLP and DT for classifying the Brazilian tropical savannah

biome, and found that DT produced a relatively lower performance than RF, SVM and

MLP classifiers. Similar to our findings, the authors recorded closely comparable per-

formance for the latter three algorithms. In a related Mediterranean land cover mon-

itoring study, Rodriguez-Galiano & Chica-Rivas (2014) reported significantly lower

mapping accuracy for DT than SVM, ANN and RF algorithms.

Although CART is relatively more flexible and intuitive to implement, it is very sensitive

to small variability in data, which, in this case, may have contributed to the relatively

lower performance in a heterogeneous savannah landscape. Compared to single

decision trees such as CART, the RF algorithm draws its higher generalisability from

the contribution of multiple decision trees parameterised using random subsets and

bootstrap aggregation (Breiman, 2001). RF is therefore highly adaptable to different

data ranges and robust against multicollinearity. Similarly, the MLP architecture allows

more abstract representations of data to be learned (Kanellopoulos et al., 1992).

However, the performance of MLP is strongly influenced by input data structure, and

performs better when data ranges of all input features are equal (Singh & Singh,

2019). Thus, the inclusion of data normalisation during preprocessing likely aided

gains in classification accuracy. In the case of SVM, the use of nonlinear vector

mapping functions facilitates creation of decision boundaries for effectively dealing

with nonlinearly separable classes (Camps-Valls & Bruzzone, 2009). The superiority

of RF, MLP and SVM algorithms in dealing with the typical spectral homogeneity of the

heterogeneous savannah landscape could thus be attributed to their relatively higher

adaptive capacity in complex nonlinear classification problems. It should be noted that

RF was used in an RF-RFE procedure for selecting final input image features for clas-

sification (see Section 2.2.5). This may have aided the performance of RF, although

the RF-RFE algorithm was configured with different (default) hyperparameters during

implementation.

As expected, a combination of original image bands, spectral indices and texture vari-

ables enhanced discrimination capacities of the machine learning models in savannah

land cover classification. Across all models, the most important predictors—B_C,

B_Y (original bands), V_GEMI, V_MSAVI2 (spectral indices), T_Mean and T_SAvrg

(texture features)—highlight variations in photosynthetic status and structure of sa-

vannah vegetation. The high importance of the coastal blue (B_C) and yellow (B_Y)
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WorldView-3 image bands could be attributed to their strong sensitivity to differences

in foliar chrolophyll content (Schuster et al., 2015), given that images were acquired in

the dry season, which is when phenological differences are most pronounced (Bucini

et al., 2009; Symeonakis et al., 2018). Several studies have reported the contribution

of these bands and the red edge band in mapping vegetation components (Ghosh &

Joshi, 2014; Immitzer et al., 2012; Kaszta et al., 2016). Unlike the reported studies,

the red edge band was not very important in our classification of savannah land cover.

The coastal blue wavelength is absorbed by chlorophyll in healthy plants while the yel-

low band detects dryness/“yellowness” of vegetation, both of which are instrumental in

vegetative analysis. The high importance of the spectral indices could be explained by

their strong correlation with vegetation biomass (Guerini Filho et al., 2020; Yin et al.,

2018) and moisture content (Hunt Jr et al., 2016; Roberto et al., 2016), which helps to

capture the varying characteristics of heterogeneous savannah vegetation that would

otherwise be attenuated when using the original image bands alone. Additionally,

the high importance of the texture features highlighted the chromatic variations in

dry season savannah vegetation components. Both T_Mean and T_SAvrg measures

inter-pixel average in brightness values which were sufficiently captured at 2 m resol-

ution of the WorldView-3 in a heterogeneous savannah landscape.

2.4.2 Grazing Lawn Detection and Model Comparison

After ascertaining the optimal parameters for training, models were refitted with the

entire training set for wide-scale prediction of land cover occurrence probabilities in

both Lower Sabie and Satara landscapes. For each landscape, the general pattern of

grazing lawn occurrence probabilities was comparable for all models, particularly the

distribution of high occurrence probability values. Individual model outputs however

exhibited local predictive variations in the distribution of low to medium occurrence

probabilities, which could be reflective of differences in model complexity and uncer-

tainties (Ferchichi et al., 2018; Schulp et al., 2014). Binary maps were derived from

predicted grazing lawn occurrence probability surfaces using thresholds which max-

imised F-score. Hird et al. (2017) adopted a similar approach for large area classifica-

tion of wetlands and drylands using True Skill Statistics (TSS), and achieved 85% OA

score. As expected, derived maps showed more coherent representation of grazing

lawn areas within the Lower Sabie landscape, while maps for the Satara landscape

were characterised by relatively higher degree of noise, particularly for the CART-

derived map. This was also reflected in F-score measures, where relatively higher
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grazing lawn detection accuracies were recorded across all models for the Lower

Sabie savannah landscape. It should be emphasised that models were trained using

data from the Lower Sabie landscape—for reasons related to training data quality and

computational cost—which allowed testing their spatial transferability. Possible differ-

ences in dry season reflectances due to the different rainfall regimes and underlying

geologies as well as difference in image acquisition geometries, may have increased

prediction bias of model spatial transfer and contributed to the observed differences

both across the different landscapes and models. Further analysis is required to

comprehensively ascertain the impacts of differences in environmental conditions and

image acquisition characteristics on spatial transferability of the classification models.

McMenar and two-proportion Z-test results showed significant differences (p ≤ 0.05)

in error rates for pairs of of CART versus other models, further highlighting the relative

preponderance of RF, SVM and MLP. Overall, differences in accuracy of grazing lawn

detection were attenuated when models were applied in a different spatial context.

This suggests the need to calibrate predictive models with local contextual information

prior to application. Additionally, our findings re-emphasise recommendations from

(Foody, 2004; Janssen & Vanderwel, 1994; Momeni et al., 2016) to conduct statistic-

ally rigorous comparison of accuracy statements before drawing definitive conclusions

on map quality assessment.

2.4.3 Spatial Patterns in Grazing Lawn Distribution

The formation and persistence of grazing lawns in southern African savannah land-

scapes has been identified to be dependent on a number of interacting top-down

and bottom-up ecological processes. Among the most widely reported are continued

grazing (Cromsigt & Olff, 2008; Grant & Scholes, 2006), which can be linked to fire,

rainfall and nutrient hotspots concentrating grazers on specific areas (Archibald et al.,

2005; Archibald, 2008; Donaldson et al., 2018). Spatial variations in such factors are

thus expected to shape spatial patterns and distribution of grazing lawns Hempson

et al. (2015).

Both fire and grazers consume grass biomass, and have the potential to shift grass

communities into tall grass or short grass grazing lawn states (Donaldson et al.,

2018). However, the rate at which these alternate grassland states are established

is strongly influenced by landscape productivity (Archibald et al., 2005). Tall grasses

are strong light competitors and are well adapted to fire-prone conditions due to their

extensive rooting system, which makes them the dominant grass community under
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high productivity conditions (Hempson et al., 2015). On the other hand, short grass

grazing lawns can withstand high grazing pressure due to their stoloniferous growth

form which protect reproductive parts from being destroyed. Subject to similar grazing

conditions, the proportion of grazing lawn cover within the savannah landscape is

expected to be lower under high rainfall regimes. This is consistent with the relatively

high grazing lawn coverage in the semiarid Satara landscape compared to the mesic

Lower Sabie landscape.

Different parts of the savannah landscape may be predisposed to grazing lawn form-

ation due to the presence of resource hot-spots that attract grazers (Hempson et al.,

2015). This study explored the relationship between water sources as resource hot-

spots and patterns in grazing lawn distribution. Grazing lawn structural attributes

expressed as fractional cover (PL), maximum patch area (MPA) and connectivity

(CI) were examined relative to distance from water sources. Generally, patterns in

grazing lawn structure significantly correlated with distance from water sources, and

was similar in both mesic and semiarid landscapes. The largest contiguous grazing

lawn patches were found within 0.7 km from water sources, which is suggestive of

the prevalence of grazing lawns in close proximity to waterbodies. This could be

attributed to increased grazer activity around water sources (Smit, 2011; Smit et al.,

2007) and is consistent with observations that landscape-scale distribution of grazers

is generally biased towards areas around reliable rivers and permanent waterholes

(Redfern et al., 2003; Smit et al., 2007). For example, Smit (2011) found that different

grazers of varying body mass and digestive requirements had significantly strong

association with both rivers and artificial waterholes in Kruger National Park. This

phenomenon is especially evident during dry seasons when moisture content of graze

is low (Berry & Louw, 1982) and surface water is spatially restricted (Redfern et al.,

2003). Additionally, sodic sites which are highly utilised by grazers and hence have

extensive grazing lawn cover, occur close to waterbodies and drainage lines, and may

have contributed to the observed patterns.

It is important to note that other landscape phenomena may be influencing spatial

patterns in grazing lawn distribution. For example, the prevalence of open grasslands,

which is typical of the Satara landscape, may lead to the formation of more grazing

lawn patches. Burkepile et al. (2013) found that more open savannah grasslands

with sparse woody cover make attractive habitats or grazing grounds for selection

by herbivores such as zebra (Equus quagga) and blue wildebeest (Connochaetes

taurinus), in part to mitigate the risk of predation.
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2.5 Conclusions

Dynamics in grazing lawn communities in southern African savannahs have been

directly linked with fluctuations in mega-herbivore densities and changing fire re-

gimes, with cascading effects on ecological processes such as nutrient cycling, plant

community composition and habitat structure. Knowledge of their coverage and dis-

tribution is therefore critical to understanding habitat heterogeneity and the overall

ecology of these vital grassland systems. This study presents the first attempt to

develop a broad-scale approach for grazing lawn detection using very high-resolution

satellite images. Application of machine learning techniques for mapping grazing

lawn occurrence from WorldView-3 satellite imagery, and further analysis of their

spatial structure and distribution in southern African savannahs was successfully

demonstrated. The RF, SVM and MLP models produced comparable accuracies in

the classification of different plant functional types (PFTs) and other land cover, all of

which outperformed the CART model. Differences in grazing lawn detection accuracy

followed a similar trend particularly within the same landscape (Lower Sabie). Per-

formance for all models however reduced when they were transferred to a different

landscape (Satara) even though high accuracies were achieved. Analysis of grazing

lawn spatial structure and distribution showed that the Satara savannah landscape

supports a relatively higher proportion of grazing lawn cover than Lower Sabie. Ad-

ditionally, larger and contiguous patches persist in close proximity to water sources,

which concentrate grazers within the savannah landscape, irrespective of differences

in underlying environmental conditions. The proposed approach provides a novel and

robust workflow for accurate and consistent landscape-scale monitoring of grazing

lawns. Additionally, the findings ascertain experimental and local-scale reports on

grazing lawn dynamics at a wider landscape scale, and provide timely information

critical for understanding habitat heterogeneity in southern African savannahs.
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Chapter 3

Spatio-temporal Analysis of Grazing

Lawn Dynamics in Southern African

Savannahs Using Multi-temporal

High-resolution Satellite Images

3.1 Introduction

Southern African savannahs feature a heterogeneous mix of C4 grass and C3 woody

vegetation communities which occur in varying spatial formations. This inherent com-

positional and configurational heterogeneity translates into diverse habitat conditions

shaped by different bottom-up and top-down factors including nutrient availability,

precipitation, fire and herbivory (Archibald, 2008; Levick et al., 2009; Marston et al.,

2019; Sankaran & Ratnam, 2013; Sankaran et al., 2008). Grazing lawn patches

constitute an important part of the habitat heterogeneity in southern African savan-

nahs and play a critical role in ecosystem processes such as nutrient cycling, plant

community composition, habitat structure (Hempson et al., 2019), grazer movement

and predation (Hempson et al., 2015). The central role of grazing lawns in savannah

ecosystem processes results from their direct impact on patterns in fire behaviour and

herbivory, which are the main consumers of plant biomass in savannah ecosystems.

Grazing lawn patches directly influence frequency, intensity and spread of fire within

the savannah landscape by curtailing ignition and fire propagation due to their limited

fuel biomass (Archibald et al., 2005). In parallel, seasonal availability of grazing lawns

influences grazer movement and population dynamics (Hempson et al., 2015). Com-

pared to tall grass swards, grazing lawns have higher foliar nitrogen content and are

easily digestible due to their low carbon to nitrogen ratio (C:N) (Chaves et al., 2006),
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making them very attractive to grazers. Additionally, by having low herbaceous cover,

grazing lawn patches minimize the risk of predation for herbivores (Hempson et al.,

2015; Voysey et al., 2021). Voysey et al. (2021) found high browser mesoherbivore

abundance on short grasses, highlighting the significance of predator avoidance as a

driver for herbivore use of grazing lawns. Information on the changes in grazing lawn

extent and structure is therefore critical in better understanding the overall ecology of

savannahs with important implications for conservation management.

There is substantial empirical evidence of factors that shape the formation and per-

sistence of grazing lawns in savannah landscapes (Archibald et al., 2005; Archibald,

2008; Cromsigt & Beest, 2014; Donaldson et al., 2018,2; Hempson et al., 2015).

Hempson et al. (2019) defined a framework for alternate grass vegetation states

in savannah ecosystems, as either tall or bunch grasses which dominate fire-driven

landscapes or short grass grazing lawns which dominate grazer-driven landscapes.

Central to the formation of grazing lawns is grazer activity, either solely (Cromsigt

& Beest, 2014) or in interaction with fire (Archibald et al., 2005; Archibald, 2008;

Donaldson et al., 2018). Grazing lawns may form in parts of the savannah landscape

where resource hot-spots concentrate grazers, such as around water sources, sodic

sites and termite mounds (Archibald, 2008; Awuah et al., 2020; Cromsigt & Olff, 2008;

Hempson et al., 2015). Additionally, new regrowth from recovering burnt areas may

attract grazers and lead to the formation of new grazing lawn patches over time,

or return previously established grazing lawn patches to other vegetation types if

grazing frequency is reduced (Donaldson et al., 2018). Under high productivity condi-

tions, frequent grazing is required to maintain grazing lawns and prevent colonization

by facultative tall grass species (Archibald et al., 2005; Archibald, 2008; Hempson

et al., 2015). Thus, any changes in conditions within the savannah landscape that

directly or indirectly influence grazer numbers or activity could result in a switch from

grazing lawns to different habitat types dominated by other vegetation components

and vice versa. Investigations by Donaldson et al. (2020) showed that disturbance

from a protracted drought event between 2014 and 2017 decoupled grazers and

grazing lawns, leading to post-drought losses of grazing lawn cover through self-

shading and eventual colonization by tussock grasses. It appears therefore that the

most immediate transition pathway in grazing lawn dynamics is a switch to and from

competitive tall grass species. Yet the significance of grazing lawn transitions to and

from other habitats such as woody vegetation remains unknown, particularly in the

phase of widespread woody encroachment in savannah ecosystems (Marston et al.,
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2017; Stevens et al., 2017). Additionally, it is unclear how extreme disturbance like

intense drought events, which are projected to increase in frequency in southern

Africa with increasing atmospheric CO2, will impact dynamics in grazing lawn cover

and structure.

A comprehensive analysis of grazing lawn dynamics within a spatially and temporally

dynamic landscape, therefore calls for a robust broad-scale approach with provisions

for quality time series data. While in-situ field-based monitoring provides detailed local

insights, it is costly, inefficient and limited in spatial and temporal coverage (Mar-

ston et al., 2017). Satellite remote sensing-based land cover analysis complements

ground-based methods and offers a valuable tool for vegetation monitoring at large

geographical scales (Ali et al., 2016). Additionally, the availability of historical satellite

imagery allows accurate characterisation of vegetation dynamics and provides gen-

eral insights into drivers of change using change detection methods. For example,

Marston et al. (2017) used multi-temporal medium resolution and very high resolution

satellite images to identify patterns in woody encroachment in Kruger National Park. A

common remote sensing-based change detection approach is the post-classification

comparison of thematic maps (Peterson et al., 2004). Post-classification change de-

tection offers valuable information on the magnitude and direction of change in tar-

get land cover types (Basnet & Vodacek, 2015; Peterson et al., 2004). The pro-

cess requires no radiometric normalization due to the separate processing of images

(Tewkesbury et al., 2015). However, the accuracy of change estimates is significantly

influenced by the quality of input thematic maps (Coppin et al., 2004).

Savannah ecosystems exhibit significant spatial heterogeneity defined by different

mosaics of tree, shrub, grass and bare ground patches. This coupled with the spectral

similarity of different vegetation components creates significant challenges for accur-

ate vegetation classification and subsequent monitoring (Awuah et al., 2020; Kaszta

et al., 2016; Symeonakis et al., 2018). Compared to coarse and medium resolution

images, very high-resolution (VHR) satellite imagery can help to overcome pixel mix-

ing and discriminate between different vegetation components (Awuah et al., 2020;

Kaszta et al., 2016; Marston et al., 2017). In the same savannah landscape context,

Marston et al. (2017) successfully demonstrated the utility of VHR IKONOS, QuickBird

and WorldView-2 images for discriminating different vegetation components at very

high accuracies (> 85 % overall accuracy).
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Analysis of changes in savannah vegetation structure over space and time largely

focuses on the woody vegetation components (Bond, 2008; Bond & Midgley, 2000;

Case et al., 2019,2; Fensham et al., 2009; Marston et al., 2017; Stevens et al., 2017),

with very little attention on the understorey grassy layer. In particular, no studies

exist on the changes in grazing lawn extent and spatial configuration, the dominant

pathways of transitions from grazing lawns to other habitats and vice versa, as well as

how disturbance events influence these dynamics. Against this backdrop, this study

aims to analyse spatial and temporal dynamics in grazing lawn cover using VHR

satellite imagery by: (i) identifying changes in grazing lawn cover and structure; (ii)

highlighting the dominant drivers of grazing lawn dynamics in the broader savannah

landscape context; and (iii) investigating how drought impacts dynamics in grazing

lawn cover and structure using the 2015/2016 drought as a case study.

3.2 Materials and Methods

3.2.1 Study Sites

Three sites were used for this study (Figure 3.1), all located in the southern portion of

Kruger National Park (KNP), South Africa, specifically within the Skukuza and Lower

Sabie regions of KNP. The selected sites fall on the granitic substrate of KNP and

cover a range of moderately undulating topographies, with elevation ranging from

about 200m to 400m above sea level (Figure 3.1). KNP is a protected area span-

ning approximately 20,000 km2 with minimal human footprint and a great diversity of

flora and fauna shaped by their interactions with natural environmental phenomena,

making it a globally important site for ecological studies. The selected sites are thus

reflective of these natural savannah ecosystem dynamics which play out in the con-

text of grazing lawn formation and persistence. Additionally, Site 3 encompasses the

Nkhulu exclosure designed to examine the impact of mammalian herbivores and fire

on savannah vegetation structure and distribution (Siebert & Eckhardt, 2008).

The study sites are characterized by semi-arid and mesic savannah conditions over

the Skukuza and Lower Sabie regions respectively (Venter et al., 2003), with cor-

responding mean annual precipitation (MAP) values of ∼ 550 mm (Skukuza) and ∼
602 mm (Lower Sabie) (South African National Parks, 2021). The growing season in

KNP occurs between the summer months of November and April, during which 84%
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of total annual rainfall is received on average (MacFadyen et al., 2018). The most

recent major drought event, since that of 1991/1992, occurred in 2015/2016 (Figure

3.2) which coupled with satellite image availability presents an opportunity to assess

the effect of drought on grazing lawn cover.

Figure 3.1: Map showing study site locations (Sites 1, 2 and 3) overlaid on
SRTM Digital Elevation Model (DEM). Inset map shows Kruger National Park (KNP)
boundary and the study region in southern KNP.

Figure 3.2: Total annual rainfall for Skukuza, Kruger National Park, South Africa, from
1991 to 2019. Major drought years are highlighted in red. Rainfall data was obtained
from (South African National Parks, 2021)
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3.2.2 Data

Reference Data and Classification Scheme

Field surveys were conducted in November 2002 and July 2014 for all sites (i.e. Sites

1, 2 and 3) and between June and July 2019 for only Site 3. A random sampling

approach was used to generate a total of 285 and 188 points which were visited during

the 2002 and 2014 (including 66 points that were common to both years) fieldwork

campaigns respectively (Marston et al., 2017). On the other hand, 111 points system-

atically distributed within 200 m buffer region along access roads were used during the

2019 fieldwork campaign. To minimize edge effects on the surveyed vegetation cover,

the systematic sample points were placed beyond 100 m distance from the access

roads. During each of the field surveys, the predefined sample points were located

using a handheld GPS device. At each sample location, cardinal photographs were

taken in the directions of north, east, south and west successively. Descriptions of

site condition and dominant land cover were taken at each sample location, including

compass bearings to other significant surrounding land cover patches, which enabled

the generation of further sample points based on satellite image interpretation. In

addition to the point samples used during field surveys, further land cover information

was recorded from additional randomly generated points based on visual interpret-

ation of satellite images, augmented by contextual knowledge from field visits, field

photos, very high-resolution (VHR) Google satellite scenes as well as from obvious

image features (e.g. water body, bare land etc) visible within the VHR images used for

classification. This allowed the retrieval of enough spectral variability within the same

target land cover type, which is necessary for improved classification outcomes. In

total, 1188, 1120 and 3398 reference points were generated for 2002, 2014 and 2019

respectively.

Together with water bodies, built-up and bare cover, three vegetation classes were

identified based on structure in order to distinguish grazing lawns. All woody veget-

ation, primarily composed of trees and shrubs were collapsed into one vegetation

class named woody. Grasses, which are the dominant herbaceous vegetation, were

distinguished into bunch grasses and grazing lawns. Bunch grasses have upright

growth form and occur as tall and often dense grass patches within the savannah

landscape. In this study, grass patches greater than 20 cm in height were identified

as bunch grasses. In contrast, grazing lawns are distinct short grass patches with
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prostrate growth forms and spread laterally by means of stolons. Grass patches in

this category, with height less than or equal to 20 cm, and often with smooth textured

appearance in satellite imagery, were thus identified as grazing lawns. An overview of

all target land cover types is provided in Table 3.1.

Table 3.1: Description of target land cover classes used for image classification.

ID Land cover Description
1 Woody All woody vegetation components at sample locations,

mainly composed of trees and shrubs.

2 Bunch grass Tall grass patches greater than 20 cm in height, often
showing dense growth with an upright growth pattern.

3 Grazing lawn Short grass patches which exhibit stoloniferous growth
pattern and less than or equal to 20 cm in height.

4 Water body Rivers, lakes and ponds, or any collection of surface water
visible within the landscape.

5 Bare Barren areas with no vegetation cover and showing bare
soil surface; also including bare rocky outcrops.

6 Built-up Artificial structures including buildings, rooftops and asphalt
or concrete coated surfaces.

Image Data and Preprocessing

Multi-temporal very high-resolution satellite images acquired in the dry season were

used in this study (Table 3.2). Phenological differences in vegetation cover peak dur-

ing the dry season leading to maximum spectral differentiation of different plant func-

tional types (Bucini et al., 2009), particularly in heterogeneous landscapes (Marston

et al., 2017). Additionally, there is generally less prevalence of atmospheric effects

on dry season image acquisition. As such, dry season satellite image acquisition

is well-known to provide better classification outcomes in savannah environments

(Brandt et al., 2017; Marston et al., 2017). In total, nine satellite images were acquired

from five VHR sensors, with three images per study site, representing three different

temporal acquisition windows. Table 3.2 shows a summary of image properties.

All images had been processed to surface reflectance by the vendor. Of all image

acquisitions, only the IKONOS and QuickBird images from 2002 covering sites 1

and 2 respectively (Table 3.2) had some cloud cover. Pre-processing thus involved

cloud and cloud shadow masking using a semi-automatic approach based on band

thresholding (Marston et al., 2017). This involved, initially, the creation of a cloud/non-

cloud binary image through band thresholding. The process was repeated multiple
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times to fine-tune the detection of cloudy pixels. Areas with cloudy pixels were then

isolated via a vectorization process. A cloud shadow mask was created by applying

a geographical offset to the cloud mask. Affected areas that were not captured in

the process of cloud and cloud shadow masking were manually digitized to exclude

them from further analysis. In addition to the cloud and cloud shadow masks, a

mask for burnt areas was created using a burn map derived from initial unsupervised

clustering of affected images using K-Nearest Neighbour (KNN). The burn map was

refined through manual digitisation of missed burn pixels, and was later used in post-

processing reclassification of burnt areas (see section 3.2.5). To ensure consistency

in temporal change analysis, all images were co-registered to the 2019 acquisition for

each site. Further, for each site, images were resampled to spatially match the image

with the coarsest spatial resolution. For example, at Site 3, the 2019 WorldView-3

acquisition with 2m spatial resolution was resampled to 4m spatial resolution to be

consistent with the IKONOS acquisitions from September 2014 and April 2002.

Table 3.2: Overview of satellite images used for land cover classification. Spectral
bands: B = blue, C = cirrus, CA = coastal aerosol, CB = coastal blue, G = green, NIR
= near infra-red, R = red, RE = red edge, SWIR = short-wave infrared, Y = yellow.

Site Sensor Acquisition Date Spatial Resolution (m) Spectral Bands
1 IKONOS March 7, 2002 4 (resampled to 4.7) B, G, R, NIR
1 IKONOS September 27, 2014 4 (resampled to 4.7) B, G, R, NIR
1 Planet June 2019 4.7 B, G, R, NIR
2 QuickBird December 9, 2002 2.8 B, G, R, NIR
2 WorldView-2 October 14, 2014 2 (resampled to 2.8) CB, B, G, Y, R, RE, NIR-1, NIR-2
2 WorldView-3 July 1, 2019 2 (resampled to 2.8) CB, B, G, Y, R, RE, NIR-1, NIR-2
3 IKONOS April 28, 2002 4 B, G, R, NIR
3 IKONOS September 27, 2014 4 B, G, R, NIR
3 WorldView-3 July 1, 2019 2 (resampled to 4) CB, B, G, Y, R, RE, NIR-1, NIR-2

3.2.3 Image Classification and Accuracy Assessment

The reference point locations (see section 3.2.2) were used to generate polygons

from spectrally homogeneous areas in close proximity to the sample points, to which

the target land cover labels were assigned (see Table 3.1). The polygon extents

were then used to extract reference pixels which were divided according to a 70:30

ratio for supervised classification and accuracy assessment respectively. Compared

with other spatial objects such as points and lines, the use of polygon objects in

training data extraction allows for the representation of enough intra-class spectral
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variability leading to better classification outcomes (Corcoran et al., 2015; Ma et al.,

2017). Prior to training data extraction, the input image features were normalized by

subtracting the mean and scaling to a unit variance to minimize bias during training

and classification (Singh et al., 2015).

The Random Forest (RF) algorithm was used in the supervised classification pro-

cess. The RF algorithm is an ensemble of decision trees which are parameterised

with several independent random subsets of input vectors selected through bootstrap

aggregation (or bagging) (Breiman, 2001). The remaining samples, or so called ’out-

of-bag’ samples (OOB) can be used for evaluation and variable importance estima-

tion (Breiman, 2001; Eisavi et al., 2015). Through bagging and random subspacing,

multicollinearity and generalisation error is minimised (Abdi, 2020; Breiman, 2001),

which gives the RF classifier its robustness compared to other algorithms. During

classification, each decision tree within the ensemble contributes a unit vote to assign

input vectors to different target classes, and the final classification is determined

from the most frequently voted class (i.e. majority voting). The RF algorithm uses

Gini Index as a measure for selecting suitable features per class at each node in

order to maximize dissimilarities between classes (Rodriguez-Galiano et al., 2012).

A combination of features is therefore used to grow each decision tree within the

ensemble to a maximum depth. The most important user-defined parameter required

to instantiate the RF algorithm is the number of decision trees, which was set to 2000

following hyperparameter optimization based on randomised grid search.

Classification accuracy was assessed for overall classification and individual land

cover classes using precision, recall and F-score accuracy metrics, all of which were

calculated from a confusion matrix (Congalton & Green, 2019). The accuracy metrics

were calculated using Equations 3.1, 3.2 and 3.3.

Precision =
t p

t p+ f p
(3.1)

Recall =
t p

t p+ f n
(3.2)

F − score = 2∗ Precision∗Recall
Precision+Recall

(3.3)

where tp, fp and fn represent the number of true positive, false positive, and false

negative cases, respectively.
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3.2.4 Post-classification Characterisation of Grazing Lawn Struc-

ture

The spatial configuration of grazing lawn patches in the land cover maps derived

for each site over time was quantified using spatial metrics (Herold, 2001; Mcgarigal

& Marks, 1995), from which grazing lawn structure was determined. Spatial metrics

provide landscape-scale information on density, aggregation and size distribution of

land cover patches (Herold, 2001). In the case of grazing lawns, such information

is vital in highlighting important ecological indicators such as habitat heterogeneity

(Awuah et al., 2020) and processes such as fire behavior (Van Langevelde et al.,

2003) with consequences for biodiversity. A combination of spatial metrics including

Patch Density (PD), Edge Density (ED) and Cohesion Index (CI) (Table 3.3) were

calculated in the R programming environment (Development Team, 2016) using the

"SpatialEco" library (Evans & Ram, 2019).

3.2.5 Post-processing and Change Analysis

Following classification, a majority filter with 8-pixels neighbourhood kernel (i.e. 3x3

window) was used to minimize noisy pixels (i.e. ’salt-and-pepper’ effect), which is

a common phenomenon in pixel-based classification of very high-resolution satellite

images (Hirayama et al., 2019). Additionally, burnt patches specifically in the 2014

imagery of Site 1 and Site 3 were reclassified into a ’burn scar’ category using the

burn-mask generated during preprocessing (section 3.2.2).

Bi-temporal changes in grazing lawn cover and structure were analysed for 2002 to

2014 and 2014 to 2019. Grazing lawn cover expressed in terms of persistence, gains,

losses and transitions to and from other land cover types were analysed using a

transition matrix (Pontius Jr et al., 2004). For a pair of classifications of the same

landscape derived from two periods (e.g. time-1 and time-2), the transition matrix

compares the proportions of each land cover type within the landscape from which

persistence and transitions in the different land cover categories can be identified.

An important challenge for post-classification change detection is the reliance on the

classification accuracy of the maps being compared. This was minimised by limiting

the analysis to changes between grazing lawns and the other vegetation classes (i.e.

woody and bunch grasses) and the bare category. Additionally, bare areas visibly

identified as roads / trails and those in stream and river beds (due to low water levels

or drying-up) were disregarded with up to a five meter buffer distance (for roads /
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Table 3.3: . Summary of selected spatial metrics. A is the total landscape area, ai j is
area of patch i j, pi j is the perimeter of patch i j, ni is the number of patches for patch
i, and Z is the total number of cells in the landscape, eik is the total edge in landscape
between patch types i and k, m′ is number of patch types present in the landscape
including landscape border (Mcgarigal & Marks, 1995).

Spatial
Metric

Formula Description Value Range

Patch
Density
(PD)

ni
A ∗ (10000)∗ (100) Number of patches

per 100 ha for a
patch type within a
landscape.

PD > 0. Increases without
limit, with larger values show-
ing more fragmentation.

Edge
Density
(ED)

∑
m′
k=1 eik

A ∗ (10000) Sum of lengths of
boundary segments
of the corresponding
patch type divided by
the total landscape
area.

ED ≥ 0. Increases without
limit. ED = 0 when the en-
tire landscape and landscape
border consists of only one
patch of the corresponding
patch type. Larger ED values
depict a corresponding high
fragmentation.

Cohesion
Index
(CI)

[
1− ∑

n
j=1 pi j

∑
n
j=1 pi j

√ai j

]
∗[

1− 1√
Z

]−1

Provides information
on the physical
connectedness of
patches within a
landscape.

0 < CI < 100. Increasing
CI correspond to a higher
degree of patch connected-
ness or low fragmentation,
whereas CI approaching zero
means increasing patch sub-
divisions.

trails). ’Burn scars’ generated from post-processing were also disregarded in the

analysis since such static fire events do not give a true reflection of the influence

of fire on vegetation dynamics, particularly when compared maps are years apart.

Further, areas within and around dense human settlements, particularly the Skukuza

camp, with recreational turfs (e.g. golf course) that are similar to grazing lawns in

structure and spectra were manually digitized and excluded from the analysis. The

above modifications helped to minimise the effects of classification errors due to the

reduction in area considered. Further, it is consistent with the ecology of grazing lawn

dynamics, including persistence; switch to other vegetation types such as tall bunch

grass due to low grazing frequency; or switch to bare patches due to degradation from

overgrazing and / or trampling (Hempson et al., 2015).
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3.3 Results

3.3.1 Land Cover Classification

Multi-temporal land cover classifications are presented for Site 1 (Figures 3.3, 3.4

and 3.5), Site 2 (Figures 3.6, 3.7 and 3.8) and Site 3 (Figures 3.9, 3.10 and 3.11).

A clear evolution in the extent of grazing lawn distribution can be observed for Site 1

and Site 3. In both landscapes, grazing lawns extended to cover areas that previously

had no grazing lawn presence from 2002 to 2014 and 2014 to 2019. In contrast, no

clear pattern in the spread of grazing lawns was observed for Site 2 ((Figures 3.6,

3.7 and 3.8). The widest distribution of grazing lawns at Site 2 was observed in 2014

(Figure 3.7), while grazing lawn patches were mostly confined to the lower left fringes

of the landscape in 2019 (Figure 3.8). It should be noted that the 2002 image for Site

2 had a significant amount of cloud cover, and thus, did not give the true distribution

of grazing lawns.

Table 3.4 shows accuracy scores for individual land cover categories and the overall

classification derived from confusion matrices (Appendix B). Generally, land cover

classification accuracies were very high with mean F-scores over the considered

time periods of 0.91, 0.98 and 0.98 for Site 1, Site 2 and Site 3 respectively, for

all considered time periods. High classification accuracy is critical to minimize errors

in post-classification change detection. For the land cover categories considered in

analysis of changes from grazing lawns to other classes and vice versa, average F-

scores for Site 1, Site 2 and Site 3 respectively were: 0.92 (2002), 0.98 (2014) and

0.98 (2019) for woody; 0.89 (2002), 0.93 (2014) and 0.96 (2019) for bunch grass; 0.96

(2002), 0.96 (2014) and 0.97 (2019) for grazing lawns; and 0.91 (2002), 0.99 (2014)

and 0.99 (2019) for bare.
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Figure 3.3: Land cover map for Site 1 from IKONOS image in 2002.
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Figure 3.4: Land cover map for Site 1 from IKONOS image in 2014.
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Figure 3.5: Land cover map for Site 1 from Planet image in 2019.
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Figure 3.6: Land cover map for Site 2 from QuickBird image in 2002.
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Figure 3.7: Land cover map for Site 2 from WorldView-2 image in 2014.
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Figure 3.8: Land cover map for Site 2 from WorldView-3 image in 2019.
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Figure 3.9: Land cover maps for Site 3 from IKONOS image in 2002.
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Figure 3.10: Land cover map for Site 3 from IKONOS image in 2014.
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Figure 3.11: Land cover map for Site 3 from WorldView-3 image in 2019.

3.3.2 Changes in Grazing Lawn Cover and Structure

Table 3.5 shows a summary of area coverage and changes for the land cover cat-

egories considered in grazing lawn change analysis. To ensure consistency in area

comparison and change assessment, areas affected by cloud pollution and burnt

areas were disregarded across all years. For example, for Site 2, the equivalent areas

in 2014 and 2019 of cloud covered areas in 2002 were not included in the calculation

of land cover area. For each site, changes in land cover area were expressed as a

proportion of the entire landscape area.

Generally, dynamics in grazing lawn area showed a similar trend to the extent of

grazing lawn distribution presented for Site 1 (Figures 3.3, 3.4 and 3.5), Site 2 (Figures

3.6, 3.7 and 3.8) and Site 3 (Figures 3.9, 3.10 and 3.11). For Site 1, grazing lawn area

coverage increased sharply between 2002 (3.89 km2) and 2014 (6.56 km2) equivalent

to 2.15% of the total landscape area and a marginal increase of 0.71% between 2014

and 2019 (7.44 km 2). Grazing lawn area coverage peaked in 2014 (2.48 km2) for Site

2, with a 2.05% increase from 2002 (1.11 km2). However, between 2014 and 2019
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Table 3.4: Summary of land cover classification accuracy scores for individual land
cover categories and overall classification. Overall accuracy scores are weighted
averages of accuracy scores from individual land cover classifications. Acronyms P,
R and F represent precision, recall and F-score respectively.

Site 1
Land Cover 2002 2014 2019

P R F P R F P R F
Woody 0.97 0.96 0.97 1.00 0.95 0.97 0.90 0.87 0.89

Bunch grass 0.95 0.95 0.95 0.88 0.96 0.92 0.88 0.83 0.85
Grazing lawns 0.97 0.99 0.98 0.97 0.99 0.98 0.91 0.96 0.93

Water body 0.96 0.98 0.97 1.00 1.00 1.00 0.86 0.86 0.86
Bare 0.99 1.00 0.99 0.99 0.99 0.99 0.83 0.77 0.80

Built-up 0.94 0.89 0.91 0.88 0.80 0.84 0.81 0.81 0.81
Overall 0.97 0.97 0.97 0.97 0.97 0.97 0.88 0.87 0.88

Site 2
Land Cover 2002 2014 2019

P R F P R F P R F
Woody 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.97 0.98

Bunch grass 0.96 0.97 0.96 0.91 0.98 0.94 0.89 0.89 0.89
Grazing lawns 0.94 0.98 0.96 0.99 0.98 0.99 0.91 0.92 0.92

Water body 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
Bare 0.99 0.98 0.99 0.99 1.00 0.99 0.98 0.98 0.98

Built-up 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Overall 0.98 0.98 0.98 0.99 0.99 0.99 0.97 0.97 0.97

Site 3
Land Cover 2002 2014 2019

P R F P R F P R F
Woody 1.00 0.97 0.98 0.99 0.98 0.98 0.96 0.97 0.97

Bunch grass 0.96 0.99 0.98 0.97 0.99 0.98 0.92 0.92 0.92
Grazing lawns 0.97 0.99 0.98 1.00 0..99 0.99 0.97 0.98 0.98

Water body 1.00 1.00 1.00 0.93 1.00 0.97 0.98 0.98 0.98
Bare 1.00 1.00 1.00 0.98 1.00 0.99 0.98 1.00 0.99

Built-up 0.97 0.95 0.98 0.97 0.85 0.91 0.99 0.96 0.98
Overall 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97

(1.63 km2), grazing lawn area coverage decreased by 1.27% of the total landscape

area. Similar to Site 1, a progressive increase in grazing lawn coverage was recorded

for Site 3. Between 2002 (3.08 km2) and 2014(5.39 km2), the grazing lawn extent of

Site 3 increased by 2.29%, and by a significant proportion of 7.53% between 2014

and 2019 (12.99 km2) (Table 3.5). When considering the overall analysis period from

2002 to 2019, grazing lawn extent increased by 2.86%, 0.77% and 9.82% for Site 1,

Site 2 and Site 3 respectively.
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Table 3.5: Summary of land cover area and changes for all sites. Only land cover
classes relevant for grazing lawn dynamics are considered. Changes (%) correspond
to proportion of the total area for each study site.

Land Cover Area Coverage and Percentage Changes
2002 (km2) 2014 (km2) 2019 (km2) 2002/2014

Change(%)
2014/2019
Change(%)

2002/2019
Change(%)

Site 1
Woody 25.35 22.45 20.18 -2.33 -1.83 -4.16
Bunch grass 32.21 30.34 34.15 -1.51 3.07 1.56
Grazing lawn 3.89 6.56 7.44 2.15 0.71 2.86
Bare 0.13 0.09 0.16 -0.03 0.06 0.02

Site 2
Woody 24.01 24.23 22.54 0.33 -2.53 -2.20
Bunch grass 16.41 14.23 16.48 -3.26 3.36 0.10
Grazing lawn 1.11 2.48 1.63 2.05 -1.27 0.77
Bare 0.09 0.20 1.14 0.16 1.41 1.57

Site 3
Woody 21.31 22.83 31.51 1.51 8.61 10.11
Bunch grass 65.26 60.75 43.79 -4.47 -16.81 -21.28
Grazing lawn 3.08 5.39 12.99 2.29 7.53 9.82
Bare 0.45 0.75 0.79 0.29 0.04 0.34

Apart from changes in the overall extent of grazing lawns, the specific direction of

change between grazing lawns and other land cover types was revealed using a

transition matrix (see Section 3.2.5). Based on the ecology of grazing lawn dynamics

(Hempson et al., 2015), three main change trajectories can be identified. This in-

cludes: (i) grazing lawns taking over areas that are either covered by other vegetation

components such as bunch grasses and shrubs or bare soil surface; (ii) grazing lawn

patches being colonized by other vegetation types; and (iii) grazing lawns degrading

and dying off to create bare soil surfaces. Thus, the analysis of grazing lawn dynamics

was limited to and from woody, bunch grass and bare land cover categories. The full

transition matrices for all sites is available in Appendix B.

Table 3.6 shows the magnitude of different grazing lawn change trajectories expressed

in terms of the proportion of total landscape area for Site 1, Site 2 and Site 3. As

expected, the most gains in grazing lawn area coverage were from bunch grass.

This pattern was prevalent for all sites and periods, although there were variations

between different periods. For example, greater proportions of bunch grass to grazing

lawn switches were recorded between 2002 and 2014 than between 2014 and 2019
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for Site 1 (2002/2014 = 3.51% [4.36 km2] and 2014/2019 = 2.01% [2.49 km2]) and

Site 2 (2002/2014 = 1.89% [1.26 km2] and 2014/2019 = 1.25% [0.83 km2]). On the

contrary, Site 3 recorded more bunch grass to grazing lawn switches between 2014

and 2019 (8.39% [8.46 km2]) than between 2002 and 2014 (2.93% [2.95 km2]).

Table 3.6: Relative change trajectories of grazing lawn cover expressed as proportion
of the overall landscape area.

Change Trajectory Proportion of Landscape Area (%)
2002/2014 2014/2019 2002/0219

Site 1
Woody to Grazing lawn 1.19 0.38 0.75
Bunch grass to Grazing lawn 3.51 2.01 5.51
Grazing lawn to Woody 0.27 0.62 0.42
Grazing lawn to Bunch grass 0.84 2.59 2.55
Grazing lawn Unchanged 1.59 3.57 2.86
Grazing lawn to Bare 0.17 0.09 0.04
Bare to Grazing lawn 0.07 0.26 0.08

Site 2
Woody to Grazing lawn 1.02 0.88 0.59
Bunch grass to Grazing lawn 1.89 1.25 1.41
Grazing lawn to Woody 0.36 1.53 0.45
Grazing lawn to Bunch grass 0.37 1.77 0.47
Grazing lawn Unchanged 0.66 1.19 0.39
Grazing lawn to Bare 0.05 0.49 0.28
Bare to Grazing lawn 0.02 0.02 0.01

Site 3
Woody to Grazing lawn 0.87 1.81 2.32
Bunch grass to Grazing lawn 2.93 8.39 9.72
Grazing lawn to Woody 0.47 1.52 0.89
Grazing lawn to Bunch grass 1.33 1.02 0.72
Grazing lawn Unchanged 1.02 2.34 1.19
Grazing lawn to Bare 0.13 0.27 0.16
Bare to Grazing lawn 0.17 0.17 0.12

Transitions from grazing lawn to other land cover followed a similar trajectory as from

other land cover to grazing lawns, where majority of the transitions were with bunch

grass followed by woody cover (Table 3.6). This was the case particularly for Site 1 and

Site 2 in all periods (i.e. 2002/2014 and 2014/2019). However, a different transition

pattern from grazing lawn to other land cover types emerged for Site 3 between 2014

and 2019. where a greater proportion of grazing lawns were colonized by woody
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cover (1.52% [1.53 km2]) compared to bunch grass (1.02% [1.03 km2]). The spatial

distributions of grazing lawn transitions are presented in Figures 3.12, 3.13 and 3.14

for Site 1; Figures 3.15, 3.16 and 3.17 for Site 2; and Figures 3.18, 3.19 and 3.20 for

Site 3.

Figure 3.12: Grazing lawn change map for study site 1 for the period between 2002
and 2014.
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Figure 3.13: Grazing lawn change map for study site 1 for the period between 2014
and 2019.
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Figure 3.14: Grazing lawn change map for study site 1 for the period between 2002
and 2019.
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Figure 3.15: Grazing lawn change map for study site 2 for the period between 2002
and 2014.
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Figure 3.16: Grazing lawn change map for study site 2 for the period between 2014
and 2019.
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Figure 3.17: Grazing lawn change map for study site 2 for the period between 2002
and 2019.
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Figure 3.18: Grazing lawn change map for study site 3 for the period between 2002
and 2014.
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Figure 3.19: Grazing lawn change map for study site 3 for the period between 2014
and 2019.
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Figure 3.20: Grazing lawn change map for study site 3 for the period between 2002
and 2019.

Figure 3.21 shows trends in grazing lawn structure, expressed in terms of the spatial

configuration of grazing lawn patches for each study site. Results from 2002 for Site 1

and Site 2 were eliminated due to cloud cover, in order to avoid incorrect comparison

and conclusions. For Site 1, both PD and ED decreased between 2014 and 2019,

pointing to a decrease in number of grazing lawn patches per unit area, whereas

CI showed an increasing trend showing an increasing degree of connectedness of

grazing lawn patches within the landscape. Site 2 showed more grazing lawn patches

but a decrease in connectivity from 2014 to 2019. Site 3 had results from all years

and showed a positive trend for all metrics (Figure 3.21), depicting a general increase

in grazing lawn patches and in closer proximity to each other from 2002 to 2014 and

from 2014 to 2019.
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Figure 3.21: Plots of spatial metrics showing dynamics in grazing lawn structure over
time: (A) Patch Density (PD); (B) Edge Density (ED); and (C) Cohesion Index (CI).

3.4 Discussion
Analysis of changes in grazing lawn cover showed a consistent increase in the area

coverage of grazing lawns and a corresponding wider spread of grazing lawns between

2002 and 2014 for all sites (see Table 3.5). This is corroborated by the fact that the

combined areas of grazing lawns that remained unchanged and areas that switched

from other land cover types to grazing lawns far exceeded transitions from grazing

lawns to other land cover categories for the same period (Table 3.6). This pattern

of grazing lawn persistence and spread could be explained by their characteristic

attractiveness to grazers whose activity plays a significant role in the formation and

maintenance of grazing lawns in the savannah landscape (Cromsigt & Beest, 2014;

Cromsigt & Olff, 2008; Hempson et al., 2015). A typical pathway for grazing lawn form-

ation has been linked to the interactive effect of fire and herbivory, where fresh grass

sprouting from newly burned areas attracts grazers, resulting in continuous grazing on

post-burn sites which leads to the establishment of grazing lawns (Donaldson et al.,

2018). Although this increases the risk of already established grazing lawns patches
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being colonized by tall grass swards due to abandonment by grazers, such fire-

herbivore interaction drives the spread of grazing lawns (Archibald, 2008; Donaldson

et al., 2018). This may explain the observed wider distribution of grazing lawns, given

high frequency of fire events in the savannah landscape (Archibald et al., 2005). Apart

from the provision of nutritional benefits for grazers, the low herbaceous cover on

grazing lawn patches provides protection to herbivores by significantly reducing the

risk of predation due to increased visibility (Hempson et al., 2015; Voysey et al.,

2021). It therefore possible that the cumulative activities of herbivores resulted in

the widespread formation and persistence of grazing lawns in the 2002/2014 study

period.

In contrast with the findings from the 2002/2014 period, a differential pattern in grazing

lawn dynamics was observed during the drought-impacted 2014/2019 period (Table

3.5). For example, grazing lawn cover increased marginally for Site 1, decreased for

Site 2 and increased substantially for Site 3. This inconsistent trend in grazing lawn dy-

namics could be explained by drought-induced interruptions in ecosystem processes

(Sankaran, 2019) with spatially varying implications. For example, Donaldson et al.

(2020) reported that droughts decouple grazers from already established grazing

lawn patches, which leads to colonization of such areas by tussock grasses during

post-drought vegetation recovery. Additionally, droughts can intensify the impacts of

grazing and grazer movement which can lead to substantial declines or degradation

of grasses both in drought areas and non-drought refugia (Staver et al., 2019). The

intensity of drought impacts varies spatially within savannah landscapes, particularly

due to spatial variation in factors such as topography and available soil moisture

(Sankaran, 2019). Lower lying areas with relatively more soil moisture and surface

water availability have been associated with high grazer activity (Redfern et al., 2003;

Smit, 2011; Smit et al., 2007). Such landscape-scale distribution of grazers is even

more pronounced during dry periods when surface water is spatially limited (Redfern

et al., 2003) and moisture content of graze is low (Berry & Louw, 1982). Compared

with Site 1 and Site 2, Site 3 is strongly influenced by the Sabie river catchment, which

together with the drainage channels, makes up approximately 80% of the landscape

area (Figure 3.1). It is therefore conceivable that the impacts of drought stress on

grasses would be relatively less intense in areas with relatively more water/moisture

availability than the surrounding landscape. This coupled with the strong association

of grazers to available moisture (Smit, 2011) could explain the recorded increase in

grazing lawn presence during post-drought recovery (see site 3 maps and Table 3.5).
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The majority of the transitions between grazing lawns and other land cover types

occurred occurred with the bunch grass class. This finding is not surprising given

that such change trajectory is known to be the most common in savannah vegetation

dynamics (Archibald et al., 2005; Archibald, 2008; Cromsigt & Olff, 2008; Donaldson

et al., 2018; Hempson et al., 2015). This suggests that the principal drivers of change

in grazing lawn cover are grazers and their interaction with fire. This accords with

earlier observations by Donaldson et al. (2018) and Hempson et al. (2019), which

showed grazers, fire and their interaction as the key drivers of alternate grassland

states (i.e. fire adapted tall grasses verses grazer adapted short grasses). Between

2014 and 2019, results for Site 3 however deviated from the grazing lawn to bunch

grass trajectory, with a greater proportion of grazing lawns switching to woody cover.

This is consistent with observed drought impacts on fire and herbivory and how that

impacts post-drought woody vegetation recovery (Sankaran, 2019). Balfour & How-

ison (2002) reported that increasing drought frequency and protracted drought events

are expected to decrease frequency and size of individual burns due to reduced

grass fuel biomass. Additionally, droughts reduce browsing pressure due to herbivore

mortality (Walker et al., 1987). With fire and browsers being the main consumers of

woody vegetation biomass, drought-induced reduction of these consuming forces will

favour recruitment of woody vegetation, which could potentially explain the observed

pattern of grazing lawn transition.

Analysis of grazing lawn structure revealed their spatial configuration for all sites and

periods (Figure 3.21). Results are presented for only 2014 and 2019 for site 1 and Site

2 due to cloud cover in the respective 2002 imagery. Site 3 however yielded results

from all years (i.e. 2002, 2014 and 2019). The results showed differing patterns of

grazing lawn expansion and spatial heterogeneity for all sites. Even though Site 1

experienced an increase in grazing lawn cover between 2014 and 2019 (Table 3.5)

the number of grazing lawn patches per unit area decreased during the same period,

while the degree of connectedness increased. This shows that most of the observed

grazing lawn expansion in Site 1 occurred as an extension of previous grazing lawn

patches. This phenomenon is consistent with the maps of grazing lawn transition

where most of the gains in grazing lawns occurred adjacent to stable patches (see

Site 1 transition maps). In contrast, Site 2 showed a more heterogeneous pattern

of grazing lawn spatial configuration between 2014 and 2019, with the observed

losses in previously established cover (see Table 3.5) increasing the degree of spatial

isolation. Such high heterogeneity in grazing lawn cover could favour a more diverse

habitat structure (Hempson et al., 2019) within the landscape. Given the low fuel
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biomass on grazing lawns, widespread occurrence of small pockets of grazing lawn

patches could effectively alter fire regimes within the landscape, including fire spread,

intensity and frequency (Archibald et al., 2005; Donaldson et al., 2018; Hempson

et al., 2015). A unique pattern of grazing lawn spatial configuration was observed

for Site 3, which showed a progressive increase in grazing lawn patches per unit

area with increasing proximity of patches between 2002 and 2014 and from 2014

to 2019 (see Site 3 maps and Figure 3.21). From the perspective of grazing lawn

ecology, physical characteristics of Site 3 makes it ideal for increased presence of

grazing lawn cover. For example, Site 3 is dotted by a number of sodic sites and is

largely covered with drainage channels with their associated catenas. Such landscape

characteristics naturally attract and concentrate grazers in the savannah landscape

resulting in widespread formation and persistence of grazing lawns (Archibald et al.,

2005; Archibald, 2008; Donaldson et al., 2018; Hempson et al., 2015).

3.5 Conclusions

This study sought to analyse spatial and temporal dynamics of grazing lawns in south-

ern African savannahs using multi-temporal very high-resolution satellite images. Two

temporal windows were used. The first one from 2002 to 2014, represented a period

with no drought stress (Figure 3.2), and highlighted what can be considered as the

regular dynamics in grazing lawn cover, driven by factors that continuously shape

the ecology of grazing lawns. The second period from 2014 to 2019, experienced a

major drought event and provided the opportunity to investigate how drought stress

impacted dynamics in grazing lawn cover. The results showed an increase in grazing

lawn cover within all the sites used for the analysis in the absence of drought stress

(i.e. between 2002 and 2014). During this period (2002 to 2014) change trajectory

of grazing lawn cover was dominated by transitions to bunch grass and vice versa,

indicating that the activities of grazers and fire were the principal drivers of change. On

the other hand, differential patterns of grazing lawn cover and structural changes were

observed between 2014 and 2019, a period that recorded a major drought event. The

impacts of drought on grazers and fire regimes therefore confounded post-drought

vegetation recovery with mixed consequences for grazing lawn dynamics. The find-
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ings from this study support previous understanding of the origin and persistence of

grazing lawns as mainly shaped by the individual and interactive effects of fire and

grazers. Additionally, the findings suggest that drought impacts on grazing lawns and

overall vegetation recovery is strongly mediated by local landscape characteristics.
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Chapter 4

Multi-sensor Optical Image Fusion for

Land Cover Classification in a

Heterogeneous African Savannah:

Toward Accurate and Cost Effective

Grazing Lawn Monitoring

4.1 Introduction
Short grass grazing lawn patches are significant components of habitat heterogeneity

in savannah ecosystems (Cromsigt & Olff, 2008; Hempson et al., 2015,1). Their form-

ation is controlled by the dynamic interactions between the activities of grazers and

fire but are maintained by constant grazing (Archibald et al., 2005; Donaldson et al.,

2018). Frequent grazing creates a feedback of dense nutrient-rich growth which in turn

attracts more grazers. Further, their presence may be relatively stable in different parts

of the savannah landscape where localised availability of resources such as nutrient

hot-spots (e.g. termite mounds and sodic sites (Hempson et al., 2015)) and water

bodies (Awuah et al., 2020; Hempson et al., 2015) concentrate grazers. Compared to

bunch grasses, grazing lawns are highly nutritious and the preferred food resource for

certain short-grass grazer species due to their low stem to leaf and carbon to nitrogen

(C:N) ratios. In southern Africa, the availability of such nutritious forage has been

linked to grazer movement (Voysey et al., 2021) and herbivore reproductive phenology

with consequences for ungulate population dynamics (Owen-Smith & Ogutu, 2013).

Additionally, grazing lawn patches act as natural breaks that curtail the spread of

fire due to their limited above ground fuel biomass (Gill et al., 2009; Waldram et al.,

2008). By influencing patterns in herbivory and fire regimes, the presence and ex-
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tent of grazing lawn cover could potentially have significant cascading impacts on

ecosystem processes such as plant community composition, nutrient cycling, habitat

structure and biodiversity (Hempson et al., 2019). Accurate knowledge of grazing lawn

extent and distribution is thus essential to enhance understanding of the ecology of

savannah grassland systems.

Satellite remote sensing technology offers unparalleled opportunities for cost-effective

spatio-temporal quantification and analysis of land cover distributions. The availability

of open-access satellite imagery - such as those from the Landsat (Wulder et al.,

2012) and Sentinel-2 (Drusch et al., 2012) missions - and accompanying image

processing frameworks have expedited land cover classification workflows with en-

hanced accuracy. Some regions and biomes such as forests have been studied ex-

tensively, partly due to standardized classification workflows and methodology. Con-

versely, savannahs in particular have received relatively little attention and remain

a major source of uncertainty in land cover products globally (Bastin et al., 2017;

Griffith et al., 2017). Recent research has focused on optimizing savannah land cover

characterization mainly through the use of multi-source satellite images (Borges et al.,

2020; Liu et al., 2017; Symeonakis et al., 2018), improved image resolution and

benchmarking of classification methods (Awuah et al., 2020; Kaszta et al., 2016).

However, the inherent high spatial heterogeneity in savannah landscapes and spectral

similarity between different vegetation components still present considerable chal-

lenges for accurate discrimination of vegetation components.

To deal with the spectral confusion among different vegetation components, integ-

ration of multi-season image acquisitions (Borges et al., 2020; Symeonakis et al.,

2018) and the use of images from the dry season (Bucini et al., 2009,1) have been

proven to capitalize on phenological differences and increase discrimination space

among spectrally similar vegetation components. The use of radar imagery or LiDAR

has also been useful to discriminate between vegetation components by including

structural information, e.g. grass vs woody vegetation (Cho et al., 2012; Symeonakis

et al., 2018). Yet, classification accuracy is influenced significantly by image spatial

resolution (e.g. see Marston et al. (2017)), where medium resolution imagery is im-

paired by pixel mixing under spatially heterogeneous savannah landscape conditions,

restricting their success to rather general and continuously distributed target land

cover classes. Current research favours very high spatial resolution (VHR, ≤ 5m)

satellite imagery for dealing successfully with these challenges (e.g. Awuah et al.

(2020); Kaszta et al. (2016); Marston et al. (2017)). For example, Marston et al. (2017)
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showed that VHR IKONOS, Quickbird and WorldView-2 imagery can discriminate

more savannah vegetation classes and at higher accuracies (OA: > 87.7%) than

medium resolution imagery (OA: 75.2%). In a related study, Awuah et al. (2020)

demonstrated the potential of WorldView-3 imagery for mapping plant functional types

including grazing lawns in mesic and semiarid southern African savannahs with very

high accuracies (> 90%).

Generally, pixel-based classification tends to perform better when image spatial res-

olution is relatively coarse (Gao & Mas, 2008). However, the prevalence of high

within-class spectral variance in VHR imagery increases misclassification and can

create a ’salt-and-pepper’ effect when using pixel-based classification (Kaszta et al.,

2016; Van der Sande et al., 2003). Alternatively, object-based image analysis (OBIA)

aggregates pixels through the process of segmentation, creating contiguous groups

of pixels with high spectral homogeneity known as image objects (Blaschke et al.,

2014). OBIA is widely recommended for the classification of VHR imagery (Blaschke

et al., 2014; Maxwell & Warner, 2015), particularly in heterogeneous landscapes (Ali

et al., 2016; Kaszta et al., 2016; Xu et al., 2019). In a specific African savannah

classification using WorldView-2 imagery, Kaszta et al. (2016) showed that OBIA

had a significantly higher accuracy across all seasons and different machine learning

frameworks relative to pixel-based classification.

While VHR satellite images are ideal for heterogeneous savannah landscapes, such

high resolution data are costly for operational monitoring of savannah vegetation

and other land cover dynamics. A recent partnership involving Norway’s International

Climate and Forests Initiative (NICFI), Kongsberger Satellite Services (KSAT), Planet

Labs and Airbus now grant free access to high-resolution, analysis-ready mosaics of

Planet imagery over tropical regions (Planet, 2017). This promises new opportunities

for rapid and cost-effective vegetation monitoring at high spatial scales. High spatial

resolution Planet imagery have been proven successful for vegetation mapping, par-

ticularly in forest (Francini et al., 2020) and agricultural (Laso et al., 2020) landscapes.

However, their spectral characteristics are limited and have shown less success in

resolving the spectral similarity of different savannah vegetation components (Sy-

meonakis et al., 2019). Alternatively, open-access medium resolution satellite images

such as Landsat Operational Land Imager (OLI) and Sentinel-2 sample relatively

high numbers of spectral bands, potentially useful for mapping vegetation in African

savannah landscapes (Symeonakis et al., 2019).
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In this study, we leverage both the high number of spectral bands of Sentinel-2 im-

agery and high spatial resolution of Planet imagery, integrating these two data sources

for discrimination of different vegetation components in a heterogeneous southern

African savannah landscape, towards accurate grazing lawn classification.

This study explores pixel-level image fusion approaches for integrating Sentinel-2

and Planet imagery. In comparison with other popular image fusion techniques such

as the Intensity-Hue-Saturation transform (Siddiqui, 2003) and Principal Component

transform (Yocky, 1995), Gram-Schmidt transformation (Laben & Brower, 2000) has

been found to be fast and generates fused images with high spatial detail while

preserving spectral integrity (Jenerowicz & Woroszkiewicz, 2016; Laben & Brower,

2000). Rokni et al. (2015) compared Modified Intensity-Hue-Saturation, High Pass

Filter, Gram Schmidt and Wavelet-PC (Principal Components) techniques for fusion

of multi-temporal Landsat Enhanced Thematic Mapper Plus (ETM+) 2000 band 8 (15

m) and Landsat Thematic Mapper (TM) 2010 multispectral (30 m) images towards

surface water detection. The study (Rokni et al., 2015) found the Gram-Schmidt

image fusion technique to produce better outcomes both in terms of resulting im-

age quality and classification. Further, the potential of Gram-Schmidt transformation

for multi-sensor image fusion has been successfully demonstrated, with examples

including pixel-level fusion of Unoccupied Aerial Vehicle (UAV) derived VHR aerial

imagery with Landsat-8 OLI (Zhao et al., 2019) and Sentinel-2 imagery (Jenerowicz

& Woroszkiewicz, 2016) in agricultural landscapes. The performance of the differnt

pan-sharpening approaches has not been demonstrated in heterogeneous savannah

landscape. Therefore this study compares the Gram-Schmidt and Principal Compon-

ent transformations in the fusion of Sentinel-2 and Planet imagery.

We hypothesize that, fusion of Sentinel-2 images with Planet imagery leverages their

spectral and spatial advantages and enhances discrimination of savannah vegetation

types leading to higher grazing lawn detection accuracies. To test this hypothesis, we

(i) compare the performance of Gram-Schmidt and Principal Component methods for

image fusion to select the best fusion outcome; and (ii) compare the original Sentinel-

2 and Planet imagery with their fused version (i.e. Sentinel-2 + Planet imagery) for

discriminating grazing lawns from other heterogeneous savannah land cover types.
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4.2 Materials and Methods

4.2.1 Study Site

The study site is located in Kruger National Park (KNP), South Africa (Figure 4.1). The

test area covers 1220 ha extending over portions of the Sabie River catchment and

encompassing the Nkhulu exclosure within the Lower Sabie region of KNP. Mesic

savannah landscape conditions prevail within the area with mean rainfall ranging

between 600 mm and 700 mm annually (Venter et al., 2003). The site has underlying

granite geology and is dotted with sodic sites often occurring at the footslopes of

catenas, which are known to have high soil sodium content. Sodic sites provide

dietary sodium supplement and thus, attract and concentrate grazers on these parts

of the savannah landscape, making them significant drivers in grazing lawn formation

(Hempson et al., 2015). Vegetation within the study site is predominantly composed

of thorn thickets (e.g., Acacia robusta), silver clusterleaf (Terminalia sericea) and sour

grasses (Hyparrhenia filipendula) (Venter, 1991). Apart from the abiotic determinants

of vegetation type distribution in KNP, the presence of a high herbivore population

density such as the African elephant (Loxodonta africana) and dominant grass con-

sumers (with >50% of grass in diet) such as impala (Aepyceros melampus), blue

wildebeest (Connochaetes taurinus), zebra (Equus quagga), buffalo (Syncerus caf-

fer ) and white rhino (Ceratotherium simum) (Kleynhans et al., 2011) exert significant

impact on vegetation structure.

4.2.2 Land Cover Classification Nomenclature

To discriminate grazing lawns from other vegetation types, three vegetation classes

were identified based on structure. These included (i) woody; (ii) bunch grass; and

(iii) grazing lawns. The target vegetation classes provided for a more objective in-

situ and image-based discrimination of vegetation components during reference data

collection. Trees and shrubs in savannah landscapes are structurally complex to dis-

criminate due to disturbance adaptations (e.g. multiple stems, toppled, leaning etc.)

and height limitations among others (Zizka et al., 2014). These were thus grouped

under a single woody category. Grazing lawns were identified as short grass patches

with height ≤ 20 cm, often with sparse distribution and stoloniferous growth behavior,
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Figure 4.1: Map of study area showing location of the Lower Sabie field site in Kruger
National Park (KNP), with enlarged view of the Planet image scene (False colour:
R, NIR, G) from NICFI overlaid with the Nkhulu exclosure boundary (sourced from
South African National Parks Scientific Services (Siebert & Eckhardt, 2008)). Inset
map shows the location of KNP within South Africa.

while grass patches > 20 cm in height were categorized as bunch grasses. In addi-

tion to the vegetation classes, water bodies, bare soil and built-up were considered,

totalling six land cover classes used for image classification. A summary of land cover

classification nomenclature is provided in Table 4.1.

Table 4.1: Description of land cover classification nomenclature and reference data.
Reference samples are expressed as number of polygons and total area covered by
polygons (in sq km) for each land cover class.

Land cover Reference samples

ID Name Description Number of polygons Area coverage (km2)

1 Woody
Woody vegetation components including trees and shrubs at different phenological
stages.

1908 0.071

2 Bunch grass
Tall grass patches often with upright growth form and dense distribution that are
>20 cm in height.

679 0.101

3 Grazing lawn
Short grass patches with stoloniferous growth form and <20 cm in height, often
sparsely distributed.

457 0.077

4 Water body
Water bodies occurring within the landscapes including rivers, streams and reservoirs.
The landscape is mainly drained by the Sabie River.

56 0.03

5 Bare Patches of exposed soil including dusty trails and rocky outcrops. 262 0.034

6 Built-up
Built artificial structures within the landscape, mostly asphalt and concrete coated
surfaces such as roads and bridges and buildings.

36 0.007
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4.2.3 Reference Data

Field surveys were conducted in the dry season of 2019 between June 27 and July

21. A total of 111 point locations systematically distributed within a 200 m buffer

and beyond 100 m distance from access roads were visited. Site descriptions of

surrounding vegetation patches and other land cover were recorded together with

cardinal direction photographs (north, east, south, west) to aid reference data gener-

ation. Data from in-situ reference locations were supplemented with 497 randomly

distributed points within the bounds of the image footprint, with minimum spatial

separation distance of 100 m to minimize autocorrelation. Overall, 3398 polygons

were manually digitized from spectrally homogeneous areas within 100 m radius of

sample point locations based on knowledge from field visits. Digitized polygon objects

have been shown to produce the most accurate classification outcomes compared to

other approaches for extracting training data such as points, lines and segmentation

objects (Corcoran et al., 2015; Ma et al., 2017). Reference polygons were labeled

according to the different land cover categories (Table 4.1) via visual interpretation of

very high-resolution WorldView-3 imagery and Google Earth satellite scenes with the

same temporal window (June/July 2019), augmented by field photos and descriptions

of land cover.

4.2.4 Remote Sensing Data and Preprocessing

The remote sensing data used in this study comprise cloud-free Sentinel-2A and

Planet images taken during the dry season. Image acquisition dates coincide with

the period of in-situ land cover surveys (see Section 4.2.3), to allow consistent clas-

sification and accuracy assessment. The Sentinel-2A and Planet images were co-

registered to the WorldView-3 image used in reference polygon creation to allow

spatial consistency during the extraction of reference pixels and comparison of clas-

sification results.

Sentinel-2 is a multi-spectral satellite imaging mission designed and operated by the

European Space Agency (ESA) as part of the Global Monitoring for Environment

and Security (GMES) initiative (Drusch et al., 2012). It includes a constellation of two

polar-orbiting satellites (Sentinel-2A and Sentinel-2B), phased at 180o to each other

in a sun-synchronous orbit. The integration of two satellites provides a 5-day revisit

frequency at the equator with a 290 km swath (Sadeh et al., 2021). The mission

features a Multi Spectral Instrument (MSI) which samples 13 spectral bands ranging

104



from visible and near infrared to shortwave infrared portions of the electromagnetic

spectrum. The spatial resolution varies depending on the spectral bands: four bands

at 10 m, six bands at 20 m and three bands at 60 m. Sentinel-2 images are freely

available for download from a number of open-access portals, but primarily served

on the Copernicus Open Access Hub website (https://scihub.copernicus.eu/).

In this study, the Sentinel-2A image was acquired through the Google Earth Engine

platform (Gorelick et al., 2017). Images were acquired between May and June 2019

and had been pre-processed to surface reflectance using the Sen2Cor module (Louis

et al., 2016) as Level-2A products, from which a median composite was created.

Overall, 10 spectral bands were used covering the visible and near infrared (NIR)

channels at 10 m spatial resolution and the red edge (RE) and shortwave infrared

(SWIR) bands at 20 m spatial resolution. The RE and SWIR bands were resampled

to 10 m to ensure consistency with the visible and NIR bands.

The Planet image is part of the open-access analysis-ready (ARD) satellite image

data over tropical regions. The archive features bi-annual mosaics between Decem-

ber 2015 and August 2020 and monthly mosaics available from September 2020

onward. Access to this VHR ARD satellite imagery was made available through a

partnership between NICFI, KSAT, Planet Labs and Airbus (operational on October

22, 2020), intended to support efforts against tropical deforestation. The mosaics

are constructed using best pixels from daily Planet imagery processed to surface

reflectance either as three-band (Blue, Green and Red) or four-band (Blue, Green,

Red and Near Infrared) image composites. In this study, the four-band ARD composite

covering June 2019 to December 2019, with spatial resolution of 4.77 m per pixel was

used.

4.2.5 Multi-sensor Image Fusion

Pixel-level image fusion of Sentinel-2A and Planet imagery was achieved via pan-

sharpening using both Gram-Schmidt transformation (Laben & Brower, 2000) and

Principal Component transformation (Yocky, 1995). In this study, the higher spatial

resolution panchromatic band was derived from the Planet image as the mean of

all four bands. To fuse the derived higher spatial resolution panchromatic band with

the lower spatial resolution Sentinel-2A image, first, a lower spatial resolution pan-

chromatic band is simulated from the Sentinel-2A image. Second, Gram-Schmidt

and Principal Component transformations are separately performed on the simulated

lower spatial resolution panchromatic band and the plurality of the Sentinel-2A bands,
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with the lower spatial resolution panchromatic band employed as the first band in

the transformation process. Third, the statistics (mean and standard deviation) of the

higher spatial resolution panchromatic image are adjusted to match the statistics of

the first output band from the Gram-Schmidt and Principal Component transforma-

tions using histogram matching. Fourth, the first transform band is replaced with the

adjusted higher spatial resolution panchromatic band to produce a new set of Gram-

Schmidt and Principal Component transform bands. Finally, an inverse transformation

is performed to return the new set of transform bands into a higher spatial resolution

multi-spectral band space.

The resulting Fused image, and the original Sentinel-2A and Planet images were

tested generally for savannah land cover classification and specifically for grazing

lawn detection, and their accuracy scores were compared.

4.2.6 Image Quality Assessment

The image fusion approach was evaluated to ascertain the improvement of spatial

resolution and preservation of image spectral characteristics. First the fused image

was visually compared to the original images (Sentinel-2A and Planet imagery) to

assess improvement in spatial detail. Second, two statistical metrics were computed

to evaluate the preservation of image spectra. This included: (i) correlation coeffi-

cient (CC) between the original Sentinel-2A image bands and the equivalent bands

from the fused image (CC ranges between -1 and 1, where values closer to 1 or -1

show increasing positive or negative correspondence between band pairs); and (ii)

structural similarity index (SSIM) (Wang et al., 2004) comparing the multi-spectral

Sentinel-2A and fused images. SSIM combines luminance, contrast and structure,

and was calculated with a moving 9 x 9 pixel neighbourhood. SSIM computation using

a moving window over both images helps to capture spatial variation and ultimately

leads to better estimates of (dis)similarity between images (Avanaki, 2009). The 9

x 9 pixel neighborhood was deemed appropriate to cover enough spatial variation

while minimizing computational cost. The SSIM values range between -1 and 1, and

only equals 1 if the two images are identical. CC and SSIM were calculated using

Equations 4.1 and 4.2

CC =
σxy

σxσy
(4.1)
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where σxy is covariance for band pairs (xy) and σx and σy are standard deviations for

band x and y respectively.

SSIM =
(2µxµy +C1)(2σxy +C2)(

µ2
x +µ2

y +C1
)(

σ2
x +σ2

y +C2
) (4.2)

where µx and µy are mean intensities, σxy is covariance, σx and σy are standard

deviations, C1 and C2 are constants for luminance and contrast comparisons respect-

ively, used to stabilize the equation in the presence of weak denominators (Wang

et al., 2004). In this case x and y represent the original Sentinel-2 image and the

fused image respectively. The output from the best performing fusion approach (i.e.,

between Gram-Schmidt and Principal Component pan-sharpening) was selected for

further processing and classification.

4.2.7 Image Segmentation

Image segmentation was performed on all image datasets (i.e. Sentinel-2, Planet

and fused images). This involved the computation of a gradient image from the ori-

ginal input image bands using a Sobel edge detection method (Vincent et al., 2009),

followed by a watershed transform (Roerdink & Meijster, 2000). The watershed trans-

form algorithm is modeled after the hydrologic watershed concept, with a landscape

composed of basins. Basins fill up with water starting at the lowest points until flooded,

and dams are built at the meeting point of water coming from different basins. The

landscape is thus divided into regions (watersheds) separated by dams (watershed

lines). Similarly, the watershed transform algorithm considers the gradient image as

a topological surface where dark pixels represent lower elevation (minimum). The

algorithm sorts the gradient image pixels by increasing intensity values and ’floods’

the image starting with the lowest gradient values (uniform portions of object) to

the highest gradient values (object edges). The results is a segmentation image

partitioned into regions with similar pixel intensities where each region is assigned

the mean intensity value. A Full Lambda algorithm, which merges smaller segments

within larger, textured areas, was used to minimize over-segmentation (Jin, 2012).
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4.2.8 Feature Extraction

In addition to the original segmentation image bands, two spectral indices and three

Haralick textural image features were calculated for all datasets in order to enhance

land cover discrimination space. The spectral indices included the Global Environ-

mental Monitoring Index (GEMI) (Pinty & Verstraete, 1992) (Equation 4.3) and Mod-

ified Soil Adjusted Vegetation Index-2 (MSAVI2) (Laosuwan & Uttaruk, 2014) (Equa-

tion 4.4) while Mean (Equation 4.5), Variance (Equation 4.6) and Sum Average (Equa-

tion 4.7) constituted the Haralick texture features (Haralick et al., 1973). The spectral

indices and texture features were selected following results from a related study

(Awuah et al., 2020), where they ranked amongst the most important features in sa-

vannah plant functional types (PFTs) classification across different machine learning

models. The Haralick texture features were calculated on the NIR band based on

Gray Level Co-occurrence Matrix (GLCM) (Haralick et al., 1973) using a 3x3 moving

window, at an offset distance of 1 pixel in all directions (00, 450, 900 and 1350) (Pratt,

2013; Symeonakis et al., 2018).

GEMI =
2(N2 −R2)+1.5N +0.5R

N +R+0.5
(4.3)

MSAV I2 =
(2N +1)−

√
(2N +1)2 −8(N −R)

2
(4.4)

where N and R are near infrared and red bands respectively.

Mean =
G−1

∑
i j=0

iPx(i) (4.5)

Variance =
G−1

∑
i j=0

(Px(i)−µx(i))2 (4.6)

Sumaverage =
2G−2

∑
i j=0

iPx+y(i) (4.7)

where G is the number of distinct gray levels, i and j are co-occurring intensity values,

Px(i) is the marginal probability of the ith entry obtained by summing rows of the

GLCM, µx(i) is mean of row sums of the GLCM and Px+y(i) represents GLCM sum

distribution.
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4.2.9 Image Classification and Accuracy Assessment

The segmentation image composed of original bands, spectral indices and texture

features (for each dataset) was normalized by subtracting the mean and dividing by

its standard deviation for each image band to minimize bias during algorithm training

and image classification. The normalized segmentation image served as input in a

deep neural network classification model using Multilayer Perceptron (MLP) network

architecture. MLP is a simple feed-forward deep learning model trained via back-

propagation (Goodfellow et al., 2016). MLP neural networks excel at handling complex

non-linear classification tasks (Bischof et al., 1992; Venkatesh & Raja, 2003) making

them ideal for application in a highly heterogeneous savannah landscape (Awuah

et al., 2020). Three hidden layers with 64, 32 and 8 neurons for the first, second

and third hidden layers respectively were found to yield optimal accuracy after initial

experimentation. Dropout layers (Srivastava et al., 2014) were used between the

dense layers, which randomly neglected 20% of weights in order to reduce overfitting

and improve generalization error. The model was compiled using a constant learning

rate of 0.001 with Adams optimizer (Kingma & Ba, 2014) and a categorical cross-

entropy loss function.

Accuracies of classification outputs were assessed using a confusion matrix (Con-

galton & Green, 2019) from which a combination of aggregate and individual class

based metrics were calculated. The accuracy metrics included precision (Equation

4.8), recall (Equation 4.9) and F-score (Equation 4.10).

Precision =
t p

t p+ f p
(4.8)

Recall =
t p

t p+ f n
(4.9)

F − score = 2∗ Precision∗Recall
Precision+Recall

(4.10)

where tp, fp and fn represent the number of true positive, false positive, true negative

and false negative cases, respectively.
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A stratified 10-fold cross-validation approach was adopted during accuracy assess-

ment. Compared to the split-sample approach, cross-validation is more robust due

to the availability of multiple metrics and minimizes the risk of chance results while

providing for a more efficient use of limited data. Cross-validation accuracy results (i.e.

using F-scores) from the individual datasets (i.e. Sentinel-2A, Planet and Fused) were

compared using the Friedman test (Friedman, 1937,4) to determine the significance

(at α = 0.05) of accuracy differences. The Friedman test is a non-parametric test for

comparing three or more treatment scenarios (Demšar, 2006) by assigning ranks

to treatments separately for each data point. In the case of this study, the Fried-

man test ranks F-scores from each iteration of cross-validation across all datasets

(i.e. Sentinel-2A, Planet and Fused) and compares the average ranks under the null

hypothesis that all datasets have equal average ranks. Assuming r j
i is the rank for

the j-th of k datasets on the i-th out of N cross-validation scores, the average rank

is R j =
1
N ∑i r j

i . The Friedman statistic is calculated using Equation 4.11 (Demšar,

2006).

χ
2
F =

12N
k(k+1)

[
∑

j
R2

j −
k(k+1)2

4

]
(4.11)

The Friedman test follows a chi-square distribution with k-1 degrees of freedom.

We used the Nemenyi test (Nemenyi, 1963) for post-hoc analysis in cases where

there were significant differences in accuracy scores among the three datasets used.

Similar to the Tukey test for Analysis of Variance (ANOVA), Nemenyi test is used to

compare all groups (i.e. datasets in the case of this study) to each other. Two groups

are significantly different if the difference between their average ranks is greater than

a critical difference (CD) calculated using Equation 4.12.

CD = qα

√
k(k+1)

6N
(4.12)

where qα represents a critical value from the stundentized range statistic divided by√
2 (Demšar, 2006).
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4.2.10 Feature Importance Estimation

The contribution of individual image features to classification accuracy was assessed

through permutation (Pedregosa et al., 2011). This was achieved by randomly shuff-

ling each image feature to determine importance estimates as weights based on

degree of reduction in classification accuracy score.

4.3 Results

4.3.1 Image Fusion Accuracy

Pixel-level image fusion resulted in the creation of a new dataset (Fused image),

which retained both the spectral characteristics of Sentinel-2A and the high spatial

resolution from Planet data. Figure 4.2 shows an example visual comparison of spatial

details resolved by all three datasets (i.e. Sentinel-2A, Planet and Fused images).

As expected, the Sentinel-2A image at 10 m spatial resolution has a higher level

of pixelation at the same visualization scale as Planet and Fused images due to its

relatively coarse resolution. Further, land cover features are less distinctly resolved,

with high prevalence of pixel mixing in some instances. For example, the sparsely

distributed and smaller-sized woody vegetation components become mixed-up with

the background grassy vegetation and are indistinguishable (for crowns < 10 m)

in the Sentinel-2A image compared to the Fused and Planet images (Figure 4.2).

By contrast, the Fused image is finer and shows similar spatial detail as the high

resolution Planet data. At 4.7 m spatial resolution, this enables easy identification of

objects that are not recognizable in the Sentinel-2A image while retaining the multi-

spectral information from Sentinel-2A. Additionally, the spatial boundaries between

different land cover types are better distinguished at the spatial resolution of the Fused

and Planet images compared to Sentinel-2A (Figure 4.2), which could have important

consequences for accurate grazing lawn and other land cover delineation.

Apart from the enhanced image spatial resolution, image fusion resulted in the fused

image having the same number of spectral bands as the Sentinel-2A image, with ex-

pected similar spectral characteristics. Figure 4.3 shows results from the assessment

of the spectral integrity of the fused image relative to the Sentinel-2A image for both

the Gram-Schmidt and Principal Component fusion methods. The correlation between

the fused and Sentinel-2A image was generally high for all band pairs. However
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Figure 4.2: False colour (R: NIR, G: Red, B: Green) display of original and fused
images scenes of a sub-area from Gram-Schmidt sharpening. A visual comparison
shows higher spatial resolution of Planet and Fused images relative to the Sentinel-
2A image.

between the two fusion methods, the Gram-Schmidt approach resulted in higher

correlation values than the Principal Component approach, with the differences been

relatively more pronounced in the red-edge, near-infrared and short-wave infrared

spectra (Figure 4.3B).

The influence of image fusion on different land cover spectral characteristics for both

Gram-Schmidt and Principal Component methods, based on the calculated Structural

Similarity Index (SSIM) between the multi-spectral fused and Sentinel-2A images is

shown in Figure 4.3 B. Overall, a loss of structural information in the Fused images

relative to Sentinel-2A was recorded for all savannah land cover types as indicated

by SSIM statistics. As expected, the highest SSIM values were observed in the relat-

ively stable and homogeneous land cover types with minimum expected variations in

spectra across the savannah landscape, including: bare surfaces, built-up and water

bodies. For those land cover types, the Gram-Schmidt fusion approach gave a slightly

better outcome.
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Figure 4.3: Spectral quality metrics from pixel-level fusion. The figure shows Correla-
tion Coefficient from Sentinel-2 and fused image band pairs (left) and boxplot showing
summary of Structural Similarity Index (SSIM) for different savannah land cover types
(right). B = Blue, G = Green, R = Red, RE-1 = Red Edge-1, RE-2 = Red Edge-2, RE-3
= Red Edge-3, NIR = Near Infrared, SWIR-1 = Short Wave Infrared-1 and SWIR-2 =
Short Wave Infrared-2.

4.3.2 Land Cover Classification

Land cover classifications derived from the three datasets (Planet, Fused images and

Sentinel-2A) are presented in Figures 4.4, 4.5 and 4.6. Generally, the thematic rep-

resentation of different land cover types closely followed visible distribution patterns in

the satellite scene shown in Figure 4.1. Apart from the dominance of woody cover in

the Nkhulu experimental exclosure 4.1, woody vegetation was mostly confined along

drainage channels, with a few isolated occurrences in the midst of continuous bunch

grass cover within the landscape. Grazing lawns were mostly present on open sodic

sites and adjacent to woody cover along drainage channels or foot-slopes of catenas

scattered within the landscape.

Similar thematic details are visible across all maps, however, there is a clear loss of

spatial detail in the Sentinel-2A-derived map (Figure 4.6) compared to maps derived

from Planet and Fused images (Figure 4.4 and Figure 4.5 respectively). Specifically,

boundaries of the different land cover types are less distinctive in the Sentinel-2A

map compared to those of Planet and Fused images. For example, built-up (road)

appears discontinuous in the Sentinel-2A map while strips of woody cover along

drainage channels, particularly in the more open northeastern part of the landscape,
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are more distinctly captured in the Fused and Planet maps compared to Sentinel-2A.

Additionally, grazing lawn presence and distribution in different parts of the landscape

appear congruent in the higher spatial resolution datasets (i.e. Planet and Fused

images) and differ slightly from the coarser resolution Sentinel-2A map, particularly in

the southeastern portions of the landscape (see Figure 4.4 and Figure 4.5).

Figure 4.4: Land cover map derived from Planet image.
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Figure 4.5: Land cover map derived from Fused image.

Figure 4.6: Land cover map derived from Sentinel-2A image.
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Beyond qualitative differences in land cover maps, classification accuracies were

quantified using a stratified 10-fold cross-validation approach and compared to further

ascertain the utility of the different datasets. Accuracy results from confusion matrices

(see Appendix C) are presented in Figure 4.7 and Table 4.2 for the whole landscape

and individual land cover types respectively. Overall, the higher spatial resolution im-

ages (Fused and Planet images at 4.77m spatial resolution) gave relatively consistent

and precise estimates of general land cover classification accuracies compared to

the 10 m resolution Sentinel-2A image, which had a wider interquatile range of cross-

validation accuracy scores (Figure 4.7). Aggregate ccuracy scores for the Fused im-

age were marginally higher, achieving an average F-score of 0.87±0.012, compared

to Planet and Sentinel-2A images with average F-score values of 0.85± 0.017 and

0.85±0.034 respectively.

Figure 4.7: General classification accuracies from stratified 10-fold cross-validation.
Accuracy metrics were calculated as weighted averages from individual land cover
class accuracies. Accuracy values represent fractions between 0 and 1.

At the level of individual land cover types, classification accuracy scores obtained

from the Fused image were higher than those from Sentinel-2A and Planet images

for all land cover classes except woody cover (Table 4.2). Sentinel-2A produced more

accurate classification of woody cover, in excess of 4% over the Fused image and

6% over the Planet image in terms of average F-score values. Grazing lawn clas-

sification accuracy followed a similar trend as the general map accuracy estimates,
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Table 4.2: Summary of classification accuracy scores for savannah land cover types
showing a comparison across dataset used (Sentinel-2A, Planet, Fused). Accuracy
scores represent mean ± standard deviation from 10-fold stratified cross-validation.
Accuracy values represent fractions between 0 and 1.

Data Land cover Precision Recall F-score
Sentinel-2A Woody 0.82±0.023 0.77±0.055 0.79±0.029

Bunch grass 0.79±0.049 0.86±0.053 0.83±0.048
Grazing lawn 0.88±0.038 0.82±0.068 0.84±0.048
Water body 0.93±0.057 0.96±0.044 0.94±0.039
Bare 0.91±0.041 0.89±0.067 0.90±0.042
Built-up 0.76±0.146 0.88±0.143 0.80±0.113

Planet Woody 0.76±0.027 0.71±0.039 0.73±0.026
Bunch grass 0.76±0.027 0.83±0.020 0.79±0.019
Grazing lawn 0.86±0.024 0.83±0.020 0.84±0.017
Water body 0.96±0.014 0.95±0.023 0.95±0.016
Bare 0.91±0.017 0.89±0.013 0.89±0.012
Built-up 0.91±0.055 0.81±0.072 0.85±0.054

Fused Woody 0.78±0.024 0.73±0.035 0.75±0.021
Bunch grass 0.82±0.029 0.86±0.028 0.84±0.021
Grazing lawn 0.88±0.026 0.85±0.024 0.86±0.020
Water body 0.96±0.019 0.97±0.011 0.97±0.009
Bare 0.91±0.02 0.93±0.012 0.92±0.014
Built-up 0.81±0.066 0.89±0.042 0.85±0.043

with the Fused image marginally outperforming Planet and Sentinel-2A images by

2% (Table 4.2). All individual land cover classes were successfully discriminated at

high accuracies across all datasets. The most obvious inter-class misclassifications

occurred among the vegetation classes (see confusion matrices in Appendix ??).

To determine the significance of accuracy differences among the three datasets, the

Friedman chi-square (χ2
F ) test for significant differences (at α = 0.05) in F-scores for

overall map and individual land cover types was used. The test results are presented

in Table 4.3 with accompanying post-hoc analysis using Nemenyi test in Figure 4.8 for

significantly different class accuracies. Only accuracy results from woody and bunch

grass cover classifications showed significant differences in accuracy (Table 4.3).
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Table 4.3: Summary of Friedman chi-square (χ2
F ) test for significant differences

(at α = 0.05) in accuracy scores for overall map and individual land cover types.
Significance test was conducted on F-scores from stratified 10-fold cross-validation.

Land cover Friedman statistic (χ2
F ) p-value

Woody 14.11 0.00
Bunch grass 12.05 0.00
Grazing lawn 3.44 0.18
Water body 6.06 0.05

Bare 4.15 0.13
Built-up 2.00 0.37

All 5.60 0.06

For woody cover, the accuracy estimates from Fused and Planet image pairs were

statistically similar, but each paired with results from Sentinel-2A showed significant

differences (Figure 4.8). When comparing accuracy scores for bunch grass classific-

ation, results from the Planet image was significantly different from results derived

from both Fused and Sentinel-2A images. However, comparing results from Fused

and Sentinel-2A images showed no significant differences in bunch grass accuracy

scores (Figure 4.8).

Figure 4.8: Post-hoc comparison of Sentinel-2A, Planet and Fused datasets with
Nemenyi test, based on F-scores for Woody and Bunch grass classes. Connected
groups are not significantly different at α = 0.05. Critical Difference (CD) = 1.048

4.3.3 Feature Importance

Image feature importance estimates for each classification are presented in Figure

4.9. Generally, the original image bands contributed most to land cover classification

accuracy, dominated by the blue, green and red image bands across all datasets.

Additional features that comprised the five (5) most important features were near

infrared and shortwave infrared-1 for Sentinel-2A, near infrared and Global Environ-

mental Monitoring Index for Planet image and red edge-1 and shortwave infrared-1

for the Fused image (Figure 4.9).
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Figure 4.9: Image feature importance estimates. Feature weights represent contri-
bution to classification accuracy and are sorted in descending order. For feature
acronyms, B = Blue, G = Green, R = Red, RE1 = Red Edge-1, RE2 = Red Edge-
2, RE3 = Red Edge-3, RE4 = Red Edge-4, N = Near Infrared, SWIR1 = Shortwave
Infrared-1, SWIR2 = Shortwave Infrared-2, GEMI = Global Environmental Monitoring
Index, MSAVI2 = Modified Soil Adjusted Vegetation Index-2, Mean = Mean, Var =
Variance, Savrg = Sum Average

4.3.4 Grazing Lawn Detection Accuracy

Maps of grazing lawns from each dataset and the distribution of misclassification

errors relative to other land cover classes are presented in Figure 4.10. Expectedly,

grazing lawn omission and commission errors were dominant among other vegeta-

tion classes (i.e. woody and bunch grass), followed by bare surfaces from degraded

grazing lawn patches. Woody cover received a greater proportion of misclassified

grazing lawn pixels (Figure 4.10D), while relatively more bunch grass pixels were
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wrongly classified as grazing lawns (Figure 4.10E) for all datasets. Overall, grazing

lawn omission and commission errors in woody cover class were highest for the Fused

image and lowest for Sentinel-2A, while the reverse was true for misclassification

errors when considering bunch grasses.

Grazing lawn
Other cover

Figure 4.10: Maps of grazing lawn cover derived from (A) Sentinel-2A, (B) Planet and
(C) Fused images; and (D) Omission and (E) Commission error rates for grazing lawn
classification against other land cover types. Error rates represent fractions between
0 and 1.
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4.4 Discussion

4.4.1 Image Fusion for high-resolution Savannah Land Cover Clas-

sification

This study compared Gram-Schmidt (Laben & Brower, 2000) and Principal Compon-

ent (Yocky, 1995) pan-sharpening approaches for utilizing the spectral properties of

ESA’s Sentinel-2A data (Drusch et al., 2012) and the high spatial resolution of the

recently released Planet mosaics over the tropics (Planet, 2017), for enhanced land

cover classification in a heterogeneous African savannah landscape. Based on res-

ults from image quality assessment, the Gram-Schmidt approach produced the most

similar image spectral characteristics to the original Sentinel-2 image. This finding cor-

roborates reports of the superiority of Gram-Shmidt transformation for image fusion

compared to other techniques (Jenerowicz & Woroszkiewicz, 2016; Rokni et al., 2015;

Zhao et al., 2019). For example, Rokni et al. (2015) found the Gram-Schmidt image

fusion technique to produce better outcomes both in terms of resulting image quality

and classification when compared with Modified Intensity-Hue-Saturation, High Pass

Filter and Wavelet-PC (Principal Components) techniques for fusion of multi-temporal

Landsat Enhanced Thematic Mapper Plus (ETM+) 2000 band 8 (15 m) and Landsat

Thematic Mapper (TM) 2010 multispectral (30 m). Based on the results, the Gram-

Schmidt fused image was selected for further classification.

While the target spatial resolution of 4.77 m (from the Planet image) was achieved

in the resulting Fused images (Figure 4.2) with high correlations between individual

bands when compared with the Sentinel-2A data, land cover specific assessment

revealed some spectral differences particularly in heterogeneous vegetation classes

(see SSIM in Figure 4.3). Traditionally, images are subject to some degree of spec-

tral distortion during pan-sharpening (Pushparaj & Hegde, 2017; Sarp, 2014) which

persist even when the panchromatic and multi-spectral bands used are from the

same sensor. For example, Sarp (2014) recorded a permanent loss of structural

information in pan-sharpened Ikonos and Quickbird images. In the case of this study,

the inherent distortion of spectral information from the pan-sharpening process could

have been compounded by the use of different sensors with varying spectral response

functions, though both Sentinel-2A and Planet images had been pre-processed to

surface reflectance. Additionally, the slight differences in temporal window for image

acquisition as well as the compositing methods used for data creation likely contrib-

uted to the observed spectral difference. For example, the Planet image is a six-
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month composite covering June 2019 through to December 2019 (i.e. dry season

to early rainy season), and was derived using best available image pixel, whereas

the Sentinel-2A image was derived as a median composite of all images between

May 2019 and June 2019. Future data interoperability could be enhanced with the

release of monthly composites of high resolution Planet imagery from September

2020 onward (Planet, 2017), promising more consistent spectral information with

other multi-spectral sensors.

Despite the losses in structural information from pan-sharpening, the spectral integ-

rity of the fused image was most evident in the relatively homogeneous and stable

land cover types such as bare patches, built-up and water bodies, with relatively

high SSIM statistics (Figure 4.3). This also translated into land cover classification

in terms of spatial and thematic details (Figures 4.4, 4.5 and 4.6) as well as accur-

acy outcomes (Figure 4.7 and Table 4.2). Having more spectral information covering

the visible (3 bands), red edge (4 bands), near infrared (1 band) and shortwave

infrared (2 bands) at a high spatial scale that can resolve most vegetation patches

typical in a heterogeneous savannah landscape, enhanced land cover discrimination

space leading to higher classification accuracy for the entire landscape, albeit not

statistically significant at α = 0.05 (Table 4.3). Another important finding to emerge

from cross-validation accuracy analysis was the markedly low precision in Sentinel-

2A accuracy scores, expressed in a much wider inter-quartile range compared to

those from Planet and Fused images (Figure 4.7). In general, therefore, it seems that

at coarse spatial scales, reference pixels used for training and validation are more

prone to high intra-class variation, possibly emanating from the influence of adjacent

land cover pixels due to lack of distinct boundaries. In the case of this study, such

phenomenon was likely more pronounced due to the high heterogeneity within the

studied savannah landscape. This finding suggests the need for extensive reference

samples to guarantee consistently high accuracy scores when using Sentinel-2 or

data with similar spatial characteristics in heterogeneous landscapes. It should be

noted that the Fused image provided the most precise estimates of individual and

overall land cover classification accuracies. Contrary to expectations, woody cover

classification accuracy deviated from the pattern of dominance by the Fused image

out of all individual land cover classes. The Sentinel-2A image recorded significantly

higher woody cover classification accuracy compared to the higher spatial resolution
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Fused (4 % more) and Planet images (6 % more). Depending on the size distribution

of target land cover, medium resolution satellite images can produce similar or even

better classification outcomes relative to high spatial resolution imagery (Awuah et al.,

2018).

Despite the visible loss of spatial detail in the coarser resolution Sentinel-2A image

compared to the Planet and Fused images, all classifications produced very similar

thematic representation of land cover (Figures 4.4, 4.5 and 4.6). Marston et al. (2017)

observed a similar phenomenon in a comparison of very high-resolution and medium

resolution satellite image classifications. The marginal differences observed in classi-

fication accuracy among the three datasets (see class accuracies in Table 4.2) may

be explained by results of feature importance estimates presented in Figure 4.9 which

showed similarities in the most important contributing image features to classification

accuracy. For example the first five (5) most important image features for classification

were dominated by the visible bands (blue, green and red) across all datasets, which

highlights the role of similar original image bands in all three classifications. The

absence of additional red edge and shortwave infrared bands in the Planet image

likely accounted for the differences in classification outcomes in comparison with the

Fused image. The additional advantages of red edge bands for land cover mapping

in vegetated landscapes have been widely reported in similar savannah applications

(Forkuor et al., 2018; Kaszta et al., 2016; Ngadze et al., 2020; Otunga et al., 2019).

For example, in a southern African savannah land cover classification context, Kaszta

et al. (2016) found WorldView-2’s red edge band to be crucial in an object-based

discrimination of vegetation components. The red edge band captures variations in

vegetation pigmentation such as chlorophyll and carotenoids and thus enables suc-

cessful discrimination of vegetation components even at the level of individual species

(Kaszta et al., 2016; Pu & Landry, 2012). Additionally, the shortwave infrared band is

highly sensitive to vegetation moisture content due to higher levels of absorption and

helps to highlight differences in vegetation states particularly in drier regions such

as savannahs (Bueno et al., 2020). When comparing the Fused and Sentinel-2A

classifications, similar feature importance estimates were observed for the first five

(5) most important image features, with four (4) covering the blue, green, red and

shortwave infrared bands. The only difference was the inclusion of near infrared for

the Sentinel-2A image and red edge for the Fused image. It can therefore be assumed

that the observed accuracy differences between these datasets occurred due to the

influence of image spatial resolution. Spatial resolution is widely known to influence

classification accuracy, with a general trend favouring higher spatial resolution (Awuah
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et al., 2018; Momeni et al., 2016; Suwanprasit & Srichai, 2012). Few studies however

report on the accuracy effects of spatial resolution in heterogeneous savannah land

cover classification. Our finding is consistent with Marston et al. (2017) who recorded

higher classification accuracies using VHR imagery than medium resolution images

over the same southern African savannah landscape. Similarly, Allan (2007) tested

the influence of spatial resolution on savannah land cover classification by comparing

SPOT-5, Landsat TM and MODIS sensors and recorded higher accuracy at finer

spatial resolution. It is noteworthy that in both studies (Allan, 2007; Marston et al.,

2017), the authors used imagery with different spectral properties unlike the similar

spectral properties of Fused and Sentinel-2A used in this study. We suggest that

optimization of savannah land cover classification would benefit from further robust

experimentation of the combinations of spatial resolution and spectral properties that

enhance accuracy. Overall, our comparison of classifications derived from the three

datasets highlight the combined advantages of high spatial resolution and gain in

spectral information from image fusion to enhance land cover classification outcomes.

4.4.2 Grazing Lawn Detection and Monitoring with Open-access

Optical Satellite Imagery

Satellite remote sensing-based monitoring approaches provide vital landscape-scale

insights for understanding variations in grazing lawn cover and consequences for

broader savannah ecosystem functioning. Apart from overall land cover classification

performance, this study set out with the aim of assessing the performance of image fu-

sion for accurate grazing lawn detection. Recent studies have shown that high spatial

resolution satellite imagery helps to overcome heterogeneity of savannah landscapes

leading to better land cover classification outcomes (Awuah et al., 2020; Kaszta et al.,

2016; Marston et al., 2017). Results from this study further emphasizes the utility

of both high spatial and spectral resolution imagery by integrating high spatial detail

resolved by the Planet image and more useful spectral channels from Sentinel-2A.

Image fusion provided the best discrimination space for delineating grazing lawns

from other vegetation types (Table 4.2) through the combination of additional red edge

and shortwave infrared reflectance (Figure 4.9) and finer spatial scale. This finding

supports evidence from previous studies (Underwood et al., 2007; Yu et al., 2020)

which reported higher mapping accuracies of different vegetation components using

images with high spatial and spectral resolution. Comparing results from the original

Planet and Sentinel-2A images however showed similar grazing lawn classification

124



accuracies. This highlights the particular importance of more varied spectral inform-

ation in vegetation mapping even at coarser spatial resolutions (Underwood et al.,

2007). However, further work is required to develop a full picture of the trade-offs in

spectral and spatial resolution in a heterogeneous savannah context.

With similar grazing lawn distribution patterns between the Fused and individual Sentinel-

2A and in particular Planet image classifications, this study demonstrates the po-

tential of open-access satellite data for monitoring grazing lawn dynamics. Origin-

ally intended for deforestation monitoring over tropical regions, the Planet images

come as analysis ready cloud-free composites delivered as both biannual (every six

months from December 2015 to August 2020) and monthly collections (from Septem-

ber 2020 onward) (Pandey et al., 2021; Planet, 2017). The free availability of such

high resolution analysis ready data (ARD), in addition to the proliferation of cloud-

based processing platforms, promises a rapid analysis of grazing lawn attributes at

landscape-scale to better understand patterns across different environmental gradi-

ents. Of particular interest are the impacts of contemporary threats to savannah

ecosystem functioning such as widespread woody vegetation encroachment (Case

& Staver, 2017; Mitchard & Flintrop, 2013; Stevens et al., 2017) and frequent, intense

and long drought events (Case et al., 2020; Sankaran, 2019), on grazing lawn oc-

currence and distribution. A substantial extent of grazing lawn cover occurs at the

footslopes of catenas adjacent to drainage channels where most woody cover is

concentrated. However, the current rate of woody cover intensification within their

range of existence (Zhou et al., 2021), coupled with post-drought amelioration of fire

(Sankaran, 2019) and dissociation of grazers from grazing lawns (Donaldson et al.,

2020), suggest a high likelihood of grazing lawn colonization by adjacent woody ve-

getation. The combination of historical archives and future acquisitions from Sentinel-

2A and high spatial resolution Planet images presents enormous opportunities to

investigate such phenomena and recommend spatially targeted management actions.

4.5 Conclusions

With the proliferation of different remote sensing datasets comes the opportunity to

combine their complementary features for enhanced characterisation of target land

cover types, particularly in heterogeneous landscapes. This study presents a multi-

sensor image fusion approach for creating images with similar characteristics as the

popular high-valued VHR satellite images. The utility of the Fused image compared
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with the original Sentinel-2A and Planet images were tested in the context of enhan-

cing land cover classification with the aim of accurately delineating grazing lawns from

other vegetation components. The results show that, image fusion yielded the highest

and most precise estimates of land cover classification accuracies including grazing

lawn detection accuracy in a heterogeneous mesic savannah landscape. The coarser

spatial resolution Sentinel-2A image produced a wider range of classification accur-

acy estimates based on cross-validation analysis, and thus was the least precise.

This suggests that, the use of Sentinel-2 images and image data with similar spatial

characteristics in heterogeneous landscapes may require more reference samples

to ensure consistently high classification accuracy outcomes. The results also show

that, depending on factors such as available image quality and degree of multi-sensor

image interoperability - mainly due to variation in temporal overlap - as it relates

to project objectives, Sentinel-2A or Planet imagery may be individually used for

savannah land cover analysis and in particular, grazing lawn monitoring, given the

observed marginal differences in classification accuracy and similarities in thematic

details. Examining the distribution of grazing lawn classification errors indicates that

future work incorporating structural information of different vegetation components

could further enhance classification outcomes. This study provides pioneering evid-

ence for the utility of the new NICFI Planet mosaics for land cover classification

in a heterogeneous savannah landscape. Ultimately, the results add to the limited

literature on remote sensing-based monitoring of grazing lawns and sets a foundation

for cost-effective and accurate high resolution analysis of savannah grazing lawn

dynamics at a time of contemporary threats to savannah ecosystem functioning such

as woody encroachment and frequent drought events.
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Chapter 5

Synthesis and Conclusion

5.1 Summary
Grazing lawn patches play a central role in maintaining the habitat heterogeneity ne-

cessary to support the vast diversity of plants and animals in southern African savan-

nah ecosystems. By influencing patterns in hebivory and fire, which are the main con-

sumers of plant biomass in savannah landscapes, grazing lawns have been linked to

important ecosystem processes including nutrient cycling, plant community compos-

ition, grazer movement and population dynamics (Archibald et al., 2005; Archibald,

2008; Donaldson et al., 2018; Hempson et al., 2019; Voysey et al., 2021). Further,

the characteristic low herbaceous cover of grazing lawn patches makes it easier for

tourists to sight iconic African savannah mammal species. As such, the extent and

distribution of grazing lawns have a knock-on effect on conservation efforts which

depend on revenue from tourism (Gray & Bond, 2013; Lindsey et al., 2007). Eventu-

ally, the extent and changes in distribution of grazing lawns have important cascading

impacts on the ecological integrity of savannah ecosystems. Yet there is limited un-

derstanding of the distribution and spatio-temporal dynamics of grazing lawn cover

in savannah ecosystems. Importantly, there is no robust broad scale approach for

detecting and monitoring grazing lawns to enable investigation of their distribution

and spatio-temporal dynamics. This research addresses these gaps in knowledge

using satellite remote sensing. The objectives of this research have been addressed

through the analysis presented in Chapter 2, Chapter 3 and Chapter 4. Specifically:

1. The first objective, Develop methods for accurate detection and mapping

of savannah grazing lawn distribution using very high-resolution satellite

imagery and machine learning techniques, was addressed using analysis

in Chapter 2 and Chapter 4. State-of-the-art machine learning algorithms were

compared to develop a robust machine learning framework for grazing lawn de-

tection using Worldview-3 images (Chapter 2). Additionally, a fusion approach

127



for integrating the spatial and spectral advantages of the recent Planet/NICFI

data and Sentinel-2 respectively was developed to demonstrate the utility of

open-access high resolution satellite imagery for accurate characterisation of

grazing lawns (Chapter 4).

2. The second objective, Identify changes in cover and structural distribution

of savannah grazing lawns over space and time, was addressed using ana-

lysis in Chapter 3. Post-classification comparison of land cover maps derived

from VHR satellite images from 2002, 2014 and 2019, was conducted to high-

light patterns of change in grazing lawn cover and structure.

3. The third objective, Identify the dominant drivers of change in grazing lawn

cover and structure, was addressed using analysis in Chapter 2 and Chapter

3. Spatial pattern analysis in Chapter 2 revealed the underlying driver of graz-

ing lawn spatial occurrence under mesic and semi-arid savannah conditions.

Further, Chapter 3 highlighted drivers of temporal dynamics in grazing lawn

occurrence and the potential impact of drought disturbance on changes in

grazing lawn cover.

5.1.1 Satellite remote sensing of savannah grazing lawns

There is substantial evidence of the advantages of remote sensing for vegetation

monitoring. While field-based monitoring methods alone offer vital localized details,

they are inefficient and costly when dealing with large areas and fail to provide ret-

rospective information necessary for change monitoring. Satellite remote sensing

technology, through the provision of synoptic and historical images compliment in-

situ field observations and helps to overcome spatio-temporal vegetation monitoring

challenges. This is particularly critical from an ecological perspective, which usually

involve monitoring at larger spatial and temporal scales to understand underlying

processes. This research presents a pioneering attempt to monitor and investigate

dynamics in grazing lawn cover and structure using remote sensing. Fundamental

to ensuring the success of remote sensing for monitoring grazing lawn dynamics

is the ability to detect and characterize grazing lawn patches with remote sensing

imagery. Therefore the first objective of this research focused on developing methods

for accurate detection and mapping of grazing lawns.
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Savannah ecosystems inherently exhibit a high degree of heterogeneity in compos-

ition and configuration. From an optical remote sensing perspective, the different

composition of vegetation functional types exhibit similar spectral reflectance charac-

teristics. This challenge of spectral similarity between different vegetation components

is further compounded by the complex spatial configuration captured in terms of scale

and distribution of vegetation patches. In the case of grazing lawns, a spectrum of

spatial structure can be observed. Grazing lawns may occur as large continuous

patches, typically on sodic sites, or as small patches in a heterogeneous mix of other

vegetation components. With a reported average minimum grazing lawn patch size of

2 m in southern African savannahs (Cromsigt & Beest, 2014; Waldram et al., 2008),

successful monitoring of grazing lawn extent and distribution require the use of very

high-resolution (VHR) data at similar scales. Unlike coarse and medium resolution

satellite images which are prone to pixel mixing under spatially heterogeneous sa-

vannah landscape conditions, VHR images have been proven to successfully deal

with these challenges (Kaszta et al., 2016; Marston et al., 2017). Additionally, multi-

spectral VHR images such as WorldView-3 provide the capability of reliably dealing

with spectral similarity of different savannah vegetation composition. Instrumental to

this is the availability of two near infrared bands and the additional yellow and red-

edge bands, which allows detection of photosynthetically active or dying plants and

foliar chlorophyll content (Schuster et al., 2015).

The analysis in Chapter 2 therefore involved the use of WorldView-3 imagery for

discriminating grazing lawns from other vegetation functional types under mesic and

semi arid savannah conditions using machine learning. Application of data science

techniques for remote sensing based ecosystem monitoring have been extensively

researched (Lawrence & Moran, 2015). However, selecting a fit-for-purpose work-

flow requires some experimentation due to contextual difference (Foody et al., 2016;

Lawrence & Moran, 2015). Four state-of-the-art machine learning models including

RF, SVM, CART and MLP were compared. All models achieved very high accuracies,

but RF, SVM and MLP models showed similar performance and were generally better

than the CART model. The results further highlighted the spectral differences for the

same target vegetation types under different savannah landscape conditions. This

was apparent in performance reductions when models trained on data from mesic

savannah conditions in southern KNP were transferred to the semi-arid savannah

landscape towards northern KNP. The KNP landscape is characterized by a rainfall

gradient from north to south, with mean annual precipitation increasing along the

gradient (Venter et al., 2003). This influences plant moisture stress levels and general
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photosynthetic capacity with consequences for spectral characteristics (Sun et al.,

2021). Overall, the high spatial resolution of WorldView-3 imagery coupled with a

combination of original bands, spectral indices and texture features proved instru-

mental in dealing with the heterogeneity in savannah vegetation components leading

to accurate delineation of grazing lawns.

WorldView-3 imagery provides the ideal spatial and spectral characteristics for veget-

ation monitoring in heterogeneous savannah landscapes (Awuah et al., 2020; Kaszta

et al., 2016; Marston et al., 2017). However, the downside to such VHR imagery is

the high cost involved in image acquisition. Using this type of imagery for operational

monitoring of grazing lawns would therefore not be economically feasible. Sentinel-2,

which is freely available, sample similar spectral bands as WorldView-3 imagery with

demonstrated application in savannah vegetation mapping (Symeonakis et al., 2019).

However, at the finest spatial resolution of 10 m, Sentinel-2 can only detect relatively

large continuous grazing lawn patches, which might limit management decisions. The

recent open-access release of analysis-ready Planet image mosaics via a partnership

involving Norway’s International Climate and Forests Initiative (NICFI), Kongsberger

Satellite Services (KSAT), Planet Labs and Airbus (Planet, 2017), represents a major

step forward for cost effective high resolution vegetation monitoring. However, in the

context of savannah heterogeneity, the spectral characteristics of Planet imagery is

limited in resolving the spectral similarities of different vegetation components. Given

these challenges, the analysis in Chapter 4 explored options for accurate and cost

effective grazing lawn monitoring by leveraging the spatial and spectral advantages of

the freely available Planet mosaics and Sentinel-2 satellites images respectively.

Using a Gram-Schmidt pansharpening approach, a new satellite image data set was

derived from fusing the high spatial resolution Planet mosaic with the spectral bands

from Sentinel-2. This was then tested alongside the original Planet and Sentinel-2

images to assess their utility for savannah grazing lawn detection. The fused image

provided the most accurate and precise metrics for grazing lawn and overall savannah

vegetation classification. The availability of more spectral information covering the vis-

ible, red edge, near infrared and shortwave infrared, at a high spatial scale, enhanced

discrimination of different savannah vegetation components for accurate grazing lawn

detection. This finding is congruent with other studies which highlight the importance

of high spatial and spectral resolution for enhanced classification accuracy of different

vegetation types (Underwood et al., 2007; Yu et al., 2020). While the fused image
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delivered the most accurate detection of grazing lawn patches, similar distribution of

grazing lawns were captured across all datasets. This further highlight the utility of

the Planet or Sentinel-2 imagery for rapid assessment of grazing lawn occurrence

pattern.

The findings from Chapter 2 and Chapter 4 provide pioneering evidence of the poten-

tial of satellite remote sensing for grazing lawn detection. Importantly, this provides

a foundation for monitoring grazing lawn dynamics and related impacts on savannah

ecosystem functioning, particularly in the context of contemporary threats such as

woody encroachment (Case & Staver, 2017; Mitchard & Flintrop, 2013; Stevens et al.,

2017) and frequent drought events (Case et al., 2020; Sankaran, 2019)

5.1.2 Changes in grazing lawn cover and structure

Grazing lawn formation is the product of a complex interaction between grazer activity

and fire under different landscape productivity conditions (Donaldson et al., 2018;

Hempson et al., 2019). Grazing lawn presence in turn strongly influences herbivory

and fire regimes, with cascading impacts on biodiversity and savannah ecosystem

dynamics (Hempson et al., 2015). By serving as a source of nutrition needed for

reproduction and the successful recruitment of juveniles (Gaillard et al., 2000; Parker

et al., 2009), while providing refuge from predators (Hempson et al., 2015; Voysey

et al., 2021), grazing lawns directly influences herbivore population dynamics and

movement. In parallel, grazing lawns effectively curtail fire ignition and propagation

within the savannah landscape due to their characteristic low fuel biomass nature

(Archibald et al., 2005; Donaldson et al., 2018). From a management and biodiversity

conservation perspective, grazing lawns are habitats to a broad diversity of birds

and iconic mammals which are of significant tourism interest. This coupled with the

ease of sighting animals due to low vegetation cover means that the distribution

of grazing lawn patches could have a knock-on effect on much needed revenue

for biodiversity conservation (Gray & Bond, 2013; Lindsey et al., 2007). As such,

knowledge of changes in the extent, distribution and structure (spatial configura-

tion) of grazing lawns is vital for better understanding savannah ecosystem dynamics

and designing effective conservation management decisions, particularly with the

observed widespread woody encroachment (Case & Staver, 2017; Marston et al.,
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2017; Mitchard & Flintrop, 2013; Stevens et al., 2017) and increasing frequency of

extreme droughts (Case et al., 2020; Sankaran, 2019). The second objective, which

is addressed in Chapter 3, therefore focused on identifying spatio-temporal changes

in grazing lawn cover and structure.

Multi-temporal VHR satellite images from IKONOS, QuickBird, WorldView-2, WorldView-

3 and Planet sensors covering three sites in southern KNP were used in a post-

classification analysis of changes in grazing lawn cover and structure. Post-classification

change detection allows thematic quantification of the magnitude and direction of

change (Peterson et al., 2004), providing insights into drivers of change over space

and time. Images are processed separately without the need for radiometric normal-

ization, which reduces computational cost (Coppin et al., 2004; Tewkesbury et al.,

2015). However, the main downside to post-classification change detection is the risk

of classification errors propagating into change results (Coppin et al., 2004). In the

case of this study, the availability of multi-temporal VHR images helped to minimize

classification errors. Further post processing informed by knowledge of grazing lawn

ecology helped to focus the analysis on relevant thematic classes and areas within the

study sites in order to enhance accuracy of change results. Similar post processing

techniques were used by Marston et al. (2017) and Peterson et al. (2004) to deal with

error propagation issues in post-classification change analysis.

Two temporal windows were considered for the change analysis. The period between

2002 to 2014 without any record of significant constraint on landscape productivity,

highlighted the regular dynamics in grazing lawn cover and structure. On the other

hand, the period between 2014 to 2019 recorded an intense drought event, which

provided the opportunity to identify how drought stress alters grazing lawn dynamics.

In the absence of drought disturbance, grazing lawn cover increased across all sites

by a similar proportion, with most of the gains occurring as an expansion in the extent

of already established patches. Where new patches sprung up, they were mostly in

areas adjacent to already existing patches. This translated into a higher number of

grazing lawn patches per unit area with a higher degree of connectedness. Very little

was found in the literature to account empirically for the observed general increase in

grazing lawn cover between 2002 and 2014. However, the observed trend could be

indicative of an increase in grazer population over the study period. This corroborates

the findings of Cromsigt & Beest (2014) in a megaherbivore recolonization experi-

ment, where a higher proportion of short grass cover and 20 times more grazing lawn

patches were recorded on high rhino impact than low rhino impact landscapes. For
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the period between 2014 and 2019, differential patterns of change in grazing lawn

cover and structure were observed within the selected study sites. Marginal changes

in grazing lawn extent were observed for Site 1 (increase by 0.7% of landscape

area) and Site 2 (decrease by 1.3% of landscape area), whereas Site 3 recorded a

significant increase in grazing lawn extent (7.5% of total landscape area). This could

be explained by difference in landscape characteristics, with Site 3 largely covered

by the Sabie River catchment and adjoining drainage channels, indicative of some

surface, soil or leaf moisture availability during drought. It is conceivable, therefore,

that Site 3 served as drought refugia, which concentrated grazers in the landscape

leading to the creation of short grass patches.

The dominant transitions to and from other habitat types were grazing lawn-to-bunch

grass and bunch grass-to-grazing lawns respectively for all study sites. This finding

is unsurprising given that bunch grass swards are the most immediate competitors of

grazing lawns (Archibald, 2008; Donaldson et al., 2018,2; Hempson et al., 2019).

Frequent grazing is required to maintain grazing lawn patches, particularly under

highly productive landscape conditions; otherwise facultative bunch grass species

out-compete and take over grazing lawn species (Hempson et al., 2015). It is im-

portant to note that net gains in grazing lawn cover were recorded for grazing lawn

and woody cover transitions between 2002 and 2014 across all sites. This finding

is consistent with Voysey et al. (2021), who observed that, browsers’ use of grazing

lawn patches primarily as protective hideouts from predators also prevented woody

cover expansion on grazing lawns. However, projected increase in the frequency of

intense droughts and their impact on herbivore mortality could disrupt this balance

and increase the vulnerability of grazing lawn patches to woody encroachment, as

evidenced by the net grazing lawn cover losses to woody cover between 2014 and

2019 for Site 1 and Site 2. In general, drought stress confounded grazing lawn dy-

namics, the impact of which was strongly mediated by local landscape characteristics.

5.1.3 Drivers of change in grazing lawn cover and structure

The third objective was to identify the dominant drivers of change in grazing lawn

cover and structure. This objective draws on findings from Chapter 2 and Chapter 3

to identify the most immediate factors that shape grazing lawn dynamics in southern

African savannahs. Results on grazing lawn spatial pattern analysis in Chapter 2 and

change detection in Chapter 3 point directly to grazer activity as the most imme-

diate driver of grazing lawn dynamics. Incidentally, continued grazing is among the
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most widely reported factors responsible for grazing lawn formation and persistence

in southern African savannahs (Archibald, 2008; Cromsigt & Olff, 2008; Grant &

Scholes, 2006; Hempson et al., 2015,1). All other factors that act to alter grazer activ-

ity such as the availability of resource hot-spots and fire events (Archibald et al., 2005;

Archibald, 2008; Donaldson et al., 2018), thus influences grazing lawn dynamics.

One interesting finding is the strong correlation between patterns in grazing lawn

structural attributes and distance from water sources, where more and larger grazing

lawn patches were found in close proximity to water sources. The availability of reliable

water sources is a major limiting factor in dry ecosystems such as savannahs. Water

points therefore represent important resource hot-spots which concentrate grazers

(Smit et al., 2007; Smith & Buckley, 2011), leading to grazing lawn formation and

persistence around water sources. This finding also reflects those of Redfern et al.

(2003) and Smit et al. (2007), who observed that landscape-scale distribution of

grazers was generally biased towards areas around reliable rivers and permanent

waterholes, particularly in the dry season when moisture content in graze is low.

Apart from areas around water points, sodic sites were found to host large contiguous

grazing lawn cover. Sodic sites are rich in soil and plant sodium making them very

attractive to grazers. Mostly found along drainage lines at the footslope of catenas,

the distribution of sodic sites likely contributed to the observed association between

grazing lawn presence and water bodies. Other landscape characteristics such as

openness has also been found to be attractive to grazers, partly to mitigate the risk of

predation (Burkepile et al., 2013). The resulting concentration of grazers in such open

savannah landscapes could thus lead to extensive grazing lawn formation, which was

evident in the Satara landscape.

Analysis of grazing lawn cover changes showed predominant transitions with tall

grasses which points to the interactive influence of fire and grazers on grazing lawn

dynamics (Donaldson et al., 2018). Both fire and grazers are consumers of grass

biomass (Donaldson et al., 2018; Hempson et al., 2019). Feedback between grass

functional traits and consumers shape grassy ecosystem structure into tall grass or

short grass communities. Hempson et al. (2019) describes this as alternate stable

grassland states determined by fire or grazing, where tall grasses dominate fire-

driven landscapes and short grass grazing lawns dominate grazer driven landscapes.

These positive feedbacks between grass structural states and fire or grazing arise

because tall grass and grazing lawn traits that bolster their competitive abilities also

attract fire or grazers, making them adaptable under these different consumer re-
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gimes (Hempson et al., 2015,1). Tall grasses are relatively unpalatable and highly

flammable, with extensive root reserves that allow them to quickly re-sprout after fire.

Conversely, grazing lawns are non-flammable, but very palatable and thrive under

continuous grazing. Through their stoloniferous growth pattern, grazing lawns suc-

cessfully hide their reproductive buds from grazers, thus ensuring their persistence

under high grazing pressure. Switches between tall grass and grazing lawn states

therefore occur with changes in fire regimes and grazer behaviour or population,

however, the rate of transition is dependent on landscape productivity (Archibald et al.,

2005). Under high productivity conditions, tall grasses shade out grazing lawns, cre-

ating flammable conditions through fuel biomass build up, which effectively excludes

grazing lawns from the landscape. Frequent grazing is therefore required to maintain

grazing lawns under high landscape productivity. Additionally, fire and grazers may

interact to shape grazing lawn and tall grass transitions (Donaldson et al., 2018). Post-

fire re-sprouts may attract and concentrate grazers on previous tall grass swards,

leading to the invasion of grazing lawn species. In parallel, grazer movement away

from already established grazing lawn patches could result in their colonization by tall

grass species.

5.2 Contribution of this research

This research makes significant contributions in two main areas. First, on method-

ological advancement. The first step to successful monitoring of grazing lawns in-

volves the capability to quantify their occurrence within the savannah landscape.

Much of the literature on monitoring savannah grazing lawns focuses on localized

field observations and landscape experiments. While such field-based approaches

provide detailed insights to advance ecological understanding, they are laborious

and costly, particularly in the context of operational management decision making.

Additionally, the drivers of grazing lawn dynamics as well as the impact grazing lawns

themselves exert on broader ecosystem processes play out at broader spatial and

temporal scales, which makes investigations with field-based monitoring inefficient.

This research presents the first attempt on the development of a robust broad-scale

approach for accurate detection and monitoring of grazing lawns using remote sens-

ing. It provides a novel machine learning-based workflow for grazing lawn detection

using very high resolution WorldView-3 imagery. It has also been demonstrated that

the spatial and spectral advantages of open-access high and medium resolution
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satellite imagery from Planet and Sentinel-2 can be harnessed for accurate and

cost effective grazing lawn monitoring at high spatial scales. This particular image

fusion approach could have extended applications in different savannah land cover

monitoring contexts.

Second, this research contributes to literature on savannah grassland ecology. A

greater understanding of grazing lawn spatial distribution and spatio-temporal changes

has been achieved, contributing to a better understanding of habitat heterogeneity in

southern African savannahs. In particular, the role of water sources in the spatial

distribution and persistence of grazing lawns has been demonstrated. Evidence of

the main transition pathways between grazing lawns and other habitat types has been

provided, which validates previous research focusing on dynamics between grazing

lawns and tall grasses. Incidentally, it has been shown that the ongoing phenomenon

of woody encroachment is not an immediate threat to grazing lawn patches, but

projected increase in frequency and intensity of droughts could hasten invasion of

woody cover on grazing lawn patches.

5.3 Limitations and future research

The availability of spatially representative and non-autocorrelated in-situ observations

(ground-truth) is vital in any remote sensing-based land cover analysis (Congalton &

Green, 2019; Foody, 2004). This not only ensures that high quality data are available

for calibrating predictive algorithms, but also enables robust validation of outcomes

(Foody et al., 2016). In this research most of the field data on the presence of different

savannah land cover types were confined to areas around access roads in the study

sites due to safety protocols and time limitations during field surveys. As such, field

samples were spatially skewed and not representative of the image footprints used for

analysis. This may have influenced interpretation of the results. That notwithstanding,

a number of steps were taken to ensure high quality data for model calibration and

results interpretation. Field locations were sampled beyond 100 m buffer around

access roads in order to minimize the possible influence of edge effects. Further,

the availability of very high resolution satellite images alongside field photos and

in-house experts with extensive experience within the southern African savannah

landscape allowed remote selection of spatially extended reference data for analysis.

Consequently, reference data from the Lower Sabie region (south KNP), where most

of the field survey data were concentrated, were used to calibrate machine learning
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models for grazing lawn detection using WorldView-3 imagery (Chapter 2). Higher

model performance was achieved within the same landscape. However, transferring

the machine learning models to the Satara landscape to the north with relatively

drier conditions resulted in a dip in model performance. Future analysis should aim

to use reference data that are representative of the spatial scope of application.

Further, optimizing savannah vegetation mapping would benefit from a closer analysis

of spectral differences in the same vegetation types along precipitation gradients

typical of KNP.

This research corroborated evidence of the effectiveness of VHR imagery for veget-

ation mapping in heterogeneous savannah landscapes. In particular, the WorldView

sensor provides vegetation sensitive spectral bands which aided in accurately dis-

criminating grazing lawns from other plant functional types. However, the downside

to the use of VHR imagery is the high acquisition cost involved. The closest open-

access sensor with similar spectral characteristics is Sentinel-2 MSI (Drusch et al.,

2012), whose spatial resolution is relatively coarse for detailed vegetation mapping in

heterogeneous savannahs. In this context, the release of high resolution Planet com-

posites (Planet, 2017) with open-access license provides an opportunity to overcome

cost limitations of using VHR imagery. This research demonstrated that fusing the

high spatial resolution from the Planet data and the spectral bands from Sentinel-2

provides imagery with similar characteristics to that of WorldView, which enhanced

accuracy of grazing lawn delineation. A common constraint in the process was the

high computing power required for image processing, which is typical for the analysis

of VHR images in general. It is envisioned that the increasing availability and access

to powerful cloud computing platforms such as Google Earth Engine and Microsoft

Planetary Computer would help to offset such computational limitations.

Another important limitation was the access to data on potential drivers of savannah

vegetation dynamics such as data on grazer population, fire behaviour and precipit-

ation in the studied landscape. In the absence of such data, this research resorted

to reports from literature on grazing lawn ecology, coupled with findings from grazing

lawn transition pathways to highlight the dominant drivers of grazing lawn dynamics.

Future research should aim to test the relationship between grazing lawn spatial

characteristics and data on such biophysical factors to identify empirically the most

relevant drivers of grazing lawn dynamics under different landscape conditions.
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KASZTA, ŻANETA, VAN DE KERCHOVE, RUBEN, RAMOELO, ABEL, CHO, MOSES,

MADONSELA, SABELO, MATHIEU, RENAUD, & WOLFF, ELÉONORE. 2016. Sea-

sonal separation of African savanna components using worldview-2 imagery:

a comparison of pixel-and object-based approaches and selected classification

algorithms. Remote Sensing, 8(9), 763.

151



KENNEDY, ROBERT E, YANG, ZHIQIANG, & COHEN, WARREN B. 2010. Detecting

trends in forest disturbance and recovery using yearly Landsat time series: 1.

LandTrendr—Temporal segmentation algorithms. Remote Sensing of Environ-

ment, 114(12), 2897–2910.

KHORRAM, SIAMAK, VAN DER WIELE, CYNTHIA F, KOCH, FRANK H, NELSON,

STACY AC, & POTTS, MATTHEW D. 2016. Future trends in remote sensing.

Pages 277–285 of: Principles of Applied Remote Sensing. Springer.

KINGMA, DIEDERIK P, & BA, JIMMY. 2014. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980.

KLARIC, MATTHEW N, CLAYWELL, BRIAN C, SCOTT, GRANT J, HUDSON, NICH-

OLAS J, SJAHPUTERA, OZY, LI, YONGHONG, BARRATT, SETH T, KELLER,

JAMES M, & DAVIS, CURT H. 2013. GeoCDX: An automated change detection

and exploitation system for high-resolution satellite imagery. IEEE Transactions

on Geoscience and Remote Sensing, 51(4), 2067–2086.
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Appendix A

Probabilistic Mapping and Spatial

Pattern Analysis of Grazing Lawns in

Southern African Savannahs Using

WorldView-3 Imagery and Machine

Learning Techniques

A.1 Multicollinearity and Feature Selection

Multicollinearity analysis among derived image features showed that spectral indices

exhibited higher correlation than texture features based on a stepwise elimination

threshold of VIF ≥ 10. Twenty-one out of the 27 spectral indices (i.e., vegetation,

moisture and soil combined) had collinearity problems. After eliminating the collinear

variables, VIF values of retained spectral indices ranged from 1.19 to 3.94 (Fig-

ure A.1A) with linear correlation coefficients between −0.002 (S_SI9∼M_NDWI) and

−0.666 (S_SI9∼S_SI5). In contrast, only three out of the 18 texture features exhib-

ited collinearity. The retained texture variables had VIF values ranging from 1.00 to

9.22 (Figure A.1B) and linear correlation coefficients ranging between −6.14×10−5

(T_Dent∼T_Diss) and 0.79 (T_IDM∼T_Ener). Overall, six spectral indices (three soil

indices, two vegetation indices and one moisture index) and 15 texture features (seven

simple and eight advanced Haralick features) were retained (Figure A.1A and A.1B)

and combined with the eight original image bands for final feature selection.
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Figure A.1: Feature selection results from VIF and RF-RFE analysis. (A) VIF of
selected spectral indices. (B) VIF of selected texture features. (C) Importance scores
of final selected image features following RF-RFE. Original bands and selected
spectral indices and texture features from VIF served as input to RF-RFE. Final
selection was based on number of features that retained optimal accuracy
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Figure A.2: Plot of accuracy versus number of features.

Selection of final input image features was conducted using Random Forest Feature

Elimination (RF-RFE). The RF-RFE procedure resulted in 26 image features (Figure

A.2) comprising of eight image bands, six spectral indices and twelve texture features.

Figure A.1C shows the relative importance scores of selected final input features in

differentiating the different land cover categories (Table 2.1). The first 13 (50%) most

important features were dominated by nearly equal proportions of spectral bands and

spectral indices (six and five, respectively), with two texture features, while the re-

maining features were largely composed of texture variables (Figure A.1C). Amongst

the original bands, variables that exhibited high importance were B_C, B_R and B_Y.

V_MSAVI2, S_SI5 and V_GEMI were the spectral indices of high importance, and the

most influential texture variables included T_Ener and T_Mean.
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A.2 Comparison of Grazing Lawn Area Estimates across

Models in Each Landscape.

Table A.1: Two-proportions Z-test comparing the proportions of estimated grazing
lawn cover. Values in parenthesis represent p-value. Model pairs that show statistic-
ally significant difference (p ≤ 0.05) in proportion of grazing lawn cover are in bold.
CART = Classification and Regression Trees, MLP = Multilayer Perceptron, RF =
Random Forest, SVM = Support Vector Machines.

Lower Sabie Satara
Model pair χ2-test Model pair χ2-test

CART v MLP 0.000(1.00) CART v MLP 5.017(0.025)
CART v RF 0.000(1.00) CART v RF 8.328(0.003)

CART v SVM 0.000(1.00) CART v SVM 7.225(0.007)
MLP v RF 0.000(1.00) MLP v RF 13.146(0.000)

MLP v SVM 0.000(1.00) MLP v SVM 11.657(0.000)
RF v SVM 0.000(1.00) RF v SVM 10.083(0.001)

A.3 Confusion Matrices for the Lower Sabie Landscape

Table A.2: Confusion matrix summarising results from Random Forest (RF) model
classification of grazing lawn and other cover.

RF
Reference Class Commission Error (%)

Grazing lawn Other
Predicted Class Grazing lawn 84 16 16.00

Other 4 693 0.57
Omission Error (%) 4.55 2.26

Table A.3: Confusion matrix summarising results from Support Vector Machines
(SVM) model classification of grazing lawn and other cover.

SVM
Reference Class Commission Error (%)

Grazing lawn Other
Predicted Class Grazing lawn 93 7 7.00

Other 7 690 1.00
Omission Error (%) 7.00 1.00
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Table A.4: Confusion matrix summarising results from Classification and Regression
Trees (CART) model classification of grazing lawn and other cover.

CART
Reference Class Commission Error (%)

Grazing lawn Other
Predicted Class Grazing lawn 77 23 23.00

Other 12 685 1.72
Omission Error (%) 13.48 3.25

Table A.5: Confusion matrix summarising results from Multilayer Perceptron (MLP)
model classification of grazing lawn and other cover.

MLP
Reference Class Commission Error (%)

Grazing lawn Other
Predicted Class Grazing lawn 97 3 3.00

Other 9 688 1.29
Omission Error (%) 8.49 0.43

A.4 Confusion Matrices for the Satara Landscape

Table A.6: Confusion matrix summarising results from Random Forest (RF) model
classification of grazing lawn and other cover.

RF
Reference Class Commission Error (%)

Grazing lawn Other
Predicted Class Grazing lawn 90 13 12.62

Other 12 511 2.29
Omission Error (%) 11.76 2.48

Table A.7: Confusion matrix summarising results from Support Vector Machines
(SVM) model classification of grazing lawn and other cover.

SVM
Reference Class Commission Error (%)

Grazing lawn Other
Predicted Class Grazing lawn 93 10 9.71

Other 14 509 2.68
Omission Error (%) 13.08 1.93
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Table A.8: Confusion matrix summarising results from Classification and Regression
Trees (CART) model classification of grazing lawn and other cover.

CART
Reference Class Commission Error (%)

Grazing lawn Other
Predicted Class Grazing lawn 78 25 24.27

Other 25 498 4.78
Omission Error (%) 24.27 4.78

Table A.9: Confusion matrix summarising results from Multilayer Peceptron (MLP)
model classification of grazing lawn and other cover.

MLP
Reference Class Commission Error (%)

Grazing lawn Other
Predicted Class Grazing lawn 88 15 14.56

Other 16 507 3.06
Omission Error (%) 15.38 2.87
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Appendix B

Spatio-temporal Analysis of Grazing

Lawn Dynamics in Southern African

Savannahs Using Multi-temporal

High-resolution Satellite Images.

B.1 Confusion Matrices used for accuracy assessment

Table B.1: Site 1 confusion matrix used for classification accuracy assessment for
each time period (2002, 2014 and 2019). Columns represent classification labels and
rows represent reference labels.

Woody Bunch grass Grazing lawn Water body Bare Built-up
2002

Woody 449 12 1 1 0 5
Bunch grass 8 309 8 0 0 0
Grazing lawn 0 3 367 0 1 0
Water body 2 0 0 381 0 5

Bare 0 0 0 0 233 1
Built-up 2 0 2 15 2 167

2014
Woody 136 4 0 0 0 3

Bunch grass 0 45 2 0 0 0
Grazing lawn 0 1 317 0 1 2
Water body 0 0 0 139 0 0

Bare 0 0 2 0 202 0
Built-up 0 1 7 0 1 37

2019
Woody 47 2 0 1 2 2

Bunch grass 2 29 2 2 0 0
Grazing lawn 0 0 115 1 1 3
Water body 2 1 2 37 1 0

Bare 1 0 3 2 24 1
Built-up 0 1 4 0 1 26
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Table B.2: Site 2 confusion matrix used for classification accuracy assessment for
each time period (2002, 2014 and 2019). Columns represent classification labels and
rows represent reference labels.

Woody Bunch grass Grazing lawn Water body Bare Built-up
2002

Woody 936 11 0 0 0 3
Bunch grass 8 468 8 0 0 0
Grazing lawn 0 2 217 0 2 0
Water body 0 0 0 375 0 0

Bare 0 0 4 0 250 0
Built-up 0 5 3 0 0 683

2014
Woody 864 11 0 0 0 4

Bunch grass 3 199 1 0 0 1
Grazing lawn 0 6 545 0 1 4
Water body 2 0 0 1105 0 1

Bare 0 0 0 0 389 1
Built-up 1 3 4 2 3 1807

2019
Woody 1096 26 1 0 0 2

Bunch grass 15 648 62 0 0 0
Grazing lawn 1 52 776 0 10 0
Water body 2 0 0 1088 4 4

Bare 0 0 8 0 716 5
Built-up 0 0 3 4 3 1499
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Table B.3: Site 3 confusion matrix used for classification accuracy assessment for
each time period (2002, 2014 and 2019). Columns represent classification labels and
rows represent reference labels.

Woody Bunch grass Grazing lawn Water body Bare Built-up
2002

Woody 266 7 1 0 0 0
Bunch grass 1 188 0 0 0 0
Grazing lawn 0 0 224 0 0 2
Water body 0 0 0 332 0 1

Bare 0 0 0 0 56 0
Built-up 0 0 5 0 0 8

2014
Woody 304 6 0 0 0 1

Bunch grass 1 315 1 0 0 1
Grazing lawn 0 2 293 0 2 0
Water body 0 0 0 69 0 0

Bare 0 0 0 0 127 0
Built-up 2 3 0 5 0 58

2019
Woody 325 3 5 1 0 1

Bunch grass 6 183 10 0 0 0
Grazing lawn 1 11 661 0 4 0
Water body 3 2 1 249 0 0

Bare 0 0 0 0 169 0
Built-up 3 0 1 3 0 164

B.2 Transition matrices for land cover change analysis.

Table B.4: Site 1 transition matrix (km2) used for land cover change analysis for the
period between 2002 and 2014. Columns represent 2014 entries and rows represent
2002 entries.

Class Woody Bunch grass Grazing lawn Water Bare Built-up Totals
Woody 10.33 10.94 1.48 0.61 0.56 1.35 25.27

Bunch grass 7.06 20.53 4.34 1.04 0.78 2.49 36.24
Grazing lawn 0.33 1.03 1.97 0.26 0.22 0.57 4.37

Water 0.14 0.26 0.16 0.06 0.03 0.05 0.69
Bare 0.02 0.04 0.09 0.03 0.03 0.02 0.23

Built-up 0.01 0.02 0.02 0.01 0.01 0.01 0.08
Totals 17.89 32.82 8.06 2.01 1.63 4.48 66.89
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Table B.5: Site 1 transition matrix (km2) used for land cover change analysis for the
period between 2014 and 2019. Columns represent 2019 entries and rows represent
2014 entries.

Class Woody Bunch grass Grazing lawn Water Bare Built-up Totals
Woody 10.95 7.00 0.46 0.08 0.06 0.02 18.57

Bunch grass 8.04 23.38 2.48 0.07 0.08 0.03 34.07
Grazing lawn 0.76 3.21 4.41 0.06 0.11 0.00 8.55

Water 0.44 1.17 0.50 0.04 0.02 0.00 2.18
Bare 0.50 0.92 0.32 0.01 0.03 0.00 1.79

Built-up 1.19 2.99 0.77 0.01 0.00 0.00 4.97
Totals 21.87 38.68 8.94 0.27 0.31 0.05 70.13

Table B.6: Site 1 transition matrix (km2) used for land cover change analysis for the
period between 2002 and 2019. Columns represent 2019 entries and rows represent
2002 entries.

Class Woody Bunch grass Grazing lawn Water Bare Built-up Totals
Woody 13.93 16.18 0.92 0.09 0.07 0.02 31.22

Bunch grass 12.53 38.77 6.81 0.08 0.08 0.03 58.30
Grazing lawn 0.52 3.16 3.54 0.04 0.05 0.00 7.31

Water 0.27 0.43 0.19 0.03 0.03 0.00 0.95
Bare 0.04 0.08 0.09 0.01 0.06 0.00 0.29

Built-up 0.02 0.05 0.04 0.00 0.00 0.00 0.12
Totals 27.31 58.67 11.60 0.25 0.30 0.06 98.18

Table B.7: Site 2 transition matrix (km2) used for land cover change analysis for the
period between 2002 and 2014. Columns represent 2014 entries and rows represent
2002 entries.

Class Woody Bunch grass Grazing lawn Water Bare Built-up Totals
Woody 15.73 6.62 0.68 0.02 0.05 0.25 23.35

Bunch grass 7.58 6.88 1.27 0.02 0.06 0.28 16.09
Grazing lawn 0.24 0.25 0.44 0.00 0.03 0.09 1.05

Water 0.25 0.22 0.05 0.04 0.00 0.02 0.58
Bare 0.01 0.01 0.01 0.00 0.01 0.01 0.06

Built-up 0.13 0.10 0.02 0.00 0.00 0.03 0.28
Totals 23.93 14.08 2.47 0.08 0.17 0.68 41.41
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Table B.8: Site 2 transition matrix (km2) used for land cover change analysis for the
period between 2014 and 2019. Columns represent 2019 entries and rows represent
2014 entries.

Class Woody Bunch grass Grazing lawn Water Bare Built-up Totals
Woody 20.63 10.11 0.59 0.01 0.43 0.06 31.83

Bunch grass 7.42 11.39 0.84 0.00 0.51 0.04 20.20
Grazing lawn 1.02 1.18 0.80 0.00 0.33 0.04 3.37

Water 0.02 0.01 0.00 0.05 0.00 0.00 0.08
Bare 0.07 0.06 0.01 0.00 0.06 0.00 0.21

Built-up 0.37 0.25 0.11 0.00 0.10 0.04 0.87
Totals 29.54 23.01 2.35 0.06 1.43 0.19 56.56

Table B.9: Site 2 transition matrix (km2) used for land cover change analysis for the
period between 2002 and 2019. Columns represent 2019 entries and rows represent
2002 entries.

Class Woody Bunch grass Grazing lawn Water Bare Built-up Totals
Woody 15.04 7.97 0.40 0.01 0.34 0.04 23.80

Bunch grass 6.77 7.95 0.94 0.01 0.53 0.06 16.26
Grazing lawn 0.30 0.31 0.26 0.00 0.19 0.02 1.08

Water 0.24 0.27 0.02 0.04 0.02 0.00 0.59
Bare 0.02 0.02 0.01 0.00 0.05 0.00 0.09

Built-up 0.13 0.10 0.01 0.00 0.01 0.03 0.29
Totals 22.51 16.62 1.64 0.06 1.14 0.16 42.12

Table B.10: Site 3 transition matrix (km2) used for land cover change analysis for the
period between 2002 and 2014. Columns represent 2014 entries and rows represent
2002 entries.

Class Woody Bunch grass Grazing lawn Water Bare Built-up Totals
Woody 8.84 11.02 0.87 0.09 0.09 0.20 21.12

Bunch grass 13.53 48.09 2.95 0.07 0.17 0.40 65.20
Grazing lawn 0.47 1.35 1.03 0.02 0.13 0.05 3.05

Water 0.25 0.12 0.22 0.26 0.11 0.08 1.04
Bare 0.06 0.05 0.17 0.01 0.15 0.02 0.45

Built-up 0.10 0.09 0.15 0.03 0.07 0.03 0.46
Totals 23.24 60.72 5.39 0.49 0.71 0.77 91.32
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Table B.11: Site 3 transition matrix (km2) used for land cover change analysis for the
period between 2014 and 2019. Columns represent 2019 entries and rows represent
2014 entries.

Class Woody Bunch grass Grazing lawn Water Bare Built-up Totals
Woody 13.25 7.45 1.83 0.57 0.10 0.08 23.28

Bunch grass 15.75 35.00 8.46 1.20 0.23 0.16 60.79
Grazing lawn 1.54 1.03 2.36 0.11 0.27 0.09 5.40

Water 0.19 0.02 0.02 0.24 0.01 0.01 0.49
Bare 0.27 0.07 0.18 0.02 0.16 0.01 0.71

Built-up 0.37 0.20 0.11 0.05 0.02 0.01 0.77
Totals 31.38 43.76 12.96 2.19 0.79 0.37 91.45

Table B.12: Site 3 transition matrix (km2) used for land cover change analysis for the
period between 2002 and 2019. Columns represent 2019 entries and rows represent
2002 entries.

Class Woody Bunch grass Grazing lawn Water Bare Built-up Totals
Woody 11.56 7.91 2.34 0.58 0.13 0.09 22.61

Bunch grass 19.18 37.24 9.79 1.34 0.34 0.20 68.09
Grazing lawn 0.90 0.73 1.20 0.06 0.16 0.03 3.07

Water 0.61 0.04 0.07 0.26 0.04 0.02 1.04
Bare 0.17 0.04 0.12 0.02 0.09 0.01 0.45

Built-up 0.25 0.05 0.08 0.03 0.04 0.02 0.46
Totals 32.65 46.01 13.60 2.28 0.80 0.37 95.72
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Appendix C

Multi-sensor optical image fusion for

land cover classification in a

heterogeneous African savannah:

toward accurate and cost effective

grazing lawn monitoring.

C.1 Confusion Matrices
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Figure C.1: Confusion matrices from 10-fold classification and accuracy assessment
of the Sentinel-2A image. S2A = Sentinel-2A, K = Iteration. For the land cover classes
considered, Woody = 1, Bunch grass = 2, Grazing lawns = 3, Water body =4, Bare =
5 and Built-up = 6.
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Figure C.2: Confusion matrices from 10-fold classification and accuracy assessment
of the Planet image. PS = Planet, K = Iteration. For the land cover classes considered,
Woody = 1, Bunch grass = 2, Grazing lawns = 3, Water body =4, Bare = 5 and Built-up
= 6.
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Figure C.3: Confusion matrices from 10-fold classification and accuracy assessment
of the Fused image. S2A+PS = Fused image, K = Iteration. For the land cover classes
considered, Woody = 1, Bunch grass = 2, Grazing lawns = 3, Water body =4, Bare =
5 and Built-up = 6.
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