3,509 research outputs found

    VISUAL SALIENCY ANALYSIS, PREDICTION, AND VISUALIZATION: A DEEP LEARNING PERSPECTIVE

    Get PDF
    In the recent years, a huge success has been accomplished in prediction of human eye fixations. Several studies employed deep learning to achieve high accuracy of prediction of human eye fixations. These studies rely on pre-trained deep learning for object classification. They exploit deep learning either as a transfer-learning problem, or the weights of the pre-trained network as the initialization to learn a saliency model. The utilization of such pre-trained neural networks is due to the relatively small datasets of human fixations available to train a deep learning model. Another relatively less prioritized problem is amount of computation of such deep learning models requires expensive hardware. In this dissertation, two approaches are proposed to tackle abovementioned problems. The first approach, codenamed DeepFeat, incorporates the deep features of convolutional neural networks pre-trained for object and scene classifications. This approach is the first approach that uses deep features without further learning. Performance of the DeepFeat model is extensively evaluated over a variety of datasets using a variety of implementations. The second approach is a deep learning saliency model, codenamed ClassNet. Two main differences separate the ClassNet from other deep learning saliency models. The ClassNet model is the only deep learning saliency model that learns its weights from scratch. In addition, the ClassNet saliency model treats prediction of human fixation as a classification problem, while other deep learning saliency models treat the human fixation prediction as a regression problem or as a classification of a regression problem

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Extended fault inversion with random slipmaps: a resolution test for the 2012 Mw 7.6 Nicoya, Costa Rica earthquake

    Get PDF
    Inversions for the full slip distribution of earthquakes provide detailed models of earthquake sources, but stability and non-uniqueness of the inversions is a major concern. The problem is underdetermined in any realistic setting, and significantly different slip distributions may translate to fairly similar seismograms. In such circumstances, inverting for a single best model may become overly dependent on the details of the procedure. Instead, we propose to perform extended fault inversion trough falsification. We generate a representative set of heterogeneous slipmaps, compute their forward predictions, and falsify inappropriate trial models that do not reproduce the data within a reasonable level of mismodelling. The remainder of surviving trial models forms our set of coequal solutions. The solution set may contain only members with similar slip distributions, or else uncover some fundamental ambiguity such as, for example, different patterns of main slip patches. For a feasibility study, we use teleseismic body wave recordings from the 2012 September 5 Nicoya, Costa Rica earthquake, although the inversion strategy can be applied to any type of seismic, geodetic or tsunami data for which we can handle the forward problem. We generate 10 000 pseudo-random, heterogeneous slip distributions assuming a von Karman autocorrelation function, keeping the rake angle, rupture velocity and slip velocity function fixed. The slip distribution of the 2012 Nicoya earthquake turns out to be relatively well constrained from 50 teleseismic waveforms. Two hundred fifty-two slip models with normalized L1-fit within 5 per cent from the global minimum from our solution set. They consistently show a single dominant slip patch around the hypocentre. Uncertainties are related to the details of the slip maximum, including the amount of peak slip (2–3.5 m), as well as the characteristics of peripheral slip below 1 m. Synthetic tests suggest that slip patterns such as Nicoya may be a fortunate case, while it may be more difficult to unambiguously reconstruct more distributed slip from teleseismic data

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Multimodal learning from visual and remotely sensed data

    Get PDF
    Autonomous vehicles are often deployed to perform exploration and monitoring missions in unseen environments. In such applications, there is often a compromise between the information richness and the acquisition cost of different sensor modalities. Visual data is usually very information-rich, but requires in-situ acquisition with the robot. In contrast, remotely sensed data has a larger range and footprint, and may be available prior to a mission. In order to effectively and efficiently explore and monitor the environment, it is critical to make use of all of the sensory information available to the robot. One important application is the use of an Autonomous Underwater Vehicle (AUV) to survey the ocean floor. AUVs can take high resolution in-situ photographs of the sea floor, which can be used to classify different regions into various habitat classes that summarise the observed physical and biological properties. This is known as benthic habitat mapping. However, since AUVs can only image a tiny fraction of the ocean floor, habitat mapping is usually performed with remotely sensed bathymetry (ocean depth) data, obtained from shipborne multibeam sonar. With the recent surge in unsupervised feature learning and deep learning techniques, a number of previous techniques have investigated the concept of multimodal learning: capturing the relationship between different sensor modalities in order to perform classification and other inference tasks. This thesis proposes related techniques for visual and remotely sensed data, applied to the task of autonomous exploration and monitoring with an AUV. Doing so enables more accurate classification of the benthic environment, and also assists autonomous survey planning. The first contribution of this thesis is to apply unsupervised feature learning techniques to marine data. The proposed techniques are used to extract features from image and bathymetric data separately, and the performance is compared to that with more traditionally used features for each sensor modality. The second contribution is the development of a multimodal learning architecture that captures the relationship between the two modalities. The model is robust to missing modalities, which means it can extract better features for large-scale benthic habitat mapping, where only bathymetry is available. The model is used to perform classification with various combinations of modalities, demonstrating that multimodal learning provides a large performance improvement over the baseline case. The third contribution is an extension of the standard learning architecture using a gated feature learning model, which enables the model to better capture the ‘one-to-many’ relationship between visual and bathymetric data. This opens up further inference capabilities, with the ability to predict visual features from bathymetric data, which allows image-based queries. Such queries are useful for AUV survey planning, especially when supervised labels are unavailable. The final contribution is the novel derivation of a number of information-theoretic measures to aid survey planning. The proposed measures predict the utility of unobserved areas, in terms of the amount of expected additional visual information. As such, they are able to produce utility maps over a large region that can be used by the AUV to determine the most informative locations from a set of candidate missions. The models proposed in this thesis are validated through extensive experiments on real marine data. Furthermore, the introduced techniques have applications in various other areas within robotics. As such, this thesis concludes with a discussion on the broader implications of these contributions, and the future research directions that arise as a result of this work

    Prediction of functionally important residues in globular proteins from unusual central distances of amino acids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Well-performing automated protein function recognition approaches usually comprise several complementary techniques. Beside constructing better consensus, their predictive power can be improved by either adding or refining independent modules that explore orthogonal features of proteins. In this work, we demonstrated how the exploration of global atomic distributions can be used to indicate functionally important residues.</p> <p>Results</p> <p>Using a set of carefully selected globular proteins, we parametrized continuous probability density functions describing preferred central distances of individual protein atoms. Relative preferred burials were estimated using mixture models of radial density functions dependent on the amino acid composition of a protein under consideration. The unexpectedness of extraordinary locations of atoms was evaluated in the information-theoretic manner and used directly for the identification of key amino acids. In the validation study, we tested capabilities of a tool built upon our approach, called SurpResi, by searching for binding sites interacting with ligands. The tool indicated multiple candidate sites achieving success rates comparable to several geometric methods. We also showed that the unexpectedness is a property of regions involved in protein-protein interactions, and thus can be used for the ranking of protein docking predictions. The computational approach implemented in this work is freely available via a Web interface at <url>http://www.bioinformatics.org/surpresi</url>.</p> <p>Conclusions</p> <p>Probabilistic analysis of atomic central distances in globular proteins is capable of capturing distinct orientational preferences of amino acids as resulting from different sizes, charges and hydrophobic characters of their side chains. When idealized spatial preferences can be inferred from the sole amino acid composition of a protein, residues located in hydrophobically unfavorable environments can be easily detected. Such residues turn out to be often directly involved in binding ligands or interfacing with other proteins.</p
    corecore