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Multimodal learning from visual and
remotely sensed data

Autonomous vehicles are often deployed to perform exploration and monitoring mis-
sions in unseen environments. In such applications, there is often a compromise
between the information richness and the acquisition cost of different sensor modali-
ties. Visual data is usually very information-rich, but requires in-situ acquisition with
the robot. In contrast, remotely sensed data has a larger range and footprint, and
may be available prior to a mission. In order to effectively and efficiently explore and
monitor the environment, it is critical to make use of all of the sensory information
available to the robot.

One important application is the use of an Autonomous Underwater Vehicle (AUV)
to survey the ocean floor. AUVs can take high resolution in-situ photographs of the
sea floor, which can be used to classify different regions into various habitat classes
that summarise the observed physical and biological properties. This is known as
benthic habitat mapping. However, since AUVs can only image a tiny fraction of the
ocean floor, habitat mapping is usually performed with remotely sensed bathymetry
(ocean depth) data, obtained from shipborne multibeam sonar.

With the recent surge in unsupervised feature learning and deep learning techniques, a
number of previous techniques have investigated the concept of multimodal learning :
capturing the relationship between different sensor modalities in order to perform
classification and other inference tasks. This thesis proposes related techniques for
visual and remotely sensed data, applied to the task of autonomous exploration and
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monitoring with an AUV. Doing so enables more accurate classification of the benthic
environment, and also assists autonomous survey planning.

The first contribution of this thesis is to apply unsupervised feature learning tech-
niques to marine data. The proposed techniques are used to extract features from
image and bathymetric data separately, and the performance is compared to that
with more traditionally used features for each sensor modality.

The second contribution is the development of a multimodal learning architecture
that captures the relationship between the two modalities. The model is robust to
missing modalities, which means it can extract better features for large-scale benthic
habitat mapping, where only bathymetry is available. The model is used to perform
classification with various combinations of modalities, demonstrating that multimodal
learning provides a large performance improvement over the baseline case.

The third contribution is an extension of the standard learning architecture using a
gated feature learning model, which enables the model to better capture the ‘one-
to-many’ relationship between visual and bathymetric data. This opens up further
inference capabilities, with the ability to predict visual features from bathymetric
data, which allows image-based queries. Such queries are useful for AUV survey
planning, especially when supervised labels are unavailable.

The final contribution is the novel derivation of a number of information-theoretic
measures to aid survey planning. The proposed measures predict the utility of unob-
served areas, in terms of the amount of expected additional visual information. As
such, they are able to produce utility maps over a large region that can be used by the
AUV to determine the most informative locations from a set of candidate missions.

The models proposed in this thesis are validated through extensive experiments on
real marine data. Furthermore, the introduced techniques have applications in various
other areas within robotics. As such, this thesis concludes with a discussion on the
broader implications of these contributions, and the future research directions that
arise as a result of this work.
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Chapter 1

Introduction

1.1 Motivation

An important capability for many autonomous vehicles is to build a semantic under-

standing of their surroundings when deployed in an unseen or unfamiliar environment.

Self-driving cars need to identify pedestrians, signage, and other vehicles in order to

navigate an urban environment safely. Indoor service robots have to detect and clas-

sify objects of interest in order to utilise them. In such applications, it is critical

to make use of all sensory information available to the robot, whether it be camera

images, LIDAR scans, or other remotely sensed data.

One particular application of interest in this thesis is the use of Autonomous Under-

water Vehicles (AUVs) to monitor and explore the oceans. AUVs are often deployed

to take high-resolution images of the seafloor along with a plethora of other sen-

sor measurements, such as temperature, salinity and conductivity. In addition to

these in-situ measurements, there is also a wealth of remotely sensed data available,

most commonly in the form of multi-beam bathymetry (ocean depth) data from ship-

borne sonar. This data can be used to generate benthic habitat maps, which classify

large regions of the sea floor into broad habitat classes based on their physical and

biological constituents [98]. These habitat maps are invaluable data products to ma-

rine scientists, assisting in monitoring the distribution and health of various benthic
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species [82, 99, 103]. Moreover, this semantic understanding of the benthos facilitates

the long term autonomy of an AUV, allowing it to perform exploration missions in

line with a high-level goal (e.g. “find and monitor kelp forests”)

Benthic habitats are primarily identified by the substrate (such as rock or sediment)

and the organisms present (such as algae or coral) [46], making them relatively easy

to distinguish using AUV image data [89]. However, AUVs can only traverse a very

small fraction of a larger area of interest, limiting the scale to which visual habitat

classification can be performed. Conversely, bathymetric data is usually available a

priori over an entire site, but has a low spatial resolution, on the order of metres

between adjacent soundings.

In addition to benthic habitat mapping scenarios, this compromise also exists for

other autonomous agents; for aerial, marine, or ground vehicles alike. Visual data

is information-rich but has to be obtained in-situ. Remotely sensed data is often

comparatively information-poor but has a much larger coverage and is often easier to

obtain.

By modelling the relationship between visual and remotely sensed data, it is possible

to leverage the benefits of each modality. Such multimodal models can handle various

queries pertaining to either one or both modalities: perform classification with greater

accuracy from whatever data is available [69], or predict one modality given the other

[85]. From an AUV perspective, this enables more accurate habitat mapping from

remotely sensed data, and allows the capability to predict what kinds of visual features

might be observed in unseen dive sites given the bathymetry. Such queries aid survey

planning: the model can handle queries that are class-based (e.g. “find and monitor

kelp”), image-based (e.g. “find locations that are likely to look similar to this image”)

or information-based (e.g. “explore areas in which the expected visual information

gain is high”).
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1.2 Problem statement

This thesis investigates methods to capture the joint relationship between the visual

images obtained by an AUV, and remotely sensed bathymetry data obtained from

shipborne sonar. By exploiting recent developments in multimodal deep learning, it

is possible to build a model that facilitates both discriminative tasks (classification)

and generative tasks (sampling or modality prediction).

A key driver in the development of such a model is its flexibility. As visual information

is only available over a small fraction of the seafloor, the model must be able to

perform inference with only bathymetry available. Indeed, it is desirable for the

model to also analyse visual images alone, if necessary. Further, there also needs

to be flexibility in the type of inference task. In addition to feature extraction for

classification tasks, it is also desirable for the model to perform generative tasks, such

as predicting visual features from bathymetry. Such capabilities allow an AUV to

reason about what it might observe in previously unseen areas, and make decisions

accordingly. As such, this thesis focuses on building a one-fits-all model that can

handle these different types of queries, without fine tuning to a particular task.

Another important consideration is that the AUV must utilise the high-level ‘intelli-

gence’ afforded by a multimodal learning model, in order to plan future actions. By

jointly reasoning about visual and remotely sensed data, the AUV can then explore

the environment in such a way as to optimise the information obtained through visual

observation. While algorithms for AUV trajectory planning or mission planning are

beyond the scope of this thesis, it is still important to consider how the proposed

models could be applied to planning tasks.
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1.3 Contributions

This thesis is focused on developing a multimodal model that learns the relationship

between visual images and corresponding bathymetry. The primary application is for

AUVs operating in marine environments, but this work also has broader implications

for the robotics community. It is anticipated that the proposed techniques will act

as a building block for future work in multimodal learning for ground vehicles, aerial

vehicles, and other robotic platforms.

The specific aims of this thesis are as follows:

• Perform preliminary analysis of visual and bathymetric data and propose a

pipeline to perform feature learning on each modality.

• Develop a multimodal learning architecture to model the relationship between

the two modalities and perform classification from either or both modalities.

• Investigate models to enable additional unsupervised tasks, such as clustering

and image-based queries.

• Develop techniques that use the proposed models to predict the utility of AUV

candidate surveys.

Accordingly, the main contributions are the following:

• A novel application of feature learning and deep learning techniques to visual

image data and shipborne multi-beam bathymetry data. The techniques are

compared with traditionally used approaches, and the features extracted by the

proposed method are demonstrated to perform well in classification tasks.

• A deep architecture to perform multimodal learning from both data formats.

The proposed model is based on previous work in multimodal learning, and

is able to perform inference when visual data is unavailable, meaning it can

perform benthic habitat mapping over large regions from just the bathymetry
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alone. The results demonstrate higher classification accuracy, regardless of

which modalities are actually available at classification time.

• An extension of the traditional multimodal learning architecture using a gated

mixture of feature learners to capture the high-level correlations, which better

equips the model to handle the one-to-many relationship between visual and

bathymetric data. Additional improvements are proposed to avoid specifying

the number of mixture components used, and to perform inference when only

bathymetric data is available. This allows the model to predict visual features

from bathymetry, which facilitates image-based queries for survey planning, a

useful capability when image labels are unavailable.

• Novel derivations of a number of information-theoretic measures to aid AUV

survey planning. Based on the bathymetric data that is available a priori, the

measures capture the expected informativeness of an unseen environment, in

terms of the expected additional information through in-situ visual observation.

Experiments on both simulated data and real marine data demonstrate that the

measures are able to predict the true utility of unobserved areas.

1.4 Outline

This thesis is structured as follows.

Chapter 2 establishes the background in feature learning, multimodal learning and

benthic classification. The models described in this chapter are utilised and built

upon in the following chapters.

Chapter 3 discusses the application of feature learning and classification techniques

to marine data. After the marine datasets are introduced, various feature learning

techniques are applied separately to the visual and bathymetric data modalities, and

the ensuing classification results are presented.

Chapter 4 outlines a multimodal model based on stacked denoising autoencoders

(DAEs) that learns the relationship between visual images and bathymetry. The
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model is used to perform classification from various modality combinations, as well

as habitat mapping tasks.

Chapter 5 extends the aforementioned model using a gated mixture of Restricted

Boltzmann Machines, to better model the one-to-many mapping from bathymet-

ric features to image features. Extensions to the original model are presented, to

avoid having to specify the number of mixtures and to predict visual features given

bathymetry as input. The model is used to cluster the input data (from either or

both modalities), extract features for classification, and generate utility maps that

can aid survey planning in unseen areas.

Chapter 6 proposes a number of information-theoretic measures to aid survey plan-

ning, based on the gated model described in Chapter 5. The measures are designed

to predict the utility of acquiring visual image data in unobserved environments,

given the bathymetric data over the region. The measures are used to rank a set of

candidate dive locations, and to generate utility maps over a region of interest.

Chapter 7 concludes the thesis and suggests avenues for future work.



Chapter 2

Background

This chapter presents some background on unsupervised feature learning, deep learn-

ing, and classification of marine data. The models presented in this chapter are built

upon in the following chapters of this thesis. Sections 2.1 and 2.2 present a review

of the literature in semantic mapping and benthic habitat classification. Section 2.3

introduces the standard unsupervised feature learning techniques, and Section 2.4

builds on this to describe the commonly used deep learning models. Finally, Sec-

tion 2.5 analyses the previous work in multimodal learning.

2.1 Semantic classification and mapping

A key task for many robotic vehicles is to categorise regions in its environment and

build a semantic map of its surroundings. This capability allows an autonomous vehi-

cle to perform high-level missions based on the objects and scenes that it encounters.

A number of methods perform semantic classification by combining laser and vision-

based observations. Pronobis et al. [72] perform classification in an indoor office

environment by utilising multiple visual and laser cues under a Support Vector Ma-

chine (SVM) framework. By combining these semantic labels with navigation infor-

mation, the robot is able to generate a topological map indicating which room it is
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in at each node in its pose graph. This work is then extended using a chain-graph

to incorporate contextual information, such as adjacent class labels, into the process,

allowing the robot to reason about unexplored areas [71]. Douillard et al. [21] utilise

a model based on Conditional Random Fields (CRF) to capture spatial and temporal

dependencies in the semantic mapping process. The semantic information extracted

by these techniques can then be used for robot task planning [27].

However, while these techniques utilise both laser and visual information, they do

not attempt to learn the relationship between the two modalities. There are nu-

merous benefits to modelling the joint relationship between modalities, as previous

approaches to multimodal learning have shown [40, 69, 85]. Firstly, we expect that

including visual data at feature learning time leads to better remote sensing features,

which enables more accurate, large-scale semantic classification. Secondly, such a

model could then assign semantic meaning to its surroundings in an unsupervised

fashion, by extracting key features and clustering the environment. Lastly, visual

information could be predicted or inferred in unseen areas from the remotely sensed

data, which enables multimodal queries about the environment in areas where one of

the modalities is unavailable.

2.2 Benthic habitat classification

AUVs are often deployed to take high-resolution images of the seafloor along with

numerous other sensor measurements, such as temperature, salinity and conductiv-

ity [22, 62, 82, 99, 103]. While in-situ observation can also be performed with towed

camera sleds or diver rigs equipped with sensor suites [13, 91], AUVs offer a number

of advantages. Specifically, they can autonomously follow the ocean floor at fixed

altitudes, even for rugged terrain, and are far less constrained than human divers in

terms of survey depth and duration [6]. In addition to in-situ measurements from

any of these platforms, there is also a wealth of remotely sensed data available, most

commonly in the form of bathymetry (ocean depth) and backscatter (reflectance)

data from shipborne multi-beam sonar [84].
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Semantic classification techniques can be applied to this data to generate benthic

habitat maps, which classify large regions of the seafloor into broad habitat classes

based on their physical and biological constituents [98]. These habitat maps are in-

valuable data products to marine scientists, assisting in monitoring the distribution

and health of various benthic species [82, 99, 103]. Moreover, this semantic under-

standing of the benthos facilitates the long term autonomy of an AUV, allowing it

to perform exploration missions in line with a high-level goal (e.g. “find and monitor

kelp forests”).

Benthic habitats are primarily determined by the substrate (such as rock or sediment)

and the organisms present (such as algae or coral) [46], making them relatively easy to

distinguish using in-situ image data. As a result, various techniques perform habitat

classification using visual imagery, by performing supervised classification of coral reef

survey images [4, 61], or clustering benthic imagery in an unsupervised fashion [29, 88].

Some approaches are also able to perform semantic mapping in real-time on board

the vehicle [31, 42]. However, AUVs can only traverse a tiny fraction of a larger area

of interest, limiting the scale to which visual habitat classification can be performed.

Conversely, acoustic data is usually available a priori over an entire site, but has

a low spatial resolution, on the order of metres between adjacent readings. Given

this tradeoff, large-scale habitat mapping methods tend to be based on multibeam

acoustic bathymetry or backscatter data, with the visual imagery acting as “ground

truth” [14, 44]. In fact, many AUVs are equipped with a multibeam sonar [49], and the

resulting high resolution bathymetry and backscatter maps can be used for habitat

mapping, but this is again restricted by the limited coverage of the AUV.

The relationship between the topography of the seafloor and the presence of different

benthic species is well documented in the literature [2, 46, 56], with terrain complexity

being a strong indicator for the presence of some habitat classes and species [47]. Four

bathymetric features that are key to determining the underlying habitat are (1) the

depth; (2) the rugosity, or ruggedness of the surrounding terrain; (3) the slope; and

(4) the aspect, or direction of greatest slope [14, 57, 100]. Friedman et al. [26] describe

techniques based on Principal Component Analysis (PCA) to extract these features
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in an unsupervised fashion from dense 3D reconstructions of the seafloor derived fom

stereo visual imagery. Bender et al. [5] extract these features at multiple scales from

shipborne bathymetric data, and also incorporate visual information into the process

by clustering AUV-based benthic imagery: the probabilistic cluster assignments are

used as training labels for bathymetric classification. Another method extrapolates

vision-based results to larger regions, using visual classification from a completed dive

to determine the most informative future dive from a set of candidates [77].

Acoustic backscatter, or the intensity of the sonar return, captures the reflective prop-

erties of the substrate, and can therefore also be a strong indicator of the underlying

habitat class [15, 25, 56, 78]. However, it is also modulated by parameters unrelated

to the benthic habitat, such as the beam incidence angle, range and footprint size,

which results in noisy artefacts such as nadir and outer beam effects [28]. Conse-

quently, extensive processing is usually performed on the backscatter data mosaics

to correct for these effects [14]. Nonetheless, numerous contemporary studies make

use of both bathymetry and backscatter mosaics for benthic habitat characterisation

[39, 75]. While bathymetry is also susceptible to noise and hence requires postprocess-

ing, backscatter artefacts appear more strongly in the Tasmanian dataset and require

additional modelling effort. Since the focus of this thesis is on multimodal learning,

the use of backscatter data is left as a future research direction (Chapter 7), and the

focus is on utilising the bathymetry, or topographical structure, of the seafloor.

Building on these techniques, the approach proposed in this thesis looks to incor-

porate both bathymetric and visual features into the classification process, whilst

maintaining the ability to classify either modality on its own.

2.3 Unsupervised Feature Learning models

This section describes a number of unsupervised feature learning models that are

commonly used in the literature. The focus is on single layer feature learners, with

the aim of extending these to deep models in the following section.
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2.3.1 Overview

Feature learning refers to a family of learning techniques that attempt to determine

a set of basis vectors or features to describe a dataset, often with a sparse repre-

sentation. Different algorithms can perform feature learning in practice, including

autoencoders, k-means clustering, Gaussian mixture models and restricted Boltz-

mann machines (RBMs) [17]. These methods all tend to learn similar dictionaries of

localised filters [17], such as Gabor-like edge filters for natural images, or handwrit-

ing “strokes” for the MNIST digits dataset. While RBMs are generative models that

can sample from the data-generating distribution [35], autoencoders are trained to

optimise their reconstruction of the input data.

2.3.2 Autoencoders

An Autoencoder (AE) is a single layer neural network in which the hidden layer

learns to reconstruct the input. The input x ∈ [0, 1]nx is encoded to a hidden layer

representation h ∈ [0, 1]nh , which is then decoded to an output x′ ∈ [0, 1]nx . This x′

represents the reconstruction of the input x, and by training the network to minimise

the difference between the two, the model learns a mapping to a feature representation

h that is able to reconstruct the input data (Figure 2.1).

The encoding and decoding equations are given by:

hj = sigm

(
bj +

nx∑
i=1

wijxi

)

x′i = sigm

(
ai +

nh∑
j=1

w′ijhj

)
(2.1)

Here, nx and nh are the dimensionality of the input and hidden representations,

sigm(x) = 1
1+e−x is the element-wise logistic sigmoid function, W = [wij] and W′ =

[w′ij] are weight matrices, and a = [ai] and b = [bj] are bias vectors.

In the case of real-valued data x ∈ Rd, a linear decoder x′i = ai +
∑

j w
′
ijhj is usually
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Figure 2.1 – Graphical representation of an autoencoder. The model is trained to

minimise a loss function between the input x and the reconstruction x′.

used for the reconstruction. The model parameters are often further constrained by

using tied weights, W′ = W> [17]. This acts as a regulariser and affords additional

flexibility in the model, such as the option to fine tune the model as an RBM.

Given a training set of N input data vectors, each training vector x(n) can be mapped

to a hidden representation h(n), followed by reconstruction x′(n). The model param-

eters Θ = {W, a,b} are then tuned to minimise a loss function, often the mean

squared reconstruction error over the training set:

J (θ) =
1

N

N∑
n=1

‖x(n) − x′(n)‖2
2

θ∗ = argmin
θ

J (θ) (2.2)

Typically, the parameters are learned using Stochastic Gradient Descent (SGD) or

another gradient-based optimisation procedure. As a result, the autoencoder learns

a hidden layer representation to minimise the mean squared error between the input
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and the model-based reconstruction.

A number of modified versions have also been introduced in the literature, including

the contractive autoencoder [76], which learns features that are invariant to pertur-

bations in the input space; the variational autoencoder [45], which provides efficient

variational methods for training and generative inference; and an online incremental

autoencoder that is able to add or merge hidden units on-the-fly based on a continuous

data stream [105].

2.3.2.1 Regularisation and Sparsity

To prevent the weights from increasing unboundedly, and to improve generalisation

on unseen data, a regularisation term is often added to the loss function. Typically,

this is the L2 weight decay term, the square of the L2 norm of weight matrix W.

This has the effect of shrinking the weights that are less useful in the reconstruction

process. Another common option is L1 weight decay, which has the effect of setting

redundant weights to zero.

Further, hidden units that are selectively activated have been shown to be more useful

in discriminative tasks [17]. As a result, it is also common to incorporate a sparsity

cost, based on the cross entropy between the sparsity (average activation) of each

unit, ρ̂j = 1
N

∑N
n=1 h

(n)
j , and a user-defined sparsity ρ.

The entire objective function, including weight decay and sparsity cost, is given by:

J (θ) =
1

N

N∑
n=1

‖x(n) − x′(n)‖2
2

+ λ‖W‖F 2 + β

nh∑
j=1

[
ρ log

ρ

ρ̂j
+ (1− ρ) log

(1− ρ)

(1− ρ̂j)

]
(2.3)

Here, λ and β are hyperparameters to tune the effects of weight decay and sparsity

cost, respectively.
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Figure 2.2 – Graphical representation of a denoising autoencoder. In this case, masking

noise is applied to the input data. The model is trained to minimise a loss function
between the clean input x and the reconstruction x′

2.3.3 Denoising Autoencoders

Another way to regularise an autoencoder model is to apply a stochastic corruption

q (x̃ | x) to each data vector x(n) during training. The corrupted vector x̃(n) is then

used as the training input, but the loss function compares the model reconstruction

with the clean input (Figure 2.2). As a result, this Denoising Autoencoder (DAE) [93]

learns to reconstruct input data with robustness to corruption / noise. In other words,

it learns a set of features that can undo noisy perturbations to reconstruct the clean

input.

Typical options for the stochastic corruption include masking noise or additive isotropic

Gaussian noise. In the case of masking noise, a fraction η of the input dimensions are

set to zero, and the model learns features that are robust to missing input dimensions.

The corruption process is stochastic, so the noise applied varies for each training

vector and for each iteration of learning. However, after training the model, the

hidden representation is obtained using clean inputs, so that future tasks with the

encoded features are not probabilistic.
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2.3.4 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a stochastic generative neural network

comprised of a set of binary visible variables x ∈ {0, 1}nx and binary hidden variables

h ∈ {0, 1}nh . The joint distribution p (x,h) is specified by an energy function:

E (x,h) = −
∑
i

aixi −
∑
j

bjhj −
∑
ij

wijxihj

p (x,h) =
e−E(x,h)

Z
(2.4)

Here, W = [wij] is the weights matrix, a = [ai] and b = [bj] are the visible and

hidden bias vectors respectively, and Z =
∑

x,h e
−E(x,h) is the partition function.

An RBM can be described using the concept of a probabilistic graphical model, which

utilises a graph-based representation to express the dependences between random

variables. In an RBM, the visible and hidden units form a bipartite graph. That

is, the visible units are all independent when conditioned on the hidden units, and

vice versa. This conditional independence property yields the following familiar con-

ditional expressions:

p (hj = 1|x) = sigm

(
bj +

∑
i

wijxi

)

p (xi = 1|h) = sigm

(
ai +

∑
j

wijhj

)
(2.5)

where sigm (x) = (1 + e−x)
−1 is the element-wise logistic sigmoid function.

The graphical representation of an RBM is shown in Figure 2.3. The parameter,

input, and hidden spaces are all identical to the autoencoder.

The probability of an input vector x can be obtained by marginalising the joint density

p (x,h) over the hidden units:

F (x) = −
∑
i

aixi −
∑
j

log
(
1 + ebj+

∑
i wijxi

)
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Figure 2.3 – Graphical representation of a Restricted Boltzmann Machine.

p (x) =

∑
h e
−E(x,h)

Z
=
e−F (x)

Z
(2.6)

where the expression F (x) is known as the free energy of a visible vector. Unfortu-

nately, the partition function Z is intractable, which means that the RBM can only

compute unnormalised probabilities. However, several techniques in the literature

can approximate the partition function if necessary [79].

A number of previous works have introduced variants of the standard RBM model,

including the Gaussian RBM [96, 97], which is similar to using a linear decoder in an

autoencoder; the discriminative RBM [51], which extends the RBM to a supervised

model; and the spike-and-slab RBM [19], which utilises both a binary spike variable

and a real-valued slab variable for each of the hidden units.

2.3.4.1 Training

Given a set of training vectors {x(1), · · · ,x(N)}, RBM models are usually trained to

maximise the mean log probability of the data, L = 1
N

∑N
n=1 log p(x(n)) with respect

to the parameters Θ, using Stochastic Gradient Descent. The gradient term is given

by:
∂L

∂Θ
= NE

[
∂E(x,h)

∂Θ

]
−

N∑
n=1

E
[
∂E(x(n),h)

∂Θ

∣∣∣x(n)

]
(2.7)

The second term is a data-driven expectation, which can be estimated by using Gibbs
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sampling to draw unbiased samples from the conditional distribution p
(
h | x(n)

)
.

However, the first term is a model-driven expectation and is intractable in practice,

as it requires a sum over all x and h. To sample from this distribution would require

initialising the input dimensions randomly and performing alternating Gibbs sampling

for a very long period of time.

As a result, the Maximum Likelihood gradients are approximated using the Con-

trastive Divergence (CD) algorithm [36], commonly used for a variety of energy-

based models. The key approximation is to initialise the Gibbs chain at the value

of a training vector rather than at random values when computing the model-driven

expectation. If we consider that the visible and hidden nodes form a Markov chain,

this ensures that the chain is ‘close’ to the stationary distribution and fewer iterations

of Gibbs sampling are required (typically only one).

The procedure is shown in Algorithm 2.1. For a batch of data, the first step of the

algorithm is to sample the hidden variables h+ from the input x+. This is known as

the positive phase, and the input and hidden data represent the data-driven statistics.

Next, the model reconstruction x− is sampled from the hiddens, to complete a single

iteration of Gibbs sampling. Multiple iterations of Gibbs sampling can be executed

(CD-n), but a single iteration is often sufficient (CD-1). Finally, x− is used to sample

h−, representing the negative phase of training, or the model-driven statistics. The

CD algorithm then approximates the gradients with a difference between the data-

driven statistics and model-driven statistics. The computed gradient is likely to be

small if the model’s representation is similar to the data-driven representation, or

large if otherwise.

2.3.5 The connection between AEs and RBMs

Clearly, there are a number of similarities between autoencoders and RBMs. For both

models, the encoding function from inputs to hidden units requires a linear projection

and nonlinear activation function. The decoding functions are also identical if the

autoencoder is trained with tied weights (i.e. the decoding weights are the transpose
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Algorithm 2.1: Contrastive Divergence (CD-1) training for RBMs
1: ∂L

∂W
⇐ 0, ∂L

∂a
⇐ 0, ∂L

∂b
⇐ 0

2: for i = 0 to N do
3: x+ ⇐ training sample i
4: Sample h+ ∼ p (h | x+)
5: Sample x− ∼ p (x | h+)
6: Sample h− ∼ p (h | x−)
7: ∂L

∂W
⇐ ∂L

∂W
+ 1

N

(
x−h

T
− − x+h

T
+

)
8: ∂L

∂a
⇐ ∂L

∂a
+ 1

N
(x− − x+)

9: ∂L
∂b
⇐ ∂L

∂b
+ 1

N
(h− − h+)

10: end for

of the encoding weights).

Thus, an RBM can effectively be considered a probabilistic version of an autoencoder.

The main trade-off between the two is the simplicity of the reconstruction error train-

ing criterion for the autoencoder (recall that Contrastive Divergence training for an

RBM is approximate) versus the ability of the RBM to perform generative sampling

tasks. As a result, the models are often used interchangeably in the literature.

However, a number of recent papers demonstrate the generative capabilities of au-

toencoder models, and uncover a stronger connection between Autoencoders and

RBMs. Vincent et al. [94] illustrate that Autoencoders are able to generate plau-

sible samples from the underlying data distribution when they are regularized by a

denoising criterion, but not when regularized with a sparsity penalty. A more recent

work [92] demonstrates that a Denoising Autoencoder with real-valued visible units

and Gaussian input noise is equivalent to a Gaussian-Binary RBM trained under a

different training criterion known as Score Matching [38]. More generally, autoen-

coders trained with Gaussian corruption under a mean-squared reconstruction error

loss function capture the gradient of the log probability, or score, of the data [1].

Finally, Bengio et al. [8] generalise this to DAEs trained under an arbitrary recon-

struction loss and corruption procedure, and propose methods to sample from such

models.

As a result, Denoising Autoencoders can be considered as fully probabilistic models in
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their own right [43]. While they do not model the marginal distribution over hidden

variables [94], they can successfully sample from the underlying distribution as long

as the visible units are initialised to an input data vector.

2.3.6 Other single layer learners

While AEs and RBMs form the basic building blocks of unsupervised deep learn-

ing models, there are various other algorithms that can perform single layer feature

learning and encoding.

In general, the goal is to learn a set of basis vectors D = [d1,d2, . . . ,dK ], often

referred to as a codebook or dictionary, and a representation c(n) for each input vector

x(n), which represents a linear combination of the bases:

x(n) = Dc(n) (2.8)

For a complete or undercomplete set of basis vectors (i.e. when the number of bases

is less than or equal to the number of dimensions in the input data), a dictionary can

be efficiently learned using Principal Components Analysis (PCA). PCA involves

finding a linear transformation for the input data such that the dimensions of the

transformed data are uncorrelated. The transformed feature dimensions are known

as principal components, and form an orthogonal basis which captures the directions

of highest variance in the input data [66]. In fact, the principal components can be

computed directly as the eigenvectors of the covariance matrix of the input data,

and ordered by eigenvalue (representing the variance of each component). Then, the

undercomplete basis obtained by projecting onto a subset of these components has

the property of preserving the maximum amount of variance in the data.

Often, however, an overcomplete basis is desired, where the number of bases is greater

then the number of input dimensions. This can be advantageous because the bases

are able to more accurately describe the structure present in the data. However,

with an overcomplete basis, the linear coefficients ci cannot be uniquely determined
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from the input data, and the problem is degenerate. This is usually resolved by

adding a requirement that the resulting representation be sparse, leading to a set of

techniques known as sparse coding or sparse dictionary learning [18, 89]. Formally,

these techniques look to solve the following constrained optimization problem:

min
D,C
‖X−DC‖2 s.t. ∀n ‖c(n)‖0 ≤ T (2.9)

where X =
[
x(1),x(2), . . . ,x(N)

]
and C =

[
c(1), c(2), . . . , c(N)

]
are the data and associ-

ated representations. That is, the objective function seeks to minimise the L2 norm

between the data and the dictionary-based reconstruction, subject to the constraint

that the number of non-zero elements in each representation is bounded by some

threshold T . If T = 1, this is known as vector quantisation [18].

One drawback of the above approach is that the L0 norm is very difficult to optimise,

as it is non-convex. As a result, it is often replaced by the L1 norm, which is a good

convex approximation [66], and is incorporated as a penalty term with a Lagrange

multiplier rather than a hard constraint:

min
D,C
‖X−DC‖2 +

N∑
n=1

λ‖c(n)‖1 (2.10)

In fact, an L1 constraint forces elements to be exactly zero, resulting in sparse rep-

resentations. This can be understood by the follow considerations. The solution for

a constrained optimisation problem occurs at the point where the lowest level set of

the loss function intersects the constraint surface [66]. The L1 constraint surface is

a polytope centred at the origin, with its vertices along each axis. If we start with a

tight constraint surface and relax it (making the surface larger), the vertices are much

more likely to intersect with the loss than other points, meaning that the solution to

the constrained optimisation problem is more likely to occur at these vertices, where

several dimensions are equal to zero. For a more detailed, graphical explanation, the

reader is directed to [9, 66].
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2.4 Deep Learning models

Deep learning models have multiple layers of features within a single model. They are

based on multi-layer neural networks, and each layer usually learns a set of features

at a different scale or complexity.

This section outlines a number of deep models that are commonly used in the litera-

ture, including standard feedforward neural networks, deep belief networks (DBNs),

and convolutional neural networks (CNNs).

2.4.1 Feedforward Neural Networks

A feedforward neural network involves multiple layers of hidden units / neurons, with

the activations of each layer’s neurons determined from the neurons in the layer below

(Figure 2.4). The activation of a neuron in layer k is a linear mapping of the neuronal

activations of layer k−1, followed by a nonlinear squashing function, often a sigmoid.

As such, the mapping from one layer to the next is equivalent to the encoding phase

of an autoencoder.

Given an input x to the network (training or test data), the network can compute

the value of the output units, which usually represent a structured output such as

probabilities over a set of classes. The network is then trained to minimise the error

between the predicted output y and ground truth labels yt, using a gradient descent

approach. This involves computing the gradient of the error term with respect to the

parameters of each layer, a procedure known as backpropagation (i.e. propagation of

errors back through the network).

As an example, suppose we have a feedforward network with n hidden layers and an

output layer, each composed of sigmoid units. The loss function is a mean squared

error cost J = 1
2

(y − yt)
2, and the activations of each layer are given by:

z(k+1) = W(k)h(k) + b(k) (2.11)

h(k+1) = σ(z(k+1))
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Figure 2.4 – Graphical representation of a feedforward neural network.

where W(k) and b(k) are the weights and biases of the kth layer. Using the chain rule,

the gradient of the objective function with respect to the activations of each layer are

given by:

∂J

∂z(n)
= δ(n) = (y − yt) · σ′(z(n)) (2.12)

∂J

∂z(k)
= δ(k) =

(
(W(k))Tδ(k+1)

)
· σ′(z(k))

It can be seen that the error gradient is propagated back through the layers of the

network, with the gradient with respect to one layer being computed from the gradient

with respect to the layer above. The final gradients with respect to each of the
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parameters can be calculated as:

∂J

∂W(k)
= δ(k+1)(h(k))T (2.13)

∂J

∂b(k)
= δ(k+1)

While feedforward neural networks were traditionally trained using this backpropa-

gation procedure, it is susceptible to the “vanishing gradients” problem, whereby the

gradient of the error term becomes increasingly smaller with respect to the parameters

of the lower layers. As a result, neural networks were typically limited in the number

of layers used, until unsupervised layer-wise training approaches were introduced [34].

2.4.2 Deep Belief Networks

Deep Belief Networks (DBNs) are composed of multiple layers of unsupervised fea-

ture learners stacked into a deep architecture. They are trained layer-by-layer in an

unsupervised fashion, by training an RBM on the input data, obtaining the hidden

layer representation, and then using this as the input to the next layer RBM. This

layer-wise unsupervised training procedure can be used to initialise the parameters

of a feedforward neural network before performing supervised training (“fine tun-

ing”). It is believed that unsupervised pre-training acts as a regulariser in supervised

training: the model parameters are initialised closer to a good local minimum for

supervised tasks, within a basin of attraction that corresponds to parameters also

useful for unsupervised tasks [24]. Effectively, greedy layer-wise training avoids the

problem of vanishing gradients and has led to deep networks achieving state of the

art performance in a range of learning and classification tasks [32, 52, 80].

A single layer autoencoder may also be used to train each layer, in which case the

model is often termed a deep autoencoder. The weights of each layer’s autoencoder

are usually tied during the layer-wise training phase, but are then untied in order to

“unroll” the model into a single multi-layer autoencoder. Recent techniques have also

enabled DBNs to be trained jointly, without layer-wise training [65].
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Figure 2.5 – Graphical representation of a Deep Belief Network.

Deep networks are able to capture high-level features in an input dataset. Each

layer of a deep model learns a progressively higher order correlation in the input

dataset, which often corresponds to a higher level of feature abstraction. When

trained on natural images, such models can learn entire hierarchies of features: edges,

combinations of edges, object parts, and entire object templates [52, 73]. Lee et al.

[53] demonstrate that the hierarchical structure learned by these models mimics the

neural activities of area V2 in the visual cortex of the human brain. It has also been

shown that each neuron in the top layer can capture a significant factor of variation

in the data that corresponds to a single qualitative characteristic. Cheung et al. [16]

train a deep generative model on images of human faces, and demonstrate that many

of the individual features capture characteristics such as facial shape or key emotions

such as joy or anger. In fact, by manually changing the activations of the top layer,
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they are able to artificially modify the faces to express emotion to differing degrees.

2.4.3 Convolutional Neural Networks

Until this point, we have only considered fully connected models: that is, models in

which neurons are connected to all of the input dimensions. If we consider a typical

image classification or object recognition task, the input data is usually in the form

of large visual images. Even for a modest size of 128× 128 pixels for an input image,

this results in 16384 input dimensions, which can be prohibitive for even the simplest

of networks.

Convolutional Neural Networks (CNNs) offer a solution to this problem. Instead of

each hidden unit connecting to all of the pixels in the input image, it is only connected

to pixel positions within a local patch, known as its receptive field. The weights for a

particular hidden unit are then shared for all positions in the input image. As such,

this acts as a convolutional layer, with a local filter being convolved over an entire

image to produce a feature map.

CNNs are usually composed of several such convolutional layers, separated by pooling

layers. The convolutional layers apply the local filter to all positions in the image,

while the pooling layers reduce the size of the encoded data by downsampling the

resulting feature map. The most common type of pooling used is max pooling, which

outputs the maximum value over each pooling region, but mean pooling is also used

in some of the literature. These pooling layers are particularly important because

they reduce the computation for higher layers, by removing non-maximal hidden unit

activations. They also act as a form of translational invariance: by pooling over a

2 × 2 region, for example, a maximal activation can translate by one pixel and still

produce an identical output.

Following a series of alternating convolution and pooling layers, a number of fully

connected layers may also be incorporated, to learn the high order correlations in the

features. Fully connected layers are now feasible in the higher layers, as the input

dimensionality has been significantly reduced through pooling. Finally, a multi-class
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logistic regression, or softmax, classifier layer maps the top layer features to the image

labels.

2.4.3.1 Dropout

One drawback of the fully connected layers in convolutional networks is that they

are prone to overfitting [86]. Whereas the lower layer features are constrained by

having to look at a small receptive field, and fully connected layers for other models

are ‘regularised’ by performing layer-wise training, the fully connected layers in a

convolutional network afford enough expressive power for the model to overfit the

data.

As a result, the dropout method is usually applied to these layers [86]. Dropout is

a simple model averaging technique that efficiently combines an exponential number

of hidden layer architectures, each sharing the same set of weights. During train-

ing, for each input sample, each hidden unit in the fully connected layer is removed

from computation (“dropped out”) with a certain probability (usually p = 0.5). This

means that it is unused in both the forward-pass and backpropagation stages. Follow-

ing training, inference can then be performed with an approximate model averaging

technique: all of the units are used in the encoding process, with the weights of each

neuron scaled by 1−p (the expected value of the number of units that remain during

dropout training).

Dropout provides a number of benefits. Firstly, it prevents features from “co-adapting”

to capture a particular feature in the input data: with hidden units dropping out ran-

domly, any unit cannot rely on another feature being active. This process thereby

ensures that each hidden unit is independent and robust, learning a feature that is

useful in conjunction with the random subset of other features that is selected during

dropout. Secondly, it can be considered a form of adaptive regularisation [95], lead-

ing to better generalisation on unseen data. Lastly, it has been shown that model

combination nearly always improves the performance of machine learning models. By

using the proposed encoding technique, the dropout model approximately averages
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the predictions of exponentially many different models.

2.4.4 Applications

As a result of their enormous expressive power, deep learning methods have attained

state-of-the-art performance in a range of tasks.

Graves et al. [32] apply deep recurrent neural networks to the task of speech recog-

nition, utilising the Long short term memory (LSTM) unit [37], which is well suited

to modelling time series data. Lee et al. [54] utilise a convolutional DBN to perform

unsupervised feature learning on audio spectrogram data, and demonstrate that the

learned features closely match the spectrograms of phonemes. As a result, they are

able to perform a wide range of classification tasks, including phoneme classifica-

tion, speaker classification, speaker gender classification, and music genre and artist

classification.

One work looks at the problem of collaborative filtering in the context of the Netflix

prize [80]: making movie recommendations for users based on (incomplete) infor-

mation on the preferences and tastes of other users. In particular, they utilise a

conditional RBM, and propose techniques to perform learning and inference when

data dimensions are missing. This approach allows them to effectively utilise the

sparse Netflix user recommendation data, leading to better perfomance than Netflix’s

own system.

A large body of work has investigated the use of deep learning techniques in computer

vision applications. A number of previous papers [52, 74] utilise convolutional DBNs

on visual image data, and both demonstrate the ability to learn hierarchies of features,

from edges / gradients in the first layer, to combinations of edges in the second

layer, to object parts and whole objects in the higher layers. Ranzato et al. [74]

use this type of model as an invariant feature extractor for the image, and perform

object classification on the MNIST digits dataset and the Caltech-101 objects dataset.

Lee et al. [52], on the other hand, propose a fully probabilistic model, that can

not only handle such classification tasks, but also complete an image that has been
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(a) Deep autoencoder for audio-video learn-
ing [69]

  

(b) Deep Boltzmann Machine for image-
keywords learning [85]

Figure 2.6 – Examples of deep multimodal architectures used in previous work.

corrupted. By demonstrating this ability, they show that convolutional DBNs can

learn the underlying structure of the visual image data. Another work [68] uses a

convolutional DBN with a third order Boltzmann machine, to perform 3D object

recognition. Finally, Krizhevsky et al. [48] proposes a very large, very deep CNN

which comprehensively achieves state-of-the-art classification performance on both

the ImageNet dataset and in the ILSVRC-12 competition. They utilise a multi-GPU

architecture, and propose a number of architectural modifications to make learning

more efficient.

Deep learning techniques have also been applied to other interesting applications, such

as the detection of grasps for robotic manipulation [55]; reward function estimation

for reinforcement learning [64, 101]; and modelling human motion [90].

2.5 Multimodal learning

Deep learning techniques have previously been used for multimodal learning, since

they are able to capture high-level correlations between two data modalities. Typ-

ically, this involves training a deep network for each modality separately, and then



2.5 Multimodal learning 29

training a multimodal layer on the concatenation of the high-level single modality

features.

Ngiam et al. [69] use a deep learning approach to perform classification of phonemes

from audio and video features. They train the model in a layer-wise fashion, but then

fine tune it as a deep autoencoder (Figure 2.6(a)). They show that better features

can be learned for one modality if both are used at feature learning time (shared rep-

resentation learning), and demonstrate the ability to train a classifier on one modality

and test on another (cross modality learning). Performing experiments with different

architectures, they demonstrate that it is optimal to train a deep network on each

modality separately followed by a single multimodal layer on top: this is because

the types of multimodal correlations that exist are much more likely to be related to

high-level concepts (such as words or phonemes) rather than lower level inputs.

Other papers learn the correlations between a dataset of images and associated key-

word tags. One technique accomplishes this with a Deep Boltzmann Machine [85]

(Figure 2.6(b)): by maintaining the generative properties of the RBM, the model

can perform a range of inference tasks, such as classification, content-based image

retrieval, and the ability to sample one modality from the other. Another approach

uses a Bayesian co-clustering algorithm to learn a relationship between a visual dictio-

nary and textual words, in order to perform classification and keyword-based image

retrieval tasks [40].

Sohn et al. [83] propose training a multimodal model to minimise the variation of

information, a measure of distance between the two modalities. They argue that this

training objective better equips the model to predict missing modalities, which leads

to state-of-the-art performance in image keyword annotation. Finally, Mao et al. [60]

extend the problem to the annotation of images with full sentence descriptions. As

such, they utilise a recurrent neural network to model the sentence structure, and

a deep CNN to model the image content, with a multimodal layer to capture the

relationship between the high-level features of each modality.

While these techniques span a variety of different architectures and data modalities,

none are directly applicable to the task of multimodal learning from marine data, for
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a number of reasons. Firstly, marine images are visually very different to the image

datasets that have previously been used, which typically focus on objects or urban

/ outdoor scenes. Secondly, feature learning techniques have yet to be applied to

acoustic bathymetry data, necessitating a new approach. And finally, the types of

high-level correlations that exist between these two are likely to be very different to

those between, for example, images and textual keywords.

The surveyed methods do, however, have one characteristic in common, in that they

all utilise a shared multimodal layer to model the joint relationship between two

modalities. Regardless of the models used to extract features from each modality,

the shared layer is able to capture the correlations between these high-level features.

This type of approach will be adopted throughout this thesis.

2.6 Summary

This chapter has summarised the literature in semantic classification and mapping

from marine data, deep learning, and multimodal learning. Deep models have previ-

ously been applied to multimodal learning tasks, and are particularly well-suited to

the problem because of their enormous expressive power and ability to capture high-

level correlations in the underlying data. In particular, by learning high-level features

on each modality separately and capturing cross-modality correlations using a shared

representation layer, the model can work with whichever modalities are available at

inference time. The following chapters build on previous work in order to solve the

problem of multimodal learning from visual and bathymetric data.



Chapter 3

Learning features from marine data

This chapter investigates the application of various feature learning techniques to

marine data, in terms of both visual images and acoustic multi-beam bathymetry

(depth) data. The learned features are analysed, and compared to traditional hand-

picked features that are typically used for classification tasks. The features are then

applied to the task of classifying benthic habitats, using a variety of standard super-

vised classification algorithms. The effectiveness of each feature learning approach is

gauged by its classification performance.

This chapter is arranged as follows. Section 3.1 describes the datasets used in this the-

sis, including the AUV-borne in-situ visual images, and remotely sensed bathymetry

data. Section 3.2 describes the setup for the main classification problem of inter-

est, and outlines the classifier and validation techniques used throughout this thesis.

Section 3.3 details the bathymetric feature learning technique and compares it to

traditional hand-selected features, presenting both classification and habitat map-

ping results. Section 3.4 outlines the algorithms used to extract features from visual

imagery, and presents and compares classification results for these techniques.
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3.1 Datasets

The main dataset used in this thesis is the Southeastern Tasmania dataset [5, 84,

98], which was acquired in 2008 based on a collaboration between The University

of Sydney, The University of Tasmania, and Geoscience Australia. The following

sections describe the dataset and how it was obtained.

3.1.1 Bathymetry

Bathymetry is the study of ocean topography, and refers to the depth of oceans and

other large water bodies. Bathymetric data is usually acquired using shipborne sonar,

in the form of either a Multi-beam Echosounder (MBES) or a sidescan sonar. In the

case of a MBES, the underside of the ship is equipped with a transmitter and receiver.

A series of sound pulses (‘pings’) are transmitted and received by the sonar head over

a swath width of approximately four times water depth. Each pulse is reflected off the

ocean floor, and is subequently detected by the receiver. Based on the time elapsed

between transmitting and receiving each pulse, the range to each point on the ocean

floor can be calculated. By pinging the seafloor at regular intervals, an area of seafloor

corresponding to the swath width can be mapped while the ship is in forward motion.

Typically, the data is processed after acquisition, by removing outliers and combining

co-located observations. The resulting bathymetric data product is in the form of a

2.5D Digital Elevation Map (DEM), which specifies the ocean depth at each point

over a two-dimensional grid. In this thesis, the bathymetric data is in the form of

large-scale gridded data from Geoscience Australia [84], as shown in Figure 3.1. The

uniform grid has a separation of 1.6m between grid points, and covers a depth range

of 5 − 104m. The grid was obtained by postprocessing bathymetric data collected

by the Challenger research vessel in 2008 using a Simrad EM3002(D) 300kHz MBES

system [84].
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Figure 3.1 – The gridded bathymetry data over the entire Southeastern Tasmania
region. The depth ranges from 5m (red) to 104m (blue). The black trajectories
indicate the extent of the AUV surveys performed over the course of two weeks in
2008.

3.1.2 Visual Images

The visual image dataset is comprised of a large set of high-resolution photographs

of the ocean floor, taken by a set of downward facing stereo cameras mounted on

the AUV Sirius [98]. The 1360 × 1024 pixel images are spread over 11 different

dives, covering a range of habitats from flat-bottomed sandy areas to kelp forests. As

shown in Figure 3.1, the AUV surveys cover only a tiny fraction of the Southeastern

Tasmanian shelf.

Most of the AUV images are taken at an altitude of approximately 2m above the

seafloor. Images taken at a higher altitude tend to be very dark, while images at a



34 Learning features from marine data

low altitude are extremely white. As a result, images outside the range of 1.5 − 3m

have been removed from the dataset.

Image labels were obtained by expert annotation, into one of nine different habi-

tat classes, as shown in Table 3.1. However, these labels contained an unacceptable

amount of noise; partly due to labelling error, but mostly because of genuine ambi-

guity between fine-grained habitat classes. As a result, the image labels were consol-

idated into 5 habitat classes (Figure 3.2), characterised by keywords “sand”, “screw

shell rubble”, “reef / sand interface”, “reef”, and “kelp” (Ecklonia Radiata). The sand

class also contains some images of silt, which were only observed during a single dive

(“waterfall 05”).

The AUV dive data are shown in Figures 3.3 and 3.4, with the class labels obtained

at each location overlaid on the gridded bathymetry data.

3.1.3 Co-located multimodal data

Matched multimodal data is obtained by extracting a 15 × 15 bathymetry patch

centred at the AUV position corresponding to each image, as illustrated in Figure 3.5.

Since the AUV position does not correspond exactly to the grid cell centre locations,

the matching bathymetric patch values are obtained using linear interpolation in the

grid. With a separation of 1.6m between grid points, each patch represents an area

of 22.4m × 22.4m. It is important to stress that this area is much larger than the

2 − 3m2 typically covered by an acquired image: due to the 1.6m spacing of the

bathymetric grid, a bathymetric patch matching the footprint of the visual images

would not capture much local structure.

The selected size of this region is based on two considerations: it has to be sufficiently

large to capture enough texture in the bathymetry, and sufficiently small to avoid

covering many different habitat classes. We note that the approach outlined in [5]

uses multi-scale features up to a 50m× 50m area.

One potential concern that may affect multimodal matching is the presence of errors

in the localisation of the AUV. However, the AUV navigation accuracy is comparable
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Table 3.1 – Number of labels for each habitat class

Habitat Class Number of images
Sand 3047
Coarse sand 4092
Sand & screw shell rubble 11901
Screw shell rubble 10728
Patch reef 5366
Reef-sand ecotone 3067
Low relief reef 10246
High relief reef 21681
Kelp 5028

Sand

Coarse sand

Sand & screw shell rubble

Screw shell rubble

Patch reef

Reef-sand ecotone

Low relief reef

High relief reef

Kelp

Sand

Screw shell rubble

Reef-sand interface

Reef

Kelp

Figure 3.2 – The original label classes for the data, and the consolidated habitat
classes. There is visual ambiguity between some habitat classes, as well as a small
amount of labelling noise present. The sand class also contains some images of silt,
an example of which is shown on the top left.



36 Learning features from marine data

(a) waterfall 06 (b) patchreefnorth 08

(c) hippoN 09 (d) ChevronRockN 10 (e) littlehippoN 11

(f) littlehippoSE 12 (g) hippoS 13 (h) ChevronRockS 14

Figure 3.3 – The surveys performed in Southeastern Tasmania in 2008. The local
bathymetry (coloured by depth) is overlaid by the AUV trajectory (coloured by
class label). The colours for the bathymetry are indicated by the corresponding
colourbars, while the class labels are sand (red), screw shell rubble (yellow), sand
/ reef interface (green), reef (blue), and kelp (purple).
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(a) waterfall 05

(b) ohara 07

(c) ohara 20

Figure 3.4 – The surveys performed in Southeastern Tasmania in 2008. The local
bathymetry (coloured by depth) is overlaid by the AUV trajectory (coloured by
class label). The colours for the bathymetry are indicated by the corresponding
colourbars, while the class labels are sand (red), screw shell rubble (yellow), sand
/ reef interface (green), reef (blue), and kelp (purple).
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Figure 3.5 – An illustration showing how images from an AUV transect are matched to
the corresponding bathymetry. At each image location along the AUV trajectory
(shown in black), a corresponding 15×15 patch of gridded bathymetry is extracted.
The patch covers a much larger area than the image footprint.

to the bathymetric grid spacing, and the habitats of interest typically vary at much

larger scales. We therefore assume that any potential misregistration between the

images and bathymetry as a result of localisation errors has a minimal effect on the

relationship between the two modalities.

The final labelled multimodal dataset contains 75, 427 visual images, each matched

with a bathymetric patch. Examples of matched images and local bathymetry are

shown in Figure 3.6, grouped by habitat class label.

In all of the classification experiments, it is important to properly gauge the ability of

the model to perform inference on unseen data. As a result, the multimodal dataset

is divided randomly into a training set and a test set, both of equal size.
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Figure 3.6 – Examples of the marine data corresponding to the different habitat classes
(each row). Each image (left) is matched with its corresponding bathymetric patch
(right). While the images typically have a footprint of approximately 1.2m× 1.5m,
the bathymetric patches cover an area of 22.4m × 22.4m. The classes from top to
bottom are sand (red), screw shell rubble (yellow), sand / reef interface (green),
reef (blue), and kelp (purple).

3.1.4 Notation

The proposed algorithms utilise square patches of gridded bathymetry and AUV-

based visual images. A bathymetry patch B can be considered as the sum of a mean

ocean depth B0 = mean(B), and a zero-mean patch capturing the local bathymetric

variation (or “shape”), Bl = B − B0. The local variation is important in determining

the habitat; for example, sandy regions are likely to exhibit smoother bathymetry

gradients than reef habitats. Similarly, the depth is also significant, as, for example,

kelp species prefer shallower water. However, since the depth has a much larger

magnitude than the local variation, it is likely to dominate the feature representation

if B is used directly. Put simply, if feature learning is performed on the raw patches,

the model will primarily learn the depth, as it is the dominant factor of variation.

This problem can be addressed by separating the bathymetry data into these two

variables. For the remainder of this thesis, the mean ocean depth is refered to as B0,
the zero-meaned local bathymetry patch as Bl, and the visual input as V .
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3.2 Classification problem setup

One of the key aims of this thesis is to classify marine data into the class categories

described in Section 3.1. This may involve large-scale benthic habitat mapping, in

which only bathymetry is available, or it may involve classification of image data, or

indeed, both modalities together.

While there are several complex and highly nonlinear models that could be used for the

classification task, extensive analysis with different classifiers is outside the scope of

this thesis. Instead, this thesis adopts the philosophy of unsupervised feature learning

and deep learning, which suggests that application of feature learning techniques

can significantly simplify the classification task into a linear separation problem. In

particular, the use of feature learning techniques is usually equivalent to utilising a

nonlinear classifier in the input space: the nonlinearity is simply absorbed into the

feature learning stage rather than the classification stage. As a result, most deep

learning works utilise a simple linear classifier for discriminative tasks [18, 55, 67–

69, 73, 83].

For this thesis, a multinomial logistic regression classifier, also known as a softmax

classifier, will be used for all experiments. Suppose we have a feature vector x, and

the label y is a multinomial random variable, taking on one of K different values:

a one in the kth dimension indicate the feature has been classified as class k, and

a zero indicates otherwise. The softmax model computes a linear score function

fk(x) = wk · x for each class, where wk is a vector of weights for the corresponding

class. The predictive class probabilities are then proportional to the exponent of the

score function values (Equation 3.1).

p (yk = 1 | x) =
e wk·x∑K
k=1 e

wk·x
(3.1)

In practice, softmax classifiers are usually trained by SGD to maximise the cross-

entropy between the true labels and predicted labels, and a regularisation term (the

L2 norm of the weights) is included to prevent overfitting. The corresponding regu-

larisation parameter can then be tuned to control the impact of this term.
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For all of the classification tasks in this thesis, a three-fold cross-validation is per-

formed on the training set to select the best out of a range of different regularisation

parameters. The model is then trained on the entire training set using the optimal

parameter value, and the results on the held-out test set are reported. This ensures

that (a) the regularisation parameter is chosen in a principled manner, and (b) the

reported classification accuracy is based on unseen data.

3.3 Bathymetric Feature Learning

The bathymetric features are split into two categories: the depth features (based

on B0), and the local bathymetry features (based on Bl). This section decribes the

feature learning and encoding technique for each of these.

3.3.1 Local bathymetry Bl

For the local bathymetry, a number of preprocessing steps are performed to ease

the feature learning process. This is essential in order to learn good features, as

corroborated by some previous research [17].

As a first step, the patches are individually normalised by dividing by their standard

deviation: this is especially important for bathymetric data, since some patches have

a very large depth variance, and will end up dominating the feature learning stage.

To avoid amplifying noise in low contrast patches, the divisor is capped, based on

the average standard deviation over the whole dataset. Note, however, that once the

DAE has been trained, the unnormalised patches can be encoded using the model.

The unnormalised patches are better for encoding, as the variance of each patch can

actually provide information about the underlying habitat. Effectively, patches are

only normalised to aid learning of the feature dictionary, and the raw patches are

encoded.

The second preprocessing step is to perform whitening using PCA, which makes it

easier to train a gradient-based model on the data [9]. PCA finds a linear projection
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to convert the highly correlated input data into a space in which the dimensions

are uncorrelated. Whitening involves scaling the resulting data by the inverse of

the variance of each dimension, such that each dimension has unit variance (i.e. the

covariance matrix is the identity). Finally, as the input data is often highly redundant,

it is common to simultaneously perform dimensionality reduction in order to reduce

the computational overhead during learning.

3.3.2 Depth B0

Typically in computer vision applications, the patches are zero-meaned prior to learn-

ing, and the resulting biases / constant values are discarded, since they represent

changes in illumination or shade rather than genuine structure. However, this ap-

plication is unique: the depth value subtracted from each patch is actually useful,

but cannot be included directly as it will end up dominating the bathymetric feature

representation.

Since the Bl features are the output of a DAE encoding (a sparse code in the interval

[0, 1]), it is inadvisable to include the depth value directly, because it has a much

larger variance and usually dominates the feature learning process. To address this,

a modified 1-of-k encoding is employed for B0. This significantly aids the multimodal

process by ensuring all feature dimensions have the same input range and similar

statistics.

In this type of encoding, the observed depth range of 19 − 100m is discretised into

82 equally spaced bins with an increment of 1m, and each B0 is encoded as a value

of 1 for the corresponding depth bin. This type of “one-hot code” is used extensively

in the literature [16, 18, 60]. One consideration is that input feature dimensions are

considered independent for each autoencoder layer, so a standard one-hot encoding

does not explicitly encode the continuous nature of the depth data, i.e. capture the

fact that neighbouring bins are correlated. As such, a modified encoding is used,

wherein neighbouring bins are encoded with a Gaussian-like falloff, with 0.8 in the

immediately adjacent bins, 0.2 in the following bins, and 0 elsewhere. The encoding
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values, and the width of this falloff are selected so that the sparsity of the encoded

B0 features is approximately the same as that of the midlayer Bl features. The choice
of the number of depth bins is a tradeoff between the ability to resolve fine-grained

changes in depth and the amount of data required to train the model. With fewer

depth bins, it becomes much more difficult to differentiate between kelp and reef

habitats in shallow waters, as both classes fall into one bin. With greater depth

resolution, we have found that the performance of the model suffers, most likely

due to the fact that there are fewer training samples falling within each bin. The

drawback of this encoding is that information is lost by discretising the continuous

data into a set of depth bands, as different depth values that fall within the same bin

are represented identically when encoded. To address this, the depth signal is linearly

interpolated at the bin locations rather than actually discretised. That is, instead

of directly using the one-hot code with Gaussian-like falloff as the depth signal, it is

centred at the observed depth and interpolated at the depth bin locations.

This architecture is justified by considering the kinds of correlations that are likely

to occur between these modalities. The ocean depth is unlikely to correlate with Bl
patch pixels directly, but may be related to the first layer Bl features (local edge and

gradient filters). For example, in the datasets used for this work, deeper areas often

have smoother bathymetry gradients corresponding to sand habitats, while shallower

reef regions exhibit localised ‘blob-like’ bathymetry.

3.3.3 Experiments

This section outlines the experiments on bathymetric feature learning. The local

bathymetry patches are first normalised, and then whitened using PCA. The original

225-dimensional space is projected to 104 dimensions, to preserve 95% of the original

variance. Feature learning is then performed by training a DAE with 1000 units on

these normed, whitened values. Experimentation with different numbers of hidden

units suggests that a dimensionality of 1000 represents a good compromise between

classification accuracy and computational overhead. Since the data is real-valued, a



44 Learning features from marine data

linear decoder is used for the autoencoder, as described in Chapter 2.3.

The DAE was written in Python using the pylearn2 library, and took approximately 24

hours to train on a NVIDIA GTX 590 GPU. The rugosity, slope and aspect features

used as a baseline comparison were extracted using the MATLAB-based software

libraries developed by [5].

3.3.3.1 Feature Learning

To understand what structure the autoencoder model has captured in the input data,

the features learned by the model can be visualised as follows. As described in

chapter 2.3, if we denote the weights of the model as W and the input data as x, the

activation function of the jth hidden unit is given by hj = sigm (bj +
∑

iwijxi). To

understand what this hidden unit is capturing, we try to find the input vector that

maximises its activation function, subject to an L2 norm constraint to avoid trivial

unbounded solutions. For this scenario, it can be shown that the solution for each

hidden unit is simply the values of the weights themselves, scaled by the L2 norm

over the corresponding weights vector. As a result, a simple way to visualise what

each unit has learned is to plot its weights as a patch of input pixels [35].

If we visualise the weights learned for the bathymetric DAE, we obtain the features

shown in Figure 3.7. Interestingly, the DAE learns edge and gradient filters similar

to those obtained from natural image patches [17, 52].

Figure 3.7 – A subset of the 1000 bases learned from 15 × 15 bathymetry patches,
representing a 22.4× 22.4m2 area.
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3.3.3.2 Analysis of traditional bathymetric features

This work is the first to utilise feature learning techniques on acoustic bathymetric

data. As a result, additional analysis is presented to justify this approach, by com-

paring the learned features to hand-selected features typically used for bathymetric

classification: multi-scale rugosity, slope, and aspect [5, 14, 100]. To compute these

features, a given patch of bathymetry data is represented as a Delaunay triangulated

surface mesh, and the plane of best fit is determined using PCA. The rugosity is then

the ratio between the mesh surface area and the planar surface area, slope represents

the angle between the plane of best fit and the horizontal plane, and aspect denotes

the azimuthal direction of the surface slope [26]. These features are calculated on

bathymetric patch sizes of 5× 5, 9× 9, 17× 17, and 33× 33, in order to correspond

directly with the distance scales used by Bender et al. [5].

One way to quantify the success of bathymetric feature learning is to determine

whether the hand-selected rugosity, slope, and aspect (RSA) features can be pre-

dicted by the learned representation. This provides an answer as to whether they are

‘contained’ within the learned features. Accordingly, Linear Least Squares is used to

find the linear projection of the learned features that best matches the hand-selected

features. For each RSA value, the Spearman rank coefficient (ρ) is calculated, indi-

cating whether the relationship between the RSA feature and the projected feature is

monotonic. The discriminative power of each of the RSA features can also be quan-

tified by using them individually in the classification task. While many features may

be most discriminative in conjunction with other feature dimensions, this measure

still provides a rough measure of the value of individual features. These two metrics

together provide a measure of (a) how well the learned features can predict each of

the hand-selected features, and (b) the importance of the hand-selected features for

classification tasks.

As the aspect variable is a representation of orientation, it is subject to angle wraparound,

which means that, for example, π and −π are identical. As a result, using the variable

directly is not a good indicator for this exercise. Accordingly, we take the cosine and

sine of the aspect variable at each scale, dividing it into a “northness” and “eastness”,
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and use both of these for the analysis. At each scale, the reported ρ value is the

mean Spearman coefficient when predicting both northness and eastness, while the

classification result is determined by classifying using both dimensions.

Table 3.2 – Spearman rank coefficient (ρ) when using learned features to predict ru-
gosity, slope, and aspect features

Scale

Feature 5× 5 9× 9 17× 17 33× 33

Rugosity 0.751 0.850 0.902 0.877
Slope 0.782 0.783 0.765 0.720
Aspect 0.667 0.722 0.721 0.684

Table 3.3 – Classification accuracy (%) of rugosity, slope, and aspect features

Scale

Feature 5× 5 9× 9 17× 17 33× 33

Rugosity 52.43 54.49 57.45 56.87
Slope 55.62 56.05 55.23 53.68
Aspect 41.89 42.70 42.49 43.41

The Spearman coefficient values are shown in Table 3.2, and the classification accu-

racies of each of the features are shown in Table 3.3. From Table 3.2, we observe

that the learned features are able to predict the rugosity, particularly at larger scales.

Unsurprisingly, the most accurate prediction, with ρ = 0.902, is at the scale closest to

the 15× 15 patch size used for bathymetric feature learning. The results also suggest

that the learned features contain a large amount of slope information, but do not

capture the aspect features as well.

Looking at Table 3.3, we observe a similar relationship in terms of classification

accuracy using each of the hand-selected features individually. The rugosity features

have the largest discriminative power, particularly at the 17 × 17 scale, followed by

slope, and then aspect. Interesting, the aspect features have very little discriminative

power but are still somewhat captured by the learned features. This may be due to

the fact that the learned bases are mostly edges or gradients, which inherently encode

some information about orientation.
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The results indicate there is a relationship between the discriminative power of ru-

gosity, slope, and aspect features, and the ability to predict them from the learned

features. This demonstrates the value of feature learning on bathymetric data. The

algorithm is able to learn the structure of the data, and without supervision, extract

the features and scales that tend to be the most discriminative in classification tasks.

3.3.3.3 Classification

Having compared the learned features to the more traditional rugosity, slope, and

aspect (RSA) features, it is important to analyse their classification performance. As

a result, we perform classification with five different feature combinations: RSA, Bl,
B0, RSA & B0, and Bl & B0. This is appropriate because the role of the learned

features is to replace the hand-selected RSA features, and the depth value can be

used in conjunction with either group. In each RSA scenario, the features over all

scale are concatenated and used for classification.

The classification results are shown in Table 3.4. As a baseline, we also apply PCA

directly to the raw and zero-meaned bathymetric patches (the latter only uses the

local bathymetry, while the former also contains depth). As the results indicate,

PCA is unable to extract useful local bathymetric features for classification, with an

accuracy of 46%, but can extract the depth when applied to the raw patches, with

66% accuracy. However, the depth encoding proposed here (B0) still yields a higher

classification accuracy of 67%.

Most importantly, it can be seen that the overall classification accuracy with the

learned Bl features is 6% greater than with hand-selected RSA features, which sup-

ports the conclusions from the previous section. This accuracy is increased further to

72% by including the encoded depth features.

3.3.3.4 Habitat Mapping

By using the B0 & Bl features to perform classification on each location in the

bathymetry grid, it is possible to perform large-scale benthic habitat mapping.
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Table 3.4 – Classification accuracy of various bathymetric features

Data Features Classification accuracy

Local bathymetry patches PCA 46.42%
RSA 58.95%
Bl 64.60%

Depth only B0 67.46%

Depth + local bathymetry
PCA 66.37%
RSA & B0 68.86%
Bl & B0 72.57%

For this thesis, we analyse habitat mapping performance on a subset of the South-

eastern Tasmania region, looking at a location known as O’Hara Bluff that is covered

by two dives: “ohara 07” and “ohara 20”. This area is of particular interest because

it covers a large depth range (from 30 − 80m), all five habitat classes, and contains

a large proportion of the dataset in terms of images obtained. A diverse range of

bathymetric features is exhibited over the region, from deep, flat-bottomed areas of

screw shell rubble, rugose terrain within the bluff containing rocky reef outcrops, and

dense kelp forests in shallow waters in the West. By analysing a smaller region, it is

also easier to gauge whether the models match these expert predictions.

This experiment utilises the classifier trained in the previous section on the training

dataset. To perform habitat mapping, bathymetric features are extracted for each

point in the bathymetric grid over the O’Hara Bluff region, and fed into the classifier

to obtain the habitat class probabilities and associated predictions.

The habitat mapping results are shown in Figure 3.8. Figure 3.8(a) shows the

bathymetry map for O’Hara with depth contours, and overlaid by the ground truth

habitat labels assigned for each image along the AUV trajectory. The five class labels,

from red through to purple, represent sand, screw shell rubble, reef / sand interface,

reef, and kelp. Figure 3.8(b) shows the produced habitat map, where the colour rep-

resents the habitat class, and white regions represent areas over which bathymetry

data was unavailable. The strength of the colour corresponds to the probability of

the most likely class, such that the colour fades to white for a uniform distribution

over classes. The individual class probability maps are shown in Figure 3.8(c).
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(a) Bathymetry map over the O’Hara Bluff region, overlaid with the
AUV trajectory coloured by associated image labels.
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(b) Habitat map using midlayer bathymetric features
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(c) Individual class probability maps using multimodal layer features

Figure 3.8 – Habitat mapping results for the O’Hara Bluff region using the bathymetric
features B. Each map is overlaid with the habitat labels corresponding to images
taken during AUV transects in the area. The classes are sand (red), screw shell
rubble (yellow), reef / sand interface (green), reef (blue), and kelp (purple). The
habitat map fades to white in uncertain locations. These images are best viewed
in colour.
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In general, the habitat map is qualitatively similar to that produced by Bender et al.

[5]. There appears to be a strong dependence on the depth, evidenced by the linear

striations in the map. As expected, kelp is mostly found in the shallower waters

towards the Southwest corner of the map, while screw shell rubble and sand are more

likely to be observed in deeper waters towards the East, though they are distributed

over a larger region. Similarly, reef is largely constrained to moderate depths, in

highly rugose areas.

The individual class probability maps also provide some indications as to the dis-

tribution of each habitat class. The distributions of some classes are very strongly

correlated with depth, with very low probability of kelp outside the shallow regions,

and screw shell rubble restricted to deeper waters. In contrast, the sand distribution

suggests it could be observed with nonzero probability over a large region. This is in

agreement with the actual depth histograms shown in Figure 3.9, which indicate that

the kelp and rubble classes have a very strong dependence on depth.
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(a) Sand

(b) Screw shell rubble

(c) Reef / sand interface

(d) Reef

(e) Kelp

Figure 3.9 – Depth histograms for each habitat class over the entire southeastern
Tasmania region. The histogram plots are coloured according to the same scheme
used for the five habitat classes throughout this chapter.
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3.4 Visual Feature Learning

Having completed the bathymetric feature learning analysis, the next step is to con-

sider feature learning from the AUV-borne visual image data. One key work in this

area is that of Steinberg [89], who proposes a pipeline for the clustering of benthic

imagery (and the Tasmania dataset in particular). The feature extraction pipeline

is based on the Sparse Coding Spatial Pyramid Matching (ScSPM) technique [102],

and numerous dictionary learning and sparse coding techniques are investigated.

Whereas deep networks can learn multiple layers of features [52], ScSPM is a single

layer feature learner, followed by hierarchical pooling. In fact, similar approaches

have been shown to do surprisingly well in the literature [10, 11, 50, 102], in some

cases outperforming their deep counterparts. Nonetheless, there may be some benefit

to utilising a convolutional network architecture to learn feature hierarchies, with,

ideally, each layer representing a higher-order feature abstraction (i.e. from texture

filters to object parts to whole objects). In this section, we describe the ScSPM-

based approach, and compare its classification performance with various convolutional

network architectures.

In practice, there are a variety of design choices with regards to the dictionary learning

algorithm, sparse encoding technique, and various other steps in the ScSPM pipeline.

Here, we only describe the procedure adopted by Steinberg [89], and direct the reader

to [89] and [102] for a more in-depth analysis.

3.4.1 Sparse Coding Spatial Pyramid Matching

The ScSPM method is a feature learning and encoding technique that has been shown

to produce features that are successful in image classification tasks. The algorithm

has three main stages:

1. Dictionary Learning: A dictionary, or codebook, is learned from image patches.

2. Sparse Encoding: Image patches are encoded to a feature representation

according to the learned dictionary.
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3. Spatial Pyramid Matching: The encoded features are then pooled over a

series of grids at different scales.

These are outlined in greater detail in the following sections.

3.4.1.1 Dictionary Learning

Given a large dataset of images, the first step is to extract a set of random sub-

patches, and compute the SIFT descriptor vector for each one. Given this set of

SIFT descriptor vectors X = [x1,x2, · · · ,xN ], the K-means clustering algorithm is

used to learn a dictionary of cluster centres D = [d1,d2, . . . ,dK ], to describe the

data, using the following objective function:

min
D,z

N∑
n=1

K∑
k=1

1(zn = k) ‖xn − dk‖22 (3.2)

Here, z = [z1, z2, . . . , zN ]> represents the cluster assignments for each input vector,

where zn ∈ {1, 2, . . . , K}, and 1(·) is the indicator function, which has a value of 1 if

its argument is true and 0 if its argument is false.

After initialising the cluster centres randomly, the objective function is minimised by

repeating two steps iteratively. The first step is the assignment step, where each data

point is allocated to a cluster based on Euclidean distance to the centre:

zn = argmin
k
‖xn − dk‖22 (3.3)

The second step is the update step, where the cluster centre / dictionary element is

updated to reflect the mean of all points assigned to it:

dk =

∑N
n=1 1(zn = k)xn∑N
n=1 1(zn = k)

(3.4)

With this procedure, the K-means algorithm models the input data as a set of spher-

ical clusters, and the set of cluster centres forms the dictionary (or codebook) D.
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Algorithm 3.1: Orthogonal Matching Pursuit algorithm
1: r⇐ x, S ⇐ ∅
2: for i = 1 to T do
3: k̂ ⇐ argmaxk

∣∣r>dk∣∣
4: S ⇐ S ∪ dk̂
5: r⇐ x⊥span(S)
6: end for

3.4.1.2 Sparse Encoding

The Sparse Encoding stage in this pipeline is performed using the Orthogonal Match-

ing Pursuit (OMP) method (Algorithm 3.1), a greedy algorithm that sequentially

finds the ‘best’ dictionary elements for a given input vector [70].

The algorithm maintains a set of selected dictionary elements S, and a residual vector

r (initialised to the input vector x). At each step, the algorithm finds the dictionary

element d with the largest correlation to the current residual, and adds this to S. It
then projects x to the span of the elements of S, and computes the new residual r

(i.e. the vector component of x that is orthogonal to the span of S). This process is
repeated until T dictionary elements are chosen.

3.4.1.3 Spatial Pyramid Matching

Given an input image, the Spatial Pyramid Matching process is as follows. First,

a grid of overlapping patches is extracted from the input image. For each of these

patches, the corresponding SIFT descriptor is extracted, and a sparse encoding is

obtained using the OMP technique. This results in a K-dimensional sparse code for

each patch location in the image grid.

The spatial pyramid itself consists of a number of pooling layers, each over a succes-

sively larger region of the image. In each spatial pyramid layer, the image is divided

into a uniform n-by-n grid, and the sparse codes are max-pooled over each grid cell.

The pooled codes from all spatial pyramid layers are then concatenated into a single
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feature vector. Typical values for the spatial pyramid layers are n = {4, 2, 1}, which
means that the final feature vector has dimension (42 + 22 + 12)×K = 21K.

As a result, the spatial pyramid matching stage effectively summarises the image

content in terms of the presence of dictionary elements over different scales.

3.4.1.4 Additional Processing

In his work, Steinberg [89] proposes using a dictionary of size K = 1024, which

means that the ScSPM feature vector is 21504-dimensional. Such high-dimensional

data can be prohibitively expensive for classification tasks. As a result, an additional

dimensionality reduction stage is also proposed, reducing the data to 3000 dimensions

using Random Projections [3]. Steinberg [89] demonstrates empirically that this data

compression is achieved with minimal loss in classification performance.

Finally, for this thesis, an additional DAE layer is trained on the 3000 dimensional

features, to obtain a lower dimensional sparse code. With this step, the visual features

now lie in the interval [0, 1], and a sparsity cost during training can encourage the

sparsity of the hidden units to be similar to that of the bathymetric layer. By ensuring

that the top-level visual features have a similar statistical structure to the top-level

bathymetric features, in terms of output range and sparsity, it is much easier to

capture the relationship between the two.

3.4.1.5 Discussion

The proposed ScSPM-based pipeline has a number of similarities with the CNN model

described in chapter 2.4. It involves learning a set of filters, each with a small re-

ceptive field, which looks at nearby pixels rather than the entire image. It involves a

convolution of each of these filters over the entire image, resulting in a set of feature

maps, each representing the response of a particular filter over the image. And finally,

it also involves a number of pooling layers to reduce the resolution of the feature maps

and suppress non-maximal activations.
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As a result, the ScSPM model can be considered a form of CNN, consisting of a single

feature learning layer, with multiple pooling layers. The key difference, then, is the

higher-order feature learning layers that are present in a CNN. As such, it is prudent

to also apply CNN models to this problem, to gauge the benefits of the high-level

feature layers. This will be discussed in the following section.

3.4.2 Convolutional Neural Networks

Given that CNNs achieve state-of-the-art performance in many vision-based classifi-

cation tasks [48, 52, 83], we also apply a number of CNN architectures to the image

data as a benchmark.

Due to the very large memory requirements of CNNs on high-resolution images, each

image is first downsampled by a factor of 4 to a size of 340×256. By visual observation,

the downsampled images do not lose any important structure as compared to the

original images.

All of the networks contain three convolutional and pooling layers, followed by a single

fully connected layer. The model parameters are shown in Table 3.5. The parameters

for the kth layer are denoted by a subscript of k. The receptive field size is given by

nwk
, and the number of hidden units / feature maps by nhk . The stride parameter

nsk refers to the number of pixels between adjacent applications of the filter in the

convolutional layer. Pooling is performed over non-overlapping regions with npk .

Some of the parameters are kept constant across all of the networks. As the feature

maps of the first convolutional layer are quite large, it is common to specify a small

number of hidden units. As such, the first convolutional layer contains only 25 hidden

units. In fact, Krizhevsky et al. [48] recommend adopting a stride of 4 for larger

images, and their 224× 224 images are smaller than those used here. The number of

hidden units in the final layer is set at 1000, in order to match the dimensionality of

the ScSPM-based features. The final layer is fully connected, and in each case, the

receptive field for this layer is a 2× 3 feature map covering the entire image.
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Table 3.5 – The parameters for the convolutional neural network models applied to
visual classification. nwi , nhi , and nsi refer to the receptive field size, number of
filters, and stride length of the ith convolutional layer, while npi is the pooling size
in the ith pooling layer.

CNN 1 CNN 2 CNN 3 CNN 4

Layer 1

nh1 25 25 25 25
nw1 9 9 8 5
ns1 4 4 4 4
np1 2 2 4 2

Layer 2

nh2 100 50 100 100
nw2 7 7 4 5
ns2 2 2 2 2
np2 2 2 2 2

Layer 3

nh3 500 100 500 500
nw3 4 4 3 5
ns3 1 1 1 1
np3 2 2 1 2

Layer 4 nh4 1000 1000 1000 1000
nw4 2×3 2×3 2×3 2×3

Many of the parameters are varied for each network, in order to best represent the

different types of convolutional networks. The first network, CNN 1, represents a

more conventional network, similar to that in [48]: for higher layers, the receptive

field size and stride decreases, the number of hidden units increases, and the pooling

ratio is kept constant at 2. The second network utilises fewer hidden units in the

lower layers, quantifying the impact of the dimensionality on the model. In CNN 3,

the pooling ratio is increased to 4 in the first layer and reduced to 1 after the third

convolutional layer. This investigates whether the lower layer feature maps can be

reduced in size by pooling, and determines how much information is discarded in the

process. Finally, CNN 4 represents a model in which the receptive field sizes are kept

constant over all of the layers.

As is the standard in the literature, rectified linear (ReLU) units are used for each layer

in the network, and dropout is applied to the fully-connected layer. The output layer

is the standard softmax classifier, and the networks are trained by backpropagation,
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using SGD.

3.4.3 Experiments

This section describes the experiments for visual feature learning. The visual dictio-

nary used for ScSPM is identical to [89], and is learned externally on a natural images

dataset. Steinberg [89] demonstrated that this was equally as effective as training

the dictionary on the marine dataset, with the added benefit of not having to retrain

the model for subsequent marine dive campaigns.

The DAE layer was trained with 25% masking noise and consists of 1000 hidden units,

to match the bathymetric feature learning in Section 3.3. Again, this provided the

best compromise between dimensionality and accuracy.

The DAE was written in Python using the pylearn2 library, and took approximately

34 hours to train on a NVIDIA GTX 590 GPU. The CNNs were also developed in

pylearn2, and took approximately 9-10 days to train on the same GPU. The Sc-

SPM pipeline used the software library developed by Steinberg [89] along with the

pretrained dictionary from that work.

3.4.3.1 Learned features

Whereas the first layer features of a neural network can be visualised by directly

plotting the weights in input pixel space, no such simple technique exists for higher

layers. In particular, when several pooling layers are used, it is not straightforward

to visualise each learned feature. Previous research has highlighted various tech-

niques for visualising high-level features, either by solving an optimisation problem

to maximally activate each neuron [23], inverting the internal representations with a

‘deconvolutional network’ [20, 104], or plotting a saliency map for each object class

to indicate class-critical regions of an image [81].

To understand the features that have been learned by the ScSPM pipeline, we in-

stead adopt the computationally simpler approach of plotting the test set images
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(a) Sand (b) Sand / reef interface, changing horizontally

(c) Sponge (d) Sparse kelp cover

(e) Dense kelp cover (f) Patchy reef structure

Figure 3.10 – Visualisation of a small number of the learned image features, in terms
of the top 9 input images that maximally activate each feature dimension. Accom-
panying each of the image groups is a description of the visual structure common to
the images within each group. The features capture a variety of factors of variation
in the data.
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that maximally activate each feature dimension [23]. To achieve this, the entire test

set is encoded according to the learned features, and for each dimension the top 9 in-

put images are selected, such that they maximally activate the corresponding feature

value. This provides some indication of the visual structure and content to which each

learned feature is sensitive. Given that there are 1000 feature dimensions, the top 9

activations are shown in Figure 3.10 for only a small selection of learned features.

Figure 3.10 indicates that each of the learned features captures one aspect of variation

in the data. Some of the features are specific to a particular habitat class (such as

sand or kelp), while others capture additional structure, such as the orientation of

reef / sand interface, or the presence of a particular species of sponge.

Thus, the features cover many different factors of variation in the data. Some act

as class-based features, and are particularly useful for the classification task, while

others capture textural or content information that may not be as useful. This is

appropriate for this application: while classification is a key task of interest, it is

also desirable to capture the additional factors of variation, and avoiding restricting

the model by the habitat labels that are present. This ensures that the model is

still useful for other tasks and is even applicable for different habitat categories (for

example, for fine-grained species classification).

3.4.3.2 Classification

We can now compare the classification performance of the proposed ScSPM-based

pipeline with the CNN architectures. For the ScSPM case, the top layer features

are used to train a softmax classifier using the same training and validation proce-

dure as with the bathymetric features. The CNNs are directly trained to minimise

classification error.

The classification results are shown in Table 3.6. The first CNN model offers a small

improvement over the ScSPM features, but the other CNNs perform more poorly.

Nonetheless, the classification accuracies are very similar across all five models (within
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Table 3.6 – Classification accuracy of visual features

Classification accuracy

ScSPM 79.98 %
CNN 1 80.76 %
CNN 2 79.65 %
CNN 3 77.88 %
CNN 4 78.23 %

3%). This suggests that the main benefit comes from the first layer of feature learning,

and higher layers have minimal effect.

One explanation for this behaviour is that the marine images have a very differ-

ent structure compared with the image datasets to which CNNs are usually applied

(objects, urban scenes, outdoor environments, etc). These datasets can usually be

decomposed at different scales into objects, object parts, and lower level structures

like edges. In marine images, this hierarchy does not appear as strongly: many of the

images are sand, and even the reef or sand / reef interface images often do not contain

objects at a larger scale in the image. As such, the image can be well described as a

collection of low-level edges and textures, as characterised by the ScSPM approach.

For this reason, the ScSPM-based pipeline will be used for the visual feature learning

layers in future chapters. While the first CNN was able to achieve a slight improve-

ment in classification performance, its computational load in terms of training was far

greater. Further, the dictionary for ScSPM can be learned on an external dataset and

has been shown to generalise well when applied to different marine environments [89].

In contrast, a CNN-based approach would likely require training a separate model

from scratch on a new marine dataset.

Ultimately, a more comprehensive study of these techniques would yield greater in-

sight as to their efficacy on marine data. For the purposes of this thesis, in which the

focus is on multimodal learning, the ScSPM-based approach will be adopted.
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3.5 Summary

This chapter introduced the marine dataset used in this thesis, and proposed algo-

rithms to learn features from visual and bathymetric data. The visual images dataset

was obtained by the AUV Sirius over the course of 11 dives in Southeastern Tas-

mania in 2008, while the bathymetry data was obtained via Geoscience Australia’s

bathymetric grids [84].

Feature learning models were introduced for both bathymetry and visual data. The

learned bathymetric features were compared with the traditional hand-picked features

of rugosity, slope, and aspect, in terms of classification performance, and were found to

be superior. Habitat mapping results were also presented using these features. The

visual feature learning pipeline was compared with convolutional neural networks,

which have demonstrated state-of-the-art performance in many visual classification

tasks, and was shown to be competitive.

The following chapters will incrementally build on the proposed single-modality fea-

ture learning models, in order to model the relationship between the two modalities.



Chapter 4

Multimodal learning from visual and

bathymetric features

This chapter outlines a multi-layer architecture to perform multimodal learning from

visual images and bathymetric data. The model is trained in an unsupervised fashion,

and can be used to perform both discriminative and generative tasks. The results

presented in this chapter include classification of different modality combinations, and

multimodal inference tasks such as sampling one modality from the other. Section 4.1

describes the multimodal model, and Section 4.2 describes the inference procedures

for the model. Section 4.3 then presents the experimental results with this model for

both classification and sampling tasks.

4.1 Model description

The proposed architecture learns multimodal correlations using a multi-layer hierar-

chy, in a similar fashion to the previous work outlined in 2.5. As shown in Figure 4.1,

the features for B0, Bl, and V (as detailed in Chapter 3) are concatenated in the mid-

layer. A DAE shared layer is then learned using the midlayer as input, which learns

the correlations between the features of each modality. The stochastic corruption

applied during training is masking noise, in which input dimensions are randomly set
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Visual Image Bathymetric Patches

Depth Feature

ScSPM
+DAE

DAE

DAEShared
layer

Mid
layer

Input 
layer

Figure 4.1 – The proposed model for multimodal learning. The ScSPM+DAE visual
features, DAE bathymetric features, and encoded depth features are concatenated
at the mid-layer, and the multimodal DAE is learned on top.

to zero, and the model is trained to reconstruct the uncorrupted input. As with the

midlayer feature learners, the multimodal DAE was tested with different numbers

of hidden units, and it was found that the choice of 2000 units exhibited the best

compromise between performance and computational load.

The choice of DAE for this network is justified for a number of reasons. The first is

that the use of masking noise encourages the model to be robust to missing input data.

This is particularly important for this application, because the model needs to be able

to perform inference when only one of the modalities is available. For example, it

should be able to classify in-situ image data, even if there is no associated bathymetry.

More commonly, for the benthic habitat mapping case, large-scale gridded bathymetry

data is available, but visual images are only available over a small fraction of the

region. The second reason is that the probabilistic properties of the DAE (described in
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Section 2.3) facilitate generative tasks, such as the sampling of one modality given the

other. Such inference tasks can help to understand the sorts of key correlations that

exist within the data, in terms of which features from each modality are likely to co-

occur. The third reason is that its objective function makes it easier to train. Whereas

the RBM approximates the maximum likelihood gradients through the Contrastive

Divergence (CD) algorithm, autoencoder models have a simpler reconstructive error

objective that ease the learning process. Given these benefits, the DAE is a better

option than an RBM for the shared layer.

As mentioned previously, the shared layer learns the correlations between visual and

bathymetric features, which means that the resulting feature space (the hidden unit

representation) captures features from both modalities. Another way to interpret this

is that it performs a nonlinear projection of the data into a new feature space, and

learns this projection in such a way that the data from both modalities can be well

reconstructed. This means that, even when only one modality is available, the single

modality data is embedded in a feature space that facilitates reconstruction of both

modalities. One would expect that this embedding would lead to improved classifi-

cation performance over the midlayer representation, especially when one modality is

unavailable.

4.2 Inference

4.2.1 Classification and habitat mapping

For the DAEs utilised in single-modality learning in Chapter 3, the encoding proce-

dure was simply to obtain the hidden unit representation of the input data. In the

multimodal scenario, it is important to obtain features for any combination of input

modalities.

To perform benthic classification with both the bathymetry data (B0 and Bl), and
the visual data V , it is possible to do a forward-pass up the network to obtain the

shared layer feature representation, and pass these “multimodal encoded” features
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into the linear classifier. When modalities are missing, a simple encoding technique

is to set the missing input dimensions to zero in the midlayer before performing the

multimodal encoding. Given that the DAE learns features robust to masking noise,

one would expect that this procedure will yield better results than if we were to

perform classification on the midlayer features directly [69].

4.2.2 Prediction and sampling

By using a shared layer that covers the features of both modalities, the model is able

to perform multimodal prediction and sampling tasks. One benefit of the DAE is that

it can produce plausible samples from the data-generating distribution, in a similar

fashion to an RBM.

However, contrary to RBMs, DAEs lack a model of the marginal distribution of the

hidden layer [94] and cannot generate samples from an arbitrary hidden layer repre-

sentation. Vincent et al. [94] proposes that this marginal distribution be modelled as

an empirical distribution, comprised of the set of hidden codes obtained by encoding

the training vectors.

Thus, for a single layer DAE, a sample can be obtained as follows. First, a training

sample is encoded to obtain the hidden layer representation. Then, Bernoulli sampling

is performed, where the activation value of each unit acts as the probability of the

unit turning on (as with an RBM), resulting in a binary code. Finally, deterministic

decoding yields a new input sample.

For a multi-layer network, a similar procedure is adopted, comprising of a determin-

istic bottom-up pass, followed by alternating Bernoulli sampling and deterministic

decoding. In other words, a training sample is encoded according to the shared layer,

Bernoulli sampling is performed, the reconstructions for the layer below are obtained,

and the process is repeated until the input reconstructions are obtained. Note that

since the ScSPM approach cannot perform top-down decoding (due to the pooling

layers), it is not possible to sample visual features below the image level. This is

usually the case for approaches that perform pooling (including CNNs), since data is
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lost in the downsampling process. However, this is not restrictive for the application

in this thesis.

In the scenario where modalities are missing, they can be either predicted (determin-

istically) or sampled (stochastically), by clamping the known inputs at their observed

values [69, 85]. Here, the inference procedure is identical to the full data case, except

that the known inputs are kept at their observed values.

For example, if the task was to sample the bathymetric features associated with a

given input image, the process would be as follows. First, the midlayer features would

be obtained, with zeros for the missing bathymetric dimensions, and used to compute

the shared layer representation. Then, the stochastic top-to-bottom pass from the

aforementioned sampling process would be applied in order to obtain a sample of the

bathymetric input data, but the visual inputs would remain unchanged. This process

can then be repeated to obtain several conditional samples of bathymetric data given

visual features. Typically, the process is repeated a number of times before the

resulting sample is kept, to ensure that successive samples are less correlated.

If the task is to obtain a conditional expectation / prediction rather than a sample,

then the above procedure is repeated without the Bernoulli sampling steps. On a

single iteration, the model effectively uses the known input data to obtain a deter-

ministic reconstruction of the missing inputs. By iterating several times (without

stochastic sampling), the model converges on the conditional expectation of missing

inputs given known inputs.

4.3 Experiments

This section outlines the experiments on classification and sampling using the multi-

modal model.

For the midlayer features, the preprocessing steps and midlayer architecture are iden-

tical to those described in Chapter 4. For the shared layer, 2000 hidden units are

used: this is based on experimentation with a number of hidden layer sizes, and the
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selected number exhibited good accuracy with low computational load. The layer is

trained as a DAE with 50% masking noise, such that each dimension is set to zero

or retained with equal likelihood. This ensures the layer is robust to missing inputs,

which is necessary for this application, as either modality may be unavailable.

The DAE was written in Python using the pylearn2 library, and took approximately

2 days to train on a NVIDIA GTX 590 GPU.

4.3.1 Classification

In this section, the classification performance of the features extracted through mul-

timodal learning is compared with that of the midlayer features, as described in

Chapter 3. The classification setup and training / test split are identical to Chap-

ter 3.

As previously discussed, there are various modality scenarios that may occur at clas-

sification: either bathymetry (B) or visual features (V) may be available on their own,

or both modalities may be available (B and V). The goal of this analysis is then to

determine whether performing multimodal learning beforehand is beneficial in terms

of classification performance, even if one modality is unavailable when it comes to

classification / inference time.

To analyse this, the multimodal model was trained on the entire training set, and

the shared layer representation was obtained (the “multimodal encoding”). This was

repeated for each modality scenario, with missing dimensions set to zero in the mid-

layer, such that each scenario had a separate set of multimodal encoded features. The

classification performance of these features was then compared with the midlayer fea-

tures.

The classification performance is shown in Table 4.1, for each scenario. To gauge the

relative significance of the depth feature B0 and the local bathymetry Bl, they have

been considered as separate modalities for this analysis, even though they are both

extracted from the bathymetry data.
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Table 4.1 – Classification performance for various input modalities, reported as %
accuracy. The highlighted case is the benthic habitat mapping scenario.

Modalities used Midlayer encoding Multimodal layer encoding

B0 only 67.46 67.46
Bl only 64.60 70.20
B (B0 and Bl) 72.57 81.23
V 79.98 80.71
B0 and V 82.11 84.44
Bl and V 81.24 84.92
B and V 83.05 87.43

Looking at the midlayer features, we observe that results are significantly better

when visual data is present. This is to be expected, given that the habitat classes are

much easier to disambiguate from the visual images than from the bathymetry data.

When comparing the multimodal encoding with the midlayer encoding, we observe an

improvement in performance for all modality scenarios, except for the depth feature

B0, with which the performance does not change. This may be due to the fact that

it only occupies 82 dimensions of the 2082-dimensional midlayer; as a result, it does

not have enough expressive power to harness the benefits of multimodal learning on

its own.

With only visual data available, the performance with multimodal encoding is only a

marginal improvement over the midlayer encoding. This may indicate that the visual

features are already fairly precise for this task, and gain little information by encoding

their relationship with bathymetric features.

The most important result is the benthic habitat mapping case B, where the multi-

modal approach yields a 9% improvement in accuracy. This result suggests that the

discriminative power of bathymetric data is significantly improved by transformation

to a feature space which encodes correlations with visual imagery.

In general, the results are consistent with the analysis performed by Ngiam et al.

[69] for audio and video data, demonstrating that having both modalities present at

feature learning time improves the quality of the features learned for each modality.
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4.3.2 Precision and recall analysis

While the accuracy provides some information about classification performance, it

often does not paint the full picture. To better understand the benefits and short-

comings of the multimodal learning approach, this section analyses the precision and

recall of the two feature encodings.

Since precision and recall are binary classification measures, they cannot directly be

applied to the multi-class problem. While it is possible to produce a ‘micro-averaged’

precision-recall curve that summarises the multi-class performance, a better approach,

for the purposes of this thesis, is to compute the precision-recall curve for each class

individually. This provides more information on how each classifier performs with

respect to individual classes.

The precision-recall curves are shown in Figure 4.2. Each row refers to a separate

class, while the plots within each row each refer to a separate modality scenario (ie.

which modalities are available): from left to right, they are the B only, V only, and

B and V scenarios. Within each plot, the classifier for the midlayer feature encoding

(red) is compared with the classifier for the shared layer feature encoding (green).

As such, each plot illustrates the effect of performing multimodal learning, for a

particular class, for a particular modality scenario.

From the plots in the left hand column, it can be observed that the multimodal

encoding has the greatest effect when only bathymetry data is available. This is

consistent with the classification results, which demonstrate a 9% increase in accuracy

for this scenario. In contrast, there is a lesser effect when both modalities are available

(right hand column), and minimal change when only visual data is available (middle

column). Looking at the different classes, we can observe that both models struggle

the most with the reef / sand interface class. This is most likely due to the fact that

the interface class is effectively a combination of reef and sand: consequently, both

visual and bathymetric features may be quite similar to either of these classes, leading

to ambiguity in the class labels.

For the bathymetry-only case, multimodal encoding appears to make the biggest
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B only V only B and V

(a) Sand class

(b) Screw shell rubble class

(c) Reef / sand interface class

(d) Reef class

(e) Kelp class

Figure 4.2 – Precision-recall curves for each habitat class, for each modality scenario.
In each case, the left hand plot is for the bathymetry only (B) scenario, the centre
plot is for the visual only (V) scenario, and the right hand plot is for both modalities
(B and V).
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difference for the classes with less representation in the dataset: kelp and reef / sand

interface. However, there is also a sizeable improvement for the other three classes.

For the case with both modalities, multimodal encoding offers a small improvement

across the board, with the largest change for the interface class. This is an interesting

result, as the interface class is particularly difficult to characterise, especially with

bathymetric data, which locally can appear very similar to reef or sand classes. In

fact, this result appears to indicate that the cooccurrences of visual and bathymetric

features (i.e. the cross-modality correlations) are the most important in identifying

reef / sand interface.

For the visual-only case, most of the plots indicate little change in performance, but

interestingly, the result for kelp is poorer with multimodal encoding. This highlights

one caveat in the learning process: while multimodal learning improves performance

on average for all modality scenarios, and for nearly all classes within each modality

scenario, the task of finding kelp from visual images is better without multimodal

encoding. This possibly suggests that the kelp class labels are very closely tied to

just the visual features rather than both visual and bathymetric information. As a

result, using a feature encoding learned over both modalities is more ambiguous than

using purely visual features.

4.3.3 Feature space analysis

The effect of multimodal learning can be better understood by analysing the midlayer

and shared layer feature representations. Since both of these feature spaces are very

high-dimensional, it can be difficult to adequately visualise them and understand the

structure of the features with respect to the habitat class labels.

Nonetheless, PCA affords a straightforward technique to project the data into a low-

dimensional space for visualisation purposes. PCA performs dimensionality reduction

of the data by preserving the independent dimensions (known as principal compo-

nents) which have the greatest variance. These dimensions can then be plotted to

understand the primary factors of variation in the data.
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Figures 4.3 and 4.4 plot the first four principal components of the midlayer features

and shared layer features respectively. The first two principal components are shown

on the left-hand plot, while the third and fourth components are shown on the right-

hand plot. Each row in the figure corresponds to a different modality scenario, with

either bathymetric features (B), visual features (V), or both (B+V). The points used
in each plot are coloured according to the corresponding habitat label.

The most noticeable observation is the similarity between the visual feature space and

the combined features from both modalities. Indeed, their first two principal compo-

nents are nearly identical, for both the midlayer encoding and the multimodal encod-

ing. This indicates that the predominant factors of variation (over both modalities)

are in the visual data, and the addition of bathymetric features does not drastically

change these principal components. This also explains why habitat classes are much

easier to distinguish in visual data: because there is far more variance in the data,

and as indicated in the plots, the classes are more easily separable.

The bathymetric features, in contrast, have a lower variance, for both the midlayer

and shared layer features. Further, the classes are quite difficult to separate from

the first four principal components in both of these cases. Given that the classifi-

cation accuracy is just over 80% for bathymetric data encoded by the shared layer

(Table 4.1), this would suggest that the key features are spread over a much larger

number of dimensions. This is in direct contrast to the V and B + V cases, in which

the important structure is captured across the first few principal components.

However, it is also noteworthy that for the shared layer representation, the bathy-

metric features are slightly more similar to the other modality cases, than for the

midlayer representation. In particular, note that for the multimodal encoding, the

first principal component for bathymetric features correlates more closely with the V
and B + V cases: it has a more similar range, and the ordering of classes (from sand

to kelp) matches that of the V and B+V cases. This is likely due to the fact that the

shared layer projects the inputs into the same high-dimensional space: as a result, the

projected bathymetry data occupies the same feature space as the projected visual

data.



74 Multimodal learning from visual and bathymetric features

(a) Bathymetric features (B) with midlayer encoding

(b) Visual features (V) with midlayer encoding

(c) Both modalities (B + V) with midlayer encoding

Figure 4.3 – The first four principal components for midlayer features, for all three
modality scenarios. The first two components are plotted on the left, and the third
and fourth components are on the right. The points are coloured by their class
labels: sand (red), screw shell rubble (yellow), reef / sand interface (green), reef
(blue) and kelp (purple).
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(a) Bathymetric features (B) with multimodal encoding

(b) Visual features (V) with multimodal encoding

(c) Both modalities (B + V) with multimodal encoding

Figure 4.4 – The first four principal components for shared layer features, for all three
modality scenarios. The first two components are plotted on the left, and the third
and fourth components are on the right. The points are coloured by their class
labels: sand (red), screw shell rubble (yellow), reef / sand interface (green), reef
(blue) and kelp (purple).
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4.3.4 Habitat Mapping

With the improvement in classification performance afforded by the multimodal learn-

ing model, it is possible to perform benthic habitat mapping with greater accuracy.

Crucially, by performing multimodal learning prior to bathymetric classification, vi-

sual feature information is implicitly encoded into the classification process.

In this experiment, the multimodal approach is applied to the same habitat mapping

task as in Chapter 3. As in Section 3.3.3.4, habitat mapping is performed in O’Hara

Bluff. While the multimodal learning model is trained over the entire training dataset,

the classifier is still trained on only the O’Hara dive data, using the multimodal

encoding of the bathymetric features at each location.

Figure 4.5(a) shows the bathymetry map for O’Hara, Figure 4.5(b) contains the pro-

duced habitat map, and the corresponding class probability maps are shown in Fig-

ure 4.5(c). As with Section 3.3.3.4, the AUV trajectory is overlaid on the maps,

coloured by the ground truth labels of the in-situ imagery, and the strength of the

colour in the habitat map fades to white as the class probability is reduced.

The resulting habitat map has more fine-scale variation than that obtained with the

midlayer features in Chapter 3. While the depth is still important in discriminating

between classes, there is a lot more variation, and the number of linear striations

due to depth dependence is reduced. In particular, the flat-bottomed regions towards

the north of the map are classified as sand, which is more likely than the reef label

assigned by the midlayer classifier in Section 3.3.3.4.

4.3.5 Generative Sampling

In addition to classification experiments, it is important to test whether the model

properly learns the distribution of the underlying data, and to determine how well it

has learned the relationship between the two modalities. To test this, the model can

be used to generate samples of bathymetric features, conditioned on an input image.

This corresponds to the query “What kinds of bathymetric features might be present
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(a) Bathymetry map over the O’Hara Bluff region
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(b) Habitat map using shared layer features
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(c) Individual class probability maps using shared layer features

Figure 4.5 – Habitat mapping results for the O’Hara Bluff region using shared layer
features. Each map is overlaid with the habitat labels corresponding to images
taken during AUV transects in the area. The classes are sand (red), screw shell
rubble (yellow), reef / sand interface (green), reef (blue), and kelp (purple). The
habitat map fades to white in uncertain locations. These images are best viewed
in colour.
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in conjunction with this image?". If it has truly learned the relationship between the

two, the resulting samples should match expert predictions on the co-occurrence of

bathymetric features with the habitat class observed in the conditioning image (for

example, that kelp is likely to be found in shallow, rugose terrain, or that screw shell

rubble usually coincides with deeper, flatter areas).

This experiment is performed using the procedure described in Section 4.2. By con-

tinuously running the iterative procedure, with 10 iterations between each generated

sample, we can obtain samples similar to those shown in Figure 4.6. Here, the model

uses a set of input images, each from a different habitat class (top row) to generate

samples of encoded depth features and bathmetric patches, respectively (following

rows). As the depth features are encoded as a 1-of-k with Gaussian falloff, each depth

“signal” should be interpreted as an activation function, where a high activation value

suggests a higher likelihood of observing that depth.

19 100 19 100 19 100 19 100 19 100

Sand Rubble Interface Reef Kelp

Figure 4.6 – Bathymetry samples obtained from the learned data-generating distribu-
tion, conditioned on the input image. For each input image representing a single
habitat class (top row), the subsequent rows display different examples of model-
generated samples of B0 in encoded form (left) and Bl patches (right). Shallower
regions are represented as red in the patches, and the B0 signal should be interpreted
as an ‘activation function’ over the depth range 19− 100m).

To quantitatively analyse the results, the model was used to generate 1000 such
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Figure 4.7 – Average of encoded B0 (depth) samples conditioned on every image in
O’Hara Bluff (1000 samples per image). Samples are grouped by the class of the
image used to generate them, and a few key classes are shown here.

samples of B0 and Bl for every image in the O’Hara Bluff region. The images were

then grouped by class label, and the depth samples averaged over each class to show

the distribution over the entire depth range. The mean depth samples for sand, reef,

and kelp classes are shown in Figure 4.7. Additionally, the rugosity was computed for

each generated bathymetry patch, and the mean and standard deviation over each

class are shown in Table 4.2.

The results suggest that the model is learning the underlying data distribution. The

sampled bathymetric patches are, on average, smoother for the sand classes and more

rugose for the reef and kelp images (Table 4.2). Similarly, while the kelp image

activates depth features at the shallower end of the range, deeper areas are activated

for sand and reef (Fig. 4.7). It is also important to note that the variation within

each class is indicative of the spatial distribution of the class. For example, while

the mean depth sample for kelp images only has a few large peaks, mostly in shallow

areas, the corresponding signal for sand or reef is spread over a larger depth range.
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Table 4.2 – Rugosity of Bl (bathymetry patch) samples, conditioned on every image in
O’Hara Bluff (1000 samples per image), grouped by class.

Sand Shell rubble Interface Reef Kelp

Mean 1.0773 1.0804 1.0989 1.1218 1.1846
Std 0.0184 0.0307 0.0365 0.0478 0.0580

4.4 Summary

This chapter proposed a multimodal learning model to capture the relationship be-

tween the visual image data and co-located bathymetric features. Using a similar

architecture to previous work [69, 85], the proposed approach involves training a

shared layer on the concatenation of the high-level features from each modality. This

represents a novel application of multimodal learning algorithms to visual and re-

motely sensed marine data.

Classification was performed with the proposed model for various modality com-

binations, emulating the situations in which either visual or bathymetric data is

unavailable. Results with the proposed model demonstrate that by performing mul-

timodal learning beforehand, classification accuracy is improved, regardless of which

modalities are available at classification time. In particular, for the habitat mapping

scenario, in which visual data is unavailable, classification of features extracted by

the multimodal learning approach was found to be 11% more accurate than with the

bathymetric features directly.

Generative sampling was also performed, by using the model to obtain bathymetric

samples conditioned on an input image. The sampled bathymetric samples were in

line with expert predictions: the rugosity of the bathymetric patches generated from

reef and kelp images was much greater than from images of sand and screw shell

rubble, and the generated depth signals were at lower depths for kelp than for reef

and sand classes. The results demonstrated that the model can properly capture

the underlying data distribution, and understand the relationship between the two

modalities.



Chapter 5

Extending multimodal learning with

gated models

In this chapter, we build upon the multimodal architecture of the previous chapter

with more sophisticated gated models, based on a mixture of RBMs (MixRBM). This

model can capture the one-to-many relationship between the visual and bathymet-

ric modalities, and a number of novel improvements are presented to facilitate more

sophisticated learning and inference tasks, such as image-based queries. Section 5.1

discusses the motivation behind the proposed model, and Section 5.2 introduces the

gated model used in this chapter. Section 5.3 describes the learning algorithms for

the model, and proposes heuristics to avoid having to specify the number of mixture

components. Section 5.4 then outlines the inference procedures under the model,

including novel derivations that enable the clustering of single modalities, and al-

gorithms to predict visual features from bathymetric data and handle image-based

queries. Finally, Section 5.5 outlines experiments with a toy dataset and marine data,

validating the above inference procedures.
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5.1 Motivation

One important consideration for this application is that bathymetry is a coarser sensor

modality: a single ‘type’ of feature may correspond to many ‘types’ of visual features.

More specifically, the conditional distribution of visual features given bathymetric

features may be highly multimodal.

Unfortunately, the multimodal model presented in the previous chapter does not

explicitly consider this factor. While the shared layer can sample bathymetric features

given visual data (Section 4.3.5), the more interesting task is the inverse problem,

predicting visual features in unseen areas from the known bathymetry. This would

enable planning queries based on image features, indicating where an input image,

or a particular set of features, are likely to be observed. This capability has not

previously been introduced in either the robotics or habitat mapping communities.

The standard multimodal model could achieve this by generating a very large number

of visual samples conditioned on the bathymetry, and using these to approximate the

conditional distribution of visual features given the bathymetry. However, as will

be discussed in this section, this is difficult because the conditional distribution has

several modes. Instead, it is desirable for the model to provide a principled way

in which to select a conditional mode: the model could provide a summary of the

different types of visual features that are observed, and associated probabilities of

observing them.

This chapter proposes using a gated mixture of RBMs model [67], which is better

equipped to handle the ‘one-to-many’ relationship between the two modalities. In the

gated model, the joint distribution over both modalities is conditioned on a latent

indicator variable. This effectively learns multiple RBM components under the same

framework, with the indicator variable switching between them on the fly.

The architecture employed by this model is similar to that presented in the previous

chapter. As in Figure 5.1, the visual and bathymetric features are concatenated at the

mid layer, which are then passed into the gated MixRBM model (the shared layer).



5.2 Gated Boltzmann Machines and mixtures of RBMs 83

  

Visual Image Bathymetric Patches

Depth Feature

ScSPM
+DAE

DAE

Gated
model

1-of-kShared
layer

Mid
layer

Input 
layer

Figure 5.1 – Schematic showing the gated model architecture. Features from both
modalities are concatenated in the mid layer, and then passed into the shared
layer. The one-of-k indicator variable indexes a single RBM component from the
Mixture of RBMs model.

Thus, the mid layer features are identical to Chapter 4, and the only change is the

additional complexity in the shared layer.

5.2 Gated BoltzmannMachines and mixtures of RBMs

A Gated Boltzmann Machine (GBM) [63, 67] is a probabilistic graphical model com-

prised of a set of binary visible variables x ∈ {0, 1}nx , hidden variables h ∈ {0, 1}nh ,

and gating, or conditioning, variables z ∈ {0, 1}nz . With the addition of the gating

variables, the graphical model of the GBM is a tripartite graph, as compared to the

bipartite graph of the standard RBM (described in Section 2.3). The visible vari-

ables x represent the input data, which in this case is the concatenation of the visual

features xV and bathymetric features xB.

The model captures the joint relationship between the visible and hidden units, con-
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� �

Figure 5.2 – Graphical representation of a gated mixture of RBMs. By turning on
the kth gating variable, the model uses the component RBM whose parameters are
contained in the kth slice of the parameter tensor, thereby using the corresponding
set of hidden units.

ditioned on the gating variables, using an energy function:

E (x,h | z) = −
∑
ijk

wijkxikhjkzk

−
∑
ik

aikxik −
∑
jk

bjkhjk

p (x,h | z) =
e−E(x,h|z)

Z
(5.1)

where W = [wijk] is the weights tensor, a = [aik] and b = [bjk] are the visible and

hidden biases respectively, and Z =
∑

x,h e
−E(x,h|z) is the partition function.

If the gating variables are constrained to be a ‘one-of-k’ (i.e. z ∈ {0, 1}nz ,
∑

k zk = 1),

then each possible value for z indexes a single 2D slice of W and a 1D slice of each

bias matrix. This forms a mixture of Restricted Boltzmann Machines (RBMs) [67],

where z is a mixture indicator variable used to select one of nz RBM components

(Figure 5.2), each with separate weights and biases.
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The model yields the following conditional expressions:

p (hj = 1 | x, zk = 1) = sigm

(
bjk +

∑
i

wijkxi

)

p (xi = 1 | h, zk = 1) = sigm

(
aik +

∑
j

wijkhj

)
(5.2)

where sigm (x) = (1 + e−x)
−1 is the element-wise logistic sigmoid function. For a

specific set value of the gating variable z, these equations are equivalent to a standard

RBM using the kth slice of each parameter tensor.

The probability of an input vector x can be obtained by marginalising the joint density

p (x,h) over the hidden units:

F (x | zk = 1) = −
∑
i

aikxik −
∑
j

log
(
1 + ebjk+

∑
i wijkxik

)
p (x | zk = 1) =

∑
h e
−E(x,h|zk=1)

Z
=
e−F (x|zk=1)

Z
(5.3)

where the expression F (x | zk = 1) is known as the free energy of a visible vector

under the kth RBM component. Unfortunately, the partition function Z is intractable,

which means that the RBM can only compute unnormalised probabilities.

However, for a given input vector, the mixture probabilities can be determined exactly

according to the free energy:

p (zk = 1 | x) =
e−F (x|zk=1)∑
k e
−F (x|zk=1)

(5.4)

Note that the denominator in (5.4) is tractable, and is linear in the number of mixture

components nz.
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5.3 Learning

Given a set of training vectors {x(1), · · · ,x(N)}, MixRBM models are usually trained

to maximise the mean log probability of the data, L = 1
N

∑N
n=1 log p(x(n)), using SGD,

in a similar fashion to RBMs. The gradient of L with respect to the parameters Θ is

given by:
∂L

∂Θ
= NE

[
∂E(x,h, z)

∂Θ

]
−

N∑
n=1

E
[
∂E(x(n),h, z)

∂Θ

∣∣∣x(n)

]
(5.5)

As with RBMs, the second expectation can be estimated using Gibbs sampling, but

the first term is intractable. As a result, the Maximum Likelihood gradients are again

approximated using the Contrastive Divergence (CD) algorithm [67]. The procedure

is a slight modification to CD for RBMs, and is shown in Algorithm 5.1. The main

difference is that for each input vector, a specific mixture component is selected by

sampling over the mixture probabilities, and the selected component is used for a

single iteration of Gibbs sampling. This process is repeated for each iteration, which

means that the selected component may be different for the positive and negative

statistics of CD learning.

Here, Wk, ak, and bk are slices of the parameter tensors corresponding to the kth

component RBM.

5.3.1 Cluster Heuristics

In the original formulation of the Mixture of RBMs model [67], an additional temper-

ature parameter T was used to scale the free energies before computing the mixture

probabilities in Equation 5.4. This was a necessary inclusion due to the fact that the

free energy is an unnormalised quantity, and helped to prevent the scenario of a single

mixture component having a high responsibility for most of the dataset.

We instead solve this by introducing heuristics to add and remove components during

training. This also has the added benefit that the number of mixture components

does not need to be specified beforehand. The heuristics are based on the simple
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Algorithm 5.1: Contrastive Divergence (CD-1) training for a gated mixture of
Restricted Boltzmann Machines

1: ∂L
∂W
⇐ 0, ∂L

∂a
⇐ 0, ∂L

∂b
⇐ 0

2: for i = 0 to N do
3: x+ ⇐ training sample i
4: Sample z ∼ p(zk = 1|x+). Let the selected component be indexed by `+.
5: Sample h+ ∼ p`+(h|x+)
6: Sample x− ∼ p`+(x|h+)
7: Sample z ∼ p(zk = 1|x−). Let the selected component be indexed by `−.
8: Sample h− ∼ p`−(h|x−)
9: ∂L

∂W`+
⇐ ∂L

∂W`+
+ x+h

T
+/N

10: ∂L
∂a`+

⇐ ∂L
∂a`+

+ x+/N

11: ∂L
∂b`+

⇐ ∂L
∂b`+

+ h+/N

12: ∂L
∂W`−

⇐ ∂L
∂W`−

− x−h
T
−/N

13: ∂L
∂a`−

⇐ ∂L
∂a`−

− x−/N

14: ∂L
∂b`−

⇐ ∂L
∂b`−

− h−/N

15: end for

intuition that it is undesirable for a mixture component to be responsible for a very

large or very small fraction of the dataset.

5.3.1.1 Removing clusters

Based on experiments with the model, it is clear that even if the specified number

of clusters is much larger than the expected number, the model naturally uses fewer

components to describe the data. An effective approach is to monitor the mixture

responsibility p (zk = 1 | x) of a cluster k, and remove the cluster if the mean mixture

responsibility (over the entire dataset) drops below a threshold.

5.3.1.2 Splitting clusters

In a similar fashion, a cluster can be split if its mean mixture responsibility exceeds a

certain threshold. This helps to prevent the scenario where a single cluster is used to

describe a large proportion of the dataset. When splitting a cluster, the new cluster
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parameters are copied directly from the existing cluster. Experiments show that after

a few parameter updates, the two identical clusters diverge to capture different parts

of the input dataset.

5.4 Inference

This section describes the different inference tasks that can be accomplished using

the model. This includes novel derivations that enable single-modality inference,

including the ability to predict visual features from bathymetry data, leading to the

ability to handle image-based queries.

5.4.1 Joint Sampling

In a standard RBM, the visible and hidden units form a Markov chain, and Markov

Chain Monte Carlo (MCMC) techniques can generate samples of the input distribu-

tion. From a random visible configuration, multiple iterations of block Gibbs sampling

are applied: the hidden and visible variables are sequentially sampled from each other

in an alternating fashion based on their conditional distributions.

In a Mixture of RBMs, we first select a mixture component using p (zk = 1 | x), and

then perform an iteration of Gibbs sampling using the corresponding RBM compo-

nent.

5.4.2 Conditional Sampling and Prediction

The benefit of the gated model is that it can be used to predict the visual features

xV in unobserved areas, conditioned on the bathymetric features xB. Without loss of

generality, we assume that the inference task is to predict / sample visual features

given bathymetric features, though the reverse can also be achieved through a similar

procedure.



5.4 Inference 89

Algorithm 5.2: Predicting visual features from bathymetry
1: for k = 1 to nz do
2: Initialise the mid layer feature vector with zeros for the visual features,

x = [xB;x∗V ] = [xB; 0; 0; ...; 0].
3: while not converged do
4: Compute Ek[h|x] = p(h|x, zk = 1).
5: Compute Ek[xV |h] = p(xV |h=Ek[h|x], zk = 1)
6: if ‖x∗V − Ek[xV |h]‖ < ε then
7: converged
8: else
9: x∗V ⇐ Ek[xV |h], x⇐ [xB;x∗V ]
10: end if
11: end while
12: Ek[xV |xB]⇐ x∗V .
13: end for

This is achieved using a mean field approximation (Algorithm 5.2). For each mixture

component, this approximation involves using the input values to compute the mean

hidden activations E[hj|x, zk = 1] = p (hj = 1 | x, zk = 1), which are then in turn

used to compute the conditional expectations E[xV |h, zk = 1]. This process can be

iterated until convergence, yielding the conditional expectation of xV given xB under

the kth component, which we denote as Ek[xV |xB]. Experiments show that a single

iteration is enough to yield a good conditional estimate.

The bathymetry-only mixture responsibilities can then be approximated as follows.

p (zk = 1 | xB) ≈ e−F (xB,xV=Ek[xV |xB],zk=1)∑
k e
−F (xB,xV=Ek[xV |xB],zk=1)

(5.6)

That is, we use each component RBM to fill in the missing visual feature dimensions

with their conditional expectations, compute the free energies given these ‘best-case’

scenarios, and then normalise the probabilities over all mixture components. Effec-

tively, this is equivalent to appxoimating a highly multimodal distribution by the set

of means of all of the modes, which means that the variance of p (xV | xB) within

each mixture component is neglected. Thus, for a given bathymetric feature vector,
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the model is able to predict k different options for the visual features, along with

associated probabilities of each of them occurring.

If we want to generate samples from the conditional distribution p (xV | xB) rather

than computing the expectation, we can sample a component RBM with probability

p (zk = 1 | xB) approximated by the above procedure, then perform Gibbs sampling

with the selected Markov chain.

5.4.3 Image-based queries

A key contribution of this chapter is the ability to handle image-based queries. Given a

region of interest, visual features can be predicted from the bathymetry and compared

to a query image to produce a utility map over the whole region. This can then be

used by a planning algorithm to explore areas where similar images are likely to be

observed.

The query-by-image procedure is as follows. First, for each point in the region of

interest, we predict the visual features from the local bathymetry (i.e. compute the

conditional expectation Ek [xV | xB] according to each mixture component k), and

compute the marginal mixture responsibilities p (z | xB). We then define a utility

function U , which acts as a proxy for the likelihood of observing the query image

given the bathymetry at a particular location. The utility at a particular location is

based on the similarity between the query image to each of the nz predicted images,

scaled by the associated mixture probabilities:

U =
nz∑
k=1

p (zk = 1 | xB) S(xV q,Ek [xV | xB]) (5.7)

where xV q is the midlayer visual feature vector for the query image, and S(u,v) is a

metric computing the similarity between u and v. In this work, we use the normalised

cross-correlation metric, given by S(u,v) = u·v
‖u‖‖v‖ .
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5.4.4 Classification

When using a standard RBM to model input data, the hidden activations can be

used in a linear classifier. With a Mixture of RBMs, there are a number of options

for features that can be extracted for classification [67]:

• Mixture responsibilities: these are often a good low-dimensional feature set,

since the model naturally uses different mixture components for different parts

of the input space.

• Most probable mixture component: the single component oftens provides

some information about the class label.

• Hidden activations (all): for a given data vector, we obtain hidden unit

activations for all mixture components and stack them into a single vector.

• Hidden activations (single mixture): alternatively, we obtain the hidden

activations for the most probable mixture, and set the activations of all other

mixtures to zero.

• Hidden activations (scaled): we obtain hidden unit activations for all mix-

ture components, and then scale each unit by its corresponding mixture prob-

ability.

When modalities are missing, classification features can be extracted as follows.

Firstly, the missing modalities can be “reconstructed” using their conditional expec-

tations according to each mixture component, and each of these reconstructions can

be encoded using the same mixture component to compute the corresponding hidden

unit activations. These can be stacked together to form the “hidden activations (all)”

features. The single-modality mixture responsibilities can be computed from the

conditional expectations according to the procedure described in Section 5.4.2. The

remaining feature options are obtained by either selecting hidden activations from

the most likely component, or scaling the activations by the corresponding mixture

probabilities.
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5.5 Experiments

This section details the experiments with the gated multimodal model, performed on

both simulated data and the multimodal marine dataset used in the previous chapters.

For the marine dataset, the preprocessing steps and midlayer architecture are identical

to the standard multimodal model described in Chapter 4. For the shared layer, the

total number of hidden units is kept the same as the standard model (2000), with a

maximum of 20 mixture components, each containing 100 hidden units. Experiments

were performed with 10, 20, 50 and 100 mixture components, and the selected value

exhibited the best clustering and classification performance.

For the first 10 epochs of learning, we only enable a single mixture component: this

ensures that the model starts with a reasonable representation of the data before

attempting to split the data into clusters. Following this stage, the cluster heuristics

ensure that most, if not all, of the 20 available cluster components are utilised. To

encourage robustness to missing modalities, we train the model in a denoising fashion:

for each training vector, we either mask one of the modalities or utilise the full input

vector, each with equal probability. This has a similar effect to the denoising training

criterion of the standard model.

The gated model was written in Python using the pylearn2 library, and took approx-

imately 2.5 days to train on a NVIDIA GTX 590 GPU.

5.5.1 Toy Experiments

We introduce a two-dimensional toy dataset (Figure 5.3(a)) to illustrate the operation

the two models and highlight their differences. While it is highly simplified compared

to our real multimodal dataset, it is designed to share one key characteristic: the fact

that the conditional distribution of visual features (represented by dimension xV)

given bathymetric features (dimension xB) can be highly multimodal. The data was

created by generating polynomial curve segments from random coefficient values with

additive Gaussian noise. We train a standard RBM and the gated Mixture of RBMs
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(a) The 2D toy dataset generated for this prob-
lem. The dataset is designed such that the
conditional distribution p(xV |xB) can be highly
multimodal.

(b) Input data coloured according to most
probable mixture component

(c) Conditional samples generated by Mixture
of RBMs (coloured by corresponding mixture
component), overlaid on the conditional distri-
bution

(d) Conditional samples generated by standard
RBM, overlaid on the conditional distribution

Figure 5.3 – Clustering and sampling results for the gated model on a toy dataset

on the toy data, and perform various experiments to demonstrate the differences

between the standard and gated options (Figure 5.3).

To visualise the distributions learned by each model, we first generate samples from

the model, initialising the input data to random training points and performing Gibbs

sampling repeatedly. From Figures 5.3(d) and 5.3(c), we observe that both models

learn very similar distributions.
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The key differences between the two are showcased in Figures 5.3(b) to 5.3(d). Firstly,

as demonstrated by Figure 5.3(b), the gated model utilises different component RBMs

to model different parts of the dataset, which means that the data can be clustered

in an unsupervised fashion. Secondly, the gated model is better equipped to per-

form conditional sampling given a highly multimodal conditional distribution. This

is shown in Figures 5.3(c) and 5.3(d), which demonstrate the result of sampling from

the conditional distribution p(xV |xB=−1) (the line marked in Figure 5.3(b)). Since

neither model can analytically determine this conditional distribution, it is approxi-

mated using the histogram of all points within δ = 0.05 of the setpoint value xB = −1.

In this scenario, despite the highly multimodal conditional distribution, the gated

model can produce reasonable samples, and represents each mode with a different

component RBM (Figure 5.3(c)). The samples are primarily obtained using the ma-

genta, orange, and red mixture components, as these have the greatest probability

at the given setpoint, but some of the other components are also represented with

nonzero probability. In contrast, Figure 5.3(d) shows the same result with a standard

RBM, by initialising the missing xV value to zero and performing a number of itera-

tions of Gibbs sampling. With this approach, the Gibbs chain is not always able to

mix between modes of the conditional distribution.

In practice, this drawback could be addressed by initialising the missing dimension

randomly and repeating the process a number of times, but this scales exponentially

with the number of missing dimensions. In contrast, the corresponding inference

procedure for the gated model is linear in the number of mixture components.

These results illustrate the key benefits of a gated model as compared to a standard

model. In addition to unsupervised clustering of the input data, the model can be

used to tractably generate conditional samples from explicit regions of our highly

multimodal distribution. In contrast with a standard model, the gated model can

map a bathymetric feature to multiple options simultaneously rather than a single

mode / label. In addition to sampling effectively from a highly multimodal conditional

distribution, the model is able to select a mode in a principled way.
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5.5.2 Classification

In this section, classification is performed on the marine dataset, by using the gated

model to generate the features described in Section 5.4.4. The performance with the

different feature scenarios is compared with the multimodal model from Chapter 4 as

well as with the midlayer features (Chapter 3).

The classification accuracies are shown in Table 5.1. From the results with z, we can

observe that the most probable cluster component itself holds a lot of information

about the habitat label, with 77% accuracy with both modalities. However, this is

much lower for bathymetric data, indicating the difference in structure between the

two modalities. Converting the one-hot vector to a vector of mixture probabilities

yields a small improvement in performance for all scenario combinations. Using all

hidden features, the classification performance of the gated and non-gated models are

quite similar, and represent an improvement over the baseline for all combinations of

modalities. Using the hidden components from just a single component, or scaling the

hiddens by the mixture probabilities, means a much poorer result for the bathymetry

scenario, and a slightly poorer result for the other scenarios. This supports the

hypothesis proposed in Chapter 4 through PCA analysis: that for the multimodal

encoding of bathymetry data, the entire set of hidden features are necessary to achieve

good classification performance.

As with the standard multimodal model, the gated model performs very well in

the habitat mapping scenario (with only bathymetric data available), yielding an

improvement of over 10% compared to the baseline.

5.5.3 Precision and recall analysis

As with Chapter 4, this section analyses the precision-recall curves of each class for

each modality scenario, in order to paint a complete picture of the strengths and

weaknesses of the classifiers used.

The precision-recall curves are shown in Figure 5.4. Each row refers to a separate



96 Extending multimodal learning with gated models

Table 5.1 – Classification accuracy (%) for various input modality combinations

Modalities

Model Features B and V B only V only

Baseline Midlayer 83.05 72.57 79.98

DAE + LR p (h|x) 87.43 81.23 80.71

MixRBM + LR

p (h|x) (all) 87.88 82.66 81.81
p (h|x) (single) 85.87 73.64 79.75
p (h|x) (scaled) 86.41 76.21 80.76
p (z|x) 78.42 64.14 73.13
z (one hot) 77.83 61.61 71.51

class, while the plots within each row each refer to a separate modality scenario (ie.

which modalities are available): from left to right, they are the B only, V only, and

B and V scenarios. Within each plot, the classifier for the gated shared layer feature

encoding (black) is compared with the classifier for the standard shared layer feature

encoding (green) and the midlayer feature encoding (red).

The precision-recall curves have similar characteristics to those in Chapter 4. Both

multimodal encodings have a large effect when only bathymetry data is available

(left hand column), but the gated model outperforms the standard model in this

scenario. In contrast, it appears to perform on par with the standard multimodal

model when visual data is available (middle) or both modalities are available (right

hand ). Interestingly, the gated model also performs more poorly for the kelp class

when visual data is available.

5.5.4 Feature space analysis

Again, it is possible to better understand the effect of the gated model by analysing

the gated shared layer feature representation using PCA. In this section, PCA is

applied to the hidden features from all mixture components, extracted using the

gated model.

Figure 5.5 shows the first four principal components of the gated layer features, with
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B only V only B and V

(a) Sand class

(b) Screw shell rubble class

(c) Reef / sand interface class

(d) Reef class

(e) Kelp class

Figure 5.4 – Precision-recall curves for each habitat class, for each modality scenario.
In each case, the left hand plot is for the bathymetry only (B) scenario, the centre
plot is for the visual only (V) scenario, and the right hand plot is for both modalities
(B and V).
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(a) Bathymetric features

(b) Visual features

(c) Both modalities

Figure 5.5 – The first four principal components for gated shared layer features

the first two principal components on the left-hand plot, and the third and fourth

components on the right. Each row in the figure corresponds to a different modality

scenario, with either bathymetric features (B), visual features (V), or both (B + V).
The points used in each plot are coloured according to the corresponding habitat

label.

It is interesting to note that the feature space of the gated shared layer looks remark-

ably different to the standard shared layer shown in Figure 4.4. Despite the fact that
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they yield very similar classification results, the feature mappings they learn are very

different.

One noteworthy aspect is that the first principal component for bathymetric features

correlates even more closely with the V and B + V cases than in Figure 4.4. In

particular, it is distributed over a very similar range, and has the same ordering of

habitat classes across its range. This is again explained by the fact that the shared

layer projects the inputs into the same high-dimensional space, such that the projected

bathymetry data occupies the same feature space as the projected visual data.

5.5.5 Habitat Mapping

As in Chapter 4, the multimodal encoded bathymetric features are used to per-

form habitat mapping in O’Hara Bluff. Figure 5.6(a) shows the bathymetry map

for O’Hara, Figure 5.6(b) contains the habitat map produced, and Figure 5.6(c)

shows the corresponding class probability maps. As with the previous experiments,

the AUV trajectory is overlaid on the maps, coloured by the ground truth labels of

the in-situ imagery, and the strength of the colour in the habitat map fades to white

as the class probability is reduced.

As with the multimodal model in Chapter 4, the habitat map is more fine-scaled

than that with the midlayer features in Chapter 3. A few depth striations are still

present, indicating a dependence on the depth value. However, the map also has some

small improvements over Chapter 4; for example, the flat-bottomed shallow areas at

the southwestern extent of the map are now classified as sand, which is more likely

than the previous labels of reef and kelp. The map is also more expressive than that

of Chapter 4: within the large contiguous expanse of reef, there are several patches

containing the sand and interface classes.
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(a) Bathymetry map over the O’Hara Bluff region
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(b) Habitat map using gated layer features
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(c) Individual class probability maps using gated layer features

Figure 5.6 – Habitat mapping results for the O’Hara Bluff region using gated layer
features. Each map is overlaid with the habitat labels corresponding to images
taken during AUV transects in the area. The classes are sand (red), screw shell
rubble (yellow), reef / sand interface (green), reef (blue), and kelp (purple). The
habitat map fades to white in uncertain locations. These images are best viewed
in colour.
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5.5.6 Clustering

Thus far, the performance of the gated multimodal model is very similar to the

standard multimodal model. The remaining experiments demonstrate the ability of

the gated model to perform additional unsupervised tasks that cannot be performed

with the model from Chapter 4. One such task is the ability to perform unsupervised

clustering of input data, which can be achieved by assigning each input vector to a

single mixture component based on the associated mixture probabilities.

The gated model was applied to the multimodal data, and for each point, the most

probable mixture component was determined (the assigned cluster). The 10 clusters

with the greatest number of input samples are shown in Figure 5.7. It is important to

note that the technique is clustering the data jointly over both visual and bathymetric

inputs. Thus, while most images within each cluster are visually similar, some may

be assigned according to bathymetric similarity.

As with the classification task, it is important to quantitatively evaluate the clustering

performance for each modality scanerio: bathymetric data, visual data and both

modalities. To do this, the cluster assignments by the algorithm can be compared with

the ground truth class label, to see whether the class information can be extracted

from the cluster assignment for each data point.

There are a number of clustering measures in the literature that accomplish this. The

homogeneity evaluates whether each of the clusters only contain points that belong to

a single class. As such, a value of 1 indicates that all of the points from every cluster

belong to a single specific class. The completeness refers to the whether each class only

contains points that are assigned to one cluster. i.e. a value of 1 indicates a perfect

mapping from class label to cluster label. The V-measure is the harmonic mean of

the homogeneity and completeness, which summarises the effect of both metrics. In

fact, V-measure is also equivalent to the normalised mutual information (NMI), which

is the mutual information between the the class labels and cluster labels, scaled by

their individual entropies. Finally, the purity captures the fraction of total points

that are correctly classified if each cluster is mapped to a single class based on its



102 Extending multimodal learning with gated models

Figure 5.7 – Examples from the 10 largest clusters (each row). Each image (left) is
matched with its corresponding bathymetric patch (right). Recall that the images
typically have a footprint of approximately 2− 3m2, while the bathymetric patches
cover an area of 22.4m× 22.4m.

largest representing class.

The clustering results are shown in Table 5.2. The purity values are identical to
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Table 5.2 – A number of clustering performance metrics for the different input modality
scenarios.

Modalities

Metric B and V B only V only

Purity 0.778 0.616 0.715
Homogeneity 0.584 0.209 0.454
Completeness 0.278 0.198 0.296
V-measure 0.377 0.204 0.359

the z classification results in Section 5.5.2. This is to be expected, as by training a

classifier on the cluster label z, it learns to map the cluster to the most likely class.

The results with both modalities and with visual data is very similar, and in fact, the

completeness score and V-measure is lower for both modalities than for visual-only

clustering. The lower completeness simply indicates that the model oversegments the

class data into several clusters, which is acceptable for this application.

However, the bathymetry-only scenario does poorly compared to the other two. This

suggests that, while the model can extract features from the bathymetry that perform

well in classification, the cluster assignment itself is not very indicative of the under-

lying habitat. In other words, the habitat class for a bathymetric feature vector may

be ambiguous if we only consider the most likely mixture component, but is usually

clarified by considering the features from all components. This is further evidence for

the one-to-many relationship outlined previously: with the bathymetric data there

are many visual feature options, and selecting a single mixture component (mode) is

not enough information for classification.

5.5.7 Visual prediction and image-based queries

With the ability to predict visual features in unseen areas, the gated model can addi-

tionally handle image-based queries, which can aid survey planning when supervised

labels are not available. We present query-by-image results for the O’Hara Bluff,

using the procedure in Section 5.4.3. Figure 5.8 shows query images from different
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habitat classes and their resulting utility maps.

The results are visually similar to the class probability maps from Figure 5.6(c), and

are consistent with the following known predictions. Sand images may be observed

anywhere, but are more likely in the deep, flat-bottomed areas towards the East, while

reef images are usually found in rugose (rugged terrain) regions. Images containing

both sand and reef are likely to occur at the interface between the two, while kelp

forests are restricted to shallower waters.

Interestingly, while there are still a few depth striations in the utility maps, they are

weaker and fewer, as compared to the habitat probability maps from Figures 4.5(b)

and 5.6(b). This indicates that the depth is a stronger feature for the supervised clas-

sification task than for the unsupervised learned relationship. That is, the supervised

classifier utilises the depth value strongly, while the multimodal correlations learned

in the unsupervised learning stage are distributed over a range of other bathymetric

features as well.

The results demonstrate that, without any supervision, the model can handle image-

based queries and produce a utility map consistent with known class-based predic-

tions.

5.6 Summary

This chapter presented an alternative to the multimodal model outlined in Chapter 4,

by using a gated mixture of RBMs model for the shared layer. This approach can

better handle the one-to-many relationship between bathymetric and visual data, by

using a gating variable to switch between different feature learners on-the-fly. A num-

ber of heuristics were proposed to avoid having to specify the number of components

during training. Novel procedures were also introduced to compute the bathymetry-

only mixture probabilities and the conditional expectations of visual features given

bathymetric features. Together, these techniques allow the model to predict the dif-

ferent types of visual features that may be observed in previously unimaged areas
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Figure 5.8 – Image-based query results for images from different habitat classes. Left:
Query images. Right: Corresponding utility maps over the whole O’Hara Bluff
region, normalised to span the range from black (lowest utility) to white (highest
utility).
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(and their associated probabilities), based on the bathymetry. This enables image-

based queries, which can aid AUV survey planning, especially when supervised labels

are unavailable.

Experiments were performed with a simulated dataset to demonstrate the benefits

of the approach. Further experiments with the marine dataset demonstrated the

effectiveness of the technique in classification, clustering, and visual prediction tasks.



Chapter 6

Information-theoretic measures for

AUV survey planning

This chapter derives and discusses a number of information-theoretic measures to

make use of multimodal data in AUV survey planning. The metrics are derived with

respect to the MixRBM model detailed in the previous chapter. These measures are

validated in two ways: they are used to generate utility maps over an entire region

of interest, and the estimated utility is compared with actual benefit of each of the

dives in the Southeastern Tasmania dataset.

This chapter is organised as follows. Section 6.1 provides some motivation for this

problem and an overview of the approach. Section 6.2 provides a primer on in-

formation theory and explores some of the previous work on information-theoretic

approaches for autonomous exploration. Section 6.3 presents the derivations of the

proposed information-theoretic measures, and Section 6.4 validates these through ex-

periments on both simulated and real marine data.

6.1 Overview

Due to the sheer size of the ocean environment, AUVs are unable to exhaustively

sample the seafloor, and can only observe a tiny fraction of a larger region of in-
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terest. This means that large-scale habitat classification is usually performed with

bathymetry (ocean depth) data from shipborne multibeam Sonar, which is readily

available prior to performing an AUV transect [14]. Since habitat classes are typi-

cally easier to distinguish in visual images, in-situ observation of habitats can help to

resolve ambiguities in class labels and reduce uncertainty. Given the enormous area

of interest, and the tight constraints involved with operating AUV dives in terms of

resources, time, and cost, it is critical to select dive locations that optimise the visual

information gained.

In this chapter, we propose a number of information-theoretic measures to predict

the utility of unseen areas in terms of the expected visual information gain. These

measures are designed to seek out locations where the expected visual data is likely

to improve the certainty of the habitat map. Unlike other related approaches, the

derived metrics are explicitly based on multimodal information: both the remotely

sensed bathymetry data and the in-situ visual image observations.

We utilise the gated multimodal learning model from Chapter 5 to model the rela-

tionship between the two modalities and to predict visual image features from the

bathymetric data. We then put forward novel derivations of two information-theoretic

measures to aid survey planning. The approximations made in these derivations are

justified through evaluation on a toy dataset. We also perform experiments with

co-located bathymetry and visual image data, demonstrating that the proposed mea-

sures are strong indicators for the true utility of a dive, and that the resulting utility

maps are consistent with scientific predictions.

6.2 A primer on information theory

Information theory is a field focused around quantifying the information content of

data [58]. A central concept within the field is that of information entropy, which

characterises the uncertainty in a random variable. For a random variable y, the
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entropy is given by:

H (y) = −
ˆ

y

p (y) log p (y) dy (6.1)

The entropy is specified in bits, if the logarithm in Equation 6.1 has base 2, or in nats,

if the natural logarithm is used [66]. In a sense, the entropy captures the amount

of ‘randomness’ present in a variable: it reaches its maximum if p (y) is a uniform

distribution, and is minimised by a delta distribution with all of the probability mass

attributed to a single value of y.

If we have two random variables x and y, we can quantify their relative information

contents in a number of different ways. The conditional entropy H (y | x) measures

the uncertainty in the conditional distribution p (y | x). For the general case, where

x is unobserved, it requires an expectation over all x:

H (y | x) = −
ˆ

x

p (x)

ˆ

y

p (y | x) log p (y | x) dydx (6.2)

where observation of x reduces the corresponding integral to a single value of x with

unit probability. This quantity represents the amount of information in y that cannot

be “explained away” by observing x.

A related quantity is the mutual information, denoted by I (x;y), which quantifies the

common information content of two variables. In other words, the mutual information

predicts how much the observation of one variable tells us about the second.

I (x;y) =

¨

x,y

p (x,y) log
p (x,y)

p (x) p (y)
dydx (6.3)

Using Jensen’s inequality [66], we can derive the following bound on the mutual

information:

I (x;y) = −
¨

x,y

p (x,y) log
p (x) p (y)

p (x,y)
dydx
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≥ −p (x,y) log

¨
x,y

p (x,y)
p (x) p (y)

p (x,y)
dydx

 = 0 (6.4)

Equation 6.4 demonstrates that I (x;y) ≥ 0 ∀x,y, and from Equation 6.3, we can see

that the mutual information takes on a value of zero if and only if p (x,y) = p (x) p (y).

i.e. the two variables are independent.

If we expand and rearrange Equation 6.3 using Bayes’ rule, we obtain the following:

I (y | x) =

¨

x,y

p (x,y)

[
− log p (y) + log

p (x,y)

p (x)

]
dydx

= −
¨

x,y

p (x,y) [log p (y)− log p (y | x)] dydx

= −
ˆ

y

p (y) log p (y) dy +

ˆ

x

p (x)

ˆ

y

p (y | x) log p (y | x) dydx

= H (y)−H (y | x) (6.5)

The expression in Equation 6.5 is the difference between the entropy of variable y

and the conditional entropy of y given x. A similar derivation can show that the

mutual information is also the difference between H (x) and H (x | y). As a result,

the mutual information can also be understood as the reduction in uncertainty of

one variable after observation of the other [66], or the expected information gained by

observing the second variable.

6.2.1 Application to autonomous exploration

This perspective of mutual information as a measure of expected information gain

has led to its widespread use in robotic exploration applications. With such missions,

the robot’s goal is typically to explore an unseen environment and build a model

of its surroundings, whether this is in the form of a metric map representation, or
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semantic categorisation of objects and scenes that it encounters. In order to perform

such exploration missions efficiently, the robot must be able to predict the expected

information gain at each location. Trajectory planning can then be performed to

ensure that an optimal amount of information is gathered during the mission.

A number of earlier works apply this to the Simultaneous Localisation and Map-

ping (SLAM) problem using LIDAR [12, 59, 87]. The goal is typically to select the

control input in real time in order to balance the competing aims of localisation and

exploration, aiming to minimise the pose uncertainty and the map certainty simulta-

neously. This is an interesting compromise, as the localisation accuracy usually has a

pronounced effect on the accuracy of the resulting map as well. As such, the proposed

techniques usually combine a number of information-theoretic metrics: the entropy of

the robot’s pose distribution, the expected information gain of a LIDAR scan, and in

some cases, the cost of executing a particular control action as well [87]. By linearly

combining these terms, the algorithm is able to find the balance between improving

localisation accuracy and reducing uncertainty in the occupancy grid map.

Additionally, with the field of active learning gaining traction, information-based

measures have been utilised to optimise classification performance with minimal la-

belling effort. In the traditional active learning paradigm, the model selects the most

informative instances out of a set of unlabelled data, and queries the user for labels

[33, 41]. As such, the model is able to produce a good classifier whilst simultaneously

reducing the labelling burden.

One related work investigates active learning in a multi-class setting, using the en-

tropy of the class probability distribution to identify samples to label [41]. By max-

imising the entropy measure, the model can seek out high uncertainty examples, for

which it is most unsure about the class label. Another method aims to maximise the

conditional mutual information between unlabelled instances and their correspond-

ing labels, given the labelled data [33]. In this way, the model seeks out samples

for which knowledge of the corresponding label will reduce the uncertainty of the

remaining data.

This philosophy can be applied to the problem of selecting high utility survey locations
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for AUVs. Rigby et al. [77] perform habitat modelling using a Gaussian Process (GP)

classifier, and gauge the informativeness of a dive based on the predicted posterior

entropy of the model (i.e. the remaining uncertainty after the observations have been

made). They utilise Monte Carlo simulations to derive an upper and lower bound for

the posterior entropy.

Another work proposes, in the absence of a prior model, that surveys should be

placed in such a way that they observe as much of the bathymetric feature space as

possible [6]. Accordingly, the utility of a candidate survey is based on the Kulback-

Liebler divergence (KLD) between the feature distribution of the survey and that

of the entire environment. This work is then extended in [7], using a GP to model

the environment, and proposing a utility function based on expected information

gain, which seeks out survey locations that minimise the variance of the habitat class

predictions.

Girdhar et al. [30] utilise an online topic modelling algorithm to model the different

types of terrain that may be encountered, and then perform trajectory planning based

on word perplexity (confusion in the visual words that are observed) and topic per-

plexity (confusion in the topic labels). Their results demonstrate that their planning

technique is able to find paths with high information content and the resulting “topic

maps” closely match the ground truth.

These techniques demonstrate the ability to predict the utility of AUV survey loca-

tions, using measures such as the mutual information to assess the value of acquiring

labelled imagery in unseen areas. However, the utility is based purely on a class

label derived from the acquired image, and there may be benefit to more explicitly

considering the additional visual features that are observed. We look to extend these

techniques, utilising multimodal learning as a tool to capture the relationship between

the bathymetry and visual data. The ‘informativeness’ of a location can be framed

as the predicted information gain in terms of the visual features, rather than just the

label information. This has the added benefit that new images do not have to be

manually labelled in order to improve the model.
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6.3 Information-theoretic measures for survey plan-

ning

In this section, we derive and discuss two multimodal information-theoretic measures

to aid AUV survey planning. The metrics are derived with respect to the gated model

detailed in Chapter 5.

The main goal of these measures is to select survey locations that maximise the

amount of useful visual information acquired. Ideally, we would like to visit locations

where the corresponding visual images are expected to significantly improve super-

vised habitat classification compared to the existing bathymetry data. Alternatively,

if expert labels are unavailable, we would like the AUV to explore areas where the

visual features are expected to hold a large amount of additional information given

the bathymetry present.

6.3.1 Conditional mutual information

The gated multimodal model can generate features which can be used for large-

scale habitat classification. The goal of the information-theoretic metric is then to

determine, based on the bathymetry available, which locations to visit to improve the

produced habitat map.

It may appear on initial consideration that a suitable measure would be the class

uncertainty: the entropy of the class probabilities obtained by classifying the bathy-

metric features at each location. The problem with this measure is that it provides

no indication about the value of additional visual information: visual observation

may not yield any improvement if classes are poorly separated in both the visual and

bathymetric feature spaces.

Instead, we want to predict how much more we expect to learn about the habitat

label from a visual image, given that we already know the bathymetry. This quantity

of interest is the Conditional mutual information (CMI), denoted by I(y,xV |xB): the
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Figure 6.1 – Venn diagram showing the conditional mutual information term and its
dependence on the entropies of the individual modalities.

expected value of the mutual information between labels y and visual features xV

given bathymetry xB. As the visual features xV are unobserved, this requires an

integration over all xV .

Figure 6.1 depicts this concept graphically. If each circle depicts the information

(entropy) present in each of the three groups, we are interested in the area shown

as I(y,xV |xB): the information common to visual features and labels that is absent

from the bathymetry.

The CMI is given by the difference of two entropy terms:

I(y,xV |xB) = H(y | xB)− ExV [H(y | xV ,xB)]

= HB −HBV (6.6)

whereH(y|· ) =
∑

y p (y |· ) log p (y |· ) represents an entropy over the class probability

distribution, and the shorthand terms HBV and HB refer to the class entropies with
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and without visual information, respectively.

The term HBV in Equation 6.6 is the expected conditional entropy of the labels given

both visual and bathymetric features:

HBV = ExV [H(y | xV ,xB)]

= −
ˆ

xV

p (xV | xB)H(y | xV ,xB) dxV

H(y | xV ,xB) =
∑
y

p (y | xV ,xB) log p (y | xV ,xB)

where the term p (y | xV ,xB) can be computed by a classifier trained on the mul-

timodal data. The sum over y is only over a small number of possible labels, but

unfortunately, the integral over xV is intractable. Fortunately, our choice of model

allows us to estimate this expectation using a discrete mixture-based approximation.

We use each mixture component distribution in turn to find the conditional expec-

tation of visual features given bathymetric features (denoted as Ek [xV | xB] for the

kth mixture component), and then use this small set of points to approximate the en-

tire conditional distribution p (xV | xB). This is equivalent to approximating a highly

multimodal distribution by the set of points corresponding to the means of each of

the modes, assuming that each mixture component models a single mode.

This approximation converts the computation into a tractable sum over mixture com-

ponents:

HBV ' −
∑
k

p (zk = 1 | xB)H(y | Ek [xV | xB] ,xB)

where Ek [xV | xB] is the conditional expectation of xV given xB under mixture com-

ponent k.

The other term in Equation 6.6 is the conditional entropy of the labels given the

bathymetry, and is given by:

HB = −
∑
y

p (y | xB) log p (y | xB)
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We calculate p (y | xB) as follows, applying the same approximation as before.

p (y | xB) =

ˆ

xV

p (xV | xB) p (y | xV ,xB) dxV

'
∑
k

p (zk = 1 | xB) p (y | Ek [xV | xB] ,xB)

While it may be tempting to model p (y | xB) more simply with a separate bathymetry-

only classifier, this can be problematic: with two different classifiers, there is no guar-

antee that the class probabilities they assign will be consistent with one another. For

example, the bathymetry-only classifier may underestimate its uncertainty while the

distribution p (y | Ek [xV | xB] ,xB) under a different classifier is more realistic and

has higher entropy. Experiments have shown that using two separate classifiers in

this computation can yield inconsistent results such as negative mutual information.

6.3.2 Conditional entropy

It is also desirable to seek out regions in which the visual data is expected to hold a

lot of information, independent of class labels. This ensures that a planning metric

is available even when expert labels are not.

For this measure, the quantity of interest is the Conditional entropy (CE), denoted

by H(xV | xB). A large value for the CE at a particular location indicates that the

bathymetric features convey very little information about the visual features.

H(xV | xB) = −
ˆ

xV

p (xV | xB) log p (xV | xB) dxV (6.7)

This has the same intractable sum over xV , but using the same mixture-based ap-

proximation applied previously, we find that:

H(xV | xB) ' −
∑
k

p (zk = 1 | xB) log p (zk = 1 | xB) (6.8)
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In other words, we approximate the conditional entropy of visual features given

bathymetry by the entropy of the bathymetry-only mixture probabilities p (zk = 1 | xB).

6.4 Experiments

For this chapter, experiments are again conducted with both simulated and real data,

as in Chapter 5. The gated multimodal model trained in Chapter 5 is used for all

experiments.

6.4.1 Toy results

To better understand the effects of the two metrics, and to validate the approximations

made in their derivations, we evaluate them on the toy dataset introduced in Chapter 5

For this toy dataset, the equivalent “mission planning” task is to select a setpoint of

xB (a ‘slice’ of the input space) where the visual feature dimension xV is likely to

yield the most useful information. In this case, the CMI measure should suggest

selecting an xB such that knowledge of xV would be most useful in determining the

class label. In contrast, the CE metric simply suggests an xB where there is greatest

corresponding variation / entropy in xV .

In the CMI plot in Figure 6.2(e), we observe two main peaks, at approximately −1.5

and 0.9. At both of these setpoints, there are three potential classes that are clearly

separable if the xV value is known. The CMI is lower at xB = 0, where the classes have

more overlap, and is zero at xB > 2 when the yellow class dominates (Figure 6.2(c)).

The CE plot exhibits a similar behaviour, but is related to the number of mixture

components for a given xB instead of the number of classes. Figure 6.2(b) demon-

strates how the model utilises different mixture components for different parts of the

input space, and Figure 6.2(d) shows the model’s estimate for the marginal mixture

probabilities, as a function of xB alone. In line with these plots, the CE measure (Fig-

ure 6.2(f)) is high for −1 < xB < 1, where there are up to six mixture components
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(a) Toy dataset coloured by class label (b) Toy dataset coloured by mixture component

(c) Conditional class probabilities for each bathy-
metric value

(d) Conditional cluster probabilities for each
bathymetric value

(e) Conditional Mutual Information for each
bathymetric value

(f) Conditional entropy for each bathymetric
value

Figure 6.2 – Experimental results demonstrating the information-theoretic metrics on
the 2D toy dataset. The dataset is designed such that the conditional distribution
p(xV |xB) can be highly multimodal.
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used, and close to zero at very low or high xB, where the conditional distribution has

only a single mode. At unimodal locations, there is very little benefit to observing

xV , compared to a location where xV can take on several different values.

Thus, the toy results demonstrate the benefits of the derived information-theoretic

measures, and justify the approximations made in the derivation process. Both met-

rics are able to select the values of xB such that subsequent observation of xV is most

useful. This is a direct analogue for the real-world application, of finding locations

(based on the bathymetry) where the observed visual images are expected to yield

the greatest information gain.

6.4.2 Predictive utility mapping

The key benefit of the derived measures is that they can aid survey planning, by

indicating locations that are likely to yield high reward within a larger region. In this

section, we use the model to calculate the CMI and CE over a region in Southeastern

Tasmania known as O’Hara Bluff. Figure 6.3(a) shows the bathymetry over the

region, while Figure 6.3(b) shows the habitat map generated by classifying the features

extracted by the multimodal learning model. The CMI and CE maps are shown in

Figures 6.3(c) and 6.3(d).

In general, a key habitat indicator is the rugosity, or terrain roughness, of the local

bathymetry. Highly rugose regions are very likely to be reef or kelp, while flat-

bottomed areas are predominantly sand or rubble. Both the CMI and CE maps

are consistent with this prior knowledge. The deeper, flatter regions towards the

east are almost certainly screw shell rubble, and there is little value in observing

these areas. In a similar fashion, the rugose areas at moderate depths (40 − 60m

in Figure 6.3(a)) are very likely to be reef, and the CMI and CE measures assign

low utility to these regions. Since kelp is usually only found in shallower waters,

there is greater value in exploring the shallow region towards the west, where visual

information can distinguish between the reef and kelp classes. Another region of

ambiguity, in terms of the known bathymetry, is in the interface between the rugose
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(a) Bathymetry for O’Hara Bluff region
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(b) Habitat map generated under the gated multimodal model
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Figure 6.3 – Information-theoretic utility maps generated for the O’Hara Bluff region.
The habitat map is produced by classifying the hidden features of the mixture of
RBMs model.
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reef habitats and the flat-bottomed sand or rubble areas, since different types of visual

features and habitat classes may be observed.

One subtle difference between the CMI and CE maps is that the CE utility appears

to strongly prefer the interface region, while the CMI assigns similar utility to the

interface region and shallow areas. This is because the CMI explicitly takes into

account the discriminability of the different habitat classes, while the CE only looks

at the entropy or uncertainty of the visual features. This suggests that while the

interface region has a high entropy in terms of the different visual features that may

be observed, it is equally beneficial to survey the shallower areas in order to resolve

habitat class ambiguities.

As a result, the CMI and CE measures provide introspective capabilities for the

multimodal learning model. They are able to predict the uncertainty in unobserved

regions, and are in agreement with expert predictions. In particular, by utilising

multimodal information-theoretic measures, we are able to predict the regions which

are expected to provide the greatest visual information gain, given the bathymetric

information already available.

6.4.3 Survey selection

Ultimately, the proposed measures must be able to predict the locations for which

visual observation is likely to yield greatest improvement in performance. For areas

assigned high utility, we would expect that the inclusion of visual information would

increase the probability of selecting the correct habitat class.

We analyse this effect quantitatively using the entire Southeastern Tasmania dataset.

Table 6.1 shows the distribution of labels for each dive within this dataset, along with

the entropy of this label distribution.

For this experiment, we first divide the dataset evenly into a training set and a test

set, and train the multimodal model on the training data. We also train two classifiers

on the training points: one using just the bathymetric data, and one using the mul-

timodal features; and we apply these to the test set to obtain the class probabilities



122 Information-theoretic measures for AUV survey planning

Table 6.1 – The distribution of habitat labels over each dive, summarised by the entropy
value. The classes are sand (red), screw shell rubble (yellow), sand / reef interface
(green), reef (blue), and kelp (purple).

Dive # images Habitat distribution Entropy

5 11361 1.43
6 6459 1.36
7 10818 1.36
8 6138 1.07
9 5658 0.99
10 5819 0.97
11 6525 1.21
12 5325 1.29
13 5311 1.03
14 5903 1.35
20 6110 1.19

at each location. Given the labels for each test point, we compute the increase in

the probability of the correct class when using the multimodal model versus the base

bathymetric model. This metric indicates the true utility of the dive, as it measures

the actual effect of incorporating visual information with respect to the true class

label. We compare this value with the predicted CMI and CE.

To summarise the analysis, we report the mean values over each dive in the dataset.

The quantitative results are shown in Figure 6.4. In Figure 6.4(a) we observe a

correlation between the average CMI over a dive, and the mean increase in accuracy

by incorporating visual features for the dive. Figure 6.4(b) demonstrates a similar

relationship for the CE measure. The Spearman rank coefficients for the two plots

are 0.88 and 0.71 respectively, indicating that the measures can be used to rank a set

of a candidate surveys based on their expected utility.

Interestingly, if we look at the distribution of true habitat labels (Table 6.1), the CMI

also appears to be correlated with the entropy of this distribution (Figure 6.4(c)),

with Spearman rank coefficient of 0.79. As a result, the CMI may also act as a good

indicator of the survey locations that are likely to cover a wide range of habitats.
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(a) CMI versus mean increase in accuracy (b) CE versus mean increase in accuracy

(c) CMI versus entropy of habitat label distribu-
tion

Figure 6.4 – Predicted utility versus true utility for each dive in the SE Tasmania
dataset. True utility can be measured in terms of the improvement in classification
performance or the spread (entropy) of true habitat labels from the survey.
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6.5 Summary

In this chapter, a number of multimodal information-theoretic measures were pro-

posed to aid survey planning for AUVs. The gated multimodal learning approach from

Chapter 5 was used to capture the relationship between remotely sensed bathymetry

data and in-situ visual observations. By using the model to predict visual features

from bathymetric data, it is possible to predict the utility of unobserved areas, in

terms of the expected additional information gained by visual observation. Results

on a 2D toy dataset suggest that the approximations made by the model are reason-

able, while experiments on the Southeastern Tasmania data demonstrate the ability

to predict the informativeness of a survey location.



Chapter 7

Conclusions

The purpose of this thesis is to investigate multimodal learning techniques from visual

and remotely sensed data, applied to the problem of autonomous exploration and

monitoring with AUVs.

AUVs are able to obtain very large quantities of visual imagery through in-situ obser-

vation of the ocean floor. However, since they are only able to traverse a tiny fraction

of the ocean floor, remotely sensed bathymetry data from shipborne multibeam sonar

is necessary to perform large-scale habitat classification. Nonetheless, visual observa-

tion of the seafloor can resolve ambiguities in habitat predictions. It is important to

leverage the benefits of these modalities when performing classification tasks.

Multimodal learning addresses this goal. By modelling the relationship between the

two modalities, it is possible to achieve improved classification accuracy, as well

as enable additional inference tasks that can aid survey planning. Further, such

a model facilitates information-theoretic measures for survey planning that predict

the amount of useful visual information in unobserved areas, as a function of the

known bathymetry data.

The primary contributions of this thesis are summarised in the following section.
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7.1 Contributions

Four main contributions are presented in this thesis, as detailed below.

7.1.1 Feature learning from marine data

Chapter 3 describes a novel application of feature learning techniques to marine data,

for both the visual images and bathymetry.

The features learned from the bathymetric data are compared with the features that

are traditionally used for habitat classification: rugosity, slope, and aspect. Exper-

iments demonstrate that the learned features capture the important rugosity, slope

and aspect information, and perform better in classification tasks.

The visual feature learning technique proposed by Steinberg [89] is compared with

a number of CNN architectures, since CNNs achieve state-of-the-art performance in

a range of computer vision and machine learning tasks. Experiments demonstrate

that the approach captures high-level factors of variation in the data, and performs

similarly well to the CNN architectures.

7.1.2 Multimodal learning from visual and bathymetric data

The learned features for both modalities are then utilised in a multimodal model

in Chapter 4, which captures the correlations between the two modalities. To the

best of our knowledge, this represents the first use of multimodal learning for AUV

applications.

Experiments are performed with co-located visual and bathymetry data, and demon-

strate improved classification performance, regardless of which modalities are avail-

able. The key benefit is that, by providing both modalities at feature learning time,

the model learns better features for each modality individually, which is beneficial if

only one modality is available at classification time. As a result, the model can more
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accurately perform large-scale benthic habitat mapping, where only the bathymetric

data is available.

This is a novel way of framing the traditional habitat mapping problem. Rather than

the classification of purely bathymetric features, this approach considers the task as

one of joint learning on bathymetry and image data with only one of the modalities

available for large-scale inference.

7.1.3 Gated models for multimodal learning

Chapter 5 then proposes an extension to the standard multimodal learning paradigm:

the use of a gated model in the multimodal layer. This model is able to learn multiple

RBM components under the same framework, which can better capture the one-

to-many relationship that exists between the bathymetry and the visual features.

A number of extensions are proposed to the gated model, including heuristics to

automatically determine the number of cluster components k during training, and

algorithms to predict k sets of visual features from bathymetric data, each with an

associated mixture probability.

As demonstrated by experiments on simulated data and real marine data, the model

achieves very similar classification accuracy to the model proposed in Chapter 4.

Additionally, the ability to predict visual features from bathymetric data affords the

option of handling image-based queries, where the model can determine areas in

which an input image is likely to be observed. Such queries are very useful in survey

planning, particularly in scenarios where expert habitat labels are unavailable.

7.1.4 Information-theoretic measures for survey selection

The final contribution of this thesis is to derive information-theoretic measures to

predict the expected utility of unobserved areas (Chapter 6). Unlike previous work,

the proposed measures are explicitly multimodal metrics: they predict the expected

information gained by in-situ visual observation, given the known bathymetry data.
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As such, the utility is based on the informativeness of the entire set of image features,

rather than just the observed label.

Experiments with simulated data suggest that the approximations made in the deriva-

tion are sound. The measures are then applied to large-scale bathymetry, and the

resulting utility maps are consistent with scientific predictions. Finally, experiments

over the whole Southeastern Tasmania dataset demonstrate that the measures cor-

relate well with the improvement in classification accuracy by observing an image at

each location, and also tend to select dives which cover a range of habitats.

7.2 Future Work

7.2.1 Multimodal learning for autonomous ground vehicles

This thesis has investigated multimodal learning from visual and remotely sensed

data, focusing on the use of AUVs in exploration and monitoring tasks. However,

similar algorithms could be useful in autonomous ground vehicles in urban environ-

ments. 3D point cloud data from a laser range scanner has some similar characteris-

tics to bathymetric data: it is coarser than visual information as it has lower spatial

resolution, but can provide information on topological structure and shape.

By learning the relationship between visual image data and laser scan information, a

multimodal model would be able to perform similar inference tasks to those proposed

in this thesis: improving semantic classification performance from laser, and predict-

ing visual features. Given that laser scans often have a finer spatial resolution than

acoustic bathymetry grids, multimodal learning may also lead to improved inference

at the sub-image level, such as pixel-wise or segment-wise classification.
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7.2.2 Incorporation of acoustic backscatter data and other

modalities

While shipborne multibeam sonar is able to provide bathymetry data through time-of-

flight ranging, it can also provide backscatter data through the intensity of the return.

The backscatter can also provide useful information about the benthic habitat, as it

is, in part, a function of the absorptive properties of the seafloor.

Unfortunately, the backscatter maps produced can be highly susceptible to noise, and

to a number of artefacts, such as nadir effects and outer beam artefacts. This means

that a large amount of post-processing is required to utilise the data. Future work

will look at machine learning and computer vision models to address these issues, and

incorporate the information into the multimodal learning process.

Further, other available modalities could be used for learning, including bathymetry

or backscatter from an AUV-mounted sonar, or dense seafloor reconstructions from

the onboard stereo cameras.

7.2.3 Information-theoretic trajectory planning

This thesis has proposed information-theoretic measures to aid survey planning, by

predicting the expected utility of visual information given the available bathymetric

data. Future work will look to build on this by integrating the metrics more directly

into a trajectory planning algorithm. Crucially, such algorithms would seek to tradeoff

between spatial exploration of the seafloor and exploitation of the existing model.

As a first pass, the measures can be used to generate a utility map, and the trajec-

tory planning problem can be posed as a Travelling Salesman Problem or Coverage

Salesman Problem, aiming to visit all of the locations with high predictive utility.

Alternatively, the measures could be used in a reward function under a reinforcement

learning or Partially Observable Markov Decision Process (POMDP) framework.
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7.2.4 Improved training of gated models

The gated model used in Chapter 5 for the multimodal layer can be interpreted in

a different way: rather than a mixture of k RBMs, it can be considered as a single

RBM with its hidden units partitioned into k equal blocks, with the added freedom

of utilising a different set of visible biases for each block. From this perspective,

using the gated model versus a standard RBM is arguably similar to imposing a

strict sparsity constraint during training, such that only units in one of the k groups

can be on for any given input vector. While the gated model provides a number of

additional benefits over a standard RBM (as outlined in this thesis), removing this

‘hard constraint’ during training could lead to even better performance.

An alternative approach could be to commence training the model as a standard

RBM, and monitor the hidden activations over the entire dataset. If, at any point

during training, the hidden activations can be naturally partitioned into different

groups, the hidden units can be split into the different mixture components, and

training would proceed as for a gated model. The additional benefit here would be

that each mixture component could be assigned different numbers of hidden units as

necessary. Future work will investigate this possibility.

7.2.5 Experimental validation across multiple environments

While the proposed models have been extensively evaluated on the entire southeastern

Tasmania dataset, an interest direction would be to investigate their efficacy on other

marine environments and habitat classes. For example, the benthic habitats found in

tropical waters are likely to be vastly different to the temperate waters of southeastern

Tasmania, both in terms of their visual appearance and the bathymetric variables

defining the seafloor topography. Ideally, a model trained on one environment could

be adapted to another in an online learning framework, such that an existing model

can still act as a prior for the multimodal relationship in a new environment.
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