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Abstract

A vectorial representation of the vascular network that embodies quantitative fea-

tures - location, direction, scale, and bifurcations - has many potential neuro-

vascular applications. Patient-specific models support computer-assisted surgical

procedures in neurovascular interventions, while analyses on multiple subjects are

essential for group-level studies on which clinical prediction and therapeutic infer-

ence ultimately depend. This first motivated the development of a variety of meth-

ods to segment the cerebrovascular system. Nonetheless, a number of limitations,

ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject

variability, the lack of exhaustive ground-truth, the need for operator-dependent

processing pipelines, and the highly non-linear vascular domain, still make the au-

tomatic inference of the cerebrovascular topology an open problem. In this thesis,

brain vessels’ topology is inferred by focusing on their connectedness. With a novel

framework, the brain vasculature is recovered from 3D angiographies by solving a

connectivity-optimised anisotropic level-set over a voxel-wise tensor field repre-

senting the orientation of the underlying vasculature. Assuming vessels joining by

minimal paths, a connectivity paradigm is formulated to automatically determine

the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain

vascular structures are extracted with geodesic minimum spanning trees. The in-

ferred topologies are then aligned with similar ones for labelling and propagating

information over a non-linear vectorial domain, where the branching pattern of a

set of vessels transcends a subject-specific quantized grid. Using a multi-source

embedding of a vascular graph, the pairwise registration of topologies is performed

with the state-of-the-art graph matching techniques employed in computer vision.
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Functional biomarkers are determined over the neurovascular graphs with two com-

plementary approaches. Efficient approximations of blood flow and pressure drop

account for autoregulation and compensation mechanisms in the whole network in

presence of perturbations, using lumped-parameters analog-equivalents from clini-

cal angiographies. Also, a localised NURBS-based parametrisation of bifurcations

is introduced to model fluid-solid interactions by means of hemodynamic simula-

tions using an isogeometric analysis framework, where both geometry and solu-

tion profile at the interface share the same homogeneous domain. Experimental

results on synthetic and clinical angiographies validated the proposed formulations.

Perspectives and future works are discussed for the group-wise alignment of cere-

brovascular topologies over a population, towards defining cerebrovascular atlases,

and for further topological optimisation strategies and risk prediction models for

therapeutic inference. Most of the algorithms presented in this work are available

as part of the open-source package VTrails.



Impact Statement

The thesis describes a completely novel way to look at angiographic data, allowing,

for the first time, the extraction of a fully vectorial representation of the cerebrovas-

cular system within a consistent mathematical framework. The associated published

manuscripts have been presented at the biennial conference on Information Process-

ing in Medical Imaging in 2017, one of the most prestigious international confer-

ences in the field (acceptance <30%); also a substantial portion of this work has

been presented at MICCAI 2018 (oral presentation – Top 4% of papers), towards

the alignment of over-connected vascular topologies.

From an academic perspective, the formulated methodology is consistently ap-

plied to multi-modal images of the brain vasculature, where the novel technical con-

tribution is likely to be of interest for multi-compartmental vascular image analyses,

high-order image synthesis, geodesic information propagation and vascular network

embedding, allowing a wide range of further scientific investigations and technical

developments.

The introduction of a vascular vectorial representation stands indeed as a key-

enabling technology for currently unavailable vascular group-wise and population-

based analyses.

From a translational perspective, a number of clinical cardio- and neuro-

vascular applications can be derived: from extracting patient-specific vascular mod-

els supporting interventional neuroradiology and vascular surgery, to group-wise

studies of comparative neurology and cerebrovascular diseases, by aligning the vec-

torial vascular topologies and by embedding clinically relevant biomarkers.

Prospectively, the advances described in this thesis represent an essential con-
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tribution for population studies on which both clinical prediction and therapeutic

inference ultimately depend. Some of the introduced concepts constitute part of the

processing bedrock for the High-Dimensional Translational Neurology Programme

(Wellcome £4.5m), with the aim of automating high-dimensional outcome predic-

tion in stroke, transforming thus the national neurological care, also in terms of

early cerebrovascular diagnosis, clinical risk assessment, and long-term therapy.

On a more general scale, the work presented in this thesis would pave the way

towards the development of a comprehensive, quantitative and data-driven vascular

atlas of the human brain, which will help better understand neurovascular morphol-

ogy and functional normality, its variability and associated pathological phenotypes.

For reproducibility and broad accessibility, all the algorithms presented in this

thesis have been released on GitHub as a publicly available open-source platform

VTrails, further increasing the impact of the work.
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Chapter 1

Introduction

1.1 Cerebrovascular Imaging

Modern clinical practice makes extensive use of imaging techniques to assess and

evaluate the structural and functional pathophysiology in several cases. The World

Health Organization [128] addresses diseases of the cerebral vasculature as the most

relevant cause of morbidity and mortality in the world together with cardiovascular

events happening in the heart. Amongst those, the prevalent classes of cerebrovas-

cular diseases include atherosclerosis, stroke, cerebral aneurysm and arterio-venous

malformations, small vessel disease, and altered circulation in neoplastic vascular-

isation [124] (Fig. 1.1). These not only cause primary damages to the brain due to

altered blood flow as in thrombo-embolic ischaemia and major intra-cerebral haem-

orrhage, they also relate to progressive, often age-related, more complex and subtle

cognitive decline and vascular dementia caused by subcortical infarcts and cerebral

microbleeds at finer scale [196]. Implications of abnormalities in the cerebrovascu-

lar system are also observed in advancing Alzheimer’s disease [64]. In neurology

and in neuro-vascular interventional units, head-neck angiographies are obtained

from routine medical imaging of the cerebrovascular system with different methods

to understand and visualise the brain blood flow and supply [124]. Cerebrovas-

cular angiographies from X-ray digital subtraction, computed tomography (CT),

ultrasound, and magnetic resonance imaging (MRI) constitute the main modali-

ties in neuro-vascular applications (Fig. 1.2). These play a predominant role in
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Figure 1.1: Examples of typical cerebrovascular abnormalities: a. Occlusion of the middle
cerebral artery, causing ischaemic stroke; b. and c. Stenoses with different level
of severity; d. Pronounced cerebrovascular tortuosity; e. and f. Small and large
aneurysms respectively.

early diagnosis of neuro-vascular events, as well as in guiding patient management

for acute or long-term therapies. CT angiography (CTA) is the standard imaging

modality. Typical CTA scans provide volumetric images of the underlying vascu-

lar structure with high spatial resolution (down to isotropic 0.4 mm) [137]. These,

on the one hand, reliably detect calcified atherosclerotic plaques causing the nar-

rowing (stenosis) of the vessels’ lumen; on the other hand, they detect (or exclude)

intracranial hemorrhage from ischaemic stroke and identify eligible patients to be

treated with thrombolysis therapy [96]. In the latter case, digital subtraction pro-

jections provide neurovascular surgeons with high temporal (4-15 Hz) and spatial

resolution (isotropic 0.1 mm) guidance, by independently contrasting the flow in

different vessels through the injection of a iodine-based contrast agent with a hemo-

dynamically mininimally invasive catheter. Ultrasound imaging is an effective ap-

proach to study the extracranial vessels, in particular, to determine the presence and

severity of atherosclerotic plaques in carotid arteries [144]. Although MRI is not
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Figure 1.2: Common imaging modalities employed in cerebrovascular applications: from
top to bottom, left to right, Digital Subtraction Angiography (DSA); axial,
sagittal and coronal view of a Computed Tomography Angiography (CTA); Ul-
trasound (US) scan of the Common Carotid Artery (CCA) bifurcating into the
External and Internal Carotid Artery, respectively ECA and ICA; three canoni-
cal orthogonal views of a cerebral MRI Time-of-Flight (TOF).

always the primary cerebrovascular imaging method suitable for all patients, struc-

tural and functional MRI techniques have shown a relevant impact in the field of

cerebrovascular disease in the past few years by characterizing the cerebrovascular

system with varying informative content and features of different nature [124,141].

Amongst these, a combination of time-of-flight (TOF), phase contrast (PC), dy-

namic contrast-enhanced and arterial spin labelling imaging protocols, together with

spectroscopic imaging, diffusion tensor and diffusion weighted imaging, and blood

oxygenation level-dependent functional MRI, allow clinicians to outline the assess-

ment of tissue condition, perfusion and diffusion, also to classify and differentiate

(sub)types of arterial events. In other cases, the assessment of isolated cortical vein

thrombosis [52], neuroinflammatory diseases [2,19], and intracranial hypertension,

susceptibility weighted imaging [81] and quantitative susceptibility mapping [80]

allow for the depiction of the anatomy of deep cerebral veins and their abnormal-

ities. From an interventional perspective, these modalities are extremely valuable

for planning a variety of image-guided neurosurgical procedures such as identifying

vessel-free paths for insertion of a biopsy needle or the implantation of deep-brain
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stimulation probes or stereotaxic electro encephalography electrodes [23].

1.2 Clinical Angiography Assessment

Upon the vast extent of neuro-vascular imaging modalities and considering novel

emerging MRI techniques, the clinical analysis and the accurate assessment of the

cerebral vasculature is however performed manually by inspecting intensity projec-

tions, or image slices one at a time, or using multiple views of 3D rendering and

visualization techniques [118]. This often results in high inter-observer variability,

as the assessment relies on clinical experience to minimise foreshortening and ves-

sel overlap [116]. In particularly complex cases, the agreement can be relatively

poor even among experienced clinicians [78]. The cerebrovascular system is in-

deed highly complex. Appreciable differences and high variability of the vascular

structure in the brain can be observed in the first instance among healthy subjects,

where phylogenetic relations or undisclosed factors determine different vascular

morphologies and topologies even for major vessels. Main arterial examples are:

the complete Circle of Willis (CoW) occurring in approximately one third of the

worldwide population and its incomplete variants [22]; the fenestration of the basi-

lar artery (BA), constituting the splitting of the trunk of the vessel which rejoins af-

terwards; the variable course of the anterior inferior cerebellar artery, anastomosing

with both the posterior inferior cerebellar artery and the superior cerebellar artery,

which results in a variable amount of blood supply to the cerebellum, depending

upon the posterior arterial dominance, to name a few.

Also, age-related modifications of the vascular structures are observed in

healthy subjects such as the increase of vascular tortuosity, change in size and

curvature. This shows therefore a high degree of morphological variability of the

cerebrovascular system in healthy subjects. Furthermore, some of the mentioned

pathologies, such as atherosclerotic plaques and subsequent vessel stenoses, cere-

bral aneurysms and vascular malformations produce structural cerebrovascular ab-

normalities which affect and may substantially alter the vascular network pattern in

the brain at different branch-points and scale levels. In order to provide quantitative
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and repeatable measures to support early diagnosis, therapeutic inference and inter-

ventional guidance, a number of image-based vascular processing and segmentation

techniques have been designed and proposed, these coping with different degrees

of complexity and detail for the cerebrovascular system.

1.3 Challenges in Cerebrovascular Image Analysis

In the past years, the medical interest in vascular segmentation and the associ-

ated challenges have motivated an extensive amount of research. Most of the

biomedical engineering research effort was focused on extracting clinically useful

subject-specific models by means of automatic and semi-automatic segmentation

techniques. However, population-based and group-wise analyses were limited to

qualitative cerebrovascular differences and incidental vascular findings in clinical

trials in radiology. The image-based and quantitative evaluations of a cohort of sub-

jects require indeed a range of complex and multi-disciplinary tasks. Among those,

the segmentation of the structures, the alignment and labelling of the vascular in-

stances, and lastly the extraction and integration of clinically relevant biomarkers

should be designed in a homogeneous domain.

In Chapter 2, a comprehensive summary of image-based vascular segmentation

techniques and models is given, where an overview of the state-of-the-art and of tra-

ditional approaches in vascular image analysis frame the challenges of detecting and

delineating vascular structures. In details, the problem of robustly enhancing the de-

sired regions of interest over a background, or challenges in reducing image-related

non-idealities arising from poor contrast due to image resolution, fragmented struc-

tures and topological non-linearities (bifurcations) were addressed by established

and emerging methodologies for image-based vessels segmentation. These focused

first on exploiting different vessel characteristics and image-based features to ul-

timately extract patient-specific cerebrovascular models and clinically relevant in-

dices and parameters. In early neurovascular applications [14, 169, 192], the final

goal was to locate brain vessels in relation to their neighbouring structures, for ex-

ample, to avoid them during neurosurgery or to measure their dimensions at some
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specific point (e.g. diameter of carotid, level of stenosis or grading of a cerebral

aneurysm). In these cases, a raster representation of the underlying vascular struc-

tures is perfectly adequate, and the problem reduces to detecting the anatomical

structures and voxel-wise segmenting the volume of an object of characteristically

local linear morphology. The challenge of reconstructing a connected network of

vascular branches was addressed by Bullit et al. and Kwitt et al. [29, 104] from a

set of initial manually-sampled seeds, disconnected branches, or fragmented cen-

terlines. However, traditional approaches for vascular enhancement and structural

reconstruction seemed to address the problem of vascular connectivity in a rather

independent and disjoint manner. Recently Shahzad et al. [176] proposed a more

complete and connectivity-oriented approach for the extraction and labelling of the

vascular tree from 3D whole-body angiography. However the extraction was lim-

ited to major arterial ramifications from the aortic arch up to the carotids and down

to major periferic limbs.

Whilst many methods exist for quantifying cerebrovascular parenchymal

changes (i.e. local vessel morphology, presence of atherosclerotic plaques, sur-

rounding brain lesions), employing raster representations of tissue classes, no meth-

ods exist for quantifying vascular change where the representations are necessar-

ily vectorial: the connected geometry of the underlying vascular network. Such

vectorial representations could compactly encode relative, spatial and connectivity-

related vascular features, by transcending a predefined and quantized spatial grid,

typical of a subject-specific raster angiography [85]. A vectorial representation is

not only useful in guiding interventions in individual patients, e.g. guiding intracra-

nial electrode placement [217], catheter motion planning, (un)safe occlusion points

identification [29, 112], or endovascular aneurysms repair and stent placement for

recanalization [114, 159], but essential for the group-level studies on which both

clinical prediction and therapeutic inference ultimately depend. For without a satis-

factory means of registering vascular trees across a cohort of patients it is impossible

to draw general conclusions about any specific vascular feature. A vectorial rep-

resentation of the vascular network would therefore allow different forms of group
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level analysis: i. intersubject comparison of geometrical features of the vascular tree

(e.g. junction points, branching numbers, tortuousity, and overall haemodynamic

properties), and ii. intersubject comparisons of various non-vascular parenchymal

features, where the brain image-volume is rather registered by its vascular topology.

By referring to vectorial cerebrovascular topology, the descriptive connectivity and

branching pattern of a given set of vascular structures in the brain is obtained by

adopting a spatially- and connectedness-aware embedding of a graph, which si-

multaneously encodes vessel centerlines as geodesics (minimal paths), disregard-

ing any predefined anatomical compartment and subject-specific raster grid [85].

In general, the quantitative vectorial description and characterisation of a network

become more complex and challenging as the network increases in size and allows

for variable connectivity patterns. Here, the cerebrovascular anatomical intra- and

inter-subject variability [91] does not allow for a unified and globally standardised

vessel network extraction yet. Malformations and pathologies can also dramatically

increase the complexity of the vasculature topology, where a compact representation

is sometimes impractical. Complex topologies are required for the characterisation

of the whole cerebrovascular system: anastomoses such as the Circle of Willis and

those of the capillary bed in the cortex [22, 85] show cyclic connecting patterns at

varying scales and depth. In these cases, hierarchical tree-like structures cannot

adequately model the underlying anatomy, and a more general and unconstrained

graph formulation is required. However, the topological inference of major deep-

brain arterial (or venous) vascular trees can be locally projected to multiple-tree

extraction strategies. Few topological references and data-driven gold standards of

vascular connectivity are available. These, often fragmented or limited to a region

of interest, require the thorough annotation of experts at different levels of vascular

branching, where minor mis-classifications may significantly affect the topology of

the resulting vascular graph [140]. The thorough segmentation of a whole-brain

vascular image dataset is considered intractable [23], and it can take up to 8 weeks

of manual labor per subject [142]. This constitutes a considerable limitation for any

method’s validation. Given the substantial complexity of the segmentation task and
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of vectorial translation of the associated brain vascular network, considering also

the lack of an extensive ground-truth for complete vascular topologies, the accurate

and exhaustive extraction of the vessel connectivity still remains an open problem.

1.4 Thesis Outline & Contributions

With regards to this thesis and considering the aforementioned challenges in cere-

brovascular image analysis, the problem of processing and analysing brain ves-

sels from multi-modal angiographies is formulated under a different vascular key-

feature. The idea is to exploit the intrinsic connectedness of the cerebral vessels

together with its peculiar topology to determine a fully-connected graph. Such a

vectorial representation would potentially describe not only spatial anatomical and

functional features of either the arterial or venous compartments in the brain up to

a pre-determined level of detail, it can also further allow the registration and align-

ment of cerebrovascular topologies for automatic labelling, information propaga-

tion and statistical analyses, towards the definition of an over-complete neurovas-

cular atlas representative of a cohort of subjects, or of a whole population. On a

more general scale, it could potentially further embed relevant clinical parameters

such as hemodynamic parameters, physio-pathological biomarkers and risk-factors

in a graphical, compact and intuitive representation. This would result in a multi-

purpose cerebrovascular tool, which may impact the clinical practice with high-level

cues and descriptive information on different scales: from patient-specific models

employed in supported diagnosis, decision making, interventional treatment plan-

ning and surgical guidance, to longitudinal or cross-sectional long-term population

studies.

Following the “common thread” of the vascular connectedness, a novel frame-

work for cerebrovascular image analysis is presented in the following chapters. This

novel mathematical framework, called VTrails, is step-by-step described, where a

model accounting for local vessel shape priors, together with anisotropic directional

features as descriptors of the vascular structural anisotropy, aims at extracting im-

plicitly either the arterial or the venous connected network in the form of a graph
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from 3D clinical angiographies. Then a pairwise non-rigid alignment approach is

introduced for over-connected vascular topologies, leveraging the redundancy and

connecting uncertainty of the network, within a standardised and established graph-

matching framework used in computer vision applications. Lastly, a set of biomark-

ers and surrogate measurements from hemodynamic simulations are devised and in-

tegrated on the vascular topology, leveraging both the global connected network of

the vascular structure and the local geometries at the bifurcations. These account for

different degrees of perturbations, simulating both healthy and diseased scenarios.

Along with the structure of this thesis, the introduced unified connectivity-

oriented framework VTrails enhances the connectedness of bifurcating, fragmented

and tortuous vessels from angiographic scans through non-linear, scalar and ten-

sorial vascular models. The orientation-aware vascular maps are fed into a

connectivity-optimised paradigm, which infers the unknown connected vascular

network minimising the cost of the associated geodesic graph under the assump-

tion that vessels join by minimal paths. The pairwise elastic registration of vascular

graphs is formulated as a coarse-to-fine optimisation problem, which retrieves the

vascular branch-points correspondence for pairs of non-strictly isomorphic topolo-

gies in a fully automatic fashion. Lastly two vectorial hemodynamic simulation

approaches are described over the inferred topologies to determine biomarkers and

vascular descriptors leveraging both global and local views of the cerebrovascular

network. In conclusion, perspectives and future works are discussed towards group-

wise alignment, topological atlas integration and long-term risk prediction models.

Following an introductory overview about the state-of-the-art models em-

ployed in vascular image analysis in Chapter 2, the structured outline of this thesis’

contributions is given in Fig. 1.3, where the VTrails framework is introduced for:

• Vessel Enhancement in Chapter 3: a compact Steerable Laplacian of Gaus-

sian Swirls (SLoGS) enhancing filter-bank is defined and employed in a

multi-resolution, curvilinear- and rotation-invariant filtering framework to si-

multaneously and consistently synthesise scalar- and tensorial-saliency maps,

whose combination yields a smoothly connected Riemannian vesselness po-
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tential.

• Vascular Connectivity in Chapter 4: both greedy and exhaustive connectivity

paradigms are designed from an anisotropic level-set over the synthesised

Riemannian vesselness potential, determining the underlying vascular tree(s)

and the fully-connected geodesic vascular graph, respectively.

• Vascular Alignment in Chapter 5: a pairwise non-rigid alignment of non-

isomorphic geodesic vascular graphs is described with a coarse-to-fine reg-

istration strategy comprising geometrical, geodesic and connectivity features

within a Graph-Matching (GM) optimisation framework.

• Vascular Biomarkers in Chapter 6: biomarkers and surrogate measures from

hemodynamic simulations are estimated for representative cerebrovascular

graphs by globally solving analog-equivalent circuits in presence of pertur-

bations, and by solving a Stokes’ problem on vascular bifurcating geometries

using a parametrisation based on Non-Uniform Rational B-Splines (NURBS)

and an isogeometric analysis (IGA) framework.

VTrails framework’s validation is also presented along with the methodolog-

ical insights for a set of hand-crafted phantoms, synthetic angiographies and real

clinical multi-modal scans throughout the body of this thesis. Current and active

research directions following this thesis are also addressed in Chapter 7 towards

the optimisation of the inferred vascular network, and the potential of long-term

risk prediction models for the cerebrovascular system is lastly envisioned. Some of

these latter formulations are supported with simple toy-examples and preliminary

results, however these require further extensive evaluations in future research. To

finalise, an initial overview of the available VTrails’ open source implementation

is given in the Appendices A. Further references and insights are specifically in-

troduced throughout the body of this thesis, to better frame the multi-disciplinary

contributions of the proposed framework.
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Figure 1.3: Thesis Outline: Macro-Section Flowchart. Cerebrovascular Imaging in Chap-
ter 1 and State-of-the-Art in Chapter 2. Vessel Enhancement in Chapter 3. Vas-
cular Connectivity in Chapter 4. Vascular Alignment in Chapter 5. Vascular
Biomarkers in Chapter 6. Discussion and Future Work in Chapter 7.



Chapter 2

State-of-the-Art

2.1 Models in Vascular Image Analysis

The impact of vascular diseases has motivated a considerable amount of research

dedicated to vascular image analysis. In the first instance, diagnosis assistance,

treatment and surgery planning require the segmentation (i.e. the identification

and delineation of regions of interest within the image) of vascular structures for

the accurate visualisation of vessels in complex datasets and for the quantification

of abnormalities and pathologies. Since most angiographic clinical routines still

rely on manual operations, and given the considerable amount of data generated by

modern 3D scanners, vessel segmentation and assessment may sometimes suffer

from long time processing and inter-operator variability. To overcome these limita-

tions, and considering the complexity of the vascular system and of the surround-

ing context, automatic and semi-automatic tools have been an object of research

and development for the specific and challenging problem of vessel segmentation.

Following the outline proposed in [112] and [99], methods for vessel lumen seg-

mentation can rely on a complex combination of strategies, here grouped according

to three main high-level categories: i. appearance and geometric vascular models;

ii. vessel-related image measures and features; iii. algorithmic designs and extrac-

tion schemes for vessel segmentation. Other techniques also focused on different

vascular image analysis tasks, such as vessel outer wall segmentation and thrombus

segmentation [143, 191]. These often embed specific prior and leverage particular
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combinations of processing pipelines, which sometimes result in less generalisable

ad-hoc applications.

2.1.1 Vascular Appearance and Geometrical Models

Models are meant to embed prior knowledge or information regarding the target

structures. Appearance models express the luminance properties of either vascu-

lar or a combination of vascular and surrounding structures by exploiting intrin-

sic informations arising from the imaging modality. Vessel-only models focus on

the intensity distribution associated to the vasculature according to a theoretical or

pre-defined estimation of the intensity range (e.g. Contrast-Enhanced CT angiogra-

phies). Following this assumption, several statistical distributions, such as Gaus-

sian [67], Cauchy [4], or double sigmoid models [158], can be defined to account

for the intensity variability produced by inhomogeneity of the contrast agent. Also,

by considering the information from surrounding structures and tissues, it is possi-

ble to model the respective intensity distributions from a simple brighter (or darker)

relationship between the vascular structures against the background, rather than a

more advanced mixture of statistical models [48], accounting for inhomogeneities

of the considered tissues [170]. Other acquisition-dependent nonidealities, such

as noise and spatial blurring, can be estimated and incorporated as part of an ap-

pearance model. Generally, these nonidealities are implicitly integrated in hybrid

models, which also account for spatial and geometric features of the structures of

interest.

Purely geometrical models exploit the characteristic shape of blood vessels to

encode their spatial and topological features, i.e. the elongation, the radius range

or scale and furcations. Surface models rely on the assumption of local tubularity

of the vessel surface to regularise with active shape models the lumen segmenta-

tion extracted by active contour techniques [54, 69]. Conversely, centerline models

consider vessels as primarily mono-dimensional structures. The centerline, i.e. the

geometrical locus of points centred inside the vessel lumen, reduces the complexity

of the blood vessel to a 1D curve, which is particularly valuable for visual inspection

tasks as well as for stenosis and aneurysms description and quantification. Also, to
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model the centerline as a smooth curve, several parametric models [27, 105] were

used to enforce smoothness and regularity in vessel extraction processes such as

path prediction techniques [93] and particle filters [12]. The association of a sur-

face with respect to a centerline further produced the generalised cylinder models,

where the vessel walls are defined as 2D cross-sectional contours sweeping along

the centerline. Examples of cross-sectional profiles are classical circles or ellipses,

rather than more complex parametric curves such as closed 3D B-splines [69, 115].

More recent methods optimise and fit the geometrical surface on the data, under the

assumption that the centerline estimation is reliable.

Hybrid models combine vascular luminance and appearance features together

with vessel geometry. By observing the radial intensity profile within vessels, a

simple bar-like model was initially proposed, which corresponds to a local cylinder

with homogeneous intensity [26]. This was further refined as a bar-like convolved

profile model, where the cross-sectional intensity plateau is filtered with a Gaussian

kernel to account for spatial blur and partial volume effect [103, 201]. Conversely,

intensity ridge models assume vessels as boundaries of the image hyper-surface,

and they correlate multi-scale and intensity-related ridge responses to vessel spa-

tial locations [14, 16, 72]. Also, template-based shape priors constitute a widely

employed set of models, whose prototypes are based on second-order intensity

variations (Hessian matrix analysis). In particular, different combinations of the

Hessian eigenvalues are used to locally match bright (or dark) vessels to elongated

blobs, ellipsoids and superellipsoids respectively [70, 118, 189]. On the same note,

more recent techniques try to compensate also for noise and neighbouring struc-

tures, by analysing the voxel-wise vicinity in the tensor-space, namely tensor vot-

ing [216, 217].

Further geometrical model extensions included (bi)furcations and patholog-

ical anomalies and treatments such as calcifications and atherosclerotic plaques,

aneurysms, stenoses and stent implants. Although precise modeling of the anoma-

lies can substantially improve the vessel segmentation robustness, it is rather dif-

ficult to embed specific priors as the complexity of the model can dramatically in-
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crease. Simple geometric models were proposed indeed, where Y- or X-shaped fur-

cations are considered [3,4], or single-branch bifurcations are defined a contrario as

deviations from cylindrical segments in terms of inertial moments [84, 87]. Differ-

ently from calcifications and stents that result in hyper-intense structures, stenoses

and aneurysms are generally implicitly modelled as sudden radius decrease and

increase, respectively. Stenosis can be explicitly modelled by the double-cone de-

tector, based on the Hessian analysis [118], whereas aneurysms can be learned from

a database or can be detected a posteriori by evaluating volumetric and morpholog-

ical criteria on the segmented vasculature. Lastly, other problem-specific models

have been employed in literature by making use of probabilistic geometrical models

and atlases to guide the vascular segmentation, as in [149] for the cerebrovascular

system.

In practice, the choice of the model is however influenced by the prior knowl-

edge of the acquisition modality for the vessel luminance and appearance, and by

the specific application for the respective geometrical assumptions. Any given ves-

sel segmentation algorithm can rely on several complementary models providing

thus a more robust, multi-layer and coarse-to-fine description of the vascular struc-

ture.

2.1.2 Vessel Features and Image Measures

Vessel-specific features quantitatively express a prior knowledge, typically derived

from an underlying model. A vascular feature is defined by measuring or estimating

a vessel characteristic on image data upon the individual elongation, direction, scale

and cross-sectional shape assumptions, or by considering a combination of those.

Isotropic features such as location and/or scale do not exploit assumptions on the

directionality of the vessels. Relying on the brightness of the structures, a set of

candidate points mostly lying inside the vessels can be obtained by a locally scale-

persistent robust intensity maxima extraction [181]. Alternatively, a medialness op-

erator can be defined using a 3D multi-scale ridge detector (Laplacian of Gaussian),

assuming that vascular intensities are locally maximum [14]. This latter approach

was further extended using explicitly the vessel directionality in [16, 72]. Another
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isotropic feature was introduced by the spherical flux measure [192], which com-

putes the gradient flux through the boundaries of multi-scale spheres with maximal

responses at the center of the vessel, at the corresponding scale.

By exploiting instead vessels’ specific local geometry in conjunction with their

intensity, a set of features can be defined to characterize the tubular-like pattern and

directionality of the vascular structures. Popular derivative features make use of the

principal curvatures of the image intensities to describe the local geometry. The

principal vessel direction and the orthogonal cross-sectional plane can be estimated

through the eigendecomposition of the second-order spatial image derivative (Hes-

sian matrix) [100]. Following this principle, several flavours of Hessian-based mul-

tiscale filters were presented for vessel enhancement [70, 118, 169]. These rely on

Hessian eigenvalues to discriminate between blob-, plane-, and tubular-like struc-

tures. The well established Frangi vesselness filter [70] has been widely used in a

number of vascular applications for its intuitive formulation, however its sensitivity

is affected when the vascular structure deviates from the tubular assumption (e.g.

stenosis, aneurysm and bifurcation). Also, the specificity of the vesselness response

can be reduced by additional image noise and nearby non-vascular structures. As

Hessian-based features rely on multi-scale filtering frameworks to account for ves-

sels of different size, scale selection is often a critical aspect. On the one hand the

Gaussian linear scale-space should consider vessel scales so that their vesselness re-

sponse is maximal; on the other hand the vesselness response of these filters can be

perturbed by other hyper-intense surrounding structures. With this view and to re-

duce such perturbations, Bauer and Bischof [17] proposed a similar vesselness for-

mulation by considering the Jacobian of a gradient vector flow field. Alternatively,

other methods exploited the spatial covariance of image gradient vectors through

the analysis of the structure tensor matrix [3, 4], which better discriminate simple

vascular segments from vascular nodules and bifurcations. The optimally oriented

flux [106] exploits the distribution of gradient vectors to estimate a more accurate,

stable and robust vesselness measure, less sensitive to surrounding structures. Sim-

ilarly to the spherical flux, vessels are enhanced by measuring the gradient flux
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through the boundary of local spheres, however, by explicitly making use of the

vessel directionality, the flux is maximised through the estimation of an optimal

gradient projection axis at different scales. As an alternative to derivative methods,

second-order inertia moments of image intensities are used as integrative features

for vascular structures. By considering the eigendecomposition of the inertia matrix

and the respective ratio of eigenvalues, vascular integral filters can be determined,

which provide similar curvature and geometric informations and are theoretically

less sensitive to image noise and degradation [84, 87]. Conversely to derivative ap-

proaches, integrative filters do not benefit however from a well-defined scale-space

framework.

Different strategies focus conversely on 2D cross-sectional features. Under

the hypothesis of a vessel with closed-shape, compact and regular cross-sectional

contour, the problem of the lumen segmentation is downscaled to two dimensions,

however a single estimation of principal vessel orientation can be subject to noise

and local perturbations. Following these concepts, Aylward and Bullit [16] pro-

posed cross-sectional circular ridge detectors tracking for the definition of a medi-

alness measure, by tracking the vessel along its directionality estimated using the

Hessian’s eigenvectors. Further refinements developed the formulation of the core

framework for vascular structures, where a medial atom response is obtained by

filtering the image with directional Gaussian derivative kernels located at the end

of equi-angular radial spokes [71], so that the core medialness feature fits the im-

age edges with a circular cross-sectional model for a given location, orientation and

radius.

In this case, bifurcations are identified by a specific-pattern ridge detector cou-

pled with the core response. The core framework has been employed in cerebrovas-

cular image analysis with interesting and promising results, introducing the possi-

bility of automatically extracting vascular tree-like structures. Limitations of the

method were however reported in case of bifurcating and scale-varying branches,

where the observed sensitivity is reduced. Currently the core framework has been

further extended and developed in the TubeTK open-source project, Kitware [15].
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Following the idea of a 2D cross-sectional compact vessel contour, ray-casting fea-

tures were investigated to either detect accurate vessel walls or to better evaluate the

centerness of a point in the vessel. Ray-casting features do not rely on a paramet-

ric shape prior for the cross-sectional contour, and they generally yield robust and

high-performance results by casing and averaging numerous 1D rays [79].

Lastly, vascular features for bifurcations and anomalies were analysed to in-

crease the vascular segmentation robustness. Among these, bifurcations were as-

sociated to the emergence of different vascular principal directions [3], or branch-

point candidates were selected upon an inertia moment heuristic [84,87]. However,

most other anomalies and bifurcating features are based on a posteriori topological

analysis of the extracted vascular segmentation.

2.1.3 Segmentation Extraction Schemes

Several algorithmic designs have been proposed to extract the vascular segmen-

tation on the basis of the afore mentioned models and features. Usually, vessel

segmentation extraction schemes comprise a pipeline of image processing steps:

vascular pre-processing aims at better contrasting the vascular structure against the

background, enhancing therefore particular vascular features; this is then gener-

ally followed by a vessel-dedicated extraction scheme based on three main method-

ological subcategories, i.e. region-growing, active-contours and centerline-based

approaches. Eventually, post-processing techniques refine the segmentation results.

Popular pre-processing techniques employ Hessian-based derivative filters

[70, 169] or flux-based filters [106, 107] to enhance the vessels by providing a ves-

selness response map, which potentially reduces the image noise level, while pre-

serving thin and weakly contrasted vessels. With the same aim, vessel-dedicated

anisotropic diffusion schemes were also proposed [125, 126] for angiography en-

hancement, where further anisotropic directional information is extracted from the

analysis of the Hessian matrix or from the structure tensor [198]. Together with vas-

cular enhancement pre-processing schemes, algorithms for the extraction of rough

vessel priors or pre-segmentation, e.g. spatial localisation seeds and/or regions

of interest (ROI), were introduced to initialise the following vascular extraction
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schemes. Most of pre-segmentation techniques are based on pixel- or voxel-wise

processes, such as vesselness hard-thresholding and local maxima selection of in-

tensity peaks, however these are particularly prone to fragmented outputs per se.

Starting from seed points, region-growing techniques incrementally segment

the vascular structure by recruiting neighbouring points which satisfy some in-

clusion criteria. The simplicity and computational efficiency of region-growing

schemes is related to the greedy and low-level inclusion rules, resulting in a sparse

exploration of the data, particularly suitable for large 3D datasets. As a down-

side, inputs and seed points are generally provided manually, and classical region-

growing schemes tend to be prone to false-negatives (holes) and false-positives

(leaks), requiring therefore subsequent topological corrections [132]. Wave or front

propagation techniques can be seen as ordered region-growing approaches with the

advantage of enforcing the evolution of a well-formed and spatially coherent inter-

face within the vessel. An accurate front propagation scheme is the fast-marching

algorithm [1,175]. It is derived as a general level-set numeric solver and visits pixels

(or voxels) according to an estimation of their geodesic distance from seed points.

Also, the fast-marching algorithm can be used for the optimisation of minimal paths

allowing for different speed potentials and functions. As major benefit, the spatially

coherent propagation of the front yields an implicit handling of branching and bi-

furcations, as well as allowing the connectivity of the propagating interface to be

exploited for topological analysis.

Active-contours represent another class of segmentation techniques that evolve

an interface through the coupling of internal (image-derived) and external (model-

based) forces to constrain the geometry and the regularity of the vascular structure.

Examples are 2D snakes that deform a tubular model following the direction of tar-

get vessels by evaluating the principal component analysis of the gradient vectors’

distribution, avoiding self-intersection artifacts [187, 188, 210]. Also a parametric

deformable snake model evolving a centerline curve with varying radius was pro-

posed for 2D and further extended for 3D applications respectively in [133, 134].

Alternative implicit active-contours techniques rely instead on the vessel contour
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evolution through partial derivative equations and level-set formulations. As the

level-set framework does not suffer from explicit model parametrisation problems,

complex topologies of the vascular structure are embedded as zero-level of a con-

verged higher-dimension function. From 1D curves (called ε-level-set [122]) to

higher order active-contours [163, 164], vessel segmentation has showed interest-

ing and promising results, although 3D extensions have raised a considerably more

complex algorithmic paradigm and higher computational cost. Among these, a 3D

framework for vascular geometrical modelling was proposed in [7] for comput-

ing patient-specific computational hemodynamics, which resulted in the Vascular

Modelling Toolkit (VMTK) open-source effort [9]. The vascular lumen surface

is implicitly determined as intersecting iso-contours. These are obtained from an

isotropic propagation of front-waves travelling from two manually parsed seeds

over an image-based intensity potential. Also in this case, the fast-marching al-

gorithm was employed to solve the implicit surface discrete evolution in combina-

tion with subsequent surface regularisation (shape-preserving smoothing) strategies

to reduce artifacts arising from noise and image degradation. Consequently, the

centerline is extracted a posteriori as the medial axis of the structure by solving a

minimization problem on a functional determined by the internal Voronoi diagram

and the maximal inscribed sphere radius feature. Centerline extraction is there-

fore recast into a minimal cost path problem, whose solution is given again by the

fast marching method for the Eikonal equation extended to non-manifold surfaces.

Interestingly, this approach was observed to implicitly produce connected center-

lines at bifurcations and in correspondence of anomalies with further applications

to cerebral vasculature and aneurysms [155]. Although the resulting segmentation

model shows a smooth and appealing vascular reconstruction, the segmentation ac-

curacy and the resulting vascular topology rely on the quality of the data and on

the user-dependent supervision in selecting the seed-points and in refining spurious

geometries.

Conversely from previous approaches, centerline-based methods focus on ex-

tracting directly the vessel mid-line, followed by centerline-to-contours refining
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segmentation approaches. Centerline-based segmentation techniques rely indeed

on high-level vascular information, such as localisation, direction and scale. Di-

rect centerline extraction techniques require input seed points, usually the root of

the vascular tree, and the tracking process is performed by alternating prediction

and correction steps. Following vessel directionality features, Kalman filtering

was proposed as an optimal prediction and correction scheme, under the assump-

tion of Gaussianity and linearity of the data [202]. Also, to ensure robust track-

ing, direct centerline extraction techniques make use of medialness measures and

cross-sectional features to recentre and correct the centerline location [109]. Over-

all, direct centerline tracking may however remain prone to premature stopping

in the presence of anomalies, and requires a fair amount of user interactivity to

handle branching via manual reseeding and to extract a complete tree. Alterna-

tive approaches follow the idea of extracting centerlines as vascular minimal paths.

With this view, a cumulative monotonic cost metric, integrated along the center-

line path, is minimised using dynamic programming schemes, resulting in good

robustness even in case of corrupted data or anomalies, such as severe stenosis.

Algorithmic designs include L1 path optimization using Dijkstra-like graph-based

schemes [58], and the fast-marching algorithm, which approximates in the first in-

stance the isotropic Euclidean (L2) cumulative cost. Refinement of such algorithms

is the freezing scheme [56], which prevents paths from being propagated further

when the cumulative cost is too high. An anisotropic version of the fast marching

with freezing scheme has been shown to greatly reduce the amount of exploration

space [118]. Together with a spatial centerline extraction, [21] proposed to incor-

porate an additional dimension, i.e. the associated vessel radius, to the problem

formulation. Considering a native 3D domain, this yields a 4D minimal path ex-

traction technique where two speed potentials were defined concurrently based on

multi-scale spheres and image-intensity features. Particular interest, however, was

focused on exploiting directional information in a minimal path framework, specif-

ically the anisotropic fast-marching formulation favours the propagation towards

certain orientations. The multi-scale optimally oriented flux [106] was exploited



2.1. Models in Vascular Image Analysis 53

to design an adequate anisotropic metric for the vessel directionality in 3D [21],

whereas a 4D propagation accounting for space, scale and orientation was proposed

for 2D centerline tracking in [151]. However the high computational cost represents

the major limitation for 3D applications. These minimal path techniques generally

are semi-automatic, as they require an interactive framework for defining start- and

end-points for each target vessel and a user-defined stopping criterion. Eventu-

ally, geodesic-voting techniques [165] and a posteriori pruning approaches can be

employed to refine and correct complex vascular graphs obtained by a number of

minimal paths.

A further effort to improve robustness in vessels centerline tracking was the

formulation of a multi-hypothesis framework, such as stochastic particle filters.

These benefit from well-established Bayesian theoretical frameworks and allow

for high-level implicit designs. Particle filters handle non-linear processes through

probabilistic and non-parametric Monte-Carlo methods, relying thus on a discrete

population of samples (particles). The particle population is evolved by following

and updating iteratively the probability distribution of several features on the state-

space, such as vessel location, scale, orientation and appearance parameters. The

increase of robustness, especially in noisy contexts, introduces high computational

costs proportional to the number of particles [68, 113, 170, 171].

Lastly, most of the mentioned methods usually require a post-processing step,

which mainly aims either at restoring and regularising fragmented portions of the

vascular segmentation or at correcting the topology of the vascular tree due to miss-

ing or misconnected branches. In this step, spatial coherence can be enforced with

morphological operators, as well as with more complex graph-based approaches

such as pruning and region completion or splitting, by following fuzzy connected-

ness criteria and fuzzy models at different scales, from heuristic fuzzy-spheres to

probabilistic graphical atlases [3, 181].

2.1.4 Emerging Segmentation Approaches: Deep-Learning

Deep-Learning based approaches are gaining popularity for vascular segmentation

tasks [136]. As opposed to other supervised and unsupervised machine-learning



2.1. Models in Vascular Image Analysis 54

algorithms, where both feature extraction and selection require an underlying un-

derstanding of the most suitable features for the specific segmentation task, deep-

learning approaches directly extract an internal representation of the image and as-

sociated cues, upon the increasing availability of computational power and datasets.

Convolutional Neural Networks (CNNs) are a type of feed-forward neural network.

Given a set of training pairs, i.e. image and labelled segmentation, these archi-

tectures produce a raster binary output, stating whether the pixel (or voxel) be-

longs to a vessel or background according to the given gold standard. Although

these techniques have been recently applied to 2D angiographies of the retinal fun-

dus [53,119,135], emerging advances in the segmentation of cerebrovascular struc-

tures were proposed by Phellan et al., Chin et al., and Chen et al., [41, 44, 154].

In detail, bi-dimensional manually annotated image patches are first used to train a

CNN for automatically segmenting the vessels in TOF MRI angiographies; also,

an automated early ischaemic stroke detection system is presented using CNN

on CT scans of the brain; lastly, and automatic detection of microbleeds in cere-

bral susceptibility-weighted images is proposed by taking advantage of the deep-

learning based 3D feature representation. Overall, the performance of deep-learning

approaches in vascular imaging show promising results in terms of retrieval, accu-

racy and processing throughput, however the lack of an extensive labelled ground-

truth or detailed gold standard seem to currently limit the generalisation power of

the inferred rules to a restricted set of specific applications. Also, as observed in

the previous section, these methods may eventually require further post-processing

to better address the restoration and regularisation of disconnected or mis-labelled

vascular portions. Nonetheless, vessel segmentation may rapidly evolve with ad-

vanced deep-learning approaches as the availability of labelled datasets scales up

to cover most of the aforementioned vascular variability and non-linearity, together

with unsupervised or weakly-supervised deep-learning strategies (e.g. reinforce-

ment [172], generative networks [160], recurrent networks [61]), yet unavailable

for vascular segmentation tasks.



Chapter 3

Vessel Enhancement

Existing methods in literature are known to provide poor enhancement in the corre-

spondence of vascular junctions, non-linearities, and tortuous and highly curvilinear

segments. Also, localised absence of signal arising from poor quality imaging dis-

connects vascular structures in multiple small fragmented portions with variable

contrast. In this case, denoising strategies or traditional vessel enhancement filters

are not able to recover a smoothly connected vascular saliency map, nor any direc-

tional feature of the underlying fragmented anatomy. The aim here is to recover a

smoothly connected vesselness map particularly suitable for fragmented and discon-

nected vascular structures from low-quality imaging, and for a generic angiographic

modality in 3D. Such a vesselness map should also enhance non-linear bifurcating

patterns as well as tortuous and elongated vessels with high-dimensional directional

cues as to best model convoluted vessels observed in brain angiographies.

Inspired by Sato et al. [169], Frangi et al. [70], and Law and Chung [106],

who proposed tubular enhancing methods in 3D with the aim of better contrasting

vessels over a background, an initial scale-dependent filtering process is formu-

lated here to recover an ultimate Riemannian vesselness measure, representing the

smoothly connected vascular saliency map. As in traditional applications in signal

processing [157], such a vessel-enhancement filtering process stands as a multi-

resolution and high-dimensional analysis/synthesis filterbank as initial filtering step

in the proposed VTrails framework. In particular, a 3D filterbank of Steerable Lapla-

cian of Gaussian Swirls (SLoGS) is first introduced, which filters the angiographic
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Γ(x,σ ,c) K(Γ) T(Γ)

Γtube DFK

Figure 3.1: SLoGS filterbank: Top. Filter impulse-response Γ and associated integral ori-
entation basis ΦΓ; Derivative SLoGS filter kernel K(Γ), and associated ellip-
soidal tensor form T(Γ). Bottom. Definition of a dictionary of filtering kernels
(DFK), including the linear Γtube = Γ(x,σ1 > σ2 = σ3,c = 0).

image in a multi-scale, rotation- and curvature-invariant fashion. The elongated

and curvilinear SLoGS kernels show both scalar and tensorial components, which

recover a smooth and orientation-aware vesselness map with local maxima at ves-

sels’ mid-line. Together with a scalar vascular saliency map, the associated tensor

field is simultaneously and coherently synthesised to better detect junction points

and trace vascular branches, by automatically embedding higher-order metrics (i.e.

anisotropic tensors), as in a tractography-like framework, further exploiting vessel

anisotropy, directionality and local asymmetry.

3.1 SLoGS Curvilinear Filterbank

Considering an image V : R3 → R, the respective filter response is obtained as

V filt ,V ∗K, for any predefined filtering kernel K : R3→R. Following the concepts

first introduced by [5, 117], the SLoGS filtering kernel K is derived here by com-

puting the second-order directional derivative in the gradient direction of a curvilin-

ear Gaussian trivariate function Γ : R3×R3
+×R3→ R. The gradient direction and



3.1. SLoGS Curvilinear Filterbank 57

its perpendicular constitute the first-order gauge coordinates system (ω,υ), where

ω = ∇Γ

‖∇Γ‖ , and υ = ω⊥, with the spatial gradient ∇. The function Γ has the form

Γ(x,σ ,c) ∝

3

∏
d=1

1√
2πσ2

d

e
−

X2
d

2σ2
d , with

{
X1=x1,

X2=x2+c1x1+c2x2
1,

X3=x3+c3x3
1,

(3.1)

where x= x1i+x2j+x3k, with {i, j,k} the unit-vectors associated to the Carte-

sian image reference system. The standard deviations σ ∈ R3
+ modulate the cross-

sectional profiles and the elongation of the Gaussian spatial distribution, and the

factor c accounts for both planar asymmetry and two levels of curvilinear proper-

ties (e.g. bending and tilting), by quadratic- and cubic-wise deforming the support.

Given σ and c, Γ(x,σ ,c) represents the smooth impulse response of the 3D Gaus-

sian kernel. By operating a directional derivative on Γ along ω , i.e. ∇ω , the SLoGS

kernel K is defined as K = ∇ω [∇ωΓ] = ∇ω

[
ωT ∇Γ

]
, thus being

K , ω
T H (Γ)ω , where H (Γ) =

[
Γii Γij Γik
Γji Γjj Γjk
Γki Γkj Γkk

]
(3.2)

is the Hessian matrix of the Gaussian function Γ. With the compact notation Γi,

Γj and Γk the first partial derivatives are indicated for ∂

∂ iΓ, ∂

∂ jΓ and ∂

∂kΓ respec-

tively. Similarly, the notation Γii Γij, Γik, . . . , indicate in short-form the second

partial derivatives ∂ 2

∂ i2 Γ, ∂ 2

∂ i∂ jΓ and ∂ 2

∂ i∂kΓ, . . . , respectively. Since Γ is twice con-

tinuously differentiable, then H(Γ) is well defined. Also, since H(Γ) is symmetric,

an orthogonal matrix Q exists, so that H(Γ) can be decomposed and diagonalised

as H(Γ) = QΛQT . The eigenvectors ql form the columns of Q, whereas the eigen-

values λl , with l = 1,2,3, constitute the diagonal elements of Λ, so that Λll = λl

and |λ1| ≤ |λ2| ≤ |λ3|. For any point x, the SLoGS derivative kernel K(x) can be

rewritten as K(x) = ωT (QΛQT)ω . Geometrically, the columns of Q represent a

rotated orthonormal basis in R3 relative to the image reference system so that every

ql is aligned with the principal directions of Γ at any point x. The diagonal matrix

Λ characterizes the topology of the hypersurface in the neighbourhood of x (e.g.

flat area, ridge, valley or saddle point in 2D) and modulates the variation of slopes,

since the eigenvalues λl are the second-order derivatives along the principal direc-
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tions of Γ. Factorizing K(x), the form K(x) = (ωT Q)Λ(QT ω) = (QT ω)T Λ(QT ω)

is obtained, and the gradient direction ω is mapped onto the principal directions of

Γ. Solving eq. 3.2, it is possible to demonstrate that K has the form of a spatially

warped 3D Laplacian of Gaussian, as

K(x) = G
[

Γi
Γ j
Γk

]T

H(Γ)︷ ︸︸ ︷[q11 q21 q31
q12 q22 q32
q13 q23 q33

]
︸ ︷︷ ︸

Q

[
λ1 0 0
0 λ2 0
0 0 λ3

]
︸ ︷︷ ︸

Λ

[q11 q12 q13
q21 q22 q23
q31 q32 q33

]
︸ ︷︷ ︸

QT

[
Γi
Γ j
Γk

]

= ∑
3
l=1 γlλl = γ1

∂ 2

∂q1
2 Γ+ γ2

∂ 2

∂q2
2 Γ+ γ3

∂ 2

∂q3
2 Γ,

(3.3)

where γl = G · (Γiql1+Γ jql2+Γkql3)
2 modulates the respective components of the

Laplacian of Gaussian filter [101] oriented along the principal directions of Γ, and

G = 1
Γ2

i +Γ2
j+Γ2

k
. Note that for vanishing spatial gradients, e.g. at x = 0, the mod-

ulation is equivalent to γl =
1
3 . Given any arbitrary orientation as an orthonormal

basis similar to Q, the arbitrarily defined dictionary of filtering kernels can steer by

computing a rotation transform. Such a rigid rotation transform maps the principal

direction basis of each Gaussian kernel (depicted as ΦΓ in Fig. 3.1) on any arbitrary

orientation in 3D. This ultimately allows to steer and align each filtering kernels

along any orthogonal basis with a numerical re-sampling procedure.

Together with the SLoGS kernel K, the second-moment matrix T associated

to the smooth impulse response Γ is introduced by adopting the ellipsoid model

in the continuous neighbourhood of x. Thanks to the intrinsic log-concavity of Γ,

a symmetric tensor T (x) is derived from the eigendecomposition of H(Γ̃), with

Γ̃ =− log(Γ), as T (x) = Q Ψ QT , where Ψ is the diagonal matrix of the canonical

unit volume ellipsoid

Ψ =

(
3

∏
l=1

ψl

)− 1
3

·
[

ψ1 0 0
0 ψ2 0
0 0 ψ3

]
, being

{
ψ1=

λ̃1√
λ̃2λ̃3

,

ψ2=
λ̃2
λ̃3

,

ψ3=1

(3.4)

the respective semiaxes’ lengths. Note that the eigenvalues λ̃l are derived from



3.1. SLoGS Curvilinear Filterbank 59

the decomposition and diagonalisation of H(Γ̃). The tensor field T is a symmet-

ric positive definite matrix, since Γ̃ has a convex quadratic form. The manifold of

the obtained tensors can be mapped into six independent components in the Log-

Euclidean space, which greatly simplifies the computation of Riemannian metrics

and statistics [11]. The continuous and spatially smooth tensor field T inherits the

steerable property of the scalar counterpart K. Resembling diffusion tensor MRI,

the SLoGS kernel shows a preferred diffusivity pattern for a given energy potential

(see Γ in Fig. 3.1). This allows to eventually determine an arbitrary SLoGS dictio-

nary of filtering kernels (DFK) which embeds anisotropy and high-order directional

features to scalar curvilinear templates, enhancing and locally resembling typical,

smooth vessels.

Given an angiography and a pre-defined SLoGS dictionary of filtering kernels,

the following filtering approach devises a series of convolutions to synthesise a

scalar filter response, and a series of element-wise patch-sweeping sums to synthe-

sise the tensorial counterpart. The intrinsic smooth profiles of the Gaussian SLoGS

kernels, combined with an extensive and iterative filtering approach, is prone to re-

cover a blurry filter response, where boundaries of the vascular lumen are smoothly

blended with the parenchymal background. For this reason, an extra pair of de-

generate kernels is here introduced, aiming at balancing the contrast of vascular

boundaries and the background components of the angiographic image. In particu-

lar, the pseudo-impulsive Kδ is an isotropic derivative filter given by the Laplacian

of Gaussian of Γδ (x,σ ,c = 0), representing a Dirac delta function for σ → 0. The

pseudo-impulsive Kδ is intrinsically sensitive to sharp intensity transitions, captur-

ing therefore edges of tubular-like structures in 3D. The uniformly flat derivative

filter Kν is the second degenerate Laplacian of Gaussian kernel, which derives from

Γν(x,σ ,c = 0), assuming a uniform, constant-value for σ → ∞. Analogously, Kν

is sensitive to regions of homogeneous intensities, capturing thus surrounding non-

tubular parenchymal structures. Since both degenerate kernels Kδ and Kν have sin-

gularities and represent isotropic degenerate kernels, only their scalar component is

defined.
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All the scalar and tensorial SLoGS filters have been numerically determined.

The considered numeric kernels satisfy the analytical conditions as described above

and minor deviations are bound to a numeric machine error. In the following section

a technical compendium is provided comprising the numerical parameters for the

dictionary of filtering kernels adopted throughout the body of this thesis.

3.1.1 Numerical Dictionary of Filtering Kernels

Finite SLoGS kernels are derived by opportunely sampling the 3D continuous

impulse-response Γ and the associated second-order derivative filtering kernel K.

Analogously, the discrete ellipsoidal tensorial matrix T is sampled in the Log-

Euclidean space. In the present thesis, templates of 5×5×5 voxels were adopted for

all the aforementioned instances. The adopted dictionary of filtering kernels (DFK)

was generated as a one-time configuration step prior to all filtering, and accounted

for a total number of 12 different SLoGS (i.e. DFK = DFK12) of varying shape and

curvilinear bending/tilting of the support. The cardinality of the dictionary, as well

as the standard deviations σ and the curvilinear parameters c, have been chosen to

best represent in a compact set the vascular elongated and curvilinear patterns on

a local scale as observed on real datasets. A list of parameters is detailed in table

3.1 for each SLoGS in the DFK, along with the discrete degenerate scalar kernels

Γδ , Kδ and Γν , Kν . Note that the first SLoGS in table 3.1 corresponds to the purely

linear kernel Γtube, as in Fig. 3.1.

Table 3.1: SLoGS parameters of the adopted DFK.

σ1 5.0 5.5 6.0 5.0 5.0 5.5 6.0 6.0 6.0 6.0 5.5 5.5
σ2 1.0 1.4 1.8 1.0 1.0 1.4 1.8 1.8 1.8 1.8 1.4 1.4
σ3 1.0 1.0 1.0 1.0 1.5 1.3 1.1 1.3 1.2 1.2 1.0 1.0
c1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.60 0.60 0.40 -0.40
c2 0.00 0.10 0.20 0.00 0.00 0.10 0.20 0.20 0.20 0.20 0.10 0.10
c3 0.00 0.00 0.00 0.03 0.05 0.03 0.01 0.03 0.02 0.02 0.00 0.00

The discrete impulse-response Γδ , Γν and derivative filtering kernel Kδ , Kν are
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defined as degenerate kernels for a finite 3×3×3 cubic template as

Γδ =

{
1 for v = [2, 2, 2] ,

0 otherwise ,
Kδ =

{
−26

27 for v = [2, 2, 2] ,
1

27 otherwise ,

Γν = 1
27 ∀v , Kν = 1

27 ∀v,

with v the indexed voxel position within the cubic template.

3.2 Tubular Saliency Map and Orientation Sampling

As recalled in Section 3.1 and similarly to [73, 97], the idea is to convolve finite

SLoGS kernels with a discrete vascular image in a multi-resolution, curvilinear-

and rotation-invariant framework, to obtain simultaneously the scalar connected

vesselness map and the associated tensor field. For simplicity and compactness,

the multi-resolution filtering will be detailed for a generic scale s. Scale-invariance

is achieved by keeping the size of the compact-support SLoGS fixed, while the size

of the image V varies accordingly with the multi-scale pyramid (Fig. 3.2). Also,

different spatial band-pass frequencies can be modulated with different σ of the

SLoGS kernels. V is down-sampled first at the scale s as in [32] to obtain Vdwn. An

Image Pyramid Vtube∪ S̃ Vs Ms

Figure 3.2: Synthesis of the vesselness maps: multi-scale processing image pyramid; early
tubular saliency map Vtube with a subset of voxel binary seeds S̃ and associated
principal orientations; connected vesselness map (Vs) and tensor field (Ms) at
scale s.
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early tubular saliency map Vtube is then determined as

Vtube = ∑ω ico
V (ω ico)

tube , (3.5)

with V (ω ico)
tube = max

(
0,Vdwn ∗K(ω ico)

tube

)
. (3.6)

The derivative filtering kernel Ktube is obtained from the discretized tubular kernel

Γtube(x,σ1 > σ2 = σ3,c = 0) (Fig. 3.1), whereas ω ico are the orthonormal bases

determined using an icosphere of subdivision level equal to 2. By using an ico-

sphere, a rather complete set of 3D orientations can be obtained by combining all

the orthogonal directions recovered as vectors joining any vertex to the centre of the

icosphere (Fig. 3.3). Specifically, by combining triplets of orthogonal directions,

multiple different orientations are sampled accounting also for rotations around the

principal axes. In particular, an icosphere of subdivision level equal to 2 produces

an initial number of 1080 different orthonormal bases, i.e. ωall
ico, which further re-

duces to 81 different orthonormal bases (ω ico < ωall
ico) when only the Γtube and Ktube

kernels are employed, due to their spatial symmetry.

The synthesis of an image-based scalar and tensorial filter response using

SLoGS would conversely account for all curvilinear kernels in the dictionary. Ide-

ally, each kernel should be steered along every possible orientation in 3D, then it

Figure 3.3: Orientation ω ico sampling using a representative icosphere of subdivision level
equal to 1. (Left) Subset of orientations accounting for rotations around a fixed
principal axis (red arrow). The complete set ωall

ico encodes all rotations around
the principal axes. For purely symmetric kernels, such as Γtube, ωall

ico boils
down to a reduced set. (Right) Representative subset of orientations from a
randomised sampling of the complete set of orthonormal bases ωall

ico.
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should be convolved with the down-sampled image Vdwn at each scale s. Such a

filtering process would exhibit an intractable complexity even for a rather compact

dictionary of filtering kernels. To overcome this computational bottleneck, the con-

volution space is slimmed down for a data-driven set of orientations determined on

the tubular saliency map Vtube.

The purely tubular filter response Vtube is indeed meant to provide an initial,

coarse, although highly-sensitive set of saliency features in Vdwn: the vessel spatial

locations and principal orientations (Fig. 3.2). Identifying such features has two

advantages; first it restricts the problem of the rotation-invariant filtering to an opti-

mal complexity in 3D, avoiding unnecessary convolutions; also, a localised subset

of vessel samples can be obtained. The vessel spatial locations are mapped as voxel

binary seeds S̃, and the associated set of principal orientations Θ forms a group of

orthonormal basis in R3. The seeds S̃ are defined as logical intersection in the form

of a binary map as

S̃ = div(∇Vtube)< 0 ∧ λ
Vtube
1,2,3 < 0 ∧ Vtube ≥ qp(V+

tube) , (3.7)

where div(∇Vtube) is the divergence of Vtube’s spatial gradient field, λ
Vtube
1,2,3 are the

eigenvalue maps derived from the voxel-wise eigendecomposition of H(Vtube), and

qp(V+
tube) is the p-quantile of the positive Vtube samples’ pool (Fig. 3.4).

With the seeds S̃, the orientations Θ are automatically determined as the set

of eigenvectors associated to λ
Vtube
1,2,3 (Fig. 3.2). The greater the intensity threshold

qp(V+
tube), the greater the image noise-floor rejection, the lower the retrieved seeds

and the fewer the details detected by Vtube. Also, the cardinality of the seeds S̃ and

of the associated orientations Θ is a trade-off with the convolutional complexity at

each scale.

3.3 Connected Vesselness Map and the Tensor Field
The filtering step consists in a convolutional analysis/synthesis signal processing

pipeline in 3D for the scalar filter response and in a voxel-wise weighted-sum us-

ing a high-dimensional patch-sweep approach for the tensor field. The filtering
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Vtube S̃ div(∇Vtube)< 0 λ
Vtube
1,2,3 < 0 Vtube ≥ qp(V+

tube)

= ∧ ∧

Figure 3.4: Seeds S̃ detection as in eq. 3.7. Representative slice where voxels in red, blue,
green colours satisfy the respective conditions. The resulting intersection is
highlighted with white seeds S̃.

step can be embedded in a fully parallel filtering framework, by considering the

down-sampled image Vdwn and the filtering kernels in DFK, each steered along ev-

ery principal orientation Θ. The integral connected vesselness map Vs, at any scale

s, has the form

Vs = ∑K∈DFK ∑θ∈ΘV (K,θ)
S , (3.8)

where V (K,θ)
S = max

(
0 ,Vdwn ∗K(θ)

)
(3.9)

is the filter response given the considered SLoGS kernel (Fig. 3.2). Similarly, the

boundaries and background scalar maps, i.e. Ds and Bs respectively, are determined

at each scale s

Ds =V dwn ∗Kδ , (3.10)

Bs = max(0 ,V dwn ∗Kν), (3.11)

where, in this case, V dwn is the image negative of Vdwn, i.e. assuming values in Vdwn

range within [0,1], the image negative is defined as V dwn = 1−Vdwn.

Similarly to defining a single tensorial SLoGS kernel patch T , the synthesis of

the image-based tensor fieldMs produces a high-dimensional vascular map repre-

sentative of both vascular directionality and anisotropy in the form of voxel-based

ellipsoids. Conversely from the single SLoGS kernel patch T , the image-based ten-

sor fieldMs is formulated with a voxel-wise sum of multiple tensor patches. These

account for all different curvilinear patterns in the dictionary of filtering kernels

and for all detected orientations Θ in 3D. In details, the tensorial synthesis is de-
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Figure 3.5: Representative synthesis of a tensor field in 2D. (Left-top) Steering a tensor
patch along the orientation θ with a rigid mapping in the Log-Euclidean space.
(Left-bottom) Re-sampling the steered tensor patch with adequate padding in
the Log-Euclidean space, to preserve the tensor patch size. (Right-top) Three
independent components of the 2D tensor patch in the Log-Euclidean space.
Six independent components are determined for a 3D tensor patch. (Right-
bottom) Sliding tensor patch-sweep for each independent component on the
tensor field domain. The resulting tensor fieldMs,(LE) is recovered by inde-
pendently processing each Log-Euclidean component.

fined here as a voxel-wise discrete weighted-sum of a tensor patch sliding the image

domain. Operations on tensors, such as steering, re-sampling, rotating the patch and

summing values, require the processing being performed in the Log-Euclidean (sub-

script LE) space. Matrix logarithm and matrix exponential operators are employed

to map tensors from the Euclidean space to the Log-Euclidean one and vice-versa

as in [11]. In particular, each of the 6 independent tensorial components is sepa-

rately synthesised in 3D, as a scalar volume of same size of Vdwn, with a sliding

patch-sweep. Each independent tensorial component is determined for each voxel

with a weighted-sum accounting for each curvilinear kernel in the dictionary, and

for each stearable orientation. In eq. 3.12, the single-component of the synthesised

tensor fieldMs is given as
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Ms,(LE) =
1

W ∑K∈DFK ∑θ∈Θ

∑

weights︷ ︸︸ ︷
V (v,K,θ)
S ·Γ(θ)

(K)
·Ξ ·

patch︷ ︸︸ ︷
T (θ)

K,(LE)


bve︸ ︷︷ ︸

patch-sweep

, (3.12)

with W = ∑
K∈DFK

∑
θ∈Θ

(
∑V (v,K,θ)

S ·Γ(θ)
(K)
·Ξ
)
bve

, (3.13)

where W is the cumulative normalizing weight-map accounting for the steered

curvilinear kernels. The patch-sweep operation is highlighted within round brack-

ets in both eq. 3.12 and eq. 3.13, where V (v,K,θ)
S is the modulating SLoGS filter

response centred at the specific voxel v, as in eq. 3.8. The Gaussian impulse re-

sponse Γ
(θ)
(K)

associated to the kernel K is steered along the orientation θ . The Hann

smoothing window Ξ is centred at the voxel v and blends the multiple overlapping

tensor patches in the neighbourhood bve of the considered voxel. In eq. 3.12, T (θ)
K,(LE)

is one of the six independent components of the discrete tensors patch T that has

been steered along the orientation θ , rotated and re-sampled in the Log-Euclidean

domain. Note that the neighbourhood bve is chosen to have the same size of the

single-component tensors patch T (θ)
K,(LE). Also, note that the synthesis of the tensor

fieldMs is not a convolution. Lastly, the synthesised tensor fieldMs is normalised

so that at each voxel it would represent an ellipsoid of unitary volume.

3.4 Multi-Scale Maximal Integration
The values of each scale-dependent contribution map are normalised within the

range [0,1]. Then each scale-dependent map is iteratively up-sampled (i.e. Ṽup
s )

and cumulatively integrated with a weighted sum as

V = ∑
s
Ṽs, (3.14)

with Ṽs = Ṽup
s−1 +max

(
αs(Vs · εs), Ṽup

s−1

)
, (3.15)

and εs = max(0 ,Ds · (1−Bs)) . (3.16)
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Figure 3.6: Representative synthesis of a tensor field in 2D. (Left) Patch-sweep element-
wise weighted-sum in the pixel (or voxel) neighbourhood as in eq. 3.12. Each
contribution is element-wise multiplied and summed over the one-to-one cor-
responding pixel (or voxel) in the tensor field domain. (Right) Representative
contributions of the cumulative normalising weight map W , as in eq. 3.13, for
a scalar SLoGS filter response V (v,K,θ)

S , for a scalar Gaussian impulse response
Γ
(θ)
(K) of the steered kernel, and for the 2D blending Hann window Ξ.

Analogously, each independent component of the tensor fieldM is integrated in the

Log-Euclidean domain as

M(LE) =
1
V∑

s
Ṽs ·Ms,(LE). (3.17)

The vesselness contributions are weighted here so that the resulting multi-resolution

maximal filter response is balanced and equalised across scales. The boundary and

background maps’ contributions in εs boost the spatial resolution of nearby tubular

structures. The intensities of V can be further skewed towards high, rather than

low, spatial frequency bands by modulating the gain αs. Here αs = 1 is adopted.

The Euclidean form of the resulting tensor field M is also enforced to have uni-

tary determinant at each voxel. In this way the tensors’ magnitude, expressed by

the connected vesselness map V , is decoupled from the anisotropic and directional

features throughout the whole multi-scale process. The synthesised and integrated

V andM maps constitute a consistent Riemannian vesselness potential.
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Table 3.2: Synthetic datasets of vascular trees generated with [82]

Label H Gaussian Salt&Pepper Shadows M Leaves

NLMH
a N (0,15) 0h 0 I 20
b N (0,50) 2h 0 II 30
c N (0,50) 10h 1 III 40

3.5 Experiments on Synthetic and Clinical Data
Since the SLoGS filterbank is part of the whole VTrails framework, the following

experimental results in figures and tables are indicated, for compactness, under the

‘VTrails’ (VT) label, where V and M are the scalar and tensorial components of

the Riemannian vesselness map, respectively.

In the following, as proof of concept, initial experiments employing the pro-

posed approach have been performed on synthetic phantoms and on some represen-

tative clinical angiographies. A 3D hand-crafted tortuous and convoluted phantom

(HCP) is designed to account for complex vessel patterns, i.e. branching, kissing

vessels, scale and shape variations induced by pathologies. Also a cerebrovascu-

lar Phase-Contrast MRI (PC) (0.86× 0.86× 1.0 mm) is considered for qualitative

assessment. The scalar vesselness responses of both HCP and PC images are de-

termined using the popular Frangi filter (FFR) [70], and Optimally Oriented Flux

(OOF) [106]. The connected vesselness map and the associated tensor field are si-

multaneously synthesised for the same testing dataset as previously described. In

first instance, the connectedness of the considered scalar maps is visually evaluated

in Section 3.5.1.1.

A more extensive and quantitative validation of the proposed method is pre-

sented on synthetic angiographies of vascular trees (128 × 128 × 128 voxels,

isotropic 1 mm) generated using VascuSynth [82] considering also three levels of in-

creasing noise and increasing terminal branches (Table 3.2). Here, the scalar vessel-

ness responses of the considered synthetic images are determined using the SLoGS

filterbank as described in the previous sections. Also, the classical Frangi filter

(FFR)1 [70], the Optimally Oriented Flux (OOF)2 [106], the current state-of-the-art

1http://www.tubetk.org
2https://www.mathworks.com/matlabcentral/fileexchange/41612-

http://www.tubetk.org
https://www.mathworks.com/matlabcentral/fileexchange/41612-optimally-oriented-flux--oof--for-3d-curvilinear-structure-detection


3.5. Experiments on Synthetic and Clinical Data 69

method by Ranking the Orientation Responses of Path Operators (RORPO)3 [131],

and the noise-reduction anisotropic Hybrid Diffusion with Continuous Switch filter

(HDCS)1 [129] are considered for the evaluation of the scalar vesselness responses.

In Section 3.5.1.2, the quantitative evaluation was performed on the histogram

of the scalar vesselness maps at different noise levels (NL). In detail, foreground

(fG) – i.e. the tubular structures – and background (bG) components are initially de-

termined from the uncorrupted images. The associated histogram overlap (fG∩bG)

is quantified for the obtained scalar filter responses from each method. Similarly,

the foregroud-background separation range (fG↔bG) is determined as the abso-

lute difference between the 90-percentile of the background intensities and the 10-

percentile of the foreground ones. The foreground interquartile range (fGIQR) is

determined as well as the index of the intensity spread for the enhanced tubular

structures. Lastly, the correlation of the foreground components with the uncor-

rupted images is evaluated with the Spearman correlation coefficients fGρ . Signif-

icant differences of the considered methods against the proposed one are evaluated

with a pairwise Wilcoxon signed rank test.

Lastly, both scalar and tensorial maps are shown for a representative set

of multi-modal clinical angiographies: a Rotational Angiography of cerebral

Aneurysms (RAA) from the Aneurisk4 dataset [6]; a cerebral time of flight MR

Angiography (MRA) from the Kitware5 dataset [28]; and a cerebral Computed To-

mography Angiography (CTA) (isotropic 0.4 mm). For these angiographies quali-

tative observations are drawn for the synthesised tensor field M in Section 3.5.2.

Analogously, the tensorial response from the initial hand-crafted phantom, for the

noisy Phase-Contrast MRI and for a representative case of the synthetic vascular

trees are visually evaluated, together with two intuitive toy-examples as a 2D vas-

cular tree and a clinical retinography, for completeness. In conclusion, a technical

compendium of the SLoGS filter-bank is provided, comprising the evaluation of the

optimally-oriented-flux--oof--for-3d-curvilinear-structure-
detection

3http://path-openings.github.io/RORPO
4http://ecm2.mathcs.emory.edu/aneuriskweb/index
5https://data.kitware.com/#collections
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Figure 3.7: Connectedness of the vesselness response maps for Frangi (FFR) [70], Opti-
mally Oriented Flux (OOF) [106], and proposed scalar connected vesselness
map on a digital phantom (HCP) example and on data of a phase contrast (PC)
cerebral venogram.

robustness of SLoGS parameters accounting for different dictionaries of filtering

kernels. Also the computational cost and performance benchmarking are given for

the proposed implementation.

3.5.1 Connectedness of the Scalar Vesselness Map

3.5.1.1 Qualitative Evaluation

Fig. 3.7 shows the connectedness of vessels recovered from popular vascular en-

hancers and curvilinear ridge detectors FFR and OOF together with the proposed

connected vesselness map for the synthetic hand-crafted phantom and the real PC

images.

On the synthetic phantom, FFR shows a fragmented and rough vesselness re-

sponse in correspondence of irregularly shaped sections of the structure. Also, the

response at the bifurcation is not smoothly connected with the branches (triangular

loop). Conversely, OOF recovers the phantom connectedness at the branch-point,

and the vesselness response is consistent along the tortuous curvilinear section,

however ghosting artifacts are observed as the shape of the phantom becomes irreg-
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ular (C-like) or differs from a cylindrical tube. Also, close convoluted structures,

which change scale rapidly in the HCP, produce inconsistent responses of OOF

(Fig. 3.7). The connected vesselness map shows here a strongly connected ves-

selness response in correspondence of both regular and irregular tubular sections,

with local maxima at the structures’ mid-line. The connectedness of the structures

is emphasized regardless of the complexity of the shape, and it resolves spatially the

tortuous curvilinear ‘kissing vessels’ without additional ghosting artifacts, despite

the smooth profile.

Similar results are observed on the PC dataset: FFR has a poor connected response

in the noisy and low-resolution image. Vessels are overall enhanced, however thin

and fragmented structures remain disconnected. Overall, the vesselness response

is not uniform within the noisy structures, where maximal values are often off-

centred. A more consistent response is obtained from OOF, where the connected-

ness of vessels is improved. A maximal response is observed at the mid-line of

vessels, however, noise rejection is poor. The connected vesselness map strongly

enhances here the vessel connectivity. The fragmented vessels of PC have a contin-

uous and smooth response in the proposed saliency map with higher values and a

more defined profile. Large vessels show solid connected regions with local max-

ima at the mid-line as in OOF. Conversely from OOF, the connected vesselness map

shows improved noise rejection in the background.

Fig. 3.8 show the scalar and tensorial vesselness maps synthesised using the

SLoGS filterbank with VTrails (VT), and the scalar response obtained with FFR,

OOF, RORPO and HDCS for a representative 3D synthetic vascular tree. VT scalar

component strongly enhances the vessel connectivity, where low-resolution, noisy

and fragmented vessels are recovered with a continuous and spatially smooth fil-

ter response (V). High values and more defined local maxima are observed at

the structures’ mid-line, in correspondence with more regular and irregular tubu-

lar cross-sections, even with degraded SNR, with improved noise rejection in the

background. In Fig. 3.9 the scalar and tensorial component of the synthesised Rie-

mannian vesselness map is shown only for the SLoGS filter responses with VTrails
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Original FFR OOF V

Degraded RORPO HDCS M

Figure 3.8: Representative filter-response for the synthetic degraded vascular trees [82]
with different vascular ridge detectors: Top: Original image, FFR, OOF and
V from VTrails. Bottom: Noisy and corrupted image NLb

II, RORPO, HDCS,
andM from VTrails.

in a representative set of clinical cerebrovascular angiographies. Also in this case,

the connectedness of the vasculature is emphasised regardless of the complexity of

its shape, by spatially resolving nearby, tortuous and highly curvilinear vessels.

3.5.1.2 Quantitative Evaluation

For the collection of synthetic vascular trees (Table 3.2), the respective histograms

are reported in Fig. 3.10, for the considered levels of increasing noise and for the

considered enhancing methods, i.e. the Frangi Filter, the Optimally Oriented Flux,

the state-of-the-art by Ranking the Orientation Responses of Path Operators, and

the noise-reduction anisotropic Hybrid Diffusion with Continuous Switch filter.

After filtering, the discrimination of both foreground, i.e. vessels, and back-

ground shows different trends for the considered enhancing methods (Table 3.3).

Foreground and background intensity distribution (Fig. 3.10) are obtained from the

comprehensive analysis of 30 synthetic images per noise-level.

By comparing the considered enhancing methods, the area of histogram over-

lap (fG∩bG), i.e. the confusion between foreground and background components,

is lower in VT and FFR, compared to all other methods in all cases. For increas-
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Figure 3.9: Representative filter-response for clinical cerebrovascular angiographies
(RAA, PC, MRA, and CTA) with VTrails using SLoGS: Original scan with
manual annotation gold standard (GS); scalar connected vesselness map V and
associated tensor fieldM.
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Figure 3.10: Foreground (fG) and background (bG) intensity distribution for degraded syn-
thetic vascular trees [82] using FFR, OOF, RORPO, HDCS and VT (V): His-
togram overlap for at different noise corruption levels.

ing noise, higher confusion between foreground and background is observed, with

significantly higher (p < 0.05) histogram overlap values. Similarly, the separation

of both foreground- and background-distribution tails (fG↔bG) shows comparable

values for FFR and VT with mild corrupting noise, whereas a reduced range of sep-

aration between foregound and background is observed for all FFR, OOF, RORPO

and HDCS, with significantly worse separation (p < 0.05) at moderate-to-severe

degradation levels. The intersection value of both foreground and background dis-

tributions is consistent in VT at different levels of corrupting noise, and lays in

the vicinity of the ideal threshold (Fig. 3.8, black dashed-line). The foreground

interquartile range (fGIQR) quantifies the smooth connectedness of the scalar filter

response for the tubular structures, where a more compact and limited range sug-

gests homogeneity and regularity of the scalar intensities in the neighbourhood of
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Table 3.3: Histogram overlap (fG∩bG), foreground vs. background separation range
(fG↔bG), foreground interquartile range (fGIQR), and foreground Spearman cor-
relation (fGρ ) with the uncorrupted image, for FFR, OOF, RORPO, HDCS and
VT scalar vesselness (mean±sd). † : significantly worse (p < 0.05) and ∗ : sig-
nificantly better (p < 0.05) than VT in paired Wilcoxon signed-rank test.

FFR OOF RORPO HDCS VT

N
L a

fG∩bG 0.01±0.02 0.19±0.02† 0.23±0.07† 0.02±0.03 0.01±0.01
fG↔bG 0.21±0.04 0.01±0.01† 0.01±0.01† 0.14±0.03† 0.20±0.03
fGIQR 0.44±0.03† 0.27±0.04 0.70±0.07† 0.51±0.04† 0.25±0.02
fGρ 0.78±0.05 0.70±0.04 0.70±0.14 0.87±0.07∗ 0.76±0.05

N
L b

fG∩bG 0.04±0.03 0.20±0.02† 0.51±0.05† 0.15±0.03† 0.01±0.01
fG↔bG 0.12±0.02† 0.05±0.01† 0.00±0.00† 0.03±0.01† 0.16±0.02
fGIQR 0.39±0.02† 0.27±0.02 0.51±0.09† 0.48±0.03† 0.24±0.01
fGρ 0.76±0.05 0.70±0.04 0.66±0.09 0.80±0.06∗ 0.74±0.04

N
L c

fG∩bG 0.05±0.02† 0.21±0.02† 0.52±0.03† 0.16±0.02† 0.02±0.01
fG↔bG 0.11±0.03† 0.05±0.01† 0.00±0.00† 0.02±0.01† 0.15±0.02
fGIQR 0.39±0.02† 0.27±0.03 0.49±0.07† 0.48±0.03† 0.25 ±0.02
fGρ 0.75±0.05 0.69±0.05 0.66±0.06 0.79±0.06∗ 0.73±0.05

enhanced structures. VT and OOF show comparable fGIQR in terms of smooth filter-

response connectedness, whereas significantly higher (p < 0.05) intensity ranges

are found for FFR, RORPO and HDCS, suggesting increased variability or more

distributed intensities for the filtered structures. High correlation coefficients (fGρ )

are found for HDCS, FFR and VT, where the intensities of the enhanced tubular-

like structures monotonically correlate with the respective uncorrupted ones. In this

case, HDCS has better performances (p < 0.05) for all noise levels, being the asso-

ciated foreground distribution rather skewed towards saturated hyper-intensities, in

line with the intrinsic noise-reduction filter design.

3.5.2 Synthesised Tensor Field

In Fig. 3.8, Fig. 3.9 and Fig. 3.11, the synthesised tensor fields show consistent

features. Their characteristics are in line with the connectedness of the scalar filter

response V: enhanced and connected vessels are associated with tensors of high

anisotropy, whereas background areas show a predominant isotropic component.

Also, tensors orientation smoothly captures vessel directionality. This is moreover

clear from Fig. 3.9, where it is possible to appreciate how the tensorial component
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determined with VTrails captures and effectively represents the directionality of the

underlying vascular structure also in an intuitive 2D dataset. Note that in Fig. 3.9

the magnitude of the ellipsoids representing the tensors is proportional to the scalar

connected vesselness response.

Considering the irreducible deterioration of rendering 3D structures in

2D, it is possible to visually assess the synthesised tensor fields with 3D

rotating video-clips available at https://www.youtube.com/channel/

UCC24bCFUO9uhUBLNQk1zjJw/videos.

3.5.3 Robustness of SLoGS Parameters

The analysis of the robustness of SLoGS parameters is perfomed here by consid-

ering the original DFK (here also identified as DFK12), and other 2 similar dictio-

naries of different cardinality, i.e. DFK6 and DFK18 consisting of 6 and 18 kernels

respectively. The evaluation of the filter response of the considered dictionaries ac-

counts for the voxel-wise Pearson correlation ρ(V,V) between the original image

and the resulting connected vesselness map, and the voxel-wise Pearson correlation

ρ(Mfit,M) of the tensor field directionality and anisotropy with the tensor gold

standard in the Log-Euclidean space. Performance benchmarking was also done in

terms of DFKs physical memory load and empirical computational time. For the

evaluation, a convoluted hand-crafted phantom presented in [139] was employed at

different sizes and resolutions (Fig. 3.12).

3D HCP 2D Synthetic Tree 2D Retinography

Figure 3.11: Synthesised tensor fields for: Left. 3D hand-crafted phantom (HCP). Right.
2D toy-examples of a synthetic vascular tree [82], together with a subregion
of a retinal angiogaphy.

https://www.youtube.com/channel/UCC24bCFUO9uhUBLNQk1zjJw/videos
https://www.youtube.com/channel/UCC24bCFUO9uhUBLNQk1zjJw/videos
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The correlation values of the synthesised maps with the respective ground-

truths are shown in Fig. 3.12. Since no publicly available ground-truth for direc-

tion and anisotropy exists, a gold standard Mfit was derived by fitting the tensor

field over the original phantom V . Similarly to eq. 3.4, positive-definiteness of

the ellipsoidal matrix is enforced in this case, by considering the absolute value of

the image-based Hessian eigenvalues. Overall, similar and comparable correlations

were observed for the considered DFKs, by processing the phantom at different im-

age size. This suggested reproducible results and overall good robustness of the

DFKs by adopting similar varying parameters. Clusters of values ranged between

0.82∼ 0.90 and 0.62∼ 0.69 for ρ(V,V) and ρ(Mfit,M), respectively. A slight de-

crease of the linear correlations was found for DFK6. Following this trend, a further

reduction of the dictionary cardinality may result in poor tensorial vesselness maps.

3.5.4 Computational Cost and Implementation

As observed in Section 3.3 and in Section 3.6, the complexity of the framework

hinges on the density (or sparsity) of different tubular structures in the image and on

the desired level of vascular detail. A performance analysis is shown in Fig. 3.12 for

the aforementioned set of DFKs combined with a phantom at multiple image size.

Both filtering time and physical memory load of the DFKs reported an underlying

power-law trend (dashed lines in Fig. 3.12) in the adopted implementation. The

estimated range of memory load was 30 ∼ 200 MB, and a maximum filtering time

Phantom V&M Correlation Performance Benchmarking

Figure 3.12: Parameters robustness and performance analysis on 3 DFKs and using a con-
voluted phantom of size 1.0×, 1.5× and 2.0× [50×50×100] voxels.
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of approximately 1 hour was observed for the complete DFK18 combined with the

most dense and detailed phantom. Heuristically, for a representative experiment on

clinical angiography – whole-brain isotropic 1 mm (approximately 200×200×150

voxels), an average processing time of 2 ∼ 5 hours was observed with the adopted

DFK = DFK12. This includes the full-scale-range analysis/synthesis of both scalar

and tensorial maps, together with the exhaustive connectivity paradigm, accounting

for an exploration neighbourhood of 10∼ 25 mm diameter.

The choice of DFK is justified as a trade-off between the correlation indices

previously observed, and the overall computational performance. The filter-bank

was numerically determined and tested in Matlab.

3.6 Observations and Remarks

In this chapter a vessel connectivity enhancement approach is introduced for the

proposed VTrails framework. By means of a novel dictionary of filtering kernels

(i.e. SLoGS), fragmented, bifurcating and tortuous vessels are recovered from 3D

angiographic images in a multi-scale, rotation- and curvature-invariant fashion. The

introduced filtering process yields a smoothly connected Riemannian vesselness

map, whose scalar and tensorial components capture the underlying directional-

ity of the vascular structures. Whilst other ridge detectors and vessel enhancement

methods may be particularly designed for noise-reduction purposes and some others

can provide a raster vascular segmentation, as observed in Chapter 2, the proposed

method does not aim at segmenting vessels by thresholding the resulting vesselness

maps. By using the SLoGS filterbank within a coherent mathematical framework,

the simultaneous synthesis of both scalar and tensorial vesselness maps consistently

embeds smoothly connected tubular responses together with the underlying vascu-

lar anisotropy and directionality. Contrary to Cetin et al. [37, 38], where tensors

are derived from fitting the image data, the proposed method has the advantage

of generating high-order vascular maps with few curvilinear templates. The ves-

selness maps recovered with SLoGS was less sensitive to noise and artifacts, and

did not require any further regularisation or positive-definiteness constraint, since
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anisotropic tensors are well defined for the described smooth and compact Gaussian

kernels. Results in Sections 3.5.1.1 and 3.5.1.2 demonstrate the robustness of the

proposed method to different levels of corrupting noise. This mainly stands as a san-

ity test with regards to traditional and popular tubular ridge detectors and enhance-

ment techniques [70,106,129,131] in cases of images with severely impaired SNR.

Regarding the enhancement and reconstruction of tortuous and convoluted tubular

structures, as observed by Aylward and Bullit [16], the multi-resolution scale fac-

tor and the seed points cardinality introduced in 3.3 play also here a critical role.

On the one hand, they allow for a fully automatic processing pipeline; on the other

hand, they modulate the computational complexity of the filtering step. A full-scale-

range analysis/synthesis of the multi-resolution image pyramid should account for

vascular structures of different size. Also, a reasonable choice for the seed points

cardinality, here expressed with a fixed seeds p-quantile threshold qp = 0.75 as in

eq. 3.7, should trade-off between the computational complexity and the informa-

tive content of the filter-response. From the presented experiments, a low quantile

(i.e. high seeds cardinality) can severely increase the complexity of the filtering

step, without introducing information to the resulting scalar and tensorial (V and

M) maps; whereas, a high-value quantile can reduce dramatically the complexity,

and therefore the computational time, to the detriment of vascular details.

In the following chapter, both the scalar and high-order vascular components

are combined as a smooth Riemannian metric for automatically inferring the un-

known connected vascular network from a subset of initialization nodes.



Chapter 4

Vascular Connectivity

As observed in Section 1.3, a vectorial vascular representation should compactly

encode the connected geometry of the underlying vascular network. On the basis

of traditional topological reconstructions as proposed by Dokládal et al. [60], and

Saha et al. [167, 168], the extraction of connected neighbouring structures is ad-

dressed with the centerlines derived from a given raster segmentation by means of

a skeletonisation process. In some cases, simplicial or cubical complex frameworks

may be required when topological busy junctions are found in 2D or 3D finite raster

grids, as suggested by Cardoso et al. [31], Cointepas et al. [49], Couprie [50], and

Dłotko and Specogna [59]. Alternatively, the topological skeleton can be obtained

with shape-preserving morphological operators, e.g. erosion and opening. The for-

mulation presented so far, however, does not aim at segmenting vessels by adopting

an optimal raster thresholding. As reported in Section 2.1.3, other formulations

proposed by Kimmel and Sethian [98, 175] can extract l0 level-sets, consisting in

minimal paths (i.e. geodesics), to implicitly define connecting branches. Following

these approaches, and upon the estimation of a prior high-order vascular represen-

tation, which coherently embeds connected non-linear tubular responses and their

associated anisotropic tensor field (in Chapter 3), the extraction of the connected

network of vessels is addressed here with an anisotropic level-set combined with a

connectivity paradigm. Under the assumption that vessels join by minimal paths,

the proposed framework VTrails infers the unknown fully-connected vascular graph

from a subset of nodes automatically estimated and enforces the resulting topology
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to be a connected network.

4.1 Joining Vessels by Minimal Paths
Following the formulation introduced by Benmansour and Cohen [20] for the

carotid bifurcation segmentation, as in [83], an anisotropic front propagation algo-

rithm is defined so that in combination with a connectivity paradigm it joins multiple

sources S propagating concurrently on a Riemannian speed potential P . A geodesic

path π is determined by minimising an integral positive energy U associated to the

set of all possible paths joining two points on the domain of the speed potential as

U(x) = min
all π

∫
π

P
(
π(s),π ′(s)

)
ds (4.1)

where s is, in this case, the arc-length parameter. For each point x in the domain,

the Eikonal partial differential equation is satisfied

‖∇U(x)‖= 1; (4.2)

U(p) = 0. (4.3)

Given the spatial location p of a source S and a target point x in the domain, the

energy U can be ultimately regarded as a time-of-arrival map for a front propagating

from p with oriented velocity as in the speed potential. Null energy is initialised

for each point p for the set of source(s) S of the front propagation. A numeric

solution to the is computed by the anisotropic Fast Marching (aFM) algorithm [20].

The adopted speed potential P describes the infinitesimal distance along the path

π , relative to the anisotropic tensor M. In this case, M is the same tensor field

synthesised in Section 3.3, which anisotropically modulates the direction of the

front propagation in the domain. The adopted magnitude of the speed potential is

proportional to the inverse of the scalar vesselness map V as synthesised in Section

3.3. Note that the anisotropic propagation is a generalised version of an isotropic

propagation medium, where the tensor is identically defined asM≡ I3 (Identity).

The locations corresponding to the initially detected seeds S̃, as in Section 3.3,
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Initialization FM Steps Collision, Path Extraction and Update Convergence

S̃ Descent . . . Π← p i Π← p i+1 Π← p i+2 Stop Criterion

U
∪

Tr
ia

ls
I

P ∪S (A∪B)u (A∪B)u (A∪B)u Geodesic U

Figure 4.1: Greedy and sequential acyclic connectivity paradigm on a 2D synthetic phan-
tom. From Initialisation to Convergence, the intermediate steps are shown at
Collision, Path Extraction and Fast Updating Scheme. Geodesic values are
represented with a shaded colormap, whereas colliding, merging and updating
regions are shown in solid colours.

are first aligned to the local maxima of the scalar component of the speed potential,

determining a centred set of source seeds S. On a 3D finite grid, the anisotropic Fast

Marching front propagation is discretised and solved for neighbouring simplicial

elements of a voxel, as described in [21].

In the following section an acyclic and greedy connectivity paradigm is de-

scribed, where the anisotropic Fast Marching (aFM) is run in conjunction with the

concurrent extraction of a set of multiple connected geodesics Π, until convergence.

This automatically determines a completely connected vascular network in the form

of an acyclic graph, i.e. a vascular tree.

4.2 Acyclic Connectivity Paradigm
With the aim of extracting a vascular tree in one-shot, a multi-sources front prop-

agation is introduced. The fronts independently propagate from each source, and

concurrently grow on the domain with associated energy U . For each source, neigh-

bouring explored voxels form connected regions labelled in a Voronoi Index map I.

Each propagating region is internally subdivided into Front, Visited, and Far voxels

according to a Tag map T , representing the state of each grid-point following the

anisotropic Fast Marching scheme as in [20]. The basic idea to recover the connec-

tivity is that a geodesic path is determined when two different regions first collide
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due to the growing fronts. Following a greedy first-come-first-served regions colli-

sion detection, a sequence of connecting minimal paths are iteratively obtained by

exploring the speed potential domain in one-shot. In particular, minimal paths are

determined by back-tracing the energies U in the respective collided regions. Then,

the collided regions are merged, and further path extraction is inhibited within the

merged regions. The connecting geodesic π is extracted minimising U at the col-

lision grid-points. The energy U , the Voronoi index map V , and the Tag T , are

then updated within the collided regions, so that these fuse as one and the front is

consistent with the unified resulting region. This paradigm is continued until all

regions with different labels collide and merge in a single connected component. A

schematic summary of the sequential algorithm is shown in Fig. 4.1, and further

details are given for each algorithmic step. An intuitive visualisation of the acyclic

connectivity paradigm is available at https://youtu.be/DBGqYcxZD30

4.2.0.1 Initialisation

As mentioned in Section 4.1, the seeds S̃ are first aligned towards the vessels’ mid-

line with a constrained gradient descent on the scalar vesselness saliency map, re-

sulting in an initial set S of centred sources of cardinality p. All 26-connected

components from the set of seeds S, being those either segments or isolated points,

are treated as paths π
(S)
p . These initialise the aFM maps, so that the energy is null

U(π(S)
p ) = 0; the Voronoi index map is associated to the p-th label I(π(S)

p ) = p; and

the state of the grid voxels is set to ‘front’ T (π(S)
p ) =Front. Note that the considered

initial connected components also constitute the initial set of geodesics π
(S)
p →Π.

4.2.0.2 Fast Marching Step

The aFM maps are updated by following an informative propagation scheme. In

the aFM step the geodesic functional U is minimised by considering the wave-front

propagation through the 3D discrete 48 simplexes connected components within the

26-neighbourhood of the Front grid-point with minimal U . Implementation details

can be found in [20].

https://youtu.be/DBGqYcxZD30
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4.2.0.3 Connecting Path Extraction

Collision is detected when Visited grid-points of different regions are adjacent. A

connecting π is determined by linking the back-traced minimal paths from the colli-

sion grid-points to their respective sources πA,πB ∈Π with a gradient descent on U

(Fig. 4.1). The associated integral geodesic length Uπ =
∫

πB
πA
Udπ is computed and

the connectivity in the set of geodesics Π is updated in the form of an adjacency

list. Lastly, the grid-points of the extracted π are further considered as path seeds

in the updating scheme, since bifurcations can occur at any level of the connecting

minimal paths.

4.2.0.4 Fast Updating Scheme

A nested aFM is run only in the union of the collided regions (A∪ B) using a

temporary independent layer of aFM maps, where Ũ(π) = 0, T̃ (π) = Front, and

T̃(A∪B) = Visited. Ideally, the nested aFM is run until complete domain exploration.

However, to speed up the process, the propagation domain is divided into the solved

and unsolved sub-regions, and the update is focused on the latter (A∪B)u (Fig. 4.1).

The boundary geodesic values of (A∪B)u equal the geodesic distances U at the col-

lision grid-points. Lastly, the aFM maps are updated as

U(A∪B)u = min{U(A∪B)u , Ũ(A∪B)u} (4.4)

I(A∪B) = min{IA, IB}, (4.5)

T(A∪B)u = T̃(A∪B)u . (4.6)

4.2.1 Isotropic vs. Anisotropic Front Propagation

As observed in [20], the choice of the front-propagating potential P can be crucial

for the geodesic path extraction. In Fig. 4.2 the comparison of the level-set iso-

curves is shown for an isotropic front-propagation against an anisotropic one on the

same phantom used in Fig. 4.1. Here, as sanity test of the implemented method, full

exploration of the image domain is performed. However, no connectivity paradigm

is enforced. Observing the pattern of the iso-contours, the connecting segments,



4.2. Acyclic Connectivity Paradigm 85

i.e. geodesics, for tubular structures obtained with the anisotropic level-set would

likely lie on actual vascular portions, limiting therefore possible short-cuts within

a greedy approach. The elongation of the level-set profiles accordingly follows the

anisotropic directionality of the enhanced structure. In Fig. 4.3, two examples are

presented in 2D; a synthetic phantom of a convoluted structure and a portion of

a retinal angiography. By coupling the front propagating level-set with an acyclic

connectivity paradigm, the extracted fully connected tree is shown for both isotropic

and anisotropic propagation. In both cases, the greedy connectivity paradigm, cou-

pled with the isotropic front-propagation resulted in erroneous short-cut(s) of the

locally convoluted structures. By considering the same initialization, the result-

ing topology of the network shows several connecting differences. In particular, in

the retinal image, where the vascular structure shows a more complex pattern, the

graph topology and connectivity changes consistently. From the intuitive example

in Fig. 4.3, the isotropic version of the greedy connectivity paradigm produced mis-

connected branches even in larger vessels, compared to the anisotropic version, due

to the spatial neighbouring of the tubular structures themselves. In the following

section, as well as in the remainder of this thesis, any front-propagating level-set

will account for the anisotropic formulation. In Section 4.2.2, the proposed acyclic

Figure 4.2: Comparison of iso-curves for the isotropic and anisotropic level-set propaga-
tion on the given Riemannian potential P . Anisotropic iso-contours show a
more elongated pattern and profile, accordingly with the local anisotropy of the
potential.
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Figure 4.3: Geodesic extraction and fully connected tree using the acyclic connectivity
paradigm with both isotropic and anisotropic front propagations. Left: syn-
thetic phantom of convoluted structure, where short-cuts occur for the isotropic
level-set. Similarly, short-cuts are found in the retinal subregion, even for large
vessels (red circle).

connectivity paradigm is further evaluated for synthetic vascular trees and for a rep-

resentative set of clinical angiographies.

4.2.2 Experiments on Synthetic and Clinical Data

Synthetic data together with few representative clinical angiographies were

first processed as described in Chapter 3 to extract the connected vesselness

map and the associated tensor field. Differences in the reconstructed topol-

ogy of the resulting vascular trees are quantitatively reported in the following

section in terms of accuracy, precision and recall for the detected connected

branches. In particular, the robustness of the topological reconstruction is eval-

uated with respect to image degradation for a set of 20 synthetic vascular trees

obtained from Vascusynth [82] and on a cerebral Time of Flight MRI (TOF)

(0.36× 0.36× 0.5 mm) and a carotid CTA (0.46× 0.46× 0.45 mm). The syn-

thetic dataset of vascular trees (64x64x64 voxels) was generated considering

two levels of additional noise: N1: N (0,5)+ Shadows: 1 + Salt&Pepper: 1h;

N2: N (0,10)+ Shadows: 1 + Salt&Pepper: 2h. Vascular network ground-truths
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Synthetic Vascular Trees [82] Clinical Angiographies
Image GT VTrails Image GT VTrails

N
1
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TA

N
2
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Figure 4.4: Comparison of the vascular connected trees against the respective ground-truth
for a representative set of synthetic data, and for a carotid CTA and for a middle
cerebral artery TOF MRI. Note that main branches are correctly identified and
connected.

(GT) are given in the form of connected centerlines in the voxel-wise image for all

the synthetic images and for both TOF and CTA, respectively. Before the quantita-

tive evaluation, the resulting reconstructed topology of connecting geodesic paths

Π is verified to be an acyclic graph with a depth-first search, then the topology is

compared against the respective GT.

4.2.3 Accuracy, Precision and Recall

Representative examples of degraded images from the synthetic vascular trees and

the respective GT are shown in Fig. 4.4 together with the connected graphs ex-

tracted by the proposed acyclic connectivity paradigm. In the same fashion, results

are shown for the real angiographies TOF and CTA in Fig. 4.4. Qualitatively, the

extracted set of connected geodesic paths shows remarkable matching with the pro-

vided GT in all cases. First, the acyclic nature of the graph is verified: neither

cycles, nor spurious degenerated graphs, i.e. individual unconnected nodes, were

found, meaning that the extracted set of connected geodesic paths Π represents a

fully-connected geodesic tree. Precision and recall are then evaluated for the iden-

tified branches. The accuracy, precision and recall were determined voxel-wise for

each branch by setting an arbitrarily small tolerance factor ρ . Also, error distances

are determined with the binary distance map of the connected tree is evaluated at
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GT. Average errors (ε) precision and recall are reported (mean±SD) in Table 4.1.

Note that no pruning of any spurious branches is performed in the analysis. Over-

all, good results were observed from the initial validation, considering the proposed

fully-automatic network extraction paradigm. Missing branches occurred in cor-

respondence of small vessels, where the effect of degradation is predominant: tiny

terminal vessels completely occluded by the corrupting shadows (from VascuSynth)

will not automatically produce propagating seeds, therefore they cannot be recov-

ered under an automatic configuration. Globally, ε values are comparable to the

evaluation tolerance ρ , suggesting that the extracted connected geodesic paths lie

in the close neighbourhood of the vessels’ centerlines. Moreover, the reported val-

ues are comparable regardless the level of degradation. As a global observation,

the anisotropic formulation of the proposed acyclic connectivity paradigm reduces

mis-connections and possible short-cuts on major structures of the vascular tree. As

a further remark, the local collision and fast update scheme presented in Section

4.2 represents an optimal solution for the extraction of simplified networks, where

the exploration of the image domain becomes computationally intensive and few

structures are present, even in case of low signal-to-noise ratio. Also, in this case

and for the proposed vascular application, no anatomical priors of the network are

enforced, other than its acyclic nature.

4.3 Exhaustive Connectivity Paradigm
The assumption of a vascular tree, in general, provides a natural and anatomically

valid constraint for 3D cerebrovascular images, with few – sometimes rare – ex-

Table 4.1: Connectivity tree error distances, precision and recall (mean±SD). Left: syn-
thetic vascular tree at degradation levels N1 and N2. Note the invariance of all
metrics regardless the degradation level. Right: TOF and CTA.

Synthetic Vascular Trees [82] Clinical Angiographies
N1 N2 TOF CTA

ε

[v
ox

el
s] 2.15±0.65 2.09±0.37

[m
m

] 1.07±2.65 1.1±1.63
ρ 2 1.42 1.57

Precision 88.21±2.58% 87.93±2.56% 77.12% 89.67%
Recall 68.31±7.44% 69.18±3.69% 89.49% 83.97%
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ceptions, such as the complete circle of Willis and the fenestration of the Basilar

Artery and further rare macroscopic anastomoses observed in the posterior cere-

bral circulation [22, 91, 197, 209]. Although the acyclic connecting paradigm pro-

posed in the previous section provides an initial and fairly accurate estimation of

the underlying vascular tree, the explicit greediness of the extraction scheme is in-

compatible with cyclic vascular topologies. Also, uncertain, ambiguous and poorly

spatially-resolved structures, such as foreshortening, neighbouring and convoluted

vessels more often observed in clinical angiographies, usually produce cyclic vas-

cular aberrations which result in geodesic short-cuts and branch mis-connections

due to kissing-vessel artifacts. These non-idealities potentially disrupt automatic

extraction of the vascular network and stand as the main limitation of the proposed

acyclic connectivity paradigm, even when coupled with an optimal anisotropic front

propagation.

As a further contribution of this thesis and in order to introduce a more flexible

and generalisable connectivity paradigm to VTrails framework, the acyclic con-

straint is relaxed in the following section. This is achieved by simultaneously and

iteratively extracting multiple and independent connecting minimal paths until con-

vergence. This allows having a novel redundant topological representation of the

vascular structure in the form of an over-connected geodesic graph Π. The fol-

lowing exhaustive geodesic search of connecting minimal paths explores the whole

image domain and accounts for a complete connectivity pattern by considering all

possible seeds pairs. Also, an adaptive and self-organising connecting strategy is

introduced here to automatically refine the network topology regardless the seeds’

initialisation. Lastly the inference of the underlying anatomical vascular trees is per-

formed by extracting the minimum spanning trees of the fully-connected network.

Note that multiple trees can be inferred from the same over-connected geodesic

graph.

4.3.0.1 Initialization

As in Section 4.2, the set of binary seeds S̃ is first aligned towards the vessels’

mid-line with a constrained gradient descent on the connected vesselness map V , so
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Initialisation Anisotropic Front Propagation Geodesic Extraction

P ∪S UpA UpB FAB ` πAB

Figure 4.5: Exhaustive geodesic connectivity paradigm: Anisotropic level-set from the
Riemannian potential P and subsequent extraction of a minimal path from a
pair of initial seeds pA and pB. – The paradigm follows in Fig. 4.7

that the aligned individual seeds, together with the endpoints and branch-points of

possible connected components, constitute the initial set of source points p ∈ S, and

initialise the anisotropic front propagation (Fig. 4.5).

4.3.0.2 Connectivity Paradigm

For any source point p, propagating on P , the geodesic energy map Up is itera-

tively computed and updated until complete exploration of the potential’s domain

(or up to a pre-determined spatial neighborhood of p for computational efficiency),

similarly to a front wave arrival-time map. In this case, the implementation of the

whole anisotropic front propagation algorithm follows the formulation proposed by

Konukoglu et al. [102]. Given a pair of source points, an energy functional FAB is

determined as

FAB = (UpA +UpB)+ |UpA−UpB|. (4.7)

The monotonic profiles of both geodesic energy maps UpA and UpB are so com-

bined to obtain a locus of minimal energy in the correspondence of the connecting

path between pA ans pB. Fig. 4.6 shows a representative example of geodesic energy

profiles in 1D, for a generic case of two source points spatially located on the x-axis.

For the energy functional FAB, both the intermediate contributions (UpA +UpB) and

|UpA−UpB| are depicted in green and magenta solid lines, respectively. The first
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Figure 4.6: Representative example of geodesic energy profiles for a 1D generic case with
two source points pA and pB. (Top) Geodesic energy profiles UpA and UpB

are given in blue and red solid lines respectively for the pair of source points.
(Centre) Intermediate energy contributions: (UpA +UpB) in green; |UpA−UpB |
in magenta solid lines. Respective local minima (circles) and global minima
(bullets). (Bottom) Resulting energy functional FAB, with a unique global min-
imum in the correspondence of mAB.

contribution (UpA +UpB) shows an increasing monotonic profile outside the spatial

range enclosed by pA and pB, however several local minima (green circles in Fig.

4.6 with the global minimum as a green bullet) are observed within the same spatial

range. Conversely, the second contribution |UpA−UpB| shows a unique global min-

imum (magenta bullet in Fig. 4.6) within the spatial range enclosed by pA and pB,

whereas local minima (magenta circles in Fig. 4.6) can be found outside the same

spatial range. By independently considering either one of these two contributions,

the geodesic path extraction between pA and pB is not guaranteed to converge to the

desired solution. Each possible pair of source points, pA, pB, is connected with a

geodesic minimal path πAB, by back-tracing FAB from the source points pA and pB

to the respective connecting geodesic point of minimal energy mAB, identified as

FAB (mAB) = min(FAB) (4.8)

as shown in Fig. 4.5. The connecting geodesic path πAB is therefore obtained by
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the union of two geodesics, each of which is traced with a gradient descent on FAB.

From Fig. 4.6 it is possible to observe how the resulting energy functional FAB

exhibits an increasing monotonic profile outside the spatial range enclosed by the

source points pA and pB, and, at the same time, it presents a unique global minimum

(black bullet in Fig. 4.6 coinciding with the only local minima as a circle) in the

correspondence of the point mAB. This allows to solve the geodesic back-tracing of

FAB, providing therefore a unique minimal path πAB connecting the pair of source

points.

The associated integral geodesic length F(πAB) =
∫ pB

pA
FABdπ is determined

along the extracted path πAB and the connectivity of the graph Π is accordingly up-

dated. Here, Π can be directly expressed adopting a canonical undirected weighted

graph notation as Π = G (N,E) comprising a set of nodes N, i.e. the set of points

p, and a set of edges E, i.e. the set of connecting paths π , respectively. By using

a symmetric adjacency matrix, the integral geodesic length F(πAB) is then attributed

to the edge’s weight, which connects the pair of nodes (pA,pB). It is clear that, by

terminating the minimal paths extraction only with the initial set of source points

S, the topology of the resulting geodesic connecting graph Π would hinge on the

initialisation, thus on the initial guess of the nodes, and would also constrain the

connecting paths (i.e. the vascular branches) to connect (or bifurcate) only in cor-

respondence to the initial set of source points in S.

4.3.0.3 Adaptive Geodesic Graph

With this view, an adaptive and self-organising connectivity strategy for the

geodesic graph Π is introduced in the framework, so that the topology of the graph

itself will be refined and updated in a completely automatic fashion. This is ob-

tained by 1) extracting the minimum spanning tree (MST) of Π, i.e. ζ = MST (Π);

2) increasing the density of source points (nodes) at each connecting path (edge) of

ζ , and 3) running the connectivity paradigm as in Section 4.3.0.2 among the new set

of nodes and the existing ones. Note that the adaptive connectivity strategy employs

an iterative process that will converge to a pre-defined spatial node density. In detail,

the minimum spanning tree ζ is defined as the subset of the connected edges that
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Fully Connected Graph Adaptive Geodesic Refinement Convergence

Π ζ = MST (Π) ζ ∪pζ Resulting ζ

Figure 4.7: Exhaustive geodesic connectivity paradigm: topological inference of the over-
connected graph Π and of its geodesic minimum spanning tree ζ . Vector
topology of the over-connected graph Π (first iteration), of its minimum span-
ning tree ζ (first iteration), and resulting tree topology at convergence. – The
paradigm starts in Fig. 4.5

acyclically link all the nodes together by minimising the sum of total edge weights.

Here, the edge weights are the integral geodesic lengths F . Therefore the resulting

ζ is the connected subset of geodesic minimal paths. Given its generic connecting

path π
ζ

AB, a new source point pζ

C is generated between pζ

A and pζ

B so that pζ

C is the

respective midpoint of the geodesic path π
ζ

AB, and

‖pζ

A−pζ

C‖ ≥ µ , and ‖pζ

B−pζ

C‖ ≥ µ. (4.9)

µ is here the Euclidean spatial threshold for contiguous nodes and constitutes the

pre-defined maximal spatial node density. The new set of source points pζ will be

connected with the existing ones following the connectivity paradigm described in

Section 4.3.0.2, updating therefore the adjacency matrix that increases in size at

each iteration. The process terminates when the pre-defined spatial node density is

reached. Note that Π is iteratively refined and the topology, as well as the associated

MST, may subsequently change from its initial guess (as in Fig. 4.7, first iteration

vs. convergence). Also, the smaller µ , the more dense the set of pζ , the finer the

localisation of branch-points and the greater the complexity of the over-connected

graph Π. The inference of a geodesic vascular network, as formulated, determines
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a topological refining scheme similar to an evolutionary process. In other words,

at each automatic refinement step, all the newly generated seeds of the set pζ are

associated with a pair of ancestor nodes (and obviously an ancestor edge). It can

be observed how the iterative inference of the underlying network shows a hier-

archical and generative scheme, i.e. it follows a phylogenetic generation, at each

iteration before convergence is reached. An intuitive visualisation of the exhaustive

connectivity paradigm is available at https://youtu.be/gABd0leyFGs

4.3.1 Vascular Minimum Spanning Tree

The resulting vascular trees ζ are finally determined as the minimum spanning trees

of the connected components in Π, as in Section 4.3.0.3, at convergence. Note that

for more complex vascular topologies, a set of minimum spanning trees (i.e. a forest

of geodesic MSTs) can be extracted for the underlying anatomical tree-like struc-

tures under a specific region of interest (ROI), by means of a co-registered binary or

multi-class fuzzy mask. Here, the integral Euclidean length L(πζ) and the aforemen-

tioned integral geodesic length F(πζ) of each connecting path πζ can be employed

to modulate the extension of the resulting vascular trees ζ . Undesired leaves and

possible spurious branches detected by the exhaustive connectivity paradigm can

be pruned using L(πζ) and F(πζ), respectively. Lastly, by identifying a root, the

hierarchical topology of the undirected vascular trees is automatically determined,

and each node is assigned with an univocal parent-child relation.

4.3.2 Experiments on Synthetic and Clinical Data

To validate the exhaustive connectivity paradigm towards the extraction and infer-

ence of the underlying vasculature, a comprehensive set of synthetic vascular trees,

as well as an extensive set of multi-modal cerebrovascular angiographies were con-

sidered. In details, a collection of 10-images datasets of synthetic vascular trees

(128×128×128 voxels, isotropic 1 mm) was generated using VascuSynth [82] as

described in Section 3.5 considering three levels of increasing noise and increas-

ing terminal branches (Table 3.2). Among the real clinical angiographies, a total

https://youtu.be/gABd0leyFGs
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of 24 Rotational Angiographies of cerebral Aneurysms (RAA) from the Aneurisk1

dataset [6], 18 cerebral time of flight MR Angiographies (MRA) from the Kitware2

dataset [28], 10 head-neck Phase Contrast (PC) MR venograms (0.86×0.86×1.00

mm); and 10 cerebral Computed Tomography Angiographies (CTA) (isotropic 0.4

mm3) were considered. Representative examples of the cerebrovascular angiogra-

phies have been shown in Section 3.5.1.1 , Fig. 3.9 for the visual assessment of the

connected vesselness maps. For each synthetic and real angiography, the vascular

network ground-truths (GT) or manual annotations Gold Standard (GS) are given

as spatial centerlines.

4.3.2.1 Accuracy Scores and Measures

In the following experiments, the inferred connected topologies are quantitatively

assessed in the form of trees, under a geometrical and topologically-aware evalua-

tion framework.

Geometrical Accuracy. A symmetric error measure εS and the average Hausdorff95%

distance εH are considered to evaluate the spatial and geometrical accuracy of the

recovered vascular trees. In particular, the spatial coordinates of all the extracted

connected branches (i.e. all the minimal paths of the tree) and the spatial coor-

dinates of the specific branch-points are evaluated with respect to the available

ground-truth or gold standard in a tolerance neighbourhood of 5 mm. The symmet-

ric error measure εS is determined by averaging the Euclidean distances between the

closest points of considered spatial instances. The average Hausdorff95% distance

εH is determined in a robust way as the mean of the maximal Euclidean distances

between the closest points of the considered spatial instances. Note that with the

notation ε
ζ

S and ε
bp
S the symmetric error is given for all the extracted connected

branches in the trees (ζ ) and for the specific branch-points (bp), respectively. Sim-

ilarly, with the notation ε
ζ

H and ε
bp
H the average Hausdorff95% distance is given for

all the branches of the trees and for the specific branch-points.

1http://ecm2.mathcs.emory.edu/aneuriskweb/index
2https://data.kitware.com/#collections

http://ecm2.mathcs.emory.edu/aneuriskweb/index
https://data.kitware.com/#collections
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Topological Accuracy. The topology of the trees is compared against the GT (or

GS) using the tree edit distance (TED)3 [150] only for the synthetic vascular trees,

whereas the spatially-aware DIADEM4 score [75] is computed for all the considered

datasets.

The tree edit distance is defined for a pair of trees as the minimum-cost se-

quence of node-edit operations that transform one tree into another. The considered

node-edit operations account for deletion, insertion and renaming the node. Each

node-edit operation is given a cost; here node insertion and deletion are equivalently

associated to a unitary cost, whereas renaming the node is given a null cost, as the

considered trees do not have labels. Since there are multiple sequences of node-

edit operations able to topologically transform one tree into another, the tree edit

distance provides the sequence with the minimal cost.

The DIADEM score, originally designed to compare the morphological re-

construction of two different neurons, comprises a multi-step alignment process

between a target tree and a test tree, by spatially registering both branch-points

(nodes) and branches (edges) given an Euclidean distance threshold. The subse-

quent tree topological matches are then weighted by the evaluated spatial distances

and integrated over the size of the sub-tree to which a connection leads.

By using these topological scores, differences are evaluated in terms of

branches and branch-points spatial correspondence with DIADEM, and in terms of

graph adjustments, i.e. node insertion and deletion with TED respectively. While

the DIADEM metric is bounded by [0,1], 1 being the perfect match, the TED score

has no upper bound. Low TED scores represent higher topological matching, how-

ever, a comparable index of trees overlap is obtained as

TEDov =

(
1− TED(ζ1,ζ2)

TED(ζ1,{})+TED(ζ2,{})

)
·100%, (4.10)

where ζ1 and ζ2 are the trees to be compared, and {} represents a void graph. TEDov

has the same bound [0,1], 1 being the perfect match for isomorphic trees.

3http://tree-edit-distance.dbresearch.uni-salzburg.at
4http://diademchallenge.org/metric.html

http://tree-edit-distance.dbresearch.uni-salzburg.at
http://diademchallenge.org/metric.html
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4.3.2.2 Semi-Automatic Connectivity - Synthetic Trees

In the following experiment the accuracy of vascular network inferred with VTrails’

exhaustive connectivity paradigm (Section 4.3) is evaluated for different vesselness

potentials, given the same seeds initialisation, i.e. the end-points of the terminal

branches of the synthetic vascular trees. In detail, by adopting a manual, therefore

semi-automatic, seeds initialisation, the accuracy of the formulated exhaustive con-

nectivity paradigm is tested with respect to different saliency maps, other than the

Riemannian potential recovered within VTrails framework. As in Section 3.5.1, the

other vesselness potentials were respectively obtained with Frangi filter (FFR) [70],

Optimally Oriented Flux (OOF) [106], Ranking the Orientation Responses of Path

Operators (RORPO) [131], and the Hybrid Diffusion with Continuous Switch filter

(HDCS) [129], as previously shown in Fig. 3.8. Each of these vesselness maps

were associated with an isotropic tensor field, whereas the Riemannian vesselness

potential P determined with VTrails was employed as is. Given the semi-automatic

seeds initialisation, the accuracy of VTrails’ exhaustive connectivity paradigm is

here indicated with VTsemi. The reconstructed acyclic topology, i.e. the minimum

spanning tree at convergence, is therefore compared to the ground-truth (GT). The

robustness of the topological inference with respect to image degradation (see Table

3.2) is reported in Section 4.3.3.1, Tables 4.2, 4.3 and 4.4.

4.3.2.3 Fully Automatic Connectivity - Synthetic Trees

Similarly to the previous Section 4.3.2.2, the connected topology of the synthetic

trees is here inferred only with VTrails framework using, in this case, a fully au-

tomatic pipeline (VTauto). Specifically, the Riemannian vesselness is considered as

connecting potential and the initial seeds for the exhaustive geodesic connectivity

paradigm are automatically determined as in Section 3.3. Here, the exploration of

the Riemannian potential is limited to a pre-defined spatial neighbourhood of the

initial seeds, for computational efficiency. The seeds are automatically determined

as in eq. 3.7, considering a p-quantile of 0.75. Given the GT, the evaluation of the

geometrical and topological accuracy follows the previous scheme, and results are

reported in Section 4.3.3.2, Tables 4.2, 4.3 and 4.4 (column: VTauto), and in Fig.
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4.8 for a representative example.

4.3.2.4 Fully Automatic Connectivity - Clinical Data

Each clinical angiography is processed using VTrails’ fully automatic connectivity

paradigm (VTauto) as in Section 4.3.2.3. As for the synthetic trees, the exploration

of the Riemannian potential for the clinical data is also limited to an anatomically-

compatible spatial neighbourhood of the initial seeds, for computational efficiency.

Also, the seeds are automatically determined as in eq. 3.7, considering a p-quantile

of 0.75. The accuracy of the inferred connected vascular topology is evaluated

by comparing the resulting minimum spanning trees with the available GT or GS

annotations. RAA centerlines are obtained with the Vascular Modelling Toolkit

(VMTK) [8]; MRA ground-truth trees are determined with TubeTK [15]; the gold

standard for PC and CTA datasets is given by the centerlines of the manual lumen

segmentation, obtained with a skeletonisation strategy [86]. Note that, for whole-

brain vascular datasets, only the intra-cranial volume was considered for the topo-

logical inference, by means of a co-registered brain mask, from the brainstem up to

the cortex. Also, possible cycles in the GS have been opportunely cut or removed by

adopting a ROI-based, conservative and intensity-maximising, minimum spanning

tree extraction of the complete GS connected graph. Accordingly with the under-

lying anatomical tree-like vasculature, the quantitative analysis has been performed

for the deep brain arterial trees [91] branching from the Circle of Willis in both MRA

and CTA datasets, whereas the connectivity patterns of the posterior venous sinus

in the PC datasets was quantitatively evaluated. Note also that additional effort was

required to harmonise the provided centerlines in the form of a canonical acyclic

graph (tree, or forest of trees), where branch-points corresponds to nodes and vas-

cular branches to edges respectively, since the tree topology cannot be consistently

evaluated otherwise. Given the available GT and GS in the form of binary maps

or as a set of spatial centerlines, the topological harmonisation was performed with

an in-house split-merge-connect strategy similar to [95]. This allowed to convert

binary and voxel-wise skeletons to ordered and connected spatial segments, i.e. the

vascular branches, in the form of a canonical acyclic graph. Similarly, sub-voxel



4.3. Exhaustive Connectivity Paradigm 99

spatial centerlines were converted to a connected acyclic topology, by evaluating

possible overlapped portions and local branch-points with a tolerance factor equal

to the native image voxel size. Quantitative results are reported in Section 4.3.3.3,

Table 4.5, and a qualitative evaluation is given in Fig. 4.9.

4.3.3 Results of Geometrical and Topological Accuracy

4.3.3.1 Semi-Automatic Connectivity - Synthetic Trees

The accuracy of the reconstructed synthetic trees using different vesselness poten-

tials is given in Tables 4.2 and 4.3 for the whole trees geometry, for the detected

branchpoints location and for the entire topologies. The symmetric error mea-

sures (εζ

S ) showed overall comparable values among the considered vesselness maps

(FFR, OOF, RORPO, HDCS and VTsemi), where a better performance (italic text)

has been observed for VTsemi (Table 4.2.a). Slightly lower error distances are found

on both ε
ζ

S and the Hausdorff95% distances (εζ

H – Table 4.2.b) in all cases, being the

former ones limited always within the voxel size. Above 80% of branchpoints were

successfully detected in all cases, even with high level of corrupting noise. The

considered enhancing methods yielded comparable values for the accuracy of the

branchpoints’ location (Table 4.3.a), however VTsemi showed overall lower sym-

metric errors (εbp
S ) as well as lower Hausdorff95% distances (εbp

H ), especially at high

level of degrading noise (Table 4.3.b). This first suggests that the smooth Rieman-

nian vesselness improves the accuracy of branchpoint spatial location, secondly,

that the topological inference via the presented connectivity paradigm is consider-

ably more stable even with different vesselness potentials. This is supported by the

TEDov indices (Table 4.4.a), where considerable topological overlap is found for all

the reconstructed trees. Better performances are observed for VTsemi in the great

majority of cases, especially for highly noisy images. DIADEM values show how-

ever that VTsemi outperforms all the other methods with the spatially-aware topo-

logical reconstruction of the synthetic trees (Table 4.4.b), where the accuracy of

the branch-point spatial location and of the branches geometry is considered jointly

with the hierarchical parent-child relation.
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Figure 4.8: Representative example of noisy synthetic vascular tree NLb
II: resulting mini-

mum spanning tree inferred with VTauto.

Table 4.2: Synthetic trees at different noise levels (NL) – Symmetric error εS [mm] (a.) and
Hausdorff95% distance εH [mm] (b.) for the minimum spanning trees (ζ ). Values
are reported mean±SD. Best accuracy for the semi-supervised connectivity in
italic font; best accuracy VTauto vs. VTsemi in bold font.

a. ε
ζ

S

FFR OOF RORPO HDCS VTsemi VTauto
NLa

I 0.89±0.34 0.87±0.32 0.91±0.37 0.93±0.38 0.85±0.31 0.99±0.34
NLa

II 0.93±0.32 0.93±0.32 0.95±0.33 0.99±0.40 0.90±0.31 1.03±0.34
NLa

III 0.95±0.35 0.94±0.37 0.96±0.37 1.02±0.46 0.90±0.32 1.04±0.36
NLb

I 0.91±0.34 0.88±0.30 0.98±0.44 0.96±0.43 0.84±0.30 1.03±0.47
NLb

II 0.95±0.36 0.92±0.35 1.01±0.46 1.11±0.71 0.89±0.32 1.02±0.35
NLb

III 0.96±0.38 0.93±0.37 1.04±0.57 1.12±0.70 0.90±0.33 1.51±1.21
NLc

I 0.88±0.35 0.85±0.33 0.95±0.44 0.95±0.47 0.82±0.31 1.12±0.71
NLc

II 0.96±0.36 0.92±0.34 1.02±0.48 1.17±0.77 0.87±0.32 1.04±0.38
NLc

III 0.96±0.36 0.95±0.36 1.07±0.57 1.25±0.91 0.90±0.33 1.05±0.39

b. ε
ζ

H

FFR OOF RORPO HDCS VTsemi VTauto
NLa

I 1.53±0.21 1.40±0.17 1.64±0.23 1.67±0.21 1.39±0.12 1.54±0.25
NLa

II 1.48±0.05 1.46±0.07 1.57±0.12 1.79±0.26 1.39±0.07 1.57±0.07
NLa

III 1.59±0.08 1.61±0.07 1.66±0.13 1.96±0.32 1.43±0.07 1.60±0.07
NLb

I 1.53±0.12 1.37±0.15 1.83±0.28 1.82±0.31 1.34±0.19 1.93±1.30
NLb

II 1.58±0.07 1.52±0.05 1.96±0.35 2.65±1.70 1.42±0.04 1.55±0.06
NLb

III 1.66±0.07 1.58±0.05 2.35±0.51 2.62±0.63 1.46±0.08 3.94±6.61
NLc

I 1.50±0.17 1.45±0.15 1.85±0.26 1.75±0.54 1.35±0.19 2.43±1.78
NLc

II 1.64±0.11 1.50±0.07 2.04±0.25 2.68±1.12 1.40±0.08 1.65±0.13
NLc

III 1.61±0.06 1.59±0.06 2.34±0.31 3.35±2.01 1.44±0.06 1.67±0.11
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4.3.3.2 Fully Automatic Connectivity - Synthetic Trees

The reconstruction of the synthetic trees is performed in a completely automatic

fashion, using therefore VTrails framework (VTauto) for the vesselness potential, for

the seeds detection and for the exaustive connectivity paradigm. With this configu-

ration no further branch pruning is performed. The same aforementioned accuracy

indices are reported in Tables 4.2, 4.3 and 4.4 (column: VTauto). As few terminal

branches were missing at higher levels of degrading noise (Fig. 4.8), the global ε
ζ

S

slightly increases compared to the semi-automatic VTsemi pipeline. However errors

are overall comparable to the voxel size in all cases. Smaller average symmetric

Table 4.3: Synthetic trees at different noise levels (NL) – Symmetric error εS [mm] (a.) and
Hausdorff95% distance εH [mm] (b.) for the branchpoins (bp) location. Values
are reported mean±SD. Best accuracy for the semi-supervised connectivity in
italic font; best accuracy VTauto vs. VTsemi in bold font.

a. ε
bp
S

FFR OOF RORPO HDCS VTsemi VTauto
NLa

I 2.25±1.09 2.18±0.95 2.19±1.02 2.19±0.97 1.96±0.96 1.91±0.78
NLa

II 2.19±1.00 2.05±1.03 2.18±0.99 2.30±1.11 2.03±0.97 1.92±0.90
NLa

III 2.38±1.02 2.42±1.06 2.39±1.09 2.41±1.12 2.06±1.07 2.06±0.92
NLb

I 2.38±0.97 2.23±1.13 2.50±1.14 2.66±1.09 1.89±0.92 2.07±1.05
NLb

II 2.25±0.97 2.35±1.05 2.19±1.08 2.47±1.04 2.01±0.97 2.02±0.90
NLb

III 2.38±1.07 2.25±1.12 2.09±1.08 2.46±1.14 2.15±1.04 2.16±1.04
NLc

I 2.35±1.04 2.31±1.12 2.28±1.09 2.36±1.00 2.12±1.16 2.08±0.91
NLc

II 2.33±1.04 2.23±1.01 2.23±1.04 2.41±1.11 1.95±0.98 2.01±0.88
NLc

III 2.35±1.04 2.35±1.08 2.11±1.09 2.47±1.02 2.08±1.06 2.08±0.98

b. ε
bp
H

FFR OOF RORPO HDCS VTsemi VTauto
NLa

I 4.36±0.41 4.13±0.60 4.08±0.77 4.04±0.77 3.74±0.46 3.61±0.63
NLa

II 4.08±0.32 4.12±0.60 4.03±0.46 4.29±0.35 3.82±0.68 3.69±0.55
NLa

III 4.24±0.36 4.38±0.27 4.32±0.45 4.54±0.31 4.18±0.46 3.84±0.35
NLb

I 4.15±0.33 4.36±0.33 4.32±0.38 4.39±0.51 3.68±0.63 4.21±0.46
NLb

II 4.09±0.42 4.29±0.35 4.38±0.41 4.13±0.77 3.93±0.52 3.70±0.55
NLb

III 4.35±0.31 4.39±0.48 4.28±0.50 4.51±0.21 4.03±0.41 3.75±1.41
NLc

I 4.05±0.56 4.38±0.68 4.31±0.31 3.79±0.69 4.43±0.49 3.69±0.59
NLc

II 4.14±0.40 4.06±0.71 4.31±0.37 4.23±0.78 3.91±0.46 3.72±0.53
NLc

III 4.15±0.36 4.28±0.54 4.19±0.40 4.13±0.51 3.92±0.47 3.91±0.58
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errors and ε
bp
H values are found for the detected branchpoints location, suggesting

that the Riemannian vesselness potential, combined with the fully automatic seeds

initialisation, accurately recovers the junction points of the network. Such con-

figuration outperforms the semi-automatic approach even with severely degraded

images. Similarly to the semi-automatic approaches, the isomorphic topological

overlap (TEDov) shows comparable values. No significant differences were found

in the pairwise comparison, whereas the spatially-aware DIADEM metric reported

higher matching in the majority of cases with sporadic significantly better values

(p < 0.05) for VTauto vs. the semi-automatic approach VTsemi (i.e. NLa
II, NLa

III

Table 4.4: Synthetic trees at different noise levels (NL) – Topological accuracy [%]: TEDov
(a.) and DIADEM (b.) metrics. Values are reported mean±SD. Best accu-
racy for the semi-supervised connectivity in italic font; best accuracy VTauto vs.
VTsemi in bold font.

a. TEDov

FFR OOF RORPO HDCS VTsemi VTauto
NLa

I 74.6±8.2 70.3±5.3 79.1±6.7 70.1±3.3 73.5±8.5 75.4±6.3
NLa

II 78.5±4.5 74.7±5.0 72.8±6.2 60.9±6.7 78.0±5.4 75.9±5.1
NLa

III 73.2±4.9 69.7±3.1 71.3±5.0 58.8±8.5 74.6±6.4 74.6±4.6
NLb

I 77.6±5.3 71.8±4.5 72.2±4.4 62.4±5.9 78.4±6.5 68.4±10.0
NLb

II 77.8±5.7 73.5±7.5 71.6±3.9 58.6±8.1 76.8±4.6 74.6±6.6
NLb

III 72.9±5.6 68.8±4.7 68.9±3.9 67.1±5.9 73.4±4.6 58.8±9.2
NLc

I 77.2±6.9 70.7±6.4 72.1±3.4 55.4±12.5 78.7±7.6 64.7±4.9
NLc

II 74.7±7.6 72.0±7.5 73.8±3.2 60.2±9.3 74.3±3.5 71.6±7.6
NLc

III 75.6±3.3 69.5±4.6 69.5±3.0 65.1±3.7 74.8±4.0 68.4±4.4

b. DIADEM

FFR OOF RORPO HDCS VTsemi VTauto
NLa

I 43.3±28.6 39.0±28.8 43.6±29.4 39.3±30.9 52.4±18.8 65.1±12.3
NLa

II 26.8±27.5 39.4±20.0 27.8±24.5 25.3±32.2 42.6±26.9 67.8±6.6
NLa

III 44.4±27.3 25.4±28.6 51.3±26.9 22.8±25.9 57.6±9.2 71.5±6.6
NLb

I 36.6±30.0 37.2±32.5 30.2±28.4 26.8±30.1 49.7±25.9 58.5±13.7
NLb

II 41.5±25.1 40.2±28.4 31.5±19.8 22.7±28.8 53.9±18.1 57.4±15.9
NLb

III 39.7±29.5 31.2±27.6 39.1±26.3 32.2±25.9 60.8±12.3 44.1±20.1
NLc

I 42.7±26.5 36.6±34.8 30.8±28.4 12.9±22.6 54.3±22.3 44.2±9.8
NLc

II 45.2±26.2 32.6±26.3 50.4±19.0 26.9±23.3 51.9±25.2 57.8±5.8
NLc

III 36.1±24.3 18.9±27.2 24.0±27.3 23.4±26.9 47.7±21.1 43.8±20.9
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and NLc
II).

4.3.3.3 Fully Automatic Connectivity - Clinical Data

The fully automatic VTrails framework is employed to recover the vascular trees

from real angiographies. As in the previous Section 4.3.3.2, the Riemannian vessel-

ness potential, the seeds detection and the exaustive connectivity paradigm followed

a fully automatic configuration in a set of multi-modal brain angiographies. The

quantitative assessment of the clinical datasets focused on vascular branches orig-

inally defined and provided in the available GT and gold standard. Co-registered

ROI-based masks were used to separate intra/extra-cranial vessels and anterior/-

posterior or left/right-lobe vascular territories, coherently with assumption of deep-

brain vascular trees as described in Section 4.3.2.4. Short and terminal vascular

branches are pruned from the inferred trees. Accordingly with anatomical consid-

erations and compatibly with the angiographic detail and image quality, terminal

leaves shorter than 5 mm in length were removed from the extracted vascular trees.

Both geometrical and topological accuracies are reported for each clinical dataset

in Table 4.5, where only the DIADEM metric is considered for the evaluation of

the tree topology. In this case, TEDov is not used, since the evaluation of the iso-

morphic tree overlap is uninformative and possibly misleading in an experimental

set-up other than simulated and synthetic images. The average symmetric errors

ε
ζ

S were comparable to the voxel size, with the average Hausdorff95% distances

(εζ

H) that did not exceed 5 mm. Analogously the detected branchpoints reported

a mean error ε
bp
S of approximately 2 mm, with maximal distances of up to 4-5

mm in all clinical datasets. DIADEM metrics showed a considerably higher cor-

respondence between the available annotation gold standard and the automatically

reconstructed tree topology, with overall consistent and comparable values among

different imaging modalities. The spatial and topological correspondence can be

also qualitatively assessed in Fig. 4.9, where representative examples are shown

with associated annotations (GS), geodesic graphs (Π) and resulting geodesic min-

imum spanning trees (ζ ). A forest of geodesic MSTs has been extracted for whole

brain images, where nodes spatially correspond to vessel junctions and connecting
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edges to vascular branches, respectively. This suggests that VTrails framework can

automatically and accurately infer the cerebrovascular topology at different scales

with a vectorial representation.

4.4 Observations and Remarks
In this chapter a connectivity-optimised level-set was formulated for the VTrails

framework, where the combination of a Riemannian vesselness potential and of

two different connectivity paradigms are able to automatically infer the topology of

the underlying vascular structure, under the assumption that vessels join by minimal

paths, i.e. geodesics. Insights of isotropic vs. anisotropic level-sets are given with

respect to greedy and exhaustive connectivity paradigms. Overall, the advantage

of an anisotropic level-set combined with the exhaustive connectivity paradigm in

Section 4.3 consists in optimally exploring and locally refining the geodesic domain

of connecting paths, which yields topologically self-organising vascular graphs and

the associated minimum spanning trees. In [20], a similar level-set formulation fo-

cused on the extraction of shortest paths joining individual (or multiple) pairs of

endpoints, without, however, determining the connected topology among the same

set of points. In Section 4.3.3.1, the reconstruction of the synthetic trees showed

overall good and comparable results even by adopting different vesselness maps. It

is likely that an anisotropic level-set as proposed in [20] would have similar accu-

racies to the proposed framework, by employing the same self-organising connec-

tivity paradigm. In this chapter, the accuracy of an automatically reconstructed set

of vascular trees from clinical multi-modal brain angiographies is evaluated within

Table 4.5: Clinical Angiographies – Symmetric error εS [mm] and Hausdorff distance εH

[mm] of trees (ζ ) and branchpoints (bp) (mean±SD) – Topological tree accuracy
DIADEM [%] metric.

ε
ζ

S ε
ζ

H ε
bp
S ε

bp
H DIADEM

RAA 0.407±0.307 1.101±0.436 1.309±0.665 2.452±1.315 78.87±14.81
MRA 0.535±0.489 1.167±1.081 2.084±1.157 4.167±0.559 77.68±8.22
PC 1.761±1.427 4.983±2.94 2.505±0.949 3.749±1.023 77.47±10.88
CTA 0.88±0.648 2.266±1.143 2.087±1.021 3.966±0.883 85.59±9.56
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Figure 4.9: Inference of the geodesic vascular network for representative cerebrovascular
angiographies with VTauto: Original scan with annotation (GS); Geodesic Vas-
cular Graph Π at convergence and Minimum Spanning Trees ζ for deep-brain
vascular structures. – The Riemannian vesselness potential is in Fig. 3.9.
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a spatially- and topologically-aware validation framework. In all the considered

clinical datasets, both geometrical errors of the geodesic paths and the associated

topological similarity evaluated on the centerlines gold standard demonstrate that

VTrails is able to accurately recover the cerebrovascular network at different scales

with a vectorial representation. The sub-voxel average accuracy reached in the pre-

sented experiments suggests that the proposed approach can provide intra-operative

guidance with a patient-specific model up to a pre-defined level of detail, where

surgical minimally invasive vascular repair is feasible. Given a standardised and

topologically-aware evaluation framework for acyclic vascular networks, the quan-

titative analysis first focused here on major deep-brain arterial (or venous) vascu-

lar trees, e.g. the anterior/posterior and left/right arterial branches from the Circle

of Willis in MRA and CTA, as reported in Section 4.3.3.3. In Fig. 4.9 a qualita-

tive inspection of the remaining smaller portions and terminal branches is avail-

able. The image resolution of the clinical angiographies does not allow for the

inference of capillaries in the cortex (where the anatomy is more prone to show

cyclic structures [85]). Also, the evaluation of anastomoses currently suffers from

the lack of established quantitative metrics and scores for assessing and compar-

ing cyclic topologies. With the development of standardised metrics for compar-

ing fully-connected networks, along the lines of [35, 123, 162], future works could

account for a more specific validation focusing on cyclic structures at different

scales. Note that the minimum spanning tree extraction formulation does not en-

force any cerebrovascular anatomical prior per se. However, extra vascular-related

constraints and associated anatomical connected topologies can be included with a

user-defined initialisation to correct for specific locations where the vascular net-

work is not acyclic. For the extraction of major deep-brain vascular structures in

the considered full-brain angiographies, co-registered ROI-based territorial masks

were used to coherently recover a forest of geodesic MSTs, as described in Section

4.3.2.4, where the intra-cranial volume was considered from the brainstem up to

the cortex. For full-brain angiographies, the topological separation between arte-

rial and venous side could be potentially performed by adopting a combination of
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multi-modal imaging, and injecting in the connectivity framework such information

prior. Possible venous territorial maps can be indeed determined as in [23,138,195]

using susceptibility-weighted imaging venography and quantitative susceptibility

maps. In the considered clinical datasets, major deviations from the centerlines

gold standards were observed for small and terminal vessels, where the effect of

the limited spatial resolution and image quality degradation is predominant. This

suggests that the detection of capillaries and those tiny vessels not well spatially

resolved in the image may require a more supervised processing pipeline. In case

of undetected capillaries, a prior assessment of the seeds quantile threshold should

be devised, e.g. adaptively on the histogram of the scalar vesselness map. Also, dif-

ferent connectivity patterns are found with the proposed method for smaller vessels

at high depths of the arterial (or venous) vascular trees. As side note, the considered

gold standard centerlines do not constitute an exhaustive and flawless topological

reference, since mis-connections, missing branches and manual discontinuous an-

notations may be present in the datasets. As shown in Fig. 4.9, manual annotations

can be noisy, sometimes fragmented and rather prone to misclassification among a

pool of experts, especially in case of low contrast-to-noise and low image resolu-

tion, as in the PC dataset. Moreover, bad gold standard annotations may penalise

the accuracy metrics presented in Section 4.3.3.3. For this reason, particular effort

was put in selecting and evaluating the manually annotated GS for both CTA and

PC datasets. The skeletonisation of the manual lumen segmentation, as well as

the extraction of the territorial GS minimum spanning trees was performed with a

conservative and intensity-maximising tree-extraction strategy of the complete GS

connected graph, minimising at the same time, the irremediable number of cycles

cuts at smaller scales. It can be observed that possible minor mis-classifications

in the available gold standards, as well as those from VTrails, may considerably

affect the topological similarity metric of vascular trees of different size. Despite

the optimal formulation of the Riemannian vesselness potential in conjunction with

the proposed exhaustive connectivity paradigm, narrow and spatially close vessels

may eventually produce a geodesic short-cut when the ultimate minimum spanning
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Figure 4.10: RAA topological inference with VTauto. Left: Geodesic Vascular Graph Π.
Right: Minimum Spanning Tree ζ of the underlying anatomical vascular tree.
Missing branch in ζ , due to a geodesic short-cut from kissing-vessels. Bottom:
Vectorial representation in the form of a connected hierarchical graph.

tree is determined with VTrails. As shown in Fig. 4.10 for a randomly selected

RAA image that was processed without restricting the topological inference, the

extraction of the minimum spanning tree underlying the anatomical vascular tree

can still result in a missing branch (red arrow) due to a geodesic short-cut from

kissing-vessels. Conversely, the over-connected geodesic graph encodes and pre-

serves all the redundant connectivity. With this view, the minimum spanning trees

should optimally and robustly be extracted after the injection of anatomical pri-

ors, and propagated through geodesic vascular graph alignment. In this way, such

anatomical prior would compensate for biologically incompatible mis-connections

and anatomically implausible geodesic short-cuts.
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Figure 4.11: Close-up of RAA topological inference with VTauto from Fig. 4.10 (red arrow).
Left: Portion of the Geodesic Vascular Graph preserving the vascular segmen-
tation with redundant and uncertain connecting geodesics. Right: Portion of
the associated Minimum Spanning Tree, where a missing branch occurs due
to cyclic aberration by the kissing-vessel artifact.

4.4.1 The Over-Connected Geodesic Vascular Graph

With the proposed formulation of an exhaustive connectivity paradigm for vascu-

lar networks in Section 4.3 the hierarchical and acyclic constraint of a vascular

topology is relaxed, allowing therefore a more redundant and over-connected rep-

resentation. The introduced vascular topology as a fully-connected graph should

ideally underlie the actual vascular tree with the associated minimum spanning tree.

However, in presence of neighbouring and poorly-resolved vascular structures, the

direct minimal spanning tree extraction may inevitably produce disrupting and non-

anatomically plausible short-cuts. This is intrinsically due to the nature of acyclic

topologies: they are deterministic, information deprived, and prone to hierarchical-

extraction errors. The formulation of an over-connected vascular graph may pro-

duce a counter-intuitive vascular representation, for which a visual assessment may

provide confounding or poorly informative cues, due to the comprehensive and re-

dundant geodesic paths. However, such representation would conservatively pre-

serve several degrees of connecting uncertainty in the form of a densely connected

graph. This is indeed feasible by considering all possible and geodesically rele-

vant vascular connections. Note that VTrails can fully capture and embed in the

over-connected vascular graph all the possible anatomical and geodesic connect-

ing redundancy in the form of multiple local cycles (Fig. 4.9 and Fig. 4.10). Not

only anastomoses could be preserved, but also possible inexact branch-points’ lo-
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cation may also be overcome, as well as the avoidance of privative and detrimental

short-cuts in case of pronounced kissing-vessels artifacts (Fig. 4.11), by adopt-

ing a redundant and uncertain connectivity pattern. The correct extraction of the

underlying anatomical vascular tree should however require a more unconstrained

topological extraction strategy following the injection of a population-based prior,

propagated through a graph alignment process. Although the introduction of this

over-connected topology may result in a complex and counter-intuitive vascular rep-

resentation, in the following chapter, an elastic topological alignment framework is

presented for vascular structures, where the redundant and uncertain connectivity

pattern stands as a key-feature to enrich the registration search-space.



Chapter 5

Vascular Alignment

In Section 1.3, a vectorial representation of the cerebrovascular network is postu-

lated so that it could allow different forms of group-level analysis, e.g. the inter-

subject comparison of geometrical features of the vascular structure (e.g. junction

points, branching numbers, tortuousity, and overall haemodynamic properties), and

the inter-subject comparisons of various non-vascular parenchymal features, where

the brain image-volume is registered by its vascular topology. Also, as previously

mentioned in Section 4.4.1, a population-based vectorial prior propagated through

a graph alignment process may guide the topological inference of the underlying

vascular structure towards its most anatomically plausible realisation. In general,

the definition of a group-wise vectorial prior should first embed the likelihood of

connectivity patterns from a population, and subsequently inject a probabilistic

prior towards the inference of the most meaningful subject-specific topology. Ba-

sically, the robust registration of topologies stands as key enabling technology for

group-wise analyses, from coherent statistics, to labelling and information propa-

gation. With this view, the alignment of networks and vectorial graphs raised in-

creasing interest and gained popularity in the last decade. The registration of con-

nected structures from clinical scans motivated increasing research effort in vascu-

lar image analysis, respiratory and thoracic imaging, and computer aided interven-

tion [39,40,65,153,174,194,204]. For example, Charnoz et al. [39,40] proposed an

optimisation approach for a set of matching hypotheses. These are generated from

acyclic topologies and the associated costs are minimised for a pair of rooted trees
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in the liver. Feragen et al. [65] formulated a hierarchical labelling approach of the

airways based on the minimisation of geodesic distances in a geometric tree-space.

Other methods introduced different registration techniques, which mostly relied on

pairwise matching distances between junction nodes and connecting edges, from the

segmented acyclic topologies. Following an initial pre-alignment, these methods

usually minimise a similarity cost function or maximise a probabilistic likelihood

between pairs of nodes/edges or sub-trees and graph kernels, and hierarchically

evaluate the correspondences at different levels of tree-depth. However, whilst only

few formulations would register generic spatial graphs as proposed by Serradell

et al. [174], in all cases the considered topologies were either hierarchically pre-

defined as trees, or determined beforehand on a specific anatomical compartment.

Also, since these methods exploit node locations, branches geometry, arborescence

depth, or the parent-child relation of a rooted tree, they require the explicit tree

topology to accurately capture the underlying vasculature, where each bifurcation

is correctly annotated as its connectivity pattern. The registration of noisy topolo-

gies, i.e. mis-connections, missing branches and short-cuts; and the alignment of

non-linearly deformed geometries remain a challenging and open problem.

In the following sections, aiming at the pairwise alignment of vascular topolo-

gies within a deformable and anatomical prior-free framework, the over-connected

and redundant geodesic vascular graph introduced in Section 4.3 is employed in

conjunction with a graph matching (GM) framework. By relaxing the assumptions

on the acyclic (un)directed graph structure of any vascular compartment, VTrails

framework leverages the redundant topology encoding the likelihood of connec-

tions between neighbouring nodes with minimal paths to enrich the space-search

of possible pair-wise correspondences for non-strictly isomorphic topological in-

stances. Ideally, the approach should be flexible and robust enough to account

for non-identical graphs. The enhanced connectivity pattern would compensate for

topological inaccuracies, for non-linear deformations of branches, and would pro-

duce a number of distinctive features, as opposed to deterministic and information-

deprived hierarchical structures, i.e. the respective acyclic minimum spanning trees.
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Geodesic Vascular Graph Non Isomorphic Instances

Figure 5.1: Geodesic Vascular Graph and GM problem of non-linearly deformed topolo-
gies. Left: Extraction of a fully-connected topology from an initial set of nodes,
as in Section 4.3. Right: Associated graph representations and minimum span-
ning trees for two topologically different instances (GA and GB) of the same
underlying vascular anatomy.

As a further contribution, a viable vascular graph registration strategy is presented

in the following sections, where the pairwise topological alignment problem can be

solved using generic and popular graph matching algorithms largely employed in

computer vision applications. After re-defining the over-connected geodesic vascu-

lar graph under a canonical graph-based formulation, comprising nodes’ and edges’

attributes, the generic GM problem is presented together with the proposed affinity

metrics based on vessels geometry and their redundant geodesic connectivity. The

two-steps registration pipeline, from an initial coarse rigid pre-alignment to a finer

elastic nodes-association mapping. The latter is further investigated by making use

of different GM algorithms employed in computer vision applications.

5.1 Pairwise Non-rigid Registration of Vascular

Graphs
In general, with the notation G = (N,E) an undirected spatial graph is defined in

3D as the set of nodes of cardinality i and the associated set of connecting edges of

cardinality v encoding the graph adjacency list. The same notation can be used in

the following to encode a geodesic vascular graph, as inferred in Sections 4.3 and
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Figure 5.2: Graph Matching Optimisation Problem: Resulting elastic graph alignment and
nodes matching for the generalised GM problem. Instances GA and GB in this
case, the over-connected geodesic vascular graphs Π as in Fig. 5.1

4.3.1. Each geodesic edge is defined as the 3D shortest path joining a generic pair

of nodes, by solving the Eikonal equation [98] over a vascular smoothly connected

manifold. Note that both the over-connected geodesic vascular graph Π and the

associated minimum spanning tree ζ are subsets of G, and they can therefore be

coherently represented with the same generic notation. Together with the definition

of the undirected geodesic vascular graph G, a set of edge- and node-attributes is

introduced. The edge-attributes ev = {pv, lv,uv} comprise the dense sampling pv of

each shortest path in 3D (i.e. the point coordinates of the sequence as in Fig. 5.5

and Fig. 5.6), its associated euclidean length lv and the geodesic integral energy uv

integrated along the path, as introduced in 4.3.1. The node-attributes ni = {ci,di}

include the spatial location ci as coordinates in 3D, and the node geodesic degree di

defined as mean scalar value of the integral geodesic energy associated to the set of

node-incident edges.

5.2 Graph Matching Optimisation Problem
As presented by Zhou and De la Torre [215], the problem of matching a pair of

graphs GA and GB requires the definition of an affinity matrix K to measure the

similarity between each pair of nodes and edges. Given the graph GA comprising a
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total of iA nodes and given the graph GB comprising a total of iB nodes, the square

and symmetric affinity matrix K ∈ RiAiB×iAiB encodes the similarity between nodes

along its diagonal elements, whereas the edges similarity is encoded in the off-

diagonal ones. After determining the similarity matrix K, the problem of graph

matching consists in finding the optimal correspondence X among all the nodes

(Fig. 5.2), so that a compatibility functional J(X) is maximised with a quadratic

assignment problem (QAP) [120],

max J(X) = vec(X)T K vec(X). (5.1)

The optimal correspondence matrix X is constrained to be a unique mapping be-

tween a sub-set of nodes of graph GA and a sub-set of nodes of graph GB. In partic-

ular, each matched node in GA corresponds to one unique node in GB. In general,

some nodes may not have a correspondence in the resulting graph matching. The

term vec(X) denotes the vectorisation of the correspondence matrix. The consid-

ered quadratic assignment problem for a graph matching has a NP-hard complexity.

In literature, several approximating solutions formulated different relaxations strate-

gies for a GM. As reported in [215], some of these relaxations were introduced with

auxiliary objective functions and with matricial decomposition constraints, allow-

ing the optimisation of a vast range of models based on node- and edge-attributes

similarity metrics.

5.2.1 Vascular Graphs Similarity Metrics

Both node- and edge-similarity metrics are computed and embedded in an affinity

matrix K, by adopting the same matrix factorisation as described in [215]. The

square symmetric similarity matrix K is demonstrated to be factorised as a Kro-

necker product of two sets of structural connectivity matrices (here omitted for

simplicity) and two affinity matrices. Among those, two structural connectivity

matrices per graph encode the directed node-edge incidence, whereas the two other

affinity matrices account for the nodes pairwise attributes similarities in KnAB and

for the edges pairwise attributes similarities in KeAB , as detailed in [215]. Being the
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Figure 5.3: Vascular graphs’ similarity metrics – Representative nodes and edges factorisa-
tion matrices, KnAB and KeAB , together with the resulting affinity matrix K for:
a pair of Geodesic Vascular Graphs Π (top); the associated pair of minimum
spanning trees ζ (bottom). Note the deprived information in the affinity ma-
trix Kζ compared to KΠ, due to the deterministic connectivity of the minimum
spanning trees.

topology of the considered graphs fixed as a pre-defined adjacency list, the resulting

affinity matrix K is only modulated by the node- and edge-attributes. In particular,

the node affinity matrix KnAB measures the similarity between the iA-th node in GA

and the iB-th node in GB, for a given set of node-attributes. Analogously, the edge

affinity matrix KeAB measures the similarity between each vA-th edge in GA and each

vB-th edge in GB, for a given set of edge-attributes. If the similarities are measured

as pairwise distance matrices between two sets of attributes, the associated node-

and edge-affinity matrices can be defined as

KnAB = e−
(

α1
CAB
σC

+ α2
DAB
σD

)
with α1 +α2 = 1, and (5.2)

KeAB = e−
(

β1
PAB
σP

+ β2
LAB
σL

+ β3
UAB
σU

)
with β1 +β2 +β3 = 1, (5.3)
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where CAB and DAB are the pairwise `2-norm matrices between the two sets of

node coordinates {ciA,ciB}, and geodesic degrees {diA,diB}. The matrices PAB, LAB

and UAB are the pairwise average symmetric distance matrices of the connecting

minimal paths {pvA,pvB}, and the pairwise `2-norm matrices between the sets of

the euclidean lengths {lvA, lvB} and geodesic integral energies {uvA,uvB}, respec-

tively. The normalisation factors σC,D,P,L,U are the standard deviations estimated

from the off-diagonal elements of the associated distance matrices over the consid-

ered population of graphs. Lastly, the coefficients α and β modulate the combined

contribution of non-homogeneous attributes similarities, i.e. geometrical, geodesic

and topological, into the resulting affinity matrices KnAB and KeAB . In particular, α1,

β1 and β2 weigh the geometrical similarities among nodes and edges, whereas α2

and β3 represent the respective geodesic and topological trade-off. Note that in case

of altered graphs, e.g. by introducing non-linear geometrical or topological defor-

mations, both the affinity matrices KnAB and KeAB are determined after warping the

graphs embedding with the considered non-linear deformations. This allows differ-

ent relaxations of the graph matching problem to map all similarities, dissimilarities

and deformations, in the specific model that is being optimised.

The Kronecker product between the structural connectivity matrices and both

factorised affinity components KnAB and KeAB produced the complete affinity matrix

K. The implementation of the QAP solver is the same as the one presented in [215].

Both node- and edge-similarity metrics are shown in Fig. 5.3, together with the re-

sulting affinity matrix K for a representative pair of unaltered graphs with two reali-

sations each, i.e. a pair of complete geodesic vascular graphs (Π) and the associated

pair of minimum spanning trees (ζ ). Both unaltered graphs have the same number

of nodes, which resulted in identical node affinity matrices Kζ

nAB , KΠ

nAB . However,

the reduced and deterministic connectivity pattern of the acyclic topologies is re-

flected in the smaller edge affinity matrix Kζ

eAB for the vascular trees, therefore a

more sparse affinity matrix Kζ . Conversely, the complete edge affinity matrix KΠ

eAB ,

for the over-connected topologies, shows an enhanced similarity overhead for the

redundant set of edges. Were the graphs altered only with a geometrical deforma-
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tion, this would have been reflected on the values of the respective node- and edge-

affinity matrices. Conversely, by altering only the topology, e.g. by pruning con-

necting edges and deleting nodes, the associated node- and edge- affinity matrices

would have shown both a reduced size (i.e. lower node- and edge-cardinality) and

dissimilar values, due to the altered geodesic and topological attributes.

5.3 Elastic Registration Pipeline
Although some GM algorithms do not require any initialisation of the graphs within

a normalised 3D reference space, a two-steps approach (Fig. 5.5 and Fig. 5.6) is

proposed, by combining an early coarse alignment strategy to facilitate the further

registration by reducing biases due to pure rigid mis-alignment.

5.3.1 Rigid Pre-alignment

The globally-optimal iterative closest point (Go-ICP) [208] is run on GA and GB as

coarse geometrical initialisation. Here, the dense cloud of samples, i.e. the nodes

coordinates {ciA,ciB} and the sequences of edge points {pvA,pvB}, is retrieved for

the spatial rigid pre-alignment. Go-ICP searches the entire 3D motion space, and,

under the minimisation of an L2 error metric based on a branch-and-bound scheme,

guarantees the global optimality of the rigid mapping, even in the presence of noisy

data, outliers, and partial samples overlap.

5.3.2 Fine Node Association with Graph Matching Algorithms

Classic GM algorithms employed in computer vision are considered for fine regis-

tration by adopting different relaxations of the QAP. Among those, the Graduated

Assignment (GA) [76], the Spectral Matching (SM) [110], the Spectral Matching

with Affine Constraints (SMAC) [51], the Probabilistic Matching (PM) [212], the

Integer Projected Fixed Point (IPFP-U/SM) [111], the Re-weighted Random Walk

Matching (RRWM) [47], and the current state-of-the-art, the non-rigid Factorized

Graph Matching (FGM) [215] are all considered here. Briefly, the deformable

graph matching problem, detailed in [215], formulates the unknown graph corre-

spondence being constrained with an internal representation of a geometric trans-

formation. Such internal representation model a composition of similar, affine, and
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Πsynth Π
D40%T30%
synth Πangio & Label Set

Figure 5.4: Topological vascular alignment: Experimental datasets. Left: Synthetic
geodesic vascular graph Πsynth – Original instance and representative composi-
tion of simulated deformations. Right: Basilar Artery geodesic vascular graph
(Πangio) and label set [91].

non-rigid transformations, which are internally mapped to the compatibility func-

tion (Eq. 5.1), and subsequently estimated by optimising jointly the correspondence

matrix X and the composite transformation itself. The aforementioned algorithms

configured for undirected graph realisations were considered in the following exper-

imental set-up. All the algorithmic implementations are available from the online

repository1.

5.4 Experiments on Synthetic and Clinical Data
A set of 10 synthetic over-connected geodesic vascular graphs (Πsynth) and asso-

ciated minimum spanning trees (ζsynth) are obtained from 3D vascular tree im-

ages [82] (isotropic 100×100×100 voxels), as in Sections 4.3 and 4.3.1. Each

graph comprises 80 nodes, i.e. the vascular junction and end-points, over-connected

within a neighbourhood of radius ν = 35 (Fig. 5.4). A total of 10 fully over-

connected geodesic vascular graphs (Πangio) as well as the respective minimum

spanning trees (ζangio) of the basilar artery are similarly derived from Time-of-

Flight MRI angiographies (0.35×0.35×0.5 mm), where anatomical vascular junc-

tions and endpoints were manually labelled (Fig. 5.4) following [91].

The geometrical attributes of synthetic graph datasets Πsynth and ζsynth were

randomly deformed with a non-linear geometrical displacement field (i.e. max mag-

1https://github.com/zhfe99/fgm

https://github.com/zhfe99/fgm
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nitude D30%, D40%, D50% of the graph spatial embedding). A series of topological

pruning, i.e. T30%, T40%, and T50% reduced the original connectivity of the synthetic

graph datasets. The latter was reflected on a reduced edge-affinity matrix and on the

geodesic and topological attributes of the considered graphs. Also, a combination

of both geometrical and topological alterations was introduced (Fig. 5.4) to model

more complex, yet realistic, cases. The deformed graphs were rigidly aligned first

as in section 5.3.1. Then both node- and edge-affinity matrices were determined as

in section 5.2.1, considering the respective unaltered topologies as matching coun-

terpart. Lastly, the fine graph matching problem was solved for each algorithm as

in section 5.3.2. The accuracy of the GM is given by the percentage of correct cor-

respondences as
tr
(

XX(GT)T
)

1T
iA

X(GT)1iB
·100%, where tr(•) is the trace of the argument square

matrix. X is the correspondence matrix from the optimised graph matching problem

between the pair of considered graphs, and X(GT) is the associated correspondence

ground truth, accounting for the introduced deformations. The column vectors 1iA

and 1iB encode unitary values for the same node cardinalities iA and iB, as in the

respective pair of considered graphs. Differences between the registration perfor-

mances of Πsynth and ζsynth are evaluated with a paired Wilcoxon signed rank test.

Regarding the clinical dataset, both Πangio and ζangio are pairwise aligned, cov-

ering all possible inter-subject combinations within the same dataset. The matching

accuracy is given also here by the percentage of correct correspondence among the

labelled nodes, as reported for the synthetic experiments. Differences in match-

ing performances between Πangio and ζangio for the considered GM techniques are

evaluated with a paired Wilcoxon signed rank test.

5.4.1 Results of Matching Accuracy

5.4.1.1 Synthetic Instances

In Fig. 5.7, the GM accuracy is reported for the synthetic datasets, for each al-

gorithm and for the simulated levels of deformation. As an initial configuration,

the weights of the affinity metrics are arbitrarily defined as α = [0.5,0.5], and

β = [0.25,0.25,0.5] in all cases. This is initially introduced to equally balance the
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Rigid Alignment Graph Matching (FGM) - acc: 87.34%

Figure 5.5: Alignment of synthetic geodesic vascular graphs Πsynth: Left. Rigid alignment
of the geometrical embedding with Go-ICP [208]. Right: Fine Node associ-
ation mapping with Graph Matching techniques (FGM). Correct matching is
highlighted in green, whereas mismatched correspondences are shown in red.

similarity features, i.e. the contributions from the geometrical and geodesic compo-

nents of the graphs’ attributes. Similar trends of performances are observed for the

considered GM algorithms across different levels of increasing deformation. Over-

all, FGM reported the best matching accuracy together with RRWM in both Πsynth

and ζsynth, whereas the other algorithms showed globally varying performances.

Purely geometrical displacements did not affect the registration, whereas more se-

vere topological pruning showed a visible drop of accuracy in both Πsynth and ζsynth,

as well as the combination of joint deformations at different degrees. Overall, better

matching is found for Πsynth compared to ζsynth at the same level of alteration. A

significant accuracy drop (p < 0.05) is found for the registration of tree-like struc-

tures, proportional to the combined deformation. This suggests that the proposed

registration pipeline would benefit from both geometrical and geodesic information

arising from a more dense and redundant over-connected pattern, rather than an

explicit vascular tree hierarchy, in the presence of non-linear deformations.

5.4.1.2 Clinical Cerebrovascular Topologies

The accuracy of the pairwise registration for both Πangio and ζangio datasets is re-

ported in Table 5.1. The affinity metrics trade-offs adopted here are the same as

those for the synthetic experiments. Overall, a fairly good matching is obtained for

the state-of-the-art FGM (61.26 ± 21.91%), as well as for GA (65.16 ± 20.39%)
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Rigid Alignment Graph Matching (FGM) - acc: 84.21%

Figure 5.6: Alignment of Basilar Artery geodesic vascular graphs Πangio: Left. Rigid align-
ment of the geometrical embedding with Go-ICP [208]. Right: Fine Node as-
sociation mapping with Graph Matching techniques (FGM). Accuracy is eval-
uated on the correct correspondences, given the labelled association ground-
truth. Correct matching is shown in green, whereas mismatched associations
are shown in red.

and SM (62.83 ± 22.96%). The considered angiographic dataset presented large

deformations and anatomically different variants (Fig. 5.4 and Fig. 5.6). In line

with the synthetic experimental results, the registration of over-connected topolo-

gies (Πangio) showed significantly higher accuracy (p < 0.05), compared to the re-

spective hierarchical minimum spanning trees (ζangio). Globally, nodes mismatch

occurred in correspondence of nodes with lower degree, where higher confusion

is found for spatially close vascular end-points and neighbouring branches. Con-

versely, the correspondence of superior/inferior and left/right branches was cor-

rectly preserved in the majority of cases.

5.4.2 Cyclic and Non-isomorphic Anastomoses: Circle of Willis

In order to further evaluate the accuracy of the proposed elastic topological registra-

tion framework, an extra set of cerebrovascular topologies were considered as proof

of concept. In this case, both cyclic anastomoses found in the complete Circle of

Willis (CoW) and those presenting an incomplete cycle were evaluated with a simi-

lar approach. However, only the over-connected redundant geodesic vascular graph

ΠCoW was considered here for the alignment of such topologies, since the acyclic

minimum spanning tree cannot intrinsically model the complete anastomosis. Sim-
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Figure 5.7: Synthetic Graph Matching Accuracy of different GM algorithms: Πsynth vs.
ζsynth for different levels of non-linear deformation.

ilarly to the clinical dataset, the annotation of connecting branch-points as well as

terminal nodes was performed manually following [91] (Fig. 5.8). For qualitative

evaluation purposes, in Fig. 5.9 (top) both a complete-to-complete anastomosis

registration is presented, and a representative complete-to-incomplete one (Fig. 5.9

- bottom). In the first case, good correspondence is found for geometrically and

Table 5.1: Clinical Graph Matching Accuracy: Inter-subject registration of Πangio vs.
ζangio. Values are mean ± SD, (median), ∗= p < 0.05.

Accuracy [%] GA [76] PM [212] SM [110] SMAC [51]

Πangio
65.16±20.39 61.72±23.43 62.83±22.96 41.61±15.77

(66.67) (60.86) (62.07) (40.05)

ζangio
44.76±23.37 25.72±23.91 43.03±20.38 28.63±18.78

(44.44∗) (20.71∗) (42.42∗) (24.12∗)

Accuracy [%] IPFP-U [111] IPFP-SM [111] RRWM [47] FGM [215]

Πangio
41.59±16.58 38.97±18.02 49.05±18.31 61.26±21.91

(40.59) (37.52) (49.14) (66.67)

ζangio
20.77±16.19 20.96±13.14 44.53±20.86 48.64±22.39

(16.91∗) (18.75∗) (44.12) (48.28∗)
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Figure 5.8: Cerebroascular Cyclic Anastomosis: Circle of Willis (CoW) – Geodesic vascu-
lar graph (ΠCoW) and manually annotated landmarks [91], Front and Top view.

topologically different embedding of the complete anastomoses. Local minor mis-

matches are observed in the correspondence of a few terminal branches of the cyclic

vascular topology. Regarding the elastic registration of strongly non-isomorphic

topologies (complete-to-incomplete CoW alignment) the accuracy of the initial au-

tomatic registration overall shows an acceptable correspondence for the majority of

landmarks, whereas major mismatches are found in the correspondence of the miss-

ing contra-lateral connecting branches of the incomplete anastomosis. Note that, at

this stage, the accuracy is evaluated only on the perfectly matching nodes; the geo-

metrical distance among mis-matching correspondences, as well as the topological

mismatch relevance of terminal nodes vs. central hub nodes is currently not con-

sidered. This qualitative assessment shows encouraging results for the alignment of

cyclic vascular structures. However the considered registration strategy may further

require a more complete set of vascular features, as well as an iterative and more

localised registration refinement together with a group-wise (rather than pair-wise)

alignment approach for more complex, convoluted and strongly non-isomorphic

topologies.

5.5 Observations and Remarks
A vascular topological alignment strategy was presented for the proposed VTrails

framework, by making use of an undirected formulation of geodesic vascular graphs

together with popular graph matching techniques employed in computer vision. The

pairwise alignment was able to register similar topologies, in the presence of non-
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Complete-to-Complete CoW Anastomoses – acc: 83.87%

ΠCoW
sbjA ΠCoW

sbjB

Complete-to-Incomplete CoW Anastomoses – acc: 65.38%

ΠCoW
sbjB ΠCoW

sbjC

Figure 5.9: Vascular Topological Alignment: Elastic registration of cyclic anastomoses -
Circle of Willis (CoW) using the over-connected geodesic vascular graphs Π

for a representative set of subjects (sbjA, sbjB and sbjC). Top: Complete-to-
Complete anastomoses registration. Bottom: Complete-to-Incomplete anasto-
moses registration.

linear deformations of different degrees. The non-rigid node correspondence as-

signment is solved with a two-steps alignment comprising an optimal rigid registra-

tion of the network geometrical embedding, and a set of graph matching algorithms

to solve the quadratic assignment problem.

For the first time, a general registration of vascular graphs could be performed

by relaxing the explicit hierarchical vessel-tree structure or connectivity patterns

specific of a vascular compartment as proposed in Section 4.3. This allowed to

align noisy and uncertain over-connected topologies with possible cycles. Here, the

use of multiple GM strategies, on the one hand, is motivated by the unconstrained

formulation of the undirected geodesic vascular graphs (either the over-connected
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graphs Π or the hierarchical and acyclic trees ζ ). On the other hand, it is justified by

the different connectivity patterns i.e. the different graph lattice of the introduced

topologies. The latter can indeed dramatically differ from the connectivity patterns

found in computer vision applications (i.e. 3D polygonal subdivision and/or trian-

gulations in 2D). Therefore, established GM algorithms may show rather different

performances.

Early results show fairly good matching for synthetic vascular graphs even in

the presence of mild-to-moderate non-linear deformations. With the same regis-

tration pipeline, over-connected and redundant topologies are aligned, as well as

hierarchical undirected tree-structures. Despite the tree-structures sharing the same

similarity features, the graph matching reported significantly different accuracies

(Fig. 5.7, and Table 5.1), where better node correspondences are found for the over-

connected topologies. This suggests that the redundant connectivity pattern found

in the complete graphs may enrich the registration search-space with distinctive

cues. This is supported by observing the associated similarity metrics and the spar-

sity of the affinity matrices KΠ and Kζ for a representative pair of over-connected

geodesic vascular graphs and for the associated pair of acyclic minimum spanning

trees (Fig. 5.3). Similarly, the registration of geodesic vascular graphs from an-

giographic datasets reported overall good matching, even in cases of large spatial

deformations and anatomically different topologies. Conversely, the registration of

the associated tree structures showed significantly lower accuracies, in line with the

synthetic experimental results.

On the basis of this early evidence, the problem of vascular tree- and graph-

registration could be generalised with a ‘multi-source’ network alignment. Further

developments towards a more robust design for vascular applications may better

incorporate features of a different nature, from geometrical, to geodesic, to topo-

logical. This would potentially include also other functional and bio-mechanical

features, towards a more specific and vascular-oriented graph alignment framework

with VTrails.

Although most of the GM algorithms considered in this work are used for 2D
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applications in computer vision, their general formulation allows the alignment of

any generic network, regardless of the dimensional embedding, and offer a rich

ground for ad-hoc methodological developments. Among the considered GM al-

gorithms, some are optimising the quadratic assignment problem by reducing the

intrinsic NP-hard complexity with local matching approximations, others are based

on the eigen-decomposition of the graph-Laplacian matrix (e.g. spectral match-

ing), while some others incorporate an internal representation mapping a non-rigid

transformation in the compatibility functional (i.e. the Factorised Graph Matching).

Given the over-connected topologies, the reason for the different observed per-

formances among the considered GM techniques is still unclear. From an initial

qualitative evaluation in Fig. 5.10 and Fig. 5.11, the density and depth of the graph

affect the accuracy of the graph matching algorithm. Also, it can be observed that

the redundant connecting edges, as well as the different patterns of the graph lat-

tice and the spatial embedding of the topology itself may dramatically impair the

graph-matching accuracy and performance.

For example, the graduated assignment, the probabilistic matching and the

spectral matching algorithms perform fairly well with the inter-subject registration

in the clinical dataset (Πangio). However, the same algorithms produce rather poor

alignments with the synthetic graphs (Πsynth). It can be observed that the clinical

dataset shows pronounced topological (different branching) and geometrical non-

linear deformations of the embedding; however the considered vascular anatomy

has an intrinsic level of symmetry (i.e. left/right). Also, the clinical graphs show

a rather limited extent, which can be easily partitioned into smaller sub-nets (e.g.

superior/inferior and anterior/posterior). Such virtual sub-net partition resembles a

lower-rank condensation and contraction of the network. A low-rank network repre-

sentation seems to meet well the local matching approximations and the lower-rank

spectral decomposition employed in the graduated assignment, probabilistic match-

ing and spectral matching algorithms.

On the contrary, the synthetic dataset does not show a regular symmetry or any

simplified features of the network. In this case, the graduated assignment, the prob-
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Figure 5.10: Representative Performance of Graph Matching Algorithms: Accuracy for
Synthetic Geodesic Vascular Graphs Πsynth
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Figure 5.11: Representative Performance of Graph Matching Algorithms: Accuracy for
Basilar Artery Geodesic Vascular Graphs Πangio
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abilistic matching and the spectral matching algorithms tend to fail the alignment,

whereas GM algorithms such as the re-weighted random walk matching and the fac-

torised graph matching seem to be rather robust to the complexity of the network,

and have produced consistent alignment among both datasets.

Future designs and developments towards a more specific and vascular-

oriented Graph Matching formulation would investigate the effect of different graph

lattices and of the connectivity complexity, where the pair-wise registration strategy

could be ultimately relaxed towards group-wise Graph Matching frameworks.

5.6 Perspectives on Group-wise Vascular Alignment

Extending quantitative vascular analyses to a population of subjects or a cohort of

patients necessarily requires the consistent alignment of the underlying vascular

topologies within a group-wise registration framework.

Currently, no formulation is available for the group-wise alignment of cere-

brovascular structures, and in this section a collection of possible registration

strategies are revised and analyised for the topological alignment of the proposed

geodesic vascular graphs. As presented in the previous sections, a first pair-wise

registration approach was introduced for similar and non-isomorphic vascular struc-

tures in the form of undirected connected graphs. Differently from group-wise reg-

istration frameworks developed for image-based datasets, the multiple and joint

registration of cerebrovascular structures on an image-grid domain stands as an al-

most completely unexplored research field, and the definition of possible vectorial

formulations are still an open technological challenge. Image-based group-wise

registration strategies have been largely explored by [13, 62, 66], where all con-

sidered raster images are simultaneously warped onto a common space towards a

tentatively-estimated group-mean instance, without necessarily selecting a particu-

lar one as template [211]. In more recent formulations [121, 211], the group-wise

image registration is basically obtained either by an iterative graph shrinking ap-

proach, embedding individual images as nodes and the respective mapping transfor-

mations as geodesic pathways connecting the image-manifold graph. Alternatively,
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the group-wise registration of largely deformed datasets is retrieved by iteratively

and simultaneously warping images, following their spectral similarities with local

diffeomorphisms [121].

In segmentation propagation and fusion applications, the estimation of a group-

based voxel-wise prior follows an exhaustive pairwise alignment and propagation

scheme, where multiple image sources are simultaneously mapped and eventually

fused to new unseen data [33, 34]. Although sharper atlases can be recovered in

such way, an exhaustive pairwise registration and propagation can sometimes be

problematic in case of a limited and strongly clustered image-manifold, i.e. highly

similar images within the same clusters, however strongly dissimilar ones among

different sub-groups (healthy vs. diseased; age- or gender-related clusters). With

this view, Cardoso et al. [33, 34] developed a more localised group-wise image

registration framework based on geodesic information flows for segmentation and

label fusion purposes. The group-wise information propagates between images

within a more restricted neighbourhood (a sub-net) of the target, following geodesic

paths in a spatially-variant graph, which embeds local patches of an implicit image-

manifold.

All the aforementioned group-wise registration methods for image-based data

rely, however, on the smoothness, continuity, differentiability and spatial consis-

tency of the image-grid and data-support even when instances are projected to

a low-dimensionality space, for more efficient information propagation. In these

cases, concepts such as element-wise finite neighbourhood, and operators such as

finite difference and integration, and processing paradigms such as (up- or down-

)sampling are well-defined within a homogeneous and raster image-domain. Net-

works, and more generally native graph-embedding instances, on the contrary, do

not benefit from the same linearities, and their group-wise alignment stands as an

irreducibly challenging task. Despite their particular capability to well represent

discontinuous, non-linear, and sparse data embedding, the individual network topol-

ogy shows a more complex nature than raster 3D regular grids. As observed by Wu

et al. [203], Laplacian or diffeomorphic constraints do not straightforwardly apply
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to the deformation of the connectivity patterns for group-wise network alignment.

Similarly, an algebraic edge-wise average of networks across individual instances

may disregard the multivariate, multi-source attributes of non-isomorphic topolo-

gies, with unclear outcomes in terms of both noise- and scale-related biases. How-

ever, inspired by similar image-based group-wise registration approaches, recent

works by Rekik et al. [161], Dhifallah and Rekik [57], and Wu et al. [203], pro-

posed a constrained group-wise graph-shrinkage and network diffusion framework

towards the estimation of brain connectivity atlases. A set of functional brain net-

works, in the form of connectomes, were iteratively shrunk and (locally-to-globally)

diffused to obtain an average mean-group representation of the considered popula-

tion. Although the main focus of the presented approaches was to determine a clus-

tered connectome atlas, the underlying iterative graph-shrinking and diffusive strat-

egy among clusters of similar brain networks could be projected to an early group-

wise topological registration approach. The translation of such group-wise network

alignment techniques to vascular topologies is currently under investigation. It is

unclear, however, whether the straightforward application of a graph shrinkage and

diffusion process may deteriorate (or well preserve) the structural connectivity of

the inferred cerebral vasculature towards a virtual population-based centroid. Ide-

ally, such a converging target should sharply embed the topological inter-subject

variability of vascular structures in the form of an over-complete vascular network.

Multi-source and geometrical features, as well as topological vascular branching,

should be exhaustively kept and anatomically preserved after multiple diffusive it-

erations, reducing therefore unrecoverable information loss from anatomical land-

marks decimation, and from vascular connection suppression and averaging. Also,

it is unclear whether the generalisation of the matrix diffusion process in the form of

a (hyper- or super-)graph of networks, as proposed in [203], would apply to vascular

over-connected topologies of different connectivity patterns, size and dimensional-

ity for the considered instances.

Recalling concepts in the previous Section 5.1 for the proposed pair-wise topo-

logical alignment, alternative group-wise network registration designs have been
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proposed in computer vision applications showing a more unconstrained and gen-

eralised formulation. These involve extending the graph-matching optimisation

problem to enable multiple instances to be jointly and simultaneously aligned to-

gether. Substantial work was recently presented by Yan et al. [205–207], Chen et

al. [42], Solé-Ribalta and Serratosa [178] and Pachauri et al. [147] towards multi-

graph matching strategies. In general, multi-graph matching methods build on pair-

wise graph matching solvers as a black-box [205]. As described in Chapter 5, graph

matching methods incorporate both node-to-node and edge-to-edge structural sim-

ilarities in a pairwise fashion. Under the assumption that similar topological in-

stances do not mainly appear in isolation or in a pair, rather as a collection, and

with the aim of finding the optimal joint matching across all topologies at once,

state-of-the-art multi-graph matching techniques simultaneously leverage the ex-

haustive local pairwise matching affinity across pairs of networks, and enforce a

global matching consistency by accounting for different mapping composition or-

ders. As summarised in [205], several multi-graph matching formulations were

proposed that focus on the matching affinity, i.e. maximising an objective affinity

score; and on the matching consistency, i.e. the global correspondence over all (or

a portion of) graph pairs, so that sequential pairwise matching in different com-

position orders shall lead to identical solutions. Solé-Ribalta and Serratosa [178]

extended the aforementioned pairwise Graduated Assignment graph matching (Sec-

tion 5.3.2) to multiple graphs, where each topology is first associated with an assign-

ment matrix mapping the nodes to a virtual set, then the latter is updated following

a deterministic annealing strategy to maximise the overall pairwise affinity score.

Also, in this case, consistency is enforced with a tensorial representation of nodes

matching and association likelihood, which is lastly binarised satisfying the one-

to-one bijective constraint. Pachauri et al. [147] (MatchSynch) enforces matching

consistency leveraging spectral analysis via eigendecomposition among the set of

pairwise matching solutions. Chen et al. [42] (MatchLift) accounts for partial sim-

ilarity, when only a subset of nodes can find a consistent correspondence in other

graphs. Yan et al. [207] (MatchOpt) proposed an iterative consistency regularisation
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strategy by updating in a rotation order the nodes assignment mapping for a set of

graphs, with a permutation matrix in an alternate fashion, i.e. defining iteratively a

different reference graph and updating the joint correspondence matrix with respect

to the pairwise affinity matrices.

In a more recent formulation, Yan et al. [205] proposed to solve the multi-graph

matching optimisation problem by adopting a composition-based affinity optimisa-

tion (CAO) scheme, which is gradually regularised with a scalar parameter, weight-

ing the matching consistency (CAO-C) among multiple instances. This follows the

assumption where, in the iterative optimisation, the matching affinity has a pre-

dominant role to delineate the initial joint correspondence, whereas it becomes less

informative at later iterations, as the optimised affinity saturates. On the contrary,

consistency becomes a relevant regulariser in later optimisation steps, coping with

uncertainty and different noise-levels in the graphs, leading to overall improvement

of the final matching accuracy.

Adopting the same notation as proposed in [205], the generalised multi-

graph matching problem can be formulated also for the proposed geodesic vascular

graphs:

X∗i j = arg max
Xi j

N−1

∑
i=1

N

∑
j=i+1

vec(Xi j)
T Ki j vec(Xi j), so that (5.4)

1T
ni

Xi j = 1T
n j
, and Xi j1n j = 1ni, and Xi j = XikXk j|Nk=1, k 6={i, j}, (5.5)

where, X∗i j is the jointly optimised correspondence matrix for any pair of graphs

{Gi,G j} in the set G = {Gk}N
k=1 of cardinality N. The pairwise affinity matrix Ki j

is a square matrix embedding the similarity between the considered pair of graphs

and has the same form of those defined in Section 5.2.1. The vector 1n is a unitary

column vector of size n× 1. Note that with this notation, the nodes cardinality is

expressed by nk|k=1,...,N
for each graph in G. Also in eq. 5.5, the general formulation

accounts for matchable common inlier nodes and the joint alignment consistency

can be expressed with the composition Xi j = XikXk j|Nk=1, k 6={i, j} for the N−2 inter-

mediate permutations matchings (or anchor graphs) within the set G.

Although the performance of different multi-graph matching strategies has
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Table 5.2: Comparison of the Computational Complexity for the Current State-of-the-Art
Multi-Graph Matching Algorithms. Table taken from Yan et al. [205].

algorithm time complexity

CAO [205] O(N3n3 +N2τpair)
CAO-C [205] O(N4n+N3n3 +N2τpair)
MatchLift [42] O(N3n3 +N2τpair)
MatchOpt [207] O(N2n4 +N3n+N2τpair)
MatchSync [147] O(N2n3 +N2τpair)

only been evaluated on baselines for computer vision applications, the overall gen-

eral formulation can be extended to multiple graphs of different natures, with in-

creased flexibility for the alignment of non-isomorphic topologies, as observed in

Section 5.5. Current state-of-the-art of multi-graph matching algorithms computa-

tional complexity is summarised in Table 5.2, as first reported in [205], where τpair

represents the required computational time for each arbitrary pair-wise matching

solver. Considering the computational complexity of the mentioned multi-graph

matching techniques, the tentative translation to group-wise alignment of large sets

of highly-dense geodesic vascular graphs would likely account for a prior individual

topological optimisation step. The current computational bottleneck might be min-

imised by increasing the sparsity of the geodesic vascular graphs and, at the same

time, by reducing the graph-embedding dimensionality. With this view, in future

work a topological optimisation step should be first devised, which would conser-

vatively retrieve a more compact vectorial representation, in order to accommodate

a number of group-wise experimental set-ups.

Whilst the aforementioned multi-graph matching algorithms would jointly op-

timise a global correspondence solution over the topological instances as a whole,

other group-wise topological alignment techniques employ a more localised ap-

proach by considering a number of graph partitions, sub-nets, cliques and breadth-

first spanning tree projections to solve the problem of (sub-)graph isomorphism

[63]. Although only a proof of concept has been proposed for the formulation

in [63], the decomposition of a planar graph into a collection of non-disjoint sub-

graphs of relatively small tree-width, covering the neighbourhood of each vertex, is

shown to solve the problem of sub-graph matching for a number of configurations
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in linear time, i.e. O(n).

Theoretically, the combination of multi-graph matching formulations with a

more localised graph-embedding could solve the group-wise topological alignment

not only on a global scale, rather also on a finer level. Similarly to [33], the

topologies could be jointly aligned by leveraging partitions, sub-nets, cliques and

non-disjoint small trees from generic cerebrovascular graphs, therefore exploiting

multiple local sub-nets of matching patterns within a neighbourhood of the target

(Fig. 5.12). With this view, future developments would propose a multi-scale,

hierarchical and topologically-preserving sub-graph decomposition, partition and

re-combination strategy. Lastly, few other works [30,46] addressed different multi-

graph matching questions: 1) how to estimate a compatibility function such that

the solution of the resulting graph matching best resembles the expected solution

a human would provide; 2) how to infer a class of graphs which provides an opti-

mal matching to all the instances in the given collection. In these cases, learning

approaches are presented over graphs in order to determine an adequate matching

criterion, and to estimate graph models from observed data, respectively. Although

no application has been proposed for networks based on medical-imaging data,

the mentioned learning strategies could implicitly improve group-wise topological

alignment accuracies, given a substantial number of correctly labelled instances, for

ad-hoc cerebrovascular applications.

In conclusion, a successful group-wise topological alignment strategy for

geodesic vascular graphs would allow a tentative explicit definition of a vectorial

cerebrovascular atlas at different levels of detail. In the following section, a virtual

prior and a topological vectorial atlas for the neurovascular structures is postulated

by fusing and merging multiple aligned topologies in a probabilistic, over-complete

graph embedding.

5.6.1 Fusing Topologies towards Cerebrovascular Atlases

As previously mentioned, a consistent group-wise topological alignment of the

brain vasculature among a cohort of subjects would determine a valid anatomical

prior allowing: 1) the extraction of more accurate and refined subject-specific vas-
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Implicit Manifold of Networks

Geodesic Vascular Graphs Π|{a,b,c,d} Sub-Graph Decomposition

Figure 5.12: Group-wise Global-to-Local Topological Alignment and Matching Propaga-
tion: Top: possible adaptation of the implicit manifold to native networks,
as first proposed in the Geodesic Information Flows by Cardoso et al. [33].
Bottom-Left: Geodesic Vascular Graphs Π|{a,b,c,d} embedded on each node,
given the pair-wise and jointly optimised correspondence matrices X. Bottom-
right: Partition and decomposition for a representative topology into sub-
graphs, sub-nets and cliques.

cular graphs; 2) the automatic propagation of labels and anatomical landmarks, and,

at the same time, 3) consistent statistical analyses over a vectorial population-based

atlas of vascular features. However, the fusion of co-registered topologies and the

integration of their associated vascular features and embedded biomarkers are not

trivial. The resulting atlas, as well as its probabilistic connectivity-pattern prior,

should sharply encode the topological variability of vascular structures in the form

of an over-complete vascular network, i.e. a virtual class of super-graph consis-

tently embedding all observed anatomical variants and realisations. In the previous
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Section 5.6, early atlas-oriented formulations have only been proposed through dif-

fusion approaches via averaging graphs’ adjacency matrices of similar size. How-

ever, it is unclear whether embedded features as well as the topological branching

of the considered geodesic vascular graphs would be anatomically preserved after

multiple diffusive iterations. Averaging vascular graph embeddings by locally (or

globally) disregarding anatomical and structural connecting patterns may indeed

result in an unrecoverable information loss.

In the following, the definition of a cerebrovascular atlas is initially introduced

by adopting a formulation similar to a multi-atlas framework. This allows the at-

las estimation problem to be framed with a relatively reduced complexity, under

the assumption of multiple atlases for similar cerebrovascular phenotypes. Then,

the definition of a comprehensive atlas governed by informative matching flows is

postulated by further relaxing the multi-atlas assumption.

A set of undirected geodesic vascular graphs G= {Gk}N
k=1 of total cardinality

N is assumed to be locally clustered under some similarity distance measure into M

clusters {Gm=1,...,M} ∈G, with each subset having a cardinality of Nm=1,...,M so that

∑
M
m=1 Nm =N. Each graph Gk has the form of an over-connected redundant topology

as introduced in Section 4.3. It is also assumed that the undirected geodesic vascu-

lar graphs are already jointly and optimally co-registered for each cluster, under a

group-wise multi-graph matching formulation as in Section 5.6. Then, for each m

cluster the associated mean fused atlas, Am is defined as

Am =
2

Nm(Nm−1)
· 1
Wm

Nm−1

∑
i=1

Nm

∑
j=i+1

wi j ·
(
XT

i jGi Xi j
)∣∣∣∣

ni≤n j

, (5.6)

with Wm =
Nm−1

∑
i=1

Nm

∑
j=i+1

wi j (5.7)

the integral and normalising fusion weight. Here, for simplicity, each geodesic vas-

cular graph Gi has the form of a planar symmetric weighted adjacency matrix of

size ni× ni (×1), where e.g. only a scalar (×1) vascular feature, e.g. the integral

geodesic energy, is associated for the connecting minimal paths. Xi j is the pair-wise
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correspondence matrix which is jointly optimised within Gm, expressing the node-

to-node mapping correspondence among the considered geodesic vascular graph Gi

and any other G j ∈ Gm. Note that in this formulation, and according to the afore-

mentioned multi-graph matching framework, it is assumed a matching consistency

accounting for an invertible mapping, i.e. Xi j = XT
ji. The fusion weights wi j are

defined as

wi j =

{ tr
(

Xi jX(GT)T
i j

)
1T

ni
X(GT)

i j 1n j
if X(GT)

i j known

< 1 otherwise,

(5.8)

where tr(•) is the trace of the resulting square matrix.

In this way, the fusion weights wi j encode the resulting pair-wise alignment

accuracy ∈ [0,1], 1 being the perfect match, in a controlled topological registration

set-up, i.e. when the nodes-to-nodes mapping ground-truth X(GT)
i j is known before-

hand for each pair {Gi,G j}, by means of manual annotations of anatomical land-

marks and labels. In a more general and uncontrolled set-up, i.e. X(GT)
i j is unknown

and labels are automatically propagated, the fusion weights wi j are, for simplicity,

associated with a unitary value, under the ideal assumption that no mis-match oc-

curs at the group-wise multi-graph matching level. The permutation matrix product

XT
i jGi Xi j encodes the transformation mapping between Gi and any other G j ∈ Gm.

In eq. 5.6, this is, however, only evaluated for topologies mapped from a lower di-

mensionality to a higher one, i.e. for graphs having nodes cardinality satisfying the

relation ni ≤ n j. Similarly to linear programming implementations, such permu-

tation mapping enforces consistency with adjacency matrices of different dimen-

sionality, and, in case of a perfect matching, avoids unrecoverable information loss.

In other words, with a sequence of nested and dimensionally consistent sums, the

smaller graph is always mapped onto the larger one, and its features are integrated

over a set of common matchable inlier nodes (and edges), without discarding those

from pair-wise unmatchable outlier nodes (and edges). This is consistent under the

assumption that all topologies in Gm share at least one matching correspondence

throughout the whole set, i.e. group-wise unmatchable outlier nodes (and edges) do
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not exist. In case the latter condition is not met, the subset of group-wise unmatch-

able outliers will be conservatively kept by concatenating the associated residual

nodes (and edges) to the resulting cluster atlas Am. This formulation is omitted

here for simplicity. It is worth noting that the cluster atlas Am can be eventually

decomposed with an element-wise matrix product

Am =P ·F, (5.9)

with P=
2

Nm(Nm−1)
· 1
Wm

Nm−1

∑
i=1

Nm

∑
j=i+1

wi j ·XT
i jGi Xi j

∣∣∣∣
ni≤n j

, (5.10)

where the group-wise merged prior P represents the data-driven, probabilistic and

structural connectivity pattern(s) found for the average cluster atlas. In other words,

given the common space of the average atlas graph Am, P embeds the statistical oc-

currence of certain vascular branching and connections observed in the considered

subset of the population. In particular, P is a sparse planar symmetric adjacency

matrix with real values ranging [0,1]. Intuitively, the scalar attribute component

F embeds the mean vascular features, e.g. the aforementioned integral geodesic

energy (or any other vascular feature and biomarker), as an average weighted adja-

cency matrix over the considered population Gm. The purpose of such decomposi-

tion is twofold: 1) the group-wise probabilistic prior P can be fed with a feedback

loop to the multi-graph matching level as a purely topological pre-conditioning ma-

trix, with respect to new unseen vascular graphs. This would minimise possible

mis-matching errors and increase the accuracy of the automatically propagated la-

bels. 2) Simple statistical analyses of different vascular-related metrics can be lo-

cally performed on F for each connecting (sub-)branch, based on the embedded

feature or biomarker, e.g. vascular tortuosity analysis in the posterior cerebrovascu-

lar structures for a set of subjects, considering the Basilar Artery as whole vs. local

partitions of the Basilar Artery with respect to observed and occurring intermediate

branch-points.

Lastly, assuming also multiple atlases share a joint and optimal mutual map-

ping among clusters, a tentative comprehensive atlas A from the initial set of multi-
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atlases {Am=1,...,M} can be determined as

A=
2

M(M−1)

M−1

∑
i=1

M

∑
j=i+1

(
X(A)T

i j Ai X(A)
i j

)∣∣∣∣
ni≤n j

(5.11)

where a similar integration and averaging is performed with respect to Eq. 5.6. In

this case X(A)
i j is the the pair-wise correspondence matrix for pairs of cluster atlases

{Ai,A j}, which is jointly optimised within G. Also here, the same consistency-

enforcing integration strategy is employed for atlases of different dimensionality,

where common inlier matchable portions of each atlas are mapped and averaged

starting from those with lower node cardinality. Similarly to Eq. 5.6, unrecover-

able information loss is avoided for unmatchable outlier parts, as well as for the

matchable inlier ones, under the assumption of a perfect matching.

Although this early formulation for a possible cerebrovascular atlas has not

been validated, the theoretical fusion of co-registered non isomorphic topologies

can consistently preserve the embedded information at different levels of detail. As

shown in both Eq. 5.6 and Eq. 5.11, the correctness of the permutation mapping

transform and of the subsequent fusion would mainly rely on the optimality of the

group-wise topological alignment step, which has a critical relevance for the over-

all accuracy and anatomical meaning of the resulting atlases. The assumption of

an ideal multi-graph matching, showing no joint mis-match among the considered

set of graphs, is however unrealistic, given the single-shot pair-wise graph match-

ing formulations, upon which the group-wise framework builds up. Also, early

results in Section 5.4 currently show that a more vascular-oriented and contextu-

alised parametrisation is needed specifically for over-connected geodesic vascular

graphs. With this regard, a number of improvements and optimisations can be fur-

ther introduced: 1) the fusion weights wi j in Eq. 5.6 and Eq. 5.7 could model

the effect of matching errors in case of a more general and uncontrolled set-up,

i.e. when X(GT)
i j is unknown. As opposed to unitary values, wi j could integrate

a probability distribution, where the incorrect correspondences for multiple graph

matching are captured with a softened Bayesian manner, as proposed by Williams
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et al. [200]. 2) Since the uninformative and redundant connecting complexity of the

uncertain vascular topologies may produce undesired confounding artifacts in the

resulting (multi-)graph matching, a conservative optimisation of the proposed vas-

cular networks could prune trivial connecting overhead, towards a more compact

representation, i.e. overall reduction of nodes’ and edges’ cardinality. The resulting

prior P would therefore embed a sharper vascular connectivity pattern representa-

tive of the observed population, and, at the same time, the computation of multiple

topological alignments would boil down to a more efficient and high-throughput

process for large vascular datasets.

Lastly, by relaxing the multi-cluster assumption, multiple and possibly het-

erogeneous undirected vascular graphs would populate the same manifold, where

the alignment of each instance, as well as the propagation of labels, could be per-

formed on a local neighbourhood of the target, following informative matching pat-

tern flows. Although in the present formulation scalar vascular features are consid-

ered for the atlas’ attribute component F, the embedding of multi-source vascular

features of higher order would be consistently extended with hyper-graphs. With a

more adequate and complete representation of data, these topologies would enrich

the vascular atlas characterisation, where the analysis of population-based distribu-

tions could be performed without projecting values onto a scalar average domain.

In conclusion, with the advance of novel and efficient techniques for group-

wise graph matching, along the lines of [148, 205], a complete set of experiments

could be formulated in future works to validate the above theoretical formula-

tion, specifically for cerebrovascular topologies and for a variety of multi-source

attributes, i.e. geometrical, geodesic, topological, functional and bio-mechanical

features.

In the following chapter, advances towards the extraction of functional and bio-

mechanical vascular biomarkers are presented for the proposed VTrails framework.

These first leverage the vectorial connectivity of the cerebrovascular structures, then

a NURBS-based parametrisation of the bifurcating geometries is devised for hemo-

dynamic simulations within an isogeometric analysis framework.



Chapter 6

Vascular Biomarkers

As mentioned in the previous chapters, the formulation of a vectorial cerebrovascu-

lar representation automatically encodes the possibility to locally characterise and

analyse vascular features among a cross-sectionally or longitudinally co-registered

cohort of subjects. This would ultimately allow to quantitatively monitor patients

in the follow-up or to assess the evolution of neurovascular pathologies over a life-

long horizon. More specifically, the analysis of clinically relevant biomarkers, such

as vascular morphometric parameters (e.g. cross-sectional lumen boundaries, level

of stenosis, aneurysm location, size and shape), functional markers (e.g. territo-

rial supply, ischaemic events, local (de-)oxygenation, tracers wash-in/out), hemo-

dynamic descriptors (e.g. blood flow, pressure drop, wall tension and sheer-stress)

and surrogate vascular indices (e.g. familial and environmental risk factors), could

be projected and performed on a discrete, non-uniform and highly non-linear graph

domain, which might be representative of a heterogeneous population. However,

population-based and group-wise analyses are currently limited to global, some-

times qualitative, cerebrovascular differences with incidental vascular findings in

clinical trials in radiology.

The quantitative evaluation over a cohort of subjects is still a relatively unex-

plored research area. Early and preliminary work presented by Kwitt et al. [104],

proposed to extend the concept of encoding cerebral blood vessel networks as

spatial graphs. These would allow the quantification of graph similarities with

a kernel-based discriminant classifier from full-brain angiographies to indicate
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gender-related architectural differences in cerebral vasculature. However, the lack

of a topologically-aware alignment framework for complex cerebrovascular net-

works limited the analysis, inference and prediction to a global level. As observed

in Chapter 5, many of the processing steps require a complete embedding of fea-

tures of different nature in the same homogeneous domain: from the inference of

the most anatomically plausible realisation, to the delineation of uncertain and re-

dundant graph underlying the vascular structure, to the automatic labelling, and ul-

timately to the propagation of information over vascular topologies. With this view,

and by leveraging the connected topology of the inferred cerebrovascular graphs

recovered so far, advances on biomarkers extraction and embedding from hemody-

namic simulations are introduced into the VTrails framework and are presented in

the following sections as further contribution of this thesis.

6.1 Biomarkers from Hemodynamic Simulations

A considerable research effort has been put in vascular biomechanical models to

study and classify blood flow patterns and hemodynamic quantities of interest in

cardiovascular and cerebrovascular applications [88,180,183,184,186]. Such hemo-

dynamic quantities are typically obtained from computational fluid dynamics simu-

lations, where the Navier-Stokes equations govern the three-dimensional theory of

blood flow, under the assumptions of an incompressible, homogeneous, Newtonian

fluid flow in a pre-defined domain. Despite the intrinsic non-Newtonian rheologi-

cal behaviour of blood [130], its overall laminar (or weakly turbulent) flow can be

simulated with numeric and finite elements methods, given a set of suitable initial

boundary conditions [183]. These methods have been employed to estimate, for ex-

ample, the vessel wall shear stress, wall tension, and the relative wall displacements

following peaks and lows of the pulsating flow [88], as biomarkers for the forma-

tion of aneurysms and their associated risk of rupture. Other studies employed

finite element simulations to investigate the pathogenesis of occlusive diseases in

the cerebrovascular circulation [36, 92, 177]. In other cases, these methods offer an

opportunity to predict potential benefits of surgical repair, where simulations are
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used on patient-specific models to design optimal treatments based on prediction

outcomes [127].

Computational fluid dynamic (CFD) simulations require the accurate recon-

struction of a patient-specific geometric model of the underlying vasculature. Tra-

ditionally, patient-specific vascular modelling adopted finite element method (FEM)

tessellation approaches to reconstruct the geometry and to perform computational

fluid dynamic simulations in different applications [36, 74, 88, 182]. Since FEM-

based hemodynamic simulations and fluid-solid interactions rely on the accurate

geometrical modelling of the anatomy, the latter is usually determined with vascular

lumen segmentation techniques. These, however, may suffer from long computa-

tional time, intensive user interaction and limited anatomical accuracy with poorly

resolved angiographies [183]. Generally, the approximation of the FEM solution

depends on the detail of the reconstructed finite element mesh, where often fine

details and accurate simulations are usually coupled with increasing computational

time. Overall, these simulations are computationally expensive and the complex-

ity becomes intractable when a more regional or global assessment of blood flow

is sought [45, 166], as for the whole arterial cerebrovascular system. Similar pro-

hibitive simulations may occur when a series of localised geometrical perturbations

are modelled to assess the effects of pathology and to evaluate several hemodynamic

scenarios at different scales. For this reason, feasible applications are often limited

to localised vascular portions, where all the hemodynamic quantities of interest can

be fully resolved in space and time.

An alternative to costly-intensive computational fluid dynamics simulations

for a more global assessment is given by vascular hemodynamic lumped-parameter

and distributed network models [166]. These represent the behaviour of a collec-

tion of connected vessels by electrical analogs [199]. In other words, the simpli-

fied electrical analog models vessels’ tubular mechanical features with three ba-

sic elements: resistance, compliance and inertance for a fully-dynamic equivalent.

Given the closed-loop circuit formulation, modelling a Windkessel setup, pressure

and flow-rate waveforms are simulated and measured at the vascular junctions and
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along the branches, respectively. A number of cerebrovascular applications have

been proposed in the past years, adopting lumped-parameter models: the physi-

ological dynamics of cerebral blood flow regulation and control are investigated

in [145, 179] combined with neurovascular coupling. The validation of reduced-

order models for studying global flow features in cerebrovascular networks is given

in [45], where the observed discrepancies between computational fluid dynamics

simulations and lumped-parameter models are reduced with extra impedances at

the bifurcation level, compensating for flow-rate inaccuracies from bifurcation an-

gles. Onaizah et al. [146] studied the impact of obstructive and sclerotic changes

within the carotid arteries, and the overall impedance and resulting blood supply to

the brain. Ryu et al. [166] adopted a non-linear lumped-parametric model of the

Circle of Willis to evaluate the compensatory role of collateral blood flow in occur-

rence of multiple occlusions at different levels of the arterial vasculature. Despite

the reduced-order of the models which cannot fully model vascular fluid-structure

interactions (i.e. wall-tissue stress information), the inexpensive computational cost

allows an early evaluation of the mechanisms underlying the cerebral blood autoreg-

ulation. Also, the arbitrary scalability of the analog equivalents and the flexibility

to account for vascular network perturbation, i.e. occlusions and different levels of

stenoses, allow to compactly extend the analysis to larger networks, modelling at

the same time different physio-pathological configurations.

On a more localised scale, however, computational fluid mechanic modelling is

becoming increasingly important in personalised healthcare, where computational

tools are combined with the individual anatomy and physio-pathological data to

support diagnosis, therapeutic inference and planning medical intervention [190].

Despite reconstruction of a patient-specific vascular geometry suffering from

technological challenges, patient-specific geometrical models provides surgical

guidance. Also, particular cardio-/neuro-vascular applications, such as the custom-

designed creation of medical devices (i.e. stents, bypass and recanalisation prosthe-

ses) require a patient-specific geometrical model to catpure the underlying anatomy.

The ability to locally extract a 3D geometrical parameterisation of human vas-
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culature would empower and ease the translation to clinical care for two main

reasons. On one hand, the development of vascular medical devices can be per-

formed with computed aided design (CAD) software. In this case, the parametri-

sation of the structures using Non-Uniform Rational B-Splines (NURBS) is de

facto the industrial bio-mechanical standard, as well a scale-free and inexpensive

data-representation tool for virtual visualisation environments. On the other hand,

isogeometric analysis (IGA) [90], a relatively recent framework governed by par-

tial differential equations, enables the rapid simulation of bio-mechanic properties.

Among those, blood-flow and hemodynamic quantities, as well as fluid-solid inter-

actions at the interface, can be determined on the same parametric NURBS domain

without further levels approximations.

With the introduction of IGA, an alternative and unified formulation of vas-

cular geometries was proposed in [190, 214], where the subject-specific model was

determined using parametric curves. With respect to traditional FEM-based models,

few studies [77, 185] proposed a tentative integration of the vascular geometry in a

CAD-compatible design framework, by employed NURBS-based libraries prior to

rasterising the volumes into a tetrahedral mesh. A geometrical construction scheme

was first introduced by Zhang et al. [214], which included an image segmentation

step, followed by a geometrical parametrisation and simulation analyses. Paramet-

ric NURBS primitives [156] were employed to recover the anatomical vasculature

relying on a dictionary of geometrical templates for topological junctions. Aiming

at recovering also the typical smoothness of the anatomical structures, a fitting pro-

cedure adapted the junction templates on a pre-determined finite element mesh, en-

forcing circumferentially G1-continuity on the surface. Also, a fully-coupled mono-

lithic formulation of the fluid-structure interaction for an incompressible diffusion

on a hyper-elastic solid interface was detailed in [18], where a NURBS-based IGA

framework numerically embeded the simulations solutions’ domain. In contrast to

traditional finite element tessellations, the NURBS-based parametrisation for the

IGA simulations exactly represented the solution profile at the fluid-solid interface,

which can predict biomarkers for the onset and development of vascular diseases.
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Although [18, 214] provided a CAD-compatible integration and a monolithic for-

mulation with an IGA framework, the geometrical construction process suffers from

being a semi-automatic paradigm, and from a long computational time for large and

complex vascular networks [190].

Following the aforementioned concepts and inspired by these recent frame-

works, the extraction of biomarkers is addressed in the following sections for a

global-network as well as for localised branching geometries. A set of hemody-

namic quantities are derived to functionally characterise the cerebrovascular in-

ferred topologies with VTrails. Leveraging both topological and geometrical repre-

sentations of the vascular structure, further contributions to this thesis comprise:

1) the estimation of geometrical parameters and the local morphology of con-

nected vessels with a series of geodesic snakes (i.e. active contours) segment-

ing a linearly reformatted angiographic volume along the connecting centerline or

geodesic path.

2) A simplified hemodynamic model based on geometrical and bio-mechanical

lumped-parameters and an analog-equivalent configuration that approximates the

asymptotic values of blood flow and pressure drop for a global cerebrovascular net-

work. In this case, autoregulation and compensation mechanisms are observed in

simulated pathology, by perturbing the bio-mechanical lumped parameters of the

analog-equivalents in healthy realisations. Also, the resilience of the cerebrovascu-

lar network, i.e. the capability to recover from pathological conditions and events,

is evaluated for a set of clinically relevant cerebrovascular variants.

3) An automatic NURBS-based parametrisation of the underlying vascular

structure is presented on a more localised scale towards the extraction of biomark-

ers from fluid-solid interactions at the interface. Focusing on the geometrical re-

construction of bifurcating vessels at the junction, fully-resolved (space and time)

hemodynamic simulations are ultimately run to recover pressure values and blood

flow velocities in a representative set of examples, as a proof of concept, by solv-

ing a canonical Stokes problem on the reconstructed vascular geometries with an

isogeometric analysis framework [55].
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Lumen Segmentation Geodesic Snake

Figure 6.1: Lumen Segmentation with Cross-Sectional Geodesic Snakes. Representative
phantom combined with the previously inferred vascular tree. Vessel lumen
delineation are consistent along the tubular-like elongated structures, with local
overlap at the respective junctions. Closed-contours are enforced using the
geodesic snakes (active contour) formulation.

6.2 Lumen Segmentation with Geodesic Snakes
Following the concepts introduced by Cheng et al. [43], the delineation of vascu-

lar contours is obtained with closed geodesic snakes (active contours). From an

angiographic image volume V , and a set of connected centerlines, the volumetric

image is linearised per branch using a planar rigid transformation along the vessel

centerline. Geodesic snakes are then derived from two antagonist level-sets that

evolve on the reformatted image volume.

In detail, similarly to [94], considering an angiographic image V and a cen-

treline, or a minimal path π , a reformatted image volume Vrf is obtained by re-

sampling V along a series of orthogonal planes to π . This result in a set of 2D slices

that are orderly stacked with a rigid transformation. Such a rigid transformation

φ : R3→ R3 maps the canonical Cartesian coordinates of each slicing plane from
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the angiographic image reference system onto a new reformatted reference system,

i.e. {i, j,k} φ−→{i′, j′,k′}. In the new reformatted reference system the centerline (or

minimal path π) is linearly mapped along the k′ axis for its entire length, whereas

i′ and j′ are associated to a pair of orthogonal directions laying on the slicing plane.

The size of the slices is determined with a pre-defined distal range with respect to

the centreline, in order to capture both the vessel and the surrounding parenchyma.

The resulting reformatted Vrf shows therefore a linearised tubular region of bright-

contrast in the middle of the volume with dark-contrast background delimiting the

respective boundaries of the tube.

Two antagonist level-sets propagate over Vrf to determine an implicit boundary

functional as an energy potential for the delineation of geodesic snakes. Similarly

to section 4.1, the antagonist energy potentials are numerically determined with a

Fast Marching algorithm [175] assuming here an isotropic propagation medium.

The two antagonist energy potentials Uint and Uext are integrated as implemented

in [102] for both Vrf and V rf respectively. As in section 3.3, V rf is the negative im-

age of the reformatted volume Vrf, showing an opposite contrast of the structures.

In this case, the speed magnitude of the propagating front is expressed by the voxel-

wise values of the reformatted volumes. For the internal energy potential Uint, the

initialisation seeds consist in all points of the linearised centerline, these being in-

side the reformatted tubular structure. Conversely, the points corresponding to the

corners of each slice in V rf, these being outside the reformatted tubular structure,

are defined as the initial set of seeds for the external energy potential Uext.

It can be observed that the internal energy potential Uint models the time of ar-

rival for a diffusive process within the blood vessel, which propagates first along the

lumen towards the vessel wall. The external energy potential Uext models instead

the antagonist time of arrival, which represents the containing effect of parenchymal

structures surrounding the vascular structure. By definition of the front propagation,

both level-sets eventually leak into the mutual structures. A vascular boundary po-

tential P is determined as P = (Uint +Uext) + |Uint−Uext|. This is motivated by

combining their antagonist diffusion and their individual monotonically increasing
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profiles as previously shown in Fig. 4.6, for a generic 1D case. The resulting form

of the boundary potential P implicitly encodes the geometrical locus of the com-

peting frontier between the considered level-sets with local minima (valleys) in the

neighbourhood of the tube’s wall (Fig. 6.1).

Note that in this case, the back-tracing of the boundary potential P reaches a

unique global minimum along every radial direction joining the innermost part of

the vessel (ideally a central point pA as in Fig. 4.6) with the surrounding parenchy-

mal structures (i.e. any other point pB as in Fig. 4.6, surrounding the tubular struc-

ture).

A constrained geodesic active contour (G-snake) σ is therefore extracted lever-

aging the configuration of the reformatted volumes. In detail, the snake σ is ad-

justed on the local minima of the boundary energy potential P following a radial

motion direction. The geodesic snake σ is first initialised as a circular closed con-

tour centred in the middle of the slice, then it evolves with a gradient descent to-

wards the valleys so that an integral energy is jointly minimised along the snake at

convergence (Fig. 6.1).

6.2.1 Accuracy of Geodesic Snakes

Full sets of angiographies available from [6, 28] are considered for quantitatively

validating the geodesic snakes segmentation. Also, a MR time-of-flight angiogra-

phy of the Circle of Willis is considered for a qualitative assessment. Each branch

of 3D connected centerlines from [6,28] is considered with the respective angiogra-

phy to automatically recover the cross-sectional lumen segmentation with geodesic

snakes. The accuracy of the proposed delineation is qualitatively evaluated in Fig.

6.2 for both local and full-brain examples. Quantitatively, the accuracy error is

computed as the Euclidean distance between the delineated snakes and the closest

points of the segmentation given as gold-standard (GS). Accuracy errors are re-

ported in the following sections as average symmetric values ε , median εQ2 and

Hausdorff-95 εH95 [mm] averaged per angiography (mean±SD), with respect to the

collection of data in both repositories. In Fig. 6.2, both localised and whole-brain

vessels are well delineated with geodesic snakes. Closed contours converge to the
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Aneurisk MIDAS

MR Circle of Willis

Figure 6.2: Vessel Segmentation with Geodesic Snakes: representative angiographies in [6]
and [28] repositories (top); a MR time-of-flight angiography of the Circle of
Willis (bottom).

neighbourhood of the vessel wall even in cases of tortuous and convoluted vascular

structures. Note that, while this segmentation technique is not the principal contri-

bution, it is primarily presented as a technical bridge between the acquired medical

image volume and the need for an initial contour approximation. From the analysis,

deviations are comparable to the voxel-size (table 6.1), with maximal errors limited

to approximately 1 mm. Fluctuations are observed for smaller vessels and capillar-

ies, where the formulation of geodesic snakes requires further regularisation due to

local partial volume effects.
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ε εQ2 εH95

Aneurisk 0.21 ± 0.24 0.14 ± 0.04 0.65 ± 0.33
MIDAS 0.5 ± 0.35 0.45 ± 0.03 1.09 ± 0.07

Table 6.1: Accuracy of geodesic snakes vs. GS: average symmetric error ε , median εQ2

and Hausdorff-95 εH95 [mm] (mean±SD), averaging on the complete datasets
in [6, 28].

6.3 Vascular Graph-based Analog-Equivalents

A scalable and fast simulation framework that statistically estimates functional

biomarkers from asymptotic hemodynamic simulations is introduced here, leverag-

ing lumped-parameters models and analog-equivalent physio-pathological configu-

rations as proposed in [45, 146, 166]. To efficiently approximate the computational

fluid dynamics, subject-specific vascular graphs from clinical angiographies are in-

tegrated in a closed-loop configuration, where bio-mechanical parameters are first

estimated using the geodesic snakes and a simplification of the Euler fluid equation.

Lastly, a perturbation strategy is devised to model the effects of stenosis, tortuos-

ity, and occlusions on the analog-equivalents of phenotypical vascular topologies.

Assuming that a latent autoregulation mechanism underlies major brain arteries,

the simulated pressure/flow values suggest how the whole neurovascular network

reacts to local alterations. As this may result in possible downstream changes in

vessel wall tension, a new metric of neurovascular resilience is also provided to

different pathological scenarios. Lastly, beyond estimating biomarkers, a putative

Phantom Vessel Impedance Blood Flow Pressure Drop

Figure 6.3: Hybrid Vascular Lumped-Parameters Model of a Phantom: lumen segmenta-
tion with geodesic snakes as in Section 6.2 (left); Impedance (red), Flow (gray)
and Pressure drop (blue) asymptotic values (right).
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graph sampling strategy is ultimately devised based on the same analog-equivalent

formulation, which supports the topological inference of uncertain redundant vas-

cular network by increasing the sparsity of a fully-connected neurovascular graph,

while preserving its most biologically-plausible set of realisations.

6.3.1 Hybrid Vascular Lumped-Parameters Model

Hemodynamic quantities are obtained from simplifying the Euler fluid equation,

governing the fluid dynamics in the continuum. Here, non-linearities and the shock

of an incompressible flow transient are approximated by assuming a cylindrical

model of the underlying branch geometry, where a rigid pipe runs with fixed radius

along the vascular elongated direction (i.e. k′), adopting the same notation of the

reformatted reference system as in section 6.2. As demonstrated in [193], the axial

motion of a fluid is derived from the Cauchy momentum of mass conservation to

the differential Hagen-Poiseuille equation

qmax
k′ =− 1

4µ

∂ p
∂k′
· r2, (6.1)

under the assumption of a steady, i.e. ∂q
∂ t = 0, fully-developed, i.e. ∂qk′

∂k′ = 0, and

axisymmetric flow q, showing non-turbulent motion, i.e. with null flow velocity

for both radial and swirl components. The maximum flow occurs at the centre of

the pipe of radius r, and the constant average axial flow qk′ =
1
2 qmax

k′ integrates its

parabolic profile over the pipe’s cross-section. Integrating also a linearly decreasing

pressure drop ∂ p along the entire length l of the pipe, a constant, average, axial flow

Q = qk′ can be rewritten as

Q =
∆P
R

, with R =
8µl
πr4 and r =

1
l

∫
l

√
a(σ(k′))

π
dk′, (6.2)

with ∆P the integral pressure gradient, R the total integral resistance of the rigid

pipe of radius r, and µ the constant blood viscosity. Here, the constant radius r is

averaged along the pipe using the area of cross-sectional snakes a(σ(k′)). Note that

‘π’ in Eq. 6.2 is the Archimedes’ constant.
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6.3.2 Graph-based Analog-Equivalent

Along with the hydraulic analogy of electric systems, analog-equivalent circuits are

modelled as a set of connected lumped-parameters for the vascular network. A

generic vascular graph G = (N,E) is defined as a set of nodes j = 1, ..., |N| (i.e. the

branch-points), and the associated connecting edges (i.e. the vascular branches),

encode in E( j1, j2) the binary adjacency matrix. For each edge, the tubular fea-

tures are converted into electrical impedance for an analog equivalent, where purely

dynamic components vanish for a steady-state flow. The impedances of the con-

nected pipes simplifies to real-valued resistances R = f (l,r) as in eq. (6.2). These

are embedded in the associated resistance-weighted adjacency matrix R( j1, j2). In a

similar form, the flow Q( j1, j2) and the pressure drop ∆P( j1, j2) are translated into

current and potential difference for each vascular branch, respectively. Simulating

a closed-loop analog circuit, voltage generators as source of potentials (SRC j) and

potential grounds (GND j) are introduced in the system in the correspondence of the

j-th node. These model the pressure at the inlets or outlets of the network as node-

wise potential boundary conditions (PBC). By coupling linear lumped-parameters

and the set of boundary conditions, the analog-equivalent circuit is solved using

Kirchhoff’s laws as a linear system of equations. As described in algorithm 1, CR−1

denotes the circuit admittance matrix. CR−1 initially maps the equivalent topologi-

cal system where DR−1 and AR−1 represent the associated diagonal degree and the

adjacency matrix respectively, as in a canonical graph Laplacian. The notation CPBC

represents the node-wise potential vector of boundary conditions, whereas P is the

node-wise potential solution of the linear system of equations. The canonical pas-

sive sign convention is enforced as shown in Fig. 6.17.

6.3.3 Modelling Perturbations on Vascular Topologies

Perturbations and alterations of the vascular graphs can be introduced prior to re-

covering and solving the graph-based analog-equivalent, as in the previous section.

In particular, two types of perturbations are introduced to account for changes in

structural connectivity and flow resistance modulation. The structural connectivity

perturbation is achieved by altering the topology of the neurovascular graph G̃(N, Ẽ)
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1 Input: R, PBC; Output: P, ∆P, Q
2 CPBC = 0|N|×1; . Initialisation
3 CR−1 = DR−1−AR−1; . Circuit Admittance System
4 for all PBC j ∈ {SRC,GND} do
5 CR−1( j,∀ j2) = 0; CR−1( j, j) = 1;
6 CPBC( j) = PBC j ; . Include Boundary Conditions
7 end
8 P =C−1

R−1 CPB; . Solve the Linear System
9 for all edges do

10 ∆P( j1, j2) = P( j1)−P( j2); . Assign Potential Difference
11 Q( j1, j2) = ∆P( j1, j2) ·R( j1, j2)−1; . Assign Current (Ohm’s law)
12 end
Algorithm 1: Graph-based analog-equivalent system: definition and solver.

with a mask E as Ẽ = E · (E ·A). Here, the structural perturbation matrix E follows

a Bernoulli distribution of probability λ . These model random occlusions, which

disrupt the connectivity by a factor ε = (1−λ ), on average. A sparse adjacency

matrix A, of the same size of E, represents an anatomical prior where non-zero

edges A( j1, j2) weight the likelihood of certain cerebrovascular connections. In

general the anatomical prior A is unknown for non-annotated graphs. This means

that the sparse matrix is identically equivalent to A = 1|N|×|N|, therefore vanishing

in the structurally perturbed adjacency matrix Ẽ. Prior knowledge can be embedded

in A, if available, from manual annotations or known connectivity patterns.

The second type of perturbation modulates the resulting integral resistance.

Effects such as vascular stenosis and vessel tortuosity are modelled for both reduced

radii r and longer pipes’ lengths l, respectively. These are element-wise embedded

in the perturbed resistance matrix as R̃Ẽ =R·RẼ . Here, the resistance modulation

R( j1, j2) for each edge follows a uniform distribution within the parameters range

[0,m < 1]. Note that these perturbations are computationally very efficient, as they

are defined as simple matrix-to-matrix element-wise transformations.

6.3.4 Preliminary Experiments: Vascular Trees

As initial sanity test of the implemented formulation, and in order to evaluate the

scalability of the proposed approach to full-brain angiographies, a set of cerebrovas-

cular trees of different details and depth are considered. In this case, the hemody-
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Figure 6.4: Hemodynamic analog equivalent and steady-state blood flow simulation with
the described lumped-parameters model for a cerebral vascular tree from [6].

namic biomarkers are obtained with the lumped-parameter analog-equivalent model

without any further perturbation. Note that, however, all the considered topologies

are in the form of hierarchical (rooted) trees. In Fig. 6.4, the analog equivalent

model for a cerebrovascular tree from [6] is shown together with the image-based

spatial segmentation of the vascular structure. The impedance graph is automati-

cally configured with a pressure-driven source at the root of the vascular tree, and

analog equivalent grounds are placed in correspondence of terminal branches fol-
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Figure 6.5: Full-brain set of deep-cerebral vascular trees from [28].

lowing the algorithm 1. Note that the first vascular branch in cascade to the voltage

(pressure) source is referred as sensing resistance. This allows to normalise simu-

lated blood flow values with respect to the unknown blood flow source (note that

the analog circuit is modulated in voltage, at the source, not in current). After solv-

ing the linear system of equations, the respective blood flow is determined for each

vascular branch, and the pressure is computed for each node, i.e. at the vascu-

lar junctions, and along each branch in the form of a pressure drop. By adopting

the canonical notations, blood flow directions, as well as pressure drop ones, are

visually highlighted with the passive sign convention. Similarly, blood flow and

pressure drops in the main deep-brain arterial vessels are simulated for a whole cere-

brovascular dataset. Fig. 6.5 shows a schematic representation of the geometrical

and spatial embedding of the vascular trees and their associated vectorial connec-
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ζa ζb

R

Q

∆P

Figure 6.6: Hemodynamic analog equivalent and steady-state blood flow simulation for
a the deep-brain atrerial trees ζa and ζb as in Fig. 6.5. Analog resistance
equivalent R, simulated blood flow rate Q and blood pressure drops ∆P.

tivity. By adopting the same configuration for rooted trees, the analog impedance

equivalents are automatically recovered and configured for all the vascular branches

of the deep-brain arterial trees. Analogously, the associated blood flow partition,

and pressure drop distributions are solved for the considered instances (Fig. 6.6

and 6.7). Whilst a full-brain simulation of the arterial vasculature would have been

impractical with computational fluid dynamics simulations, in this case the solution

for the considered lumped parameters was nearly instantaneous (< 1×10−3 s). De-

spite the different levels of approximation, an initial figure of territorial blood flow

and pressure drop profiles is quantified for the vascular branches above the Circle

of Willis. Results show partitions and distributions being in line with biologically

compatible and physiological hemodynamic ratios, whereas, for some other topolo-

gies (e.g. ζd), functionally implausible hemodynamic values are reported. This is
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ζc ζd
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Figure 6.7: Hemodynamic analog equivalent and steady-state blood flow simulation for
a the deep-brain atrerial trees ζc and ζd as in Fig. 6.5. Analog resistance
equivalent R, simulated blood flow rate Q and blood pressure drops ∆P. Note
the functionally implausible hemodynamic values for the entire sub-tree of ζd .

clear in Fig. 6.7 for both blood flow and pressure drops, where an entire sub-tree

of the considered vasculature is not diffused. The interpretation of such realisation

suggests either the occurrence of an ischaemic event, or an erroneous topological

inference of the underlying hierarchical structure.

6.3.5 Neurovascular Resilience

A resilience index of the cerebrovascular network, i.e. the capability to recover and

cope with pathological conditions and events, is introduced here for more general

neurovascular topologies and configurations. By considering the aforementioned

graph embedding comprising also possible perturbations within the same pheno-

typical realisation, flow (Q) and pressure (∆P) are evaluated on an arbitrary number

n of similar equivalents for comparison. The n simulated quantities are then aver-
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CoW Topology Phenotypes

Figure 6.8: Circle of Willis: manually annotated landmarks and graph equivalent for an
exact network, i.e. given the anatomical priorA. Sources SRC (♦) and potential
grounds GND (H) are shown for the anatomical blood inlets and outlets.

aged for the same phenotype, for which a global network resilience metric is defined

as

ρG =
1
|Ẽ| ∑|Ẽd|

ρ with ρ =
(∆P ·Q)

πr2l
, (6.3)

where |Ẽ| is the total number of vascular branches after the topological perturba-

tion, being |Ẽd| the diffused ones, i.e. those having non-zero Q and ∆P. The scalar

resilience ρG is an integral surrogate for the branch functionality given the network

perturbation. In other words, it is a scalar describing how resilient, or how af-

fected, a branch is by a random perturbation anywhere in the neurovascular graph.

Assuming healthy networks being well diffused, ρG is maximal for unperturbed

equivalents, whereas it decreases for impairing modulations.

Datasets: Six MR time-of-flight angiographies of the Circle of Willis (CoW) are

considered as experimental dataset. Each subject is classified into 3 different CoW

phenotypes and manually labelled as in Fig. 6.8, and vascular graphs are extracted

as in Chapter 4.

6.3.5.1 Controlled Simulations on Exact Topologies (CoW)

Pressure potentials are initialised at the anatomical inlets, whereas potential grounds

are set at the terminal branches of the CoW (Fig. 6.8). Here, an anatomical prior
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Figure 6.9: Autoregulation mechanisms: blood flow, pressure and network resilience ρ for
unperturbed graphs, and for the simulated stenotic ICA and occluded PCOM
- Full Cycle – Both PCOMs – Phenotype .

A is given for the annotated graph. The autoregulation mechanisms are evaluated

first by simulating a stenotic Internal Carotid Artery (ICA) and an occlusion of the

Posterior Communicating Artery (PCOM), as a sanity test in a simple, yet realistic,

scenario. In Fig. 6.9, Fig. 6.10 and Fig. 6.11, three different CoW phenotypes are

shown after simulating asymptotic hemodynamic quantities in the controlled sce-

nario. Biologically compatible autoregulation mechanisms are observed. On aver-

age, reduced flow and pressure values are found in the perturbed ipsi-lateral branch

of the network, whereas minimally affected quantities are observed for the contra-

lateral part. While flow is marginal in the PCOMs for the unperturbed network in

Fig. 6.9, it increases (highlight) after the simulated stenosis and occlusion (purple

edges), where the flow overdraft is compensated by the posterior circulation.

Similar autoregulation mechanisms are observed for the other phenotypes in

Fig. 6.10 and Fig. 6.11, where major compensations are given by the anterior left-

right circulatory contribution at the Anterior Communicating Artery (ACA) level.

Flow readjustment were intrinsically different for different CoW phenotypes. De-

spite the relatively small ACA size, increased flow is observed (highlighted) contro-

lateral to the simulated perturbation. As postulated, resilience indices ρ show a
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ρG = 18.0 ρG̃ = 16.0

Figure 6.10: Autoregulation mechanisms: blood flow, pressure and network resilience ρ

for unperturbed graphs, and for the simulated stenotic ICA and occluded
PCOM - One Posterior Communicating Artery Phenotype .

G( ) G̃( )

ρG = 17.0 ρG̃ = 15.5

Figure 6.11: Autoregulation mechanisms: blood flow, pressure and network resilience ρ

for unperturbed graphs, and for the simulated stenotic ICA and occluded
PCOM - Absent Posterior Communicating Arteries Phenotype.

decreasing trend for the same perturbation on the different networks.
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Type Blood Flow Q Blood Pressure P

Figure 6.12: Flow and pressure distributions (boxplots) for unperturbed anatomically exact
topologies and for 3 perturbation classes of increasing stenoses and tortuosity.
Increasing perturbations from dark (unperturbed) to light colours.

6.3.5.2 Random Perturbations on Exact Topologies (CoW)

More simulations are computed by perturbing only the resistance-equivalents,

where fluctuations in R modulate both radius and length of the pipes. Perturba-

tions account for 3 classes with maximal resistance increment mmax = 50%, and a

total n = 1000 instances per class. In Fig. 6.12, flow and pressure distributions are

depicted for a representative set of CoW edges and nodes. For each perturbation

class (i.e 0<m1<0.2, 0.2<m2<0.3, and 0.3<m3<0.5), the hemodynamic quanti-

ties are compared against the unperturbed values. On average, flow is decreased,

in line with the overall increased impedance of the vascular network. Conversely,

the distributed pressure increases progressively as the degree of perturbation, with

relatively smaller ratio of increase at the basilar artery (BA) terminal point (BAend).

As a second tier analysis, a hypertension histogram is fitted in Fig. 6.13 with

a gamma distribution. Here, hypertension is defined as the pressure normalised by

the mean cross-sectional area of the vessel. An unperturbed CoW shows a hyper-

tension profile skewed towards low values; histograms shows a broader profile for

increasing perturbations, with more small vessels reporting relatively high pressure.

This suggests that increased hypertension tends to affect the whole CoW even for
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Type Hypertension Histogram

Figure 6.13: Hypertension histogram interpolated with a gamma function for unperturbed
anatomically exact topologies and for 3 perturbation classes of increasing
stenoses and tortuosity. Decreasing resilience indices ρ for increasing per-
turbations, from dark (unperturbed) to light blue (m3).

localised stenoses (leftwards shift of the histogram), and increased risk of vascular

rupture (larger area above a certain threshold, e.g. the dashed line in Fig. 6.13). A

higher prevalence of zero-force is also observed in the simulated stenotic regions,

suggesting higher risk of ischaemia. Resilience ρ was also found to decrease for all

topologies at increasing levels of perturbation.

6.3.5.3 Perturbations on Redundant Uncertain Topologies (CoW)

So far, analyses assumed a specific realisation of a vascular graph. However, ro-

bustly extracting the vascular topology is a challenging task due to poor image res-

olution. As previously observed for some vascular trees, also for some erroneously

extracted vascular graphs, i.e. those with the wrong connections, bio-mechanical

properties exhibited abnormal values. Therefore, a viable solution to assess the

plausibility of putative vascular graphs is here proposed using the perturbed simu-

lation framework. Relaxing now the assumption of a known anatomical prior (i.e.

vanishingA), occlusive perturbations E are introduced for a graph G, which embeds
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Figure 6.14: Vascular graph sampling with hemodynamically-compatible simulations: spa-
tial and matricial embeddings of G and G̃, before and after pruning, respec-
tively.

uncertainty among vascular junctions. Similar boundary conditions are initialised

for those nodes closest to the annotated in/outlets; however, no resistance modula-

tion is performed. Note that simulating complete occlusions on a redundant vascular

network is equivalent to re-sampling the graph G with subnets and evaluating their

biological compatibility. Here, three classes of randomly occluded topologies G̃

are generated for ε = 0.2, 0.3, 0.5, each with a total of n = 1000 instances. For

each class, an inverse resilience adjacency matrix ρ inv, of the same size as Ẽ, is

determined as ρ inv( j1, j2) = ρ( j1, j2)
−1, and an associated likelihood matrix L is

integrated for all simulations in each class. Specifically, L = ∑n ρn ·MST(ρ inv
n ),

where MST is the minimum spanning tree maximising the resilience of each per-
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turbed instance.

From these experiments putative re-sampled graphs G̃ are obtained. These

resulted in subsets of most hemodynamically-compatible branches from an initial

fully-connected topology (Fig. 6.14). Major sparsity in the associated adjacency

matrix is found for ε = 0.5 and by thresholding the likelihood L above the median.

Although the supra-threshold G̃ shows a reduced redundancy in the connectivity

pattern, the correct CoW phenotype is kept intact. Also, similar patterns are found

for ε = 0.2, 0.3. This suggests that for a number of simulated instances that tend

to infinity, and for different degrees of perturbations, a family of hemodynamically-

compatible graphs statistically emerges from an uncertain and redundant graph, by

jointly maximising the subnet resilience and by integrating overlapping minimal

acyclic realisations.

6.3.5.4 Observations

Experimental results show the efficacy of lumped-parameters and analog equivalent

models for the extraction of descriptive hemodynamic biomarkers. Blood flow and

pressure drops along the vascular branches can be compactly retrieved and embed-

ded in the vectorial vascular representations, constituting an early extension of a

multi-source feature set for the vascular graphs. As shown for representative exam-

ples, the computed hemodynamic quantities provide an initial partition and distribu-

tion of functional parameters which can be scaled up to the whole cerebrovascular

system. The adopted approximation cannot model vascular fluid-structure interac-

tions, nor the effect of a pulsating flow and pressure as in fully-resolved computa-

tional fluid dynamic (CFD) simulations. However, the high-throughput (0.4± 0.2

ms per simulation), the arbitrary graph scalability, and the flexibility for network

perturbation allow an early evaluation of the steady-state mechanisms underlying

the cerebral autoregulation in a compact and reproducible way. The simulated mea-

sures of a subject-specific model, can subsequently be normalised, allowing there-

fore a more homogeneous group-wise analysis among a co-registered set of simi-

lar topologies. For three healthy CoW phenotypes autoregulation mechanisms and

functional distributions are first evaluated with a controlled perturbation, then with
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a series of random morphological modulations spanning over all the vascular net-

work. Data-driven results on exact topologies are in line with the literature, where

similar compensation strategies and distributions were observed in case-studies and

on artificial physio-pathological models [45, 146, 166].

Whilst the proposed simulations can efficiently detect the occurrence of crit-

ical ischaemic events, when the topology is accurately recovered and modulations

are simulated, also possible mis-connections in uncertain topologies can be detected

at the same time. Specifically, a putative graph sampling is formulated for uncer-

tain redundant topologies, where preliminary results suggest a family of compatible

graphs statistically emerge from jointly maximising the subnet resilience and inte-

grating overlapping minimal spanning trees. Notwithstanding the novelty of these

preliminary results, which are the first for image-based simulations of clinically rel-

evant neurovascular networks with perturbations, a more extensive validation is still

required. Further developments will address more complete phenotypical dataset,

together with a cohort of patients to longitudinally evaluate the resilience predictors

associated to the clinical outcomes. Also, by relaxing the steady-state assumption,

time-resolved analyses will account for coupling dynamic imaging modalities (e.g.

arterial spin labelling) and pulsating hemodynamic simulations.

6.4 NURBS Parametrisation for Hemodynamics

with Isogeometric Analysis
As previously observed, compact analog equivalents are not able to accurately

model either the underlying vascular geometry, or fluid-solid interactions in fully-

resolved hemodynamic simulations. However the increasing need for localised vas-

cular analyses and for integrating simulations with personalised device design mo-

tivated the following contribution of this thesis. Leveraging both the connected

structure of the vascular network and the segmented geometry using the formulated

geodesic snakes, an automatic NURBS-based reconstruction (i.e. a parametrisa-

tion) is devised. Ideally, such a parametrisation should bridge the gap between

the efficient and compact extraction of functional biomarkers and the vectorisation
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Figure 6.15: End-to-end parametrisation on vascular junctions: from geodesic snakes on
clinical angiographies to hemodynamic simulations using IGA.

(along the lines of an image-tracing approach [173]) of the vascular structure from

angiography, for personalised surgical repair integrating subject-specific CAD de-

signs. Despite the advantages of NURBS to compactly model vascular geometry,

and the seamless integration between NURBS geometry and IGA simulation so-

lutions, as observed in section 6.1, currently available tools do not allow one to

perform end-to-end subject-specific IGA flow simulations of vasculature.

Here, as a further contribution, a template-free parametrisation of vascular con-

tours is introduced with a compact and regularised support using NURBS. Then a

smooth geometry construction scheme optimises for a surface G2-continuity condi-

tion, with a focus on junctions. Lastly, an implicit partition of multi-compartmental

vascular models for hemodynamic simulations is determined, being fully compati-

ble with an IGA framework. In the diagram (Fig. 6.15) the processing workflow is

shown for the proposed parametrisation.

6.4.1 Parametrisation Pipeline.

The parametrisation of the segmented vascular structure leverages first the graph-

based subdivision into elongated tubular branches and topological junctions, and al-

lows then a multi-compartmental partitioning of the vascular components. Given a

wall thickness θ , both fluid-volume and vessel wall compartments are determined to

further model fluid-solid interactions at the respective interface. Similarly to [214],

purely tubular NURBS surfaces are determined by lofting ordered series of differ-

ent closed NURBS contours as a whole. Such a surface reconstruction strategy

accounts for shape and size variations along the tubular branches. Further insights

on NURBS and the lofting operator can be found in [156] for reference and for a

more detailed description. Conversely from tubular portions, surfaces at the junc-
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tions cannot be directly modelled as tensor product between curvilinear NURBS

primitives, and, because of the intrinsic non-linearity of the junction topology, a lo-

calised patch-based construction is required. With patches, a set of geometrical en-

tities is identified, where one or more connected interfaces are mutually shared with

the neighbouring ones. For simplicity, the complete parametrisation of bifurcations

(i.e. junctions merging three main branches) is addressed in the following sections.

These result in a piece-wise G2 curvilinear junction scaffolding. The parametrisa-

tion of generic n-junctions can be extended by combining the following approach

to multiple, partial and contiguous subdivisions of the n-junction in topological

triplets. All junction (and tubular) surfaces are reconstructed (and regularised) with

homogeneous adjacent Coons patches, where a surface G2-continuity optimisation

strategy is devised at the boundaries. Lastly, the solid NURBS parametrisation is

directly determined as tensor product coupling and interpolating regular pairs of

multi-compartmental patch surfaces.

B-Splines and NURBS Parametric Primitives. The following parametrisation

makes use of Non-Uniform Rational B-Splines (NURBS) instances, such as curvi-

linear segments, surface patches and solid hexahedral geometries defined on a ho-

mogeneous coordinate space. Both B-Spline and NURBS formulations are first

introduced for curvilinear instances, then a generalisation is given for surface and

C(u) S(u,v) V(u,v,w)

Figure 6.16: NURBS primitives adopted in the parametrisation. (Left) A curvilinear seg-
ment with form C(u). (Centre) A non-planar quadrilateral surface patch of
the form S(u,v). (Right) A Hexahedral solid patch of the form V(u,v,w). In
the NURBS homogeneous space, u-, v-, and w-directions map the circumfer-
ential, the longitudinal and the radial tube directions, respectively.
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solid patches. Lastly the adopted numeric parametrisation is detailed for the tubular

and junction geometries.

Following concepts introduced by Piegl and Tiller in [156], an open p-th degree

B-Spline curve is a piece-wise polynomial defined recursively by means of a knot-

vector. A generic formulation for a curvilinear B-Spline segment CBS(u) is given

as

CBS(u) =
m

∑
i=0

Ni,p(u) pi 0≤ u≤ 1, (6.4)

where pi are the control points with 3D coordinates [xi,yi,zi], and Ni,p(u) are

the p-th degree B-Spline basis functions, defined on a non-periodic knot vector U(u)

of values u.

NURBS primitives are an extension of B-Splines, where each polynomial com-

ponent is differently weighted with a specific weight ωi. The main advantage of

NURBS over B-Splines is that they can exactly represent conic sections such as

circles and ellipses. For the same curvilinear segment in eq. 6.4, the NURBS-based

formulation C(u) is given as

C(u) =
∑

m
i=0 Ni,p(u) ωi pi

∑
m
i=0 Ni,p(u) ωi

0≤ u≤ 1. (6.5)

Alongside curvilinear NURBS primitives, also NURBS surfaces and volumes

can be defined for higher dimensions. In case of a NURBS surface patch, two knot

vectors U(u) and U(v) are considered, each of p(u) and p(v) degrees, respectively.

Also a set of control points pi, j and a set of weights ωi, j determine the NURBS

surface patch S(u,v) as

S(u,v) =
∑

m
i=0 ∑

n
j=0 Ni, j;p(u),p(v)(u,v) ωi, j pi, j

∑
m
i=0 ∑

n
j=0 Ni, j;p(u),p(v)(u,v) ωi, j

0≤ u≤ 1, 0≤ v≤ 1, (6.6)

where Ni, j;,p(u),p(v)(u,v) is the tensor product of the 2 one-dimensional B-Spline

basis functions Ni,p(u)(u) and N j,p(v)(v). Such a formulation is similarly extended to

solid NURBS patches V(u,v,w), considering a third knot-vector U(w) of values w.
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Vascular Phantom Geodesic Snake NURBS G2 Periodic Contour

Figure 6.17: Cross-sectional segmentation of a vascular phantom. (Left-centre) Planar
geodesic snake extraction as in section 6.2. (Right) Conversion of the snake
into a closed parametric curve with a shape preserving fit. Eight unique con-
trol points p̂î=0,1,...,7 define the closed parametric contour Ĉ(û). A geometrical
G2 condition enforces p̂0 = p̂8, p̂1 = p̂9, and p̂2 = p̂10. Eight open curvilinear
segments C(u) are re-parametrised as separate patches, each preserving the
geometrical G2 condition. The boundary control points p0 and p7 of C(u)
coincide in pairs with the internal p̂î of Ĉ(û) (green dashed lines).

The parametrisation of vascular structures presented in the following sec-

tions accounts for cubic B-Splines spanning the 〈u,v,w〉 domain for the respec-

tive NURBS curves C(u), quadrilateral surfaces S(u,v) and hexahedral solid vol-

umes V(u,v,w), as shown in Fig. 6.16. In all these primitives, the homogeneous-

coordinate space u maps the circumferential vessel direction; v maps the longitu-

dinal vessel direction, and w maps the radial vessel direction. Otherwise stated,

all patch-based entities are homogenised with a compact numeric parametrisation

reported in table 6.2 in all u-, v- and w-directions.

Spline Degree Control Points Weights
p = 3 i = 0,1, ...,7 ωi = 1

Euclidean Control Point Knot Vector

pi = [xi,yi,zi] U(u) = {0 0 0 0 1
4

1
2

3
4 1 1 1 1}

Table 6.2: NURBS parametrisation for a curvilinear primitive C(u) along the circumferen-
tial direction u. Note that for curvilinear primitives along different directions,
the longitudinal v or the radial w are considered, instead of u.
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6.4.2 G2 Periodic Closed Contours

Each cross-sectional geodesic snake is converted into a periodic closed curve Ĉ(û)

with a least-squares fitting procedure similar to [108]. By construction choice, eight

unique control points are enforced for the parametrisation of each closed contour.

Since a geometrical Gp−1 curvilinear continuity paradigm enforces p control points

to wrap around at the end of the polygonal set, a wrapping set of control points

p̂î=0,1,...,10 are determined so that p̂0 = p̂8, p̂1 = p̂9, and p̂2 = p̂10. The control points

p̂î span an unclamped uniform knot vector Û(û) defined by uniformly sampling

the domain û = [0− p
8 ,1+

p
8 ] with î+ p+2 knots. The determined G2-continuous

closed curve Ĉ(û) is shown in Fig. 6.17.

Since the parametrisation of bifurcating connecting junctions requires a set of

adjacent patches, the periodic closed curve Ĉ(û) is subdivided into eight regular

curvilinear segments. This is obtained by first clamping the periodic closed curve

and subsequently splitting it following a knot-insertion procedure [156], until reach-

ing the maximum multiplicity per inserted knot. The resulting curvilinear segment

has the form of C(u) as in table 6.2. The knot vector of each curvilinear segment

is re-parametrised on the homogeneous domain u = [0,1]. Note that each result-

ing curvilinear segment preserves the G2-continuity with the adjacent neighbouring

ones. Although the parametrisation of the curvilinear segment C(u) shows a differ-

ent set and number of internal control points pi, its first control point p0 and its last

control point p6 correspond in contiguous pairs to the internal control points of the

closed curve Ĉ(û).

6.4.3 Junction Control Octagons and Scaffolding

In the following section, a geometrical parametrisation of a generic bifurcating junc-

tion is determined by means of spatial projections of control points coordinates. In

each bifurcation, three proximal junction contours (Σ(b)
b=1,2,3) having the form of

Ĉ are considered for the construction of the patch-based control octagons. These

are depicted at the spatial extremity of the topological junction in Fig. 6.18 with

dashed blue lines, and their vertices are represented by small squares. A projective

approach similar to [213, 214] defines a set of directional vectors from the non-
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Topological Junction Directional Vectors

Control Octagons Piece-wise G2 Primitives

Guiding Sloft G2 Scaffolding

Figure 6.18: Junction parametrisation: (top) proximal octagons Σ
(b) (dashed blue lines,

square vertices) and mutually-intersecting contours; set of directional vec-
tors (6.7) for CV, CX and CVX quadrants; (middle) construction of control
octagons: non-planar projective Π

(b) (solid blue lines, circle vertices), and
planar capping Θ

(b) (dotted blue lines, triangular vertices); piece-wise G2

NURBS curves of the control octagons along u; (bottom) orderly lofting the
curvilinear pieces along v on the CV quadrant for the guiding surfaces Sloft;
G2 construction scaffolding, resulting in closed sets of quadrilateral acrs.
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intersecting triplet proximal junction contours as

nCV = 1
3 ∑

3
b=1 n(b)

⊥ , n(1,2)
CVX = 1

2(n
(1)+n(2)),

nCX =− nCV, n(2,3)
CVX = 1

2(n
(2)+n(3)),

n(1,3)
CVX = 1

2(n
(1)+n(3)),

n(1,2)
CV = 1

2(n
(1,2)
CVX +nCV), n(1,2)

CX = 1
2(n

(1,2)
CVX +nCX),

n(2,3)
CV = 1

2(n
(2,3)
CVX +nCV), n(2,3)

CX = 1
2(n

(2,3)
CVX +nCX),

n(1,3)
CV = 1

2(n
(1,3)
CVX +nCV), n(1,3)

CX = 1
2(n

(1,3)
CVX +nCX),

(6.7)

with n(b) being the vector joining the junction centre of mass O and the geomet-

rical centroid of Σ
(b) for each branch b. The perpendicular vector n(b)

⊥ is ob-

tained as a pairwise cross-product, i.e. n(1)
⊥ = (n(1)×n(2)), n(2)

⊥ = (n(2)×n(3)), and

n(3)
⊥ = (n(3)×n(1)). The above vectors, as depicted in Fig. 6.18, determine the di-

rections of three projective non-planar construction octagons Π
(b) at the junction

origin O. The same directional vectors spatially subdivide the bifurcation geometry

in quadrants, i.e. concave (CV), convex (CX) and the respective interleaving sides

(CVX).

For each branch b, the control points directions of the non-planar octagonal

projections Π
(b) are derived as pair-wise combination of the directional vectors

Π
(1) =

[
nCV;n(1,2)

CV ;n(1,2)
CVX;n(1,2)

CX ;nCX;n(1,3)
CX ;n(1,3)

CVX;n(1,3)
CV

]
,

Π
(2) =

[
nCV;n(2,3)

CV ;n(2,3)
CVX;n(2,3)

CX ;nCX;n(1,2)
CX ;n(1,2)

CVX;n(1,2)
CV

]
,

Π
(3) =

[
nCV;n(1,3)

CV ;n(1,3)
CVX;n(1,3)

CX ;nCX;n(2,3)
CX ;n(2,3)

CVX;n(2,3)
CV

]
.

(6.8)

The final control points coordinates of the non-planar projective octagons Π
(b)

are determined with a least-square fit. In particular, the coordinates of Π
(b) are ad-

justed along the respective directions, by considering the spatial points cloud of the

mutually-intersecting proximal contours at the junction (i.e. the grey intersecting

rings in Fig. 6.18 enclosing the topological junction). In Fig. 6.18 the non-planar

projective octagons Π
(b) are depicted with solid blue lines and with small circles in
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the correspondence of the vertices.

Together with the non-planar projective octagons Π
(b), an extra set of three

planar capping control octagons Θ
(b) are specifically defined for closing the con-

cave and convex quadrants. The extra capping control octagons Θ
(b) are almost

completely overlapped with the non-planar projective control octagons Π
(b), since

their control points are defined as pairwise geometrical average of neighbouring

projective octagons Π
(b). In Fig. 6.18, the planar capping octagons Θ

(b) are de-

picted with blue dotted lines and with small triangles in the correspondence of the

vertices.

Each control octagon determines a piece-wise G2 set of curvilinear segments

as one-dimensional NURBS primitives. These primitives have the form of C(u) as

in section 6.4.2, and are depicted with coloured lines in Fig. 6.18, delimited by

red crosses. It can be observed that the planar and proximal control octagons Σ
(b)

produced planar G2 closed contours. Similarly, non-planar projective octagons Π
(b)

produced non-planar G2 closed contours. Conversely, portions of the planar closed

contours for the capping control octagons Θ
(b) are depicted in Fig. 6.18. In partic-

ular, only three incident curvilinear primitives are shown for both the convex and

the concave quadrants. These are the only unique curvilinear segments necessary

to close the scaffolding of the bifurcating junction, since the remaining curvilin-

ear portions of Θ
(b) coincide with those of the non-planar projective octagons Π

(b).

Note that all the piece-wise G2 set of curvilinear segments are defined on the cir-

cumferential direction u of the tubular structures.

In order to determine a geometrical scaffolding enclosing the bifurcation with

a set of quadrilateral non-planar and curvilinear polygons spanning both u and v,

further connecting primitives must be defined along the longitudinal direction of

the tubular structures. This is obtained with a series of guiding surface patches Sloft.

The guiding surface patches are determined by piece-wise lofting ordered sequence

of curvilinear circumferential segments belonging to the set of the control octagons

{Σ(b),Π(b),Θ(b)} along the longitudinal direction v. The guiding surface patches

Sloft are first computed for all quadrants, then the boundary of the guiding surface
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patches are extracted. These determine an initial set of contiguous curvilinear prim-

itives on v, which mutually show G0-continuity at the terminal endpoints.

The obtained set of curvilinear primitives along u- and v-directions encloses

the junction in a construction scaffolding, where a further curvilinear G2-continuous

condition is enforced at the contiguous primitive boundaries along v. In particular,

the respective tangential direction, as well as the one associated to the second deriva-

tive of the contiguous curvilinear primitives are imposed to be mutually equal. This

is obtained with an iterative adjustment of the boundary control points coordinates

until convergence. Note that along u, the curvilinear primitives of the construction

scaffolding already satisfy the geometrical G2-continuity condition.

The resulting piece-wise G2-continuous construction scaffolding is then pro-

cessed in adjacent quadrilateral non-planar curvilinear polygons (i.e. patches), these

composed of four arcs of curves. Coons patches are determined for each quadrilat-

eral polygon of the scaffolding at the junction, by bi-linearly blending the ruled

surfaces [156] obtained from pairs of arcs.

As a side note, the same G2-continuous construction scaffolding is determined

for the tubular portions. In a similar fashion, the complete tubular surface is first

recovered with a lofting operation on an ordered sequence of circumferential oc-

tagonal snakes. Then, the complete tubular lofted surface is subdivided into eight

piece-wise stripes running along the longitudinal direction of the tube, reproducing

the octagonal subdivision patterns of the junctions. All resulting tubular surface

patches (i.e. stripes) are regularised into adjacent homogeneous Coons patches.

6.4.4 Surface Coons Patches and G2 Control Net

On a single-element scale, bi-linearly blended surface Coons patches exactly meet

the four boundary arcs. However, multiple adjacent Coons patches sharing sub-

sets of boundary curves do not necessarily show the same surface tangent planes

at the interfaces. This may produce creases and curvature discontinuities in the

joined surface along those boundary curves, resulting thus in an overall G0 set of

neighbouring surfaces. Given the proposed spatial subdivision, creases at the sur-

face patch boundaries are particularly likely at junctions. This may be reflected on
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G0 Coons Patches G0 Control Net

G2 Coons Patches G2 Control Net

Figure 6.19: Patch-based junction surface: (top) G0-continuous set of Coons patches from
the scaffolding; Hexagonal pattern of the CV quadrant and associated con-
trol net. Creases are observed at the boundaries/interfaces among the neigh-
bouring patches; (bottom) optimised G2-continuous set of Coons patches with
algorithm 2; resulting control net in the CV quadrant and coplanar neighbour-
hood of the control point corner in blue.

hexagonal patterns of adjacent patches, which are determined in correspondence of

the CV or CX quadrants (Fig. 6.19). In particular, each patch pair-wise shares two

boundary arcs on both u- and v-direction with two other adjacent patches towards

the innermost part of the quadrant. Conversely, quadrilateral patterns of adjacent

patches are obtained in correspondence of the CVX side quadrants, where, also in

this case, pair-wise adjacency schemes are found in both u- and v-directions for all

the considered patches.

To mitigate the effect of geometrical creases and discontinuities at the junc-

tions, a pair-wise surface patch regularisation scheme is devised to enforce surface
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smoothness. In particular, following [89], the geometrical G2-continuous condition

for a single pair (S1,S2) of adjacent Coons patches sharing a common arc along

either u- or v-direction can be here formulated as
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where, {m1,n1} and {m2,n2} are the control points cardinalities along u- and v-

directions, respectively for S1(u,v) and S2(u,v), and f is an arbitrary real positive

scalar. Applying the G2-continuous conditions on the single pair of surface patches

consists in adjusting the coordinates of neighbouring control points in the corre-

spondence of the interface of the pair (S1,S2) along either the circumferential di-

rection (with eq. 6.9) or along the longitudinal direction (with eq. 6.10). Note that,

given the homogeneous parametrisation of the patch-based curvilinear primitives in

table 6.2, all control points cardinalities already coincide. The conditions require

the pair of patches (S1,S2) are adjacent (i.e. G0), have the same tangent (i.e. G1)

and all second derivative directions are equal (i.e. G2).

As defined, such geometrical G2-continuous conditions applies solely to adja-

cent surface patches considered in pairs. Also, the control points either on the u-

direction or on the v-direction can be adjusted one at the time. In the particular case

of hexagonal sets of adjacent patches, as found in the correspondence of both the
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concave and convex quadrants of a junction, the geometrical G2-continuous condi-

tions have to be jointly applied for all neighbouring pairs of surface patches along

both u- and v-directions. This is obtained with an ad-hoc symmetric regularisation

paradigm reported in algorithm 2, where each surface patch is iteratively regularised

by adjusting the boundary control points coordinates by considering all combina-

tions of neighbouring pairs.

For a total set of k surface patches {Sk}, the comprehensive set all possible sur-

face pairs are determined as {(S1,S2),(S1,S3), . . . ,(Sk−1,Sk)}. Note that the order

of the surface pairs is not relevant, therefore (S1,S2) = (S2,S1). This results in a

total set of k·(k−1)
2 different surface patches pairs. After determining all the neigh-

bouring pairs, a symmetric regularisation paradigm is iteratively optimised onto the

whole set of surface patches until convergence (Fig. 6.19), as described in algo-

rithm 2. Temporary sets of unilaterally adjusted instances {S(u)
k } and {S(v)

k } along

the u- and v-directions are initialised as void. Then, for each existing adjacent pair,

new instances of aligned surface patches, i.e. S(•)∗
k−1 and S(•)∗

k for the generic pair

(Sk−1,Sk), are determined by adjusting the boundary control points of the consid-

ered pair, along either the circumferential or longitudinal directions using eq. 6.9

or eq. 6.10, respectively. Each determined instance is then concatenated in the

temporary set associated to the specific k-th patch. As all adjacent pairs have been

separately adjusted in multiple independent instances, a regularised surface patch

Sk is obtained by geometrically averaging corresponding control points coordinates

within the joint set of unilaterally adjusted instances
{
{S(u)

k },{S
(v)
k }
}

. Lastly, the

k-th surface patch is updated by replacing it with the regularised one. This is it-

erated until convergence, i.e. up to a small tolerance factor evaluated on the finite

difference between surface normals of the regularised pairs of adjacent patches at

the interface.

The iterative regularisation paradigm as in algorithm 2 implements in practice

a geometrical relaxation of control points coordinates as a trade-off between com-

peting geometrical G2-continuous conditions over the considered surface patch Sk

and the neighbouring ones. In this case, symmetrical consistency is obtained for
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the k-th patch by equally and geometrically averaging the associated control points,

i.e. the patch control net in Fig. 6.19, in all the respective unilaterally adjusted

instances.

Lastly, a planar condition is enforced in the neighbourhood of the shared corner

for both the concave and convex quadrants, where a subset of boundary control

points (blue points in Fig. 6.19) of the junction hexagonal patterns are projected

onto the locally regressed interpolating plane.

1 Input: set of pairs {(S1,S2),(S1,S3), . . . ,(Sk−1,Sk)}, from k patches {Sk}
2 Output: set of patches {Sk}
3 Initialisation: {S(v)

k }= {}, {S
(u)
k }= {}, ∀k.

4 while not converged do
5 for all pairs do
6 if (Sk−1,Sk) adjacent on u then
7 [S(v)∗

k−1,S(v)∗
k ] = adjust p(Sk−1,Sk); . v-dir (eq. 6.10)

8 {S(v)
k−1}← S(v)∗

k−1;

9 {S(v)
k }← S(v)∗

k ; . concatenate
10 end
11 if (Sk−1,Sk) adjacent on v then
12 [S(u)∗

k−1,S(u)∗
k ] = adjust p(Sk−1,Sk); . u-dir (eq. 6.9)

13 {S(u)
k−1}← S(u)∗

k−1;

14 {S(u)
k }← S(u)∗

k . concatenate
15 end
16 end
17 for all k adjusted patches do
18 Sk = average p

({
{S(u)

k },{S
(v)
k }
})

; . mean p(k)

19 Sk = Sk; . update patch
20 end
21 end
Algorithm 2: Symmetric regularisation paradigm jointly optimising a G2-
continuity condition along both u- and v-directions for a set of neighbouring
surface patches {Sk}.

6.4.5 Multi-compartmental Solid Patches

Patch-based solids are determined as volume tensor product between curvilinear

primitives delimiting pairs of surface patches along a radial direction w. In detail,

the blood-fluid volume Vbf(u,v,w), representing the innermost region of the vessel,
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Vbf Sectioning Vvw Sectioning

Figure 6.20: Multi-compartmental partition of the junction: patch-based inner blood-fluid
(Vbf) and outer vessel wall (Vvw), given a constant wall thickness θ . Individ-
ual patches are delineated in red; sectioning view by resecting the CV quad-
rant.

is determined with a collapsed solid annulus, where the innermost set of degenerate

surface patches coincide with the topological centerline of the junction (or tubular)

portion. Similarly, the outer vessel wall volume Vvw(u,v,w) is determined with the

same annulus parametrisation, where a wall thickness θ separates the coupling be-

tween the inner- and outer-most surface patches along the radial direction w. For

simplicity, a constant vessel wall thickness θ is considered to model subject-specific

physiological cases. Note that a data-driven estimation can be performed follow-

ing [10], or arbitrarily defined to account for parametric geometrical perturbations

of the vessel wall induced by pathology, simulating thus the effects of stenoses and

saccular or fusiform aneurysms. The obtained patch-based solids are by construc-

tion regularised with the parametrisation in table 6.2 and both Vbf and Vvw are fully

complementary, as they share the innermost surface as mutual boundary interface.

6.4.6 Parametrisation Validation

Datasets Synthetic junctions with different geometries are randomly generated for

evaluating the parametrisation in the presence of local perturbations on the construc-

tion octagons, validating the G2 continuity of the proposed model. Also, represen-

tative cases from [6], together with a cerebral vascular phantom, are considered

to evaluate the geometrical bifurcation parametrisation on real angiographic data.
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Lastly, cerebrovascular structures are fully parametrised for representative fluid dy-

namic simulations using an IGA framework.

6.4.6.1 Synthetic Bifurcations

A balanced set of 450 synthetic junctions are generated accounting for different lev-

els of perturbations (Fig. 6.21), resembling the physio-pathological variability. Iso-

metric, yet asymmetric, bifurcations (J]) are determined with unitary and regular

control octagons and different incidental branch-directions. Junctions with different

branch directions, elongation and cross-sectional size (J
Σ̃
) are obtained by randomly

perturbing the proximal junction contours. Similarly, junctions with perturbations

also at the respective projective construction octagons (J
Π̃

) are considered for the

parametrisation evaluation. In table 6.3 the geometrical consistency of the recon-

structed surface patches is evaluated as the root mean square error (ε) of the numeric

Jacobian and Hessian values, computed at the patch interfaces. Average Jacobian ε

values are limited to a maximal numeric value of approximately 1×10−2 in both

u− and v−directions, for all the considered perturbations. Deviations of the Hessian

ε values are observed for increasing perturbation on the geometries, where maxi-

mal errors are found for the symmetric uv− and vu−components. Both Jacobian

and Hessian directional components vanish at the junction boundaries of a CV/CX

quadrant, as the geometry approaches the planar region in the neighbourhood of the

shared corner.

J] J
Σ̃

J
Π̃

Figure 6.21: Representative set of synthetic junctions for the evaluation of the patch-based
parametrisation and surface continuity. J

Σ̃
and J

Π̃
model strong variations

induced by pathology with irregular cross-sections and swollen junctions for
stenoses and aneurysms, respectively.
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6.4.6.2 Clinical Angiographic Modelling and Simulations

The parametrisation paradigm is applied to real angiographic data, where all vascu-

lar bifurcations, as well as all tubular portions, are automatically determined from

the geodesic snakes segmentation. Fig. 6.22 and Fig. 6.23 shows representative

examples of a phantom and a cerebrovascular structure from [6]. The proposed

parametrisation accurately captures the underlying anatomy, concurrently optimis-

ing the surface G2-continuity condition in all patches. A multi-compartmental par-

tition of the structures is implicitly determined, imposing an arbitrary vessel wall

thickness θ , accounting for the complementary inner blood-fluid volume and the

outer vessel wall one.

The reconstructed subject-specific models are then considered for a repre-

sentative hemodynamic simulation within an IGA framework, where a multi-

patch Stokes’ problem is configured on blood-fluid volume domain. In detail, the

parametrisation of the phantom resulted in a total of 216 solid patches for the inner

blood-fluid volume, with a construction computational time of approximately 20 s.

Similarly, the parametrisation of a more extensive cerebrovascular artery from [6]

determined a total set of 376 contiguous patches in approximately 60 s. Simulations

were performed using geoPDEs IGA framework [55], where the surface geometry

was initialised as Dirichlet boundary condition for the solution of the canonical

Stokes’ problem. Both geometry parametrisation and fluid dynamic simulations

were performed on a single 3.1 GHz Intel Core i7 machine. A qualitative assess-

ε
∂

∂u
∂

∂v
∂ 2

∂u2
∂ 2

∂u∂v
∂ 2

∂v2

J]
6.8×10−4 7.8×10−4 0.18 0.34 0.11

(4.8×10−6,5.7×10−3) (4.8×10−6,5.7×10−3) (0.13,0.22) (0.18,0.56) (0.04,0.15)

J
Σ̃

7.7×10−3 2.5×10−3 0.21 0.67 0.1
(6.9×10−6,0.03) (1×10−3,0.01) (0.14,0.28) (0.39,0.92) (0.03,0.16)

J
Π̃

8.8×10−3 3.1×10−3 0.26 0.4 0.11
(7.6×10−5,0.03) (1.3×10−3,0.01) (0.19,0.35) (0.1,0.78) (0.03,0.18)

Table 6.3: Root mean square errors ε of both Jacobian and Hessian components evaluated
at the boudaries of the surface patches for the synthetic junctions Jiso, J

Σ̃
and

J
Π̃

. Median values are reported together with the first- and third-quartile respec-
tively.
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Geodesic Snakes Construction Scaffolding G2 Surface Patches

Vbf Pressure Vbf Flow Velocity

Figure 6.22: Clinical angiographic modelling & fluid dynamic simulations using an IGA
framework: (top) tubular phantom construction outline and associated fluid
pressure and velocity streamlines computed within the Vbf domain.

ment of the resulting blood-flow velocity streamlines and the associated pressure

values is shown in Fig. 6.22 and Fig. 6.23, for the considered representative cases.

6.4.6.3 Observations

The introduced NURBS-based parametrisation of bifurcating tubular structures

smoothly and compactly models vascular geometries for hemodynamic simulations

using an isogreometric analysis framework. The proposed end-to-end paradigm

recovers an implicit fluid-solid partitioning of the structures, concurrently optimis-

ing a surface G2-continuity condition at the interfaces. In particular, junctions are
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Construction Ensemble View

Vbf Pressure Vbf Flow Velocity

Figure 6.23: Clinical angiographic modelling & fluid dynamic simulations using an IGA
framework: cerebral artery with aneurysm – fusion of multi-step construc-
tion paradigm and fluid dynamic simulations using geoPDEs [55], solving a
canonical Stokes’ problem.
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smoothly recovered with an efficient template-free design, which reported consis-

tent differential continuity at the interfaces, even for strongly irregular geometries.

Similarly to [214], the octagonal parametrisation represents a compact trade-off be-

tween anatomical detail and construction complexity. Qualitative results on clinical

angiographic data support the translation of the proposed methodologies towards

automated hemodynamic and biomechanical hyper-elastic simulations within an

IGA framework. The simulations performed with the geoPDEs tool-kit [55] re-

ported a comprehensive computational time of approximately 450 s (7.5 minutes)

and approximately 3000 s (50 minutes) for the phantom and for the clinical cere-

bral artery, respectively. Yet far from real-time, more advanced formulations may

allow future simulations in cardio- and neurovascular scenarios, where the vascular

graft geometry is optimally modified for the purpose of improving hemodynamic

outcomes [127], and where manufacturers can predict the patient-specific device

performance prior to deployment [183].

6.5 Observations and Remarks

In this chapter, the extraction of biomarkers is addressed for a global-network

as well as for localised branching geometries, by deriving a set of hemodynamic

quantities to functionally characterise the cerebrovascular topologies inferred with

VTrails.

Leveraging both topological and geometrical representations of the vascular

structure, the geometrical parameters and the local vessel morphology is estimated

first with a series of geodesic snakes. These segmented a linearly reformatted image

volume along the connected centerlines with an antagonist level-set formulation.

Snakes’ deviations from the ground-truth are comparable to the voxel size in the

considered angiographic set. Errors fluctuated for smaller vessels and capillaries,

where the formulation of geodesic snakes may require further regularisation due to

localised partial volume effects. Although the vascular lumen segmentation strategy

employed geodesic snakes in an independent and separated processing pipeline with

respect to the initial connectivity extraction, as in section 4.1, it can be observed that
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both approaches derive from a similar level-set formulation. With a more optimised

and unified processing pipeline, both minimal connecting paths and vascular lumi-

nal contours could be jointly and simultaneously determined. This would allow in

future work a more spatially regularised vectorial segmentation with increased ge-

ometrical accuracy. In particular, the spatial coordinates of the extracted minimal

pats could be spatially constrained to lie in the vicinity of the actual tubular cen-

treline, and, at the same time, a more centred geodesic path would compensate for

initialisation biases of the cross-sectional active contours delineation.

From such a geometrical characterisation, a simplified hemodynamic model

condensed bio-mechanical lumped-parameters into an analog-equivalent configu-

ration, based on the connected topology of the vasculature. This compact rep-

resentation approximates asymptotic values of blood flow and pressure drop for

a global network, where autoregulation mechanisms are observed in simulated

pathology. Perturbations of the bio-mechanical lumped parameters are introduced

in the analog-equivalents to model the effect of stenosis, tortuosity and complete

occlusions in critical ischaemic events. A resilience index is introduced to represent

the capability of the neurovascular network to recover from simulated perturbations

and to compensate for possible pathological scenarios. The proposed formulation

is evaluated for a set of clinically relevant cerebrovascular structures, where the ob-

served asymptotic distributions of blood flow and pressure drops along the vascular

branches are in line with the literature. Similar compensation strategies and dis-

tributions were observed in case-studies and on artificial physio-pathological mod-

els [45,146,166]. From a computational perspective, lumped-parameters resulted in

an efficient and compact modelling strategy for the extraction of descriptive hemo-

dynamic biomarkers, which can be scaled up to the whole cerebrovascular system.

Also, their flexibility towards network perturbations allowed an early evaluation of

the mechanisms underlying the cerebral compensation, as well as a putative graph

sampling strategy for unknown over-connected topologies. However, the current ap-

proximation is not able to model vascular fluid-structure interactions, nor the effect

of a pulsating flow and pressure as in fully-resolved CFD simulations. Therefore a
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dynamic extension of the model, together with a more extensive validation, is re-

quired in future work with respect to state-of-the-art computational fluid dynamic

simulations.

Lastly, an automatic NURBS-based parametrisation is presented for bifurcat-

ing vascular structures, where the extraction of biomarkers from fluid-solid inter-

actions at the interface can be ultimately allowed on a more localised scale, as a

proof of concept. The geometrical parametrisation of bifurcations is detailed us-

ing NURBS curves. The proposed automatic parametrisation can, on the one hand,

bridge the gap between the challenging extraction of functional biomarkers in a

compact, smooth and homogeneous solution domain with IGA, and, on the other

hand, pave the way towards the vectorisation of the vascular structure from angiog-

raphy, for personalised surgical repair integrating subject-specific CAD designs.

Comparisons among simulations with different graph-based and NURBS geomet-

rical parametrisations cannot be straightforwardly performed at the current stage.

The presented NURBS parametrisation is currently limited to bifurcating tubular

structures, in the presented proof of concept. Conversely, the vascular structures

modelled with analog-equivalent graphs include junctions with more than three in-

cident tubes. In future work, a complete parametrisation scheme can be devised on

the basis of the advances introduced in this chapter, allowing therefore for vectorial

representations and simulations on an arbitrarily complex neurovascular structure.

With this view, and inspired by statistical shape theory in computational

anatomy [152], the translation of segmented vessels from angiographies to vas-

cular networks could be cast, in future developments, in a fully-vectorial environ-

ment transcending a finite and quantised raster spatial grid. Specifically, the vec-

torial parametrisation of connectivity models for the inferred topologies could be

extended to 2D, 3D and higher-dimensional manifolds of parametric curves with

NURBS. Since NURBS can model pre-defined shapes as well as free-form shapes,

where the numeric evaluation is computationally stable with a relatively coarse set

of parameters, by means of a further stretch, the free-form parametric manifold

of multiple vascular structures could ultimately populate a group-wise stratifica-
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tion of cerebrovascular instances, both longitudinally and cross-sectionally. At

the same time, by projecting back the parametric model onto a subject-specific

level, co-registered geometries with intra-operative imaging modalities would pro-

vide augmented guidance for neurovascular interventions, accounting for currently

unavailable cerebral intra-vascular 3D catheter routing for stenting, recanalisation

and aneurysm coiling, as well as extra-vascular virtual visualisations for motion

planning and (un)safe insertion-points in stereotactic brain surgery.



Chapter 7

Discussion

This thesis presents an end-to-end set of modular methodologies towards a novel

vectorial framework, VTrails, for image-based vascular segmentation. The intro-

duced advances produced a completely new class of geometrical and topological

vessel representations, showing accurate and reproducible performances in neu-

rovascular applications, with respect to the currently available state-of-the-art. This

demonstrated the versatility and usefulness of the proposed VTrails framework, in

a clinical research set-up, from extracting patient-specific models supporting inter-

ventional neuroradiology and vascular surgery, to further population-wise studies

of comparative neurology, neurovascular phylogenetics, and cerebrovascular dis-

ease progression on a larger scale.

In Chapter 3, a vessel enhancement filtering approach is presented by first in-

troducing a compact filter-bank of Steerable Laplacian of Gaussian Swirls (SLoGS).

The enhancement of tortuous tubular structures is formulated under a unified multi-

resolution, curvilinear- and rotation-invariant digital filtering framework. The pro-

posed method is mathematically consistent and simultaneously synthesises both

scalar and high-order vascular saliency maps from multi-modal 3D angiographies.

The scalar connected vesselness map smoothly recovers fragmented and convoluted

structures, with local maxima at the tubular mid-line, showing a continuous Gaus-

sian profile. Also, for the first time, the voxel-wise tensor field consistently incor-

porates vascular anisotropy and directionality, as a unified method, without either

separately fitting the image-data or regularising the tensor’s positive-definiteness a
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posteriori. Although fitting a tensor on vascular data is a viable alternative, a fitting

procedure on noisy data might produce noisy directional features, as well as poor or

missing anisotropic features for disconnected and fragmented vascular structures,

in absence of contrast or signal. The comparison with established and widely used

tubular ridge detectors and vascular enhancement techniques, such as the Frangi fil-

ter and the Optimally Oriented Flux, demonstrated the robustness of the proposed

filtering approach with respect to noisy, degraded and poorly resolved angiographies

in a number of synthetic and real clinical cases. Leveraging the intrinsic blood ves-

sels’ connectedness, the composition of the synthesised maps ultimately determines

a smoothly connected Riemannian vesselness potential.

In Chapter 4, a connectivity-oriented anisotropic level-set over the synthesised

Riemannian vesselness potential is formulated under the assumption that vessels

join by minimal paths. More specifically, two approaches are devised: from a

greedy connectivity paradigm with a concurrent and competitive minimal-path ex-

traction scheme, to an exhaustive geodesic search within the smoothly connected

Riemannian vesselness potential. Despite the optimal formulation of the anisotropic

level-set, the proposed greedy connecting solution is intrinsically acyclic and there-

fore limited towards modelling full-brain vascular structures. At the same time, its

results is more prone to mis-connections and short-cuts. The exhaustive connec-

tivity paradigm, conversely, accounts for an independent connecting redundancy

of the underlying vascular network, where possible resulting anatomical inconsis-

tencies are not hierarchically encoded. Also, the exhaustive topological inference

is able to model at the same time cyclic topologies from anatomical anastomoses

at different scales, e.g. the complete Circle of Willis and finer cortical capillaries.

The inference of anatomical deep-brain vascular trees is performed by extracting

minimum spanning trees over the inferred over-connected network. Quantitative

geometrical and topological comparisons with the associated gold-standard man-

ual annotations and with connected centerline ground-truth from popular vascular

segmentation toolkits, i.e. the Vascular Modelling ToolKit (VMTK) and TubeTK,

reported overall comparable accuracies at different levels of the vascular network,
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in a number of simulated configurations.

In Chapter 5, a pair-wise topological registration strategy is presented for re-

dundant over-connected geodesic vascular graphs. By means of a coarse-to-fine reg-

istration approach, the topological alignment is solved with popular graph matching

techniques employed in computer vision applications. The nodes’ correspondence

mapping between pairs of undirected geodesic vascular graphs builds on an affin-

ity metric, which leverages geometrical, geodesic and connectivity-based features

of the topologies, and lastly optimises a quadratic assignment problem. For the

first time, a non-rigid topological alignment is introduced for connected vessels,

by relaxing the hierarchical and acyclic constraint of vascular trees, and by disre-

garding any topological prior from specific anatomical compartments. The redun-

dant connectivity patterns of the considered topologies favour the correspondence

of landmarks in a set of experiments on synthetic and clinical data, accounting for

non-linearly deformed topologies and similar, yet strictly non-isomorphic, anatom-

ical instances. This is observed by comparing the accuracy and overall performance

of graph matching techniques with respect to the associated acyclic instances. Also,

in this case, fully cyclic topologies, e.g. those underlying anatomical anastomoses

such as the complete Circle of Willis, could be consistently aligned within the same

pair-wise graph matching framework. These promising lines of evidence pave the

way towards more refined and vascular-oriented formulations and towards group-

wise topological alignment strategies, where the trade-off between affinity metrics

from multi-source features and the redundant connecting overhead of the graph lat-

tice may affect the resulting alignment performance for the definition of a data-

driven cerebrovascular atlas.

Lastly, in Chapter 6, the vectorial embeddings of geodesic vascular graphs

are enriched with a representative set of biomarkers from hemodynamic simula-

tions. First, spatial delineations of the vascular lumen are obtained with geodesic

snakes (active contours) over a reformatted angiographic image from the underly-

ing connected graph of centerlines and minimal paths. The recovered geometry

is then condensed in bio-mechanical lumped-parameters for asymptotic hemody-
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namic simulations. These employ the topology of the vasculature to determine a

closed-loop analog equivalent circuit, simulating steady-state blood flow rate and

pressure drop values for a number of configurations and anatomical variants. Per-

turbations, modelling tortuosity, ischaemic events, occlusions and different levels of

stenoses, simulate the resilient mechanisms underlying the cerebral blood autoreg-

ulation for whole-brain vascular networks, approximating and bypassing highly

intensive and prohibitive finite-element fluid dynamic simulations. Also, a more

localised parametrisation of vascular geometries is introduced for fully-resolved

fluid dynamic simulations using an isogeometric analysis framework. Parametric

NURBS curves, surfaces and volumes automatically reconstruct the underlying vas-

cular junctions and branches, allowing for the estimation of localised hemodynamic

quantities and, in the ultimate instance, of functional biomarkers from fluid-solid

interactions at the interface, without introducing further approximations to the so-

lution profile. The same geometrical parametrisation integrates applications of

personalised healthcare and surgical repair with subject-specific CAD designs.

Current Limitations Throughout the body of this thesis, different contributions

have been presented under the same unified framework VTrails, covering an um-

brella of multi-disciplinary tasks. Despite the harmonisation effort to provide a set

of automatic tools and methodologies for cerebrovascular image analysis, a number

of technical and technological limitations are still present and deserve further in-

vestigation in future work. Among the technical shortcomings, several parameters,

early initialisation and configurations, which have been proposed for the considered

datasets, may sensibly differ, for example, on a different collection of multi-modal

angiographies and on a different set of selected features for the topological align-

ment. With this view, a finer tuning step for parameters and a more extensive sensi-

tivity analysis for the initialisation and configuration of different optimisation prob-

lems should be performed, towards a more efficient processing (currently strictly

off-line) and robust analysis with respect of multi-source vascular features with the

introduction of further anatomical prior knowledge. Prior to translating the intro-
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duced methodologies to clinical practice, a more extensive validation must also ad-

dress current limitations with the interpretation of early results, and an experimental

proof for neurovascular applications of the postulated multi-graph matching tech-

niques, as well as of the theoretical formulation of a cerebrovascular (multi-)atlas

should be provided. Among those, some of the current limitations are rather deter-

mined by the lack of an available framework, or of any viable and computationally

feasible solution, due to the intrinsic intractable complexity of the task. A fur-

ther complexity reduction is indeed required for the proposed VTrails framework;

the over-connected geodesic graph conservatively embeds a high degree of redun-

dancy. Such informative overhead is counter-intuitive to the visual assessment of

vascular structures and can dramatically impact the computational complexity of

downstream processing. Also, the lack of a predictive model for therapeutic infer-

ence on the long term, currently restricts the analysis and evaluation of the cere-

brovascular physio-pathology to a single time-point. Regarding these latter techno-

logical limitations, future research directions are addressed in the following section,

towards a topological optimisation of vascular networks and patient-specific models

for life-long risk prediction.

7.1 Future Research Directions

As previously observed, there are still many derived problems, open challenges and

associated conceptual ideas that are worth pursuing. In the following, two main

concepts and research directions are presented. Along with the vectorial connectiv-

ity of brain vessels, as formulated in Chapter 4, technological advances involving

the topological simplification, optimisation and decomposition of a geodesic vas-

cular graph are mentioned in the following section, towards a more intuitive, com-

pact yet non-hierarchical representation of the analysed vasculature. Then, a long-

term vision for individual risk prediction models from a population-based prior is

briefly introduced. This leverages emerging machine intelligence frameworks to-

wards the customisation of cardio- and neurovascular healthcare, from prevention,

event-prediction, up to optimal therapeutic intervention.
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Π - Geometrical Embedding Π - Topological-Space Projection

Figure 7.1: Redundant and Over-Connected Geodesic Vascular Graph Π. Comparison of
the geometrical and purely topological embedding of the network. Local unin-
formative connecting overhead, here in the elongated linear segments (graph’s
flares) can be conservatively simplified, streamlining the topology towards a
more compact and sparse representation.

7.1.1 Topological Optimisation of Vascular Networks

The introduced formulation of an over-connected, redundant and uncertain vascular

graph has the advantage of providing a number of topological cues for the pair-wise

alignment, as observed in Section 5.5. Also, the uncertain and non-hierarchical

nature of the undirected vascular topologies allows more flexibility towards the in-

ference of the most meaningful anatomical realisation of the underlying vascular

structure, potentially reducing short-cuts and mis-connections from kissing-vessel

artifacts which cannot be avoided, per se, with a hierarchical and straightforward

minimum spanning tree extraction. In this way, the resulting redundant and over-

connected topology shows a consistently increased level of complexity, which how-

ever impairs the intuitive interpretation of the underlying vascular network, and can

dramatically exacerbate, or even impede, further group-wise computational pro-

cessing (see Section 5.6). With this view, conservative topological simplifications

and optimisation strategies can be devised to slim down the overhead of connecting
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Original Topology Π Bootstrapped Π̂ Phylogenetically Simplified ˙̂
Π

Figure 7.2: Topological Optimisation Strategies. From the original over-connected
geodesic vascular graph Π of the Basilar Artery phantom, a bootstrapped ver-
sion (Π̂) and a further phylogenetically simplified one ( ˙̂

Π) are retrieved, con-
servatively reducing both nodes’ and edges’ cardinalities and increasing the
overall graph compactness. Note that graph’s flares are eventually simplified,
whereas the connecting uncertainty at the vascular junction is preserved, as
well as possible topological cycles.

redundancy.

Graph bootstrapping, phylogenetic simplification, and network decomposition

stand as viable strategies to reduce the intrinsic complexity of the over-connected

geodesic vascular graphs. With a graph bootstrapping, a more compact topology

is obtained by increasing the overall sparsity of the embedding and of the associ-

ated adjacency matrix. Similar to the putative graph sampling approach in Section

6.3.5.3, individual nodes, edges, and local sets of cliques (Fig. 7.2) can be se-

lectively pruned based on a sequence of statistical tests relying on topologically

perturbing the graph, i.e. by performing a random sampling of the topology on

multiple levels. The topological pruning scheme for individual nodes, edges, and

local sets of cliques would therefore follow a resilience-maximising paradigm with

respect to the simulated topological perturbations of the network. Topological per-
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turbations accounting for simulated alterations of the hemodynamic network, i.e.

occlusions and different levels of stenoses, may elicit resilient mechanisms under-

lying the neurovascular network, for which the most anatomically meaningful real-

isation or a family of sub-graphs statistically emerge from the over-connected pool

of geodesics.

A phylogenetic network simplification can be subsequently applied, given the

prior information of the generative inference of the vascular network (see Section

4.3.0.3 – for ancestor and offspring nodes), to further reduce both node and edge

cardinalities in correspondence of graph’s flares, i.e. the over-connected elongated

linear segments (Fig. 7.1). Conversely to the redundant connectivity pattern at

the vascular junctions (Fig. 7.2), which should be preserved for pair-wise and

group-wise topological alignment purposes, the dense, yet uninformative, connect-

ing overhead of certain vascular branches can be opportunely reduced with a con-

sistent split-merge phylogenetic paradigm. It is worth noting that the inference of

the over-connected network, as introduced in Section 4.3, can be described with an

evolutionary topological development and diversification which iteratively follows

generations of new seeds (or nodes) and connecting edges, similar to a biological

process. Therefore, a phylogenetic network simplification would backtrack those

most meaningful ancestor nodes and edges, and would conservatively preserve the

relevant originators of the inferred topology by possibly pruning the overhead of

uninformative offspring, as in the case of elongated flares. As shown in Fig. 7.2,

the combined approaches lead to a redundant geodesic vascular graph with minimal

complexity along the elongated branches, which preserves at the same time both the

redundant connectivity at the branch-points and possible unknown cyclic structures

underlying the vascular network.

Lastly, a hierarchical network decomposition strategy can be devised towards

the extraction of local sub-net matching patterns. These not only would determine a

localised matching pattern paradigm for group-wise topological registrations and la-

bel propagation on re-combined graph partitions, sub-nets, and overlapping cliques,

as postulated in Section 5.6, but they can also allow a number of further sub-net
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Figure 7.3: Graph Hierarchical Partition and Decomposition. Representative toy example
of a condensed network, where non-disjoint sub-nets and topological partitions
can be derived and further re-combined, allowing flexibility for multi-scale
graph-cuts. Green and pink edges are non-disjoint shared sub-graph cliques
and inherited ones, respectively, throughout the topological decomposition.

analyses on multiple non-disjoint samples of the vascular network (Fig. 7.3). Un-

der the assumption of a condensed network embedding the union of several con-

necting portions at different network-scale levels, the topological inference of the

cerebrovascular network could be guided towards the global and comprehensive ar-

terial and venous structure as a whole, where vascular anastomoses of different size,

from the complete Circle of Willis, up to the smaller cycles in the capillary bed, are

consistently modelled and preserved.

7.1.2 Patient-Specific Models for Life-Long Risk Prediction

A prospective complete ensemble of cerebrovascular features, these all embedded

in a consistent population-based vectorial atlas, would automatically propagate the

collected information to new unseen data allowing for clinical inference with sta-

tistical power. A number of neurovascular critical applications for serious life-

threatening conditions could benefit from such informative prior propagation, these

ranging from prevention, event prediction, early diagnosis and, ultimately, opti-

mal treatment. Among these, stroke-related life-long risk modelling and predic-

tion strategies play a major role for the next-generation of fully-customised cardio-
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and neurovascular care. Given the relevant incidence of stroke world-wide (the

second most frequent cause of death after coronary artery disease), considering

also the widespread and long-lasting collateral complications (psychological and

behavioural impacts, cognitive impairment, induced weakness or paralysis), and

accounting for the (un)sustainable and economical impact on the life-long rehabil-

itation costs, therapeutic care, and associated comorbidities and disorders, future

large-scale clinical trials would include a comprehensive collection of multi-source

clinical indices and multi-modal angiographies at different time-points among sub-

jects at risk. Quantitative and subject-specific vascular models, comprising mor-

phometric features, structural and hemodynamic topological resilience, could be

automatically integrated (and so forth updated) with other vascular functional in-

dices, clinical history, familial heredity and predisposition, and further charac-

terised by ethnic phenotypes, environmental and behavioural agents. This would

constitute a vectorial instance in the healthcare system database, where, after co-

herently propagating a population-based informative prior, the risk of stroke, as

well as the prediction of concurrent complications would be determined by means

of emerging machine-intelligence algorithms. With this view, a population-based

prior could be tentatively retrieved with an extra harmonisation effort for hetero-

geneous datasets from ongoing studies. Among these, Biobank UK and SABRE

(Southall And Brent REvisited) are currently collecting and analysing a complete

spectrum of comprehensive longitudinal and cross-sectional data, together with an-

giographies, associated biomarkers, clinical reports and possible pathological out-

comes. Quantifying the individual risk of stroke would be a clinical application

stemming from a population-based analysis over vectorial neurovascular represen-

tations. Yet still far from translating such an application into the clinical practice, a

similar concept could however leverage multi-source and image-based analyses to

eventually predict the likelihood of an ischaemic event within a certain time-frame.

Data from patients who would undergo regular medical scans, e.g. in the head-neck

anatomical compartment, could converge in a collective anonymised dataset where

ad-hoc analyses would automatically run in background by means of machine-
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intelligence algorithms. This would ultimately provide a supplementary report, or

a low-dimensional neurovascular representation notifying of potential anomalies.

These would suggest early risks of neurovascular complications or provide an esti-

mated likelihood of pathological development within a certain confidence as support

to early clinical decision-making. This envisioned clinical application would, on

the one hand, impact the personalised healthcare with minimal disruption, without

therefore performing large-scale and costly-intensive population screening. Also,

for those subjects identified at low neurovascular risk, specific indications could

be given, e.g. dietary prescriptions, lifestyle adjustments and preventive medica-

tions. On the other hand, for those subjects identified as potentially at high-risk, a

more adequate monitoring and a more prompt intervention and therapeutic planning

could be provided, improving dramatically the quality of life.

7.2 Closing Remarks
This thesis introduces a novel vascular vectorial framework, VTrails, which

transversally covers an umbrella of multi-disciplinary tasks. From image-based

processing and vessel enhancement, to topological inference and graph-based con-

nectivity paradigms, VTrails explores also non-linear and non-isomorphic vascular

alignment strategies, and the simultaneous integration of multi-source features in

the same graph embedding, from geometrical, to geodesic, to functional and hemo-

dynamic biomarkers with a global-to-local vectorial approach. All these method-

ological contributions are contextualised and cohesively linked together by the com-

mon thread of vascular connectedness. The whole framework and each technical

advance is designed to integrate well within a translational and clinical research set-

up, with applications in neuroradiology. The contributions presented throughout the

body of this thesis represent essential building-blocks and the modular processing

foundation for prospective impactful analyses on a larger scale; from group-wise

population studies, to patient-specific vascular models in personalised healthcare.
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Open Source Effort

Along with the methodological formulation presented in this thesis, an open-source

implementation was made during the PhD, towards the early release of a public

vascular tool-kit under the Berkeley Software Distribution (BSD) license.

A.1 VTrails

Figure A.1: The logo of the VTrails toolkit, available at https://vtrails.github.
io/VTrailsToolkit/

The released project software, VTrails (Vascular/Vectorial Trails), is publicly

available on GitHub https://vtrails.github.io/VTrailsToolkit/

as an open-source, Matlab-based set of modular functions. The project aims at

extracting geodesic vascular minimum spanning trees from angiographic data by

solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field

https://vtrails.github.io/VTrailsToolkit/
https://vtrails.github.io/VTrailsToolkit/
https://vtrails.github.io/VTrailsToolkit/
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representing the orientation of the underlying vasculature.

The first release features 4 main functionalities:

• SLoGS filterbank generation;

• Filtering an angiography with SLoGS and synthesise the Riemannian vessel-

ness map;

• Infer the geodesic vascular graph with the connectivity-optimised anisotropic

level-set;

• Extract and refine the vascular minimum spanning trees.

Following here a brief overview of the processing pipeline:

1 %%% VTrails Pipeline %%%

2

3 % 0) [NECESSARY] INSTALL VTrails Toolkit

4 >> INSTALL_VTrails

5

6 % NB. If you are experiencing compiling issues or installation problems,

7 % please configure the matlab coder, using the most recent gcc or clang compiler.

8

9 % 0a) [On Request] Create your own Dictionary of Filtering SLoGS Kernels

10 >> VTrailsSLoGS3D_MAIN;

11

12 % NB. this step requires to further specify the desired

13 % Dictionary of Filtering Kernels to ’VTrailsFilter3D_MAIN’.

14 % NB. this function is available *on request* (not included package).

15 % Tutorial -- https://youtu.be/f3LahhqzHFc

16

17 % 1) Filter the Image with the SLoGS Filterbank

18 >> scales_range = [0.1:0.1:1.0];

19 >> JobDumpDirPath = VTrailsFilter3D_MAIN( ’path/ImgFileName.nii’ , ’path/

MaskFileName.nii’ , scales_range );

20

21 % NB. Define the scale_range along with the vascular information content and the

desired level of detail.

22 % As rule of thumb: avoid big gaps from subsequent scales.

23 % NB. VTrailsFilter3D_MAIN imports automatically nifti files (.nii,.nii.gz)

24

25 % 1a) Integrate the Multi-Resolution Filter Responses over Scales

26 >> min_scale = min(scales_range);

27 >> max_scale = max(scales_range);
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28 >> MaxMAP = VTF3D_integrateMaxMultiScaleResponses(’PathFolder’, JobDumpDirPath

,...

29 ’ScalesRange’, [min_scale ,

max_scale] );

30

31 % 1b) Determine the Organised Seeds for the Geodesic Connectivity Paradigm

32 >> arbitraryQuantileThreshold = 0.75;

33 >> verboseFLAG = true;

34 >> MaxMAP.OS = VTF3D_AlignVesselSeeds3D( double(MaxMAP.CVMsmth) , MaxMAP.US ,...

35 arbitraryQuantileThreshold , verboseFLAG

);

36

37 % NB. the arbitraryQuantileThreshold is a scalar in [0,1], being 0 = all the

points,

38 % and 1 = only the max value, respectively.

39

40 % 1c) Sort the Organised Seeds as initial Connected Components

41 >> [ MaxMAP.SortedOS ,...

42 MaxMAP.ConnectedSegmentsOS ,...

43 MaxMAP.BrachPointsOS ] = VTF3D_SortConnectedComponents( MaxMAP.OS ,

verboseFLAG );

44

45 % NB. Sort and organise the Seeds and Connected Components prior to the exhaustive

Connectivity Paradigm.

46

47 % 2) Determine the Over-Connected Geodesic Vascular Graph

48 >> DATA = VTrailsConnectingGeodesicGraph3D_MAIN( MaxMAP , ’PathFolder’ ,

JobDumpDirPath );

49

50 % NB. Connect the initial Seeds with the exhaustive Connectivity Paradigm, by

following

51 % an Anisotropic Level-Set over the Riemannian Vesselness potential (CVM, TF).

52

53 % 3) Extract the Vascular Tree(s) as Geodesic Minimum Spanning Tree(s) - optional

Pruning and Refinement

54 >> GeodesicMSTs = VTrailsRefine3D_ConnectedGraph2VTrailsTree_MAIN( DATA , ’

PruningLengthThresholdMM’ , 10 );

55

56 % NB. Determine the Acyclic topology as the geodesic Minimum Spanning Tree (MST)

or a forest of geodesic MSTs,

57 % accordingly with the connected components in the vascular graph.

58

59 % 4) Visualise Results

60 >> VTA3D_visualiseRiemannianVesselness( MaxMAP.CVM , MaxMAP.TF , MaxMAP.

TFValidityMSK );

61 >> VTA3D_visualiseConnectingGeodesicGraph( DATA.exploredminPath , DATA.GGM );
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Figure A.2: Graphic User Interface for the Definition of an Arbitrary Dictionary of Filter-
ing SLoGS Kernels. Tutorial: https://youtu.be/f3LahhqzHFc

62 >> VTA3D_visualiseGeodesicMinimumSpanningTree( GeodesicMSTs , MaxMAP.CVM );

SLoGS Filterbank Generation An arbitrary dictionary of filtering SLoGS kernels

can be defined with a user-interface as shown in Fig. A.2. By modulating a scale

factor, two curvilinear parameters accounting for in-plane bending and off-plane

tilting, and an asymmetric index, multiple curvilinear templates can be obtained.

Note this preliminary step is optional, since the same dictionary of filtering kernels

employed throughout the body of this thesis is already included in the release for

reproducibility purposes.

Filtering the Angiography with SLoGS and Synthesise the Riemannian Vessel-

ness Map The function VTrailsFilter3D_MAIN.m is used to automatically

synthesise the 3D Connected Vesselness Map (CVM) and the associated Tensor

Field (TF) via filtering the angiographic image with the SLoGS Filterbank.

1 %%% VTrails: Synthesis of 3D Connected Vesselness Map & Tensor Field via SLoGS %%%

2

3 %% Function Call:

4

https://youtu.be/f3LahhqzHFc
VTrailsFilter3D_MAIN.m
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5 >> JobDumpDirPath = VTrailsFilter3D_MAIN( imgFileNAME , mskFileNAME , Scales ,

varargin );

6

7 %% Inputs:

8 %

9 % - imgFileNAME: NIFTY filename of the 3D Angiographic Image Volume

10 % NB: It is assumed BRIGHT Vessels on DARK Background!

11 % - mskFileName: NIFTY filename of the 3D bw mask for the Angiographic

12 % Image Volume. It can be empty [] if none.

13 % - Scales: Scales range interval ]0,1]. E.g. [0.1 : 0.1 : 1.0]

14 %

15 % [OPTIONAL]

16 %

17 % - [’AutoDenoise’]: Bool Option for Automatic Denoise

18 % (Mean Filter) - Default: False.

19 % - [’AutoDenoiseMedian’]: Bool Option for Automatic Denoise

20 % (Median Filter) - Default: False.

21 % - [’BoneStrip’]: Approximated Maximal Intensity Value for Blood Vessels,

22 % when Bones are present in the image (e.g. CT Angio.)

23 % This allows an initial Bone-masking or Skull-Stripping.

24 % Estimate [max] relative to the orig image scale range.

25 % Default: [];

26 % - [UpdateDFKsMO]: Boolean flag to Enable/Disable Update of the Dictionary

27 % of Filtering Kernels already aligned to previous Main

28 % Orientations (DFKsMO). Default: False.

29 % - [SIQthr]: Seeds Intensity Quantile threshold -- Default: 0.9

30 % - [SIQthrFIX]: Scalar boolean flag to disable progressive increase of

31 % SIQthr at higher resolutions. Default: False.

32 % - [PowerFactor]: Scalar real value to enhance the original image

33 % dynamic contrast following the law:

34 % Img_enhanced = Img.ˆPowerFactor;

35 % Default: 1.0

36 % - [’SkipTFflag’]: Bool Option for Skipping the Tensor Field Synthesis -

37 % Default: False.

38 % - [’Dictionary’]: Complete filename of the User-Defined Disctionary of

39 % SLoGS to be used. -

40 % Default: ’<VTrailsROOTDir>/libs/DFKs_MAIN.mat’

41 % - [FullDump]: Scalar boolean flag to export the complete set of outputs.

42 % Default: False.

43

44

45 %% Outputs:

46 % For each selected Scale, the method will export a .mat file in a

47 % dedicated folder located in the function directory, which contains the

48 % ’MAP’ structure listing the following fields:

49 %
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50 % - GRID: Structure with Image Grid and Scales’ infos for Resampling.

51 % - IMG: Header of the input nifty Images.

52 % - CVM: Scalar Connected Vesselness Map obtained with SLoGS

53 % - BDM: Scalar Vessel Boundaries Map obtained with \deltaSLoGS

54 % - BGM: Scalar Vessel Background Map obtained with \nuSLoGS

55 % - TFLE: Vascular Tensors Field synthesized with SLoGS in the

56 % Log-Euclidean Domain

57 % - [TF]: Vascular Tensors Field synthesized with SLoGS in the

58 % Euclidean Domain -- optional with ’FullDump’

59 % - SSsIDX: list of Un-Organised Seeds TO BE Aligned to the vessels with

60 % ’VTF3D_AlignVesselSeeds3D.m’ (after Multi-Scale Integration.)

61 % - US: Logical Volume of Un-organised Seeds

Infer the Geodesic Vascular Graph with the Connectivity-optimised Anisotropic

Level-Set The function VTrailsConnectingGeodesicGraph3D_MAIN.m

is used to automatically infer the over-connected vascular topology (graph) by

running an anisotropic level-set (Fast Marching) over the Riemannian vesselness

potential (CVM and TF) and by enforcing a self-organising exhaustive connectivity

paradigm.

1 %%% VTrails: Geodesic Connectivity Paradigm for Over-Connected Vascular Graphs %%%

2

3 %% Function Call:

4 >> DATA = VTrailsConnectingGeodesicGraph3D_MAIN(MAP,varargin)

5

6 %% Inputs:

7 %

8 % - MAP: structure containing Image-related features, the Riemannian

9 % Vesselnes potential and the initial Seeds for the Level-Set.

10 % NB: MAP can be either a single-scale output from the function:

11 % ’VTrailsFilter3D_MAIN.m’ or it can be a multi-scale integrated

12 % filter-response (MaxMAP) as from the function:

13 % ’VTF3D_IntegrateMaxMultiScaleResponses.m’.

14 %

15 % MAP *MUST* contain the following Fields:

16 %

17 % * IMG: Header of the input nifty Images.

18 % * GRID: Structure with Image Grid and Scales’ infos for Resampling.

19 % * CVM: Integral Scalar Connected Vesselness Map obtained with SLoGS

20 % * TF: Integral Vascular Tensors Field synthesized with SLoGS in the

21 % Euclidean Domain -- can be [empty] for automatically FITTING

22 % the Tensor Field over the CVM, or it can be a scalar equal to 1,

23 % for the ISOTROPIC Front Propagation.

24 % * ConnectedSegmentsOS: struct containing the list of SORTED Connected

VTrailsConnectingGeodesicGraph3D_MAIN.m
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25 % Components from the Organised Seeds.

26 %

27 % Other [optional] Fields:

28 %

29 % - [CVMsmth]: As CVM, but slightly smoothed for local maxima.

30 % - [BDM]: Integral Scalar Vessel Boundaries Map obtained with \deltaSLoGS

31 % - [BGM]: Integral Scalar Vessel Background Map obtained with \nuSLoGS

32 % - [TFLE]: Integral Vascular Tensors Field synthesized with SLoGS in

33 % the Log-Euclidean Domain

34 % - [TFValidityMSK]: Binary Mask for non-isotropic Tensors.

35 % - [ACC]: Internal Variable for Across-Scales Integration Regularisation

36 % - [US]: Scalar Volume of Un-Organised Seeds TO BE Aligned to the

37 % vessels with ’VTF3D_AlignVesselSeeds3D.m’

38 % - [OS]: Scalar Volume of Organised Seeds, aligned to the

39 % vessels with ’VTF3D_AlignVesselSeeds3D.m’

40 % - [SortedOS]: Scalar Volume of Organised and SORTED Seeds, each

41 % consisting in a labelled (numeric) path, obtained with

42 % ’VTF3D_SortConnectedComponents’.

43 % - [BranchPoints]: list of early junctions detected with

44 % ’VTF3D_SortConnectedComponents’.

45 %

46 % CONFIGURATION INPUTS:

47 %

48 % - [’Mask’]: Validity Mask for Domain exploration (i.e. ˜Barriers). -

49 % Default: true(size(MAP.CVM))

50 % - [’SPDPowerFactor’]: Power of the Vesselness Speed Potential (SPD). -

51 % Default: 1

52 % - [’VNRadiusMM’]: Radius of Visible Seeds Neighborhood - limit the

53 % exploration of the domain to a restricted spherical

54 % neighborhood of the given Seed. - Default: 20 [mm]

55 % - [’NodeDistTHR’]: Node Distance Threshold for Adaptive Graph Refinement.

56 % - Default: 3 [mm]

57 % - [’PathFolder’]: Path Folder for Data Exporting - Default: [pwd,’/’]

58 % - [’QExplore’]: Quantile of Geodesic Exploration - to restrict the

59 % exploration of the domain accordingly with a geodesic

60 % metric. - Default: 0.5

61 % - [’FullDump’]: Binary Scalar Flag for enabling FULL DUMP of all

62 % variables. - Default: false

63

64 %% Outputs:

65 %

66 % - DATA: structure containing the Over-connected Vascular Graph.

67 %

68 % DATA will contain the following Fields:

69 %

70 % * GGM: Geodesically Weighted Connectivity Matrix of the Over-Connected
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71 % Vascular Graph.

72 % * exploredminPath: struct containing the list of all the extracted and

73 % explored connecting geodesics (minimal paths).

74 % * MST: Minimum Spanning Tree(s) Matrix obtained from GGM with

75 % ’Kruskal’ method.

76 % * OrigSeedsIDX: list of Original Seeds;

77 % * ExtraSeedsIDX: list of automatically generated Seeds, during the

78 % self-arranging refinement;

79 % * IMG: as in MAP (input)

80 % * GRID: as in MAP (input)

81 %

82 % Other functional fields (for traceability):

83 %

84 % * SPDPowerFactor: value of ’SPDPOWERFACTOR’.

85 % * VisibleNeighborhoodRadius_mm: value of ’VNRADIUSMM’.

86 % * NodeDistanceTHR_mm: value of ’NODEDISTTHR’.

87 % * GradientDescentStopTHR: automatically determined value.

88 % * PathFolder: string with the Path Folder for Data Exporting.

89 % * QExplore: value of ’QEXPLORE’.

90 % * VisibleNeighborhoodRadius_vx: as in ’VNRADIUSMM’, but VOXELs.

91 % * VisibilityBall: Logical Volume created by ’VNRADIUSMM’.

92 %

93 % [Other Fields are present when ’FULLDUMP’ is enabled]

Extract and Refine the Vascular Minimum Spanning Trees The function

VTrailsRefine3D_ConnectedGraph2VTrailsTree_MAIN.m is used

to automatically extract and refine the geodesic minimum spanning tree - or a forest

of minimal trees, from the initial over-connected vascular graph.

1 %%% VTrails: Extract and Refine Geodesic Minimum Spanning Tree from Over-Connected

Vascular Graphs %%%

2

3 %% Function Call:

4

5 >> [GeodesicMSTs, GeodesicMSTsMatrix] =

VTrailsRefine3D_ConnectedGraph2VTrailsTree_MAIN( DATA , varargin );

6

7 %% Inputs:

8 %

9 % - DATA: structure containing Image-related features, and the

10 % Over-connected Vascular Graph.

11 % NB: DATA is the output of the function:

12 % ’VTrailsConnectingGeodesicGraph3D_MAIN.m’

13 %

14 % DATA *MUST* contain the following Fields:

VTrailsRefine3D_ConnectedGraph2VTrailsTree_MAIN.m
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15 %

16 % * IMG: Header of the input nifty Images.

17 % * GRID: Structure with Image Grid and Scales’ infos for Resampling.

18 % * GGM: Geodesically Weighted Connectivity Matrix of the Over-Connected

19 % Vascular Graph.

20 % * exploredminPath: struct containing the list of all the extracted and

21 % explored connecting geodesics (minimal paths).

22 % * MST: Minimum Spanning Tree(s) Matrix obtained from GGM with

23 % ’Kruskal’ method.

24 % * OrigSeedsIDX: list of Original Seeds;

25 % * ExtraSeedsIDX: list of automatically generated Seeds, during the

26 % self-arranging refinement;

27 %

28 % CONFIGURATION INPUTS:

29 %

30 % - [’PruningLengthThresholdMM’]: Length of leaves that should be pruned. -

31 % Default: 5 [millimeters]

32 % - [’PruningIterativeSteps’]: Number of steps for the iterative pruning. -

33 % Default: 1

34 % - [’VicinityTHR_Leaves’]: Threshold for spatially close leaves, that

35 % should be merged together. -

36 % Default: 1.5 [normalised units]

37 % - [’VicinityTHR_Nodes’]: Threshold for spatially close nodes, that

38 % should be welded together. -

39 % Default: 3 [normalised units]

40 % - [’LeavesPruningROI’]: ROI-based Mask for removing sputious leaves after

41 % masking the Over-Connected Geodesic Graph

42 % accodring to anatomical vascular territories. -

43 % Default: [] (empty) -- This will be removed in

44 % future releases!

45 % - [’TreeRootSeed’]: Coordinate of the user-defined Root of the Tree(s).

46 % [Root_X Root_Y Root_Z] array. - Default: [0 0 0]

47 % - [’SupervisedSeeds’]: Bool flag for user-defined vs. automatic seeds. -

48 % Default: true

49 % - [’GroupIDs2ConsiderRange’]: max value of output trees (in case of a

50 % Forest of MSTs) - Default: 1 -- Set to

51 % ’inf’ for all MSTs.

52 % - [’GroupIDs2Consider’]: when the identifier(s) of the MSTs is known

53 % beforehand, use this parameter to select the

54 % MSTs. - Default: [] (empty).

55 % - [’PadSize’]: number of padding samples for smoothing the 3D coordinates

56 % of the extracted MSTs edges. - Default: 5

57 % - [’ResampleRatio’]: resampling ratio for smoothing/resampling the 3D

58 % coordinates of the extracted MSTs edges. -

59 % Default: 0.1

60 % - [’PathFolder’]: exporting path folder. - Default: as in DATA.PathFolder
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61

62

63 %% Outputs:

64 %

65 % - GeodesicMSTs: structure containing the 3D embedding, geodesic

66 % information, and edge-connectivity of the extracted

67 % Minimum Spanning Tree(s).

68 % NB. in case multiple MSTs are obtained (Forest of MSTs),

69 % the same structure lists all the elements with respecive

70 % group-identifiers.

71 %

72 % GeodesicMSTs will contain the following Edges-related Fields:

73 %

74 % * CGPathContinuous: 3D sequence of coordinates for the conneted path.

75 % * CGPathID: Identifying label of the path (for the considered MST).

76 % * GeodesicEnergy: Integral value of the Geodesic Energy along the

77 % 3D connecting path.

78 % * GroupID: Identifier of the MST (in case of a forest of MSTs)

79 % * CGPathAdjacencyList: List of connecting edges (or paths) with respect

80 % to the considered one.

81 % * EuclideanLength: Integral Euclidean length of the 3D connecting path.

82 % * isLeaf: Bool flag (true if the connecting edge is a leaf).

83 % * isRoot: Bool flag (true if the tree ROOT belongs to that edge).

84 %

85 % - GeodesicMSTsMatrix: structure containing the connectivity matrix

86 % (adjacencies) for vectorial visualisation and

87 % representation.

88 %

89 % GeodesicMSTsMatrix will contain the following Fields:

90 %

91 % * M: Sparse matrix encoding the adjacency of the connected edges.

Demos In the current release two demos are included: VTrailsDEMO_01.m and

VTrailsDEMO_02.m. These comprise a fully-automatic configuration of VTrails

for the extraction of vascular trees from regional cerebral angiographies. In Fig.

A.3, the visualisation of intermediate steps and of the resulting vectorial segmenta-

tion is given for VTrailsDEMO_01.m.

VTrailsDEMO_01.m
VTrailsDEMO_02.m
VTrailsDEMO_01.m
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Figure A.3: VTrails Demo: Fully-automatic processing pipeline for the extraction of vas-
cular trees from angiographic images. VTrailsDEMO_01.m – Connected
Vesselness Map, Tensor Field, Over-Connected Geodesic Vascular Graph and
resulting Minimum Spanning Tree.

VTrailsDEMO_01.m
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