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Abstract

A vectorial representation of the vascular network that embodies quantitative fea-
tures - location, direction, scale, and bifurcations - has many potential neuro-
vascular applications. Patient-specific models support computer-assisted surgical
procedures in neurovascular interventions, while analyses on multiple subjects are
essential for group-level studies on which clinical prediction and therapeutic infer-
ence ultimately depend. This first motivated the development of a variety of meth-
ods to segment the cerebrovascular system. Nonetheless, a number of limitations,
ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject
variability, the lack of exhaustive ground-truth, the need for operator-dependent
processing pipelines, and the highly non-linear vascular domain, still make the au-
tomatic inference of the cerebrovascular topology an open problem. In this thesis,
brain vessels’ topology is inferred by focusing on their connectedness. With a novel
framework, the brain vasculature is recovered from 3D angiographies by solving a
connectivity-optimised anisotropic level-set over a voxel-wise tensor field repre-
senting the orientation of the underlying vasculature. Assuming vessels joining by
minimal paths, a connectivity paradigm is formulated to automatically determine
the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain
vascular structures are extracted with geodesic minimum spanning trees. The in-
ferred topologies are then aligned with similar ones for labelling and propagating
information over a non-linear vectorial domain, where the branching pattern of a
set of vessels transcends a subject-specific quantized grid. Using a multi-source
embedding of a vascular graph, the pairwise registration of topologies is performed

with the state-of-the-art graph matching techniques employed in computer vision.
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Functional biomarkers are determined over the neurovascular graphs with two com-
plementary approaches. Efficient approximations of blood flow and pressure drop
account for autoregulation and compensation mechanisms in the whole network in
presence of perturbations, using lumped-parameters analog-equivalents from clini-
cal angiographies. Also, a localised NURBS-based parametrisation of bifurcations
is introduced to model fluid-solid interactions by means of hemodynamic simula-
tions using an isogeometric analysis framework, where both geometry and solu-
tion profile at the interface share the same homogeneous domain. Experimental
results on synthetic and clinical angiographies validated the proposed formulations.
Perspectives and future works are discussed for the group-wise alignment of cere-
brovascular topologies over a population, towards defining cerebrovascular atlases,
and for further topological optimisation strategies and risk prediction models for
therapeutic inference. Most of the algorithms presented in this work are available

as part of the open-source package VTrails.



Impact Statement

The thesis describes a completely novel way to look at angiographic data, allowing,
for the first time, the extraction of a fully vectorial representation of the cerebrovas-
cular system within a consistent mathematical framework. The associated published
manuscripts have been presented at the biennial conference on Information Process-
ing in Medical Imaging in 2017, one of the most prestigious international confer-
ences in the field (acceptance <30%); also a substantial portion of this work has
been presented at MICCAI 2018 (oral presentation — Top 4% of papers), towards

the alignment of over-connected vascular topologies.

From an academic perspective, the formulated methodology is consistently ap-
plied to multi-modal images of the brain vasculature, where the novel technical con-
tribution is likely to be of interest for multi-compartmental vascular image analyses,
high-order image synthesis, geodesic information propagation and vascular network
embedding, allowing a wide range of further scientific investigations and technical

developments.

The introduction of a vascular vectorial representation stands indeed as a key-
enabling technology for currently unavailable vascular group-wise and population-
based analyses.

From a translational perspective, a number of clinical cardio- and neuro-
vascular applications can be derived: from extracting patient-specific vascular mod-
els supporting interventional neuroradiology and vascular surgery, to group-wise
studies of comparative neurology and cerebrovascular diseases, by aligning the vec-

torial vascular topologies and by embedding clinically relevant biomarkers.

Prospectively, the advances described in this thesis represent an essential con-
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tribution for population studies on which both clinical prediction and therapeutic
inference ultimately depend. Some of the introduced concepts constitute part of the
processing bedrock for the High-Dimensional Translational Neurology Programme
(Wellcome £4.5m), with the aim of automating high-dimensional outcome predic-
tion in stroke, transforming thus the national neurological care, also in terms of
early cerebrovascular diagnosis, clinical risk assessment, and long-term therapy.
On a more general scale, the work presented in this thesis would pave the way
towards the development of a comprehensive, quantitative and data-driven vascular
atlas of the human brain, which will help better understand neurovascular morphol-
ogy and functional normality, its variability and associated pathological phenotypes.
For reproducibility and broad accessibility, all the algorithms presented in this
thesis have been released on GitHub as a publicly available open-source platform

VTrails, further increasing the impact of the work.
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Chapter 1

Introduction

1.1 Cerebrovascular Imaging

Modern clinical practice makes extensive use of imaging techniques to assess and
evaluate the structural and functional pathophysiology in several cases. The World
Health Organization [128] addresses diseases of the cerebral vasculature as the most
relevant cause of morbidity and mortality in the world together with cardiovascular
events happening in the heart. Amongst those, the prevalent classes of cerebrovas-
cular diseases include atherosclerosis, stroke, cerebral aneurysm and arterio-venous
malformations, small vessel disease, and altered circulation in neoplastic vascular-
isation [124] (Fig. 1.1). These not only cause primary damages to the brain due to
altered blood flow as in thrombo-embolic ischaemia and major intra-cerebral haem-
orrhage, they also relate to progressive, often age-related, more complex and subtle
cognitive decline and vascular dementia caused by subcortical infarcts and cerebral
microbleeds at finer scale [196]. Implications of abnormalities in the cerebrovascu-
lar system are also observed in advancing Alzheimer’s disease [64]. In neurology
and in neuro-vascular interventional units, head-neck angiographies are obtained
from routine medical imaging of the cerebrovascular system with different methods
to understand and visualise the brain blood flow and supply [124]. Cerebrovas-
cular angiographies from X-ray digital subtraction, computed tomography (CT),
ultrasound, and magnetic resonance imaging (MRI) constitute the main modali-

ties in neuro-vascular applications (Fig. 1.2). These play a predominant role in
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Figure 1.1: Examples of typical cerebrovascular abnormalities: a. Occlusion of the middle
cerebral artery, causing ischaemic stroke; b. and c. Stenoses with different level
of severity; d. Pronounced cerebrovascular tortuosity; e. and f. Small and large
aneurysms respectively.

early diagnosis of neuro-vascular events, as well as in guiding patient management
for acute or long-term therapies. CT angiography (CTA) is the standard imaging
modality. Typical CTA scans provide volumetric images of the underlying vascu-
lar structure with high spatial resolution (down to isotropic 0.4 mm) [137]. These,
on the one hand, reliably detect calcified atherosclerotic plaques causing the nar-
rowing (stenosis) of the vessels’ lumen; on the other hand, they detect (or exclude)
intracranial hemorrhage from ischaemic stroke and identify eligible patients to be
treated with thrombolysis therapy [96]. In the latter case, digital subtraction pro-
jections provide neurovascular surgeons with high temporal (4-15 Hz) and spatial
resolution (isotropic 0.1 mm) guidance, by independently contrasting the flow in
different vessels through the injection of a iodine-based contrast agent with a hemo-
dynamically mininimally invasive catheter. Ultrasound imaging is an effective ap-
proach to study the extracranial vessels, in particular, to determine the presence and

severity of atherosclerotic plaques in carotid arteries [144]. Although MRI is not
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CTA

Carotid US MRI Time of Flight

Figure 1.2: Common imaging modalities employed in cerebrovascular applications: from
top to bottom, left to right, Digital Subtraction Angiography (DSA); axial,
sagittal and coronal view of a Computed Tomography Angiography (CTA); Ul-
trasound (US) scan of the Common Carotid Artery (CCA) bifurcating into the
External and Internal Carotid Artery, respectively ECA and ICA; three canoni-
cal orthogonal views of a cerebral MRI Time-of-Flight (TOF).

always the primary cerebrovascular imaging method suitable for all patients, struc-
tural and functional MRI techniques have shown a relevant impact in the field of
cerebrovascular disease in the past few years by characterizing the cerebrovascular
system with varying informative content and features of different nature [124,141].
Amongst these, a combination of time-of-flight (TOF), phase contrast (PC), dy-
namic contrast-enhanced and arterial spin labelling imaging protocols, together with
spectroscopic imaging, diffusion tensor and diffusion weighted imaging, and blood
oxygenation level-dependent functional MRI, allow clinicians to outline the assess-
ment of tissue condition, perfusion and diffusion, also to classify and differentiate
(sub)types of arterial events. In other cases, the assessment of isolated cortical vein
thrombosis [52], neuroinflammatory diseases [2, 19], and intracranial hypertension,
susceptibility weighted imaging [81] and quantitative susceptibility mapping [80]
allow for the depiction of the anatomy of deep cerebral veins and their abnormal-
ities. From an interventional perspective, these modalities are extremely valuable
for planning a variety of image-guided neurosurgical procedures such as identifying

vessel-free paths for insertion of a biopsy needle or the implantation of deep-brain
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stimulation probes or stereotaxic electro encephalography electrodes [23].

1.2 Clinical Angiography Assessment

Upon the vast extent of neuro-vascular imaging modalities and considering novel
emerging MRI techniques, the clinical analysis and the accurate assessment of the
cerebral vasculature is however performed manually by inspecting intensity projec-
tions, or image slices one at a time, or using multiple views of 3D rendering and
visualization techniques [118]. This often results in high inter-observer variability,
as the assessment relies on clinical experience to minimise foreshortening and ves-
sel overlap [116]. In particularly complex cases, the agreement can be relatively
poor even among experienced clinicians [78]. The cerebrovascular system is in-
deed highly complex. Appreciable differences and high variability of the vascular
structure in the brain can be observed in the first instance among healthy subjects,
where phylogenetic relations or undisclosed factors determine different vascular
morphologies and topologies even for major vessels. Main arterial examples are:
the complete Circle of Willis (CoW) occurring in approximately one third of the
worldwide population and its incomplete variants [22]; the fenestration of the basi-
lar artery (BA), constituting the splitting of the trunk of the vessel which rejoins af-
terwards; the variable course of the anterior inferior cerebellar artery, anastomosing
with both the posterior inferior cerebellar artery and the superior cerebellar artery,
which results in a variable amount of blood supply to the cerebellum, depending

upon the posterior arterial dominance, to name a few.

Also, age-related modifications of the vascular structures are observed in
healthy subjects such as the increase of vascular tortuosity, change in size and
curvature. This shows therefore a high degree of morphological variability of the
cerebrovascular system in healthy subjects. Furthermore, some of the mentioned
pathologies, such as atherosclerotic plaques and subsequent vessel stenoses, cere-
bral aneurysms and vascular malformations produce structural cerebrovascular ab-
normalities which affect and may substantially alter the vascular network pattern in

the brain at different branch-points and scale levels. In order to provide quantitative
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and repeatable measures to support early diagnosis, therapeutic inference and inter-
ventional guidance, a number of image-based vascular processing and segmentation
techniques have been designed and proposed, these coping with different degrees

of complexity and detail for the cerebrovascular system.

1.3 Challenges in Cerebrovascular Image Analysis

In the past years, the medical interest in vascular segmentation and the associ-
ated challenges have motivated an extensive amount of research. Most of the
biomedical engineering research effort was focused on extracting clinically useful
subject-specific models by means of automatic and semi-automatic segmentation
techniques. However, population-based and group-wise analyses were limited to
qualitative cerebrovascular differences and incidental vascular findings in clinical
trials in radiology. The image-based and quantitative evaluations of a cohort of sub-
jects require indeed a range of complex and multi-disciplinary tasks. Among those,
the segmentation of the structures, the alignment and labelling of the vascular in-
stances, and lastly the extraction and integration of clinically relevant biomarkers

should be designed in a homogeneous domain.

In Chapter 2, a comprehensive summary of image-based vascular segmentation
techniques and models is given, where an overview of the state-of-the-art and of tra-
ditional approaches in vascular image analysis frame the challenges of detecting and
delineating vascular structures. In details, the problem of robustly enhancing the de-
sired regions of interest over a background, or challenges in reducing image-related
non-idealities arising from poor contrast due to image resolution, fragmented struc-
tures and topological non-linearities (bifurcations) were addressed by established
and emerging methodologies for image-based vessels segmentation. These focused
first on exploiting different vessel characteristics and image-based features to ul-
timately extract patient-specific cerebrovascular models and clinically relevant in-
dices and parameters. In early neurovascular applications [14, 169, 192], the final
goal was to locate brain vessels in relation to their neighbouring structures, for ex-

ample, to avoid them during neurosurgery or to measure their dimensions at some
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specific point (e.g. diameter of carotid, level of stenosis or grading of a cerebral
aneurysm). In these cases, a raster representation of the underlying vascular struc-
tures is perfectly adequate, and the problem reduces to detecting the anatomical
structures and voxel-wise segmenting the volume of an object of characteristically
local linear morphology. The challenge of reconstructing a connected network of
vascular branches was addressed by Bullit et al. and Kwitt et al. [29, 104] from a
set of initial manually-sampled seeds, disconnected branches, or fragmented cen-
terlines. However, traditional approaches for vascular enhancement and structural
reconstruction seemed to address the problem of vascular connectivity in a rather
independent and disjoint manner. Recently Shahzad et al. [176] proposed a more
complete and connectivity-oriented approach for the extraction and labelling of the
vascular tree from 3D whole-body angiography. However the extraction was lim-
ited to major arterial ramifications from the aortic arch up to the carotids and down

to major periferic limbs.

Whilst many methods exist for quantifying cerebrovascular parenchymal
changes (i.e. local vessel morphology, presence of atherosclerotic plaques, sur-
rounding brain lesions), employing raster representations of tissue classes, no meth-
ods exist for quantifying vascular change where the representations are necessar-
ily vectorial: the connected geometry of the underlying vascular network. Such
vectorial representations could compactly encode relative, spatial and connectivity-
related vascular features, by transcending a predefined and quantized spatial grid,
typical of a subject-specific raster angiography [85]. A vectorial representation is
not only useful in guiding interventions in individual patients, e.g. guiding intracra-
nial electrode placement [217], catheter motion planning, (un)safe occlusion points
identification [29, 112], or endovascular aneurysms repair and stent placement for
recanalization [114, 159], but essential for the group-level studies on which both
clinical prediction and therapeutic inference ultimately depend. For without a satis-
factory means of registering vascular trees across a cohort of patients it is impossible
to draw general conclusions about any specific vascular feature. A vectorial rep-

resentation of the vascular network would therefore allow different forms of group
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level analysis: i. intersubject comparison of geometrical features of the vascular tree
(e.g. junction points, branching numbers, tortuousity, and overall haemodynamic
properties), and ii. intersubject comparisons of various non-vascular parenchymal
features, where the brain image-volume is rather registered by its vascular topology.
By referring to vectorial cerebrovascular topology, the descriptive connectivity and
branching pattern of a given set of vascular structures in the brain is obtained by
adopting a spatially- and connectedness-aware embedding of a graph, which si-
multaneously encodes vessel centerlines as geodesics (minimal paths), disregard-
ing any predefined anatomical compartment and subject-specific raster grid [85].
In general, the quantitative vectorial description and characterisation of a network
become more complex and challenging as the network increases in size and allows
for variable connectivity patterns. Here, the cerebrovascular anatomical intra- and
inter-subject variability [91] does not allow for a unified and globally standardised
vessel network extraction yet. Malformations and pathologies can also dramatically
increase the complexity of the vasculature topology, where a compact representation
is sometimes impractical. Complex topologies are required for the characterisation
of the whole cerebrovascular system: anastomoses such as the Circle of Willis and
those of the capillary bed in the cortex [22, 85] show cyclic connecting patterns at
varying scales and depth. In these cases, hierarchical tree-like structures cannot
adequately model the underlying anatomy, and a more general and unconstrained
graph formulation is required. However, the topological inference of major deep-
brain arterial (or venous) vascular trees can be locally projected to multiple-tree
extraction strategies. Few topological references and data-driven gold standards of
vascular connectivity are available. These, often fragmented or limited to a region
of interest, require the thorough annotation of experts at different levels of vascular
branching, where minor mis-classifications may significantly affect the topology of
the resulting vascular graph [140]. The thorough segmentation of a whole-brain
vascular image dataset is considered intractable [23], and it can take up to 8 weeks
of manual labor per subject [142]. This constitutes a considerable limitation for any

method’s validation. Given the substantial complexity of the segmentation task and
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of vectorial translation of the associated brain vascular network, considering also
the lack of an extensive ground-truth for complete vascular topologies, the accurate

and exhaustive extraction of the vessel connectivity still remains an open problem.

1.4 Thesis Outline & Contributions

With regards to this thesis and considering the aforementioned challenges in cere-
brovascular image analysis, the problem of processing and analysing brain ves-
sels from multi-modal angiographies is formulated under a different vascular key-
feature. The idea is to exploit the intrinsic connectedness of the cerebral vessels
together with its peculiar topology to determine a fully-connected graph. Such a
vectorial representation would potentially describe not only spatial anatomical and
functional features of either the arterial or venous compartments in the brain up to
a pre-determined level of detail, it can also further allow the registration and align-
ment of cerebrovascular topologies for automatic labelling, information propaga-
tion and statistical analyses, towards the definition of an over-complete neurovas-
cular atlas representative of a cohort of subjects, or of a whole population. On a
more general scale, it could potentially further embed relevant clinical parameters
such as hemodynamic parameters, physio-pathological biomarkers and risk-factors
in a graphical, compact and intuitive representation. This would result in a multi-
purpose cerebrovascular tool, which may impact the clinical practice with high-level
cues and descriptive information on different scales: from patient-specific models
employed in supported diagnosis, decision making, interventional treatment plan-
ning and surgical guidance, to longitudinal or cross-sectional long-term population

studies.

Following the “common thread” of the vascular connectedness, a novel frame-
work for cerebrovascular image analysis is presented in the following chapters. This
novel mathematical framework, called VTrails, is step-by-step described, where a
model accounting for local vessel shape priors, together with anisotropic directional
features as descriptors of the vascular structural anisotropy, aims at extracting im-

plicitly either the arterial or the venous connected network in the form of a graph
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from 3D clinical angiographies. Then a pairwise non-rigid alignment approach is
introduced for over-connected vascular topologies, leveraging the redundancy and
connecting uncertainty of the network, within a standardised and established graph-
matching framework used in computer vision applications. Lastly, a set of biomark-
ers and surrogate measurements from hemodynamic simulations are devised and in-
tegrated on the vascular topology, leveraging both the global connected network of
the vascular structure and the local geometries at the bifurcations. These account for
different degrees of perturbations, simulating both healthy and diseased scenarios.
Along with the structure of this thesis, the introduced unified connectivity-
oriented framework VTrails enhances the connectedness of bifurcating, fragmented
and tortuous vessels from angiographic scans through non-linear, scalar and ten-
sorial vascular models. The orientation-aware vascular maps are fed into a
connectivity-optimised paradigm, which infers the unknown connected vascular
network minimising the cost of the associated geodesic graph under the assump-
tion that vessels join by minimal paths. The pairwise elastic registration of vascular
graphs is formulated as a coarse-to-fine optimisation problem, which retrieves the
vascular branch-points correspondence for pairs of non-strictly isomorphic topolo-
gies in a fully automatic fashion. Lastly two vectorial hemodynamic simulation
approaches are described over the inferred topologies to determine biomarkers and
vascular descriptors leveraging both global and local views of the cerebrovascular
network. In conclusion, perspectives and future works are discussed towards group-
wise alignment, topological atlas integration and long-term risk prediction models.
Following an introductory overview about the state-of-the-art models em-
ployed in vascular image analysis in Chapter 2, the structured outline of this thesis’

contributions is given in Fig. 1.3, where the VTrails framework is introduced for:

* Vessel Enhancement in Chapter 3: a compact Steerable Laplacian of Gaus-
sian Swirls (SLoGS) enhancing filter-bank is defined and employed in a
multi-resolution, curvilinear- and rotation-invariant filtering framework to si-
multaneously and consistently synthesise scalar- and tensorial-saliency maps,

whose combination yields a smoothly connected Riemannian vesselness po-
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tential.

* Vascular Connectivity in Chapter 4: both greedy and exhaustive connectivity
paradigms are designed from an anisotropic level-set over the synthesised
Riemannian vesselness potential, determining the underlying vascular tree(s)

and the fully-connected geodesic vascular graph, respectively.

* Vascular Alignment in Chapter 5: a pairwise non-rigid alignment of non-
isomorphic geodesic vascular graphs is described with a coarse-to-fine reg-
istration strategy comprising geometrical, geodesic and connectivity features

within a Graph-Matching (GM) optimisation framework.

* Vascular Biomarkers in Chapter 6: biomarkers and surrogate measures from
hemodynamic simulations are estimated for representative cerebrovascular
graphs by globally solving analog-equivalent circuits in presence of pertur-
bations, and by solving a Stokes’ problem on vascular bifurcating geometries
using a parametrisation based on Non-Uniform Rational B-Splines (NURBS)

and an isogeometric analysis (IGA) framework.

VTrails framework’s validation is also presented along with the methodolog-
ical insights for a set of hand-crafted phantoms, synthetic angiographies and real
clinical multi-modal scans throughout the body of this thesis. Current and active
research directions following this thesis are also addressed in Chapter 7 towards
the optimisation of the inferred vascular network, and the potential of long-term
risk prediction models for the cerebrovascular system is lastly envisioned. Some of
these latter formulations are supported with simple toy-examples and preliminary
results, however these require further extensive evaluations in future research. To
finalise, an initial overview of the available VTrails’ open source implementation
is given in the Appendices A. Further references and insights are specifically in-
troduced throughout the body of this thesis, to better frame the multi-disciplinary

contributions of the proposed framework.
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Figure 1.3: Thesis Outline: Macro-Section Flowchart. Cerebrovascular Imaging in Chap-
ter 1 and State-of-the-Art in Chapter 2. Vessel Enhancement in Chapter 3. Vas-
cular Connectivity in Chapter 4. Vascular Alignment in Chapter 5. Vascular
Biomarkers in Chapter 6. Discussion and Future Work in Chapter 7.



Chapter 2

State-of-the-Art

2.1 Models in Vascular Image Analysis

The impact of vascular diseases has motivated a considerable amount of research
dedicated to vascular image analysis. In the first instance, diagnosis assistance,
treatment and surgery planning require the segmentation (i.e. the identification
and delineation of regions of interest within the image) of vascular structures for
the accurate visualisation of vessels in complex datasets and for the quantification
of abnormalities and pathologies. Since most angiographic clinical routines still
rely on manual operations, and given the considerable amount of data generated by
modern 3D scanners, vessel segmentation and assessment may sometimes suffer
from long time processing and inter-operator variability. To overcome these limita-
tions, and considering the complexity of the vascular system and of the surround-
ing context, automatic and semi-automatic tools have been an object of research
and development for the specific and challenging problem of vessel segmentation.
Following the outline proposed in [112] and [99], methods for vessel lumen seg-
mentation can rely on a complex combination of strategies, here grouped according
to three main high-level categories: i. appearance and geometric vascular models;
ii. vessel-related image measures and features; iii. algorithmic designs and extrac-
tion schemes for vessel segmentation. Other techniques also focused on different
vascular image analysis tasks, such as vessel outer wall segmentation and thrombus

segmentation [143,191]. These often embed specific prior and leverage particular
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combinations of processing pipelines, which sometimes result in less generalisable

ad-hoc applications.

2.1.1 Vascular Appearance and Geometrical Models

Models are meant to embed prior knowledge or information regarding the target
structures. Appearance models express the luminance properties of either vascu-
lar or a combination of vascular and surrounding structures by exploiting intrin-
sic informations arising from the imaging modality. Vessel-only models focus on
the intensity distribution associated to the vasculature according to a theoretical or
pre-defined estimation of the intensity range (e.g. Contrast-Enhanced CT angiogra-
phies). Following this assumption, several statistical distributions, such as Gaus-
sian [67], Cauchy [4], or double sigmoid models [158], can be defined to account
for the intensity variability produced by inhomogeneity of the contrast agent. Also,
by considering the information from surrounding structures and tissues, it is possi-
ble to model the respective intensity distributions from a simple brighter (or darker)
relationship between the vascular structures against the background, rather than a
more advanced mixture of statistical models [48], accounting for inhomogeneities
of the considered tissues [170]. Other acquisition-dependent nonidealities, such
as noise and spatial blurring, can be estimated and incorporated as part of an ap-
pearance model. Generally, these nonidealities are implicitly integrated in hybrid
models, which also account for spatial and geometric features of the structures of
interest.

Purely geometrical models exploit the characteristic shape of blood vessels to
encode their spatial and topological features, i.e. the elongation, the radius range
or scale and furcations. Surface models rely on the assumption of local tubularity
of the vessel surface to regularise with active shape models the lumen segmenta-
tion extracted by active contour techniques [54, 69]. Conversely, centerline models
consider vessels as primarily mono-dimensional structures. The centerline, i.e. the
geometrical locus of points centred inside the vessel lumen, reduces the complexity
of the blood vessel to a 1D curve, which is particularly valuable for visual inspection

tasks as well as for stenosis and aneurysms description and quantification. Also, to
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model the centerline as a smooth curve, several parametric models [27, 105] were
used to enforce smoothness and regularity in vessel extraction processes such as
path prediction techniques [93] and particle filters [12]. The association of a sur-
face with respect to a centerline further produced the generalised cylinder models,
where the vessel walls are defined as 2D cross-sectional contours sweeping along
the centerline. Examples of cross-sectional profiles are classical circles or ellipses,
rather than more complex parametric curves such as closed 3D B-splines [69, 115].
More recent methods optimise and fit the geometrical surface on the data, under the

assumption that the centerline estimation is reliable.

Hybrid models combine vascular luminance and appearance features together
with vessel geometry. By observing the radial intensity profile within vessels, a
simple bar-like model was initially proposed, which corresponds to a local cylinder
with homogeneous intensity [26]. This was further refined as a bar-like convolved
profile model, where the cross-sectional intensity plateau is filtered with a Gaussian
kernel to account for spatial blur and partial volume effect [103,201]. Conversely,
intensity ridge models assume vessels as boundaries of the image hyper-surface,
and they correlate multi-scale and intensity-related ridge responses to vessel spa-
tial locations [14, 16, 72]. Also, template-based shape priors constitute a widely
employed set of models, whose prototypes are based on second-order intensity
variations (Hessian matrix analysis). In particular, different combinations of the
Hessian eigenvalues are used to locally match bright (or dark) vessels to elongated
blobs, ellipsoids and superellipsoids respectively [70, 118, 189]. On the same note,
more recent techniques try to compensate also for noise and neighbouring struc-
tures, by analysing the voxel-wise vicinity in the tensor-space, namely tensor vot-

ing [216,217].

Further geometrical model extensions included (bi)furcations and patholog-
ical anomalies and treatments such as calcifications and atherosclerotic plaques,
aneurysms, stenoses and stent implants. Although precise modeling of the anoma-
lies can substantially improve the vessel segmentation robustness, it is rather dif-

ficult to embed specific priors as the complexity of the model can dramatically in-
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crease. Simple geometric models were proposed indeed, where Y- or X-shaped fur-
cations are considered [3,4], or single-branch bifurcations are defined a contrario as
deviations from cylindrical segments in terms of inertial moments [84, 87]. Differ-
ently from calcifications and stents that result in hyper-intense structures, stenoses
and aneurysms are generally implicitly modelled as sudden radius decrease and
increase, respectively. Stenosis can be explicitly modelled by the double-cone de-
tector, based on the Hessian analysis [118], whereas aneurysms can be learned from
a database or can be detected a posteriori by evaluating volumetric and morpholog-
ical criteria on the segmented vasculature. Lastly, other problem-specific models
have been employed in literature by making use of probabilistic geometrical models
and atlases to guide the vascular segmentation, as in [149] for the cerebrovascular
system.

In practice, the choice of the model is however influenced by the prior knowl-
edge of the acquisition modality for the vessel luminance and appearance, and by
the specific application for the respective geometrical assumptions. Any given ves-
sel segmentation algorithm can rely on several complementary models providing
thus a more robust, multi-layer and coarse-to-fine description of the vascular struc-

ture.

2.1.2 Vessel Features and Image Measures

Vessel-specific features quantitatively express a prior knowledge, typically derived
from an underlying model. A vascular feature is defined by measuring or estimating
a vessel characteristic on image data upon the individual elongation, direction, scale
and cross-sectional shape assumptions, or by considering a combination of those.

Isotropic features such as location and/or scale do not exploit assumptions on the
directionality of the vessels. Relying on the brightness of the structures, a set of
candidate points mostly lying inside the vessels can be obtained by a locally scale-
persistent robust intensity maxima extraction [181]. Alternatively, a medialness op-
erator can be defined using a 3D multi-scale ridge detector (Laplacian of Gaussian),
assuming that vascular intensities are locally maximum [14]. This latter approach

was further extended using explicitly the vessel directionality in [16,72]. Another
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isotropic feature was introduced by the spherical flux measure [192], which com-
putes the gradient flux through the boundaries of multi-scale spheres with maximal

responses at the center of the vessel, at the corresponding scale.

By exploiting instead vessels’ specific local geometry in conjunction with their
intensity, a set of features can be defined to characterize the tubular-like pattern and
directionality of the vascular structures. Popular derivative features make use of the
principal curvatures of the image intensities to describe the local geometry. The
principal vessel direction and the orthogonal cross-sectional plane can be estimated
through the eigendecomposition of the second-order spatial image derivative (Hes-
sian matrix) [100]. Following this principle, several flavours of Hessian-based mul-
tiscale filters were presented for vessel enhancement [70, 118, 169]. These rely on
Hessian eigenvalues to discriminate between blob-, plane-, and tubular-like struc-
tures. The well established Frangi vesselness filter [70] has been widely used in a
number of vascular applications for its intuitive formulation, however its sensitivity
is affected when the vascular structure deviates from the tubular assumption (e.g.
stenosis, aneurysm and bifurcation). Also, the specificity of the vesselness response
can be reduced by additional image noise and nearby non-vascular structures. As
Hessian-based features rely on multi-scale filtering frameworks to account for ves-
sels of different size, scale selection is often a critical aspect. On the one hand the
Gaussian linear scale-space should consider vessel scales so that their vesselness re-
sponse is maximal; on the other hand the vesselness response of these filters can be
perturbed by other hyper-intense surrounding structures. With this view and to re-
duce such perturbations, Bauer and Bischof [17] proposed a similar vesselness for-
mulation by considering the Jacobian of a gradient vector flow field. Alternatively,
other methods exploited the spatial covariance of image gradient vectors through
the analysis of the structure tensor matrix [3, 4], which better discriminate simple
vascular segments from vascular nodules and bifurcations. The optimally oriented
flux [106] exploits the distribution of gradient vectors to estimate a more accurate,
stable and robust vesselness measure, less sensitive to surrounding structures. Sim-

ilarly to the spherical flux, vessels are enhanced by measuring the gradient flux
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through the boundary of local spheres, however, by explicitly making use of the
vessel directionality, the flux is maximised through the estimation of an optimal
gradient projection axis at different scales. As an alternative to derivative methods,
second-order inertia moments of image intensities are used as integrative features
for vascular structures. By considering the eigendecomposition of the inertia matrix
and the respective ratio of eigenvalues, vascular integral filters can be determined,
which provide similar curvature and geometric informations and are theoretically
less sensitive to image noise and degradation [84, 87]. Conversely to derivative ap-
proaches, integrative filters do not benefit however from a well-defined scale-space

framework.

Different strategies focus conversely on 2D cross-sectional features. Under
the hypothesis of a vessel with closed-shape, compact and regular cross-sectional
contour, the problem of the lumen segmentation is downscaled to two dimensions,
however a single estimation of principal vessel orientation can be subject to noise
and local perturbations. Following these concepts, Aylward and Bullit [16] pro-
posed cross-sectional circular ridge detectors tracking for the definition of a medi-
alness measure, by tracking the vessel along its directionality estimated using the
Hessian’s eigenvectors. Further refinements developed the formulation of the core
framework for vascular structures, where a medial atom response is obtained by
filtering the image with directional Gaussian derivative kernels located at the end
of equi-angular radial spokes [71], so that the core medialness feature fits the im-
age edges with a circular cross-sectional model for a given location, orientation and

radius.

In this case, bifurcations are identified by a specific-pattern ridge detector cou-
pled with the core response. The core framework has been employed in cerebrovas-
cular image analysis with interesting and promising results, introducing the possi-
bility of automatically extracting vascular tree-like structures. Limitations of the
method were however reported in case of bifurcating and scale-varying branches,
where the observed sensitivity is reduced. Currently the core framework has been

further extended and developed in the TubeTK open-source project, Kitware [15].



2.1. Models in Vascular Image Analysis 49

Following the idea of a 2D cross-sectional compact vessel contour, ray-casting fea-
tures were investigated to either detect accurate vessel walls or to better evaluate the
centerness of a point in the vessel. Ray-casting features do not rely on a paramet-
ric shape prior for the cross-sectional contour, and they generally yield robust and
high-performance results by casing and averaging numerous 1D rays [79].

Lastly, vascular features for bifurcations and anomalies were analysed to in-
crease the vascular segmentation robustness. Among these, bifurcations were as-
sociated to the emergence of different vascular principal directions [3], or branch-
point candidates were selected upon an inertia moment heuristic [84,87]. However,
most other anomalies and bifurcating features are based on a posteriori topological

analysis of the extracted vascular segmentation.

2.1.3 Segmentation Extraction Schemes

Several algorithmic designs have been proposed to extract the vascular segmen-
tation on the basis of the afore mentioned models and features. Usually, vessel
segmentation extraction schemes comprise a pipeline of image processing steps:
vascular pre-processing aims at better contrasting the vascular structure against the
background, enhancing therefore particular vascular features; this is then gener-
ally followed by a vessel-dedicated extraction scheme based on three main method-
ological subcategories, i.e. region-growing, active-contours and centerline-based
approaches. Eventually, post-processing techniques refine the segmentation results.

Popular pre-processing techniques employ Hessian-based derivative filters
[70, 169] or flux-based filters [106, 107] to enhance the vessels by providing a ves-
selness response map, which potentially reduces the image noise level, while pre-
serving thin and weakly contrasted vessels. With the same aim, vessel-dedicated
anisotropic diffusion schemes were also proposed [125, 126] for angiography en-
hancement, where further anisotropic directional information is extracted from the
analysis of the Hessian matrix or from the structure tensor [198]. Together with vas-
cular enhancement pre-processing schemes, algorithms for the extraction of rough
vessel priors or pre-segmentation, e.g. spatial localisation seeds and/or regions

of interest (ROI), were introduced to initialise the following vascular extraction
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schemes. Most of pre-segmentation techniques are based on pixel- or voxel-wise
processes, such as vesselness hard-thresholding and local maxima selection of in-

tensity peaks, however these are particularly prone to fragmented outputs per se.

Starting from seed points, region-growing techniques incrementally segment
the vascular structure by recruiting neighbouring points which satisfy some in-
clusion criteria. The simplicity and computational efficiency of region-growing
schemes is related to the greedy and low-level inclusion rules, resulting in a sparse
exploration of the data, particularly suitable for large 3D datasets. As a down-
side, inputs and seed points are generally provided manually, and classical region-
growing schemes tend to be prone to false-negatives (holes) and false-positives
(leaks), requiring therefore subsequent topological corrections [132]. Wave or front
propagation techniques can be seen as ordered region-growing approaches with the
advantage of enforcing the evolution of a well-formed and spatially coherent inter-
face within the vessel. An accurate front propagation scheme is the fast-marching
algorithm [1,175]. Itis derived as a general level-set numeric solver and visits pixels
(or voxels) according to an estimation of their geodesic distance from seed points.
Also, the fast-marching algorithm can be used for the optimisation of minimal paths
allowing for different speed potentials and functions. As major benefit, the spatially
coherent propagation of the front yields an implicit handling of branching and bi-
furcations, as well as allowing the connectivity of the propagating interface to be

exploited for topological analysis.

Active-contours represent another class of segmentation techniques that evolve
an interface through the coupling of internal (image-derived) and external (model-
based) forces to constrain the geometry and the regularity of the vascular structure.
Examples are 2D snakes that deform a tubular model following the direction of tar-
get vessels by evaluating the principal component analysis of the gradient vectors’
distribution, avoiding self-intersection artifacts [187, 188,210]. Also a parametric
deformable snake model evolving a centerline curve with varying radius was pro-
posed for 2D and further extended for 3D applications respectively in [133, 134].

Alternative implicit active-contours techniques rely instead on the vessel contour
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evolution through partial derivative equations and level-set formulations. As the
level-set framework does not suffer from explicit model parametrisation problems,
complex topologies of the vascular structure are embedded as zero-level of a con-
verged higher-dimension function. From 1D curves (called e-level-set [122]) to
higher order active-contours [163, 164], vessel segmentation has showed interest-
ing and promising results, although 3D extensions have raised a considerably more
complex algorithmic paradigm and higher computational cost. Among these, a 3D
framework for vascular geometrical modelling was proposed in [7] for comput-
ing patient-specific computational hemodynamics, which resulted in the Vascular
Modelling Toolkit (VMTK) open-source effort [9]. The vascular lumen surface
is implicitly determined as intersecting iso-contours. These are obtained from an
isotropic propagation of front-waves travelling from two manually parsed seeds
over an image-based intensity potential. Also in this case, the fast-marching al-
gorithm was employed to solve the implicit surface discrete evolution in combina-
tion with subsequent surface regularisation (shape-preserving smoothing) strategies
to reduce artifacts arising from noise and image degradation. Consequently, the
centerline is extracted a posteriori as the medial axis of the structure by solving a
minimization problem on a functional determined by the internal Voronoi diagram
and the maximal inscribed sphere radius feature. Centerline extraction is there-
fore recast into a minimal cost path problem, whose solution is given again by the
fast marching method for the Eikonal equation extended to non-manifold surfaces.
Interestingly, this approach was observed to implicitly produce connected center-
lines at bifurcations and in correspondence of anomalies with further applications
to cerebral vasculature and aneurysms [155]. Although the resulting segmentation
model shows a smooth and appealing vascular reconstruction, the segmentation ac-
curacy and the resulting vascular topology rely on the quality of the data and on
the user-dependent supervision in selecting the seed-points and in refining spurious

geometries.

Conversely from previous approaches, centerline-based methods focus on ex-

tracting directly the vessel mid-line, followed by centerline-to-contours refining
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segmentation approaches. Centerline-based segmentation techniques rely indeed
on high-level vascular information, such as localisation, direction and scale. Di-
rect centerline extraction techniques require input seed points, usually the root of
the vascular tree, and the tracking process is performed by alternating prediction
and correction steps. Following vessel directionality features, Kalman filtering
was proposed as an optimal prediction and correction scheme, under the assump-
tion of Gaussianity and linearity of the data [202]. Also, to ensure robust track-
ing, direct centerline extraction techniques make use of medialness measures and
cross-sectional features to recentre and correct the centerline location [109]. Over-
all, direct centerline tracking may however remain prone to premature stopping
in the presence of anomalies, and requires a fair amount of user interactivity to
handle branching via manual reseeding and to extract a complete tree. Alterna-
tive approaches follow the idea of extracting centerlines as vascular minimal paths.
With this view, a cumulative monotonic cost metric, integrated along the center-
line path, is minimised using dynamic programming schemes, resulting in good
robustness even in case of corrupted data or anomalies, such as severe stenosis.
Algorithmic designs include L; path optimization using Dijkstra-like graph-based
schemes [58], and the fast-marching algorithm, which approximates in the first in-
stance the isotropic Euclidean (L,) cumulative cost. Refinement of such algorithms
is the freezing scheme [56], which prevents paths from being propagated further
when the cumulative cost is too high. An anisotropic version of the fast marching
with freezing scheme has been shown to greatly reduce the amount of exploration
space [118]. Together with a spatial centerline extraction, [21] proposed to incor-
porate an additional dimension, i.e. the associated vessel radius, to the problem
formulation. Considering a native 3D domain, this yields a 4D minimal path ex-
traction technique where two speed potentials were defined concurrently based on
multi-scale spheres and image-intensity features. Particular interest, however, was
focused on exploiting directional information in a minimal path framework, specif-
ically the anisotropic fast-marching formulation favours the propagation towards

certain orientations. The multi-scale optimally oriented flux [106] was exploited
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to design an adequate anisotropic metric for the vessel directionality in 3D [21],
whereas a 4D propagation accounting for space, scale and orientation was proposed
for 2D centerline tracking in [151]. However the high computational cost represents
the major limitation for 3D applications. These minimal path techniques generally
are semi-automatic, as they require an interactive framework for defining start- and
end-points for each target vessel and a user-defined stopping criterion. Eventu-
ally, geodesic-voting techniques [165] and a posteriori pruning approaches can be
employed to refine and correct complex vascular graphs obtained by a number of
minimal paths.

A further effort to improve robustness in vessels centerline tracking was the
formulation of a multi-hypothesis framework, such as stochastic particle filters.
These benefit from well-established Bayesian theoretical frameworks and allow
for high-level implicit designs. Particle filters handle non-linear processes through
probabilistic and non-parametric Monte-Carlo methods, relying thus on a discrete
population of samples (particles). The particle population is evolved by following
and updating iteratively the probability distribution of several features on the state-
space, such as vessel location, scale, orientation and appearance parameters. The
increase of robustness, especially in noisy contexts, introduces high computational
costs proportional to the number of particles [68,113,170,171].

Lastly, most of the mentioned methods usually require a post-processing step,
which mainly aims either at restoring and regularising fragmented portions of the
vascular segmentation or at correcting the topology of the vascular tree due to miss-
ing or misconnected branches. In this step, spatial coherence can be enforced with
morphological operators, as well as with more complex graph-based approaches
such as pruning and region completion or splitting, by following fuzzy connected-
ness criteria and fuzzy models at different scales, from heuristic fuzzy-spheres to

probabilistic graphical atlases [3, 181].

2.1.4 Emerging Segmentation Approaches: Deep-Learning

Deep-Learning based approaches are gaining popularity for vascular segmentation

tasks [136]. As opposed to other supervised and unsupervised machine-learning
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algorithms, where both feature extraction and selection require an underlying un-
derstanding of the most suitable features for the specific segmentation task, deep-
learning approaches directly extract an internal representation of the image and as-
sociated cues, upon the increasing availability of computational power and datasets.
Convolutional Neural Networks (CNNs) are a type of feed-forward neural network.
Given a set of training pairs, i.e. image and labelled segmentation, these archi-
tectures produce a raster binary output, stating whether the pixel (or voxel) be-
longs to a vessel or background according to the given gold standard. Although
these techniques have been recently applied to 2D angiographies of the retinal fun-
dus [53,119,135], emerging advances in the segmentation of cerebrovascular struc-
tures were proposed by Phellan et al., Chin et al., and Chen et al., [41, 44, 154].
In detail, bi-dimensional manually annotated image patches are first used to train a
CNN for automatically segmenting the vessels in TOF MRI angiographies; also,
an automated early ischaemic stroke detection system is presented using CNN
on CT scans of the brain; lastly, and automatic detection of microbleeds in cere-
bral susceptibility-weighted images is proposed by taking advantage of the deep-
learning based 3D feature representation. Overall, the performance of deep-learning
approaches in vascular imaging show promising results in terms of retrieval, accu-
racy and processing throughput, however the lack of an extensive labelled ground-
truth or detailed gold standard seem to currently limit the generalisation power of
the inferred rules to a restricted set of specific applications. Also, as observed in
the previous section, these methods may eventually require further post-processing
to better address the restoration and regularisation of disconnected or mis-labelled
vascular portions. Nonetheless, vessel segmentation may rapidly evolve with ad-
vanced deep-learning approaches as the availability of labelled datasets scales up
to cover most of the aforementioned vascular variability and non-linearity, together
with unsupervised or weakly-supervised deep-learning strategies (e.g. reinforce-
ment [172], generative networks [160], recurrent networks [61]), yet unavailable

for vascular segmentation tasks.



Chapter 3

Vessel Enhancement

Existing methods in literature are known to provide poor enhancement in the corre-
spondence of vascular junctions, non-linearities, and tortuous and highly curvilinear
segments. Also, localised absence of signal arising from poor quality imaging dis-
connects vascular structures in multiple small fragmented portions with variable
contrast. In this case, denoising strategies or traditional vessel enhancement filters
are not able to recover a smoothly connected vascular saliency map, nor any direc-
tional feature of the underlying fragmented anatomy. The aim here is to recover a
smoothly connected vesselness map particularly suitable for fragmented and discon-
nected vascular structures from low-quality imaging, and for a generic angiographic
modality in 3D. Such a vesselness map should also enhance non-linear bifurcating
patterns as well as tortuous and elongated vessels with high-dimensional directional

cues as to best model convoluted vessels observed in brain angiographies.

Inspired by Sato et al. [169], Frangi et al. [70], and Law and Chung [106],
who proposed tubular enhancing methods in 3D with the aim of better contrasting
vessels over a background, an initial scale-dependent filtering process is formu-
lated here to recover an ultimate Riemannian vesselness measure, representing the
smoothly connected vascular saliency map. As in traditional applications in signal
processing [157], such a vessel-enhancement filtering process stands as a multi-
resolution and high-dimensional analysis/synthesis filterbank as initial filtering step
in the proposed VTrails framework. In particular, a 3D filterbank of Steerable Lapla-

cian of Gaussian Swirls (SLoGS) is first introduced, which filters the angiographic
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Figure 3.1: SLoGS filterbank: Top. Filter impulse-response 1" and associated integral ori-
entation basis ®r; Derivative SLoGS filter kernel K(r), and associated ellip-
soidal tensor form 7). Bottom. Definition of a dictionary of filtering kernels
(DFK), including the linear I'ype = I['(x,07 > 02 = 03,¢ = 0).

image in a multi-scale, rotation- and curvature-invariant fashion. The elongated
and curvilinear SLoGS kernels show both scalar and tensorial components, which
recover a smooth and orientation-aware vesselness map with local maxima at ves-
sels’ mid-line. Together with a scalar vascular saliency map, the associated tensor
field is simultaneously and coherently synthesised to better detect junction points
and trace vascular branches, by automatically embedding higher-order metrics (i.e.
anisotropic tensors), as in a tractography-like framework, further exploiting vessel

anisotropy, directionality and local asymmetry.

3.1 SLoGS Curvilinear Filterbank

Considering an image V : R> — R, the respective filter response is obtained as
VHilt £y x K, for any predefined filtering kernel K : R3 — R. Following the concepts
first introduced by [5, 117], the SLoGS filtering kernel K is derived here by com-
puting the second-order directional derivative in the gradient direction of a curvilin-

ear Gaussian trivariate function I': R? x Ri x R3 — R. The gradient direction and
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its perpendicular constitute the first-order gauge coordinates system (@, v), where

o= ‘g—IEH, and v = @ |, with the spatial gradient V. The function I" has the form
3 X% Xl X1,
(x,0,¢) H 0, with { A=xtexteor, (3.1)
d=1 , /27-[(yd X3 =x3+cax],

where X = xji+x2j +x3k, with {i, j, Kk} the unit-vectors associated to the Carte-
sian image reference system. The standard deviations ¢ € Ri modulate the cross-
sectional profiles and the elongation of the Gaussian spatial distribution, and the
factor ¢ accounts for both planar asymmetry and two levels of curvilinear proper-
ties (e.g. bending and tilting), by quadratic- and cubic-wise deforming the support.
Given o and ¢, I'(x, 0, ¢) represents the smooth impulse response of the 3D Gaus-
sian kernel. By operating a directional derivative on I" along @, i.e. V, the SLoGS
kernel X is defined as K = V4, [VoI'| = V,, [0 VI, thus being
I Ty T

K2 w'HT)w, where H()= {rﬁ Y r,k} (3.2)

Ty Ty Tk

is the Hessian matrix of the Gaussian function I'. With the compact notation I,

I'; and I'y the first partial derivatives are indicated for % 2T, ‘9 F and a 5[ respec-

tively. Similarly, the notation I';; I';, Iy, ..., indicate in short-form the second
partial derivatives = ZF, a‘?ajl“ and a?akf ., respectively. Since I' is twice con-

tinuously differentiable, then H(I") is well defined. Also, since H(I") is symmetric,
an orthogonal matrix Q exists, so that H(I") can be decomposed and diagonalised
as H(I') = QAQT. The eigenvectors q; form the columns of Q, whereas the eigen-
values A;, with [ = 1,2,3, constitute the diagonal elements of A, so that A; = A;
and |A;| < |A2| < |A3]. For any point x, the SLoGS derivative kernel K(x) can be
rewritten as K(x) = @’ (QAQ”) . Geometrically, the columns of Q represent a
rotated orthonormal basis in R relative to the image reference system so that every
q; is aligned with the principal directions of I" at any point x. The diagonal matrix
A characterizes the topology of the hypersurface in the neighbourhood of x (e.g.
flat area, ridge, valley or saddle point in 2D) and modulates the variation of slopes,

since the eigenvalues A; are the second-order derivatives along the principal direc-
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tions of I". Factorizing K (x), the form K(x) = (0" Q)A(Q” 0) = (Q” 0)"A(QT »)
is obtained, and the gradient direction @ is mapped onto the principal directions of
I'. Solving eq. 3.2, it is possible to demonstrate that K has the form of a spatially

warped 3D Laplacian of Gaussian, as

H(I)
T rqn g [400 071 ran an fmﬂ L
K(x)=G|TL; [6]12 922 %2] 02 0 [421 922 fm} r;
r, 913923 9331 | 0 0 43 | L931 932 9331 | ) (3.3)
Q A QT

0?2 0?2 0?2
=Y  nh= Vla F+Yza F+7’38 T,

where ¥, = G- (r,-q“+l“jqzz+qu13)2 modulates the respective components of the
Laplacian of Gaussian filter [101] oriented along the principal directions of I', and

G= Note that for vanishing spatial gradients, e.g. at x = 0, the mod-

W
ulation is equivalent to ¥ = % Given any arbitrary orientation as an orthonormal
basis similar to Q, the arbitrarily defined dictionary of filtering kernels can steer by
computing a rotation transform. Such a rigid rotation transform maps the principal
direction basis of each Gaussian kernel (depicted as ®r in Fig. 3.1) on any arbitrary

orientation in 3D. This ultimately allows to steer and align each filtering kernels
along any orthogonal basis with a numerical re-sampling procedure.

Together with the SLoGS kernel K, the second-moment matrix 7 associated
to the smooth impulse response I" is introduced by adopting the ellipsoid model
in the continuous neighbourhood of x. Thanks to the intrinsic log-concavity of I,
a symmetric tensor 7'(x) is derived from the eigendecomposition of H(I'), with
= —log(T), as T(x) = Q¥ Q7, where ¥ is the diagonal matrix of the canonical

unit volume ellipsoid

I Ay

3 3 Ty 0 0 =
= Hy/l . {0 v, 0 ] , being . ’ (3.4)

y3=1

the respective semiaxes’ lengths. Note that the eigenvalues /:Ll are derived from
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the decomposition and diagonalisation of H(I"). The tensor field T is a symmet-
ric positive definite matrix, since I has a convex quadratic form. The manifold of
the obtained tensors can be mapped into six independent components in the Log-
Euclidean space, which greatly simplifies the computation of Riemannian metrics
and statistics [11]. The continuous and spatially smooth tensor field 7" inherits the
steerable property of the scalar counterpart K. Resembling diffusion tensor MRI,
the SLoGS kernel shows a preferred diffusivity pattern for a given energy potential
(see I' in Fig. 3.1). This allows to eventually determine an arbitrary SLoGS dictio-
nary of filtering kernels (DFK) which embeds anisotropy and high-order directional
features to scalar curvilinear templates, enhancing and locally resembling typical,

smooth vessels.

Given an angiography and a pre-defined SLoGS dictionary of filtering kernels,
the following filtering approach devises a series of convolutions to synthesise a
scalar filter response, and a series of element-wise patch-sweeping sums to synthe-
sise the tensorial counterpart. The intrinsic smooth profiles of the Gaussian SLoGS
kernels, combined with an extensive and iterative filtering approach, is prone to re-
cover a blurry filter response, where boundaries of the vascular lumen are smoothly
blended with the parenchymal background. For this reason, an extra pair of de-
generate kernels is here introduced, aiming at balancing the contrast of vascular
boundaries and the background components of the angiographic image. In particu-
lar, the pseudo-impulsive Ky is an isotropic derivative filter given by the Laplacian
of Gaussian of I'§(x,0,¢ = 0), representing a Dirac delta function for c — 0. The
pseudo-impulsive K is intrinsically sensitive to sharp intensity transitions, captur-
ing therefore edges of tubular-like structures in 3D. The uniformly flat derivative
filter K, is the second degenerate Laplacian of Gaussian kernel, which derives from
I'y(x,0,¢c =0), assuming a uniform, constant-value for ¢ — . Analogously, K,
is sensitive to regions of homogeneous intensities, capturing thus surrounding non-
tubular parenchymal structures. Since both degenerate kernels K5 and Ky have sin-
gularities and represent isotropic degenerate kernels, only their scalar component is

defined.
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All the scalar and tensorial SLoGS filters have been numerically determined.
The considered numeric kernels satisfy the analytical conditions as described above
and minor deviations are bound to a numeric machine error. In the following section
a technical compendium is provided comprising the numerical parameters for the

dictionary of filtering kernels adopted throughout the body of this thesis.

3.1.1 Numerical Dictionary of Filtering Kernels

Finite SLoGS kernels are derived by opportunely sampling the 3D continuous
impulse-response I' and the associated second-order derivative filtering kernel K.
Analogously, the discrete ellipsoidal tensorial matrix 7 is sampled in the Log-
Euclidean space. In the present thesis, templates of 5x5x 5 voxels were adopted for
all the aforementioned instances. The adopted dictionary of filtering kernels (DFK)
was generated as a one-time configuration step prior to all filtering, and accounted
for a total number of 12 different SLoGS (i.e. DFK = DFK,) of varying shape and
curvilinear bending/tilting of the support. The cardinality of the dictionary, as well
as the standard deviations ¢ and the curvilinear parameters ¢, have been chosen to
best represent in a compact set the vascular elongated and curvilinear patterns on
a local scale as observed on real datasets. A list of parameters is detailed in table
3.1 for each SLoGS in the DFK, along with the discrete degenerate scalar kernels
I's, Ks and I'y, K. Note that the first SLoGS in table 3.1 corresponds to the purely

linear kernel I'ype, as in Fig. 3.1.

Table 3.1: SLoGS parameters of the adopted DFK.

YO o W e 2 B BN W

op 50 55 60 50 50 55 60 60 60 60 55 55
oo 10 14 18 10 10 14 18 18 18 18 14 14
oz 10 10 10 10 15 13 1.1 13 12 12 10 1.0
c; 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.60 0.60 0.40 -0.40
c; 0.00 0.10 0.20 0.00 0.00 0.10 0.20 0.20 0.20 0.20 0.10 0.10
cz 0.00 0.00 0.00 0.03 0.05 0.03 0.01 0.03 0.02 0.02 0.00 0.00

The discrete impulse-response I's, I'y and derivative filtering kernel K5, Ky are
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defined as degenerate kernels for a finite 3 X3 x3 cubic template as

1 forv=1/[2,22], —25 forv=1[2,2,2],
FF{ [ ] K_{ 127 [ ]
27

— 1 — 1
Fv—ﬁ VV, Kv—ﬁ Vv,

0 otherwise, otherwise,

with v the indexed voxel position within the cubic template.

3.2 Tubular Saliency Map and Orientation Sampling

As recalled in Section 3.1 and similarly to [73,97], the idea is to convolve finite
SLoGS kernels with a discrete vascular image in a multi-resolution, curvilinear-
and rotation-invariant framework, to obtain simultaneously the scalar connected
vesselness map and the associated tensor field. For simplicity and compactness,
the multi-resolution filtering will be detailed for a generic scale s. Scale-invariance
is achieved by keeping the size of the compact-support SLoGS fixed, while the size
of the image V varies accordingly with the multi-scale pyramid (Fig. 3.2). Also,
different spatial band-pass frequencies can be modulated with different o of the

SLoGS kernels. V is down-sampled first at the scale s as in [32] to obtain Vj,,,,. An

Image Pyramid Viupe US Vs

Figure 3.2: Synthesis of the vesselness maps: multi-scale processing image pyramid; early
tubular saliency map V5. with a subset of voxel binary seeds S and associated
principal orientations; connected vesselness map (V) and tensor field (M) at
scale s.
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early tubular saliency map V,,;, is then determined as

Vive = Lo, Ve (3.5)
with Vige) = max 0,V * K ). (3.6)

The derivative filtering kernel K3, is obtained from the discretized tubular kernel
[upe(X,01 > 02 = 03,¢ = 0) (Fig. 3.1), whereas @j, are the orthonormal bases
determined using an icosphere of subdivision level equal to 2. By using an ico-
sphere, a rather complete set of 3D orientations can be obtained by combining all
the orthogonal directions recovered as vectors joining any vertex to the centre of the
icosphere (Fig. 3.3). Specifically, by combining triplets of orthogonal directions,
multiple different orientations are sampled accounting also for rotations around the
principal axes. In particular, an icosphere of subdivision level equal to 2 produces
an initial number of 1080 different orthonormal bases, i.e. a)?cl(l), which further re-
all

duces to 81 different orthonormal bases (@i, < ®f,,) when only the I'ype and Ky pe

kernels are employed, due to their spatial symmetry.

The synthesis of an image-based scalar and tensorial filter response using
SLoGS would conversely account for all curvilinear kernels in the dictionary. Ide-

ally, each kernel should be steered along every possible orientation in 3D, then it
’>,J M) () (A0 | ')
o I !
N =" =" = >
) S | e

°

Figure 3.3: Orientation wj., sampling using a representative icosphere of subdivision level

equal to 1. (Left) Subset of orientations accounting for rotations around a fixed

principal axis (red arrow). The complete set a)fclf) encodes all rotations around

the principal axes. For purely symmetric kernels, such as I'ype, a)fcl(l) boils
down to a reduced set. (Right) Representative subset of orientations from a

randomised sampling of the complete set of orthonormal bases a)f‘(fé
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should be convolved with the down-sampled image V,,,, at each scale s. Such a
filtering process would exhibit an intractable complexity even for a rather compact
dictionary of filtering kernels. To overcome this computational bottleneck, the con-
volution space is slimmed down for a data-driven set of orientations determined on
the tubular saliency map Vy,pe.

The purely tubular filter response V;,;, 1s indeed meant to provide an initial,
coarse, although highly-sensitive set of saliency features in Vy,,: the vessel spatial
locations and principal orientations (Fig. 3.2). Identifying such features has two
advantages; first it restricts the problem of the rotation-invariant filtering to an opti-
mal complexity in 3D, avoiding unnecessary convolutions; also, a localised subset
of vessel samples can be obtained. The vessel spatial locations are mapped as voxel
binary seeds S, and the associated set of principal orientations ® forms a group of
orthonormal basis in R3. The seeds § are defined as logical intersection in the form

of a binary map as

S =div (Vvtube) <0 A A1‘/[5% <0 A Viube = QP(sz—;};e) ) (3-7)
where div (VV,;.) is the divergence of V;,;.’s spatial gradient field, 7le’5b§ are the

eigenvalue maps derived from the voxel-wise eigendecomposition of H (V. ), and
qp (Vt;rbe) is the p-quantile of the positive V;,;, samples’ pool (Fig. 3.4).

With the seeds S, the orientations ® are automatically determined as the set
of eigenvectors associated to lYfg’jg (Fig. 3.2). The greater the intensity threshold
qp (Vt;rbe), the greater the image noise-floor rejection, the lower the retrieved seeds
and the fewer the details detected by V.. Also, the cardinality of the seeds S and
of the associated orientations @ is a trade-off with the convolutional complexity at

each scale.

3.3 Connected Vesselness Map and the Tensor Field

The filtering step consists in a convolutional analysis/synthesis signal processing
pipeline in 3D for the scalar filter response and in a voxel-wise weighted-sum us-

ing a high-dimensional patch-sweep approach for the tensor field. The filtering
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VM e
Viube le VVtube 2q t2b3 <0 Viuve > Qp tube

T T

Figure 3.4: Seeds S detection as in eq. 3.7. Representative slice where voxels in red, blue,
green colours satisfy the respective conditions. The resulting intersection is
highlighted with white seeds S.

step can be embedded in a fully parallel filtering framework, by considering the
down-sampled image V,,,, and the filtering kernels in DFK, each steered along ev-
ery principal orientation ®. The integral connected vesselness map Vs, at any scale

s, has the form

Vi = Ykeprx Zoco Ve ?, (3.8)
where VéK’e) = max (0 s Vawn *K(9)> 3.9

is the filter response given the considered SLoGS kernel (Fig. 3.2). Similarly, the
boundaries and background scalar maps, i.e. Dy and B, respectively, are determined
at each scale s

Ds :den*K6a (310)
By = max(0,V g, x Ky), (3.11)

where, in this case, V 4, is the image negative of V,,,,, i.e. assuming values in Vy,,

range within [0, 1], the image negative is defined as V 4., = 1 — V.

Similarly to defining a single tensorial SLoGS kernel patch 7', the synthesis of
the image-based tensor field M produces a high-dimensional vascular map repre-
sentative of both vascular directionality and anisotropy in the form of voxel-based
ellipsoids. Conversely from the single SLoGS kernel patch 7', the image-based ten-
sor field M is formulated with a voxel-wise sum of multiple tensor patches. These
account for all different curvilinear patterns in the dictionary of filtering kernels

and for all detected orientations ® in 3D. In details, the tensorial synthesis is de-
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Figure 3.5: Representative synthesis of a tensor field in 2D. (Left-top) Steering a tensor
patch along the orientation 6 with a rigid mapping in the Log-Euclidean space.
(Left-bottom) Re-sampling the steered tensor patch with adequate padding in
the Log-Euclidean space, to preserve the tensor patch size. (Right-top) Three
independent components of the 2D tensor patch in the Log-Euclidean space.
Six independent components are determined for a 3D tensor patch. (Right-
bottom) Sliding tensor patch-sweep for each independent component on the
tensor field domain. The resulting tensor field M, (LE) is recovered by inde-
pendently processing each Log-Euclidean component.

fined here as a voxel-wise discrete weighted-sum of a tensor patch sliding the image
domain. Operations on tensors, such as steering, re-sampling, rotating the patch and
summing values, require the processing being performed in the Log-Euclidean (sub-
script LE) space. Matrix logarithm and matrix exponential operators are employed
to map tensors from the Euclidean space to the Log-Euclidean one and vice-versa
as in [11]. In particular, each of the 6 independent tensorial components is sepa-
rately synthesised in 3D, as a scalar volume of same size of V,,, with a sliding
patch-sweep. Each independent tensorial component is determined for each voxel
with a weighted-sum accounting for each curvilinear kernel in the dictionary, and
for each stearable orientation. In eq. 3.12, the single-component of the synthesised

tensor field M is given as
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weights patch

0 -
M 1e) = Exeprx Loco | LV T 2100 |+ G12)

~
patch-sweep

with W= Y ¥ (pvie 3>M, (3.13)

KeDFK 6€®

where W is the cumulative normalizing weight-map accounting for the steered
curvilinear kernels. The patch-sweep operation is highlighted within round brack-
ets in both eq. 3.12 and eq. 3.13, where VKO i the modulating SLoGS filter
response centred at the specific voxel v, as in eq. 3.8. The Gaussian impulse re-
sponse Fge)) associated to the kernel K is steered along the orientation 6. The Hann
smoothing window Z is centred at the voxel v and blends the multiple overlapping
tensor patches in the neighbourhood | v| of the considered voxel. Ineq. 3.12, Tlg ()LE)
is one of the six independent components of the discrete tensors patch 7 that has

been steered along the orientation 0, rotated and re-sampled in the Log-Euclidean

domain. Note that the neighbourhood |v]| is chosen to have the same size of the

(6)

single-component tensors patch 7} K.(LE)"

Also, note that the synthesis of the tensor
field M is not a convolution. Lastly, the synthesised tensor field M is normalised

so that at each voxel it would represent an ellipsoid of unitary volume.

3.4 Multi-Scale Maximal Integration

The values of each scale-dependent contribution map are normalised within the
range [0,1]. Then each scale-dependent map is iteratively up-sampled (i.e. ]7;‘1’ )

and cumulatively integrated with a weighted sum as
V=YV, (3.14)
s

with Vs = V7, 4 max (o(Vy-&), W, ) (3.15)

and & =max(0,D;-(1—By)). (3.16)
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Figure 3.6: Representative synthesis of a tensor field in 2D. (Left) Patch-sweep element-
wise weighted-sum in the pixel (or voxel) neighbourhood as in eq. 3.12. Each
contribution is element-wise multiplied and summed over the one-to-one cor-
responding pixel (or voxel) in the tensor field domain. (Right) Representative

contributions of the cumulative normalising weight map W, as in eq. 3.13, for

V‘év,K,B)

a scalar SLoGS filter response , for a scalar Gaussian impulse response

®

(K) of the steered kernel, and for the 2D blending Hann window Z.

Analogously, each independent component of the tensor field M is integrated in the

Log-Euclidean domain as
Mgy ==Y Vs M (15). (3.17)

The vesselness contributions are weighted here so that the resulting multi-resolution
maximal filter response is balanced and equalised across scales. The boundary and
background maps’ contributions in & boost the spatial resolution of nearby tubular
structures. The intensities of V can be further skewed towards high, rather than
low, spatial frequency bands by modulating the gain ;. Here o = 1 is adopted.
The Euclidean form of the resulting tensor field M is also enforced to have uni-
tary determinant at each voxel. In this way the tensors’ magnitude, expressed by
the connected vesselness map V, is decoupled from the anisotropic and directional
features throughout the whole multi-scale process. The synthesised and integrated

V and M maps constitute a consistent Riemannian vesselness potential.
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Table 3.2: Synthetic datasets of vascular trees generated with [82]

Label || ¥ Gaussian Salt&Pepper Shadows || A Leaves
a N(0,15) 0%o 0 1 20
NL§ || b N(0,50) 2%0 0 11 30
¢ N(0,50) 10%o 1 I 40

3.5 Experiments on Synthetic and Clinical Data

Since the SLoGS filterbank is part of the whole VTrails framework, the following
experimental results in figures and tables are indicated, for compactness, under the
‘VTrails’ (VT) label, where VV and M are the scalar and tensorial components of
the Riemannian vesselness map, respectively.

In the following, as proof of concept, initial experiments employing the pro-
posed approach have been performed on synthetic phantoms and on some represen-
tative clinical angiographies. A 3D hand-crafted tortuous and convoluted phantom
(HCP) is designed to account for complex vessel patterns, i.e. branching, kissing
vessels, scale and shape variations induced by pathologies. Also a cerebrovascu-
lar Phase-Contrast MRI (PC) (0.86 x 0.86 x 1.0 mm) is considered for qualitative
assessment. The scalar vesselness responses of both HCP and PC images are de-
termined using the popular Frangi filter (FFR) [70], and Optimally Oriented Flux
(OOF) [106]. The connected vesselness map and the associated tensor field are si-
multaneously synthesised for the same testing dataset as previously described. In
first instance, the connectedness of the considered scalar maps is visually evaluated
in Section 3.5.1.1.

A more extensive and quantitative validation of the proposed method is pre-
sented on synthetic angiographies of vascular trees (128 x 128 x 128 voxels,
isotropic 1 mm) generated using VascuSynth [82] considering also three levels of in-
creasing noise and increasing terminal branches (Table 3.2). Here, the scalar vessel-
ness responses of the considered synthetic images are determined using the SLoGS
filterbank as described in the previous sections. Also, the classical Frangi filter

(FFR)! [70], the Optimally Oriented Flux (OOF)? [106], the current state-of-the-art

Mttp://www.tubetk.org
https://www.mathworks.com/matlabcentral/fileexchange/41612-
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method by Ranking the Orientation Responses of Path Operators (RORPO)? [131],
and the noise-reduction anisotropic Hybrid Diffusion with Continuous Switch filter

(HDCS)! [129] are considered for the evaluation of the scalar vesselness responses.

In Section 3.5.1.2, the quantitative evaluation was performed on the histogram
of the scalar vesselness maps at different noise levels (NL). In detail, foreground
(fG) —1.e. the tubular structures — and background (bG) components are initially de-
termined from the uncorrupted images. The associated histogram overlap (fGnbG)
is quantified for the obtained scalar filter responses from each method. Similarly,
the foregroud-background separation range (fG+bG) is determined as the abso-
lute difference between the 90-percentile of the background intensities and the 10-
percentile of the foreground ones. The foreground interquartile range (fGygr) is
determined as well as the index of the intensity spread for the enhanced tubular
structures. Lastly, the correlation of the foreground components with the uncor-
rupted images is evaluated with the Spearman correlation coefficients fG,. Signif-
icant differences of the considered methods against the proposed one are evaluated

with a pairwise Wilcoxon signed rank test.

Lastly, both scalar and tensorial maps are shown for a representative set
of multi-modal clinical angiographies: a Rotational Angiography of cerebral
Aneurysms (RAA) from the Aneurisk* dataset [6]; a cerebral time of flight MR
Angiography (MRA) from the Kitware® dataset [28]; and a cerebral Computed To-
mography Angiography (CTA) (isotropic 0.4 mm). For these angiographies quali-
tative observations are drawn for the synthesised tensor field M in Section 3.5.2.
Analogously, the tensorial response from the initial hand-crafted phantom, for the
noisy Phase-Contrast MRI and for a representative case of the synthetic vascular
trees are visually evaluated, together with two intuitive toy-examples as a 2D vas-
cular tree and a clinical retinography, for completeness. In conclusion, a technical

compendium of the SLoGS filter-bank is provided, comprising the evaluation of the

optimally-oriented-flux--oof--for-3d-curvilinear-structure-
detection
3http://path-openings.github.io/RORPO
‘http://ecm2.mathcs.emory.edu/aneuriskweb/index
Shttps://data.kitware.com/#collections
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Figure 3.7: Connectedness of the vesselness response maps for Frangi (FFR) [70], Opti-
mally Oriented Flux (OOF) [106], and proposed scalar connected vesselness
map on a digital phantom (HCP) example and on data of a phase contrast (PC)
cerebral venogram.

robustness of SLoGS parameters accounting for different dictionaries of filtering
kernels. Also the computational cost and performance benchmarking are given for

the proposed implementation.

3.5.1 Connectedness of the Scalar Vesselness Map

3.5.1.1 Qualitative Evaluation

Fig. 3.7 shows the connectedness of vessels recovered from popular vascular en-
hancers and curvilinear ridge detectors FFR and OOF together with the proposed
connected vesselness map for the synthetic hand-crafted phantom and the real PC

images.

On the synthetic phantom, FFR shows a fragmented and rough vesselness re-
sponse in correspondence of irregularly shaped sections of the structure. Also, the
response at the bifurcation is not smoothly connected with the branches (triangular
loop). Conversely, OOF recovers the phantom connectedness at the branch-point,
and the vesselness response is consistent along the tortuous curvilinear section,

however ghosting artifacts are observed as the shape of the phantom becomes irreg-
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ular (C-like) or differs from a cylindrical tube. Also, close convoluted structures,
which change scale rapidly in the HCP, produce inconsistent responses of OOF
(Fig. 3.7). The connected vesselness map shows here a strongly connected ves-
selness response in correspondence of both regular and irregular tubular sections,
with local maxima at the structures’ mid-line. The connectedness of the structures
is emphasized regardless of the complexity of the shape, and it resolves spatially the
tortuous curvilinear ‘kissing vessels’ without additional ghosting artifacts, despite
the smooth profile.

Similar results are observed on the PC dataset: FFR has a poor connected response
in the noisy and low-resolution image. Vessels are overall enhanced, however thin
and fragmented structures remain disconnected. Overall, the vesselness response
is not uniform within the noisy structures, where maximal values are often oft-
centred. A more consistent response is obtained from OOF, where the connected-
ness of vessels is improved. A maximal response is observed at the mid-line of
vessels, however, noise rejection is poor. The connected vesselness map strongly
enhances here the vessel connectivity. The fragmented vessels of PC have a contin-
uous and smooth response in the proposed saliency map with higher values and a
more defined profile. Large vessels show solid connected regions with local max-
ima at the mid-line as in OOF. Conversely from OOF, the connected vesselness map

shows improved noise rejection in the background.

Fig. 3.8 show the scalar and tensorial vesselness maps synthesised using the
SLoGS filterbank with VTrails (VT), and the scalar response obtained with FFR,
OQOF, RORPO and HDCS for a representative 3D synthetic vascular tree. VT scalar
component strongly enhances the vessel connectivity, where low-resolution, noisy
and fragmented vessels are recovered with a continuous and spatially smooth fil-
ter response (V). High values and more defined local maxima are observed at
the structures’ mid-line, in correspondence with more regular and irregular tubu-
lar cross-sections, even with degraded SNR, with improved noise rejection in the
background. In Fig. 3.9 the scalar and tensorial component of the synthesised Rie-

mannian vesselness map is shown only for the SLoGS filter responses with VTrails
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Figure 3.8: Representative filter-response for the synthetic degraded vascular trees [82]
with different vascular ridge detectors: Top: Original image, FFR, OOF and
V from VTrails. Bottom: Noisy and corrupted image NL;/, RORPO, HDCS,
and M from VTrails.

in a representative set of clinical cerebrovascular angiographies. Also in this case,
the connectedness of the vasculature is emphasised regardless of the complexity of

its shape, by spatially resolving nearby, tortuous and highly curvilinear vessels.

3.5.1.2 Quantitative Evaluation

For the collection of synthetic vascular trees (Table 3.2), the respective histograms
are reported in Fig. 3.10, for the considered levels of increasing noise and for the
considered enhancing methods, i.e. the Frangi Filter, the Optimally Oriented Flux,
the state-of-the-art by Ranking the Orientation Responses of Path Operators, and
the noise-reduction anisotropic Hybrid Diffusion with Continuous Switch filter.

After filtering, the discrimination of both foreground, i.e. vessels, and back-
ground shows different trends for the considered enhancing methods (Table 3.3).
Foreground and background intensity distribution (Fig. 3.10) are obtained from the
comprehensive analysis of 30 synthetic images per noise-level.

By comparing the considered enhancing methods, the area of histogram over-
lap fGMNbQG), i.e. the confusion between foreground and background components,

is lower in VT and FFR, compared to all other methods in all cases. For increas-
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Image & GS %

Figure 3.9: Representative filter-response for clinical cerebrovascular angiographies
(RAA, PC, MRA, and CTA) with VTrails using SLoGS: Original scan with
manual annotation gold standard (GS); scalar connected vesselness map )V and
associated tensor field M.
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Figure 3.10: Foreground (fG) and background (bG) intensity distribution for degraded syn-
thetic vascular trees [82] using FFR, OOF, RORPO, HDCS and VT (V): His-
togram overlap for at different noise corruption levels.

ing noise, higher confusion between foreground and background is observed, with
significantly higher (p < 0.05) histogram overlap values. Similarly, the separation
of both foreground- and background-distribution tails (fG«~bG) shows comparable
values for FFR and VT with mild corrupting noise, whereas a reduced range of sep-
aration between foregound and background is observed for all FFR, OOF, RORPO
and HDCS, with significantly worse separation (p < 0.05) at moderate-to-severe
degradation levels. The intersection value of both foreground and background dis-
tributions is consistent in VT at different levels of corrupting noise, and lays in
the vicinity of the ideal threshold (Fig. 3.8, black dashed-line). The foreground
interquartile range (fGigr) quantifies the smooth connectedness of the scalar filter
response for the tubular structures, where a more compact and limited range sug-

gests homogeneity and regularity of the scalar intensities in the neighbourhood of
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Table 3.3: Histogram overlap (fGnbG), foreground vs. background separation range
(fG+bG), foreground interquartile range (fGigr ), and foreground Spearman cor-
relation (fGp) with the uncorrupted image, for FFR, OOF, RORPO, HDCS and
VT scalar vesselness (mean+sd). T : significantly worse (p < 0.05) and * : sig-

nificantly better (p < 0.05) than VT in paired Wilcoxon signed-rank test.

FFR OOF RORPO  HDCS VT
fGnbG  0.01+0.02 0.19+0.027 0.23+0.07" 0.02+0.03  0.01+0.01
5 fGebG  0.21:0.04 0.01:0.017 0.01+0.017 0.14:0.03"  0.20-0.03
2 fGr  0.44+0.03" 0.27:0.04 0.70£0.077 0.51:0.04"  0.25:0.02
fG,  0.78+0.05 0.70+0.04 0.70+0.14 0.87+0.07*  0.76+0.05
fGrbG  0.04+0.03 0.20+0.027 0.51+0.05" 0.15+0.037  0.01+0.01
5 fGebG  0.12+0.027 0.05+0.017 0.00+0.00" 0.03+0.017  0.16+0.02
= fGigr  0.39:0.027 0.27+0.02 0.51+0.09" 0.48:0.03"  0.24+0.01
fG,  0.76+0.05 0.70+0.04 0.66+0.09 0.80+0.06*  0.74+0.04
fGnbG  0.05+0.027 0.21+0.027 0.52+0.037 0.16+0.02"  0.02+0.01
5 fGebG  0.11:0.03" 0.05+0.017 0.00£0.00" 0.02+0.017  0.15+0.02
2 fGigr  0.39+0.027 0.27+0.03 0.49+0.07" 0.48+0.03"  0.25+0.02
fG,  0.75:0.05 0.69+0.05 0.66+0.06 0.79+0.06*  0.73+0.05

enhanced structures. VT and OOF show comparable fGigg in terms of smooth filter-
response connectedness, whereas significantly higher (p < 0.05) intensity ranges
are found for FFR, RORPO and HDCS, suggesting increased variability or more
distributed intensities for the filtered structures. High correlation coefficients (fGp)
are found for HDCS, FFR and VT, where the intensities of the enhanced tubular-
like structures monotonically correlate with the respective uncorrupted ones. In this
case, HDCS has better performances (p < 0.05) for all noise levels, being the asso-
ciated foreground distribution rather skewed towards saturated hyper-intensities, in

line with the intrinsic noise-reduction filter design.

3.5.2 Synthesised Tensor Field

In Fig. 3.8, Fig. 3.9 and Fig. 3.11, the synthesised tensor fields show consistent
features. Their characteristics are in line with the connectedness of the scalar filter
response V: enhanced and connected vessels are associated with tensors of high
anisotropy, whereas background areas show a predominant isotropic component.
Also, tensors orientation smoothly captures vessel directionality. This is moreover

clear from Fig. 3.9, where it is possible to appreciate how the tensorial component
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determined with VTrails captures and effectively represents the directionality of the
underlying vascular structure also in an intuitive 2D dataset. Note that in Fig. 3.9
the magnitude of the ellipsoids representing the tensors is proportional to the scalar
connected vesselness response.

Considering the irreducible deterioration of rendering 3D structures in
2D, it is possible to visually assess the synthesised tensor fields with 3D
rotating video-clips available at https://www.youtube.com/channel/

UCC24bCFUO9UhUBLNQk1zjdw/videos.

3.5.3 Robustness of SLoGS Parameters

The analysis of the robustness of SLoGS parameters is perfomed here by consid-
ering the original DFK (here also identified as DFK;), and other 2 similar dictio-
naries of different cardinality, i.e. DFKg and DFKg consisting of 6 and 18 kernels
respectively. The evaluation of the filter response of the considered dictionaries ac-
counts for the voxel-wise Pearson correlation p(V,)) between the original image
and the resulting connected vesselness map, and the voxel-wise Pearson correlation
p (M, M) of the tensor field directionality and anisotropy with the tensor gold
standard in the Log-Euclidean space. Performance benchmarking was also done in
terms of DFKs physical memory load and empirical computational time. For the
evaluation, a convoluted hand-crafted phantom presented in [139] was employed at
different sizes and resolutions (Fig. 3.12).

phy

\\§§\

3D HCP 2D Synthetic Tree 2D Retinogra

Figure 3.11: Synthesised tensor fields for: Left. 3D hand-crafted phantom (HCP). Right.
2D toy-examples of a synthetic vascular tree [82], together with a subregion
of a retinal angiogaphy.
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The correlation values of the synthesised maps with the respective ground-
truths are shown in Fig. 3.12. Since no publicly available ground-truth for direc-
tion and anisotropy exists, a gold standard M/ was derived by fitting the tensor
field over the original phantom V. Similarly to eq. 3.4, positive-definiteness of
the ellipsoidal matrix is enforced in this case, by considering the absolute value of
the image-based Hessian eigenvalues. Overall, similar and comparable correlations
were observed for the considered DFKs, by processing the phantom at different im-
age size. This suggested reproducible results and overall good robustness of the
DFKs by adopting similar varying parameters. Clusters of values ranged between
0.82 ~ 0.90 and 0.62 ~ 0.69 for p(V, V) and p (M, M), respectively. A slight de-
crease of the linear correlations was found for DFKg. Following this trend, a further

reduction of the dictionary cardinality may result in poor tensorial vesselness maps.

3.5.4 Computational Cost and Implementation

As observed in Section 3.3 and in Section 3.6, the complexity of the framework
hinges on the density (or sparsity) of different tubular structures in the image and on
the desired level of vascular detail. A performance analysis is shown in Fig. 3.12 for
the aforementioned set of DFKs combined with a phantom at multiple image size.
Both filtering time and physical memory load of the DFKs reported an underlying
power-law trend (dashed lines in Fig. 3.12) in the adopted implementation. The

estimated range of memory load was 30 ~ 200 MB, and a maximum filtering time
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Figure 3.12: Parameters robustness and performance analysis on 3 DFKs and using a con-
voluted phantom of size 1.0x, 1.5x and 2.0x [50x50x100] voxels.
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of approximately 1 hour was observed for the complete DFK ;g combined with the
most dense and detailed phantom. Heuristically, for a representative experiment on
clinical angiography — whole-brain isotropic 1 mm (approximately 200x200x 150
voxels), an average processing time of 2 ~ 5 hours was observed with the adopted
DFK = DFKj,. This includes the full-scale-range analysis/synthesis of both scalar
and tensorial maps, together with the exhaustive connectivity paradigm, accounting

for an exploration neighbourhood of 10 ~ 25 mm diameter.

The choice of DFK is justified as a trade-off between the correlation indices
previously observed, and the overall computational performance. The filter-bank

was numerically determined and tested in Matlab.

3.6 Observations and Remarks

In this chapter a vessel connectivity enhancement approach is introduced for the
proposed VTrails framework. By means of a novel dictionary of filtering kernels
(i.e. SLoGS), fragmented, bifurcating and tortuous vessels are recovered from 3D
angiographic images in a multi-scale, rotation- and curvature-invariant fashion. The
introduced filtering process yields a smoothly connected Riemannian vesselness
map, whose scalar and tensorial components capture the underlying directional-
ity of the vascular structures. Whilst other ridge detectors and vessel enhancement
methods may be particularly designed for noise-reduction purposes and some others
can provide a raster vascular segmentation, as observed in Chapter 2, the proposed
method does not aim at segmenting vessels by thresholding the resulting vesselness
maps. By using the SLoGS filterbank within a coherent mathematical framework,
the simultaneous synthesis of both scalar and tensorial vesselness maps consistently
embeds smoothly connected tubular responses together with the underlying vascu-
lar anisotropy and directionality. Contrary to Cetin et al. [37, 38], where tensors
are derived from fitting the image data, the proposed method has the advantage
of generating high-order vascular maps with few curvilinear templates. The ves-
selness maps recovered with SLoGS was less sensitive to noise and artifacts, and

did not require any further regularisation or positive-definiteness constraint, since
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anisotropic tensors are well defined for the described smooth and compact Gaussian
kernels. Results in Sections 3.5.1.1 and 3.5.1.2 demonstrate the robustness of the
proposed method to different levels of corrupting noise. This mainly stands as a san-
ity test with regards to traditional and popular tubular ridge detectors and enhance-
ment techniques [70, 106,129, 131] in cases of images with severely impaired SNR.
Regarding the enhancement and reconstruction of tortuous and convoluted tubular
structures, as observed by Aylward and Bullit [16], the multi-resolution scale fac-
tor and the seed points cardinality introduced in 3.3 play also here a critical role.
On the one hand, they allow for a fully automatic processing pipeline; on the other
hand, they modulate the computational complexity of the filtering step. A full-scale-
range analysis/synthesis of the multi-resolution image pyramid should account for
vascular structures of different size. Also, a reasonable choice for the seed points
cardinality, here expressed with a fixed seeds p-quantile threshold g, = 0.75 as in
eq. 3.7, should trade-off between the computational complexity and the informa-
tive content of the filter-response. From the presented experiments, a low quantile
(i.e. high seeds cardinality) can severely increase the complexity of the filtering
step, without introducing information to the resulting scalar and tensorial () and
M) maps; whereas, a high-value quantile can reduce dramatically the complexity,
and therefore the computational time, to the detriment of vascular details.

In the following chapter, both the scalar and high-order vascular components
are combined as a smooth Riemannian metric for automatically inferring the un-

known connected vascular network from a subset of initialization nodes.



Chapter 4

Vascular Connectivity

As observed in Section 1.3, a vectorial vascular representation should compactly
encode the connected geometry of the underlying vascular network. On the basis
of traditional topological reconstructions as proposed by Dokladal et al. [60], and
Saha et al. [167, 168], the extraction of connected neighbouring structures is ad-
dressed with the centerlines derived from a given raster segmentation by means of
a skeletonisation process. In some cases, simplicial or cubical complex frameworks
may be required when topological busy junctions are found in 2D or 3D finite raster
grids, as suggested by Cardoso et al. [31], Cointepas et al. [49], Couprie [50], and
Dtotko and Specogna [59]. Alternatively, the topological skeleton can be obtained
with shape-preserving morphological operators, e.g. erosion and opening. The for-
mulation presented so far, however, does not aim at segmenting vessels by adopting
an optimal raster thresholding. As reported in Section 2.1.3, other formulations
proposed by Kimmel and Sethian [98, 175] can extract [y level-sets, consisting in
minimal paths (i.e. geodesics), to implicitly define connecting branches. Following
these approaches, and upon the estimation of a prior high-order vascular represen-
tation, which coherently embeds connected non-linear tubular responses and their
associated anisotropic tensor field (in Chapter 3), the extraction of the connected
network of vessels is addressed here with an anisotropic level-set combined with a
connectivity paradigm. Under the assumption that vessels join by minimal paths,
the proposed framework VTrails infers the unknown fully-connected vascular graph

from a subset of nodes automatically estimated and enforces the resulting topology
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to be a connected network.

4.1 Joining Vessels by Minimal Paths

Following the formulation introduced by Benmansour and Cohen [20] for the
carotid bifurcation segmentation, as in [83], an anisotropic front propagation algo-
rithm is defined so that in combination with a connectivity paradigm it joins multiple
sources S propagating concurrently on a Riemannian speed potential P. A geodesic
path 7 is determined by minimising an integral positive energy U/ associated to the

set of all possible paths joining two points on the domain of the speed potential as

U(x) = min /EP (m(s), 7' (s)) ds 4.1)

all w

where s is, in this case, the arc-length parameter. For each point x in the domain,

the Eikonal partial differential equation is satisfied

IVUX)[| = 1; (4.2)
U(p) = 0. 4.3)

Given the spatial location p of a source S and a target point x in the domain, the
energy U can be ultimately regarded as a time-of-arrival map for a front propagating
from p with oriented velocity as in the speed potential. Null energy is initialised
for each point p for the set of source(s) S of the front propagation. A numeric
solution to the is computed by the anisotropic Fast Marching (aFM) algorithm [20].
The adopted speed potential P describes the infinitesimal distance along the path
7, relative to the anisotropic tensor M. In this case, M is the same tensor field
synthesised in Section 3.3, which anisotropically modulates the direction of the
front propagation in the domain. The adopted magnitude of the speed potential is
proportional to the inverse of the scalar vesselness map V as synthesised in Section
3.3. Note that the anisotropic propagation is a generalised version of an isotropic
propagation medium, where the tensor is identically defined as M = I3 (Identity).

The locations corresponding to the initially detected seeds S, as in Section 3.3,
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Figure 4.1: Greedy and sequential acyclic connectivity paradigm on a 2D synthetic phan-
tom. From Initialisation to Convergence, the intermediate steps are shown at
Collision, Path Extraction and Fast Updating Scheme. Geodesic values are
represented with a shaded colormap, whereas colliding, merging and updating
regions are shown in solid colours.

are first aligned to the local maxima of the scalar component of the speed potential,
determining a centred set of source seeds S. On a 3D finite grid, the anisotropic Fast
Marching front propagation is discretised and solved for neighbouring simplicial
elements of a voxel, as described in [21].

In the following section an acyclic and greedy connectivity paradigm is de-
scribed, where the anisotropic Fast Marching (aFM) is run in conjunction with the
concurrent extraction of a set of multiple connected geodesics I1, until convergence.
This automatically determines a completely connected vascular network in the form

of an acyclic graph, i.e. a vascular tree.

4.2 Acyclic Connectivity Paradigm

With the aim of extracting a vascular tree in one-shot, a multi-sources front prop-
agation is introduced. The fronts independently propagate from each source, and
concurrently grow on the domain with associated energy (/. For each source, neigh-
bouring explored voxels form connected regions labelled in a Voronoi Index map Z.
Each propagating region is internally subdivided into Front, Visited, and Far voxels
according to a Tag map 7, representing the state of each grid-point following the
anisotropic Fast Marching scheme as in [20]. The basic idea to recover the connec-

tivity is that a geodesic path is determined when two different regions first collide
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due to the growing fronts. Following a greedy first-come-first-served regions colli-
sion detection, a sequence of connecting minimal paths are iteratively obtained by
exploring the speed potential domain in one-shot. In particular, minimal paths are
determined by back-tracing the energies (/ in the respective collided regions. Then,
the collided regions are merged, and further path extraction is inhibited within the
merged regions. The connecting geodesic 7 is extracted minimising {/ at the col-
lision grid-points. The energy U, the Voronoi index map V, and the Tag 7T, are
then updated within the collided regions, so that these fuse as one and the front is
consistent with the unified resulting region. This paradigm is continued until all
regions with different labels collide and merge in a single connected component. A
schematic summary of the sequential algorithm is shown in Fig. 4.1, and further
details are given for each algorithmic step. An intuitive visualisation of the acyclic

connectivity paradigm is available at https://youtu.be/DBGgYcxZD30

4.2.0.1 Initialisation

As mentioned in Section 4.1, the seeds S are first aligned towards the vessels’ mid-
line with a constrained gradient descent on the scalar vesselness saliency map, re-
sulting in an initial set S of centred sources of cardinality p. All 26-connected
components from the set of seeds S, being those either segments or isolated points,

(S)

are treated as paths 7,’. These initialise the aFM maps, so that the energy is null

U (n,(,s)) = 0; the Voronoi index map is associated to the p-th label Z (nl(,s)) = p; and

the state of the grid voxels is set to ‘front’ T(n}f)) = Front. Note that the considered
(S)

initial connected components also constitute the initial set of geodesics 7w, " — II.

4.2.0.2 Fast Marching Step

The aFM maps are updated by following an informative propagation scheme. In
the aFFM step the geodesic functional ¢/ is minimised by considering the wave-front
propagation through the 3D discrete 48 simplexes connected components within the
26-neighbourhood of the Front grid-point with minimal /. Implementation details

can be found in [20].


https://youtu.be/DBGqYcxZD30
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4.2.0.3 Connecting Path Extraction

Collision is detected when Visited grid-points of different regions are adjacent. A
connecting 7 is determined by linking the back-traced minimal paths from the colli-
sion grid-points to their respective sources 74, g € I with a gradient descent on U/
(Fig. 4.1). The associated integral geodesic length U, = fgf Udm is computed and
the connectivity in the set of geodesics IT is updated in the form of an adjacency
list. Lastly, the grid-points of the extracted & are further considered as path seeds
in the updating scheme, since bifurcations can occur at any level of the connecting

minimal paths.

4.2.0.4 Fast Updating Scheme

A nested aFM is run only in the union of the collided regions (A U B) using a
temporary independent layer of aFM maps, where U(x) =0, T (n) = Front, and
ﬁm) = Visited. 1deally, the nested aFM is run until complete domain exploration.
However, to speed up the process, the propagation domain is divided into the solved
and unsolved sub-regions, and the update is focused on the latter (AUB)* (Fig. 4.1).
The boundary geodesic values of (AUB)* equal the geodesic distances U/ at the col-

lision grid-points. Lastly, the aF'M maps are updated as

Uiaupys = min{Uaupye Uaupy 4.4)
Ziaup) = min{Zy, Zp}, (4.5)
Tausy = Taupy (4.6)

4.2.1 Isotropic vs. Anisotropic Front Propagation

As observed in [20], the choice of the front-propagating potential P can be crucial
for the geodesic path extraction. In Fig. 4.2 the comparison of the level-set iso-
curves is shown for an isotropic front-propagation against an anisotropic one on the
same phantom used in Fig. 4.1. Here, as sanity test of the implemented method, full
exploration of the image domain is performed. However, no connectivity paradigm

is enforced. Observing the pattern of the iso-contours, the connecting segments,
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i.e. geodesics, for tubular structures obtained with the anisotropic level-set would
likely lie on actual vascular portions, limiting therefore possible short-cuts within
a greedy approach. The elongation of the level-set profiles accordingly follows the
anisotropic directionality of the enhanced structure. In Fig. 4.3, two examples are
presented in 2D; a synthetic phantom of a convoluted structure and a portion of
a retinal angiography. By coupling the front propagating level-set with an acyclic
connectivity paradigm, the extracted fully connected tree is shown for both isotropic
and anisotropic propagation. In both cases, the greedy connectivity paradigm, cou-
pled with the isotropic front-propagation resulted in erroneous short-cut(s) of the
locally convoluted structures. By considering the same initialization, the result-
ing topology of the network shows several connecting differences. In particular, in
the retinal image, where the vascular structure shows a more complex pattern, the
graph topology and connectivity changes consistently. From the intuitive example
in Fig. 4.3, the isotropic version of the greedy connectivity paradigm produced mis-
connected branches even in larger vessels, compared to the anisotropic version, due
to the spatial neighbouring of the tubular structures themselves. In the following
section, as well as in the remainder of this thesis, any front-propagating level-set

will account for the anisotropic formulation. In Section 4.2.2, the proposed acyclic

Riemannian Potential P Isotropic Front Propagation Anisotropic Front Propagation

Figure 4.2: Comparison of iso-curves for the isotropic and anisotropic level-set propaga-
tion on the given Riemannian potential P. Anisotropic iso-contours show a
more elongated pattern and profile, accordingly with the local anisotropy of the
potential.
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Figure 4.3: Geodesic extraction and fully connected tree using the acyclic connectivity
paradigm with both isotropic and anisotropic front propagations. Left: syn-
thetic phantom of convoluted structure, where short-cuts occur for the isotropic
level-set. Similarly, short-cuts are found in the retinal subregion, even for large
vessels (red circle).

connectivity paradigm is further evaluated for synthetic vascular trees and for a rep-

resentative set of clinical angiographies.

4.2.2 Experiments on Synthetic and Clinical Data

Synthetic data together with few representative clinical angiographies were
first processed as described in Chapter 3 to extract the connected vesselness
map and the associated tensor field. Differences in the reconstructed topol-
ogy of the resulting vascular trees are quantitatively reported in the following
section in terms of accuracy, precision and recall for the detected connected
branches. In particular, the robustness of the topological reconstruction is eval-
uated with respect to image degradation for a set of 20 synthetic vascular trees
obtained from Vascusynth [82] and on a cerebral Time of Flight MRI (TOF)
(0.36 x 0.36 x 0.5 mm) and a carotid CTA (0.46 x 0.46 x 0.45 mm). The syn-
thetic dataset of vascular trees (64x64x64 voxels) was generated considering
two levels of additional noise: Nj: AV(0,5)+Shadows: 1+ Salt&Pepper: 1%o;
No: N(0,10) + Shadows: 1+ Salt&Pepper: 2%¢. Vascular network ground-truths
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Figure 4.4: Comparison of the vascular connected trees against the respective ground-truth
for a representative set of synthetic data, and for a carotid CTA and for a middle
cerebral artery TOF MRI. Note that main branches are correctly identified and
connected.

(GT) are given in the form of connected centerlines in the voxel-wise image for all
the synthetic images and for both TOF and CTA, respectively. Before the quantita-
tive evaluation, the resulting reconstructed topology of connecting geodesic paths
IT is verified to be an acyclic graph with a depth-first search, then the topology is

compared against the respective GT.

4.2.3 Accuracy, Precision and Recall

Representative examples of degraded images from the synthetic vascular trees and
the respective GT are shown in Fig. 4.4 together with the connected graphs ex-
tracted by the proposed acyclic connectivity paradigm. In the same fashion, results
are shown for the real angiographies TOF and CTA in Fig. 4.4. Qualitatively, the
extracted set of connected geodesic paths shows remarkable matching with the pro-
vided GT 1in all cases. First, the acyclic nature of the graph is verified: neither
cycles, nor spurious degenerated graphs, i.e. individual unconnected nodes, were
found, meaning that the extracted set of connected geodesic paths IT represents a
fully-connected geodesic tree. Precision and recall are then evaluated for the iden-
tified branches. The accuracy, precision and recall were determined voxel-wise for
each branch by setting an arbitrarily small tolerance factor p. Also, error distances

are determined with the binary distance map of the connected tree is evaluated at
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GT. Average errors (€) precision and recall are reported (mean+SD) in Table 4.1.
Note that no pruning of any spurious branches is performed in the analysis. Over-
all, good results were observed from the initial validation, considering the proposed
fully-automatic network extraction paradigm. Missing branches occurred in cor-
respondence of small vessels, where the effect of degradation is predominant: tiny
terminal vessels completely occluded by the corrupting shadows (from VascuSynth)
will not automatically produce propagating seeds, therefore they cannot be recov-
ered under an automatic configuration. Globally, € values are comparable to the
evaluation tolerance p, suggesting that the extracted connected geodesic paths lie
in the close neighbourhood of the vessels’ centerlines. Moreover, the reported val-
ues are comparable regardless the level of degradation. As a global observation,
the anisotropic formulation of the proposed acyclic connectivity paradigm reduces
mis-connections and possible short-cuts on major structures of the vascular tree. As
a further remark, the local collision and fast update scheme presented in Section
4.2 represents an optimal solution for the extraction of simplified networks, where
the exploration of the image domain becomes computationally intensive and few
structures are present, even in case of low signal-to-noise ratio. Also, in this case
and for the proposed vascular application, no anatomical priors of the network are

enforced, other than its acyclic nature.

4.3 Exhaustive Connectivity Paradigm

The assumption of a vascular tree, in general, provides a natural and anatomically

valid constraint for 3D cerebrovascular images, with few — sometimes rare — ex-

Table 4.1: Connectivity tree error distances, precision and recall (mean+SD). Left: syn-
thetic vascular tree at degradation levels N; and N;. Note the invariance of all
metrics regardless the degradation level. Right: TOF and CTA.

Synthetic Vascular Trees [82] Clinical Angiographies
N; N, TOF CTA
€ g 2.15+0.65 2.09+0.37 s 1.07£2.65 1.1+1.63
p £ 2 £ 1.42 1.57
Precision 88.214+2.58%  87.93+2.56% 77.12% 89.67%

Recall 68.31+7.44%  69.18 £3.69% 89.49% 83.97%
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ceptions, such as the complete circle of Willis and the fenestration of the Basilar
Artery and further rare macroscopic anastomoses observed in the posterior cere-
bral circulation [22,91,197,209]. Although the acyclic connecting paradigm pro-
posed in the previous section provides an initial and fairly accurate estimation of
the underlying vascular tree, the explicit greediness of the extraction scheme is in-
compatible with cyclic vascular topologies. Also, uncertain, ambiguous and poorly
spatially-resolved structures, such as foreshortening, neighbouring and convoluted
vessels more often observed in clinical angiographies, usually produce cyclic vas-
cular aberrations which result in geodesic short-cuts and branch mis-connections
due to kissing-vessel artifacts. These non-idealities potentially disrupt automatic
extraction of the vascular network and stand as the main limitation of the proposed
acyclic connectivity paradigm, even when coupled with an optimal anisotropic front
propagation.

As a further contribution of this thesis and in order to introduce a more flexible
and generalisable connectivity paradigm to VTrails framework, the acyclic con-
straint is relaxed in the following section. This is achieved by simultaneously and
iteratively extracting multiple and independent connecting minimal paths until con-
vergence. This allows having a novel redundant topological representation of the
vascular structure in the form of an over-connected geodesic graph II. The fol-
lowing exhaustive geodesic search of connecting minimal paths explores the whole
image domain and accounts for a complete connectivity pattern by considering all
possible seeds pairs. Also, an adaptive and self-organising connecting strategy is
introduced here to automatically refine the network topology regardless the seeds’
initialisation. Lastly the inference of the underlying anatomical vascular trees is per-
formed by extracting the minimum spanning trees of the fully-connected network.
Note that multiple trees can be inferred from the same over-connected geodesic

graph.

4.3.0.1 Initialization

As in Section 4.2, the set of binary seeds S is first aligned towards the vessels’

mid-line with a constrained gradient descent on the connected vesselness map V, so
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Figure 4.5: Exhaustive geodesic connectivity paradigm: Anisotropic level-set from the
Riemannian potential P and subsequent extraction of a minimal path from a
pair of initial seeds p4 and pp. — The paradigm follows in Fig. 4.7

that the aligned individual seeds, together with the endpoints and branch-points of
possible connected components, constitute the initial set of source points p € S, and

initialise the anisotropic front propagation (Fig. 4.5).

4.3.0.2 Connectivity Paradigm

For any source point p, propagating on P, the geodesic energy map U, is itera-
tively computed and updated until complete exploration of the potential’s domain
(or up to a pre-determined spatial neighborhood of p for computational efficiency),
similarly to a front wave arrival-time map. In this case, the implementation of the
whole anisotropic front propagation algorithm follows the formulation proposed by
Konukoglu et al. [102]. Given a pair of source points, an energy functional Fyp is
determined as

Fap= (MPA +UPB) + ‘MPA _Z’{psl' 4.7

The monotonic profiles of both geodesic energy maps Uy, and U, are so com-
bined to obtain a locus of minimal energy in the correspondence of the connecting
path between py4 ans pp. Fig. 4.6 shows a representative example of geodesic energy
profiles in 1D, for a generic case of two source points spatially located on the x-axis.
For the energy functional F4, both the intermediate contributions (U, +Up,) and

|Up, —Upy| are depicted in green and magenta solid lines, respectively. The first
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Figure 4.6: Representative example of geodesic energy profiles for a 1D generic case with
two source points ps and pp. (Top) Geodesic energy profiles Uy, and Uy,
are given in blue and red solid lines respectively for the pair of source points.
(Centre) Intermediate energy contributions: (U, +Up,) in green; |Up, —Up,|
in magenta solid lines. Respective local minima (circles) and global minima
(bullets). (Bottom) Resulting energy functional F4p, with a unique global min-
imum in the correspondence of myp.

contribution (U, +Up,) shows an increasing monotonic profile outside the spatial
range enclosed by p4 and pp, however several local minima (green circles in Fig.
4.6 with the global minimum as a green bullet) are observed within the same spatial
range. Conversely, the second contribution |Up, —Up,| shows a unique global min-
imum (magenta bullet in Fig. 4.6) within the spatial range enclosed by p4 and pg,
whereas local minima (magenta circles in Fig. 4.6) can be found outside the same
spatial range. By independently considering either one of these two contributions,
the geodesic path extraction between p4 and pp is not guaranteed to converge to the
desired solution. Each possible pair of source points, p4, pg, is connected with a
geodesic minimal path m4p, by back-tracing F4p from the source points p4 and pp

to the respective connecting geodesic point of minimal energy myp, identified as

fAB (mAB) = min (FAB) (48)

as shown in Fig. 4.5. The connecting geodesic path m4p is therefore obtained by
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the union of two geodesics, each of which is traced with a gradient descent on F4p.
From Fig. 4.6 it is possible to observe how the resulting energy functional Fup
exhibits an increasing monotonic profile outside the spatial range enclosed by the
source points p4 and pp, and, at the same time, it presents a unique global minimum
(black bullet in Fig. 4.6 coinciding with the only local minima as a circle) in the
correspondence of the point my4p. This allows to solve the geodesic back-tracing of
Fap, providing therefore a unique minimal path 74 connecting the pair of source
points.

The associated integral geodesic length F, ) = fli B Fapdr is determined
along the extracted path m4p and the connectivity of the graph IT is accordingly up-
dated. Here, IT can be directly expressed adopting a canonical undirected weighted
graph notation as IT = G (N, E) comprising a set of nodes N, i.e. the set of points
p. and a set of edges E, i.e. the set of connecting paths 7, respectively. By using
a symmetric adjacency matrix, the integral geodesic length F{, . is then attributed
to the edge’s weight, which connects the pair of nodes (pa,pg)- It is clear that, by
terminating the minimal paths extraction only with the initial set of source points
S, the topology of the resulting geodesic connecting graph I1 would hinge on the
initialisation, thus on the initial guess of the nodes, and would also constrain the
connecting paths (i.e. the vascular branches) to connect (or bifurcate) only in cor-

respondence to the initial set of source points in S.

4.3.0.3 Adaptive Geodesic Graph

With this view, an adaptive and self-organising connectivity strategy for the
geodesic graph I is introduced in the framework, so that the topology of the graph
itself will be refined and updated in a completely automatic fashion. This is ob-
tained by /) extracting the minimum spanning tree (MST) of I1, i.e. { = MST (I1);
2) increasing the density of source points (nodes) at each connecting path (edge) of
£, and 3) running the connectivity paradigm as in Section 4.3.0.2 among the new set
of nodes and the existing ones. Note that the adaptive connectivity strategy employs
an iterative process that will converge to a pre-defined spatial node density. In detail,

the minimum spanning tree { is defined as the subset of the connected edges that
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Figure 4.7: Exhaustive geodesic connectivity paradigm: topological inference of the over-
connected graph IT and of its geodesic minimum spanning tree {. Vector
topology of the over-connected graph II (first iteration), of its minimum span-
ning tree { (first iteration), and resulting tree topology at convergence. — The
paradigm starts in Fig. 4.5

acyclically link all the nodes together by minimising the sum of total edge weights.
Here, the edge weights are the integral geodesic lengths F. Therefore the resulting

{ is the connected subset of geodesic minimal paths. Given its generic connecting

path ”,EB’ a new source point pg is generated between pﬁ and pg so that pg is the
respective midpoint of the geodesic path 7r§B, and
I P&l =1, and [Ipf —pEl = u. (4.9)

u is here the Euclidean spatial threshold for contiguous nodes and constitutes the
pre-defined maximal spatial node density. The new set of source points p‘: will be
connected with the existing ones following the connectivity paradigm described in
Section 4.3.0.2, updating therefore the adjacency matrix that increases in size at
each iteration. The process terminates when the pre-defined spatial node density is
reached. Note that I is iteratively refined and the topology, as well as the associated
MST, may subsequently change from its initial guess (as in Fig. 4.7, first iteration
vs. convergence). Also, the smaller u, the more dense the set of p®, the finer the
localisation of branch-points and the greater the complexity of the over-connected

graph II. The inference of a geodesic vascular network, as formulated, determines
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a topological refining scheme similar to an evolutionary process. In other words,
at each automatic refinement step, all the newly generated seeds of the set pC are
associated with a pair of ancestor nodes (and obviously an ancestor edge). It can
be observed how the iterative inference of the underlying network shows a hier-
archical and generative scheme, i.e. it follows a phylogenetic generation, at each
iteration before convergence is reached. An intuitive visualisation of the exhaustive

connectivity paradigm is available at https://youtu.be/gABd0leyFGs

4.3.1 Vascular Minimum Spanning Tree

The resulting vascular trees  are finally determined as the minimum spanning trees
of the connected components in I1, as in Section 4.3.0.3, at convergence. Note that
for more complex vascular topologies, a set of minimum spanning trees (i.e. a forest
of geodesic MSTs) can be extracted for the underlying anatomical tree-like struc-
tures under a specific region of interest (ROI), by means of a co-registered binary or
multi-class fuzzy mask. Here, the integral Euclidean length L( ) and the aforemen-
tioned integral geodesic length F<n_g) of each connecting path 7% can be employed
to modulate the extension of the resulting vascular trees {. Undesired leaves and
possible spurious branches detected by the exhaustive connectivity paradigm can
be pruned using L(n_g) and F(n_g), respectively. Lastly, by identifying a root, the
hierarchical topology of the undirected vascular trees is automatically determined,

and each node is assigned with an univocal parent-child relation.

4.3.2 Experiments on Synthetic and Clinical Data

To validate the exhaustive connectivity paradigm towards the extraction and infer-
ence of the underlying vasculature, a comprehensive set of synthetic vascular trees,
as well as an extensive set of multi-modal cerebrovascular angiographies were con-
sidered. In details, a collection of 10-images datasets of synthetic vascular trees
(128 x 128 x 128 voxels, isotropic 1 mm) was generated using VascuSynth [82] as
described in Section 3.5 considering three levels of increasing noise and increas-

ing terminal branches (Table 3.2). Among the real clinical angiographies, a total
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of 24 Rotational Angiographies of cerebral Aneurysms (RAA) from the Aneurisk!
dataset [6], 18 cerebral time of flight MR Angiographies (MRA) from the Kitware?
dataset [28], 10 head-neck Phase Contrast (PC) MR venograms (0.86 x 0.86 x 1.00
mm); and 10 cerebral Computed Tomography Angiographies (CTA) (isotropic 0.4
mm?) were considered. Representative examples of the cerebrovascular angiogra-
phies have been shown in Section 3.5.1.1 , Fig. 3.9 for the visual assessment of the
connected vesselness maps. For each synthetic and real angiography, the vascular
network ground-truths (GT) or manual annotations Gold Standard (GS) are given

as spatial centerlines.

4.3.2.1 Accuracy Scores and Measures

In the following experiments, the inferred connected topologies are quantitatively
assessed in the form of trees, under a geometrical and topologically-aware evalua-

tion framework.

Geometrical Accuracy. A symmetric error measure €s and the average Hausdorffysg,
distance €y are considered to evaluate the spatial and geometrical accuracy of the
recovered vascular trees. In particular, the spatial coordinates of all the extracted
connected branches (i.e. all the minimal paths of the tree) and the spatial coor-
dinates of the specific branch-points are evaluated with respect to the available
ground-truth or gold standard in a tolerance neighbourhood of 5 mm. The symmet-
ric error measure &g is determined by averaging the Euclidean distances between the
closest points of considered spatial instances. The average Hausdorffysq, distance
€y is determined in a robust way as the mean of the maximal Euclidean distances
between the closest points of the considered spatial instances. Note that with the
notation ESC and £§p the symmetric error is given for all the extracted connected
branches in the trees (§) and for the specific branch-points (bp), respectively. Sim-
¢

ilarly, with the notation &5 and ezp the average Hausdorffgs¢, distance is given for

all the branches of the trees and for the specific branch-points.

Ittp://ecm2.mathcs.emory.edu/aneuriskweb/index
https://data.kitware.com/#collections


http://ecm2.mathcs.emory.edu/aneuriskweb/index
https://data.kitware.com/#collections

4.3. Exhaustive Connectivity Paradigm 96

Topological Accuracy. The topology of the trees is compared against the GT (or
GS) using the tree edit distance (TED)? [150] only for the synthetic vascular trees,
whereas the spatially-aware DIADEM* score [75] is computed for all the considered
datasets.

The tree edit distance is defined for a pair of trees as the minimum-cost se-
quence of node-edit operations that transform one tree into another. The considered
node-edit operations account for deletion, insertion and renaming the node. Each
node-edit operation is given a cost; here node insertion and deletion are equivalently
associated to a unitary cost, whereas renaming the node is given a null cost, as the
considered trees do not have labels. Since there are multiple sequences of node-
edit operations able to topologically transform one tree into another, the tree edit
distance provides the sequence with the minimal cost.

The DIADEM score, originally designed to compare the morphological re-
construction of two different neurons, comprises a multi-step alignment process
between a target tree and a test tree, by spatially registering both branch-points
(nodes) and branches (edges) given an Euclidean distance threshold. The subse-
quent tree topological matches are then weighted by the evaluated spatial distances

and integrated over the size of the sub-tree to which a connection leads.

By using these topological scores, differences are evaluated in terms of
branches and branch-points spatial correspondence with DIADEM, and in terms of
graph adjustments, i.e. node insertion and deletion with TED respectively. While
the DIADEM metric is bounded by [0,1], 1 being the perfect match, the TED score
has no upper bound. Low TED scores represent higher topological matching, how-

ever, a comparable index of trees overlap is obtained as

TED(G1, )

TED,y = (1 " TED(1,{}) + TED(&, {})

) -100 %, (4.10)

where §} and {, are the trees to be compared, and { } represents a void graph. TED,,

has the same bound [0,1], 1 being the perfect match for isomorphic trees.

3http://tree—edit—distance.dbresearch.uni—salzburg.at
‘http://diademchallenge.org/metric.html
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4.3.2.2 Semi-Automatic Connectivity - Synthetic Trees

In the following experiment the accuracy of vascular network inferred with VTrails’
exhaustive connectivity paradigm (Section 4.3) is evaluated for different vesselness
potentials, given the same seeds initialisation, i.e. the end-points of the terminal
branches of the synthetic vascular trees. In detail, by adopting a manual, therefore
semi-automatic, seeds initialisation, the accuracy of the formulated exhaustive con-
nectivity paradigm is tested with respect to different saliency maps, other than the
Riemannian potential recovered within VTrails framework. As in Section 3.5.1, the
other vesselness potentials were respectively obtained with Frangi filter (FFR) [70],
Optimally Oriented Flux (OOF) [106], Ranking the Orientation Responses of Path
Operators (RORPO) [131], and the Hybrid Diffusion with Continuous Switch filter
(HDCS) [129], as previously shown in Fig. 3.8. Each of these vesselness maps
were associated with an isotropic tensor field, whereas the Riemannian vesselness
potential P determined with VTrails was employed as is. Given the semi-automatic
seeds initialisation, the accuracy of VTrails’ exhaustive connectivity paradigm is
here indicated with VTg.,i. The reconstructed acyclic topology, i.e. the minimum
spanning tree at convergence, is therefore compared to the ground-truth (GT). The
robustness of the topological inference with respect to image degradation (see Table

3.2) is reported in Section 4.3.3.1, Tables 4.2, 4.3 and 4.4.

4.3.2.3 Fully Automatic Connectivity - Synthetic Trees

Similarly to the previous Section 4.3.2.2, the connected topology of the synthetic
trees is here inferred only with VTrails framework using, in this case, a fully au-
tomatic pipeline (VTay0). Specifically, the Riemannian vesselness is considered as
connecting potential and the initial seeds for the exhaustive geodesic connectivity
paradigm are automatically determined as in Section 3.3. Here, the exploration of
the Riemannian potential is limited to a pre-defined spatial neighbourhood of the
initial seeds, for computational efficiency. The seeds are automatically determined
as in eq. 3.7, considering a p-quantile of 0.75. Given the GT, the evaluation of the
geometrical and topological accuracy follows the previous scheme, and results are

reported in Section 4.3.3.2, Tables 4.2, 4.3 and 4.4 (column: VT,y), and in Fig.
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4.8 for a representative example.

4.3.2.4 Fully Automatic Connectivity - Clinical Data

Each clinical angiography is processed using VTrails’ fully automatic connectivity
paradigm (VT,y) as in Section 4.3.2.3. As for the synthetic trees, the exploration
of the Riemannian potential for the clinical data is also limited to an anatomically-
compatible spatial neighbourhood of the initial seeds, for computational efficiency.
Also, the seeds are automatically determined as in eq. 3.7, considering a p-quantile
of 0.75. The accuracy of the inferred connected vascular topology is evaluated
by comparing the resulting minimum spanning trees with the available GT or GS
annotations. RAA centerlines are obtained with the Vascular Modelling Toolkit
(VMTK) [8]; MRA ground-truth trees are determined with TubeTK [15]; the gold
standard for PC and CTA datasets is given by the centerlines of the manual lumen
segmentation, obtained with a skeletonisation strategy [86]. Note that, for whole-
brain vascular datasets, only the intra-cranial volume was considered for the topo-
logical inference, by means of a co-registered brain mask, from the brainstem up to
the cortex. Also, possible cycles in the GS have been opportunely cut or removed by
adopting a ROI-based, conservative and intensity-maximising, minimum spanning
tree extraction of the complete GS connected graph. Accordingly with the under-
lying anatomical tree-like vasculature, the quantitative analysis has been performed
for the deep brain arterial trees [91] branching from the Circle of Willis in both MRA
and CTA datasets, whereas the connectivity patterns of the posterior venous sinus
in the PC datasets was quantitatively evaluated. Note also that additional effort was
required to harmonise the provided centerlines in the form of a canonical acyclic
graph (tree, or forest of trees), where branch-points corresponds to nodes and vas-
cular branches to edges respectively, since the tree topology cannot be consistently
evaluated otherwise. Given the available GT and GS in the form of binary maps
or as a set of spatial centerlines, the topological harmonisation was performed with
an in-house split-merge-connect strategy similar to [95]. This allowed to convert
binary and voxel-wise skeletons to ordered and connected spatial segments, i.e. the

vascular branches, in the form of a canonical acyclic graph. Similarly, sub-voxel
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spatial centerlines were converted to a connected acyclic topology, by evaluating
possible overlapped portions and local branch-points with a tolerance factor equal
to the native image voxel size. Quantitative results are reported in Section 4.3.3.3,

Table 4.5, and a qualitative evaluation is given in Fig. 4.9.

4.3.3 Results of Geometrical and Topological Accuracy

4.3.3.1 Semi-Automatic Connectivity - Synthetic Trees

The accuracy of the reconstructed synthetic trees using different vesselness poten-
tials is given in Tables 4.2 and 4.3 for the whole trees geometry, for the detected
branchpoints location and for the entire topologies. The symmetric error mea-
sures (eg ) showed overall comparable values among the considered vesselness maps
(FFR, OOF, RORPO, HDCS and VTie,i), where a better performance (italic text)
has been observed for VTep,; (Table 4.2.a). Slightly lower error distances are found
on both sg and the Hausdorffys¢, distances (815 — Table 4.2.b) in all cases, being the
former ones limited always within the voxel size. Above 80% of branchpoints were
successfully detected in all cases, even with high level of corrupting noise. The
considered enhancing methods yielded comparable values for the accuracy of the
branchpoints’ location (Table 4.3.a), however VT, showed overall lower sym-
metric errors (£§p) as well as lower Hausdorffysq, distances (821)), especially at high
level of degrading noise (Table 4.3.b). This first suggests that the smooth Rieman-
nian vesselness improves the accuracy of branchpoint spatial location, secondly,
that the topological inference via the presented connectivity paradigm is consider-
ably more stable even with different vesselness potentials. This is supported by the
TED,y indices (Table 4.4.a), where considerable topological overlap is found for all
the reconstructed trees. Better performances are observed for VT, in the great
majority of cases, especially for highly noisy images. DIADEM values show how-
ever that VT outperforms all the other methods with the spatially-aware topo-
logical reconstruction of the synthetic trees (Table 4.4.b), where the accuracy of

the branch-point spatial location and of the branches geometry is considered jointly

with the hierarchical parent-child relation.
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Figure 4.8: Representative example of noisy synthetic vascular tree NL,: resulting mini-
mum spanning tree inferred with VT 0.

Table 4.2: Synthetic trees at different noise levels (VL) — Symmetric error & [mm] (a.) and
Hausdorffgsq, distance &g [mm] (b.) for the minimum spanning trees (§). Values
are reported mean+SD. Best accuracy for the semi-supervised connectivity in
italic font; best accuracy VT VS. VTsemi in bold font.
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NLbHI
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NL,!
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N, LaIII
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NL"
NLbHI
NL/!
NL"
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FFR OOF RORPO HDCS VTemi VTauo
0.89+0.34 0.87£0.32 0.91+£0.37 0.93+0.38 0.85+0.31 0.99+0.34
0.93+0.32 0.934+0.32 0.95+£0.33 0.99+0.40 0.90+0.31 1.03+0.34
0.95£0.35 0.94+0.37 0.96+£0.37 1.02+0.46 0.90+0.32 1.04£0.36
0.91+0.34 0.88+0.30 0.98+0.44 0.96+0.43 0.84+0.30 1.03+0.47
0.95£0.36 0.92+0.35 1.01£046 1.11+0.71 0.89+0.32 1.02+0.35
0.96+0.38 0.93+0.37 1.04+0.57 1.12+0.70 0.90+0.33 1.51+1.21
0.88+£0.35 0.85+0.33 0.95£0.44 0.95+0.47 0.82+0.31 1.12+0.71
0.96+0.36 0.92+0.34 1.02+0.48 1.17+0.77 0.87+0.32 1.04+0.38
0.96+0.36 0.95+0.36 1.07£0.57 1.25+£091 0.90+0.33 1.05+0.39

&

FFR OOF RORPO HDCS VTemi VTauto
1.53+0.21 1.40+0.17 1.64+£0.23 1.67+£0.21 1.394+0.12 1.54£0.25
1.48+0.05 1.4640.07 1.57£0.12 1.79+£0.26 1.39+0.07 1.571+0.07
1.594+0.08 1.61+£0.07 1.66+£0.13 1.96+0.32 [.43+£0.07 1.60+0.07
1.53+0.12 1.374£0.15 1.83+£0.28 1.82+0.31 1.34+0.19 1.93+1.30
1.58+0.07 1.52+0.05 1.96+0.35 2.65£1.70 1.424+0.04 1.55+0.06
1.66£0.07 1.58+0.05 2.35£0.51 2.62+0.63 1.46+0.08 3.94£6.61
1.50+0.17 1.454+0.15 1.85£0.26 1.75+£0.54 1.354+0.19 2.43+1.78
1.64+0.11 1.50+0.07 2.04£0.25 2.68+1.12 1.40+0.08 1.65+0.13
1.61+£0.06 1.5940.06 2.34+0.31 3.35+2.01 [1.4440.06 1.67+0.11
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4.3.3.2 Fully Automatic Connectivity - Synthetic Trees

The reconstruction of the synthetic trees is performed in a completely automatic
fashion, using therefore VTrails framework (VT,y) for the vesselness potential, for
the seeds detection and for the exaustive connectivity paradigm. With this configu-
ration no further branch pruning is performed. The same aforementioned accuracy
indices are reported in Tables 4.2, 4.3 and 4.4 (column: VTgy,). As few terminal
branches were missing at higher levels of degrading noise (Fig. 4.8), the global SSC

slightly increases compared to the semi-automatic VT, pipeline. However errors

are overall comparable to the voxel size in all cases. Smaller average symmetric

Table 4.3: Synthetic trees at different noise levels (VL) — Symmetric error & [mm] (a.) and
Hausdorffysg, distance &g [mm] (b.) for the branchpoins (bp) location. Values
are reported mean£SD. Best accuracy for the semi-supervised connectivity in
italic font; best accuracy VT VS. VTgeni in bold font.

bp
a. &g

FFR OOF RORPO HDCS VTsemi VTauto
NL,) 2.254+1.09 2.1840.95 2.19+1.02 2.194£0.97 1.964+0.96 1.91+0.78
NL,/” 2.1941.00 2.05+1.03 2.18+£0.99 2.30+1.11 2.034+0.97 1.924+0.90
NL,/ 2384+1.02 2.42+1.06 2.39+1.09 2.41+1.12 2.06+1.07 2.06+0.92
NL,! 2.38+0.97 2.23+1.13 2.50+1.14 2.66+£1.09 1.89+0.92 2.07+1.05
NL,£T 2254097 235+1.05 2.19+1.08 2.47+1.04 2.0140.97 2.0240.90
NL,T 2384+1.07 225+1.12 2.09+£1.08 2.46+1.14 2.15+1.04 2.164+1.04
NL.! 235+£1.04 231£1.12 2.28+1.09 2.36+1.00 2.12+1.16 2.08+£0.91
NL  233+1.04 2.234+1.01 2.23+1.04 241+1.11 1.95+0.98 2.01+0.88
NLM 23541.04 2.35+1.08 2.11£1.09 2.474+1.02 2.08+1.06 2.08-£0.98

bp
b. &y

FFR OOF RORPO HDCS VTsemi VTauto
NL,! 436+041 4.134+0.60 4.08+0.77 4.04+0.77 3.74+0.46 3.61+0.63
NL,/” 4.084+0.32 4.124+0.60 4.03+0.46 4.2940.35 3.82+0.68 3.69+0.55
NL,™ 4244036 4.38+0.27 4.32+0.45 4.544+0.31 4.18+0.46 3.84+0.35
NL,!  4.154£0.33 4.364+0.33 4.32+0.38 4.39+0.51 3.684+0.63 4.2140.46
NL,™  4.094+0.42 4.29+0.35 4.38+0.41 4.13+0.77 3.93+0.52 3.70+0.55
NL,™ 4354031 4.39+0.48 4.2840.50 4.51+0.21 4.03+0.41 3.75+1.41
NL.! 4.05+0.56 4.3840.68 4.31+0.31 3.79+0.69 4.434+0.49 3.69+0.59
NL 4144040 4.06+0.71 4314037 4.23+0.78 3.914+0.46 3.72+0.53
NL™M 4154036 4.2840.54 4.19+0.40 4.13+0.51 3.924+0.47 3.91+0.58
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errors and ezp values are found for the detected branchpoints location, suggesting
that the Riemannian vesselness potential, combined with the fully automatic seeds
initialisation, accurately recovers the junction points of the network. Such con-
figuration outperforms the semi-automatic approach even with severely degraded
images. Similarly to the semi-automatic approaches, the isomorphic topological
overlap (TED,y) shows comparable values. No significant differences were found
in the pairwise comparison, whereas the spatially-aware DIADEM metric reported
higher matching in the majority of cases with sporadic significantly better values

(p < 0.05) for VTauo vs. the semi-automatic approach VTemi (i.e. NL,, NL,"

Table 4.4: Synthetic trees at different noise levels (NL) — Topological accuracy [%]: TEDgy
(a.) and DIADEM (b.) metrics. Values are reported mean+SD. Best accu-
racy for the semi-supervised connectivity in italic font; best accuracy VT vS.
VTemi in bold font.

a. TED,,

FFR OOF RORPO HDCS VTeemi VTauto
NL,! 74.6+82 703453 79.1+46.7 70.14£3.3  73.5+8.5 75.44+6.3
NL,T  785+4.5 747450 728462 609+6.7 78.0+5.4 75.945.1
NL,™ 732449 69.7+3.1 713450 58.8+8.5 74.6+64 74.6+4.6
NL,Y  77.6+£53 71.8+45 722444 624459  78.4+6.5 68.44+10.0
NL,T  77.845.7 735475 71.6+£3.9 58.6+8.1 76.84+4.6 74.6+6.6
NL,T 729456 68.844.7 68.9+39 67.1+59 734446 58.8+9.2
NL.S 772469 70.7+64 72.1+34 554+125 78.7+7.6 64.7+4.9
NLM 747476  72.0+7.5 73.843.2 60.2493 743435 71.6+7.6
NLM  75.6+3.3 69.5+4.6 69.5+3.0 65.1£3.7 74.844.0 68.4+4.4
b. DIADEM

FFR OOF RORPO HDCS VTeemi VTuto
NL,! 4334286 39.0+28.8 43.6+29.4 39.3+30.9 52.4+18.8 65.1+12.3
NL,T 26.8427.5 39.4+20.0 27.8+24.5 2534322 42.6+26.9 67.8+6.6
NL,/™ 4444273 254+28.6 5134269 22.84259 57.649.2 71.5+6.6

NL,'  36.64+30.0 37.24325 3024284 26.8430.1 49.7425.9 58.5+13.7
NL, 4154251 40.2+£28.4 31.5419.8 22.7428.8 53.9+18.1 57.4+15.9
NL,™ 3974295 31.2427.6 39.14263 32.2425.9 60.8+12.3 44.1£20.1
NL! 42774265 36.64+34.8 30.8428.4 12.9422.6 54.3+22.3 44.2+9.8
NLM! 4524262 3264263 50.4419.0 26.9+23.3 51.9425.2 57.8+5.8
NL M 3614243 18.9427.2 24.0427.3 23.44269 47.74+21.1 43.8+20.9
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and NL.).

4.3.3.3 Fully Automatic Connectivity - Clinical Data

The fully automatic VTrails framework is employed to recover the vascular trees
from real angiographies. As in the previous Section 4.3.3.2, the Riemannian vessel-
ness potential, the seeds detection and the exaustive connectivity paradigm followed
a fully automatic configuration in a set of multi-modal brain angiographies. The
quantitative assessment of the clinical datasets focused on vascular branches orig-
inally defined and provided in the available GT and gold standard. Co-registered
ROI-based masks were used to separate intra/extra-cranial vessels and anterior/-
posterior or left/right-lobe vascular territories, coherently with assumption of deep-
brain vascular trees as described in Section 4.3.2.4. Short and terminal vascular
branches are pruned from the inferred trees. Accordingly with anatomical consid-
erations and compatibly with the angiographic detail and image quality, terminal
leaves shorter than 5 mm in length were removed from the extracted vascular trees.
Both geometrical and topological accuracies are reported for each clinical dataset
in Table 4.5, where only the DIADEM metric is considered for the evaluation of
the tree topology. In this case, TED,y is not used, since the evaluation of the iso-
morphic tree overlap is uninformative and possibly misleading in an experimental
set-up other than simulated and synthetic images. The average symmetric errors
ESC were comparable to the voxel size, with the average Hausdorffgsg, distances
(815) that did not exceed 5 mm. Analogously the detected branchpoints reported
a mean error egp of approximately 2 mm, with maximal distances of up to 4-5
mm in all clinical datasets. DIADEM metrics showed a considerably higher cor-
respondence between the available annotation gold standard and the automatically
reconstructed tree topology, with overall consistent and comparable values among
different imaging modalities. The spatial and topological correspondence can be
also qualitatively assessed in Fig. 4.9, where representative examples are shown
with associated annotations (GS), geodesic graphs (IT) and resulting geodesic min-
imum spanning trees (§). A forest of geodesic MSTs has been extracted for whole

brain images, where nodes spatially correspond to vessel junctions and connecting
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edges to vascular branches, respectively. This suggests that VTrails framework can
automatically and accurately infer the cerebrovascular topology at different scales

with a vectorial representation.

4.4 Observations and Remarks

In this chapter a connectivity-optimised level-set was formulated for the VTrails
framework, where the combination of a Riemannian vesselness potential and of
two different connectivity paradigms are able to automatically infer the topology of
the underlying vascular structure, under the assumption that vessels join by minimal
paths, i.e. geodesics. Insights of isotropic vs. anisotropic level-sets are given with
respect to greedy and exhaustive connectivity paradigms. Overall, the advantage
of an anisotropic level-set combined with the exhaustive connectivity paradigm in
Section 4.3 consists in optimally exploring and locally refining the geodesic domain
of connecting paths, which yields topologically self-organising vascular graphs and
the associated minimum spanning trees. In [20], a similar level-set formulation fo-
cused on the extraction of shortest paths joining individual (or multiple) pairs of
endpoints, without, however, determining the connected topology among the same
set of points. In Section 4.3.3.1, the reconstruction of the synthetic trees showed
overall good and comparable results even by adopting different vesselness maps. It
is likely that an anisotropic level-set as proposed in [20] would have similar accu-
racies to the proposed framework, by employing the same self-organising connec-
tivity paradigm. In this chapter, the accuracy of an automatically reconstructed set

of vascular trees from clinical multi-modal brain angiographies is evaluated within

Table 4.5: Clinical Angiographies — Symmetric error € [mm] and Hausdorff distance €y
[mm)] of trees ({) and branchpoints (bp) (mean+SD) — Topological tree accuracy
DIADEM [%] metric.

€5 e; el erp DIADEM

RAA  0.407+£0.307 1.101£0.436 | 1.309+0.665 2.452+1.315 | 78.87+14.81
MRA 0.5351+0.489 1.167+1.081 | 2.084+£1.157 4.167+0.559 | 77.68+8.22
PC  1.761+1.427 4.9834+2.94 | 2.505+0.949 3.749+1.023 | 77.47+10.88
CTA  0.88+0.648 2.266%1.143 | 2.087+£1.021 3.966+0.883 | 85.59+9.56
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Image & GS Geodesic Graph 11 Minimum Spanning Trees {

Root

Geodesic Paths

Branches

‘Geodesc Paths

Figure 4.9: Inference of the geodesic vascular network for representative cerebrovascular
angiographies with VT, Original scan with annotation (GS); Geodesic Vas-
cular Graph IT at convergence and Minimum Spanning Trees { for deep-brain
vascular structures. — The Riemannian vesselness potential is in Fig. 3.9.
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a spatially- and topologically-aware validation framework. In all the considered
clinical datasets, both geometrical errors of the geodesic paths and the associated
topological similarity evaluated on the centerlines gold standard demonstrate that
VTrails is able to accurately recover the cerebrovascular network at different scales
with a vectorial representation. The sub-voxel average accuracy reached in the pre-
sented experiments suggests that the proposed approach can provide intra-operative
guidance with a patient-specific model up to a pre-defined level of detail, where
surgical minimally invasive vascular repair is feasible. Given a standardised and
topologically-aware evaluation framework for acyclic vascular networks, the quan-
titative analysis first focused here on major deep-brain arterial (or venous) vascu-
lar trees, e.g. the anterior/posterior and left/right arterial branches from the Circle
of Willis in MRA and CTA, as reported in Section 4.3.3.3. In Fig. 4.9 a qualita-
tive inspection of the remaining smaller portions and terminal branches is avail-
able. The image resolution of the clinical angiographies does not allow for the
inference of capillaries in the cortex (where the anatomy is more prone to show
cyclic structures [85]). Also, the evaluation of anastomoses currently suffers from
the lack of established quantitative metrics and scores for assessing and compar-
ing cyclic topologies. With the development of standardised metrics for compar-
ing fully-connected networks, along the lines of [35, 123, 162], future works could
account for a more specific validation focusing on cyclic structures at different
scales. Note that the minimum spanning tree extraction formulation does not en-
force any cerebrovascular anatomical prior per se. However, extra vascular-related
constraints and associated anatomical connected topologies can be included with a
user-defined initialisation to correct for specific locations where the vascular net-
work is not acyclic. For the extraction of major deep-brain vascular structures in
the considered full-brain angiographies, co-registered ROI-based territorial masks
were used to coherently recover a forest of geodesic MSTs,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>