127 research outputs found

    Task-based agricultural mobile robots in arable farming: A review

    Get PDF
    In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the farming of animals), smart farming and automated agricultural technology have emerged as promising methodologies for increasing the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent crops or woody plants such as orchards and vineyards whereas arable farming includes temporary crops such as wheat and rice. Major operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and harvesting where robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for future improvements in using reliable mobile robots for arable farmin

    A Generic ROS-Based Control Architecture for Pest Inspection and Treatment in Greenhouses Using a Mobile Manipulator

    Get PDF
    To meet the demands of a rising population greenhouses must face the challenge of producing more in a more efficient and sustainable way. Innovative mobile robotic solutions with flexible navigation and manipulation strategies can help monitor the field in real-time. Guided by Integrated Pest Management strategies, robots can perform early pest detection and selective treatment tasks autonomously. However, combining the different robotic skills is an error prone work that requires experience in many robotic fields, usually deriving on ad-hoc solutions that are not reusable in other contexts. This work presents Robotframework, a generic ROS-based architecture which can easily integrate different navigation, manipulation, perception, and high-decision modules leading to a faster and simplified development of new robotic applications. The architecture includes generic real-time data collection tools, diagnosis and error handling modules, and user-friendly interfaces. To demonstrate the benefits of combining and easily integrating different robotic skills using the architecture, two flexible manipulation strategies have been developed to enhance the pest detection in its early state and to perform targeted spraying in simulated and field commercial greenhouses. Besides, an additional use-case has been included to demonstrate the applicability of the architecture in other industrial contexts.This work was supported in part by the GreenPatrol European Project through the European GNSS Agency by the European Union's (EU) Horizon 2020 Research and Innovation Program under Grant 776324 [11]. Documen

    Sensor architecture and task classification for agricultural vehicles and environments

    Get PDF
    [EN] The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical wayThe research activities devoted to the study of sensor and system architectures for agricultural intelligent vehicles carried out during 2010 have been supported by the Spanish Ministry of Science and Innovation through Project AGL2009-11731.Rovira Más, F. (2010). Sensor architecture and task classification for agricultural vehicles and environments. Sensors. 10(12):11226-11247. https://doi.org/10.3390/s101211226S1122611247101

    Preliminary Results for the Multi-Robot, Multi-Partner, Multi-Mission, Planetary Exploration Analogue Campaign on Mount Etna

    Get PDF
    This paper was initially intended to report on the outcome of the twice postponed demonstration mission of the ARCHES project. Due to the global COVID pandemic, it has been postponed from 2020, then 2021, to 2022. Nevertheless, the development of our concepts and integration has progressed rapidly, and some of the preliminary results are worthwhile to share with the community to drive the dialog on robotics planetary exploration strategies. This paper includes an overview of the planned 4-week campaign, as well as the vision and relevance of the missiontowards the planned official space missions. Furthermore, the cooperative aspect of the robotic teams, the scientific motivation, the sub task achievements are summarised

    Pancreas robot

    Get PDF
    Master of ScienceDepartment of Biological & Agricultural EngineeringDaniel FlippoThe World continues to need increased production of food to sustain the expected population growth over the next 30 years. The global population is projected to be more than 9.7 billion people by 2050. These people will need to eat nearly double the amount of food that is produced today. There are many approaches to solving this food crisis dilemma and progress is being made on multiple fronts. Sources of production growth include larger and more precise machine technology; more robust fertilizer applications; and crop modeling for genetically enhanced phenotyping. This paper focuses on the use of robotic technology to help model crop growth by using an unmanned ground vehicle (UGV) for data collection. Simple crop modeling helped the agricultural revolution in the 20th century. Today, scientists are building upon those models to create more complex ways to represent crops and their traits. These models require large amounts of data to observe and describe relationships between inputs and crop responses. This data needs to be dependable, consistent, and as close to the source as possible. To achieve that type of data for this project, a UGV was developed to traverse rugged field conditions. The UGV was designed to carry a Geophex Electromagnetic (EM) sensor that measures the electrical conductivity of the soil. This electrical conductivity will be used to decipher soil characteristics that underlie the growth potential of different wheat traits. The robot that carries the EM sensor must be designed to not interfere with the conductivity measurements of the sensor. The data collected must be accurate and repeatable. The scope of this research project is to develop the UGV to carry the sensor through the harsh field environments while not interfering with the incoming EM signal from the sensor. The project also explores methods for the robot to navigate through its environment on its own to limit human influence on the recorded data

    Artificial intelligence within the interplay between natural and artificial computation:Advances in data science, trends and applications

    Get PDF
    Artificial intelligence and all its supporting tools, e.g. machine and deep learning in computational intelligence-based systems, are rebuilding our society (economy, education, life-style, etc.) and promising a new era for the social welfare state. In this paper we summarize recent advances in data science and artificial intelligence within the interplay between natural and artificial computation. A review of recent works published in the latter field and the state the art are summarized in a comprehensive and self-contained way to provide a baseline framework for the international community in artificial intelligence. Moreover, this paper aims to provide a complete analysis and some relevant discussions of the current trends and insights within several theoretical and application fields covered in the essay, from theoretical models in artificial intelligence and machine learning to the most prospective applications in robotics, neuroscience, brain computer interfaces, medicine and society, in general.BMS - Pfizer(U01 AG024904). Spanish Ministry of Science, projects: TIN2017-85827-P, RTI2018-098913-B-I00, PSI2015-65848-R, PGC2018-098813-B-C31, PGC2018-098813-B-C32, RTI2018-101114-B-I, TIN2017-90135-R, RTI2018-098743-B-I00 and RTI2018-094645-B-I00; the FPU program (FPU15/06512, FPU17/04154) and Juan de la Cierva (FJCI-2017–33022). Autonomous Government of Andalusia (Spain) projects: UMA18-FEDERJA-084. Consellería de Cultura, Educación e Ordenación Universitaria of Galicia: ED431C2017/12, accreditation 2016–2019, ED431G/08, ED431C2018/29, Comunidad de Madrid, Y2018/EMT-5062 and grant ED431F2018/02. PPMI – a public – private partnership – is funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbott, Biogen Idec, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech and Pfizer Inc

    Next Generation Supply Chains

    Get PDF
    This open access book explores supply chains strategies to help companies face challenges such as societal emergency, digitalization, climate changes and scarcity of resources. The book identifies industrial scenarios for the next decade based on the analysis of trends at social, economic, environmental technological and political level, and examines how they may impact on supply chain processes and how to design next generation supply chains to answer these challenges. By mapping enabling technologies for supply chain innovation, the book proposes a roadmap for the full implementation of the supply chain strategies based on the integration of production and logistics processes. Case studies from process industry, discrete manufacturing, distribution and logistics, as well as ICT providers are provided, and policy recommendations are put forward to support companies in this transformative process

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production
    corecore