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ABSTRACT To meet the demands of a rising population greenhouses must face the challenge of producing
more in a more efficient and sustainable way. Innovative mobile robotic solutions with flexible navigation
and manipulation strategies can help monitor the field in real-time. Guided by Integrated Pest Management
strategies, robots can perform early pest detection and selective treatment tasks autonomously. However,
combining the different robotic skills is an error prone work that requires experience in many robotic
fields, usually deriving on ad-hoc solutions that are not reusable in other contexts. This work presents
Robotframework, a generic ROS-based architecture which can easily integrate different navigation, manipu-
lation, perception, and high-decision modules leading to a faster and simplified development of new robotic
applications. The architecture includes generic real-time data collection tools, diagnosis and error handling
modules, and user-friendly interfaces. To demonstrate the benefits of combining and easily integrating
different robotic skills using the architecture, two flexible manipulation strategies have been developed
to enhance the pest detection in its early state and to perform targeted spraying in simulated and field
commercial greenhouses. Besides, an additional use-case has been included to demonstrate the applicability
of the architecture in other industrial contexts.

INDEX TERMS Precision agriculture, robotic control architecture, mobile manipulator, pest detection and
treatment, greenhouse.

I. INTRODUCTION
The European agriculture land surface is decreasing due to
deforestation and urbanization while population continues
increasing. In order to achieve a more sustainable business
model, protect the crops from adverse weather conditions and
control the temperature and water of the plant, greenhouse
production is growing a 22% accumulated increase in area
since 2011 [1]. However, the presence of warm, humidity
conditions and abundant food under protected structures pro-
vide favorable habitats for pest development, this being the
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main threat to production and productivity of greenhouse
cropsworldwide [2]. Digital farming [3]–[5] can help through
sensors, robotics and data analysis to automatically maintain
and monitor greenhouses, making cropping system smart
and, thus, enhancing the agricultural productivity.

Traditional pest detection methods in tomato crops rely
on farmers observing skills, which are very time-consuming
and inefficient in large crops. Nowadays, robotic solutions
combined with computer vision can be used to automate
this repetitive inspection task, increasing the reliability, max-
imizing the health of crops and optimizing the use of pes-
ticides to as little as 5%-10% [6]. For that purpose, robots
need to implement plenty of different tasks such as localize
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themselves [7] and navigate inside greenhouses [8], [9];
acquire quality pictures to identify pests and their loca-
tions [10]; or process the obtained results to generate efficient
high-level instructions to command the robot according to an
Integrated Pest Management (IPM) system [11]. However,
most research works focus on individual problems neglect-
ing its integration within a single complete solution. The
combination of different robotic skills can be difficult and
usually derive to ad-hoc solutions, but this is necessary to
perform early pest detection. The insect in their early eggs
state can measure as less as 0.3 mm and, to detect them,
advance perception and dexterity skills need to be merged to
automatically obtain close and good quality pictures of the
pests from different sides of the leaves.

This work presents Robotframework, a novel robotic archi-
tecture that integrates navigation, manipulation, and percep-
tion skills while following high level instructions from an
IPM decision support system for early pest detection and
treatment in greenhouses. The architecture includes addi-
tional features that makes it easily applicable for similar
precision agriculture applications where robot navigation,
manipulation and perception skills are required. This generic
architecture can remarkably reduce the development time
required to perform Robot Operating System (ROS) based
field robotic experiments due to efficient reuse of common
modules across projects and robot platforms. To demonstrate
the easy integration and the benefits of combining different
robotic skills within the architecture, flexible manipulation
strategies to enhance pest detection and targeted spraying
have been developed. Finally to evaluate the architecture, sev-
eral tests in simulated and field commercial greenhouses have
been performed in the context of the European GreenPatrol
project [13].

This paper is structured as follows: The related work
is analyzed in Section 2. Section 3 introduces the chal-
lenges for performing autonomous pest detection and treat-
ment and the main robotic system requirements. Section 4
describes the developed Robotframework architecture while
Section 5 focuses on the manipulation strategies for enhanc-
ing pest detection and treatment. Section 6 introduces the
simulated and field tests carried out to evaluate the system in
greenhouse and industrial scenarios. Finally, the conclusions
obtained from the assessment are discussed and the future
work is presented.

II. RELATED WORK
Research on precision agriculture robotics has recently
focused on two areas: (i) weed inspection and targeted spray-
ing and (ii) fruit and vegetables harvesting robots [5]. The first
area is mostly represented by outdoor robots for weed control
such as the Graph Weeds Net [14], the RHEA project cen-
tered on both agriculture and forestry [15], BoniRob project
dedicated to multipurpose farming [16], or CROPS project
focused on precision spraying in vineyards [17]. The navi-
gation of these outdoor robots is largely based on the use of
satellite localization systems and their signal is much weaker

and unprecise in indoor environments, making them less suit-
able for greenhouses [18]. Moreover, greenhouses are spe-
cially challenging for simultaneous localization and mapping
solutions, as they are partially structured environments with
constantly growing plants [19]. That is whymost of the robots
found in greenhouses use rails to navigate on it [20]. Some
examples are the tomato harvesting robot [21], the pepper har-
vesting robot [22] or the cherry tomato harvesting robot [23].
Other examples are AURORA, a spraying robot that imple-
ments a wall following algorithm for navigation [24] or a
greenhouse spraying robot that follows lines and QR codes
for navigating [25]. The use of fixed paths such as rails for
navigation in greenhouses has resulted in decoupling naviga-
tion from the manipulation and inspection tasks. This is the
case of the CROPS robot framework [26], where the control
architecture covers only the fruit localization and arm control
functionalities. As demonstrated by the open source control
architecture FroboMind [12], a common reusable architecture
that combines different robotic skills and tailored to precision
agriculture robots can significantly decrease development
time and resources due to efficient reuse of existing work
across projects. However, despite using ROS as communica-
tion middleware, BoniRob is outdated as it does not integrate
the state-of-the-art accepted navigation_stack [27] for nav-
igation or MoveIt! [28] for manipulation. The first package
takes information from odometry, sensor streams, and a goal
pose and outputs safe velocity commands that are sent to the
mobile base. The second one is themost widely used software
for manipulation and provides the latest advances in motion
planning, manipulation, or 3D perception, among others.
In order to combine both algorithms for mobile manipulators,
some authors have tried to simultaneously plan and execute
mobile manipulation goals [29], [30] but these are compu-
tationally complex methods tested in simulation or labora-
tory conditions and currently unfeasible for greenhouse-like
unstructured environments.

Developing an effective IPM requires frequent and pre-
cise observations of plants. To build an early pest detec-
tion it may not be enough to focus on plants or leaves
that are already infected with insects at adult stages as
in [32]–[34], but it is necessary to detect the cause of the
infection. In order to enhance the early pest detection, it is
necessary to go a step further and detect the insects also
in their egg and larva stages [10], [35]. Moreover, most
pest detection works focus on the detection and classifica-
tion of pests on already acquired pictures dataset neglect-
ing the difficulties of automatically obtaining them with
enough quality and closeness. In this sense, this work presents
the manipulation strategies developed to get closer pic-
tures to the surfaces of the leaves from above and from
below, so as to inspect the surfaces of the leaves from both
sides.

Finally, there are several European projects as DROPSA
[36], ISEFOR [37], PALMPROTECT [38] or EMPHASIS
[39] focused on the development of new fighting strategies
against some specific pests, but the bridge between new pest
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FIGURE 1. Tomato crop greenhouse evolution at the beginning (up) and
at the end (down) of the season.

detection strategies and automated and robust management is
barely addressed.

This work presents, similarly to [31], a decoupled mobile
manipulation control for greenhouse related tasks using
the ROS de-facto algorithms [27] and [28]. The naviga-
tion is based on latest robotic solutions which have proven
to successfully use Galileo Satellites combined with IMU,
odometry and range laser sensors for localization [8]. The
control architecture follows the hybrid paradigm presented
in [40], where rational and efficient deliberative decisions
represented by an IPM strategy are combined with reactive
behaviors represented by the different navigation, manipula-
tion and vision modules.

III. PROBLEM DESCRIPTION AND ARCHITECTURE
REQUIREMENTS
There are several challenges for developing a robotic system
able to perform autonomous and continuous monitoring in
greenhouses for the detection, identification, and control of
pests. As shown in Figure 1, the plants grow remarkably
during the growing season affecting: (1) the localization and
navigation systems because of a constant change of the envi-
ronment and the narrowing of the corridors; (2) the manipula-
tion strategy, as the arm needs to approach the leaves to obtain
good quality pictures while avoiding damaging the crops; and
(3) the vision modules dealing with changes in illumination
and focus distance. In addition, the system must be able to
execute high-level instructions proposed by the IPM strategy,
providing diagnosis and logging capabilities and offering an
easy-to-use user interface.

The main robotic system requirements presented in
Table 1 have been identified by observing a single robot needs
for the GreenPatrol application. It is however noticeable that
most requirements remarked in bold are desirable for almost

TABLE 1. Main mobile manipulator system requirements.

any other mobile manipulator system. Robotframework takes
all these requirements into account and presents an architec-
ture that is not only valid for the current application but also
for other agricultural or even industrial applications.

IV. SYSTEM ARCHITECTURE
This Section contains a description of the general control
architecture presented in Figure 2. The four-layered architec-
ture seeks the easy integration of the different robot function-
alities ensuring the system requirements presented in Table 1.
It follows a distributed computing design allowing several
tasks to run in different computers while still appearing to
its users as a single coherent system and allowing an easy
extensibility.

ROS [41] is proposed as core communication middle-
ware among the different modules. In recent years, ROS has
become the de facto standard framework for the development
of software in robotics. ROS is a flexible open-source frame-
work for writing robot software that provides, collection of
communication mechanisms, tools, libraries, and rules that
aim to simplify the task of creating robot software for a wide
variety of robotic platforms.

In the architecture, there are several modules that are com-
mon to any application. These are represented in turquoise
color and include the robot user interface, as well as appli-
cation layer, the error managing and logging modules and
some common parts of the abilities layer. Some othermodules
composed by standard ROS modules or packages developed
and tested by the GreenPatrol project are available in the
architecture, but it is up to the user to use them or implement
new modules using the available ones as templates. The
drivers layer, for instance, depends on the robot used. Also,
the high-level decision modules, here represented as an IPM
system, depends on the application.

A. DECISION LAYER
The decision layer contains the high-level decision modules
that generate new plans for the application. In this case,
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FIGURE 2. Four-layer Robotframework control architecture. Modules represented with turquoise
color are common to any application. Grey modules are standard ROS modules while the rest have
been developed and tested during the GreenPatrol project and could be used as templates.

FIGURE 3. Greenhouse representation with a robot approaching the red
circles representing the targets with navigation and pest inspection tasks
(left). Representation of an IPM generated T1-T4 plan (right).

an IPM strategy generates pest scouting and treatment plans
based on domain expert knowledge, crops distribution in
the greenhouse and information obtained from previous plan
executions as seen in the top layer of Figure 2. The plans are
composed by targets that contain a navigation goal to move
the robot to a desired position and a task to be performed
there. An example plan for the current application can be seen
in Figure 3 where the robot must navigate to four different
greenhouse zones and perform there an inspection task.

The Robot GUI module in Figure 2 is common for any
application and provides an easy-to-use user interface to load,

FIGURE 4. Robot GUI interface used to load and start a json plan (left)
and the application workflow messages once the plan has been
initialized (right).

execute or cancel plans fulfilling system requirement SR7.
The plan is then sent to the application layer to be interpreted
and executed by the robot while the GUI displays the current
state of the system including status, alerts, or the batteries
level as shown in Figure 4.

The plans are implemented using a JavaScript Object Nota-
tion (JSON) format, which is a very common open standard
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FIGURE 5. State machine representing the operation mode targets plan and its navigation, tasks, and error-handling
behavior states.

and language-independent, that uses human-readable text to
store and transmit data objects consisting of attribute–value
pairs and array data.

The JSON keywords related to navigation are:
• navigate: Indicates whether the target contains a nav-
igation step. The following navigation keys are only
considered if navigate is true.

• navigationType: Three types of robot navigation are
available. (1) Natural navigation making use of the
well-known navigation_stack from ROS; (2) Relative
navigation to perform a continuous motion to reach
a position relative to the robot’s current position; and
(3) Precise navigation to generate a continuous motion
to position the robot accurately with respect to an artifi-
cial mark. Only the first type is used in the GreenPatrol
context.

• navigationTrials: Number of trials for navigation in
case of failure.

• targetPose: Navigation destination (x, y, theta) in the
given frame_id sent to the navigation node.

The JSON keywords related to task definition:
• tasks: An array of tasks to be executed.

– name: Name of the task.
– type: Type of the task plugin that will be loaded and

executed. In this case it may be an inspection or a
spraying task.

– params: Necessary parameters to perform the task.
This enables a high configurability of the IPM
strategy to define the zones to be inspected or the
amount of pesticide to use depending on the infec-
tion level of the plant.

This method permits orders parametrization that covers a
wide range of mobile robotics applications. The plans can be

generated manually or automatically by different high-level
decision support systems, addressing system requirement
SR4. Section 5 presents two simple plan examples for
pest inspection and treatment operations and subsection 6-C
presents an additional plan for an aileron inspection in an
industrial use case.

B. APPLICATION LAYER
The application layer includes the robot manager module,
which is responsible for controlling the overall robotic sys-
tem, maintaining its status continuously. This layer also
includes the operation mode, which interprets the high-level
plans and implements a specific robotic application. The
operationmode is designed to be as general as possible, easily
configurable for a variety of robotic processes and, thus,
avoiding an ad-hoc implementation only useful for specific
workspace configurations. A plan can be specified by a set of
targets composed by a navigation destination for the mobile
platform and a set of tasks to be performed at each destination.
Figure 5 shows the state machine implemented for the oper-
ation mode. It starts in a Waiting state until a new-plan event
indicates the beginning of the operation. The system switches
then to Checking next target state, analyzing the next target
in the sequence.

The Navigating state is responsible for coordinating the
autonomous movements of the mobile platform. The archi-
tecture permits an easy integration of different navigation
modules and provides the management of their results. If the
navigation is not able to reach the target pose due to obstacles
on the way or localization problems, this will be notified in
the result and, if required, a Navigation Recovery Behavior is
triggered. Due to the criticality of the satellite-based localiza-
tion in greenhouses to reach a position accurately, it has been
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necessary to include an additional feature in the navigation
stack to provide information about the localization quality.
In case of a remarkable localization quality loss, a specific
error recovery behavior can be triggered. This behavior con-
sists in sending the robot to awell-known greenhouse position
where the localization signal is known to be strong and retry-
ing from there the previous navigation goal. There is a second
recovery behavior triggered when, despite having a proper
localization signal, the robot does not reach the destination
with enough accuracy. This can happen because a slightly
better localization is needed or because there are obstacles
on the way that the navigation module cannot overcome.
In both cases, the recovery behavior consists off waiting for a
predefined time still, while playing an advertisement sound.
Waiting may help improving the localization while the sound
notifies the operators in the vicinity about the current robot
state and, if needed, about the need of removing the obstacle
on the way.

The number of trials to perform the navigation are con-
figurable. If there are no more trials left, meaning the robot
failed to reach the destination, the failure is notified in the
running navigation failure behavior state, and the tasks to be
performed at this point are skipped, addressing the following
target. The navigation state has been developed in a generic
way to support different global, relative, and precise naviga-
tion modules as it will be explained later.

Once the navigation finishes correctly, the configured set
of tasks are executed in the Doing Tasks state. A Task is
the implementation of a robots’ specific set of actions. The
proposed architecture is designed to implement new robotic
tasks by using the ROS pluginlib mechanism. The tasks are
developed as plugins which are parametrized, dynamically
loadable and executed from a runtime library. The plan gener-
ated by the high-level decision module must contain enough
information for the state machine to understand where to go
and which actions to take at each place. There is therefore no
need to touch or recompile the core of the framework. This is
useful for extending/modifying the application and provide a
great extendibility to the system. Section V present two task
implementations in the context of precision agriculture for
pest detection and treatment while Section VI-C illustrates an
additional task example for an aileron inspection in an indus-
trial context. The benefits and reusability of the architecture
is finally described in the discussions section. Moreover, the
here presented task plugins can be used as templates and be
adapted for future tasks.

C. ABILITIES LAYER
This layer is composed by the ROS nodes involved in the
basic control functionalities of a robot. These nodes manage
the sensor and actuator components, and provide robot capa-
bilities such as autonomous navigation, manipulation, and
inspection. At this level, ROS provides a wide range of state-
of-the-art robotic algorithms: GMaping [42] for generating
maps using the on board 2D laser scanners. The maps can be
manually modified to include, for instance, forbidden areas

FIGURE 6. GreenPatrol robot description in ROS-visualization RViz.
It presents the main platform components (mobile platform, arm,
sensors. . . ) and the transformation links between them.

for the robot; the Navigation Stack used in the Navigation
State for planning global and local paths. It uses combined
2D laser scanners and satellite based localization to generate
the velocity commands for themobile base while avoiding the
obstacles on the unstructured greenhouse environment; the
Unified Robot Description URDF for generating a combined
robot description as presented in Figure 6; MoveIt! is used
for generating and executing collision free manipulation tra-
jectories in the Doing Tasks State as it will be later presented
in Section V. MoveIt! tools can be also used, to integrate 3D
point cloud based obstacles or useful simulation tools among
other utilities.

On top of them, several additional nodes have been devel-
oped. To ensure the system requirement SR1 and freely nav-
igate within the greenhouse, the localization module benefits
from the multiple signal frequencies and the higher accu-
racy provided by the European Global Navigation Satellite
System (EGNSS) of the Galileo constellation as explained
in [8]. The system requirement SR3 is achieved using a
deep learning model for detecting the most harmful pests
in greenhouse tomato crops: Bemisia Tabaci, Tuta Absoluta
and Whitefly [10]. In addition, a leaf detection deep learning
model has been implemented to safely and accurately detect
and approach individual leaves using a 3D camera. Then,
closer and high resolution pictures of the pests are taken as
presented in Section 5, answering to system requirement SR2.
The architecture includes additional modules for relative and
precise navigation which are valuable for a wide range of
mobile robotic applications as shown in subsection 6-C.

D. DRIVERS LAYER
The drivers layer includes the modules that allow interacting
with the robot platform sensors and actuators. An overview
of the specific robotic system used for validation purposes is
shown in Figure 7.
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FIGURE 7. GreenPatrol robotic platform entering the greenhouse.

FIGURE 8. GreenPatrol pest inspection and treatment tools mounted at
the robot arms end-effector.

The mobile platform consists on the Segway
RMP 440 Omni Flex [43] with mecanum wheels to improve
mobility in greenhouse narrow corridors. The platform is
equipped with an on-board PC, a Velodyne 3D laser scan-
ner [44] for obstacle detection and two OS32C safety laser
scanners [45] for obstacle detection, mapping and navigation.
The absolute localization unit consist of amulti-constellation,
GNSS receiver, IMU and odometry. A KUKA LBR iiwa
manipulator [46] has been mounted on the middle of the
platform to allow inspecting the leaves on the right and left
sides. The vision system consists of a 3D RealSense cam-
era [47] to find leaves positions and an IDS RGB autofocus
camera [48] to acquire good quality pictures of the pests as
seen in Figure 8.

The spraying equipment consists of a plastic tank on the
back-right corner of the platform, an electric compressor with
a pipe and a spraying nozzle at the arm’s end-effector shown
in Figure 8.

A benefit of using ROS is the availability of a wide variety
of robotic components drivers such as mobile robots, manipu-
lators, cameras and, lasers. This makes the architecture hard-
ware agnostic enabling the possibility to replace themwithout
affecting the rest of the architecture.

E. MONITORING
The three modules shown on the left side of Figure 2 are
available with the architecture to monitor the functional state
of the system. The Diagnostics module has been designed
for collecting and preprocessing specific data from drivers
and abilities layers which are then passed to the Diagnos-
tics Manager for automatic decision making and incidents
notification fulfilling system requirement SR5. These two
modules must be adapted to the application on demand.
Moreover, the generated DEBUG, INFO, WARNING and
ERRORmessages are recorded by theLoggingmodule using
a RabbitMQ [49] queue that implements the Advanced Mes-
sage Queuing Protocol (AMQP). The logs are used to record
historical track of the process, ensuring SR6, and can either
be stored locally in the robot or in the cloud using a non-
relational Elasticsearch database [50]. This data has been later
used to obtain tests results and statistics.

The following Section shows how to include new ad-hoc
modules and tasks within the architecture. In particular, the
integration of manipulation strategies for enhancing pest
detection and treatment operations are presented.

V. MANIPULATION STRATEGIES FOR PEST DETECTION
AND TREATMENT
The high-level decision support system (in this case the IPM
strategy) defines the manipulation, inspection, and treatment
tasks to be performed. First, themobile platform needs to nav-
igate to the target plants as seen in Section 4-A. Once in front
of the plant, the robotic armmounted on the middle-top of the
mobile platform performs the corresponding pest inspection
or treatment task on right and left sides of the platform. This
Section presents the strategies taken, the execution workflow
and examples of simple plans for each manipulation task.
The tasks have been developed as plugins and represent stan-
dalone integration cases withing the architecture presented
here.

A. PEST INSPECTION TASK
The plant zones to be inspected and the number of pictures
that need to be taken at each zone are represented as the
Pest Monitoring Index (PMI) in Table 2 and Figure 9. Lower
and darker zones tend to provide more suitable habitats for
the pests, resulting on a higher number of pictures required.
As an example, in the high-up zone the robot must inspect
leaves above 1m (PMI6) and requires two pictures to be taken,
while in themiddle-bottom zone the robotmust inspect leaves
from bellow in between 0.5 m and 1 m (PMI2) and requires
4 pictures to be taken. A simple inspection plan is shown in
Figure 11.
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TABLE 2. Pest monitoring index for defining the number of pictures to
take at each plant zone.

FIGURE 9. The GreenPatrol robot appears facing the plant at the high-up
zone inspection position in Gazebo simulation.

The manipulation strategy for pest detection consists of
the workflow defined in Figure 10 (up). First, the arm
is moved to the next inspection zone. Second, the leaf
detector model and the RGBD image are used to find
leaves poses. If no leaf is found, the arm is moved to
the following inspection zone. Third, the arm approaches
the leaves found in the previous step and takes closer pic-
tures of them using the RGB autofocus camera. An algo-
rithm determines the quality of the picture. If the quality
is not good enough, the arm makes a predefined small
movement, and takes a new picture from there. This pro-
cess is repeated until all required plant zones have been
inspected.

The pictures taken in this process are saved locally on
the robot. After completing the plan, the pictures are sent
to the cloud, where a Deep Learning (DL) model has been
deployed to identify infection areas in the greenhouse offline.
The IPM strategy module uses the DL module results along

FIGURE 11. Example of a simple GreenPatrol inspection plan.

FIGURE 12. Example of a simple GreenPatrol spraying plan.

with additional information such as the current harvest season
conditions, the working area size, the size of the plant or legal
aspects on pesticides on the working country. As a result, new
inspection (Figure 11) and treatment (Figure 12) plans are
generated.

FIGURE 10. Manipulation strategies workflows for pest detection task (up) and pest treatment task (down).
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B. PEST TREATMENT TASK
The pest treatment process can be defined as the precise
spraying of pesticide on different plant zones (high, middle
and low), being the pesticide spraying dose at each plant
determined by IPM strategy as shown in the parameters field
in Figure 12.

The manipulation strategy is represented by the workflow
defined in Figure 10 (down). First, the arm is moved to the
next spraying zone. Second, the sprayer is activated and in
order to cover the whole plant zone, the manipulator performs
small, controlledmovements until the complete dose has been
sprayed. This process is repeated until all required plant zones
have been sprayed.

VI. SYSTEM VALIDATION
This section presents the validation tests performedwithin the
simulated and real greenhouses of 52×30m and 31 corridors

FIGURE 13. Details of the simulated environment in Gazebo simulator
with the robot performing navigation and inspection tasks.

between plants shown in Figure 13 and Figure 1 respectively.
The aim of these tests has been the assessment of the follow-
ing features: first, the correct integration of Robotframework
with the different robotic modules; second, successful execu-
tion of pest inspection and treatment plans; third, the logging
capabilities of the system to generate and use the collected
data; finally, the system requirements proposed in Table 1.

The results and the most remarkable conclusions are
detailed at the end of each test. Furthermore, the use of
Robotframework in an industrial application is presented to
demonstrate its adaptability and generalization.

A. GREENHOUSE SIMULATION TESTS
Gazebo simulator [51] has been used to simulate the
crops, robot sensory information (laser, images. . . ), physics
involved (collisions, inertia. . . ) and localization data (global
coordinates, errors. . . ). The leaves, despite realistic, do not
perfectly represent the real world and do not contain insects
on them. Thus, a simulated vision module for leaf detec-
tion provides their position. Also, the images used for val-
idating the pest detection and identification modules are
semi-randomly acquired from our custom dataset of labelled
images (a set not used for training the model) with infected
and healthy images. The same software as in the real scenario
has been used.

The simulation test presented in Figure 14 consists of the
following steps: First, an IPM algorithm generates a new semi
random scouting plan based on the greenhouse dimensions,
which in this case corresponds to 31 rows (R1-R31) in the
horizontal axis and 6 vertical zones that, in turn, consist of

FIGURE 14. Representation of the greenhouse inspected/sprayed zones during the different simulation test-steps: Initial semirandom scouting plan (up).
Scouting results representing the infected and healthy zones (middle). Spraying plan generated for infected zones (down).
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FIGURE 15. Log query results visualized in the Kibana user interface for the semirandom pest inspection test (up). The lower graphs
represent timing metrics obtained from navigation and inspection tasks during the scouting (down-left).

a bunch of plants. This plan presented in Figure 14 (up),
consists of 120 (navigation + inspection) targets to be per-
formed in the zones marked in blue. The plan is executed, the
log messages are generated and sent to the cloud through the
logger module. The results obtained from the data analyzed
is presented in Figure 14 (middle) where the green color
represents the healthy zones and the red color the infected
ones. From these results, the IPM algorithm can generate
a new spraying plan with 80 targets as seen in Figure 14
(down). The plan is executed, the results are logged, and the
results are analyzed again.

The log data is saved in non-relational databases and can be
accessed through elastic-search queries as seen in the Kibana
user interface presented in Figure 15 up marked in red. First,
the time frame at which the test was performed must be
defined. To filter the logs and search for specific information,
queries can be done to the database.

On the one hand, the graphs in Figure 15 present timing
metrics obtained from the inspection (down-left) and spray-
ing (down-right) plans execution. The observed navigation
time peaks occur when moving from one row to another.
Smaller navigation times reflect the movements to plants
nearby. We could for example capture the exact moment at
which the robot failed to reach a destination after aborting the
maximum number of trials (in this case three trials as shown
in Figure 15 up). When a navigation fails, the following task

is not performed, resulting on 119 successful inspection and a
single task skipped during the scouting plan execution. Also,
minimum, maximum, or average times for the different nav-
igation, inspection or, spraying tasks can be easily obtained
to analyze the system performance. The total simulation task
time consists of 1h 40min of the semi-random scouting plan
execution, 2h 24min of image analysis, and 47min of spraying
plan execution, resulting on 4h 51min test.

On the other hand, 1547 pictures were acquired and pro-
cessed during the test, resulting on a 98.25% of the green-
house being pest-free (green zones) and a 1.75% being
infected (red zones). Being the leaves positioning detection
and image acquisition modules simulated, the arm move-
ments are controlled resulting on all inspection tasks success.
Similarly, the spraying manipulation strategy is based on
prefixed arm movements and these movements are there-
fore always successful. The semi-randomly acquired pic-
tures could be used to partially validate the pest detec-
tion and identification module allowing the IPM module to
generate new spraying and treatment plans based on these
results.

Finally, it is interesting to remark that logs are available
as long as the databases are maintained allowing to analyze
information ex post. This enhances the traceability capabili-
ties by for example allowing to include new required queries
not overseen before.
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B. GREENHOUSE FIELD TESTS
The objective of the field tests is to ensure the integration
of the robot manipulation and perception modules with the
architecture in real operational conditions. The robot shown
in Figure 7 replaces the simulated one and the leaves detection
and pest inspection DL models are included. The rest of
the software remains the same as in the simulation tests.
To test the integration of robot manipulation, inspection, and
spraying functionalities two different tests-sets have been
performed:

The first tests-set consists of executing simple scouting
plans for inspecting the high zone of plants on the right and
on the left sides of the robot. As explained in Section 5-A,
the robot navigates to a plant, finds tomato leaves poses
and approaches them to take good-quality, closer pictures.
According to the Pest Monitoring Index in Table 2, the robot
should take 5 pictures in total, 2 from above the leaves (PMI6)
and 3 from bellow them (PMI3). The robot is teleoperated to

the next plant and the process is repeated 28 times resulting
in the acquisition of 140 pictures.

The log data is again and used to obtain different metrics
similarly as in the previous test. The total valid number of
pictures acquired depends first on the number of leaves found
during the FindLeavesStep. Most of the times plenty of leaves
are found as seen in the first row of Table 3.

However, bad illumination or closeness to leaves may
cause that not enough leaves are found as seen in Table 3
row 2. In that case, the subsequent closer approach to leaves
cannot take place resulting on 38 pictures missed during
this step. Among the closer acquired pictures, 27 had not
enough quality and where not valid for the pest detection
and identification model. This quality is measured through
different parameters such as blur, noise, and distortions of dif-
ferent intensities. Despite most of the analyzed pictures were
healthy images (64/75), it was possible to detect and identify
some Whitefly insects and Tuta Absoluta damaged areas on

TABLE 3. Image acquisition results acquired during the greenhouse field inspection tests.
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tomato leaves as seen in Table 3 third row. A summary with
the number of pictures desired, missed and finally acquired is
presented in Table 4.

TABLE 4. Acquired number of images and causes of missed pictures.

The second tests-set consists of executing 10 simple pest
treatment plans in which the high zone of plants on the left
and right sides of the robot have been sprayed as explained
in Section 5-B. The manipulation movements during the
spraying task are based on prefixed arm movements and have
been always successful.

C. ARCHITECTURE GENERALIZATION AND ADAPTABILITY
ASSESSMENT ON AN INDUSTRIAL USE CASE
The previous tests have shown how different tasks for pest
detection and treatment can share navigation functionali-
ties thanks to the architectures’ modular design based on
plugins. During the tests only the first navigation type
available in the presented framework has been used being
10 cm accuracy sufficient for a greenhouse navigation
solution. There are however other applications such as a
precise drilling or inspection operations, in which global
navigation must be supported by a more accurate pre-
cise navigation. For these cases, Robotframework supports
the possibility to use relative and/or precise navigation to
enhance themaneuverability and robot platform’s positioning
accuracy.

This is the case of the CRO-INSPECT European
project [52], which provides flexible assistive robotic inspec-
tion for complex composite parts (e.g. aileron). In this con-
text, the robot composed of the same Segwaymobile platform
and KUKA iiwa robot configuration shown in Figure 16,
uses the Robotframework architecture to perform the work-
flow presented in Figure 17: First, the robot freely navigates
through an industrial workspace to position in front of an
aileron with an average accuracy of 20 cm using the global
navigation.

Second, the robot improves its positions in front of the
aileron with an accuracy under 1 cm using markers and the
precise navigation module. Both navigation types have been
exhaustively tested, comparing different algorithms’ limita-
tions and capabilities in [53]. Third, the robot performs an
aileron inspection taskmaking use of the iiwa’s force sensors
and an ultrasonic inspection tool. Within a fourth step, the
robot uses the relative navigation module to move straight
and parallel to the aileron position. Then, the steps 2 to 4
are repeated until the complete aileron has been inspected.

FIGURE 16. The robotic solution for advanced inspection of complex
composite parts within the CRO-INSPECT project context.

FIGURE 17. Example of a simple CROINSPECT inspection plan.

We would like to remark that this application uses the same
here presented architecture, reusing the robot manager, GUI,
logging, and monitoring modules without any modification.

VII. DISCUSSION AND SUGGESTED IMPROVEMENTS
The greenhouse simulation tests have been used to validate:

The generation of pest inspection and treatment plans by
the IPM; the integration of Robotframework with naviga-
tion and manipulation modules; the execution of the IPM
generated plans (SR1, SR2, SR4); the proper notification
and continuation of the plan when a navigation fails (SR5);
manipulation strategies workflow for pest inspection and
treatment tasks.
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The greenhouse field tests have been used to validate the
execution of simple pest inspection and treatment plans on
robot’s right and left sides using the real perception modules
and spraying equipment (SR2, SR3, SR4).

In both cases the following additional validations have
been carried out: use of the GUI for starting the plan,
visualizing system status (SR7), and pausing, stopping,
or restarting the plan on demand; storage of logs in the cloud
and subsequent use of the logs to obtain metrics, monitor the
correct performance of the system and detect incidents (SR6).

The system requirements presented in Table 1 have
been obtained through the analysis of needs of a mobile
manipulator in a greenhouse environment. However, the
architecture has shown to be generic and not limited to the
application or robot configuration presented here. New agri-
cultural use cases could similarly make use of the architecture
to integrate their satellite-based open-field localization and
navigation modules reusing mechanisms such as the oper-
ation mode or the recovery behaviors. Once the navigation
target is reached, new inspection or dexterity tasks such as
weed removal or harvesting could be integrated using pre-
viously implemented tasks as templates. The architecture is
also valid for industrial robotic applications working in more
structured environments as presented in the CRO-INSPECT
aileron inspection use case.

The plans generated by the high-level decision modules
must keep a similar structure as shown in the plan exam-
ples in Figures 11, 12 and 17. The parametrization of the
proposed solution provides however a great extendibility and
adaptability. On the one hand, an application can decide
whether to skip the navigation step by setting the navigate
variable to false or using its different variances by setting
the corresponding NavigationTypes. Most common global,
relative, and precise navigation functionalities are already
provided by the framework and can be used on demand. The
number of NavigationTrials or the specific targetPoses can
be also set on demand for each individual step. On the other
hand, application specific tasks are developed independently
to the architecture without needing to modify or recompile
the core of the framework. New tasks are implemented using
the ROS pluginlib concept. These are dynamically loaded and
executed in runtime and provide behavior flexibility through
the param variables as shown in the pest inspection and
treatment plans. It is remarkable that the use cases presented
here completely decouple the navigation and manipulation
steps, while a combined solution is yet possible if required
within the task step of the state machine.

The use of ROSmakes the system hardware agnostic, being
possible to replace the mobile base, arm, sensors, or end-
effectors without affecting the architecture. In addition, the
available framework infrastructure with GUI, logging or
application management modules will significantly reduce
the time to build up a new robotic prototype with similar
requirements.

Finally, valuable observations have been obtained from
the greenhouse field tests. First, the number of movements

and pictures to be acquired depends on the number of leaves
found. In the real scenario this depends on the leaf detector
module which has faced the following challenges: closeness
to leaves reduces the camera field of view and therefore the
number of detected leaves; changes in the illumination also
reduces the number of detected leaves. Therefore, the leaf
detector DL model should be retrained with closer images,
perspectives, and illuminations in greenhouse environment.
Second, it was observed that most pictures analyzed during
the tests where healthy images despite some more plants
where actually infected. It should be possible to increase the
probabilities of acquiring infected leaves pictures by includ-
ing a Single Shot Detector (SSD) real time pest detector
model. This model could be combined with the current leaf
detector model to approach the most probable leaves with
pests first. In addition, some pictures had not enough quality
and where not valid for the pest detection model. In the future
the quality threshold must be increased.

VIII. CONCLUSION
The Robotframework architecture presents an innovative and
efficient solution that combines centralized high-level deci-
sion system, here represented by the IPM strategy, with a
robot able to navigate inside greenhouses without additional
infrastructure while performing early pest detection and con-
trol in an autonomous way. Robotframework includes addi-
tional logging, monitoring and error handling modules and an
intuitive GUI to manage instructions coded in JSON notation
which are human understandable and easily configurable to
load navigation or customized tasks on demand.

The architecture is based on ROS, and its modular design
in conjunction with the pluginlibs design makes it easy to
be reused in other contexts without needing to change the
main core of the architecture. The state machine presented
in the application layer is common for all applications but
the parametrizable plan generation and execution methods
makes it highly adaptable and extensible for new applications.
The architecture supports three different types of navigation
modes by default. Besides, three real scenario tasks were
presented: two agricultural tasks to detect and treat pests in
greenhouses, and an additional industrial task for an aileron
inspection.

Greenhouse simulation and field tests have been performed
to validate the architecture. Although a single simulation test
has been presented here, more than 60 hours of simulation
have been performed during the validation of the Green-
Patrol project. The field tests have been used to evaluate
manipulation, leaves detection and pest identification. The
project’s YouTube channel [54] contains audiovisual material
presenting the robot during the simulated and greenhouse val-
idation tests, the user interface and the achievements reached
during this almost 3 years project. Finally, the obtained
results have been discussed and used to identify the main
challenges entailing autonomous pest detection and treat-
ment tasks with robots in greenhouses and to propose future
work and improvements based on the experience acquired.
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We believe that the use of Robotframework can significantly
reduce the time to build up new mobile manipulator robotic
applications for other agriculture or industry related tasks.
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