26,568 research outputs found

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Full text link
    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a `basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.Comment: submitted to Scientific Repor

    Experimental demonstration of associative memory with memristive neural networks

    Get PDF
    When someone mentions the name of a known person we immediately recall her face and possibly many other traits. This is because we possess the so-called associative memory - the ability to correlate different memories to the same fact or event. Associative memory is such a fundamental and encompassing human ability (and not just human) that the network of neurons in our brain must perform it quite easily. The question is then whether electronic neural networks - electronic schemes that act somewhat similarly to human brains - can be built to perform this type of function. Although the field of neural networks has developed for many years, a key element, namely the synapses between adjacent neurons, has been lacking a satisfactory electronic representation. The reason for this is that a passive circuit element able to reproduce the synapse behaviour needs to remember its past dynamical history, store a continuous set of states, and be "plastic" according to the pre-synaptic and post-synaptic neuronal activity. Here we show that all this can be accomplished by a memory-resistor (memristor for short). In particular, by using simple and inexpensive off-the-shelf components we have built a memristor emulator which realizes all required synaptic properties. Most importantly, we have demonstrated experimentally the formation of associative memory in a simple neural network consisting of three electronic neurons connected by two memristor-emulator synapses. This experimental demonstration opens up new possibilities in the understanding of neural processes using memory devices, an important step forward to reproduce complex learning, adaptive and spontaneous behaviour with electronic neural networks

    Learning as a phenomenon occurring in a critical state

    Full text link
    Recent physiological measurements have provided clear evidence about scale-free avalanche brain activity and EEG spectra, feeding the classical enigma of how such a chaotic system can ever learn or respond in a controlled and reproducible way. Models for learning, like neural networks or perceptrons, have traditionally avoided strong fluctuations. Conversely, we propose that brain activity having features typical of systems at a critical point, represents a crucial ingredient for learning. We present here a study which provides novel insights toward the understanding of the problem. Our model is able to reproduce quantitatively the experimentally observed critical state of the brain and, at the same time, learns and remembers logical rules including the exclusive OR (XOR), which has posed difficulties to several previous attempts. We implement the model on a network with topological properties close to the functionality network in real brains. Learning occurs via plastic adaptation of synaptic strengths and exhibits universal features. We find that the learning performance and the average time required to learn are controlled by the strength of plastic adaptation, in a way independent of the specific task assigned to the system. Even complex rules can be learned provided that the plastic adaptation is sufficiently slow.Comment: 5 pages, 5 figure

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    The chronotron: a neuron that learns to fire temporally-precise spike patterns

    Get PDF
    In many cases, neurons process information carried by the precise timing of spikes. Here we show how neurons can learn to generate specific temporally-precise output spikes in response to input spike patterns, thus processing and memorizing information that is fully temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that is analytically-derived and highly efficient, and one that has a high degree of biological plausibility. We show how chronotrons can learn to classify their inputs and we study their memory capacity
    • …
    corecore