37 research outputs found

    The BIOMASS level 2 prototype processor : design and experimental results of above-ground biomass estimation

    Get PDF
    BIOMASS is ESA’s seventh Earth Explorer mission, scheduled for launch in 2022. The satellite will be the first P-band SAR sensor in space and will be operated in fully polarimetric interferometric and tomographic modes. The mission aim is to map forest above-ground biomass (AGB), forest height (FH) and severe forest disturbance (FD) globally with a particular focus on tropical forests. This paper presents the algorithms developed to estimate these biophysical parameters from the BIOMASS level 1 SAR measurements and their implementation in the BIOMASS level 2 prototype processor with a focus on the AGB product. The AGB product retrieval uses a physically-based inversion model, using ground-canceled level 1 data as input. The FH product retrieval applies a classical PolInSAR inversion, based on the Random Volume over Ground Model (RVOG). The FD product will provide an indication of where significant changes occurred within the forest, based on the statistical properties of SAR data. We test the AGB retrieval using modified airborne P-Band data from the AfriSAR and TropiSAR campaigns together with reference data from LiDAR-based AGB maps and plot-based ground measurements. For AGB estimation based on data from a single heading, comparison with reference data yields relative Root Mean Square Difference (RMSD) values mostly between 20% and 30%. Combining different headings in the estimation process significantly improves the AGB retrieval to slightly less than 20%. The experimental results indicate that the implemented retrieval scheme provides robust results that are within mission requirements

    The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space

    Get PDF
    The primary objective of the European Space Agency's 7th Earth Explorer mission, BIOMASS, is to determine the worldwide distribution of forest above-ground biomass (AGB) in order to reduce the major uncertainties in calculations of carbon stocks and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with Land Use Change, forest degradation and forest regrowth. To meet this objective it will carry, for the first time in space, a fully polarimetric P-band synthetic aperture radar (SAR). Three main products will be provided: global maps of both AGB and forest height, with a spatial resolution of 200 m, and maps of severe forest disturbance at 50 m resolution (where “global” is to be understood as subject to Space Object tracking radar restrictions). After launch in 2022, there will be a 3-month commissioning phase, followed by a 14-month phase during which there will be global coverage by SAR tomography. In the succeeding interferometric phase, global polarimetric interferometry Pol-InSAR coverage will be achieved every 7 months up to the end of the 5-year mission. Both Pol-InSAR and TomoSAR will be used to eliminate scattering from the ground (both direct and double bounce backscatter) in forests. In dense tropical forests AGB can then be estimated from the remaining volume scattering using non-linear inversion of a backscattering model. Airborne campaigns in the tropics also indicate that AGB is highly correlated with the backscatter from around 30 m above the ground, as measured by tomography. In contrast, double bounce scattering appears to carry important information about the AGB of boreal forests, so ground cancellation may not be appropriate and the best approach for such forests remains to be finalized. Several methods to exploit these new data in carbon cycle calculations have already been demonstrated. In addition, major mutual gains will be made by combining BIOMASS data with data from other missions that will measure forest biomass, structure, height and change, including the NASA Global Ecosystem Dynamics Investigation lidar deployed on the International Space Station after its launch in December 2018, and the NASA-ISRO NISAR L- and S-band SAR, due for launch in 2022. More generally, space-based measurements of biomass are a core component of a carbon cycle observation and modelling strategy developed by the Group on Earth Observations. Secondary objectives of the mission include imaging of sub-surface geological structures in arid environments, generation of a true Digital Terrain Model without biases caused by forest cover, and measurement of glacier and icesheet velocities. In addition, the operations needed for ionospheric correction of the data will allow very sensitive estimates of ionospheric Total Electron Content and its changes along the dawn-dusk orbit of the mission

    Analysis of Polarimetric Synthetic Aperture Radar and Passive Visible Light Polarimetric Imaging Data Fusion for Remote Sensing Applications

    Get PDF
    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single bounce occurs from flat surfaces like lakes, rivers, bare soil, and oceans. Double bounce can be observed from two adjacent surfaces where one horizontal flat surface is near a vertical surface such as buildings and other vertical structures. Randomly oriented scatters in homogeneous media produce a multiple bounce scattering effect which occurs in forest canopies and vegetated areas. Relationships between Pauli color components from PolSAR and Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging are established using real measurements. Results show higher values of the red channel in Pauli color image (|HH-VV|) correspond to high DOLP from double bounce effect. A novel information fusion technique is applied to combine information from the two modes. In this research, it is demonstrated that the Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging can be used for separation of the classes in terms of scattering mechanisms from the PolSAR data. The separation of these three classes in terms of the scattering mechanisms has its application in the area of land cover classification and anomaly detection. The fusion of information from these particular two modes of imaging, i.e. PolSAR and passive visible light polarimetric imaging, is a largely unexplored area in remote sensing and the main challenge in this research is to identify areas and scenarios where information fusion between the two modes is advantageous for separation of the classes in terms of scattering mechanisms relative to separation achieved with only PolSAR

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Coherent Change Detection Under a Forest Canopy

    Get PDF
    Coherent change detection (CCD) is an established technique for remotely monitoring landscapes with minimal vegetation or buildings. By evaluating the local complex correlation between a pair of synthetic aperture radar (SAR) images acquired on repeat passes of an airborne or spaceborne imaging radar system, a map of the scene coherence is obtained. Subtle disturbances of the ground are detected as areas of low coherence in the surface clutter. This thesis investigates extending CCD to monitor the ground in a forest. It is formulated as a multichannel dual-layer coherence estimation problem, where the coherence of scattering from the ground is estimated after suppressing interference from the canopy by vertically beamforming multiple image channels acquired at slightly different grazing angles on each pass. This 3D SAR beamforming must preserve the phase of the ground response. The choice of operating wavelength is considered in terms of the trade-off between foliage penetration and change sensitivity. A framework for comparing the performance of different radar designs and beamforming algorithms, as well as assessing the sensitivity to error, is built around the random-volume-over-ground (RVOG) model of forest scattering. If the ground and volume scattering contributions in the received echo are of similar strength, it is shown that an L-band array of just three channels can provide enough volume attenuation to permit reasonable estimation of the ground coherence. The proposed method is demonstrated using an RVOG clutter simulation and a modified version of the physics-based SAR image simulator PolSARproSim. Receiver operating characteristics show that whilst ordinary single-channel CCD is unusable when a canopy is present, 3D SAR CCD permits reasonable detection performance. A novel polarimetric filtering algorithm is also proposed to remove contributions from the ground-trunk double-bounce scattering mechanism, which may mask changes on the ground near trees. To enable this kind of polarimetric processing, fully polarimetric data must be acquired and calibrated. Motivated by an interim version of the Ingara airborne imaging radar, which used a pair of helical antennas to acquire circularly polarised data, techniques for the estimation of polarimetric distortion in the circular basis are investigated. It is shown that the standard approach to estimating cross-talk in the linear basis, whereby expressions for the distortion of reflection-symmetric clutter are linearised and solved, cannot be adapted to the circular basis, because the first-order effects of individual cross-talk parameters cannot be distinguished. An alternative approach is proposed that uses ordinary and gridded trihedral corner reflectors, and optionally dihedrals, to iteratively estimate the channel imbalance and cross-talk parameters. Monte Carlo simulations show that the method reliably converges to the true parameter values. Ingara data is calibrated using the method, with broadly consistent parameter estimates obtained across flights. Genuine scene changes may be masked by coherence loss that arises when the bands of spatial frequencies supported by the two passes do not match. Trimming the spatial-frequency bands to their common area of support would remove these uncorrelated contributions, but the bands, and therefore the required trim, depend on the effective collection geometry at each pixel position. The precise dependence on local slope and collection geometry is derived in this thesis. Standard methods of SAR image formation use a flat focal plane and allow only a single global trim, which leads to spatially varying coherence loss when the terrain is undulating. An image-formation algorithm is detailed that exploits the flexibility offered by back-projection not only to focus the image onto a surface matched to the scene topography but also to allow spatially adaptive trimming. Improved coherence is demonstrated in simulation and using data from two airborne radar systems.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202

    SensibilitĂ© des observables radars Ă  la variabilitĂ© temporelle et Ă  la configuration gĂ©omĂ©trique de forĂȘts tempĂ©rĂ©es et tropicales Ă  partir de mesure de proximitĂ© haute-rĂ©solution

    Get PDF
    L'augmentation importante de la population mondiale, et par consĂ©quent de ses besoins, exerce une pression de plus en plus importante sur les surfaces forestiĂšres. L'outil le mieux adaptĂ© au suivi des forĂȘts, Ă  l'Ă©chelle du globe, est la tĂ©lĂ©dĂ©tection. C'est dans ce contexte que se situe ce travail de thĂšse, qui vise Ă  amĂ©liorer l'estimation des paramĂštres biophysiques des arbres Ă  partir de donnĂ©es de tĂ©lĂ©dĂ©tection. L'originalitĂ© de ce travail a Ă©tĂ© d'Ă©tudier cette estimation des paramĂštres biophysiques en menant plusieurs Ă©tudes de sensibilitĂ© avec une dĂ©marche expĂ©rimentale sur des donnĂ©es expĂ©rimentales et sur des donnĂ©es simulĂ©es. Tout d'abord, l'Ă©tude s'est portĂ©e sur des sĂ©ries temporelles de mesures de diffusiomĂ©trie radar obtenues sur deux sites : l'un constituĂ© d'un cĂšdre en zone tempĂ©rĂ©e et l'autre d'une parcelle de forĂȘt tropicale. Puis, cette Ă©tude de sensibilitĂ© a Ă©tĂ© poursuivie en imageant, avec une rĂ©solution Ă©levĂ©e, plusieurs parcelles aux configurations diffĂ©rentes Ă  l'intĂ©rieur d'une forĂȘt de pin. Enfin, des donnĂ©es optiques et radars simulĂ©es ont Ă©tĂ© fusionnĂ©s afin d'Ă©valuer l'apport de la fusion de donnĂ©es optique et radar dans l'inversion des paramĂštres biophysiques.The significant increase of the world population, and therefore its needs, pushes increasingly high in forest areas. The best tool for monitoring forest across the globe is remote sensing. It is in this context that this thesis, which aims to improve the retrieval of biophysical parameters of trees from remote sensing data, takes place. The originality of this work was to study the estimation of biophysical parameters across multiple sensitivity studies on experimental data and simulated data. First, the study focused on the time series of radar scatterometry measurements obtained on two sites: one characterized by a cedar in the temperate zone and the other by a forest plot of rainforest. Then, the sensitivity analysis was continued by imaging with high resolution, several forest plots with different configurations within a pine forest. Finally, simulated radar and optical data were combined to evaluate the contribution of optical and radar data fusion in the inversion of biophysical parameters.RENNES1-Bibl. Ă©lectronique (352382106) / SudocSudocFranceF

    An electromagnetic simulator for sentinel-3 sar altimeter waveforms over land part ii: forests

    Get PDF
    Forests play a crucial role in the climate change mitigation by acting as sinks for carbon and, consequently, reducing the CO2 concentration in the atmosphere and slowing global warming. For this reason, above ground biomass (AGB) estimation is essential for effectively monitoring forest health around the globe. Although remote sensing–based forest AGB quantification can be pursued in different ways, in this work we discuss a new technique for vegetation observation through the use of altimetry data that has been introduced by the ESA-funded ALtimetry for BIOMass (ALBIOM) project. ALBIOM investigates the possibility of retrieving forest biomass through Copernicus Sentinel-3 Synthetic Aperture Radar Altimeter (SRAL) measurements at Ku- and C-bands in low- and high-resolution mode. To reach this goal, a simulator able to reproduce the altimeter acquisition system and the scattering phenomena that occur in the interaction of the radar altimeter pulse with vegetated surfaces has been developed. The Tor Vergata Vegetation Scattering Model (TOVSM) developed at Tor Vergata University has been exploited to simulate the contribution from the vegetation volume via the modelling of the backscattering of forest canopy through a discrete scatterer representation. A modification of the SAVERS (Soil And Vegetation Reflection Simulator) simulator developed by the team for Global Navigation Satellite System Reflectometry over land has also been taken into account to simulate the soil contribution

    Growing stock volume estimation in temperate forsted areas using a fusion approach with SAR Satellites Imagery

    Get PDF
    Forest monitoring plays a central role in the context of global warming mitigation and in the assessment of forest resources. To meet these challenges, significant efforts have been made by scientists to develop new feasible remote sensing techniques for the retrieval of forest parameters. However, much work remains to be done in this area, in particular in establishing global assessments of forest biomass. In this context, this Ph.D. Thesis presents a complete methodology for estimating Growing Stock Volume (GSV) in temperate forested areas using a fusion approach based on Synthetic-Aperture Radar (SAR) satellite imagery. The investigations which were performed focused on the Thuringian Forest, which is located in Central Germany. The satellite data used are composed of an extensive set of L-band (ALOS PALSAR) and X-band (TerraSAR-X, TanDEM-X, Cosmo-SkyMed) images, which were acquired in various sensor configurations (acquisition modes, polarisations, incidence angles). The available ground data consists of a forest inventory delivered by the local forest offices. Weather measurements and a LiDAR DEM complete the datasets. The research showed that together with the topography, the forest structure and weather conditions generally limited the sensitivity of the SAR signal to GSV. The best correlations were obtained with ALOS PALSAR (R2 = 0.61) and TanDEM-X (R2 = 0.72) interferometric coherences. These datasets were chosen for the retrieval of GSV in the Thuringian Forest and led with regressions to an root-mean-square error (RMSE) in the range of 100─200 m3ha-1. As a final achievement of this thesis, a methodology for combining the SAR information was developed. Assuming that there are sufficient and adequate remote sensing data, the proposed fusion approach may increase the biomass maps accuracy, their spatial extension and their updated frequency. These characteristics are essential for the future derivation of accurate, global and robust forest biomass maps
    corecore