

THÈSE / UNIVERSITÉ DE RENNES 1

sous le sceau de l'Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L'UNIVERSITÉ DE RENNES 1

Mention : Traitement du signal

Ecole doctorale MATISSE

présentée par

Clément Albinet

Préparée à

l'Office National d'Etudes et de Recherches Aérospatiales (ONERA), au Département Electro-Magnétisme et Radar, dans l'unité de recherche Radio-Communications et Propagation

Sensibilité des observables radars à la variabilité temporelle et à la configuration géométrique de forêts tempérées et tropicales à partir de mesure de proximité haute-résolution. Extension à la simulation dans la perspective de fusion de données radaroptiques.

Thèse soutenue à Toulouse le 16 décembre 2013

devant le jury composé de :

Eric MOUGIN Directeur de Recherche au GET / rapporteur Jocelyn CHANUSSOT Professeur à Grenoble INP / rapporteur

Fabio ROCCA

Professeur à Politecnico di Milano / examinateur Carole NAHUM

Ingénieur à la DGA / examinatrice

Pascale DUBOIS-FERNANDEZ

Ingénieur de Recherche à l'ONERA / encadrante **Pierre BORDERIES**

Ingénieur de Recherche à l'ONERA / co-directeur de thèse

Eric POTTIER

Professeur de l'Université de Rennes 1 / *directeur de thèse*

Encyclopédie manuscrite contenant des illustrations allégoriques et médicales, Bibliothèque du Congrès Américain, Rosenwald 4, Bl. 5r, 1410.

"Dicebat Bernardus Carnotensis nos esse quasi nanos, gigantium humeris insidentes, ut possimus plura eis et remotiora videre, non utique proprii visus acumine, aut eminentia corporis, sed quia in altum subvenimur et extollimur magnitudine gigantea."

"Bernard de Chartres disait que nous sommes comme des nains sur des épaules de géants, de sorte que nous puissions voir plus qu'eux, et des choses à une plus grande distance, et non pas en vertu d'une netteté de la vue de notre part, ou de toute distinction physique, mais parce que nous sommes portés hauts et élevés par leur taille gigantesque."

John of Salisbury, Metalogicon, 1159.

Sommaire

LISTE DES ABREVIATIONS ET ACRONYMES

INTRODUCTION			
CHAPITR	RE I – CONTEXTE DU TRAVAIL DE RECHERCHE	9	
1.1.	IMPORTANCE DU SUIVI DE LA BIOMASSE FORESTIERE	9	
1.2.	INTERET DE LA BANDE P DANS L'ETUDE DES FORETS PAR TELEDETECTION RADAR	10	
1.3.	MECANISMES DE RETRODIFFUSION RADAR A L'INTERIEUR DES FORETS	12	
1.4.	STRATEGIES D'INVERSION A L'AIDE DES DONNEES RADAR	16	
1.5.	VARIABILITE DANS LE TEMPS DES DONNEES RADAR	20	
1.6.	APPORT DES DONNEES OPTIQUES POUR L'INVERSION DES PARAMETRES BIOPHYSIQUES	21	
CHAPITR	RE II – OUTILS EXPERIMENTAUX ET INFORMATIQUES DEVELOPPES	23	
2.1.	EXPERIMENTATIONS DE SUIVI TEMPOREL EN DIFFUSIOMETRIE	23	
2.2.	CAMPAGNES DE MESURES TOMOGRAPHIQUES IN SITU	30	
2.3.	META-MODELE OPTIQUE-RADAR ET ANALYSE DE DONNEES		
2.4.	AUTRES EXPERIMENTATIONS	39	
CHAPITR	RE III - ANALYSE DE SENSIBILITE A PARTIR DE DONNEES RADAR EXPERIMENTALES ET DE DO	ONNEES	
OPTIQUE	E ET RADAR SIMULEES	45	
3 1	SUNVETEMPOREE DE LA REPONSE RADAR D'UN ARRE SEUE EN ZONE TEMPEREE ET D'UNE PARCELLE DE FORET	ΓΤΡΟΡΙΟΔΙ Ε45	
3.2	FTUDE DE SENSIBILITE A L'AIDE DE DONNEES IN SITU TOMOGRAPHIQUES VERTICALES HAUTE RESOLUTION	55	
3.3.	APPORT DE LA EUSION DE DONNEES OPTIQUE-RADAR DANS L'INVERSION DES PARAMETRES BIOPHYSIQUES		
CONCLUS	SION ET PERSPECTIVES	63	
	SION ET PERSPECTIVES	63 67	
CONCLUS RECUEIL	SION ET PERSPECTIVES DES PUBLICATIONS	63 67	
CONCLUS RECUEIL PUBLIC	SION ET PERSPECTIVES DES PUBLICATIONS ATION 1	63 	
CONCLUS RECUEIL PUBLICA PUBLICA PUBLICA	SION ET PERSPECTIVES DES PUBLICATIONS ATION 1 ATION 2 ATION 3	63 67 	
CONCLUS RECUEIL PUBLIC. PUBLIC. PUBLIC. PUBLIC.	SION ET PERSPECTIVES	63 67 	
CONCLUS RECUEIL PUBLIC PUBLIC PUBLIC PUBLIC	SION ET PERSPECTIVES		
CONCLUS RECUEIL PUBLICA PUBLICA PUBLICA PUBLICA PUBLICA	SION ET PERSPECTIVES DES PUBLICATIONS ATION 1 ATION 2 ATION 3 ATION 4 ATION 5 ATION 6		
CONCLUS RECUEIL PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC	SION ET PERSPECTIVES DES PUBLICATIONS ATION 1 ATION 2 ATION 3 ATION 4 ATION 5 ATION 6 ATION 7		
CONCLUS RECUEIL PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC	SION ET PERSPECTIVES DES PUBLICATIONS CATION 1 CATION 2 CATION 3 CATION 4 CATION 5 CATION 6 CATION 7 CATION 8		
CONCLUS RECUEIL PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC	SION ET PERSPECTIVES DES PUBLICATIONS ATION 1 ATION 2 ATION 3 ATION 4 ATION 5 ATION 6 ATION 7 ATION 8 S		
CONCLUS RECUEIL PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC ANNEXES	SION ET PERSPECTIVES		
CONCLUS RECUEIL PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC ANNEXES 1. A 2. A	SION ET PERSPECTIVES DES PUBLICATIONS ATION 1 ATION 2 ATION 3 ATION 3 ATION 4 ATION 5 ATION 6 ATION 7 ATION 8 S ANNEXE PROCEDURE D'ACQUISITION TROPISCAT ET RESEAU D'ANTENNES ANNEXE MESURES TOMOGRAPHIQUES EXHAUSTIVES.		
CONCLUS RECUEIL PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC ANNEXES 1. 4 2. 4 3. 4	SION ET PERSPECTIVES		
CONCLUS RECUEIL PUBLICA PUBLICA PUBLICA PUBLICA PUBLICA PUBLICA PUBLICA PUBLICA PUBLICA ANNEXES 1. A 2. A 3. A 4. A	SION ET PERSPECTIVES DES PUBLICATIONS ATION 1 ATION 2 ATION 3 ATION 4 ATION 5 ATION 6 ATION 7 ATION 7 ATION 8 S ANNEXE PROCEDURE D'ACQUISITION TROPISCAT ET RESEAU D'ANTENNES ANNEXE MESURES TOMOGRAPHIQUES EXHAUSTIVES ANNEXE CORRECTION DE LA PROPAGATION RADAR	63 67 	
CONCLUS RECUEIL PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC SANNEXES 1. 4 2. 4 3. 4 4. 4	SION ET PERSPECTIVES DES PUBLICATIONS ATION 1 ATION 2 ATION 2 ATION 3 ATION 4 ATION 5 ATION 5 ATION 6 ATION 7 ATION 8 S ANNEXE PROCEDURE D'ACQUISITION TROPISCAT ET RESEAU D'ANTENNES ANNEXE MESURES TOMOGRAPHIQUES EXHAUSTIVES. ANNEXE MESURES TOMOGRAPHIQUES EXHAUSTIVES. ANNEXE MESURES TOMOGRAPHIQUES EXHAUSTIVES. ANNEXE CORRECTION DE LA PROPAGATION RADAR. ANNEXE PROGRAMME D'ACQUISITION TROPISCAT		
CONCLUS RECUEIL PUBLICA PUB	SION ET PERSPECTIVES DES PUBLICATIONS ATION 1 ATION 2 ATION 2 ATION 3 ATION 4 ATION 5 ATION 5 ATION 6 ATION 7 ATION 7 ATION 8 S ANNEXE PROCEDURE D'ACQUISITION TROPISCAT ET RESEAU D'ANTENNES ANNEXE MESURES TOMOGRAPHIQUES EXHAUSTIVES ANNEXE MESURES TOMOGRAPHIQUES EXHAUSTIVES ANNEXE CORRECTION DE LA PROPAGATION RADAR. ANNEXE PROGRAMME D'ACQUISITION TRESCAT ANNEXE PROGRAMME D'ACQUISITION TROPISCAT =	63 67 93 103 103 145 145 145 161 161 169 171 181 203 215 227 241	

Liste des abréviations et acronymes

2D	2 Dimensions		
3D	3 Dimensions		
ACP	Analyse en Composantes Principales		
ALOS	Advanced Land Observing Satellite		
CAI	Cellulose Absorption Index		
CESBIO	Centre d'Etudes Spatiales de la BIOsphère		
CIRAD	Centre de coopération internationale en recherche agronomique pour le		
	développement		
CNES	Centre National d'Etudes Spatiales		
Compact pol	Polarisation Compacte (une polarisation droite et une polarisation croisée)		
CSV	Comma Separated Values		
DART	Discrete Anisotropic Radiative Transfer model		
dB	Décibel		
DEMR	Département Electro-Magnétisme et Radar		
DOTA	Département d'Optique Théorique et Appliquée		
ENVISAT	ENVIronment SATellite		
ERS	European Remote-Sensing satellite		
ESA	European Space Agency		
FORTRAN	FORmula TRANslator		
Full Pol	Polarisation Complète (4 polarisations)		
GHz	Giga Hertz (10 ⁹ Hertz)		
Go	Giga octet (10 ⁹ Octets)		
GPS	Global Positioning System		
GVMI	Global Vegetation Moisture Index		
На	Hectare		
HH	Réception et transmission en polarisation horizontale		
HV	Réception en polarisation horizontale et transmission en polarisation verticale		
INSA	l'Institut National des Sciences Appliquées		
IPCC	Intergovernmental Panel on Climate Change		
ITU	International Telecommunication Union		
JERS	Japanese Earth Resources Satellite		
kHz	kilo Hertz (10 ³ Hertz)		
ko	kilo octet (10 ³ Octets)		
LAD	Leaf Area Density		
LAI	Leaf Area Index		
MHz	Méga Hertz (10 ⁶ Hertz)		
MIPERS	Multistatic Interferometric Polarimetric Electromagnetic model for Remote Sensing		
MNT	Modèle Numérique de Terrain		
Мо	Méga octet (10 ⁶ Octets)		
NDVI	Normalized Difference Vegetation Index		
NINSOL	Normalized Index of Nswir domain for Smc estimatiOn from Linear correlation		

N° d'ordre : UEB/UR1 01-2013

ONERA	Office National d'Etudes et de Recherches Aérospatiales	
ONF	Office National des Forêts	
PALSAR	Phased Array type L-band Synthetic Aperture Radar	
PC	Personal Computer	
POLIMI	POLItecnico di Milano	
PolInSAR	Polarimetric and Interferometric Synthetic Aperture Radar	
PRF	Projet de Recherche Fédérateur	
RADAR	RAdio Detection And Ranging	
RADARSAT	RADAR SATellite	
REDD	Reducing Emissions from Deforestation and forest Degradation	
RF	RadioFréquence	
SAR	Synthetic Aperture Radar	
SER	Section Equivalente Radar	
SLC	Single Look Complex	
TropiSAR	Tropical Synthetic Aperture Radar	
TropiScat	Tropical Scatterometer	
UNFCCC	United Nations Framework Convention on Climate Change	
USB	Universal Serial Bus	
VH	Réception en polarisation verticale et transmission en polarisation Horizontale	
VNA	Vector Network Analyzer	
VV	Réception et transmission en polarisation Verticale	

Introduction

En 1960, l'humanité comptait 3 milliards d'êtres humains. Elle en compte 7 milliards en 2013, et les prévisions tablent sur une population mondiale de 10 milliards d'individus en 2050. L'augmentation de cette population mondiale, et par conséquent de ses besoins, exerce une pression de plus en plus importante sur les surfaces de forêt.

En effet, les forêts sont d'une importance capitale pour l'espèce humaine.

- Elles font partie du cycle de carbone en fixant, grâce à la photosynthèse, le CO2 émis par la respiration animale. De plus, les forêts, tout comme les océans, agissent comme un fixateur d'une très grande partie de la pollution émise par l'homme.
- De par leur biomasse, et donc le carbone qu'elles contiennent, les forêts jouent un rôle fondamental dans les changements climatiques à l'échelle du globe.
- Les forêts sont aujourd'hui une ressource importante pour l'homme : des matières premières et de l'énergie, des essences d'arbres et des animaux pour la pharmacopée par exemple, une réserve génétique de par la biodiversité que l'on y rencontre.
- La surface qu'elles occupent représente une réserve de terres fertiles exploitable pour l'agriculture ou pour l'expansion des villes.

Ainsi, les forêts sont au centre de plusieurs enjeux et thématiques, avec entre autre :

- Des enjeux économiques comme l'exploitation forestière en tant que source de matières premières et d'énergie, tels le bois ou le charbon de bois.
- Des enjeux politiques et écologiques dans le cas de la déforestation, utilisée pour créer de nouvelles surfaces agricoles ou urbaines.
- Des enjeux légaux, comme par exemple pour la vérification du respect de la loi dans le cas de d'industrie ayant un impact fort sur les zones forestières (mines de bauxite, etc.)
- Des enjeux scientifiques à travers la cartographie, c'est-à-dire la connaissance des propriétés et des caractéristiques des zones de forêts, ou la biologie en tant qu'étude des mécanismes biophysiques des arbres, de la forêt elle-même et des animaux vivant à l'intérieur de celle-ci.
- Des enjeux militaires comme la détection de cibles dans la forêt, la détection de changements, la connaissance de la traficabilité liée à l'état du sol dans la forêt.
- Des enjeux de sécurité au travers de thématiques telles que la surveillance des frontières, le suivi des incendies de forêts, la détection et le suivi de l'orpaillage.

L'outil le mieux adapté pour répondre à cette problématique de la connaissance et du suivi des forêts est la télédétection, optique ou radar, aéroportée ou satellitaire. En effet, la télédétection, aéroportée, et à plus juste titre satellitaire, permet d'imager de grandes surfaces, notamment des zones difficilement accessibles par d'autres moyens, avec une répétitivité variable, de l'ordre de quelques jours à plusieurs semaines.

La télédétection radar, quant à elle, permet d'acquérir des images par tout temps, même lorsque des nuages sont présents au dessus de la zone à imager. Cela est particulièrement important pour les zones tropicales et équatoriales qui sont inaccessibles aux capteurs optiques durant une grande partie de l'année. De plus, les ondes radar basse fréquence pénètrent sous le couvert forestier et atteignent le sol avec une atténuation relativement faible. Du fait de ces deux propriétés le radar basse fréquence est l'outil privilégié pour l'observation de la forêt. En bande P, c'est-à-dire pour une longueur d'onde de l'ordre de 70 cm, les ondes radar traversent la canopée. Ainsi, un radar en bande P aéroporté rend faisable la détection fine des cibles sous le couvert forestier de par sa résolution élevée, de l'ordre du mètre. Dans l'espace, il n'existe pas de tel radar imageur et la mission BIOMASS, dont le lancement est prévu en 2019, sera le premier radar en bande P satellitaire. Cet instrument, dont la mission principale est de cartographier la biomasse des forêts de façon bisannuelle à l'échelle mondiale, permettra entre autres objectifs secondaires, d'estimer l'humidité des sols et la salinité des océans, ainsi que d'étudier les zones arides et les zones de glace.

Ce travail de thèse se situe dans le cadre de l'inversion des paramètres biophysiques des forêts tropicales et tempérées, tels que la biomasse, la répartition du contenu en eau dans la canopée, ou l'humidité du sol. L'inversion de ces paramètres semble pouvoir être menée à l'aide de données radar en bande P uniquement, mais la question de l'apport de données optiques hyperspectrales, en particulier dans le visible et l'infrarouge, pour améliorer cette inversion, peut se poser. En préalable, la stratégie adoptée a été d'étudier la sensibilité des données radar et dans une moindre mesure optiques aux paramètres biophysiques et structuraux des forêts. Pour le radar, on a eu une approche surtout expérimentale, alors que pour la complémentarité radar/optique on a dû se restreindre à une approche purement modélisation.

Dans un premier temps, le **chapitre 1** présente le contexte de la thèse, avec l'importance de l'étude des forêts. Certains aspects évoqués précédemment seront détaillés dans ce chapitre, comme les différentes techniques radar permettant d'estimer les paramètres biophysiques, leurs limites, ainsi que l'intérêt des données optiques afin de mener à bien une telle étude.

Puis, un bilan technique et une description détaillée des expérimentations et des outils informatiques mis en place durant la thèse seront présentés dans le **chapitre 2**. Cette partie du travail, qui n'a pas sa place dans les articles scientifiques de par son côté technique, constitue pourtant une part importante du travail de thèse.

Ensuite, les résultats obtenus à l'aide des expérimentations et modélisations seront présentés dans le **chapitre 3**. Tout d'abord, l'étude de sensibilité menée sur des données expérimentales sera menée à l'aide de séries temporelles de mesures de diffusiométrie radar sur un cèdre en zone tempérée et sur une parcelle de forêt tropicale. Puis, cette étude de sensibilité sera poursuivie en imageant, avec une résolution élevée, plusieurs parcelles aux configurations différentes à l'intérieur

d'une forêt de pin. Enfin, des données optiques et radars simulées seront fusionnés afin d'évaluer l'apport de la fusion de données optique et radar dans l'inversion des paramètres biophysiques.

Finalement, la **conclusion** permettra de conclure sur ces travaux et de dresser les perspectives tant expérimentales qu'algorithmiques.

Le manuscrit s'articule autour de 8 publications qui sont donnés dans le chapitre **Recueil de publications**, après la conclusion, et qui détaillent l'ensemble des résultats obtenus pendant cette thèse. Les 5 premières sont à caractère expérimental, tandis que les trois dernières concernent la modélisation.

La **publication 1** présente les résultats obtenus dans le cadre de la campagne TreeScat, une campagne de mesures radar temporelles de proximité effectuée sur un cèdre en zone tempérée. Cette campagne vise à étudier la variabilité au cours du temps et en fonction des divers paramètres environnementaux le signal HV en intensité et en cohérence temporelle.

La **publication 2** présente quant à elle l'expérimentation TropiScat, qui consiste dans le suivi temporel de la réponse radar (intensité, cohérence temporelle) d'une parcelle de forêt tropicale pour les diverses polarisations, soit à partir de réponses impulsionnelles multiples, soit à partir d'images verticales.

L'étude de séries temporelles de coefficient de rétrodiffusion et de cohérence temporelle obtenues avec cette expérimentation TropiScat pour les saisons sèche et humide est présentée dans la **publication 3**.

Dans la **publication 4**, une étude de l'influence de la baseline temporelle sur la cohérence radar mesurée dans le cadre de l'expérimentation TropiScat est menée également sur les deux saisons.

La **publication 5** présente les résultats obtenus lors d'une campagne de proximité de mesures tomographiques radar à haute résolution, également polarimétriques, sur des parcelles de forêt de pin : ici, c'est la variabilité spatiale des réponses qui est visée.

La **publication 6** concerne la comparaison entre les données issues du modèle électromagnétique utilisé pour la simulation des données radar et les données acquises lors d'une campagne aéroportée sur la forêt amazonienne.

La **publication 7** présente le simulateur de données optique-radar de forêt qui permet d'obtenir les observables issues des deux techniques à partir de données d'entrée identiques.

Finalement, dans la **publication 8**, les données simulées sont fusionnées et traitées à partir de techniques de classification génériques afin d'évaluer l'apport de données conjointes optiques et radar.

Publications présentes dans le recueil des publications

- [Publication 1] Albinet, C.; Borderies, P. et Floury, N.; "Measurements of Temporal Variation of Intensity and Phase Scattering by Trees at P-Band", IJRS, (*sera soumise à la date de la soutenance*).
- [Publication 2] Albinet, C.; Borderies, P.; Koleck, T.; Rocca, F.; Tebaldini, S.; Villard, L.; Le Toan, T.; Hamadi, A. et Ho Tong Minh, D.; "TropiSCAT: A Ground Based Polarimetric Scatterometer Experiment in Tropical Forests", IEEE JSTARS, Vol. 5, No. 3, Juin 2012.
- [Publication 3] Hamadi, A.; Albinet, C.; Borderies, P.; Koleck, T.; Villard, L.; Ho Tong Minh, D. et Le Toan, T.; "Temporal survey of polarimetric P-Band scattering of tropical forests", TGRS, 2013 (acceptée).
- [Publication 4] Hamadi, A.; Borderies, P.; Albinet, C.; Koleck, T.; Villard, L.; Le Toan, T.; Ho Tong Minh, D. et Burban, B.; "Temporal Coherence of Tropical Forests at P-Band: Dry and Rainy Seasons", GRSL, 2013 (acceptée sous réserve de révisions mineures).
- [Publication 5] Albinet, C.; Borderies, P.; Hamadi, A.; Dubois-Fernandez, P.; Koleck, T. et Angelliaume, S.; "High Resolution Vertical Polarimetric Imaging of Pine Forests", Radio Science, 2013, (acceptée sous reserve de révisions mineures).
- **[Publication 6]** Albinet, C.; Borderies, P.; Dubois-Fernandez, P. et Villard, L.; "Tropical Forest Modeling At P-Band and Comparison with Airborne Data", PIERS Online, (*sera soumise à la date de la soutenance*).
- [Publication 7] Albinet, C.; Borderies, P. et Fabre, S.; "Radar and Optical Parallel Modelling of Forest Remote Sensing Data", IJRSA, Vol. 2, No. 4, Décembre 2012.
- [Publication 8] Albinet, C.; Borderies, P. et Gastellu-Etchegorry, J.P.; "Characterization of Maritime Pine Forests with Combination of Simulated P-Band SAR Data and Hyperspectral Data", IJAP, Vol. 2012, Article ID 409512, Octobre 2012.

Autres Publications

- Ho Tong Minh, D.; Tebaldini, S.; Rocca, F.; Koleck, T.; Borderies, P.; Albinet, C.; Villard, L.; Hamadi, A. et Le Toan, T.; "Ground Based Array for Tomographic Imaging of the Tropical Forest in P-Band", IEEE Letter on Geoscience and Remote Sensing, Vol. 51, N° 8, pp. 4460-4472, 2013.
- Ho Tong Minh, D.; Tebaldini, S.; Rocca, F.; Le Toan, T.; Borderies, P.; Koleck, T.; Albinet, C.; Villard, L. et Hamadi, A.; "Vertical Structure of P-band Temporal Decorrelation at the Paracou Forest : Results from TropiScat", IEEE Letter on Geoscience and Remote Sensing, (en révision).

Communications dans des colloques

- Albinet, C.; Borderies, P.; Dubois-Fernandez, P. et Pottier, E.; "Etude de la complémentarité optique/radar dans la caractérisation de la végétation par télédétection. Application à la détection de cibles", JSJC 2010, Rennes.
- Albinet, C.; Borderies, P.; Koleck, T.; Rocca, F.; Tebaldini, S.; Le Toan, T.; Villard, L.; Mermoz, S. et Ho Tong Minh, D.; "TROPISCAT : A Multi-Frequency PolInSAR Data Campaign Of Acquisition For Vegetation Characterization", IGARSS 2011, Vancouver, Canada.
- Albinet, C.; Borderies, P. et Fabre, S.; "Radar and Optical Modeling of Forest Remote Sensing", PIERS 2011, Suzhou, Chine.
- Albinet, C.; Borderies, P.; Koleck, T.; Rocca, F.; Tebaldini, S.; Le Toan, T. et Villard, L.; "Temporal Backscattering of Forests: Ground Measurements", PIERS 2011, Suzhou, Chine.
- Koleck, T.; Borderies, P.; Rocca, F.; Albinet, C.; Ho Tong Minh, D.; Tebaldini, S.; Hamadi, A.; Villard, L. et Le Toan, T.; "Radar and Optical Modeling of Forest Remote Sensing", IGARSS 2012, Munich, Allemagne.
- Albinet, C. et Borderies, P.; "Radar and Optical Modeling of Forest Remote Sensing", IGARSS 2012, Munich, Allemagne.
- Albinet, C.; Borderies, P.; Koleck, T.; Rocca, F.; Tebaldini, S.; Le Toan, T. et Villard, L.; "Temporal Backscattering of Tropical Forest at P Band with Ground Experiment", PIERS 2012, Kuala Lumpur, Malaisie.
- Albinet, C.; Borderies, P. et Fabre, S.; "Radar and Optical Parallel Remote Sensing Modeling of Forest: Soil and Leaves Moisture Content Effect", PIERS 2012, Kuala Lumpur, Malaisie.
- Albinet, C.; Borderies, P. et Floury, N.; "TreeSCAT: A Ground Based Polarimetric Scatterometer Experiment in temperate forests", SELPER 2012, Cayenne.
- Hamadi, A.; Albinet, C.; Borderies, P.; Koleck, T.; Rocca, F.; Tebaldini, S.; Le Toan, T. et Villard, L.; "Temporal Analysis of Polarimetric Intensity and Coherence over TropiScat data", SELPER 2012, Cayenne.
- Koleck, T.; Borderies, P.; Rocca, F.; Albinet, C.; Ho Tong Minh, D.; Tebaldini, S.; Hamadi, A.; Villard, L. et Le Toan, T.; "TropiSCAT : Une expérience radar dans la forêt de Guyane", Nuit des Chercheurs 2012, Toulouse.
- Albinet, C.; Borderies, P.; Hamadi, A.; Dubois-Fernandez, P.; Koleck, T., Angelliaume, S. et Cantalloube, H.; "High Resolution In-Situ Tomography on Pine Forests", IGARSS 2013, Melbourne, Australie.
- Albinet, C.; Borderies, P.; Hamadi, A.; Koleck, T. et Floury, N.; "Overview of Three Ground Radar Experiments for Sensitivity Study over Temperate and Tropical Forests", ESA Living Planet Symposium 2013, Edinburg, Ecosse.

Chapitre I - Contexte du travail de recherche

1.1. Importance du suivi de la biomasse forestière

L'amélioration de la connaissance des changements de la biosphère à l'échelle du globe et de leur influence sur le système Terre est le défi environnemental le plus important du 21^{ème} siècle. Il est fondamental que les sociétés puissent prévoir, atténuer, et s'adapter aux impacts possibles de ces changements.

Le cycle du carbone est fondamental dans le fonctionnement de l'environnement terrestre, impliquant de nombreux processus couplés entre eux à travers desquels le carbone est échangé entre l'atmosphère, les continents et les océans. Quantifier ce cycle à l'échelle du globe est essentiel pour la compréhension des nombreux changements qui ont lieu à l'intérieur du système Terre. En particulier, la perturbation du cycle de carbone par la combustion des combustibles fossiles et les changements d'occupation du sol sont des moteurs importants de changements planétaires [IPCC, 2007]

Les processus terrestres jouent un rôle crucial dans le cycle du carbone à travers l'absorption du carbone, la respiration associée à la croissance de la végétation, et à travers les perturbations causées à la fois par des processus naturels, tels que les feux de forêts, et par les changements d'occupation du sol du fait de l'activité humaine. Tout tends à prouver que ces 50 dernières années, la biomasse terrestre a fonctionné comme un puits de carbone, en retirant de l'atmosphère approximativement le tiers du CO_2 émis par l'utilisation des combustibles fossiles [Canadell et al., 2007]. Cependant, l'état, la dynamique et l'évolution de la biosphère terrestre sont les éléments les moins connus et les plus incertains du cycle du carbone.

Ces incertitudes couvrent une large gamme d'échelles de temps: les variations annuelles de CO₂ atmosphérique sont principalement contrôlées par la biosphère terrestre, alors que le couplage entre le cycle de carbone terrestre et le climat a été identifié comme l'une des plus grandes causes d'incertitude dans les changements climatiques à l'échelle de la décennie ou du siècle. Spatialement, il existe de grandes incertitudes dans la distribution du stock et les échanges de carbone, dans les estimations des émissions dues aux dégradations des forêts, et dans l'absorption du carbone à travers la croissance des forêts.

Un paramètre fondamental caractérisant la distribution spatiale du carbone dans la biosphère est la biomasse, qui est la quantité de matière organique vivante dans un espace donné, généralement mesuré en tant que masse par unité de surface. La moitié de la biomasse est formée de carbone [IPCC, 2003]. La biomasse représente donc une unité de base pour la comptabilité du carbone. Les forêts représentent près de 80 % de la biomasse terrestre hors sol [Houghton, 2005].

A cause de l'importance du climat, la biomasse a été identifiée par la Convention-Cadre des Nations Unies sur les Changements Climatiques (UNFCCC) comme Variable Climatique Essentielle nécessaire pour réduire les incertitudes dans notre connaissance du système climatique global [GCOS, 2003; 2004; 2010]. De plus, comme reconnu par le Protocole de Kyoto dont la période d'engagement se terminait en 2012, la séquestration du carbone dans la biomasse forestière est un

mécanisme important pour ralentir les changements climatiques autrement qu'en réduisant les émissions.

Alors que les programmes d'observation à l'échelle du globe de la plupart des Variables Climatiques Essentielles terrestres sont avancés ou en pleine évolution, il n'y a actuellement pas d'effort comparable fait pour la biomasse [Houghton et al., 2009].

D'autre part, la connaissance et le suivi des forêts à l'échelle mondiale présente de nombreuses applications dans des domaines variés. Entre autre, le suivi des forêts et de leurs stocks de biomasse, autrement que par des opérateurs humains directement sur le terrain, permettrait d'améliorer grandement notre connaissance générale de celles-ci, notamment des forêts avec une dynamique très rapide comme les mangroves. Il convient de rappeler qu'en France, par exemple, les forêts sont une source non négligeable d'énergie et de matières premières, et qu'une meilleure connaissance de celles-ci aurait un effet bénéfique sur la gestion qu'il en est fait aujourd'hui.

De plus, la connaissance de l'état du relief et du type de sol présent sous le couvert forestier, et inaccessible par toutes les techniques actuellement existantes, serait une avancée non négligeable pour les sciences liées à la cartographie ou la géologie. Une telle connaissance de l'état du sol sous le couvert forestier et du sous-bois serait un renseignement précieux d'un point de vue militaire en permettant de mieux estimer les déplacements à l'intérieur de forêts mal connues, comme celles d'Amérique du Sud, d'Afrique Sub-saharienne ou d'Asie.

Finalement, un meilleur suivi des forêts dans le monde présenterait un intérêt particulier pour l'étude de la déforestation, notamment pour des programmes tels que le programme « Reducing Emissions from Deforestation and forest Degradation » (REDD), financé par l'Organisation des Nations Unies.

1.2. Intérêt de la bande P dans l'étude des forêts par télédétection radar

Afin d'estimer la biomasse terrestre, la voie spatiale est retenue puisqu'elle permet d'utiliser les propriétés des satellites, de répétitivité et de balayage de grandes surfaces. Parmi les solutions spatiales, les capteurs RADAR (RAdio Detection And Ranging) à grandes longueurs d'onde présentent une grande sensibilité aux éléments constitutifs de la biomasse, et semblent donc les plus à même d'estimer celle-ci avec une précision suffisante. En outre, les capteurs radar centimétriques sont insensibles à la couverture nuageuse, ce qui est avantageux pour l'observation des forêts tropicales qui regroupent une biomasse importante et pour lesquelles la présence de nuages est récurrente [Hajnsek et al., 2009].

Figure 1. Spectre électromagnétique incluant le domaine visible et le domaine des ondes radio [Durandeau et al., 2002].

Les ondes électromagnétiques étant sensibles aux objets dont la taille est supérieure à la longueur d'onde [Curlander et Donough, 1991], il est nécessaire de travailler dans des fréquences, et donc des longueurs d'ondes, adaptées à ce qu'il est envisagé d'observer. Aujourd'hui, les capteurs radar satellitaires utilisés pour l'étude de la biosphère (TerraSAR X, JERS-1, ERS-1, ENVISAT, etc.) fonctionnent en bande L, X ou C. Ces bandes de fréquence sont caractérisées par des longueurs d'onde plutôt petites (2,4 cm à 30 cm). Elles sont donc sensibles aux constituants des arbres de petite taille tels que les feuilles ou les très petites branches des arbres. De plus, ces ondes électromagnétiques pénètrent peu profondément dans les couverts. Cette faible capacité de pénétration [Mougin et al., 1993] rend la détermination de la biomasse irréalisable à travers l'emploi de ces longueurs d'ondes uniquement.

Dénomination	Fréquence (GHz)	Longueur d'onde (cm)
Ка	26,5 à 40	1,1 à 0,75
К	18 à 26,5	1,7 à 1,1
Ku	12,5 à 18	2,4 à 1,7
Х	8 à 12,5	3,75 à 2,4
С	4 à 8	7,5 à 3,75
S	2 à 4	15 à 7,5
L	1 à 2	30 à 15
Р	0,3 à 1	100 à 30

Tableau 1. Bandes de fréquences utilisées en radar et longueur d'ondes correspondantes.

La démonstration que la bande P pourrait fournir un outil puissant pour mesurer la biomasse forestière a joué un rôle majeur dans la décision de l'ITU (International Telecommunication Union) d'allouer une bande passante de 6 MHz, dans la bande P, pour la télédétection spatiale [ITU, 2004]. Cette bande, aux alentours de 434 MHz, est sensible aux éléments ligneux des arbres (tronc, grosses branches), qui constituent environ 90 % de leur biomasse. Les ondes radar pénètrent les couverts, même les plus denses, jusqu'au sol et devraient donc permettre depuis l'espace une évaluation bien meilleure de la biomasse forestière sur toute sa hauteur.

C'est dans ce cadre là qu'a été proposé au 7^{ème} appel du programme « Earth Explorer Core Mission » de l'Agence Spatiale Européenne (ESA) la mission BIOMASS [Le Toan, 2011] qui consiste en un Radar à Synthèse d'Ouverture (SAR) satellitaire en bande P. L'objectif de la mission, sélectionnée en 2013 et dont le lancement est prévu pour 2019, est la détermination de manière répétitive et globale de la quantité de biomasse forestière avec une erreur inférieure à 20%. Avec une résolution de l'ordre de 50 m à 100 m, les mesures permettront de mieux quantifier les puits et sources de carbone des écosystèmes forestiers, afin de mieux comprendre leur rôle dans le changement climatique. BIOMASS vise aussi à fournir des informations dont les nations ont besoin pour l'application des traités internationaux (stocks de carbone, déforestation et dégradation des forêts). Par ailleurs, le radar basse fréquence proposé ouvrira une voie à l'exploration de la sub-surface terrestre (zone aride, glace, permafrost).

Actuellement, 3 approches sont explorées pour déterminer la biomasse à partir des données radar :

- En se basant sur le coefficient de rétrodiffusion uniquement. Cette méthode, actuellement exploitée, utilise une relation empirique entre l'intensité réfléchie selon les canaux HH et HV et la biomasse [Le Toan 1992 ; Beaudoin 94].
- En utilisant une technique polarimétrique et interférométrique, « PolInSAR », qui permet d'estimer la hauteur de la forêt observée et d'en déduire, à partir de cette information, la biomasse de cette forêt [Cloude et Papathanassiou, 1998 ; Papathanassiou et al., 2008].
- En utilisant la réponse en 3 dimensions de la forêt, reconstruite à partir d'une demi-douzaine d'acquisitions effectuées depuis des lignes de vol différentes. C'est la technique par « tomographie » [Tebaldini et Rocca, 2008] qui sera mise en place pour la toute première fois avec des données satellites au cours de la mission BIOMASS.

1.3. Mécanismes de rétrodiffusion radar à l'intérieur des forêts

L'intensité d'une onde radar rétrodiffusée dépend de la manière dont l'énergie électromagnétique interagit avec la scène observée. Cette interaction est liée à deux jeux de caractéristiques : d'une part les paramètres liés au système radar (fréquence, polarisation, angle de visée...) et d'autre part les paramètres de la scène imagée (type de couverture, topographie, relief...). La complexité et la diversité des scènes de forêt rendent la compréhension des mécanismes en jeu d'autant plus difficiles que la réponse à un jeu de paramètres radar n'est pas unique. En effet, il existe une multitude de configurations (radar et scène) qui peuvent aboutir à la même signature et rendre ainsi la caractérisation de la scène ambiguë.

Figure 2. Principaux mécanismes intervenant dans la rétrodiffusion radar d'une forêt : interactions de surface (1), interactions de double-rebond (2) et interactions de volume (3).

Au niveau de la scène, la réponse radar est principalement influencée par trois mécanismes de rétrodiffusion (interactions de surface, interactions de double-rebond, et interactions de volume [Figure 2]) et par les propriétés diélectriques des éléments de la scène.

Ces trois mécanismes de rétrodiffusion vont varier suivant la fréquence, la géométrie de la scène et du radar, et la polarisation. On les retrouves tous trois dans la réponse radar pour chaque polarisation même si certains d'entre eux peuvent devenir prépondérants pour certaines configurations.

1.3.1. Interactions de surface

D'un point de vue géométrique, les interactions de surface dépendent principalement de la rugosité de la surface. La rugosité de la surface contrôle la manière dont les hyperfréquences interagissent avec cette surface, et constituent souvent le facteur dominant dans la réponse radar. L'apparence rugueuse ou lisse d'une surface dépend de la longueur d'onde et de l'angle d'incidence.

Figure 3. Interaction spéculaire (surface lisse) et diffuse (surface rugueuse) d'une surface.

De manière générale, une surface est considérée comme lisse si ses variations verticales et horizontales sont beaucoup plus petites que la longueur d'onde du radar. Lorsque la variation verticale est de l'ordre de la longueur d'onde, la surface apparaît rugueuse. Ainsi, une surface apparait plus rugueuse lorsque la longueur d'onde diminue, et plus douce lorsque la longueur d'onde augmente. Une surface lisse engendre une réflexion spéculaire et d'où, seule une petite quantité d'énergie retourne au radar. Les surfaces lisses présentent donc une faible rétrodiffusion.

A l'opposé, une surface rugueuse diffuse l'énergie dans toutes les directions et une partie importante est donc rétrodiffusée vers le radar. Les surfaces rugueuses présentent donc une forte rétrodiffusion. L'angle d'incidence, en combinaison avec la longueur d'onde, joue aussi un rôle important dans la rugosité apparente d'une surface. En effet, pour une longueur d'onde donnée, la surface apparaîtra plus lisse à mesure que l'angle d'incidence augmente.

1.3.2. Interactions de double-rebond

Les éléments qui présentent des surfaces formant un ou plusieurs angles droits peuvent former un réflecteur de type dièdre si ces surfaces font face au radar. Deux surfaces à angle droit forcent l'énergie de l'onde électromagnétique à être rétrodiffusée directement vers l'antenne à cause d'une réflexion double (ou multiple). On parle dans ce cas de double rebond. Il est amplifié de 6 dB du fait de l'addition cohérente des deux contributions qui le composent {antenne - sol - tronc - antenne} et {antenne - tronc - sol - antenne}.

Dans les forêts, ces interactions de double rebond apparaissent dans la majorité des cas lors de l'interaction de l'onde entre le sol et les troncs des arbres. Plus les troncs ou le sol sont lisses plus cet écho est important.

1.3.3. Interactions de volume

Lorsque l'onde radar pénètre dans la canopée, il se produit un phénomène de diffusion volumique. L'énergie radar diffusée dans un volume est constituée de réflexions provenant des différentes composantes, ou des diverses couches, à l'intérieur du volume. Dans le cas des forêts, la diffusion peut provenir des feuilles, des branches, ainsi que des troncs. En bande P, les feuilles ne sont quasiment pas visibles et influent donc pas sur la réponse radar.

1.3.4. Propriétés diélectriques des éléments de la scène

L'humidité peut considérablement modifier les propriétés diélectriques d'une scène. Par conséquent, l'absorption, la transmission et la réflexion des ondes qui y sont sensibles, peuvent aussi significativement changer.

En bande P, le signal radar n'est principalement sensible qu'aux branches et aux troncs. En modélisant une branche ou un tronc par un cylindre, on peut étudier l'influence de leur géométrie et de leurs propriétés diélectriques, sur la réponse radar.

Figure 4. Coefficient de rétrodiffusion radar d'un cylindre en fonction de son diamètre et de son humidité [Borderies et al., 2009].

Sur la Figure 4, On peut remarquer que lorsque le diamètre (en longueur électrique) croit mais reste inférieur à la longueur d'onde, le coefficient de rétrodiffusion augmente de façon monotone. C'est ce qu'on appelle la « zone de Rayleigh ». Lorsque le diamètre du cylindre est devient égal à la longueur d'onde, une première résonnance apparaît. C'est ce qu'on appelle la « zone de résonnance » ou « zone de Mie » : on atteint ici une saturation du signal. On peut remarquer aussi que la constante diélectrique, par le biais de la teneur en eau, joue un rôle analogue à celui du diamètre, surtout en zone de Rayleigh et influe sur le signal radar de façon importante, et ceci pour les deux polarisations.

Pour les mécanismes de diffusion de surface et de double rebond, le sol joue un rôle important. Par exemple, la Figure 5 donne la permittivité du sable en fonction de son taux l'humidité et de la fréquence de l'onde radar [Figure 5].

Figure 5. Partie réelle (haut) et partie imaginaire (bas) de la permittivité du sable en fonction du taux d'humidité [Crédits : Borderies et al.]

1.4. Stratégies d'inversion à l'aide des données radar

1.4.1. Inversion à l'aide du coefficient de rétrodiffusion en HH et HV

Les premiers travaux sur l'inversion de la biomasse forestière à l'aide de données radar étaient orientés sur l'étude de la relation entre la biomasse et le coefficient de rétrodiffusion pour les polarisations HH, HV et VV. Bien que des travaux aient été menés sur différents types de forêts, les études ont concerné en majorité les forêts tempérées, aménagées, mono-espèces (surtout de conifères) et équiennes (composées d'individus ayant moins de vingt ans d'écart entre eux) [Le Toan et al, 1992 ; Dobson et al, 1992 ; Beaudoin et al, 1994 ; Kasischke et al, 1997; Ranson et al, 1997].

Il s'est avéré que HH et HV étaient fortement corrélé à la biomasse, tandis que la corrélation entre la biomasse et VV était plutôt faible. La polarisation HV a été identifiée comme la plus adaptée à l'inversion de la biomasse car elle est moins affectée par les changements temporels et la topographie, et présente la plus grande dynamique entre les forêts de faibles et de fortes biomasses. La relative simplicité de nombreux systèmes de forêts tempérées et le fait qu'elles présentent des biomasses maximales de l'ordre de 300 ton/ha permet de mettre au point des méthodes d'inversion précises [Villard et Le Toan., 2013]. Malgré une influence forte de la topographie, il a été démontré que la biomasse peut encore être retrouvée en utilisant plusieurs polarisations et des Modèles Numériques de Terrain (MNT) de faible résolution [Ulander et al, 2011 ; Soja et al, 2012].

Figure 6. Courbe de l'intensité du canal HV en bande P en fonction de la biomasse (crédits: Le Toan et al.)

En revanche, les forêts tropicales sont caractérisées par un grand nombre d'espèces et un couvert dense. Pour celles-ci, le coefficient de rétrodiffusion en polarisation HV permet d'inverser la biomasse forestière. Cependant, les valeurs de biomasse des forêts tropicales peuvent atteindre et même parfois dépasser 500 ton/ha pour certaines parcelles. Or, comme on le voit sur la Figure 6 une saturation apparaît pour les fortes biomasses et entraîne une diminution de la précision de l'inversion. C'est pourquoi il est apparu nécessaire de développer d'autres méthodes plus « évoluées ».

1.4.2. Inversion à l'aide de la technique polarimétrique interférométrique

Imaginée à la fin des années 90, la méthode PolInSAR est une voie prometteuse pour la détermination des hauteurs d'arbre. En effet, la combinaison de la polarimétrie et de l'interférométrie permet d'étudier la dimension verticale de la diffusion électromagnétique de la forêt en se basant sur la combinaison cohérente des interférogrammes radar pour différentes polarisations [Garestier, 2006].

Au cours des dernières années, la méthode PollnSAR a mûri, a été améliorée, et est désormais une technique bien maîtrisée. De nombreuses campagnes aéroportées, menées sur une

variété de sites de forêts tempérées, boréales et tropicales, ont démontré la capacité du PolInSAR pour estimer la hauteur de la canopée et d'autres paramètres clés de la forêt avec une grande précision, autant sur les forêts primaires que plantées, quelles que soient les conditions de terrain [Praaks et al, 2007 ; Kugler et al, 2006 ; Hajnsek et al, 2008 ; Lee et al, 2008 ; Garestier et al, 2008 ; 2010a ; 2010b].

Le principal observable PolInSAR est la cohérence interférométrique, qui est le module du coefficient de corrélation complexe entre deux images interférométriques d'une scène donnée acquises depuis deux lignes de vol légèrement différentes. Les images obtenues depuis chaque ligne de vol peuvent être acquises en mode dual-polarimétrique ou full-polarimétrique, simultanément (« single-pass ») ou à des moments différents (« repeat-pass »). Seul ce dernier mode est généralement disponible pour les campagnes aéroportées et sera l'unique mode disponible dans le cadre de la mission BIOMASS. Après correction de la décorrélation induite par le système lui-même, et de la géométrie d'acquisition, la cohérence peut être exprimée ainsi [Bamler et Hartl, 1998 ; Zebker et Villasenor, 1992] :

$$\gamma = \gamma_{temporel} \cdot \gamma_{bruit} \cdot \gamma_{for\hat{e}t}$$

Équation 1

La cohérence de la forêt $\gamma_{forêt}$ est la contribution qui contient l'information sur la structure de la forêt verticale, tandis que la cohérence temporelle $\gamma_{temporel}$ et la cohérence γ_{bruit} sont des termes de nuisance décrivant la perte de cohérence due au changement de la scène dans le temps et le bruit du système radar. A partir de la phase de la cohérence $\gamma_{forêt}$ mesurée, il est possible de déterminer la hauteur du centre de phase. Ainsi, la technique PolInSAR utilise les hauteurs des centres de phase obtenus pour chaque polarisation et estime la hauteur de la forêt, en faisant l'hypothèse du profil vertical d'atténuation de la canopée [Papathanassiou et Cloude, 2001].

Figure 7. Lignes de vol de l'instrument et hauteurs du centre de phase interférométrique pour chaque polarisation. Les positions des centres de phases obtenues permettent d'estimer la hauteur de la canopée (crédits: Le Toan et al.)

Ainsi, une erreur sur la cohérence interférométrique entraîne directement une erreur sur l'estimation de la hauteur du couvert forestier, et par conséquent une erreur sur l'estimation de la biomasse. Il faut donc que $\gamma_{temporel}$ et γ_{bruit} soient proches de 1 (voir Équation 1). La décorrélation due au bruit est induite, dans le signal radar reçu, par le bruit du système et affecte principalement les diffuseurs qui présentent une faible rétrodiffusion. En bande P, cette décorrélation est normalement d'une importance secondaire sur les forêts. La décorrélation temporelle est provoquée par les changements de l'environnement entre les acquisitions, et dépend de la stabilité dans le temps des diffuseurs et de l'intervalle de temps entre les acquisitions. Comme ce dernier paramètre ne peut être ni piloté, ni compensé, c'est le paramètre de performance le plus critique dans la mise en œuvre de la technique PolInSAR « repeat-pass ».

1.4.3. Inversion à l'aide de données tomographiques

Au cours des dernières années, la tomographie SAR a émergé comme un outil important pour l'étude des forêts en raison de sa capacité à reconstruire la structure verticale de la zone observée en se basant sur des acquisitions depuis plusieurs lignes de vol [Cloude, 2007 ; Tebaldini, 2010 ; Tebaldini et Rocca, 2012]. En termes techniques, c'est l'extension des principes classiques de l'imagerie SAR deux dimensions à trois dimensions [Reigber et Moreira, 2000].

Le principe de la tomographie SAR est relativement simple. Considérons un système SAR aéroporté ou satellitaire, où une scène est imagée à partir de plusieurs lignes de vols différentes, comme le montre la Figure 8.

Un tel système offre la possibilité de séparer les échos rétrodiffusés non seulement dans la direction azimutale et dans la direction radiale, comme un système SAR habituel, mais aussi dans la direction transverse, définie par l'axe orthogonal à la ligne de visée et la trajectoire de la ligne de vol. En conséquence, les échos radar peuvent être localisés dans le plan distance-azimut ainsi que dans l'espace 3D entier. Il s'ensuit que, si la fréquence du radar est suffisamment basse pour garantir la pénétration du volume de diffusion, ce qui est le cas en bande P, le profil vertical de rétrodiffusion peut être déduit.

Dans la phase initiale de la mission Biomass, il est prévu d'acquérir une importante série de données de tomographie SAR « repeat-pass ». Des lignes de vol orbitales légèrement différentes et un cycle de 1-4 jours de revisite sont nécessaires pour maximiser la focalisation sur les différentes couches de la forêt. Afin d'avoir une résolution verticale suffisante pour séparer les forêts de 50 m de haut en 3-4 couches, 5-6 passes sont nécessaires.

1.5. Variabilité dans le temps des données radar

Nous avons vu plus tôt que la mise en place de la méthode PolInSAR ne peut se faire que si la cohérence de la forêt observée est élevée. De façon similaire, pour la tomographie SAR, il faut une certaine stabilité dans le temps du module et de la phase du coefficient de rétrodiffusion de la zone de forêt à reconstruire.

De plus, la forêt tropicale est parfois utilisée comme référence pour la calibration de données radar [Shimada, 2011], notamment pour les données acquises en bande C avec l'instrument PALSAR [Shimada et al., 2003 ; Touzi and Shimada, 2009] de la mission ALOS ; mais aussi avec les instruments de RADARSAT, RADARSAT 2 et ERS [Hawkins et al., 1999 ; Luscombea et al., 2000]. Ce type de calibration est même proposé pour les données SAR en bande L [Shimada et al., 2004].

Ainsi, dans la perspective de la mission BIOMASS dont l'instrument fonctionnera en bande P, il conviendrait de se demander quelle est la stabilité du module et de la phase du coefficient de rétrodiffusion d'une parcelle de forêt tropicale ou tempérée dans cette bande de fréquence.

Un premier élément de réponse a été donné à l'issue de la campagne TropiSAR qui a montré une stabilité du module et de la phase du coefficient de rétrodiffusion, à l'échelle de la parcelle, au cours des 22 jours de la campagne. La variation mesurée était inférieure à 0,5 dB et la cohérence supérieure à 0,8 pour toutes les polarisations [Dubois-Fernandez et al., 2012].

Figure 9. Série temporelles sur 23 jours de 1995 de constante diélectrique en bande P de troncs d'épicéas. Le Déficit en Pression de Vapeur (VPD) et la pluviométrie (en millimètre toutes les 10 minutes) sont aussi traces [Mc Donald et al., 2002].

Cependant, comme il est possible de voir sur la Figure 9, des mesures de constante diélectrique de troncs ont montré des variations journalières ainsi que des variations qui semblent dues aux précipitations.

Il apparaît alors comme nécessaire de creuser la question.

1.6. Apport des données optiques pour l'inversion des paramètres biophysiques

Comme dit précédemment, les radars radiofréquences sont sensibles à de nombreuses caractéristiques des forêts, mais beaucoup d'incertitudes peuvent demeurer lors de leur inversion. Or, les signatures spectrales fournies par des mesures optiques hyperspectrales sont sensibles à de nombreux paramètres de végétation forestière. Par exemple, le NDVI (Normalized Difference Vegetation Index) [Kriegler et al., 1969], qui est l'indice optique le plus utilisé, est sensible à l'indice de surface foliaire ou LAI (Leaf Area Index) et peut être utilisé pour déterminer l'espèce des arbres observés ou leur biomasse. Le fait d'utiliser des données radar et des données optique, grâce à un processus de fusion, devrait permettre d'améliorer l'inversion des paramètres biophysiques de la forêt.

La fusion de données optique et radar est largement référencée dans la littérature, mais les travaux sur les zones agricoles ou sur les forêts sont plus rares. En effet, jusqu'à présent, la fusion de données optique et radar a été faite sur des données issues de capteurs satellitaires existants, qui

N° d'ordre : UEB/UR1 01-2013

ANNÉE 2013

sont donc caractérisées par une résolution plutôt grossière [Kuplich et al, 2000 ; Hellwich et al., 2002]. Il apparaît que l'utilisation de ces deux sources de données permet d'augmenter de façon significative les performances des méthodes d'inversion de l'occupation du sol. Quelques travaux de fusion optique radar ont montré des résultats prometteurs sur les forêts, notamment dans le cadre de la déforestation en Amazonie avec des données radar en bande C qui sont loin d'être optimales pour cette application [Demaze et al., 2000]. Une inversion de la biomasse a aussi été menée à partir du profil vertical de LAD (Leaf Area Density) qui est la densité volumique de surface foliaire [Treuhaft et al., 2002]. Ce profil vertical de LAD a été obtenu à partir des données radar et du LAI, qui est la surface foliaire par rapport à la surface au sol, qui a été déduit des données optiques.

Dans tous les travaux effectués jusqu'à présent, les données optiques et radar ont été acquises à des moments différents, avec parfois plusieurs jours entre les acquisitions, ce qui est généralement le cas des données satellites. Or, il a été observé depuis longtemps que, alors que les mesures optiques sont stables durant la journée, les mesures radar subissent une variation diurne [Way et al.; 1991]. C'est pourquoi, jusqu'à maintenant, les travaux de fusion se sont portés sur l'inversion des paramètres des forêts stables dans le temps, tels que la biomasse, et sur l'optimisation individuelle des capteurs plutôt que sur la recherche de la simultanéité des mesures.

En ce qui concerne les paramètres biophysiques variables à l'échelle du jour, des mesures proches dans le temps permettraient d'étudier l'apport de la fusion de données dans le cadre de leur inversion. C'est dans ce contexte qu'à été lancé le PRF (Projet de Recherche Fédérateur) ENVIRO, qui est un projet de recherche pluridisciplinaire interne à l'ONERA (Office Nationale d'Etudes et de Recherches Aérospatiales), et qui a pour objectif la classification des zones agricoles et l'inversion des paramètres biophysiques des forêts à l'aide de données aéroportées radar polarimétriques et optiques hyperspectrales toutes deux acquises dans un intervalle de temps très court (de quelques minutes à quelques heures).

Il est à noter que ce travail de thèse s'inscrit dans le cadre de ce projet ENVIRO.

Chapitre II – Outils expérimentaux et informatiques développés

Durant les 3 ans de thèse, le travail de recherche, dont les analyses sont présentées dans le chapitre suivant, a nécessité un gros effort en aval couvrant la conception et le développement d'instrumentations et d'outils de mesure spécifiques. Cette mise en place, qui n'a pas sa place directement dans les articles de recherche de par son caractère plus technologique ou numérique, constitue pourtant une part importante du temps de thèse. Dans ce chapitre, nous présenterons ces développements que nous pouvons ranger en quatre groupes : l'instrumentation pour les mesures temporelles sur de longues durées, l'instrumentation de mesures tomographiques, la modélisation parallèle optique-radar, et d'autres systèmes de mesure qui malgré leurs résultats encourageants n'ont été que peu exploités faute de temps.

Il est important de noter que ce genre d'expérimentations n'est pas aisé à mettre en place tant à cause des appareils de mesures, qui sont rares et onéreux, qu'à cause des sites convenant aux mesures envisagées, qui sont difficiles à trouver. Ainsi, les expérimentations mises en place l'ont été grâce à des opportunités de matériel et de localisations. En effet, la campagne TreeScat a été faite à partir du toit du laboratoire où s'est déroulée la thèse, avec du matériel déjà disponible. L'expérimentation TropiScat a été installée sur la tour à flux de la station de Paracou car cette tour correspondait aux critères de proximité de la forêt et de hauteur exigés, et était située sur une zone précédemment imagée lors de la campagne aérienne TropiSAR. Enfin, la campagne d'imagerie tomographique verticale radar à haute résolution s'est déroulée avec du matériel de mesure déjà disponible et sur des sites de la forêt de Mende imagés quelques mois plus tôt lors de la campagne aéroportée ENVIRO menée par l'ONERA.

2.1. Expérimentations de suivi temporel en diffusiométrie

Ces deux expérimentations ont nécessité la mise en place d'une instrumentation spécifique. Elles présentent de nombreuses similitudes, étant basées toutes deux sur des mesures temporelles de diffusiométrie et donc de cohérences temporelles radar sur de longues durées. L'expérience acquise lors de la conception et de l'exploitation du premier instrument, TreeScat, a été très utile dans la conception et la mise en place du second.

Les deux instrumentations diffèrent cependant en ce qui concerne l'environnement du système: un environnement proche et "urbain", le bâtiment voisin, pour TreeScat; et un environnement lointain et "hostile", la forêt vierge amazonienne, pour TropiScat. De plus, l'instrumentation TropiScat présente une capacité supplémentaire de tomographique verticale.

2.1.1. Adaptation aux contraintes environnementales

Pour l'instrumentation TreeScat tout d'abord, l'objectif était d'avoir un système capable de faire des mesures radar polarimétriques en bande P d'un cèdre, à partir du toit du bâtiment proche, toutes les 5 minutes pendant plusieurs semaines. Même si le système se trouve dans l'enceinte de l'ONERA, à côté de nos bureaux, une automatisation était nécessaire à cause du caractère systématique des mesures. De plus, le système, bien que conçu avec du matériel de laboratoire non

N° d'ordre : UEB/UR1 01-2013

ANNÉE 2013

adapté aux changements de température ou à la pluie, devait pouvoir fonctionner à l'extérieur. Nous avons donc décidé d'installer un analyseur de réseau (VNA) de terrain à l'intérieur d'une salle de réunion du laboratoire, en le reliant par deux câbles coaxiaux bleus de 8 m de long aux deux antennes log-périodiques placées sur le toit. Le laboratoire étant climatisé, le VNA est donc à l'abri des variations thermiques et de la pluie. Comme on peut le voir sur la Figure 10, les antennes ont été installées sur un support mobile le long de la rambarde et sécurisées. Le support a été conçu et assemblé sur notre demande par l'atelier de l'ONERA à Toulouse.

Figure 10. TreeScat : Antennes fixées à la structure mobile sur le toit (gauche) et vue d'ensemble de la scène (droite).

Le même principe pour la protection du VNA est appliqué à l'instrumentation TropiScat. La situation sur une tour de 55 m de haut au cœur de la forêt tropicale complique bien sûr le problème et il a été choisi d'installer le VNA dans un abri au pied de celle-ci.

De surcroît, l'exigence de mesures tomographiques complexifie le système. Les mesures tomographiques polarimétriques exigeant des antennes à différentes hauteurs, un réseau de 20 antennes, conçu par une équipe de l'Université Politecnico di Milano (POLIMI) [Ho Tong Minh et al., 2012], a été installé en haut de la tour. Les 20 antennes sont reliées par des câbles courts à 2 boîtiers de commutation, eux même reliés au VNA par deux câbles à faibles pertes de 70 m de long fixés le long de la tour.

Figure 11. TropiScat : Réseau d'antenne vu de l'extérieur (gauche) et vu d'en haut de la tour (droite).

Figure 12. TropiScat : PC de pilotage en noir, VNA et boîtier blanc de pilotage des commutateurs au pied de la tour (gauche) et intérieur d'un boîtier de commutation (droite).

Les deux boîtiers de commutation, chacun composé de 2 commutateurs pilotés par une carte USB depuis le pied de la tour, ont a été conçus et assemblés au Centre National d'Etudes spatiales (CNES) par un membre de l'équipe travaillant sur le projet. Le VNA et les commutateurs sont pilotés par un PC durci, sans ventilation et conçu pour résister aux conditions de température et d'humidité rencontrées sur le site.

Figure 13. TropiScat : Panneaux solaires alimentant en électricité le camp et les appareils scientifiques.

L'ensemble des appareils est alimenté par une installation de panneaux solaires, de batteries et d'un générateur de courant alternatif. Cette installation a été renforcée à l'occasion de l'installation de notre expérimentation. De plus, afin de pallier aux coupures de courant de faible durée, les appareils sont branchés sur un onduleur de bureau.

2.1.2. Pilotage de l'instrument et gestion des pannes

Le VNA qui effectue les mesures de l'instrument TreeScat étant situé à l'intérieur du laboratoire, il a été décidé de le piloter via le réseau de l'ONERA à l'aide d'un programme que nous avons choisi de coder en C++. Ce programme est détaillé dans l'**[Annexe Programme d'acquisition TreeScat]**. Un ordinateur situé dans un autre bâtiment lance donc la mesure, rapatrie les données acquises, construit les fichiers de mesures et les enregistre sur son disque dur. Le programme enregistre dans un fichier et affiche à l'écran le succès ou l'échec de l'acquisition en question, ceci pour chaque mesure. En outre, une station météo installée sur le toit du bâtiment où sont fixées les antennes, enregistre la température, la pression, l'humidité de l'air et la pluviométrie, tandis qu'un module périphérique de la station mesure l'humidité du sol au pied de l'arbre. Les données sont stockées sur un enregistreur de données et récupérées manuellement à l'aide d'un câble USB. L'instrument étant piloté à l'aide d'un ordinateur distant mais situé sur le lieu de travail, la bonne conduite des mesures est vérifiée quasi-quotidiennement et aucune prise en compte de panne n'est assurée par le programme de pilotage.

Par contre, pour l'instrumentation TropiScat, un effort particulièrement important a été fourni en ce qui concerne la gestion des pannes. En effet, durant la saison humide, il arrive souvent que l'ensoleillement ne soit pas suffisant pour assurer une recharge complète des batteries, provoquant alors des coupures de courant en fin de nuit. D'autre part, étant donné la non redondance des éléments de l'installation électrique, un problème sur l'un d'eux entraîne une défaillance quasicertaine de l'alimentation électrique. Cela est d'autant plus problématique sur cet instrument que le VNA est un modèle de laboratoire très sensible à la qualité de l'alimentation électrique. D'autre part, pour acquérir des mesures polarimétriques et tomographiques, la séquence d'acquisition est longue et complexe **[Annexe Procédure d'acquisition TropiScat et réseau d'antennes]**. Une coupure de courant annihile toute la séquence de mesures en cours. Nous avons donc fourni une attention particulière au niveau du programme d'acquisition que nous avons programmé en Visual Basic, langage imposé pour le pilotage des commutateurs, afin que l'instrument soit capable de reprendre les mesures après une coupure de courant à n'importe quel point de la séquence et de renseigner un fichier de diagnostic qui répertorie les actions journalières réussies ou échouées par celui-ci. Le programme prend en charge les défaillances qui peuvent arriver lorsque l'interface USB de pilotage des commutateurs se bloque, et peut ordonner un redémarrage de l'ensemble des appareils de l'instrument. Ce programme est détaillé dans l'**[Annexe Programme d'acquisition TropiScat]**.

Afin d'assurer l'intégrité des fichiers de mesures, une stratégie différente de celle de l'instrument précédent a été adoptée: les données sont directement enregistrées par le VNA sur son disque dur local dans le format CSV (Comma Separated Values), format répandu pour le traitement de données sous Excel, Python ou Matlab. Les fichiers contenant uniquement les données de la mesure, nous avons proposé un format pour les noms de fichiers pour renseigner la date et l'heure du début de la série de mesure, l'indice de la série de mesure, la bande de fréquence sur laquelle s'effectue la mesure (400 - 600 MHz, 600 - 800 MHz ou 800 - 1000 MHz), la polarisation et le couple d'antenne considéré. L'heure exacte de la mesure est donnée par l'heure de création du fichier, d'où l'importance d'avoir les horloges du VNA et du PC de contrôle synchronisées, ce que je vérifie à chaque mission. Le format des noms de fichiers adopté, le chronogramme des mesures et leur correspondance sur le réseau d'antennes sont détaillés dans l'**[Annexe Procédure d'acquisitions TropiScat et réseau d'antennes]**.

2.1.3. Recueil et traitement des données

En plus des données stockées sur le disque dur du PC de contrôle, les mesures de l'instrument TreeScat sont archivées et copiées sur un espace de stockage partagé du réseau de l'ONERA. Ainsi, les mesures sont accessibles en délocalisé à l'intérieur du laboratoire et une copie est conservée en local. Les données archivées sont ensuite extraites, ordonnées, traitées et tracées à l'aide d'un script que nous avons écrit en Shell et d'un programme de calcul que nous avons codé en Fortran. Le programme va calculer le coefficient de rétrodiffusion et la cohérence temporelle pour chaque date.

La bonne qualité des données a été vérifiée expérimentalement à l'aide de deux réflecteurs radar trièdres à faces triangulaires pour les co-polarisations HH et VV, et d'un réflecteur pliable dièdre pour la polarisation croisée HV.

Figure 14. TreeScat : Réflecteurs trièdre à face triangulaire de 1 m d'arrête (gauche) et de 1,80 m d'arrête (milieu) et dièdre pliable de faces de 1 m par 1 m (droite) utilisés pour valider les mesures.

La scène ne comporte qu'un seul arbre et celui-ci est très proche des antennes, entre 3 et 14 m. La calibration relative entre les différentes polarisations peut être faite à partir des réflecteurs radar déployés, mais la calibration absolue est délicate car en champ proche. C'est pourquoi, une calibration relative entre les différentes polarisations a uniquement été appliquée pour cet instrument.

Le site accueillant l'instrument TropiScat n'étant pas relié à Internet, un autre moyen de transmettre les données a dû être trouvé. Après avoir envisagé dans un premier temps une connexion par satellite, qui s'est avérée trop coûteuse étant donnée la quantité de données quotidiennes à transmettre (1.6 Go de données brutes ou 515 Mo de données archivées), le choix s'est porté sur un transfert de données à l'aide de clefs USB envoyées en métropole par la poste. La copie des données archivées se fait automatiquement chaque nuit et toutes les 3 semaines environ, un opérateur du CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement) extrait la clef, la remplace par une clef vierge, et l'envoie par la poste. Comme pour l'instrument précédent, une copie des archives est conservée sur le disque dur du PC de contrôle. Par sécurité, les fichiers originaux sont eux aussi conservés mais sur le disque dur du VNA et pour une durée maximale de 45 jours afin de ne pas saturer totalement le disque.

Une fois les données récupérées, un programme en Python vérifie l'intégrité des archives et des fichiers qu'elles contiennent et extrait tous les fichiers de diagnostic dans le but de recenser tous les évènements non prévus qui sont apparus. Les données brutes sont ensuite injectées dans la chaîne de traitement, elle aussi programmée en Python.

La chaîne de traitement va tout d'abord indexer toutes les données brutes dans une base de données afin de pouvoir manipuler les données plus aisément (plus de 16 500 fichiers de mesures sont enregistrés quotidiennement). A partir de chaque donnée brute, la réponse impulsionnelle calibrée correspondante est calculée et stockée sur le disque dur afin de gagner en temps de calcul. A partir de ces réponses impulsionnelles les séries temporelles de coefficient de rétrodiffusion, de cohérence peuvent être calculées et tracées, et les histogrammes de cohérence ou l'évolution de la cohérence en fonction de la baseline temporelle déduits.

Figure 15. TropiScat : Réflecteurs trièdre à face carrées de 2 m d'arrête (gauche) et dièdre à face carrées de 2 m de côté (droite) utilisés pour valider les mesures.

Les données ont été validées mais aussi calibrées à l'aide du réflecteur radar de type trièdre à faces carrées et du réflecteur dièdre à faces carrées, visibles dans la Figure 15. Les réflecteurs en question furent transportés en pièces détachées par bateau de Toulouse en Guyane et assemblés sur place durant une des premières campagnes terrain.
Lors de chaque mission, c'est à dire à peu près tous les 3 mois, des mesures avec les réflecteurs dans la scène, puis tout de suite après des mesures sans réflecteurs dans la scène ont été faites. La soustraction des mesures avec réflecteur et des mesures sans réflecteur donne la réponse radar du réflecteur seul qui peut ainsi servir de référence pour la calibration. Ces mesures de calibration ont été effectuées après 19:00 afin de réduire les problèmes de focalisation dus aux mouvements des arbres induits par le vent, et de permettre une soustraction de chambre efficace. En effet, comme on le verra au chapitre 3, la forêt présente un comportement spécifique le jour et la nuit : elle est immobile la nuit, alors qu'elle est soumise dans la journée à des mouvements importants au niveau des branches.

La calibration n'a pas été chose aisée lors de cette expérimentation. En effet, un seul endroit était disponible au pied de la tour pour placer le trièdre de 2 m de côté dans la scène. La réponse de celui-ci étant mélangée à celle de la forêt, le trièdre a été placé dans la scène lors de chaque mission, puis enlevé entre celles-ci.

Ainsi, les données obtenues ont pu être calibrées da manière relative, c'est-à-dire entre elles, mais pas de façon absolue. En effet, il était important de calibrer les couplages des différentes antennes au même niveau afin de ne pas avoir d'estimation biaisée de la radiométrie et de la cohérence.

Afin que la réponse du calibrateur ne soit pas mélangée à celle de la forêt, un essai a été fait en suspendant un trièdre à 25 m de haut (Figure 16).

Figure 16. TropiScat : Essai de calibration avec le réflecteur trièdre suspendu à 25 m de haut.

Les mesures avec le trièdre suspendu ont montré une bonne séparation de celui-ci par rapport à la forêt [Figure 17]. Un dièdre a donc été installé de façon permanente sur la tour mais les mesures correspondantes n'ont pas été exploitées pour l'instant.

Figure 17. TropiScat : Réponse du trièdre à 25 m de haut en tomographie verticale (gauche) et dièdre installé sur la tour de façon durable à 35 m de haut (droite).

Les acquisitions avec les 20 antennes ont été lancées fin 2011, et les données jusqu'à fin 2012 ont été traitées. Suite à plusieurs problèmes techniques, avec entres autres une défaillance matérielle du VNA, les données n'ont pas pu être acquises durant 5 mois.

Deux séries de mesures sont ainsi disponibles : la première, de décembre 2011 à mars 2012 correspond à la saison des pluies, et la seconde, d'août à décembre 2012 correspond à la saison sèche.

2.2. Campagnes de mesures tomographiques in situ

Les deux instrumentations présentées précédemment, TreeScat et TropiScat sont des systèmes fixes qui visent toujours la même zone, le cèdre dans le cas de TreeScat, une portion de forêt tropicale pour TropiScat. Ces méthodes ont prouvé l'intérêt de telles mesures pour la compréhension des mécanismes de rétrodiffusion et il nous semblait opportun de pouvoir explorer différentes forêts pour généraliser les analyses. Dans ce but, nous avons conçu et développé un système de mesure transportable, installé sur un camion grue. Dans cette section, nous détaillons les développements effectués sur cet instrument. L'analyse des résultats obtenus dans le cadre de cette expérimentation seront présentés dans le chapitre 3.

2.2.1. Définition du protocole de mesure des tomogrammes verticaux

Le principe des mesures est simple: les mesures en question doivent se faire d'une position surélevée par rapport à la scène afin de se rapprocher de la configuration des mesures aéroportées ou satellitaires. De plus, un système mobile est nécessaire afin de pouvoir imager plusieurs sites. Le choix s'est donc porté sur un camion nacelle, avec les antennes fixées sur la nacelle. Pour les acquisitions tomographique, des mesures de diffusiométrie radar doivent être effectuées à partir de points alignés et équidistants. Ces points étaient matérialisés par des antennes différentes dans le cas de TropiScat. Ici nous utilisons les mêmes antennes que nous faisons bouger verticalement en utilisant la dernière partie du bras de la nacelle, le déplacement est alors rectiligne et quasi-vertical. L'espacement entre les mesures, réglé manuellement par l'opérateur, est mesuré par un fil à plomb attaché à la nacelle et dont le plomb tombe à l'intérieur d'un tube gradué.

Figure 18. Camion nacelle avec les antennes fixées sur celle-ci (gauche) et système de mesure du déplacement vertical (droite).

Nous avons déterminé les paramètres des mesures afin d'avoir une résolution verticale et horizontale identiques et de minimiser le nombre de mesures nécessaires. Ainsi, chaque tomogramme demande donc 33 mesures espacées de 15 cm, soit un réseau virtuel de 4,80 m de long. Les paramètres ont été validés à l'aide d'un simulateur de données tomographiques que nous avons développé dans le cadre de cette campagne.

Les tomogrammes sont calculés à l'aide d'une reconstruction par méthode dite de filtrage adapté [Carrara et al., 1995; Jakowatz et al., 1996]. Nous avons choisi cette méthode car elle a pour avantage de présenter un très bon rapport signal sur bruit. Pour chaque point de coordonnées (z,y)du tomogramme, en considérant le gain d'antenne G_e pour l'émission et G_r pour la réception, f_k la fréquence dans la bande de K fréquences, R_p la distance entre l'antenne p et le point, alors la réponse I(z,y) en ce point se déduit des mesures fréquentielles $S(f_k, R_p)$ par la formule :

$$I(z, y) = \frac{1}{PK} \sum_{p=1}^{P} \sum_{k=1}^{K} \sqrt{\frac{R_p^3}{G_e(z, y)G_r(z, y)}} S(f_k, R_p) H(p) H(f_k) \exp\left(\frac{+j4\pi f_k R_p}{c}\right)$$

Équation 2

Pour diminuer les lobes secondaires, une fenêtre d'apodisation est ajoutée en range et en crossrange : une fenêtre de Hamming $H(f_k)$ est appliquée sur le spectre mesuré et une autre H(p) est appliquée sur les gains d'antennes du réseau virtuel. Appliquer une fenêtre de Hamming diminue les lobes secondaires au détriment d'une perte de résolution d'un facteur 1,3 [Lanczos, 1961].

Figure 19. Schéma représentant le réseau virtuel formé par les points de mesures (en rouge) et la réponse d'une cible ponctuelle (en vert).

En notant Δf et δf respectivement la bande de fréquence et le pas en fréquence, alors la résolution en range d_r et la distance d'ambigüité D_r s'écrivent :

$$d_r = \frac{c}{2\Delta f}$$
 et $D_r = \frac{c}{2\partial f}$ avec $\Delta f = (Nf - 1)\delta f$

Équation 3

De manière similaire, en considérant la fréquence centrale f_c de la bande de fréquence et la fréquence maximale f_{max} , ainsi que l'ouverture angulaire antre deux mesures $\partial \theta$ et l'ouverture totale $\Delta \theta$ vue par la cible, alors la résolution en cross-range d_{Cr} et la distance d'ambigüité en cross-range D_{Cr} s'écrivent :

$$d_{Cr} = \frac{c}{2f_c \Delta \theta}$$
 et $D_{Cr} = \frac{c}{2f_{max} \partial \theta}$

Équation 4

Le bon fonctionnement du système de mesures a été validé à l'aide du réflecteur dièdre utilisé dans l'expérimentation TreeScat et présenté précédemment dans le paragraphe 2.1.3. de ce chapitre.

2.2.2. Planification et organisation de la campagne terrain

Afin de pouvoir comparer les données radar obtenues avec les paramètres structuraux de chaque parcelle, il est nécessaire de mesurer les paramètres en question. Afin d'optimiser au mieux le nombre de mesures pendant la période de campagne, nous avons fait un effort de planification afin de coordonner les mesures tomographiques et les caractérisations de parcelles. La zone géographique choisie pour cette expérimentation est la forêt située sur le Causse Sud de Mende, en Lozère. Cette forêt de plantation est caractérisée par de fortes biomasses et des parcelles d'âges différents, et donc de structures différentes. Des chemins forestiers sont aménagés à l'intérieur du domaine.

N° d'ordre : UEB/UR1 01-2013

ANNÉE 2013

Sachant qu'une mesure tomographique nécessite une mise en place lourde du matériel, suivie d'environ 45 minutes d'acquisition, et dans un souci d'optimisation du temps de campagne, il a été choisi d'effectuer deux mesures de part et d'autre de la route forestière à partir de la même position camion. En effet déplacer le camion est très coûteux en temps du fait de l'installation des vérins de stabilisation obligatoire pour pouvoir déployer le bras de la nacelle.

L'instrumentation elle-même s'appuie sur du matériel de pilotage dans une voiture annexe et sur un groupe électrogène nécessaire à l'alimentation électrique des instruments.

Deux équipes travaillent en parallèle, une équipe de mesures in situ composée de deux personnes et une équipe instrumentation composée de 3 personnes. Les deux équipes travaillent de manière alternative sur les deux parcelles de part et d'autre de la route pour ne pas interférer.

Pour les mesures in-situ, une partie de la parcelle est délimitée, la surface de celle-ci mesurée, puis les arbres à l'intérieur de la parcelle sont comptés, leur diamètre de tronc mesuré, et leur hauteur estimée à l'aide d'un télémètre laser. Des mesures de pente et d'humidité du sol sont aussi faites sur chaque parcelle, documentées de manière complémentaire à l'aide de photographie terrain.

Pour les mesures tomographiques, une personne pilote le bras de la nacelle, une personne s'occupe du système de positionnement vertical et une personne lance les mesures.

En procédant ainsi, il est possible, en une demi-journée, d'imager les 2 côtés du chemin depuis un emplacement du camion nacelle.

A plus long terme, la technique de mesure sera mise à jour avec un instrument entièrement automatique et plus rapide. Il sera alors possible d'acquérir plusieurs tomogrammes par parcelle, d'imager un plus grand nombre de parcelles, et éventuellement de travailler sur de la reconstruction tomographique 3D afin de permettre une séparation des contributions dans le plan azimutal.

2.2.3. Acquisitions et traitement des données

Les acquisitions sont pilotées à l'aide d'un PC, installé dans le coffre d'un véhicule, qui envoie les ordres au VNA positionné dans la nacelle, via un câble Ethernet de 50 m de long. Le programme de pilotage que nous avons codé en C++ est basé sur celui développé dans le cadre de l'expérimentation TreeScat mais adapté à la procédure de mesures tomographiques décrite plus tôt. Ce programme est donné dans l'**[Annexe Programme d'acquisition tomographique]**. Le système d'acquisition est validé à l'aide de mesures radar effectuées sur un réflecteur dièdre pliable présenté précédemment.

Figure 20. PC de pilotage dans le coffre de la voiture et nacelle équipée du VNA et des antennes (gauche) et mesure de validation du système d'acquisition à l'aide d'un réflecteur radar (droite).

La chaîne de traitement programmée en Matlab intègre la reconstruction des tomogrammes et les corrections suivantes: la propagation de l'onde et sa réflexion sur une cible ponctuelle comme détaillé dans l'[Annexe Correction de la propagation radar], la compensation du diagramme d'antenne, et la correction du défaut d'horizontalité des antennes. A partir des tomogrammes sont calculés les profils verticaux correspondants et le coefficient de rétrodiffusion de la canopée, du sol et des deux. L'[Annexe Mesures tomographiques exhaustives] regroupe la totalité des tomogrammes, profils verticaux et contributions du sol et de la canopée, en complément des extraits présentés dans la [Publication 5].

2.3. Méta-modèle optique-radar et analyse de données

La mise en place du méta-modèle optique-radar a représenté une partie importante du travail effectué durant la thèse. Les différents modèles constituant ce méta-modèle ont été développés par des équipes différentes, issues de domaines variés, avec chaque modèle qui a son application propre. Après avoir organisé les modèles entre eux, nous avons donc dû adapter leurs entrées-sorties et coder un module d'analyse de données supervisée et d'analyse de données non supervisée des produits optique et radar. Les résultats obtenus par ce méta-modèle ainsi que leur analyse sont présentés dans le chapitre suivant.

2.3.1. Organisation du couplage des modèles

Le méta-modèle s'organise autour du modèle radar et du modèle optique. Le modèle radar MIPERS (Multistatic Interferometric Polarimetric Electromagnetic model for Remote Sensing) [Borderies and Villard, 2009 ; Borderies and Villard, 2010], développé au Département Electro-Magnétisme et Radar (DEMR) de l'ONERA, simule les produits bruts d'une acquisition radar SAR aéroporté ou satellitaire. De même, le modèle optique DART (Discrete Anisotropic Radiative Transfer) [Gascon et al., 2001 ; Gastellu-Etchegorry et al., 2012], développé au CESBIO, simule la réflectance spectrale d'une scène observée par un capteur optique aéroporté ou satellitaire. Le modèle de croissance, élaboré à partir de la littérature [Saleh et al., 2005], va déterminer la position

des branches et des troncs, mais aussi les paramètres liés aux feuilles, à partir des paramètres constitutifs de la forêt en question.

L'humidité du sol et des feuilles va influencer leur spectre de réflectance optique, et l'humidité des troncs, branches et du sol vont jouer sur leur constante diélectrique en radar. Pour tenir compte de ceci, nous avons intégré en entrée du modèle optique un modèle de sol [Lesaignoux, 2010] développé au Département d'Optique Théorique et Appliquée (DOTA) de l'ONERA donnant la réflectance du sol en fonction de l'humidité et du type de celui-ci. En outre, le modèle PROSPECT [Jacquemoud et Baret, 1990], qui détermine la transmitance et la réflectance des feuilles en fonction de leurs caractéristiques biophysiques est lui aussi positionné en entrée du modèle optique, de manière similaire au couplage qui avait été proposé dans la littérature avec le modèle SAIL (Scattering by Arbitrarily Inclined Leaves) [Jacquemoud et al., 2009]. Un modèle donnant la constante diélectrique des troncs, des branches et du sol [Ulaby et al., 1986 ; Hallikainen et al., 1985] est quant à lui intégré en entrée du modèle radar.

Figure 21. Positionnement des modèles et des flux de données entre ceux-ci.

Les sorties du modèle optique, spectre de réflectance de la scène, et du modèle radar, image radar Single Look Complex (SLC) de la scène, étant brutes, nous avons été obligé de programmer des modules de traitement en FORTRAN afin de pouvoir exploiter ces données. Pour le modèle optique, les réflectances spectrales sont déjà des produits exploitables et nous avons juste codé en FORTRAN un module de calcul d'indices optiques, NDVI (Normalized Difference Vegetation Index) [Kriegler et al., 1969], CAI (Cellulose Absorption Index) [Nagler et al., 2003], GVMI (Global Vegetation Moisture Index) [Ceccato et al, 2002] et NINSOL (Normalized Index of Nswir domain for Smc estimatiOn from Linear correlation) [Lesaignoux et al., 2013], en sortie du modèle optique. Pour les données radar, les sorties brutes de type SLC (Single Look Complex) ne sont pas exploitables directement et nous avons donc codé, en FORTRAN lui aussi, un module calculant le coefficient de rétrodiffusion et les cohérences polarimétriques et interférométriques et que nous avons positionné en sortie du modèle radar.

2.3.2. Adaptation des entrées-sorties en vue du couplage et amélioration des modèles

Chaque modèle du méta-modèle n'ayant pas été développé dans l'optique des couplages que nous avons faits, un travail important a dû être fourni pour adapter les entrées sorties de chaque modèle en vue de leur couplage, même si un travail préliminaire avait déjà été fait en ce qui concerne PROSPECT et DART, ainsi que entre le module de calcul de la constante diélectrique et MIPERS.

De plus, le modèle optique et le modèle radar simulent tous deux une scène identique modélisée de différentes manières : d'un côté, le modèle radar MIPERS représente les troncs et les branches à l'aide de cylindres, et de l'autre, le modèle optique DART représente les branches et les troncs à l'aide de polygones triangulaires. Le choix a donc été fait de modéliser chaque cylindre du modèle radar par un modèle 3D de cylindre dans le modèle optique. De par leur faible taille devant la longueur d'onde (aux alentours de 70 cm), les ondes radar en bande P ne sont pas sensibles aux feuilles, et par conséquent celles-ci ne sont pas représentées dans la modélisation radar. Par contre, les feuilles sont visibles en optique et sont alors modélisées par des volumes de couches homogènes avec une surface de feuilles par surface au sol (LAI) renseignée, pour chaque couche, par le modèle de croissance.

Lors des premières simulations optiques, nous avons effectué des tests afin d'optimiser les paramètres des simulations pour déterminer, entre autre, la surface minimale de la scène et le nombre minimal de polygones nécessaires pour modéliser un cylindre avec la précision suffisante. Ainsi, avec les paramètres du capteur optique aéroporté de l'ONERA, c'est-à-dire une résolution de 4 m au sol et 128 bandes spectrales entre 0.45 et 2.48 µm, nous avons décidé de fixer la taille de la scène simulée à 12 par 12 m et de fixer le nombre de polygones par cylindre à 8, qui est le minimum théorique. Il s'est avéré que les simulations avec la forêt complète présentaient des résultats incohérents en ce qui concerne l'influence de la résolution, avec des variations très importantes. De plus, les temps de calcul dépassaient les 4 jours, limite du calculateur utilisé à l'ONERA. Une prise de contact a donc été faite avec l'équipe DART du CESBIO afin de cerner et corriger le modèle.

Figure 22. Spectres en réflectance avant refonte des modules (gauche) et après refonte (droite).

Il s'est avéré que les axes d'améliorations nécessaires pour palier aux problèmes rencontrés avaient été envisagés depuis quelques temps par l'équipe DART, mais le besoin de cette étude a bousculé le calendrier. L'équipe du CESBIO a donc repris les modules clef du code pour les optimiser

comme il était prévu de le faire et pour les rendre adaptables à l'utilisation que nous envisagions. Par exemple, le modèle optique n'ayant pas été programmé à la base pour représenter les branches par des polygones allongés, alors que toute la surface du polygone interceptait les rayons lumineux, c'était uniquement son barycentre qui les réémettait. Or, dans les simulations abordées dans ce travail, il y a une densité de 120 cylindres par m², soit à peu près 17 000 cylindres dans toute la scène, et donc un peu plus de 140 000 polygones, ce qui jouait énormément sur les résultats ainsi que sur les temps de calcul. Après refonte des modules à l'origine du problème, les résultats sont désormais satisfaisants et les temps de calcul ne dépassent pas quelques dizaines de minutes par simulation.

En plus de l'amélioration du module de calcul de DART, le couplage entre DART et PROSPECT fut aussi retouché. En effet, une ancienne version de PROSPECT était déjà en partie couplée avec DART avant le début de ce travail. La version de PROSPECT et le couplage entre les deux modèles furent donc mis à jour.

2.3.3. Analyse de données supervisée et analyse de données non supervisée

Les paramètres biophysiques ayant une influence sur plusieurs produits optiques et radar et ces produits étant sensibles à plusieurs paramètres, il est difficile d'inverser un paramètre biophysique à partir des produits bruts optiques et radar uniquement. Je me suis donc intéressé à deux analyses de données : l'une non supervisée, l'Analyse en Composantes Principales (ACP) [Pearson, 1901 ; Hotelling, 1933], et l'autre supervisée, l'Analyse Canonique [Hotelling, 1933 ; Krus et al., 1976].

Figure 23. Stratégie d'organisation du méta-modèle optique-radar et de l'analyse de données.

Les analyses de données partent d'une sélection préalablement faite de produits optiques et radar et vont représenter les données dans un nouvel espace maximisant la variance des données suivant chaque nouvel axe, afin de voir les données peuvent être séparées dans cette nouvelle base de représentation. Ces techniques d'analyse ont donné des résultats très prometteurs et

mériteraient que le travail entamé ici soit poursuivi. Par exemple, il serait intéressant d'évaluer les performances des inversions obtenues avec les données simulées, sur des données aéroportées expérimentales.

2.4. Autres expérimentations

En plus des expérimentations qui ont donné lieu à des campagnes terrain ou de l'outil de simulation optique-radar désormais parfaitement fonctionnel, d'autres outils ont aussi été développés durant la thèse. Ces outils ont montré leur potentiel mais n'ont pas pu être exploités de manière complète pendant le temps limité de la thèse.

2.4.1. Mesures de diffusiométrie radar depuis un drone

L'idée de cette expérimentation part de la constatation que le plus coûteux en temps et en matériel, lors des campagnes radar in situ, est le positionnement des antennes, plus que la mesure elle-même. Une expérimentation commune fut donc lancée avec le Département de Commande et des Systèmes et Dynamique du vol afin d'installer sur un drone à voilure tournante du matériel similaire à celui utilisé lors des campagnes terrain présentées précédemment. L'objectif sous-jacent était de pouvoir mesurer des tomogrammes de façon de façon rapide, flexible et peu onéreuse.

Figure 24. Véhicule de commande du drone vue de l'extérieur (gauche) et de l'intérieur (droite).

Un VNA portable et un couple d'antennes sont installés sur un drone. Le VNA est alimentée par une batterie interne et pilotée par un pont réseau Wifi. Le drone est piloté à distance et localisé par un récepteur GPS. Les mesures sont commandées depuis le sol. Les mesures sont commandées via un pont réseau avec un programme identique à celui utilisé pour la campagne de mesures tomographiques présentée dans le paragraphe 2.2 de ce chapitre. Le programme est donné de façon détaillée dans l'**[Annexe Programme d'acquisition tomographique]**.

Figure 25. Antennes et VNA installés sur le drone (gauche) et drone instrumenté en vol lors d'une acquisition sur le trièdre (droite).

Lors de l'unique expérimentation, les mesures effectuées sur un réflecteur radar ont montré la faisabilité des mesures de diffusiométrie radar depuis le drone [Figure 26].

Figure 26. Réponse impulsionnelle acquise depuis le drone en polarisation VV. La réponse du trièdre est visible à 30 m.

Cette expérimentation a été un travail préliminaire qui peut être amélioré sur de nombreux points. En effet, l'encombrement des antennes disponibles nous a limités à utiliser des antennes avec une faible bande passante (75 MHz), et donc une résolution en distance basse, de l'ordre de 3 m. De plus, la précision de positionnement du drone, de l'ordre de la dizaine de centimètres, est malheureusement insuffisante pour pouvoir reconstruire des tomogrammes. L'utilisation d'un GPS

différentiel et le réglage de l'appareil de mesure afin de pouvoir effectuer des acquisitions lors du déplacement du drone devraient permettre de lever cette barrière.

2.4.2. Acquisitions tomographiques 3D à l'aide d'un banc translateur

Le fait d'effectuer des mesures de diffusiométrie selon des points équidistants suivant une droite permet de reconstruire une carte en 2 dimensions de la réponse radar d'une scène. C'est la méthode qui a été employée dans le paragraphe 2.2. de ce chapitre pour mesurer la réponse radar verticale de parcelles de la forêt de Mende. Pour aller un peu plus loin, nous nous sommes intéressés à la reconstruction tomographique en 3 dimensions en effectuant des mesures selon des points équidistants suivant un quadrillage 2D.

Nous avons donc proposé puis co-encadré deux étudiants de l'Institut National des Sciences Appliquées (INSA) de Toulouse lors d'un stage de Master 1 sur ce sujet. Un contrôleur 2D avec le dixième de millimètre de précision spatiale sur lequel les antennes sont fixées a été programmé pour que les mesures balaient le quadrillage souhaité. Puis, un programme de simulation, de reconstruction SAR 3D avec prise en charge du calcul parallèle, ainsi qu'un affichage adapté à la représentation des tomogrammes 3D furent programmés en Python.

Figure 27. Etudiants, positionneur 2D et bonzaï durant une mesure (gauche), et tomogramme 3D obtenu (droite).

Des mesures de validation du système furent effectuées sur un réflecteur radar trièdre à face triangulaires de 15 cm de côté et sur un bonzaï, le tout entre 4 et 6 GHz afin d'avoir des paramètres proches de ceux utilisés dans le paragraphe 2.2. de ce chapitre, si on considère un facteur d'échelle de 10. Le bonzaï mesure près de 40 cm de haut et la résolution est de l'ordre de 10 cm. Les résultats obtenus sont très encourageants malgré des temps de mesures très longs, entre 3 et 4 heures.

2.4.3. Mesures non destructive de suivi de la constante diélectrique des troncs

Comme nous avons pu le voir précédemment (1.3), la constante diélectrique des branches a une influence très importante sur le signal radar. Or, cette valeur est mal connue car elle est difficile à mesurer. Nous nous sommes donc intéressés à la conception d'un système et d'un protocole de

mesure léger afin de pouvoir corréler des séries temporelles de mesures de constantes diélectriques avec des séries temporelles de mesures radar.

Dans le cadre de la campagne TropiScat, présentée dans le paragraphe 1. de ce chapitre, des mesures de constante diélectrique du tronc ont été effectuées sur plusieurs arbres tropicaux. Or, ces mesures faites à l'aide d'une sonde nécessitent d'enlever l'écorce de l'arbre à l'endroit de la mesure.

Une technique de mesure non destructive de la constante diélectrique fut donc proposée et testée. Cette technique est basée sur la variation de la rétrodiffusion radar d'un tronc mesurée à l'aide d'une antenne large bande. Les mesures en réflexion ont été faites avec une antenne déjà existante dans la bande 1 - 4 GHz et la variation du coefficient de rétrodiffusion et de la phase sont ensuite tracés pour la fréquence 2,19 GHz.

Figure 28. Antenne servant aux mesures fixée contre une branche d'un érable à Toulouse.

Figure 29. Coefficient de rétrodiffusion tracé en fonction du temps.

Figure 30. Phase Coefficient de rétrodiffusion tracé en fonction du temps.

N° d'ordre : UEB/UR1 01-2013

ANNÉE 2013

Les premiers résultats ont montré des variations comparables en allure et en temps avec des mesures de constante diélectriques [Mc Donald et al., 2002] ou des mesures de flux de sève [Gates, 1991] tirées de la littérature. Cette étude préliminaire a abouti sur un stage de Master 2, en cours au moment de la rédaction de ce manuscrit, dont les objectifs sont de concevoir une antenne adaptée à ce type de mesures à l'aide de modèles électromagnétiques, d'en fabriquer plusieurs exemplaires, et finalement d'effectuer des mesures synchronisées sur différentes parties de l'arbre, telles que le bas du tronc, le haut du tronc, le début d'une grosse branches et la fin de celle-ci.

Chapitre III - Analyse de sensibilité à partir de données radar expérimentales et de données optique et radar simulées

Dans un premier temps, le travail s'est focalisé sur des études de sensibilité effectuées à l'aide de données radar expérimentales uniquement. Pour ce faire, les paramètres biophysiques ont été séparés en deux groupes : les paramètres dits variables à court terme tels que l'humidité des branches, du tronc ou du sol, et les paramètres structuraux des forêts comme la biomasse, la présence de sous-bois ou la pente par exemple.

Dans un second temps, nous nous sommes intéressés à l'apport des données optiques, dans l'inversion des paramètres biophysiques. Pour se faire, nous avons travaillé sur des données simulées optiques et radar issues du méta-modèle présenté précédemment dans le 2.3.

3.1. Suivi temporel de la réponse radar d'un arbre seul en zone tempérée et d'une parcelle de forêt tropicale

3.1.1. Objectifs

Il s'agit ici d'observer la variabilité temporelle du signal radar sur une zone forestière fixe.

Dans le cadre de l'étude de sensibilité radar expérimentale, nous allons tout d'abord nous intéresser aux paramètres biophysiques variables à court terme, tels que l'humidité du tronc et des branches, mais aussi du sol. Afin d'obtenir la réponse radar de la forêt pour différentes valeurs de paramètres biophysiques variables à court terme, des séries temporelles sont acquises en même temps que les paramètres météorologiques et l'humidité du sol. Il va alors être possible d'étudier l'influence de l'humidité à l'intérieur de l'arbre et du sol sur la réponse radar, avec de nombreuses réserves concernant les conclusions étant donné les difficultés d'obtention de mesures d'humidité à l'intérieur des troncs et des branches.

L'étude de séries temporelles radar a un intérêt supplémentaire. En effet, dans le cadre de la mission BIOMASS [ESA, 2008 ; Le Toan et al., 2011], plusieurs stratégies principales sont actuellement envisagées pour l'inversion de la biomasse forestière.

D'une part, la méthode «P-HV» [Le Toan et al., 1992] qui est basée sur le fait que, pour la plupart des forêts, le coefficient de rétrodiffusion en polarisation HV augmente de façon monotone avec la biomasse. Toutefois, des études antérieures ont montré, sur la base de simulations, que d'autres paramètres tels que l'humidité des branches jouent un rôle très important dans le mécanisme de rétrodiffusion [Borderies and Villard, 2010]. Il serait alors intéressant de le vérifier expérimentalement, en cernant les mécanismes qui pourraient induire des variations de la réponse radar au cours du temps, à différentes échelles (quelques heures, quotidienne, mensuelle, etc.)

D'autre part, l'inversion basée sur la méthode PolInSAR [Cloude and Papathanassiou, 2003 ; Garestier et al., 2008 ; Villard et al., 2008], qui part de l'hypothèse que la biomasse est généralement proportionnelle à la hauteur et que celle-ci peut être déduite de la connaissance des cohérences interférométriques complexes pour les polarisations HH, HV et VV. Cette méthode permet de réduire l'erreur constatée lors de l'inversion de fortes biomasses avec la méthode précédente. En effet, pour

les forêts tropicales dont la biomasse est très élevée (plus de 300 tonnes/ha), l'inversion à l'aide du coefficient de rétrodiffusion en HV uniquement fournit des valeurs de biomasse avec une précision faible. Lorsqu'on travaille avec de l'interférométrie multi-passes, comme ce sera le cas pour cette mission, la décorrélation temporelle peut jouer un rôle parasitaire. Afin de disposer d'informations interférométriques exploitables, il est nécessaire d'avoir une cohérence temporelle élevée sur la forêt, pour des intervalles de temps compatibles avec les intervalles de revisite de la mission BIOMASS. Cette nécessité de cohérence temporelle élevée se retrouve aussi pour la tomographie qui requiert plusieurs passages en temps différé.

3.1.2. Méthode

L'acquisition de données radar sur de longues périodes permet d'étudier en détail le comportement de la forêt en fonction du moment de la journée et de la saison. Pour étudier finement ce comportement, c'est-à-dire avec un échantillonnage temporel incorporant toutes les échelles de temps, une expérience de proximité est la plus appropriée. En effet, la scène mesurée peut être caractérisée avec précision. De plus, les mesures peuvent être répétées aussi souvent que souhaité afin de relier la réponse radar à certaines caractéristiques environnementales, comme la pression ou la vitesse du vent, qui peuvent être mesurées de façon synchrone. Deux expérimentations de proximité sont proposées: l'une sur un arbre isolé dans une région tempérée, à Toulouse et l'autre sur une parcelle de forêt tropicale en Guyane française.

Tout d'abord, l'expérimentation TreeScat, présentée dans la **[Publication 1]**, consiste à observer un cèdre sur plusieurs intervalles pour une durée totale d'un peu plus de 9 mois, à l'aide d'un diffusiomètre radar constitué d'un émetteur-récepteur situé sur le toit d'un bâtiment de l'ONERA à Toulouse. Cet émetteur-récepteur est piloté à distance par l'intermédiaire du réseau Ethernet et effectue une mesure toutes les 5 minutes. Ainsi, il est possible de réaliser un suivi temporel précis de l'intensité et de la phase du signal rétrodiffusé par l'arbre, afin de caractériser les variations et de mieux en comprendre les raisons.

La seconde expérimentation, TropiScat, présentée dans la **[Publication 2]**, est basée sur le même principe que l'expérimentation précédente mais située en Guyane française, au sommet d'une tour de 55m de haut, et caractérisée par un réseau vertical de 20 antennes afin de pouvoir faire des mesures tomographiques verticales. L'objectif principal de cette expérimentation est d'étudier l'évolution de la cohérence temporelle du signal radar rétrodiffusé par une parcelle de forêt tropicale pour différentes échelles de temps et différents moments de l'année. Les données sont obtenues en continu toutes les 15 minutes depuis Octobre 2011. Les données brutes recueillies par le radar polarimétrique sont calibrées en relatif dans l'espace, le temps et selon la polarisation. L'analyse s'appuie sur trois mois de données acquis pendant la saison des pluies et trois autres mois acquise pendant la saison sèche, avec une interruption de près de 5 mois entre les deux.

Etant donnée la quantité importante de données acquises dans le cadre de cette expérimentation TropiScat, une post-doctorante, Alia Hamadi, fut embauchée pour participer à leur traitement. Les résultats ainsi obtenus sont présentés dans la **[Publication 3]** et dans la **[Publication 4]**.

	TreeScat	TropiScat	
Schéma	12m Antennes 12m 6,5m 20m	55m	
Lieu	Toulouse, France	Paracou, Guyane française	
Scène observés	Un cèdre seul	Une parcelle de forêt primaire tropicale	
Mesures de réponses impul- sionnelles	• 1 mesure full-pol en bande P+L toutes les 5 minutes.	 16 mesures full-pol en bande P toutes les 15 minutes. 16 mesures full-pol en bande P+L toutes les 6 heures. 	
Mesures tomo- graphiques		 1 tomogramme full-pol en bande P toutes les 15 min. 1 tomogramme full-pol en bande P+L toutes les 6 heures. 	

Tableau 2. Récapitulatif des différences entre les deux expérimentations dans cette partie.

3.1.3. Principaux résultats

• <u>TreeScat</u>

Durant les 9 mois qu'a duré l'expérimentation TreeScat, quatre séries temporelles ont été mesurées, traitées, analysées, et les résultats qui ont été publiés dans la **[Publication 1]** nous ont beaucoup appris.

En premier lieu, les mesures montrent que l'arrosage du houppier du cèdre a une influence certaine sur le coefficient de rétrodiffusion. Cette influence reste limitée dans le temps pour le coefficient de rétrodiffusion du volume, environ 30 minutes, mais persiste plus longtemps (2 heures) sur la cohérence, et ceci quelle que soit la polarisation. Il serait intéressant de reproduire cette expérimentation tout au long de l'année pour compléter ces mesures acquises à la fin de l'été.

Pour le suivi temporel, pour des questions de géométrie, on a dû se limiter à l'étude du volume et uniquement dans la polarisation HV. Il a été montré que le cèdre en région tempérée présente des comportements différents suivant la saison. En effet, il présente des cycles journaliers en intensité et en cohérence temporelle au printemps, alors qu'il n'en présente aucun en hiver et qu'il en présente uniquement sur la cohérence en automne. Par ailleurs, les variations à long terme sont elles aussi très différentes : on a des variations de plus de 2 dB en automne (croissance) et au printemps (décroissance), alors que en hiver le coefficient de rétrodiffusion est beaucoup plus stable

(croissance de moins de 1 dB). La cohérence à plus long terme est elle aussi variable : alors qu'elle évolue peu en automne et en hiver, malgré les épisodes de pluie, on observe des décorrélations allant jusqu'à 0,6 au printemps. Les cycles quotidiens pourraient être liés aux variations de la constante diélectrique du tronc et des branches qui ont été observées et publiées dans la littérature en association avec la montée de sève. De plus, durant l'hiver, période où la végétation est dormante et où le phénomène de « montée de sève » n'existe plus, ni la cohérence, ni le coefficient de rétrodiffusion en HV ne présentent de cycles journaliers. Nous avons aussi constaté que le coefficient de rétrodiffusion journalier moyen en HV présente des variations annuelles d'environ 3 dB tout à fait corrélées avec des variations annuelles d'humidité de branches [Proisy et al., 2000] et de troncs [Jameson, 1966] tirées de la littérature.

Figure 31. Image du cèdre durant la période de gel.

Durant l'hiver, les données acquises sur une période de 10 jours ont présenté un comportement différent des autres données, avec des cycles du coefficient de rétrodiffusion de l'ordre de 4 à 5 dB et des décorrélation autour de 0,7 durant chaque nuit alors que la cohérence remonte à 0,9 en début d'après-midi. En effet, cette période de 10 jours correspond à une période où la température est passée en dessous 0 °C chaque nuit et où, par conséquent, du gel a dû se déposer sur les branches et sur les touffes d'épines.

<u>TropiScat</u>

L'expérimentation TropiScat a quant à elle été installée en Guyane française et est en fonctionnement depuis octobre 2011. Deux campagnes préalables ont eu lieu en 2010 avec un système manuel et en juin 2011 avec une partie du système complet réduit à 4 antennes, avec le but de valider l'expérimentation. Dans la **[Publication 2]**, qui repose sur ces deux campagnes

préliminaires, la compatibilité de l'instrument, avec la tour Guyaflux, a été démontrée : les échos dus à la tour sont négligeables par rapport aux échos de la forêt, dans les tranches distance utiles et les mouvements de la tour ont des effets négligeables sur les résultats. Les résultats préliminaires ont permis de valider le concept d'instrument TropiScat et ont montré que l'expérimentation TropiScat pouvait atteindre ses objectifs scientifiques en démontrant sa capacité à mesurer la cohérence temporelle du signal rétrodiffusé par la forêt et sa réponse tomographique. En effet, la qualité des signaux a été montrée sur les réponses impulsionnelles et sur les images, en particulier avec un trièdre dans la forêt avec soustraction de chambre. Enfin, la pureté polarimétrique a été vérifiée.

Concernant l'expérimentation complète, comme présentée plus en détail dans la **[Publication 3]** et en partie dans la **[Publication 4]**, l'analyse des séries temporelles a montré des résultats très intéressants.

Durant les trois mois mesurés pendant la saison des pluies, la cohérence présente des cycles journaliers en période sans pluie, mais ces cycles sont très fortement perturbés par la pluie. Durant l'ensemble de cette période, la cohérence décroit très vite (0,8), en quelques jours, puis demeure relativement élevée et est quasiment indépendante de la baseline temporelle entre 3 et 20 jours, puis décroît au-delà. Le coefficient de rétrodiffusion présente également des cycles journaliers en HH lors de l'absence de pluie, mais ils sont négligeables sur les autres polarisations et absents pour toutes les polarisations lors des épisodes de pluie. On observe aussi une légère tendance à long terme du coefficient de rétrodiffusion en HH et en VH à la hausse, qui semble liée à l'humidité du sol mesurée à 10 cm. Le VV, lui, est relativement stable.

Pendant la période sèche, la cohérence décroit de façon très régulière, notamment pour les polarisations HV et VV. Nous avons pu voir que, pour des baselines temporelles inférieures à 20 jours, la cohérence est beaucoup plus élevée pendant la saison sèche que pendant la saison des pluies et devient du même ordre pour des baselines aux alentours de 40 jours. Il a également été montré que le coefficient de rétrodiffusion montre des cycles journaliers très réguliers pour toutes les polarisations mais d'amplitude variable suivant la polarisation entre la nuit et le jour. En outre, la cohérence temporelle se comporte de la même façon, que les acquisitions soient effectuées à 6:00 ou à 18:00.

Afin de voir si ce phénomène se retrouve sur le coefficient de rétrodiffusion, les séries temporelles prises à 6:00 et à 18:00 ont été tracées pour la saison des pluies et pour la saison sèche.

Figure 32. Séries temporelles des coefficients de rétrodiffusion HH (rouge) et HV (vert) acquis à 6:00 avec l'expérimentation TropiScat, sur la forêt complète, pour la saison humide (gauche) et pour la saison sèche (droite).

Figure 33. Séries temporelles des coefficients de rétrodiffusion HH (rouge) et HV (vert) acquis à 18:00 avec l'expérimentation TropiScat, sur la forêt complète, pour la saison humide (gauche) et pour la saison sèche (droite).

Il est possible de voir sur la Figure 32 et sur la Figure 33 que le fait de faire les acquisitions à 6:00 ou à 18:00 a très peu d'influence sur les tendances à court terme et à long terme des données.

Alors que dans le cadre du cèdre en zone tempérée, le coefficient de rétrodiffusion en HV présente un cycle annuel est visible, il serait intéressant de voir si un cycle identique peut être retrouvé pour la parcelle de forêt tropicale. Malheureusement, à cause de plusieurs pannes matérielles consécutives (commutateurs puis analyseur de réseau), les données de mars à août 2012 n'ont pu être acquises.

Etant donné que nous disposons des données du premier et du dernier trimestre 2012, nous pouvons déjà avoir une idée des variations sur l'année, et voir si les valeurs de coefficients de rétrodiffusion observées en décembre 2011 peuvent être retrouvées en décembre 2012.

Figure 34. Variation du coefficient de rétrodiffusion mesuré lors de l'expérimentation TropiScat, sur la forêt complète, pris à 6:00 et moyenné sur 16 couples d'antennes le premier et le dernier trimestre de l'année 2012.

Nous pouvons voir sur la Figure 34 que lors du premier trimestre, c'est-à-dire lors de la saison des pluies, le coefficient de rétrodiffusion est stable, excepté en HH pour lequel il croit de 1 dB sur l'ensemble de la saison. Pour ce qui est du dernier trimestre, c'est-à-dire pour la saison sèche, le coefficient de rétrodiffusion décroît de 1 dB en HV sur toute la période, de 2 dB en VV, et reste stable en HH. De plus, on peut remarquer que pour la fin du de l'année 2011 et la fin de l'année 2012, les valeurs sont identiques pour toutes les polarisations. On peut donc voir que sur une parcelle de forêt tropicale, le coefficient de rétrodiffusion présente des tendances différentes en fonction de la saison, mais que d'une année sur l'autre, ces valeurs semblent identiques. Il semblerait donc que pour les forêts tropicales aussi, il existe des cycles annuels du coefficient de rétrodiffusion.

En ce qui concerne la cohérence temporelle, l'évolution de celle-ci dépend de la mesure utilisée comme référence. Afin de s'affranchir de cette dépendance, toutes les cohérences temporelles possibles ont été calculées en prenant comme références des acquisitions réparties sur la série temporelle. L'évolution de cette cohérence en fonction de la baseline temporelle est présentée dans la Figure 35 pour la saison sèche et pour la saison des pluies. Chaque point correspond, pour une baseline temporelle fixée, à la moyenne de 60 cohérences temporelles réparties sur l'ensemble de la série temporelle.

Figure 35. Evolution de la cohérence temporelle en fonction de la baseline temporelle pour la saison sèche (gauche) et pour la saison des pluies (droite).

On s'aperçoit, d'après la figure ci-dessus, que la cohérence présente une décroissance quasi linéaire pour la saison sèche, alors qu'elle décroît très vite pour une baseline temporelle de quelques jours, puis reste plutôt stable en saison des pluies. De plus, en saison des pluies, la décorrélation est plus importante en VV qu'en HH et plus importante en HV que dans les deux autres polarisations. L'estimation en hauteur à l'aide de techniques interférométriques telles que le PolInSAR donnera ainsi de meilleurs résultats pour des données acquises durant la saison sèche plutôt que pour des données acquises durant la saison seche plutôt que pour des données acquises durant la saison des pluies.

<u>Récapitulatif des résultats obtenus avec les deux expérimentations</u>

		Automne	Hiver	Printemps	
Dates		De septembre à	De décembre 2011 à	De mars à juin 2012	
		novembre 2011	février 2012		
Cycles	Intensité			HV : 1 à 2 dB	
journaliers	Cohérence	≈ 0,9		≈ 0,95	
Tendance					
de l'intensité					
Cohérence		HV/ · 0.05	HV · 0 05	HV·06	
à 20 jours		117.0,95	110.0,95	110.0,0	

Tableau 3. Bilan des résultats obtenus avec l'expérimentation TreeScat.

		Saison des pluies		Saison sèche	
Dates		De décembre 2011 à mars 2012		D'août à décembre 2012	
Période		Sans pluie	Avec pluie	Sans pluie	Avec pluie
Cycles journaliers	Intensité			HH : 0,5 dB	
		HH : 0,5 dB		HV : 1 dB	\sim
				VV : 1,5 dB	
	Cohérence	≈ 0,7		≈ 0,8	
Tendances de l'intensité		$HH \rightarrow$		HH ↗ 1 dB	
		HV ↘ 1 dB		HV ⊅ 0,5 dB	
		VV ↘ 1 dB		$\vee \vee \rightarrow$	
Cohérence à 20 jours		HH : 0,8		≈ 0,8	
		HV : 0,8			
		VV : 0,7			

Tableau 4. Bilan des résultats obtenus avec l'expérimentation TropiScat.

En faisant un parallèle entre les résultats obtenus, on peut observer que le comportement observé en hiver sur le cèdre, et caractérisé par une absence de cycles journaliers du coefficient de rétrodiffusion et de la cohérence, peut être retrouvé, lors des périodes de pluie, sur la parcelle de forêt tropicale. Un comportement similaire peut être visible pour le cèdre au printemps et pour la parcelle de forêt tropicale pendant les périodes sans pluie de la saison sèche, avec des cycles journaliers du coefficient de rétrodiffusion et de la cohérence. Finalement, le comportement du cèdre durant le printemps, qui est caractérisé par des cycles diurnes de la cohérence mais pas du coefficient de rétrodiffusion en HV, se retrouve durant les périodes sans pluie de la saison des pluies.

On observe donc un comportement similaire de la cohérence en zone tempérée et en zone tropicale, sûrement lié aux similarités des mécanismes biophysiques à l'intérieur des arbres quelque soient les climats.

N° d'ordre : UEB/UR1 01-2013

Le manque de mesures de paramètres biophysiques tels que l'humidité des branches ne nous permet pas d'aller plus loin dans l'interprétation de ces résultats. Ainsi, il serait nécessaire de faire appel à la modélisation afin de valider les hypothèses avancées et d'aller plus loin dans l'interprétation des comportements observés dans cette étude.

Cet ensemble de résultats constitue une base de données précieuse pour la connaissance du comportement de la rétrodiffusion radar et pour l'évaluation de la cohérence à long terme des acquisitions multi-passes sur les forêts. Il est cependant nécessaire de rester modeste quant aux analyses présentées ici, étant donné le peu de mesures de paramètres biophysiques et géophysiques disponibles (uniquement l'humidité du sol) et le faible nombre de sites considérés (un seul pour chaque expérimentation).

3.2. Etude de sensibilité à l'aide de données in situ tomographiques verticales haute résolution

3.2.1. Objectifs

Après avoir mené une étude de sensibilité radar sur les paramètres biophysiques variables à court terme, nous allons nous intéresser aux paramètres structuraux des forêts tels que la biomasse, la hauteur de la forêt, la densité d'arbres ou la présence de sous bois, mais aussi à certains paramètres géophysiques comme la pente du sol. Beaucoup de travail a été fait en imagerie radar haute résolution en bande P [Sandberg et al., 2009 ; Dubois-Fernandez et al., 2012] ainsi qu'en bande L [Shimada et al., 2008]. Cependant, de nombreuses interrogations demeurent sur la distribution verticale des diffuseurs, information qui reste hors de portée pour les techniques polarimétriques interférométriques [Garestier et al., 2005]. La tomographie SAR aéroportée permet d'obtenir un profil vertical de rétrodiffusion et présente des résultats prometteurs [Tebaldini, 2009 ; Huang et al., 2011 ; Tebaldini et al., 2011], mais la faible résolution verticale obtenue (liée au cout important des mesures répétées) ne permet pas d'isoler clairement la contribution du volume de celle du sol, d'estimer les profils d'extinction ou de finement déterminer les mécanismes qui conduisent aux valeurs de coefficients de rétrodiffusion. Ainsi, de nombreuses questions demeurent sur les mécanismes de rétrodiffusion de la forêt, sur leur répartition géométrique et leur contribution dans la réponse radar en fonction de la polarisation.

Il est possible d'apporter des réponses à ces questions grâce à l'imagerie verticale haute résolution qui permet, entre autre, la séparation spatiale entre le sol, en ce qui concerne sa contribution directe et le double rebond d'une part, et la rétrodiffusion du volume d'autre part.

3.2.2. Méthode

Pour atteindre cet objectif, des mesures radar ponctuelles ont été spécifiquement effectuées dans une forêt mono-espèce, constituée de parcelles homogènes couvrant le spectre des paramètres biophysiques et géophysiques attendus, avec un système radar que nous avons développé et qui permet des acquisitions de tomographie verticale haute résolution. L'expérimentation présentée ici ainsi que les résultats obtenus sont présentés en détail dans la **[Publication 5]**.

Le choix de la forêt s'est porté sur la forêt de Mende en Lozère, constituée de pins noirs d'Autriche et gérée par l'ONF. L'instrumentation mise en œuvre est relativement similaire à celle utilisée pour l'expérimentation TropiScat, introduite dans précédemment dans le 2.1, dont le but était l'étude de l'évolution temporelle de la cohérence et du coefficient de rétrodiffusion en bande P sur une parcelle de forêt tropicale à partir de mesures tomographiques verticales effectuées depuis le sommet d'une tour. En contraste avec l'instrument de l'expérimentation TropiScat, qui était fixé sur une tour, ce nouvel instrument est installé sur la nacelle d'un camion-grue. Cette originalité nous permet de déplacer le dispositif et d'effectuer des mesures tomographiques verticales à très haute résolution sur 9 parcelles, dont une imagée à deux dates, qui présentent des caractéristiques variées telles que : la biomasse, la présence de sous-bois, la pente, la répartition des arbres. Les données polarimétriques complètes sont acquises simultanément dans le but de mieux caractériser les différents mécanismes de rétrodiffusion associés au sol, au volume et à l'ensemble de la forêt.La chaîne de traitement des données tomographiques a été mise en place et l'ensemble du système a

été validé. Les tomogrammes à résolution métrique ont été reconstruits et les profils verticaux ainsi que les contributions en fonction de leur localisation ont été déduits.

3.2.3. Résultats principaux

La faisabilité et l'intérêt d'un système d'imagerie verticale à haute résolution ont été démontrés. Les tomogrammes résultants ouvrent de nombreuses nouvelles perspectives dans l'étude des mécanismes fins de diffusion radar des forêts. L'ensemble des tomogrammes, des profils verticaux et des contributions obtenus sont présentés dans l'**[Annexe Mesures tomographiques exhaustives]**.

En effet, l'analyse des données obtenues montre que les réponses du volume et du sol sont visibles sur les profils verticaux quelles que soient les polarisations. En outre, la rétrodiffusion du sol est élevée, même pour la polarisation croisée ce qui n'est pas un résultat attendu. Ces niveaux importants en HV sont associés à la présence de branches au sol ou de sous-bois, mais peuvent être aussi générés par les irrégularités du sol.

Sur les sites étudiés dans ce travail, le passage d'une parcelle avec pente montante à une parcelle avec pente descendante entraîne une diminution du HV de 2 dB, du VV de 5dB, et du HH de 6 dB. Par contre, avec deux parcelles identiques aux précédentes mais avec un sous-bois dense, le passage de la parcelle avec pente montante à la parcelle avec pente descendante entraîne une baisse du coefficient de rétrodiffusion d'environs 1 dB pour le HH uniquement. Ainsi, nous avons pu voir que les effets de la pente sur les mesures radars se sont variables en fonction du sous-bois : prépondérants quand le sous-bois est clairsemé et moins importants quand il devient plus dense.

Dans le cadre de l'étude basée sur l'analyse des paramètres biophysiques variables à court terme et dont les résultats ont été présentés plus tôt, nous avons pu voir que les variations de constante diélectrique dans les troncs, les branches ou le sol, signant la variation d'humidité à l'intérieur de ceux-ci, entraînaient des variations journalières de coefficient de rétrodiffusion pouvant aller jusqu'à 2 dB, et des variations annuelles de l'ordre de 3 dB. Ici, l'influence des paramètres constitutifs tels que la biomasse, la densité, la hauteur de la forêt, la présence de sous-bois ou la pente, produit des variations du coefficient de rétrodiffusion de l'ordre de 10 dB. On peut donc voir que les paramètres constitutifs ont une influence bien plus importante sur le coefficient de rétrodiffusion radar que les paramètres biophysiques liés à l'humidité interne des arbres.

En outre, nous avons pu voir que l'imagerie tomographique verticale à haute résolution permet de mesurer la rétrodiffusion détaillée du sol, du volume, du rapport volume / sol de manière précise, d'estimer la hauteur de la canopée, de connaitre la présence de sous-bois, et même si cela n'a pas été traité ici, de mesurer l'extinction de la canopée en inversant les profils verticaux de rétrodiffusion mesurés. En termes de relation avec les modèles, la séparation des contributions est une grande avancée car elle permet de comparer les données simulées avec les données mesurées pour différentes contributions et non plus uniquement pour la rétrodiffusion totale. Cette étude ouvre donc la voie à un travail d'amélioration des modèles puisque nous avons observé une réponse du sol qui, contrairement à ce qui était prédit, possède une composante non-négligeable en polarisation croisée, et des effets liés aux pentes qui mériteraient d'être mieux rendus au vu des résultats obtenus.

N° d'ordre : UEB/UR1 01-2013

ANNÉE 2013

L'amélioration de la vitesse de mesure de l'instrument permettrait d'augmenter le nombre de tomogrammes verticaux acquis depuis chaque position du camion. Ainsi, il sera possible d'imager plusieurs fois le même site, d'acquérir des tomogrammes avec des réflecteurs dans la scène afin de pouvoir calibrer les données, et d'imager plus de sites pour permettre une validité de l'analyse des résultats d'un point de vue statistique.

3.3. Apport de la fusion de données optique-radar dans l'inversion des paramètres biophysiques

3.3.1. Objectifs

Précédemment, nous avons pu étudier les effets des paramètres biophysiques variables et des paramètres constitutifs des forêts sur la réponse radar. L'objectif derrière ces études de sensibilité étant l'inversion des paramètres biophysiques à l'aide de données radar, il conviendrait de se demander comment des données optiques pourraient améliorer cette inversion. A l'heure actuelle, les données optiques sont communément utilisées, entre autres, pour établir des cartes d'occupation du sol et donc déterminer les types de forêts observées. Cette information permettrait de déduire certains paramètres biophysiques caractéristiques du type de forêt observée et donc de lever des incertitudes sur l'inversion des autres paramètres à l'aide de données radar.

Dans ce paragraphe, c'est une autre approche qui est envisagée: elle a pour but une inversion directe des paramètres biophysiques à l'aide des données optiques et radar. L'approche originale développée ici est de fusionner des données simulées optiques et radars obtenues simultanément. Expérimentalement, il n'est pas possible d'acquérir des données simultanées optiques-radar in situ de façon similaire à ce qui a été fait dans les deux expérimentations d'acquisition de séries temporelles radar. En effet, en ce qui concerne les séries temporelles, le soleil tournant durant la journée oblige à refaire une calibration avant chaque mesure, et la nuit interdit toute mesure dans le domaine visible. D'autre part, il est très difficile d'acquérir des données aéroportées ou satellitaires optiques et radar dans un cours laps de temps. Généralement, plusieurs heures s'écoulent entre les acquisitions et durant ce laps de temps, les paramètres biophysiques ont pu évoluer, comme nous avons pu le voir précédemment dans le paragraphe 2.1 pour les données radar.

L'approche novatrice de ce travail a été de coupler un modèle optique et un modèle radar afin de simuler une scène identique telle qu'elle serait imagée par les deux capteurs. Les produits simulés ont finalement été fusionnés à l'aide d'analyses de données afin d'évaluer l'apport de la fusion de données optique et radar simultanées dans l'inversion des paramètres biophysiques.

3.3.2. Méthode

Afin d'évaluer le potentiel de cette approche combinée, nous nous sommes intéressés à une approche de modélisation directe dans laquelle le même scénario de forêt est simulé à la fois en radar bande P polarimétrique et en optique hyperspectrale dans les domaines visible et proche infrarouge. Cette approche est présentée en détail dans la **[Publication 7]**.

La modélisation optique-radar est considérée comme parallèle car la description géométrique 3D de la forêt est identique pour les deux modèles. En effet, la représentation 3D d'une forêt de pins maritimes, en fonction de son âge et par conséquent de sa biomasse, est obtenue grâce à un modèle de croissance [Saleh et al., 2005] qui fournit le LAI des épines ou des feuilles, en fonction du type de forêt considéré, et les paramètres statistiques des troncs et des branches en termes de taille, d'orientation et de position, pour une biomasse donnée. Il convient de préciser que la biomasse considérée ici est la biomasse aérienne, c'est-à-dire la somme de la biomasse des branches et des troncs, la biomasse des aiguilles étant considérée comme négligeable. Cette description géométrique

est ensuite utilisée par MIPERS [Borderies and Villard, 2009; Borderies and Villard, 2010] pour simuler la rétrodiffusion radar de la forêt, et par DART [Gascon et al., 2001; Gastellu-Etchegorry et al., 2012] pour la simulation de la réflectance.

Tout d'abord, le modèle de croissance pour les forêts tropicales et le modèle radar sont validés en comparant des données simulées à l'aide de mesures terrain recueillies au pied de la tour Guyaflux, présentée dans le paragraphe 2.1, et des données acquises sur cette même parcelle durant la campagne TropiSAR [Dubois-Fernandez et al., 2010]. Après cette validation, une étude de sensibilité est menée tout d'abord sur des données radar puis des données optiques séparément, avec différentes biomasses, teneurs en humidité des sols et teneurs en humidité des branches, pour des forêts sans feuilles puis pour des forêts avec feuilles. Enfin, les données optiques-radar précédentes sont fusionnées puis étudiées à l'aide de deux techniques d'analyse de données: l'une non supervisée, l'Analyse en Composantes Principales [Pearson, 1901 ; Hotelling, 1933] et l'autre supervisée, l'Analyse Canonique [Hotelling, 1933 ; Krus et al., 1976].

3.3.3. Résultats principaux

Un méta-modèle optique radar a été construit autour d'un modèle optique et d'un modèle radar, couplés à un modèle descriptif des forêts tempérées et tropicales. Des modules d'analyse de données supervisées et non-supervisées ont été couplés en sortie du méta-modèle afin d'évaluer l'apport de la combinaison des données optiques et radar simulées.

Comme nous pouvons le voir en détail dans la **[Publication 6]**, les simulations radar sont en accord avec les données aéroportées utilisées pour la validation du modèle. Dans la **[Publication 8]**, l'accent est mis sur l'analyse des résultats de simulation optique et radar ainsi que sur la fusion de ces données.

Dans le cas de forêt sans feuilles, les caractéristiques du sol apparaissent prépondérantes dans les réflectances optiques de l'ensemble de la scène. Cette caractéristique est particulièrement intéressante dans le cadre de la complémentarité optique/radar car elle pourrait donner accès à l'information d'humidité du sol, ou bien lever l'incertitude sur un autre paramètre, et ainsi améliorer l'inversion à l'aide de données radar. Par exemple, une inversion basée sur le coefficient de rétrodiffusion radar HH devient envisageable.

En présence de feuilles, les résultats montrent une influence faible des conditions d'humidité du sol en optique, ce qui était naturellement attendu, ce qui orienterait l'utilisation des données optiques en priorité vers la détermination de l'espèce. Ce résultat a pu être vérifié dans les images obtenues au cours de la campagne ENVIRO, dans lesquelles les feuillus apparaissent bien séparés des pins sur la forêt de MENDE. Cette information d'espèce, injectée dans l'inversion radar, permettrait une meilleure caractérisation du milieu. Notons que dans ce cas, la simultanéité des mesures radar et optique n'est pas nécessaire. En outre, il est observé que la teneur en humidité du bois constituant le tronc et les branches, et la biomasse des branches ont le même effet sur la rétrodiffusion totale, ce qui est une source de confusion pour l'inversion : cette confusion pourrait être levée par l'utilisation d'indices adaptés à la mesure de contenu en eau du couvert.

Comme nous avons pu le voir pour les campagnes expérimentales, les différents paramètres biophysiques, constitutifs ou liés à l'humidité, ont un impact sur l'ensemble des observables radars.

N° d'ordre : UEB/UR1 01-2013

ANNÉE 2013

En conséquence, nous nous sommes intéressés à la fusion des données radar avec les données optiques espérant ainsi s'affranchir de ces effets conjugués. Les résultats obtenus en considérant uniquement des variations de l'humidité du sol, de l'humidité des branches et des feuilles, et de la biomasse, montrent que la fusion de données permet d'inverser chacun de ces paramètres biophysiques de façon indépendante, avec des performances meilleures pour l'analyse supervisée par rapport à l'analyse non-supervisée.

Figure 36. Résultat d'une Analyse en Composantes Principales sur des coefficients de rétrodiffusion radar HH, HV, VV ainsi que sur des indices optiques NDVI, GVMI, NINSOL (gauche) et sur les mêmes données à l'exception du coefficient de rétrodiffusion en VV (droite).

Par exemple, on peut voir dans la Figure 36 que les trois premiers scores de l'analyse de données permettent de retrouver les trois paramètres de manière indépendante, si l'on considère les combinaisons linéaires de ces scores selon les directions qui apparaissent dans les figures. De plus, l'analyse montre que des résultats équivalents sont obtenus avec ou sans l'utilisation du terme de rétrodiffusion VV quand les données d'entrée comportent déjà la rétrodiffusion HH et HV, les indices optiques NDVI, GVMI et NINSOL. Il apparaît donc, à la lueur de ce résultat qu'une inversion basée sur cette méthode se satisferait de données radar compact-polarisation [HH, HV], qui sont moins coûteuses en terme de matériel d'acquisition, de quantité de données, et permettent d'avoir une tache au sol deux fois plus large.

De manière plus générale, ce résultat nous montre un intérêt supplémentaire de la fusion de données, outre l'inversion des paramètres biophysiques eux mêmes, qui est l'optimisation du nombre de canaux nécessaires à l'inversion. Il est difficile de parler réellement d'économie ici étant donné le surcoût et la complexité liés à l'utilisation de données radar et optiques simultanées. Cette analyse de sensibilité a permis d'exposer les avantages qui peuvent être retirés de l'utilisation de deux modèles séparément dans un premier temps, puis les bénéfices supplémentaires de leur utilisation dans la fusion de données optiques et radars.

L'étape suivante dans la poursuite de cet axe d'étude serait de construire des modules d'inversion de façon similaire à ce qui a été fait dans cette partie, mais à l'aide d'un jeu de données d'apprentissage expérimentales, puis d'évaluer l'inversion des paramètres biophysiques considérés à partir d'autres données expérimentales et des modules précédemment obtenus. De tels modules seraient une technique d'inversion des paramètres biophysiques et pourraient être enrichis à l'aide de nouvelles données optiques telles de nouveaux indices optiques, radars telles des données PolInSAR ou tomographiques, ou des données provenant d'autres types de capteurs comme des données Lidar par exemple.

Conclusion et perspectives

Cette thèse est située dans le contexte de l'inversion des paramètres biophysiques des forêts tropicales et tempérées. Afin d'y parvenir, ce travail de thèse s'est centré sur des études de sensibilité des données optiques et radar aux paramètres biophysiques, géophysiques et météorologiques des forêts.

La première originalité de l'approche abordée repose sur le fait d'avoir mené l'étude de sensibilité radar sur des données expérimentales originales. Pour ce faire, les paramètres biophysiques ont été séparés en deux groupes : les paramètres dits variables à court termes tels que l'humidité des branches, du tronc ou du sol, les paramètres météo (vent, pluie, température, etc.) et les paramètres structuraux des forêts comme la biomasse, la présence de sous-bois ou la pente.

Pour les paramètres biophysiques variables à courts termes, deux expérimentations visant à obtenir des séries temporelles de mesures de diffusiométrie radar ont été mises en place sur un cèdre en zone tempérée et sur une parcelle de forêt tropicale. Les paramètres biophysiques correspondants étant difficilement mesurables, des séries temporelles de mesures météorologiques telles la pluviométrie, la température, la vitesse du vent et l'humidité du sol ont été acquises. L'étude de ces séries temporelle a montré la présence de cycles journaliers et de tendances annuelles dans l'évolution de la réponse radar des arbres de l'ordre de quelques dB.

Pour les paramètres structuraux, l'étude de sensibilité sur les données expérimentales s'est faite grâce à un instrument capable d'imager verticalement avec une résolution métrique plusieurs parcelles d'une forêt de pin présentant des configurations structurales variées en termes de biomasse, densité, hauteur de couvert, pente, etc. La technique d'imagerie utilisée, la tomographie verticale radar, a permis de séparer les contributions suivant la hauteur avec une précision métrique et, grâce à une caractérisation des parcelles imagée, d'étudier les mécanismes fins de rétrodiffusion radar à l'intérieur de la forêt. L'étude de sensibilité a montré une influence forte des paramètres structuraux sur la réponse radar, de l'ordre de la dizaine de dB.

Le développement et la mise en place de ces expérimentations ont demandé un travail important, autant au niveau matériel que logiciel. Sur les deux systèmes de mesures de diffusiométrie radar entièrement automatiques mis en place, l'enjeu principal était de concevoir d'un point de vue matériel des systèmes capables de fonctionner en extérieur et résistants aux contraintes environnementales, notamment à un environnement tropical, et d'un point de vue logiciel d'automatiser un système de mesures capable de prendre en compte les évènements extérieurs aléatoires. Pour l'imagerie verticale radar à haute résolution, la technique de mesure et l'instrument ont été mis au point et un effort particulier a été fourni pour la préparation et la coordination des deux campagnes terrain dans la forêt de Mende. Pour ces différentes campagnes expérimentales, un effort particulier a été fourni pour la récupération, le traitement et la représentation des données acquises.

La seconde originalité de ce travail de thèse a été l'étude de l'intérêt de la fusion de données optiques et radar simultanées pour l'inversion des paramètres biophysiques des forêts, en

s'appuyant sur la simulation parallèle. En effet, l'acquisition de données optiques et radar simultanément est très difficile et très onéreux à mettre en place, autant de manière aéroportée que satellitaire. Or, nous avons vu que les données radar évoluaient dans le temps et qu'il pourrait en être de même pour les données optiques. Pour évaluer l'intérêt d'une telle simultanéité dans les données à fusionner, un modèle optique et un modèle radar ont été couplés afin de simuler une scène identique, telle qu'elle serrait imagée par les deux capteurs. Le simulateur réalisé présente un jeu de données d'entrée pertinent tant pour la modélisation radar qu'optique. Les données de sortie obtenues ont finalement été combinées l'aide d'analyses de données supervisées et non supervisées. Les résultats ont montré l'intérêt d'une telle fusion de données multi-capteurs pour l'inversion des paramètres biophysiques des forêts.

Pour la mise en place de ce méta-modèle, il a fallu adapter les entrées-sorties des modèles le constituant et faire un travail important de compréhension du fonctionnement du modèle optiques et du modèle radar afin de simuler la parcelle de forêt de façon la plus proche possible entre les deux modèles. Enfin il a été nécessaire de s'approprier de manière théorique et pratique les deux analyses de données considérées : l'Analyse en Composantes Principales (ACP) et l'Analyse Canonique, respectivement non supervisée et supervisée.

L'ensemble des résultats de ce travail de thèse ouvre de nombreuses perspectives, à court ou plus long terme.

Dans le cadre des deux expérimentations mesurant des séries temporelles de diffusiométrie radar sur une parcelle de forêt tropicale en Guyane française et sur un cèdre à Toulouse, l'humidité du sol fut le seul paramètre biophysique mesuré. Il apparaitrait donc comme nécessaire, afin d'affiner l'interprétation faite dans ce travail de thèse, de compléter l'étude en question en acquérant des séries temporelles d'autres paramètres biophysiques tels que la constante diélectrique du tronc et des branches. D'autre part, cette étude a été menée sur un seul site pour chaque expérimentation et moins d'un an de données a été traité dans chaque cas. Il serait donc intéressant de varier le nombre de site considérés afin d'obtenir des résultats statistiquement plus riches et de poursuivre les mesures actuelles afin d'avoir plusieurs années disponibles pour l'analyse.

L'ensemble des résultats obtenus dans le cadre des séries temporelles constitue une base de données précieuse pour la connaissance du comportement de la rétrodiffusion radar et pour l'évaluation de la cohérence à long terme des acquisitions multi-passes sur les forêts. Notons que les données acquises n'ont pas été exploitées en totalité, les aspects interférométriques et polarimétriques sont à étudier, ainsi que la bande L qui est disponible. Des études similaires, menées sur différents types de forêts à la surface du globe, pourraient servir à la calibration et la validation de missions radar satellitaires, comme par exemple la mission BIOMASS. Les résultats sont pertinents pour la bande P en général, en particulier pour les radars aéroportés, et pourraient trouver des applications en écologie forestière.
N° d'ordre : UEB/UR1 01-2013

La technique d'imagerie tomographique haute résolution mise au point et les tomogrammes résultants ouvrent de nombreuses nouvelles perspectives dans l'étude des mécanismes fins de diffusion radar des forêts. A plus long terme, la technique de mesure pourrait être mise à jour avec un instrument entièrement automatique et plus rapide. Il serait alors possible d'acquérir plusieurs tomogrammes par parcelle, d'imager un plus grand nombre de parcelles, et éventuellement de travailler sur de la reconstruction tomographique 3D afin de permettre une séparation des contributions dans le plan azimutal.

Ce travail ouvre aussi la voie à un travail d'amélioration des modèles afin que ceux-ci rendent mieux compte des variabilités que nous avons observées. En particulier, cela est vrai dans cas du sol, puisque maintenant nous avons des mesures sur la réponse du sol qui, contrairement à ce qui est prédit, possède une composante non-négligeable en polarisation croisée, et une meilleure appréhension des effets liés à la pente.

Enfin, outre l'intérêt de la fusion optique-radar dans le sens où les mesures optiques peuvent donner une information fiable à un temps donné mais ne plus être opérantes quand les conditions météorologiques ne le permettent plus auquel cas le radar se substitue à l'optique, les résultats de ce travail de thèse ont montré que les données optiques peuvent être utilisées pour retrouver certain paramètres biophysiques et ainsi grandement améliorer l'inversion à l'aide de données radar. Après avoir estimé le type d'arbre, et donc sa structure, l'humidité du sol ou des feuilles à l'aide de données optiques, l'inversion des caractéristiques de la forêt se trouve grandement facilitée. Par exemple, grâce à l'humidité du sol sous des arbres sans feuilles il deviendrait alors possible d'inverser la biomasse grâce au coefficient de rétrodiffusion en HH.

Finalement, la validation expérimentale de ce travail relatif à la fusion pourrait se faire en construisant des modules d'inversion de façon similaire à ce qui a été fait dans ce travail de thèse, mais à l'aide d'un jeu de données d'apprentissage expérimentales et éventuellement simulées, puis en évaluant l'inversion des paramètres biophysiques considérés à partir d'autres données expérimentales et des modules précédemment obtenus. De tels modules constitueraient une méthode d'inversion des paramètres biophysiques et pourraient être enrichis à l'aide de nouvelles données optiques comme de nouveaux indices optiques, de nouvelle données radars telle des données PolInSAR ou tomographiques, ou des données provenant d'autres types de capteurs comme des données Lidar par exemple.

Recueil des publications

Publication 1

"Measurements of Temporal Variation of Intensity and Phase Scattering by Trees at P-Band"

Clément Albinet, Pierre Borderies, et Nicolas Floury.

L'article sera soumis à la date de la soutenance.

Measurements of Temporal Variation of Intensity and Phase Scattering by Trees at P-Band

Clément Albinet¹, Pierre Borderies¹, Pascale Dubois-Fernandez², Eric Pottier³ and Nicolas Floury⁴

> ¹Office National d'Etudes et de Recherches Aérospatiales (ONERA), 2 avenue Edouard Belin - 31055 - Toulouse - France clement.albinet@onera.fr, pierre.borderies@onera.fr

> ² Office National d'Etudes et de Recherches Aérospatiales (ONERA), BA 701 - FR 13661 - Salon de Provence - France

> ³ Institut d'Electronique et Télécommunication de Rennes (IETR), Bât. 11D - 263 avenue du Général Leclerc – 35042 - Rennes - France

> > ⁴ European Space Agency (ESA – ESTEC), Postbus 299 - 2200 AG - Noordwijk - The Netherlands

Abstract. This paper deals with a ground experiment related to the future spaceborne BIOMASS mission for global forest biomass estimation. The experiment is a ground based P-band scatterometer that measured the evolution of backscattering and coherence of a temperate tree for HV, during four periods spread over 9 months. It was almost certain that evapo-transpirations mechanisms had an influence on the radar response but in unknown ranges. The measurements show that the volume watering has a limited influence in time for the cross-polarization backscattering, around 30 minutes, but plays more on the coherency. Furthermore, it was shown that a cedar in temperate regions has its HV radar cross section which presents daily cycles from 1 to 2 dB during dry periods. It appears that these daily cycles are strongly correlated to variations of the trunk dielectric constant. In addition, we can see that the HV average backscattering coefficient has a yearly cycle of roughly 3 dB and that similar trends can be found in trunks moisture content time series.

Keywords: Remote Sensing, Radar, Scatterometer, temporal coherency, temperate forests.

1. Introduction and context

It is of great interest to determine the global quantity of biomass on earth. For this purpose, SAR images at P-band (i.e. around 430 MHz) look promising to perform this biomass retrieval over forests, and it is the primary objective of the BIOMASS project [1].

At the moment, two main strategies are advanced. On the one hand, the 'P-HV' method is based on the fact that for most trees HV backscattering coefficient is increasing monotonously with biomass. However, previous studies have shown on the base of simulations that other parameters like branches moisture may also play a significant role in the backscattering coefficient scattering. It looks then worth verifying this experimentally, which should induce also variations with time at various scales (intraday, daily, monthly, etc). On the other hand, the method based on POLINSAR rests on the assumption that biomass is generally proportional to height, and the latter may be derived from the knowledge of complex interferometry, the temporal decorrelation may play a parasitic role in this strategy and therefore needs to be evaluated also.

To finely study these effects, a proximity experiment is the most convenient: the measured scene may be well characterized. The measurements may be repeated as frequently

as wished and hopefully they may be linked to some physical characteristics like air pressure or wind velocity which may be measured as well synchronously. Two proximity experiments were proposed on ONERA premise: one over a tropical forest in French Guyana [4] and another one over a cedar tree in Toulouse [5]. This paper deals with the results obtained over 9 month with this second experiment. It consists in the observation of one tree with an emitter-receiver located on the roof of ONERA laboratory. This emitter-receiver is remotely controlled via Ethernet, and then a fine temporal survey of the intensity and the phase scattered by a tree may be performed. Its goal is permitting to see if the backscattering coefficient is stable or not and to better understand the reasons why.

To begin with, the experiment is introduced: the site is displayed, the hardware and the measurement procedure are described, as well as the parameters considered for the measurements. This is done in section 2. Then, in section 3 is presented the system validation. Finally, in section 4 the results obtained in terms of time series as well as artificial changes of the scene are presented and a synthesis and an analysis of the obtained results is performed.

2. Description of the P-band scatterometer

The system was foreseen to be built up with existing instrumentation: horn P-band antennas, log-periodic ones, Vector Network Analyser (VNA), humidity probe, etc. However it soon appeared that specific components had to be acquired to make successful the experiment, since with existing antennas the target to clutter ratio was too bad. It also appeared necessary to acquire an autonomous system for acquisition of meteorological variables.

The experiment is based on standard reflectrometry. The power budget at the distances involved is highly above noise. However, some difficulties arise due to the configuration of the possible sites. Among these difficulties, one can cite the fact that the extent of the impulse response may not be long enough to provide a sufficient number of independent samples to correctly evaluate the tree's radar cross section and coherence as well as also the possibility of unwanted contributions of the environment of the tree (roof, wall, gate...) which are only separated from the tree contribution by a discrimination in range and by the antennas patterns. Therefore it is to determine, first, which is the degree of reliability of the possible output data. This will be assed in a feasibility study of this experiment, in this frame.

Figure 1. Diagram (left) and picture (right) of the scene.

The ground experiment has been installed on a building at ONERA, facing a temperate tree, a cedar (Figure 1). Based on the use of a VNA and adequate antennas, it may deliver P-band polarimetric impulse responses.

2.2. Hardware

The system proposed here is based on the use of a VNA as emitter-receiver. The fix antennas are attached to a rail overwhelming the building wall through a gliding support, as shown in Figure 2. The VNA, remotely driven by a Personal Computer (PC) through the Ethernet network, is located inside the building. Approximately 8 meters long RF cables connect both antennas to the ports of the VNA.

Figure 2. Mounting of the antennas on the roof and the VNA used for this experiment, respectively left and right.

Antennas are oriented vertically and horizontally, so that one can get at the same sequence: HV in transmission mode, HH and VV in reflection mode. They are log-periodic antennas and their radiation patterns are shown in Figure 3. One can see the dissymmetry of the E planes (50° for the 3dB aperture angle) and for the H plane (70°), nevertheless much smaller than those of the usual log-periodic antennas.

Figure 3. Radiation pattern for E and H planes, respectively blue and red, in co and cross polarization.

The coupling between the antennas was also measured below -35 dB, between 400 MHz and 1 GHz, for a spacing of 70 cm between the antennas (Figure 4). Concerning the Standing Wave Ratio (SWR), it was measured below -13 dB between 400 MHz - 1 GHz and below -18 dB on the 400-600 MHz bandwidth.

The choice was then made to set the spacing between antennas at 80 cm for all the following measurements.

Figure 4. Coupling between antennas for HV polarization (S12); spacing distance from 30 cm to 70 cm, respectively from purple to green.

Figure 5. Return Loss of one antenna with coupling included, i.e. for HH or VV polarization (S11); the antenna alone in blue, and spacing distance from 30 cm to 70 cm, respectively from dark blue to green.

In addition, a weather station was set up and installed with the body of the station on the roof and a soil moisture probe at the cedar feet. The air temperature, the wind speed, the soil tension at 10 cm and the rain rate measurements were synchronized with the radar acquisitions.

Figure 6. Picture of the weather station installed in the scene.

2.3. Acquisition parameters

For all the experiments presented in the sequel, the configuration parameters are the following:

- Frequency band of measurement: 400 MHz 1 GHz. However, the results presented in the paper have been processed at P-band only (400 MHz- 600 MHz).
- IF filter is set to 10 kHz.
- Main beam pointing angle of the antennas is set to 60° relative to the vertical.
- Full S parameters are measured every 5 minutes so as to obtain full polarization measurement at every acquisition
- Weather data are measured every 5 minutes and the rain measurements are cumulated every day so as to obtain daily rain rate.
- Acquisition and data storage are made fully automatic.

A full parameters manual calibration of the VNA and a measurement of the scene, taken from the same facade but 30 m away so as to measure the backscattering of an identical scene but without tree, are performed every roughly 10 days. The measurement of the scene without tree is called "empty scene".

The corner reflectors, either trihedral for HH and VV, or dihedral for HV, were located in the scene to check the correct behaviour of the system.

2.4. Processing

The VNA operation is a step frequency one. At each frequency, the illuminated area obviously results from the antennas radiation (and reception) patterns characterized by the 3dB aperture angles in elevation plane θ_{ele} and azimuth plane θ_{az} , and the antenna elevation angle θ_i . Elevation plane is defined by the beam pointing direction and the vertical axis, azimuth one is perpendicular to the latter and still containing the beam pointing direction. The antenna beam characteristics are intrinsic and roughly characterized by the 3 dB apertures in the principal planes: θ_E for the E plane parallel to radiated electric field and θ_H for the H plane perpendicular to the latter, both of them containing the antenna beam pointing direction. So in V polarization elevation plane is the E plane and azimuth plane is the H plane, whereas in H polarization elevation plane is the H plane and azimuth plane is the E plane. Furthermore, the antenna footprint depends on the height of the observation plane due to the volume effects of the forest (Figure 7), and is for example different for the soil and the foliage top height H_{can} .

Figure 7. Foliage and ground illumination at each frequency; right: projection on the horizontal plane.

Antenna aperture has to be large enough to illuminate a sufficiently large footprint to be representative without being spoilt by remote or close parasitic echoes. Preferably, it has to be characterized by similar radiation patterns in both E and H planes. The antennas selected here present good trade-off in respect to these objectives.

Azimuth resolution is obtained with the limits of the antenna footprint, range resolution through inverse Fourier transform of frequency domain data obtained with the frequency "ramp" (Figure 5). If Δf , ∂f are respectively the frequency bandwidth and the frequency step

Figure 8. Ground illumination after range gating; right: projection on the horizontal plane.

Actually, as here only one tree is observed, the range cells do not correspond to an identical volume. However, we will not consider this particularity. For the volume only zone, we will consider a volume clutter distribution, and for the remainder a surface area.

To diminish the side lobes levels, a Hamming window is applied to the measured spectrum. Thus, the obtained range resolution is close to 1 m.

Then, the uncalibrated average σ_0 is computed between r_{\min} and r_{\max} from the complex radar response S(t,r) obtained for a distance r and a time t. In order to increase the number of looks, σ_0 was averaged on N dates :

$$\sigma_{0}(t) = \sqrt{\frac{1}{N(r_{\max} - r_{\min})} \sum_{t=-\frac{N}{2}}^{\frac{N}{2}} \sum_{r=r_{\min}}^{r_{\max}} r |S(t,r)|^{2}}$$

In addition, the modulus of the coherence γ between two dates t_1 and t_2 was also computed:

$$\gamma(t_1, t_2) = \frac{\left|\sum_{t=-\frac{N}{2}}^{\frac{N}{2}} \sum_{r=r_{\min}}^{r_{\max}} r S(t_1, r) S(t_2, r)^*\right|}{\sqrt{\sum_{t=-\frac{N}{2}}^{\frac{N}{2}} \sum_{r=r_{\min}}^{r_{\max}} r \left|S(t_1, r)\right|^2 \sum_{t=-\frac{N}{2}}^{\frac{N}{2}} \sum_{r=r_{\min}}^{r_{\max}} r \left|S(t_2, r)\right|^2}}$$

Here again, the coherence is computed on N dates so as to increase the number of looks.

To obtain a good estimation of the coherence, a minimum number of independent looks is necessary [6]. In the following of the paper, N is set to 7 in order to average the values on 30 minutes. The number of independent samples is compensated by the range ones. However, the number of independent range samples is low on a single tree, and thus the value measured will be close to the radar cross section of the tree, but it can be sufficient if the coherency is high enough (higher than 0.8).

2.5. Time Series

On September the 8th 2011, a short time series of 10 hours was performed with an artificial watering of the scene and will be referred in the following as "STS". In addition, three long time series were performed: the first one, from September the 9th to November the 6th 2011, will be referred as "TS1"; the second one, from December the 11th 2011 to February the 19th 2012, as "TS2"; and the third one, from March the 27th 2012 to June the 10th 2012, as "TS3".

It has to be noted that the weather station was set up for the temperature and the wind speed just before TS1 and that the additional probes for the soil moisture content and rain fall were set up just before TS2. As a consequence, no weather data are available for STS and the temperature and the wind speed only are available for TS1.

3. System validation

3.1. Impulse responses

The system being mounted on a rail, it was translated along the rail and some full polarization measurements were made on the same front of the building, 30 m away from the original position and with the same configuration. The scene is grossly identical but without the tree. In a first step, the impulse response in front of the tree and the response of the scene without the tree were processed considering a full polarization "sky measurement" performed shortly before both measurements (Figure 9). A "sky measurement" corresponds to a measurement with the same parameters but with the antennas vertical and aimed at the sky in order to measure and then to correct the coupling and the SWR of the antennas.

Figure 9. Impulse response with sky correction applied for the scene with the tree and for the scene without the tree for HH, HV and VV, respectively top left, top right and bottom.

On the impulse responses of Figure 9, we can see the backscattering corresponding to the volumes intercepted, as described in Figure 1 :

- Between 0 and 3 m, the zone where the SWR for HH and VV, or the coupling for HV, are dominant.
- Between 0 and 10 m, the trunk and the branches of the tree are intercepted (the Nadir has been measured at 12 m). This zone corresponds to the response of the canopy only.
- Between 10 and 14 m, the soil is intercepted and thus added to the mechanisms considered in the previous zone.

We can see here that the tree responses between 3 and 12 m, for all polarizations, are measured around 20 dB above the empty scene.

However, the sky measurements have to be performed in a short time before or after the tree measurement, observed to be less than roughly one day, because of the temporal decorrelation introduced by the system itself [7].

The same analysis as previously was performed without sky correction and displayed in Figure 10.

Figure 10 Impulse response for the scene with the tree and for the scene without the tree for HH, HV and VV, respectively top left, top right and bottom.

We can see here that without the sky correction, the tree's response is around 20 dB above the empty scene for HV, but is not enough high in HH and VV. In the following of the paper, the three zones will be identified as the "coupling" zone between 0 and 3 m, the "volume" zone between 3 and 10 m and the "total" zone between 10 and 14 m, as the Nadir is located at 12m and the double bounce at 14 m.

As a consequence, long time series (TS1, TS2 and TS3), will be processed without sky corrections, and thus for the volume and HV only. However, a sky measurement was performed at the beginning of the short time series (STS) and as a consequence, this time series will be processed for the volume and the double bounce for all polarizations.

For the STS, 8:00 will be the reference date for the coherence. For the three long time series, midnight of the first day will be chosen as the reference date for the coherence.

3.2. System stability during time series

For evaluating the system stability, the backscattering and the coherence corresponding to the coupling zone were plotted during the short time serie (STS) and during the three long time series (TS1-3), and displayed in Figure 11 to Figure 14.

Figure 11. Backscattering and coherence of the coupling for STS.

As we can see in Figure 11, on the wall, the backscattering coefficients are constant and the coherences are very high (higher than 0.9995) for all polarizations. This proves that the system was stable during the acquisitions of STS.

Figure 12. Backscattering and coherence of the coupling for TS1; filtered data appears in blue.

Figure 13. Backscattering and coherence of the coupling for TS2; filtered data appears in blue.

Figure 14. Backscattering and coherence of the coupling for TS3; filtered data appears in blue.

For the long time series, we can see strong punctual backscattering changes and decorrelations due to rain on the antennas. To take out these corrupted data, a filter was set up. This filter is keeping only the data whose coupling backscattering is between ± 0.05 dB the value of the moving average. The data filtered this way are displayed in the corresponding figures.

On the filtered data, it is clear that the system is stable: the coherence is higher than 0.99 and the backscattering is relatively constant, during the three time series.

It has to be noted that the discontinuities during the acquisitions of TS1 and TS3 corresponds to loss of data caused by some connexion problems with the network.

4. Measurements series

4.1. Artificial sensitivity study

Figure 15. Artificial watering of the soil (left) and the volume (right).

Shortly before the beginning of TS1, an artificial watering of the scene was performed, as one can see in Figure 15. The watering was performed in the morning, during a dry period of summer.

The soil began to be watered at 8:13. Then when the soil was completely wet, at 8:31, the volume began to be watered, until 8:37. After this time, no more watering was performed. The acquisitions have continued during the whole day, until dusk, and are displayed in Figure 16 to Figure 19.

Note that the watering was stopped during the acquisitions and that, as explained in 3.1, the full polarization radar response is reported.

Figure 16. Evolution of the polarimetric backscattering of the volume for STS, during one hour and a half, left, and during the whole day, right. The soil began to be watered at the grey vertical line; then when the soil was completely wet, at the purple line, the volume began to be watered, until the pink line.

Figure 17. Evolution of the polarimetric coherence of the volume for STS, during one hour and a half, left, and during the whole day, right.

The evolution of the backscattering coefficient and the coherence of the volume for HH, HV and VV during the artificial watering of the scene are displayed on Figure 16 and on Figure 17. One can observe that watering the soil has no impact at all on the radar observable. This result was expected as we are observing the volume only. Anyway, it validates the fact that when the crown is watered, the evolution observed is only due to the volume response and is not interfered by the soil watering.

When watering the volume, the backscattering is increasing for the three polarizations (3 dB for HH, 2 dB for HV and 8 dB for VV), is rapidly decreasing to its previous level for HV and VV, but is strongly decreasing and then increasing to its previous level for HH. This phenomenon can be explained by the fact that the values are reattaching the diurnal cycles. A normal level is reached again after 30 min for HV, 2 hours for VV and 6 hours for HH.

Concerning the coherence, after a maximum decorrelation during the volume watering of 0.7 for VV, 0.5 for HV and 0.2 for HH, a normal level of more than 0.98 is reached again for all polarizations 4 hours after having stopped the watering.

This return of HV volume to a normal value which is fast for the backscattering and slow for the coherency may be due to the branches that dry quickly and to the tufts of spines that are water-soaked, lower the branches because of their weight, and needs more time to dry. This phenomenon and the fact that HH is sensitive to horizontal branches may also explain why the HH coherency is the last to retrieve a high value.

Figure 18. Evolution of the polarimetric backscattering of the double bounce for STS, during one hour and a half, left, and during the whole day, right. Here again, the soil began to be watered at the grey vertical line; then when the soil was completely wet, at the purple line, the volume began to be watered, until the pink line.

Figure 19. Evolution of the polarimetric coherence of the double bounce for STS, during one hour and a half, left, and during the whole day, right.

On Figure 18 and on Figure 19, one can see the evolution of the backscattering coefficient and the coherence of the double bounce for HH, HV and VV during the same artificial watering as before.

When wetting the soil, HH and VV backscattering coefficient are increasing and HV remain stable because the HV response is mainly due the branches of the tree. During this time, the polarimetric coherence remains stable because, as previously explained, the HV phase center is located in the volume, and because the double bounce in HH and VV is located at the ground level.

When watering the volume, HV backscattering coefficient is increasing of 3 dB and a decorrelation appears for all polarizations. One can see that HV backscattering coefficient is back to its previous value after a decreasing which is linked to the diurnal cycle of HV backscattering coefficient. After a maximum decorrelation of 0.9 for VV, 0.8 for HV and 0.7 for VV during the volume watering, a level of more than 0.98 is back here again 4 hours after having stopped the watering.

4.2. Natural evolution of the scene 4.2.1. Full time series

On the dates corresponding to those of the filtered data previously introduced, the backscattering and the coherence corresponding to the volume zone, but also the weather data, were plotted for the three time series, and displayed in Figure 20 to Figure 22.

For TS1, we can see in Figure 1 that diurnal cycles are visible on the backscattering coefficient, around 1 dB, and on the coherence, mainly higher than 0.7. In addition, decorrelations and backscattering changes appear around September the 20th, probably due to rain fall as we can see in Figure 12, and around the 25th, which was certainly a cloudy day because of the low temperature and the wind.

These daily cycles are also visible for the temperature and the wind. We can see a correlation between the wind and the coherence: when there are peaks of wind, decorrelations can be observed and when the wind speed is low, the coherence is high. This last observation confirms the relevancy of our choice of midnight as a reference for the coherence.

For the backscattering, trends are visible and seem to be correlated to the temperature: when the average temperature decreases, the average backscattering increases.

Figure 20. Backscattering and coherence of the coupling (top) and temperature and wind speed (bottom) for TS1.

For TS2, one can see on Figure 21 that the trends are more stables, maybe because of relatively stable weather trends: average temperature around 5 °C, rain fall distributed along time, and thus their effects on the evapo-transpiration mechanisms that may have been the same during this period. In addition, while the backscattering was increasing from -18 to -15 dB between September and November, it is constant at -18 dB between December and February. In addition, the daily cycles doesn't clearly appear. The signal seems to be very noisy due to the bad weather.

It has to be noted that from February the 2^{nd} to the 13^{th} , the air temperature almost between 0 and -10 °C. Coherence and backscattering are very low and have very pronounced daily cycles. The explanation must come from the frost on the spines and the branches of the cedar. Around 14:00, we can observe radar values close to the previous ones. At the hottest moment of the day, the frost may be melting and thus explain these values.

Figure 21. Backscattering and coherence of the coupling (top), temperature and wind speed (middle) and Soil tension and rain rate (bottom) for TS2.

Figure 22. Backscattering and coherence of the coupling (top), temperature and wind speed (middle) and Soil tension and rain rate (bottom) for TS3.

On Figure 22, we can on the 21st of May the influence of a strong rain fall which is clearly visible on the temperature and on the soil tension.

For the radar measurements during TS3, the observations are the same as those for TS1. Nevertheless, we can observe that between TS3 and TS1, the daily cycles are less pronounced for the coherence, but more important for the backscattering. For TS1 and TS3, diurnal cycles of the backscattering coefficient and of the coherence seem to be linked to the wind, and the tendencies seem to be linked to the temperature.

These trends may be linked to changes in the evapo-transpiration mechanisms. Indeed, it was previously shown that evapo-transpiration mechanisms were linked to weather trends and that these mechanisms induce significant variations on the cross-polarization [8]. Diurnal variations of 2 to 3 dB in response to periodic fluctuations in canopy dielectric properties have previously been observed at L-, C- and X- bands, during early in-situ studies of a walnut orchard growing under semi-arid conditions, and airborne acquisitions performed over two half days on a loblolly pines forest shown that the time variance of the radar backscatter is found to be coupled to the measured dielectric variations [9]. The radar measurements displayed in this paper and the differences depending on the season give us an idea of the significance of this phenomenon for a temperate cedar tree in the South of France.

4.2.2. Detailed analysis

To go further, some focuses have been performed on a week during a rainy period and on two weeks with several behaviors during the dry period.

Figure 23. Focus of the radar backscattering and coherence of the volume (left) and corresponding rain rate and soil tension, for a week with rain of TS2. The discontinuity in the radar data comes from the filter which has taken out the measurements disturbed by the water on the antennas.

In Figure 23, we can see that when it is raining, as on the 3rd and the 4th of January, the coherence is decreasing and the backscattering coefficient is increasing. This phenomenon has been previously encountered during the artificial watering and can be seen in Figure 16 and Figure 17.

Figure 24. Focus of the radar backscattering and coherence of the volume for a week without rain of TS1.

In Figure 24 is displayed a zoom of a sunny week, without rain, of TS1. There are some very regular cycles for the coherence, with a maximal value around 9:00 and a minimal value around 17:00. The backscattering is rather stable even if it is noisy in the afternoon. This phenomenon is certainly due to the branches movements, induced by the wind peak in the afternoon, which decorrelates the signal.

Figure 25. Focus of the radar backscattering and coherence of the volume for a week without rain of TS3.

A zoom of a sunny week, without rain, of TS3 is displayed in Figure 25. There are some very regular cycles for the backscattering coefficient, with a maximal value around 8:00 and a minimal value around 18:00. The coherence is rather stable during night and very noisy during the days. Comparing with the zoom of TS1, the coherence is similar since the reference time was taken earlier for the zoom of TS3. However, the backscattering coefficient shows daily cycles that were not present for TS1 and that may be due to a changing in the dielectric constant daily cycles.

Unfortunately, no dielectric constant or other biophysical parameters were measured during the experiment. In order to link the previous radar time series to this biophysical parameter, a reprint of a dielectric constant time series of a Norway spruce (Picea abies), in Fichtelgebirge, Germany [10], is displayed in Figure 26.

Figure 26. Plot of $Re(\epsilon_r)$ and $Im(\epsilon_r)$ at P-band for a Norway spruce (Picea abies) at 2.8 m height and concurrent Vapor Pressure Deficit (VPD) and rainfall (millimeters of rainfall in 10-min intervals) plotted for time periods extending over a total of 23 days of 1995. As the VPD and dielectric constant tend to be negatively correlated, VPD is plotted with the zero reference placed at the top of the y axis to allow easier comparison with dielectric variability. Periods for which dielectric data are not shown correspond to periods of lost data caused by system power failures. VPD (mbar/bar) is the measured vapor pressure deficit (in mbar) normalized to standard atmospheric conditions at sea level (1013 mbar) - Reprint from [10].

As for the backscattering coefficients, the measured dielectric constant, for a temperate tree, shows diurnal cycles during dry periods and no cycles during wet periods. In addition, we can see that for daily cycles, the dielectric is maximum around 8:00 and minimum around 18:00, similarly to what we previously observed on radar measurements. Note that dielectric time series were not performed on a fairly long period to see possible seasonal trends.

4.2.3. Annual change

With regard to seasonal changes, the daily average energy backscattered by the volume and the average energy backscattered by the volume between 6:30 and 7:30 have been computed and displayed, respectively left and right, in Figure 27.

Figure 27. Daily average energy backscattered by the volume (left) and average energy backscattered by the volume between 6:30 and 7:30 (right), for the three periods.

During the experiment which lasted 9 month, the daily energy backscattered by the volume and the backscattering coefficient at 7 am present annual changes of roughly 3dB and are almost superimposed. Note that both curves present a strong local decrease of 2 dB during

the period of frost. Similar amplitudes of 3 dB on annual changes have previously been observed for VV backscattering at X-band on oaks and beeches in the north of France [11].

These trends may be linked to seasonal phenomenon of the cedar, as some seasonal trends can be observed for twigs and leaves moisture content of pinyon and juniper [12] and for trunks moisture content distribution of eastern hemlock [13]. These measurements give an idea of the amplitude of annual variations of the backscattering coefficient of a cedar in a temperate region.

While analyzing these results, it is important to consider the fact that only one tree is observed in a temperate region. Then, some questions appear, as the amplitude of annual variations of a cedar forest in temperate zone, or the presence of annual variations for tropical forests.

5. Conclusion and future prospects

The system for radiometric and coherence observation for one tree at P-band has been set up, and the software for continuous acquisition monitored through Ethernet has been developed and implemented. Design and validity tests have shown that the results for the volume in HV were reliable.

During the 9 months which lasted the experiment, four time series have been reported, analyzed and taught us a lot. It was almost certain that evapo-transpirations mechanisms had an influence on the radar response but in unknown ranges. The measurements show that the volume watering has a limited influence in time for the backscattering, around 30 minutes, but plays more on the coherency. Furthermore, it was shown that a cedar in temperate regions has its HV radar cross section which presents daily cycles from 1 to 2 dB during dry periods. It appears that these daily cycles are strongly correlated to variations of the trunk dielectric constant. In addition, we can see that the HV average backscattering coefficient has a yearly cycle of roughly 3 dB and that similar trends can be found in trunks moisture content time series.

The small magnitude of diurnal change poses some interesting challenges for SAR calibration if diurnal response is to be used to infer canopy water status. However, some reserves are to be issued on the low number of independent samples and thus the fact that the previous results only account for a tree and not for a forest. Future prospects should include supplementary time series acquisition and analyzes. A deeper interpretation of the results with the help of electromagnetic modelling should be conducted.

References

- 1. BIOMASS Phase 0 Report for Assessment, European Space Agency, Nov. 2008 (ref. SP1313/2).
- 2. Cloude, S.R. and Papathanassiou, K.P.; "Polarimetric SAR Interferometry", IEEE Transactions on Remote Geoscience and Remote Sensing, Vol. 36, N°5, pp. 1551-1565, September 1998.
- Dubois-Fernandez, P.; Oriot, H.; Coulombeix, C.; Cantalloube, H.; Ruault du Plessis, O.; Le Toan, T.; Daniel, S.; Chave, J.; Blanc, L.; Davidson, M. and Petit, M.; "TropiSAR: Exploring the temporal behavior of P-Band SAR data", Geoscience and Remote Sensing Symposium (IGARSS), IEEE International proceedings, pp.1319-1322, 25-30 July 2010.

- Albinet, C., P. Borderies, T. Koleck, F. Rocca, S. Tebaldini, L. Villard, T. Le Toan, A. Hamadi and D. Ho Tong Minh, "TropiSCAT: A Ground Based Polarimetric Scatterometer Experiment in Tropical Forests", JSTARS, Vol. 5, No. 3, 1060–1066, June 2012.
- Borderies, P; Albinet, C. and Besson, J.; "Measurements of temporal variation of backscattering coefficient and phase scattering by trees at P-band", European Space Agency, contract n° 400102822/10/NL/IB/fk.
- 6. Touzi, R.; Lopes, A.; Bruniquel, J. and Vachon, P.W.; "Coherence estimation for SAR Imagery", IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 1, pp. 135-149, 1999.
- 7. Zebker, H.A. and Villasenor, J.; "Decorrelation in interferometric radar echoes", IEEE Transactions on Geoscience and Remote Sensing, vol. 30, no. 5, pp. 950-959, Sep. 1992.
- 8. Gates, D. M.; "Water relations of forest Trees", IEEE TGRS, Vol. 29, Issue 6, pp. 836-842, November 1991.
- Dobson, M. C.; Mc Donald, K. and Pierce, L.; "Diurnal Variation In Radar Backscatter From A Loblolly Pine Forest In Late Summer", International Geosciences And Remote Sensing Symposium, pp. 1115 – 1116, 1991.
- McDonald, K. C.; Zimmermann, R. and Kimball, J.S.; "Diurnal Diurnal and Spatial Variation of Xylem Dielectric Constant in Norway Spruce (*Picea abies* [L.] Karst.) as Related to Microclimate, Xylem Sap Flow, and Xylem Chemistry", IEEE TGRS, Vol. 40, No. 9, September 2002.
- 11. Proisy, C., Mougin, E., Dufrêne, E. and Le Dantec, V.; "Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations," IEEE TGARS, Vol. 38, No. 1, 540–552, January 2000.
- 12. Jameson, D. A.; "Diurnal and seasonal fluctuations in moisture content of pinyon and juniper", Rocky Mountain Forest and Range Experiment Station, Forest Service, U.S. Dept. of Agriculture, 1966.
- 13. Studies in tree physiology IV. Further investigations of seasonal changes in moisture content of certain Canadian forest trees. 1957. Clark, J.; Darnley Gibbs, R. Canadian Journal of Botany 35: 219-253.

Publication 2

"TropiSCAT: A Ground Based Polarimetric Scatterometer Experiment in Tropical Forests"

Clément Albinet, Pierre Borderies, Thierry Koleck, Fabio Rocca, Stefano Tebaldini, Ludovic Villard, Thuy Le Toan, Alia Hamadi et Dinh Ho Tong Minh.

L'article est paru dans le "Journal of Selected Topics in Applied Earth Observations and Remote Sensing" (JSTARS) Vol. 5, No. 3, en juin 2012.

TropiSCAT : A Ground Based Polarimetric Scatterometer Experiment in Tropical Forests

C. Albinet, P. Borderies, T. Koleck, F. Rocca, S. Tebaldini, L.Villard, T. Le Toan, A. Hamadi and D. Ho Tong Minh, *Member, IEEE*

Abstract — This paper describes a ground-based scatterometer experiment designed to support the definition of the future spaceborne BIOMASS mission for global forest biomass estimation. The scatterometer is installed on a 55 m tower in the tropical rain forest in French Guiana, South America. The objective is the measurement of temporal coherence in all polarizations over a period of one year at different time scales. This paper presents a description of the experiment set up, and shows the first measurements which demonstrate the experiment feasibility. The first results show the coherences at P-band and Lband, and tomographic measurements at different polarizations. The coherence follows daily cycles and retrieves high values at the same hour. These preliminary results have validated the TROPISCAT instrument concept and have led to the final installation with long term automatic polarimetric and tomographic measurements.

Index Terms — Radar, Remote sensing, radar polarimetry, temporal coherence, SAR imaging, SAR tomography, biomass, PolInSAR, forest height estimation, forest electromagnetic scattering, tropical forest.

I. INTRODUCTION

Tropical forests present the major part of the world forest biomass and their changes in biomass by deforestation and/or by forest regeneration strongly affect the terrestrial carbon budget. Forest biomass retrieval by Synthetic Aperture Radar (SAR) has been widely studied (see for example [1], [2], [3] and [4]). To measure accurate tropical forest biomass and its temporal change is the main objective of the BIOMASS mission [5], a candidate for the European Space Agency 7th Earth Explorer Mission.

BIOMASS will be the first SAR using P-band (435 MHz). Because of the lack of SAR P-band data obtained from space,

Manuscript received September 30, 2011. This work was founded by the European Space Agency (ESA) and the Centre National d'Études Spatiales (CNES).

C. Albinet and P. Borderies are with Office National d'Études et de Recherches Aérospatiales (ONERA), 2 avenue Edouard Belin BP74025 FR-31055 Toulouse cedex 4 FRANCE (corresponding authors : Clement.Albinet@onera.fr and Pierre.Borderies@onera.fr).

T. Koleck, L. Villard, T. Le Toan and A. Hamadi are with Centre d'Études Spatiales de la Biosphère (CESBIO), 18 avenue Edouard Belin bpi 2801 31 401 Toulouse cedex 9 FRANCE. T. Koleck is also with Centre National d'Études Spatiales (CNES), 18 Avenue Édouard Belin 31 401 Toulouse cedex 9 FRANCE.

F. Rocca, S. Tebaldini and D. Ho Tong Minh are with Politecnico di Milano (POLIMI), 32 Piazza L. da Vinci 20133 Milano ITALIA.

many activities are currently led to prove the ability of biomass retrieval.

The retrieval algorithms currently developed for BIOMASS are based on the use of backscatter measurements derived from intensity, polarimetry and interferometry. For tropical forests with very high biomass density (more than 300 t/ha), for which intensity inversion provides biomass values with low accuracy, the PoIInSAR measurements become the key measurements. However, the condition to have exploitable interferometric information is to have high temporal coherence over forests for time intervals compatible with the BIOMASS mission. During the TropiSAR experiment [6], performed in August 2009 in French Guiana, the temporal coherence has been found high (more than 0.8) for a time interval up to 22 days.

In order to complement the airborne datasets, a ground based experiment over tropical forests is necessary to produce a well controlled dataset in various seasons and weather conditions.

In this context, the TropiSCAT ground based experiment is under development in order to acquire a comprehensive dataset which will be used to refine the BIOMASS retrieval algorithms.

First the TropiSCAT experiment will be introduced, then preliminary results will be described, and finally the final installation and its first results will be presented.

II. THE TROPISCAT EXPERIMENT

A. Experiment Objectives

The experiment is designed to acquire the polarimetric intensity and the complex coherence in HH, VV and HV, together with a vertical imaging capability (tomography), and in time scales ranging from diurnal, weekly, monthly, up to one year of observation and possibly beyond. The instrument must allow an automatic measurement cycle.

The Experiment will be located on a 55 m high tower (Fig. 1) overlooking a tropical forest (Fig. 2).

B. Site Description

The 55 m high GUYAFLUX tower in the locality of Paracou, French Guiana, has been selected to support this experiment. This site, managed by Institut National de la Recherche Agronomique (INRA) [7], has the following advantages.

Fig. 1. The 55 meters high Guyaflux tower situated in Paracou, French Guiana.

Fig. 2. View from top of the tower with two antennas in a HV configuration.

- The French Guiana forest is one of the world forests with highest biomass density and highest number of tree species, thus constituting one of the most complex and challenging forest ecosystems for the BIOMASS mission.
- 2. The test site, around the tower, was overflown by TropiSAR campaign in August 2009; the interpretation of ground based experiment data will allow in depth understanding of the scattering mechanisms in airborne observations and by extension, in the forthcoming spaceborne BIOMASS observations.
- 3. The GUYAFLUX tower is used for continuous carbon flux measurements. Studies are foreseen to compare the tower flux measurements with outputs of carbon models constrained by the biomass retrieved from TropiSAR.
- 4. Detailed and comprehensive ground data are

collected or recorded continuously for the flux experiment (meteorological data, soil moisture) and for the forest survey in Paracou (tree measurements).

C. Hardware

The radar unit is based around a stepped-frequency CW Vector Network Analyzer (VNA), A5061B model, made by Agilent. Hardware specifications provided by industry include a dynamic range of 120 dB in frequency domain, between 1MHz to 3 GHz, with an Intermediate Frequency Band Width (IFBW) set to 10Hz. The output power is from -45 to +10 dBm.

The chosen parameters for this experiment are as follows. The frequency ramps cover 200 MHz bandwidth (respectively 400-600, 600-800 and 800-1000 MHz) to be representative of P and L bands for the 1st and 3rd ones, and of a very wide band signal when grouping them. An IFBW of 10 kHz and a number of 1601 points in each ramp were chosen, so that the final dynamic range is worth approximately 105dB, with a sweep time close to 1s.

The transmit and receive antennas radiate from the top of the tower and are connected to the S21 ports of the VNA.

All the data are measured and stored in frequency domain in transmission mode, with a prior internal calibration with cables for which the reference plane is taken at the antennas input.

The antennas are wide-band [400 - 1000 MHz] logperiodical antennas, LP400 model, made by SATIMO. They present the property of relatively similar radiation pattern in both E and H planes, with a 3dB aperture of 50° in E plane, and 65° in H plane. In addition, the polarization isolation is better than 20 dB, with very low side lobes and backward radiation less than -23 dB.

Fig. 3. Picture of the trihedral reflector.

A calibrator has been used for HH and VV and was a trihedral 2m edge (Fig. 3) made in aluminium and very light in to be able to be manipulated inside the forest. For HV it was a dihedral 1m high and 80 cm wide.

D. Acquisition method

At each frequency, the illuminated area obviously results from the antennas radiation (and reception) diagrams characterized by the 3 dB aperture angles in elevation plane θ_{ele} and azimuth plane θ_{az} and the antenna elevation angle θ_i . Elevation plane is defined by the beam pointing direction and the vertical axis, azimuth one is perpendicular to the latter and still containing the beam pointing direction. The antenna beam characteristics are roughly characterized by the 3 dB apertures in the principal planes: θ_E for the E plane parallel to radiated electric field and θ_H for the H plane perpendicular to the latter, both of them containing the antenna beam pointing direction. So in V polarization elevation plane is the E plane and azimuth plane is the H plane, whereas in H polarization elevation plane is the H plane and azimuth plane is the E plane.

At this point, we introduce the major requisites for this experiment which are tightly bound to the antennas constraints:

- Antenna aperture has to be large enough to illuminate a sufficiently large footprint to be representative without being spoilt by remote echoes
- Eliminate as strongly as possible the tower echo while illuminating the forest with the required incidence angles
- Preferably present similar radiation patterns in both E and H planes

Before every set of measurements, an external calibration is performed with a reference loop, in order to ensure the quality of the results during all the experiment duration. The frequency domain complex data acquired are transformed into the time domain, from which is derived a range backscattering profile. If Δf and ∂f are respectively the frequency bandwidth and the frequency step ($\Delta f = (Nf - 1) \times \partial f$)

then the range resolution is $dr = \frac{c}{2\Delta f}$ and the unambiguous

range
$$D = \frac{c}{2\partial f}$$
.

These range profiles may be used for computing directly coherences over a determined range. They also may be combined to construct a vertical SAR imaging, also referred to as tomography in the SAR community.

III. PRELIMINARY TRIALS

At the very beginning, the system was mounted on a roof overhanging a flat, bare soil with the corner reflectors to test its basic properties. In particular, we could check the power budget and the cross talk, and verify that the side lobes levels of the corner reflector echo in the range profile are those expected with the window used, in spite of the antennas dispersive properties which effect is cancelled due to the fact that the same antenna type is used for emission and reception.

Then, a simplified set up of the experiment was mounted directly on the GUYAFLUX tower. In this case, the VNA [4] was installed close to a pair of antennas [9], at the top of the tower. Several range profiles were measured, and also some 2D imaging was performed using vertical manual displacement of the pair of antennas.

Many experiments have been performed to evaluate the quality of the backscattering measurement (in all polarizations). Main point was here to assess the feasibility of the experiment. Indeed, questionable points were the possible motion of the tower and a possible significant contribution of the tower echo in the range profile.

For this purpose, the following parameters have been extensively studied:

- Influence of direct antenna coupling, as well as reflections from the tower.

- RF power budget

- Influence of the antenna radiation pattern and antennas elevation angle

- Parameters of the VNA for the acquisition

The next sections illustrate the fact that range profiles of good quality may be obtained, and that this quality ensures the feasibility of tomographic measurements.

A. Feasibility of range profiles

Fig. 4 represents the backscattering return (dBm) in polarization HH as a function of range.

spacing between antennas: 60 cm, 96 cm and 118 cm. The frequency band is 400-600 MHz, the antennas depression is 30° , the polarization is HH, and the corner reflector is at a range of 57 m.

Up to roughly 24 m range, only direct coupling between antennas and reflections from the tower are possible

> JSTARS-2011-00322.R2 TROPISCAT <

contributors, whereas beyond this limit the forest is present. At the beginning of this last zone, the signal is made of the vegetation top (at an incidence around 30 degrees) and corresponds to the layover.

It appears that an horizontal spacing of 60 cm between antennas induces a ratio between the spurious coupling/tower echo and the foliage one of only 10 dB, whereas the two other spacing insure 20 dB ratio. These ratio values, evaluated on the range profiles envelopes in the zones before and after the foliage appearance at 24 m, give the order of magnitude of the spacing required. Ground scatterers (at the nadir position) can be observed at 55 m. The next peak matches the trihedral reflector position, at about 15 m away from the tower base. Then, the forest (ground & vegetation) contributes to the signal with a level significantly higher than the noise, which is around -105 dBm.

The average levels obtained for HV on the forest were found to have as typical values 4 to 6 dB below co-polarized channels, which is widely above the 20 dB cross talk given in the specifications.

These preliminary results show that it is possible to observe the forest backscattering from the Guyaflux tower, and then perform temporal coherence and tomographic analyses. In addition, measurements parameters have been defined.

B. Feasibility of vertical imaging

As previously discussed in the experiment design phase, the main feature of the acquisition system is the capability to distinguish targets at different heights. This distinction will be made with vertical SAR imaging, also call tomography. This allows not only to image the vertical structure of the forest, but also to measure the spatial distribution of temporal coherence through the processing of multi-temporal tomographic datasets.

The antennas are at the same height, and are connected to the VNA. The vertical aperture is formed by progressively moving the antenna pair downwards. For the data-set considered hereinafter the antennas have been moved along 13 different positions spaced by 17 cm, so as to form an overall aperture of 2.04 m. Such an acquisition takes 25 minutes.

The VNA has been configured to acquire signals from 400 MHz to 600 MHz. Frequency spacing has been set to 200 kHz.

The response of each point target can be roughly determined by considering range and cross-range resolution, i.e.: the resolution in the radial direction from the antennas and the resolution in the orthogonal direction.

Range resolution is in the order of 0.75 m, due to the 200 MHz bandwidth. Cross-range resolution may be roughly assessed as:

$$d_e = \frac{c r^2}{2 f_0 A_z y} \tag{1}$$

where f_0 is the reference frequency (500 MHz); A_z is the vertical aperture; r is the distance from the VNA to the target; y is the ground range coordinate.

Vertical resolution, which is the main element of interest in this context, is below 10 m within 50 m ground projected distance to the tower and below 20 m within 100 m to the tower.

Range and cross-range ambiguities are theoretically present due to the vertical array sampling and to frequency sampling. The latter determines a range ambiguity at 750 m, which is far beyond the effective maximum range of the system.

With a 17 cm array spacing some cross range ambiguities (in the vertical plane) may appear but they are localized in a part of the image where they can be identified as false echo.

Note that there is no echoes separation in azimuth: resolution is set by the beam width of the antenna. With the beam widths of these antennas, which are close to 60° , the resolution in azimuth will be in the order of R at a distance of R.

To validate the concept, two tomograms of the border of the forest have been done: one with the trihedral reflector on the ground, which corresponds to a height of -1m and a range of 17m from the projection of the antennas on the ground, and another one without it. Note that 40 minutes elapsed between the first acquisition of the tomogram with reflector, and the first acquisition of the tomogram without reflector.

Fig. 5. Tomographic HH response for a trihedral reflector.

The subtraction of these two tomograms (Fig. 5) gives the tomographic response of the reflector, which is clearly isolated from the response of the other scatterers in the scene, and which validates the tomographic measurements.

> JSTARS-2011-00322.R2 TROPISCAT <

Tomographic measurements of the edge of the forest have also been done for HH, HV and VV polarizations, with a reflector at same position as before.

Fig. 6. Tomographic response of the edge of the forest, from top to bottom: HH, HV and VV polarization.

As we can see in Fig. 6, we can clearly identify the canopy diffusion, the soil reflection and trunks reflection. In HH, most backscattering is originated at soil level and in VV and HV volume contribution is significant.

Local slope is close to 10% and one can notice the returns dying out with depth for all polarizations.

IV. FINAL INSTALLATION

A. Final hardware and measurement protocol

Following the preliminary experiment described in the previous section, a first version of the instrument with 4 antennas and full polarimetric backscattering measurements has been set up in June 2011 (Fig. 7).

Fig. 7. Instrument architecture : the PC is sending orders to the VNA and to the switches box which switches to the chosen antenna pair.

The VNA is driven by a tropicalized industrial computer situated in a shelter at the tower foot, and is connected to the antennas with two 70 m low loss cables. Losses in each cable are approximately 3 dB at 400 MHz and 5 dB at 1 GHz.

An Ethernet-controlled switches box allows RF signal to be routed between the VNA and the antennas. For measurements, a pair of antennas is selected dynamically before starting RF acquisition as well as the calibration loop.

Fig. 8. Location of the 4 antennas, at the top of the tower: two transmit antennas for polarizations H and V, and two receive antennas for H and V.

Because of the long duration of the TropiSCAT experiment, an internal calibration of the VNA is made before every measurement. Furthermore, the instrument is fully automatic and controlled/monitored by the industrial PC.

B. First results

During the setup of the TropiSCAT instrument, 26 hours of data were acquired with the first version of the instrument.

For this set of data, temporal coherence has been computed on range profiles. Results are shown in Fig. 9, on three regions of interest determined by $[r_{min}; r_{max}]$:

- 1. On the metal tower only [0; 15 m]
- 2. On a volume with foliage only [30; 50 m]
- 3. On a volume with the full forest [60; 80 m] (foliage, trunks and soil)

Fig. 9. Three regions of interest for temporal coherence computation: the tower only (left), the foliage only (middle) and the full forest (right).

In every region, the bulk value of the coherency between the current measurement S_1 and the reference measurement S_2 is computed with the following formula:

$$\gamma = \frac{\left|\sum_{r \min}^{r \max} S_1(r) \cdot S_2(r)^*\right|}{\sqrt{\sum_{r \min}^{r \max} \left|S_1(r)\right|^2 \cdot \sum_{r \min}^{r \max} \left|S_2(r)\right|^2}}$$
(2)

In (2), the range profiles have been normalized to account for the variation with range of the propagation losses, the antenna gain and the intercepted soil surface.

1) Instrument Validation

On the metal tower only, the first results are showing a very high coherence of the four polarizations (fig.10). The antennas involved in HV, which are R-H and T-V, are not the same than those involved in VH, R-V and T-H (fig.8). As a consequence, the measurements, and so the coherency are not exactly the same for HV and VH.

Fig. 10. Temporal coherence at P band, during 26 hours, on the metal tower only.

These values, higher than 0.997, demonstrate the very good temporal stability of the instrument. This measurement will be in the sequel of the campaign a major test of the proper functioning of the system.

2) Coherency Evolution

Fig. 11 shows the temporal coherence of HH, HV, VH and VV for foliage only (volume backscattering) at P-band and Fig. 12, for full forest which includes soil interaction effects, in particular double bounce backscattering.

Fig. 11. Temporal coherence at P band on the foliage only

Fig. 12. Temporal coherence at P band on the full forest.

It can be observed a grossly diurnal cycle and a high coherence for a 24 hours interval, and windy conditions occurred between 15:00 and 18:00.

A strong decorrelation may indeed be observed for both foliage only and full forest, with stronger values in the first case. The probable origin of this decorrelation may then be attributed to the foliage movement.

On the opposite, the night/day decorrelation is stronger for the full forest. A possible explanation of this result is the fact that the phase center of full forest is resulting from a combination of volume and soil, and then the change in one contribution strongly affects the global phase center position.
It is not the case of the foliage only part which is composed of volume alone. Also, decorrelation in HH is less than in the other polarizations.

This may be explained by the fact that at P-band HH results mainly from the double bounce, and here too the phase center is more stable even if the intensity is subject to change.

Fig. 13. Temporal coherence at L band on the foliage only.

If we compare the temporal decorrelation of the foliage only at P-band and L-band (Fig. 13), we see that the decorrelation is stronger at L-band. In addition, the HH polarization is more decorrelated than the other ones at L-band.

Fig. 14. Temporal coherence at L band on the full forest.

For the full forest, the night/day cycle decorrelation is the same order for HV and VH, but is lower for HH at L-band (Fig. 14). For VV, the decorrelation is mainly stronger at L-band during the whole day, including at one day interval.

In order to make a further analysis, ground data and weather data are required. Unfortunately these data were not available yet when this paper was written.

V. TROPISCAT DEVELOPMENTS

The TropiSCAT experiment has been partially installed in French Guiana and is currently running. The compatibility of the instrument, with the Guyaflux tower, has been demonstrated.

The preliminary results have validated the TropiSCAT instrument concept and showed that the TropiSCAT experiment can achieve the scientific objectives, by showing the ability of temporal coherence and tomographic measurement.

The final TropiSCAT instrument with automatic polarimetric tomographic measurements is now under development. Tomography will be done through the use of an array of 20 antennas.

ACKNOWLEDGMENT

The authors would like to thank Lilian Blanc and Benoît Burban with Écologie des Forêts de Guyane (ECOFOG), and Damien Bonal with the Institut National de la Recherche Agronomique (INRA), for their welcome and help with the GUYAFLUX tower.

They also thank the anonymous reviewers for their comments and suggestions which have greatly helped to improve the quality of the paper.

REFERENCES

- R. Lucas, J. Armston, R. Fairfax, R. Fensham, A. Accad, J. Carreiras, J. Kelley, P. Bunting, D. Clewley, S. Bray, D. Metcalfe, J. Dwyer, M. Bowen, T. Eyre, M. Laidlaw, M. Shimada, « An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure », IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Volume: 3, Issue: 4, Part: 2, 2010, Page(s): 576 - 593
- [2] S. Englhart, V. Keuck, F. Siegert, "Modeling Aboveground Biomass in Tropical Forests Using Multi-Frequency SAR Data—A Comparison of Methods", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Volume: 5, Issue: 1, 2012, Page(s): 298 - 306
- [3] M. Chopping, M. North, C. Jiquan, C.B. Schaaf, J.B. Blair, J.V. Martonchik, M.A. Bull, "Forest Canopy Cover and Height From MISR in Topographically Complex Southwestern US Landscapes Assessed With High Quality Reference Data", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Volume: 5, Issue: 1, 2012, Page(s): 44 - 58
- [4] S. Maity, C. Patnaik, J.S. Parihar, S. Panigrahy, K.A. Reddy, "Study of Physical Phenomena of Vegetation Using Polarimetric Scattering indices and Entropy", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Volume: 4, Issue: 2, 2011, Page(s): 432 – 438
- [5] "BIOMASS Phase 0 Report for Assessment", European Space Agency, Nov. 2008, ref. SP1313/2.

> JSTARS-2011-00322.R2 TROPISCAT <

- [6] P. Dubois-Fernandez and al., "TropiSAR: Exploring the temporal behavior of P-Band SAR data", *Geoscience and Remote Sensing Symposium (IGARSS)*, 2010 IEEE International proceedings, pp. 1319-1322, 25-30 July 2010.
- [7] D. Bonal, A. Bosc, S. Ponton, J.Y. Goret, B. Burban, P. Gross, J.M. Bonnefond, J. Elbers, B. Longdoz, D. Epron, J.M. Guelh and A. Granier, "Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana", Global Change Biology (2008) 14, 1917–1933.

Clément Albinet received the Eng. Degree from École Centrale de Nantes, France, in 2008 and the M.Sc. degree from the University of Nantes, France, in 2008.

Then, he has worked on the processing of BIOSAR 2 data campaign during a short term contract of 6 month. Since 2009, he is with the Office National d'Etudes et de Recherches Aérospatiales (ONERA), in Toulouse as a PhD student.

Pierre Borderies was born in France in 1953. He received the diploma of Engineer from Ecole Superieure d'Electricite (SUPELEC), Paris, France in 1975. After a period of teaching in Venezuela, he joined the Centre d'Etudes et de Recherches de Toulouse, part of Office National d'Etudes et de Recherches Aérospatiales (CERT-ONERA) in 1979.

Since then, he has been working as a research engineer in the microwaves department. In 1990-91, he spent a sabbatical year at New York University,

Farmingdale, NY. In 1997, he obtained the university diploma of Habilitation to Direct Research. He has worked in the fields of radiation and scattering of antennas, microwave devices, radar targets imaging, frequency selective surfaces, ultra wide band scattering, subsurface targets, electromagnetic modeling, natural targets scattering and remote sensing. His current interests include electromagnetic modeling for radar remote sensing and proximity scattering experiments.

Thierry Koleck received the M.Sc. degree from the University of Toulouse, France, and the Ph.D. degree from the University of Paris, France, in 1993 and 1998, respectively.

Since 1997, he has been with the Centre National d'Etudes Spatiales (CNES), the French space agency in Toulouse as an Antenna Enginner. He has been involved in research and development of space antennas for many satellite projects. His interests include space antennas, numerical methods for

antenna analysis, antenna/structure interaction analysis, and optimization methods.

Publication 3

"Temporal survey of polarimetric P-Band scattering of tropical forests"

Alia Hamadi, Clément Albinet, Pierre Borderies, Thierry Koleck, Ludovic Villard, Dinh Ho Tong Minh et Thuy Le Toan.

L'article a été accepté dans le journal "Transactions on Geoscience and Remote Sensing" (TGRS) en 2013.

Temporal survey of polarimetric P-Band scattering of tropical forests

A. Hamadi, C. Albinet, P. Borderies, T. Koleck, L. Villard, D. Ho Tong Minh, T. Le Toan

Abstract— This paper deals with the temporal survey of the tropical forest electromagnetic scattering with a ground- based radar equipment. Installed on the top of a 55m flux tower overlooking the Paracou forest in French Guiana, a dense primary tropical forest, the radar system uses a vertical antenna array and it is able to provide every 15 minutes P-band complex scattering matrix coefficients. The experiment has been successfully set up and it is operating since October 2011. The main goal of this campaign is to investigate the evolution of the backscattering coefficient and the temporal coherence of the tropical forest at different time scales range. Data are calibrated in relative and processed to take advantage of the largest number of independent looks. Three months of data are exploited in terms of polarimetric temporal coherence and backscattering coefficient in the rainy season and about 20 days in the dry period. The temporal coherence exhibits daily cycles during the consecutive dry days, whatever the period, and these cycles are perturbed by the presence of rain. Its overall time series appear clearly dependent on the period, dry or rainy, and also on the polarization. The backscattering coefficient time series exhibits also a daily cycle during consecutive dry days, very clearly in the dry period but less pronounced or absent during the rainy period. The backscattering coefficient presents an overall relatively high stability over the full period.

Index Terms—Ground-based radar experiment, P Band radar, tropical forest, temporal coherence, backscattering time series, radar polarimetry

I. INTRODUCTION

T ROPICAL forests present the major part of the world forest biomass, and their changes in biomass by deforestation and/or by forest regeneration affect strongly the terrestrial carbon budget [1]-[5]. To measure with accuracy tropical forest biomass and its temporal change is the main objective of the BIOMASS mission [6], [7], a selected for the European Space Agency seventh Earth Explorer mission. BIOMASS will be the first space borne synthetic aperture Radar (SAR) operating at P-band (435 MHz). Several studies were performed to predict the forest biomass with SAR measurements. The retrieval algorithms currently developed are based on the use of backscattering coefficient, polarimetry and interferometry [8]-[12]. For tropical forests with very high biomass density (> 300 t/ha), biomass inversion is proposed using a combination of measurements including backscatter intensity, polarimetric interferometry (PolInSAR) [13]-[16] and tomography [17]. However, the condition to have exploitable interferometric or tomographic information is to have high temporal coherence over forests for time intervals compatible with the revisit time. During the airborne TropiSAR experiment [18]-[19], performed in August 2009 in French Guiana, the temporal coherence has been found high for time interval up to 22 days. In order to complement the airborne datasets, a ground-based experiment over tropical forests was found necessary to produce a well-controlled radar and *in situ* data set for various periods of the year and weather conditions.

In this context, the TropiSCAT ground-based experiment has been developed in order to acquire a comprehensive data set which will be used to refine the biomass retrieval algorithms. The radar system was installed and validated and preliminary results of the campaign, for both backscattering intensity and temporal coherence, were published [20]-[22].

The work described in this paper is an extension of the conference paper [22]. The evolution in this version is as follows: 1) In the previous papers, the results were presented in the rainy period, and in this one, there is a comparison between the rainy and the dry periods; 2) in the first version, the backscattering coefficient results were presented in the case of full forest including both the canopy and the ground, and here, results of the canopy only are shown as well; 3) in the first paper, the coherence result was in the case of just one antenna couple, and in this one, we used the 16 antenna couples to compute the coherence; 4) in the first one, the results were relative, and in this version, they are calibrated with a trihedral corner reflector; 5) finally, in this version, we present the variation of soil moisture together with the variation of the backscattering coefficient.

Note that if the study is useful for biomass retrieval from space, the expected results may also be relevant for

Manuscript received December 26, 2012. This work was founded by the European Space Agency (ESA) and the Centre National d'Études Spatiales (CNES). It was also supported in part by the Midi-Pyrénées region.

A. Hamadi was with the Office National d'Etudes et de Recherches Aérospatiales (ONERA), Toulouse center, and with the Centre d'Etudes Spatiales de la Biosphère (CESBIO) in post doctoral position 18 Avenue Edouard Belin-31401- Toulouse- France, (phone : 0033-561558501, fax: 0033-5615585 00, e-mail: alia.hamadi@hotmaill.fr).

P. Borderies is with Office National d'Études et de Recherches Aérospatiales (ONERA), 2 avenue Edouard Belin BP74025 FR-31055 Toulouse cedex 4 FRANCE (corresponding author:_Pierre.Borderies@onera.fr).

C. Albinet, T. Koleck, L. Villard, D. Ho Tong Minh and T. Le Toan are with Centre d'Études Spatiales de la Biosphère (CESBIO), 18 avenue Edouard Belin bpi 2801 31 401 Toulouse cedex 9 FRANCE. T. Koleck is also with Centre National d'Études Spatiales (CNES), 18 Avenue Édouard Belin 31 401 Toulouse cedex 9 FRANCE. C. Albinet was with ONERA.

applications using airborne SARs (e.g. detection under canopy) and for more general forest characteristics retrieval [23].

This paper is organized as follows. In the second section, the main features of the experiment will be outlined. Then, Sections III and IV are dedicated to the results obtained for coherence and backscattering coefficient, respectively, both in the rainy and dry season.

Fig. 1. TropiSCAT instrument architecture

Fig. 2. Twenty antennas installed on the Guyaflux tower

II. EXPERIMENT DESCRIPTION

For the purpose of self-consistency, let us recall the main features of this experiment. The experiment has been designed to acquire the backscattering coefficient and the complex coherence in HH (horizontal receiving, horizontal transmitting), VV (vertical receiving, vertical transmitting) and HV (horizontal receiving, vertical transmitting), together with a vertical imaging capability (tomography), and in time scales ranging from diurnal, weekly, monthly, and up to one year of observation and beyond.

The setup allows an automatic measurement cycle. It is developed with a state-of-the-art instrumentation: a Vector Network Analyzer (VNA), wideband RF antennas, a computer, and RF switches boxes. The system was assembled and installed on a tower overlooking a tropical forest in a range up to 200 meters. A calibration procedure is performed before each acquisition in order to ensure the quality of the results during the experiment duration.

The Guyaflux tower [24], 55 m high, in Paracou, French Guiana, has been selected to support the experiment.

Fig. 1 shows the TropiScat instrument architecture. For tomographic measurements, a large array (5 meters by 2.4 meters) of 20 antennas (see Fig. 2) has been installed on the top of the Guyaflux tower. For more information about the experiment, see [20]-[22].

Fig. 3. Coordinate system of the antenna

The *in situ* data used by the experiments are provided mainly by the Guyaflux project:

- soil temperature (in degrees Celsius) at depths of -10, -18, -33, and -53 cm;
- 2) wind direction and speed (in meters par second);
- 3) rain level (in millimeters).

Among these *in situ* data, soil moisture, wind speed, and rain level have been used to interpret the variations in the radar measurements.

The frequency domain complex data acquired are transformed into the time domain or range domain by Inverse Fast Fourier Transform (IFFT).

The chosen parameters for this experiment are as follows. The frequency ramps cover 200 MHz bandwidth (respectively 400-600, 600-800 and 800-1000 MHz) to be representative of P and L bands for the first and third, and of a very wide band signal when grouping them. An IFBW (Intermediate frequency bandwidth) of 10 kHz and a number of 1601 points in each frequency ramp were chosen, so that the final dynamic range is worth approximately 105dB, with a sweep time close to 1 sec.

For each acquisition we obtain a complex impulse response. If Δf and ∂f are respectively the frequency bandwidth and the frequency step, with $\Delta f = (Nf - 1) \times \partial f$, then the range resolution is $dr = c/2\Delta f$ and the unambiguous range $D = c/2\partial f$. So, for the range *i.dr*, the range profile is defined by the complex array $S(i)_t = (X(i)_t, Y(i)_t)$ where

"*i*" is the *i*th range bin, and dr is the width of range bin.

The raw data collected during the TropiScat campaign are post-processed. First, the antenna gain is accounted for.

Fig. 4: Antenna-ground geometry and illuminated surface projected on ground

Fig. 3 represents the coordinate system of the antenna (SXYZ), $\hat{\theta}$ and $\hat{\varphi}$ are respectively the elevation and the azimuth angle. Considering Fig. 3, the plane $\hat{\varphi} = \pi/2$ is the elevation plane and $\hat{\varphi} = 0$ is the azimuth one.

The gain in the coordinate system of the antenna is given by

$$G'\left(\hat{\theta}, \hat{\varphi}\right) = G_{\max} - 3\frac{\hat{\theta}^2}{\theta_3^2}$$
(1)

where $\,G_{\rm max}$ represents the maximum gain of the antenna and $\,\theta_3$ corresponds to 3-dB aperture, which is modeled by

$$\theta_3 = \theta_{3elev} \cdot \cos^2 \left(\stackrel{\wedge}{\varphi} - \frac{\pi}{2} \right) + \theta_{3az} \sin^2 \left(\stackrel{\wedge}{\varphi} - \frac{\pi}{2} \right) \tag{2}$$

where θ_{3elev} corresponds for H polarization to a 3-dB aperture in the H plane (80°) and for V polarization to a 3-dB aperture in the E plane (60°), whereas θ_{3az} corresponds to a 3-dB aperture in the H plane for V polarization and in the E plane for H polarization.

On the other hand, in the coordinate system (Oxyz) tied to the soil as horizontal plane (Oxy) and to the tower axis (Oz), an observation point M is in spherical coordinates defined by (r, θ, φ) . These coordinates depend on $\hat{\theta}$ and $\hat{\varphi}$ as follows:

Fig. 5: Example of backscattered impulse response

$$\cos\theta = \sin\theta\sin\varphi\sin\varphi_0 + \cos\theta\cos\theta_0 \tag{3.a}$$

$$\cos \hat{\varphi} = \frac{\sin \theta \cos \varphi}{\sin \hat{\theta}}$$
(3.b)
$$\sin \hat{\varphi} = \frac{\sin \theta \sin \varphi \cos \theta_0 - \cos \theta \sin \theta_0}{\sin \hat{\theta}}$$
(3.c)

where θ_0 is the direction of maximum radiation, θ and φ are respectively the elevation and the azimuth angle in the (Oxyz) coordinate system (Fig. 4).

The raw data are calibrated with a trihedral reflector as exposed in [25]. As the presence of the corner reflector may disturb the forest response, its measurements have been done at particular time slots with the corner reflector located on the ground with a quite clear line of sight from the tower top. Its contribution was evaluated with time gating and clutter removal with complex subtraction which appeared to be fully efficient for more than 30 minutes.

For the forest, the weighted illuminated area I_{pq} [25] for a given range cell is evaluated as follows:

Let
$$G(\theta, \varphi) = G'\left(\hat{\theta}, \hat{\varphi}\right)$$

 $I_{pq} = \int_{\varphi=0}^{\varphi=\pi} G_e(\theta, \varphi) \cdot G_r(\theta, \varphi) \rho d\rho d\varphi =$

$$\int_{\varphi=0}^{\varphi=\pi} G'_e\left(\hat{\theta}(\theta, \varphi), \hat{\varphi}(\theta, \varphi)\right) G'_r\left(\hat{\theta}(\theta, \varphi), \hat{\varphi}(\theta, \varphi)\right) r dr d\varphi$$
(4)

as $\rho d\rho = r dr$, with ρ being the distance from the soil to the bottom tower axis, $p = \begin{vmatrix} H \\ V \end{vmatrix}$, $q = \begin{vmatrix} H \\ V \end{vmatrix}$, G_e being the emission gain, and G_r being the reception gain.

Note that it was delicate to position the trihedral reflector

because of the forest presence. Therefore, this introduces uncertainty related to the calibration, which is not critical because only a relative calibration is required to perform temporal monitoring. However, such calibration allows normalization between antenna pairs and polarizations.

Another correction was made in order to adjust the impulse response. In fact, it was noted that the direct coupling between antennas may be subject to some changes with time in particular during the rainy period. However this direct coupling is supposed to be constant. Consequently, we have established a method to adjust data that corrects this effect and normalize the level of direct coupling between antennas at a constant level. In fact, the hypothesis that a change in the antenna gain is fully characterized by the coupling change is done.

To do this, an impulse response measured at dry time is chosen and considered as a reference $S'_{ref} = (X'_{ref}, Y'_{ref})$. All impulse responses include the antenna direct coupling, the tower coupling, and the forest response as shown in Fig. 5.

For all impulse responses $S'(i)_t = (X'(i)_t, Y'(i)_t)$, the real and imaginary parts are corrected

$$X_{pqt}(i) = X'_{pqt}(i) \cdot \frac{C_{pqref}}{C_{pqt}} \text{ and } Y_{pqt}(i) = Y'_{pqt}(i) \cdot \frac{C_{pqref}}{C_{pqt}}$$
 (5)

Where, by averaging the power around the direct coupling peak over N cells, we obtain

$$C_{pqref} = \sqrt{\frac{\sum_{i=\max-\Delta Ni/2}^{i\max+\Delta Ni/2} (X'_{pq_{ref}}^{2} + Y'_{pq_{ref}}^{2})}{N}}$$

$$C_{pqt} = \sqrt{\frac{\sum_{i=\max-\Delta Ni/2}^{i\max+\Delta Ni/2} (X'_{pq_{t}}^{2} + Y'_{pq_{t}}^{2})}{N}}$$
(6)

where $p = \begin{vmatrix} H \\ V \end{vmatrix}$, $q = \begin{vmatrix} H \\ V \end{vmatrix}$, i_{\max} is the index of the coupling peak, Δ_i is the number of cells around the i_{\max} , and $N = \Delta N_i + 1$.

The set of impulses responses is filtered. Tests are done on the presence of rain, on the value of the ratio C_{pqt}/C_{pqref} and the coupling coherence (equation. (7) applied to this coupling range). When rain is present during the measurement or when one of the previous values exceeds a given threshold impulse responses are discarded.

III. COHERENCE RESULTS

The coherence accounts for all the changes of the forest between two measurements. There are short-term variations due to the wind, rainfall, soil moisture and long-term variations such as the growth of the forest, cumulative rainfall, soil moisture... In this section, we will study qualitatively the variation of the temporal coherence at both time scales and attempt to link this variation to environment parameters such as the wind speed and the rainfall.

To study the variation of the coherence at intra-day to monthly scales, we computed the coherence every 15 minutes for a time interval of three months in the rainy period and two months in the dry period. The value of the coherence between a measurement at a given time S_1 and the reference measurement S_2 at another time is computed with

$$\gamma_{pq} = \frac{\left|\sum_{r \min}^{r \max} S_{1pq}(r) \cdot S_{2pq}(r)^{*}\right|}{\sqrt{\sum_{r \min}^{r \max} \left|S_{1pq}(r)\right|^{2} \cdot \sum_{r \min}^{r \max} \left|S_{2pq}(r)\right|^{2}}}$$
with $p = \begin{vmatrix} H \\ V \end{vmatrix}$ and $q = \begin{vmatrix} H \\ V \end{vmatrix}$
(7)

 r_{\min} and r_{\max} correspond to respectively the minimum range and the maximum range that covers the forest. To incorporate a sufficient number of independent samples [26], S_1 and S_2 are the result of signals measured over 16 pairs of antennas (normalized data). The temporal coherence was computed. Since the height of the tower is 55 m, for the ranges greater than 55 m, both forest volume and underlying ground are intercepted and in this case we will refer to 'full forest'. Otherwise, only canopy volume is intercepted and we will refer to 'volume only'. The results were calculated for $r_{\rm min} = 72 \,\mathrm{m}$ and $r_{\rm max} = 84 \,\mathrm{m}$. The number of independent looks is sufficient (12 range cells and 16 measurements) and the corresponding incidence angle is between $\theta_{\min} = 39^{\circ}$ and $\theta_{\rm max} = 49^{\circ}$. With eq.7, the range profiles have been normalized to account for the variation with range of the propagation losses, the antenna gain and the intercepted soil surface (section II) and corrected in range so that the footprint is the same for all antennas sets. Note that the coherences plotted here underestimate the coherence of the scene since they incorporate the system coherence [27]. Fig. 6 shows the temporal coherence of the HH, HV and VV backscattering coefficients over a period of 3 months corresponding to the rainy period (from December 6, 2011 to March 11, 2012). The reference signal S_2 corresponds to the signal on December 18, 2011 at 6 a.m. and the S_1 signal is the signal measured each 15 min. The signals at the rainy time were filtered. The

15 min. The signals at the rainy time were filtered. The rainfall data are depicted in the same figures. For the HH polarization, the signal's envelope keeps a very high level (more than 0.8) until about 2 months and it is equal to 0.7 after three months. The VV polarization, decreases quickly during the rain and continues to decrease slowly just after the rain. The VV coherence is lower than the HH one (more than 0.7 until 2 months and equal to 0.6 after three months). Concerning HV, we denote that the coherence decreases faster

Fig. 6. From left to right, temporal coherences for respectively HH, VV and HV over 3 months (full forest during the rainy season). The x-axis corresponds to the time (every 15 min).

than for the HH and VV polarization (coherence equal to 0.5 after three months). This can be explained by the fact that HV (volume effect) is more sensitive to branches growth/change and wind movement than HH and VV which incorporate direct soil scattering and volume/soil interactions which are *a priori* more stable.

As a zoom, Fig. 7 shows the temporal coherence of the HH, HV and VV scattering coefficients over a period of 4 days (from December 16, 2011 to December 19, 2011) during a dry period (during the rainy season). We can observe a daily cycle with a high coherence between nights, which confirms the results of a preliminary experiment [20] and is in agreement with the observations of the nightly behavior of the tropical forests [28]. The night/day decorrelation may be attributed to two phenomena, displacements of scatterers and changes in dielectric constant. Fig. 7 shows the wind speed over four days, showing that the wind speed during the night is lower than that during the day. Therefore, it explains why the coherence during the night is higher than that during the day. When the wind speed is greater than 2.5 m/s, the movement of branches seems enough to lead to a strong decorrelation. A possible second effect is directly related to the evapotranspiration of trees, during the day [29][30]. The permittivity of branches and trunks varies between night and day, due to moisture content change inside them, which may decorrelate the backscattered signal.

Fig. 8 shows the coherence over a period of 4 days (from December 20, 2012 to December, 24 2012) during the rainy period. We observe that the rainfall disrupts the daily cycles, which is coherent with some results of dielectric constant time series measurements reported in [30]. The maxima of coherence are around 0.8 and the coherence decreases up to 0.4.

In the dry period (from September 19, 2012 to November 22, 2012), the coherence was computed in the same way as in the rainy period. The reference signal S_2 corresponds to September 20, 2012 at 6 a.m.. The HH and VV polarizations (see Fig. 9) show that the signal's envelope is higher than 0.8 until about October 15, 2012 and becomes close to 0.7 after two months. It decays with a low slope. We denote a fast decrease on October 9, 2012 linked to the rain event (as shown

in the rainfall curve).

The HV polarization (see Fig. 9) reports a coherence higher than 0.8 until about October 9, 2012 and becomes close to 0.5 after 2 months. As shown earlier, the HV coherence is lower than the HH and VV ones.

Fig. 7. Temporal coherence over 4 days during a dry period (full forest in the rainy season). HH, VV and HV are in red, blue and green in the upper curves, and wind speed is in the bottom.

Fig. 8. Temporal coherence over 4 days during a rainy period (full forest in the rainy season) .HH, VV and HV are in red, blue and green in the upper curves, and rain fall is in the bottom.

Comparing the rainy and the dry period, we denote that, in the dry period, the slope of the signal' envelope is more

Fig. 9. From left to right, temporal coherences for respectively HH, VV and HV over 3 months (full forest during the dry season). The x-axis corresponds to the time (every 15 min)

regular than in the rainy period, and we can see the strong influence of the rain event. Another comment is that the coherence in the dry period is greater than that during the rainy period at short term but it is slightly lower at long term. Further investigations are necessary to explain this observation which may be specific to the year 2012 for which both rainfall in the rainy season and drought during the dry season have been particularly important. One possible explanation is the fact that, according to Wagner [31], in the dry period, the branches grow more efficiently, which would decrease the coherence of the forest, particularly in HV.

IV. BACKSCATTERING COEFFICIENT RESULTS

As mentioned above, for each acquisition we obtain a normalized range backscattering profile and for the range i.dr, the range profile is defined by the complex array $S(i)_t = (X(i)_t, Y(i)_t)$. The backscattering coefficient I_{pq} is computed by averaging the intensity range profile in distance, time and several couples successively. First, we define a range gate for filtering the data. At a given time t (iteration time, every 15 mn), we perform an averaging over resolution cells

$$I_{pq}(t,c) = \frac{\sum_{r=r\min}^{r\max} (X(r)^2 + Y(r)^2)}{N_r}$$
(8)

Where c defines a couple of antennas, t is the time of acquisition and r a given range cell. N_r is the number of cells between r_{\min} and r_{\max} .

Then an averaging temporal window Δt is defined and the intensity is computed with the following averaging, with N_T the number of acquisitions:

$$I_{pq}(t,c) = \frac{\sum_{t=t-\Delta t/2}^{t+\Delta t/2} I_{pq}(t',c)}{N_T}$$
(9)

with
$$p = \begin{vmatrix} H \\ V \end{vmatrix}$$
 and $q = \begin{vmatrix} H \\ V \end{vmatrix}$

Finally, for increasing the degree of freedom and increasing the number of computational cells we performed an averaging over several couples (eq. 10). In fact, the behavior of the backscattering coefficient changes according to the considered couple: each couple 'sees' a different scene. Therefore, using several antennas increases the number of independent looks

$$I_{pq}(t) = \frac{\sum_{c=1}^{N} I_{pq}(t,c)}{N_{c}}$$
(10)

where N_c is the number of couples.

Fig. 10 and 11 show the backscattering coefficients (HH, HV and VV) during the rainy period and over three months (from December 26, 2011 to March 11, 2012) for respectively the canopy and the full forest. These figures also report the rainfall and the soil moisture at 10-cm depth. Note that the rainfall was very important (unusually) during this season. As a consequence, the soil moisture increases over time as shown in Fig. 15 (black curve). The HH amplitude is higher than the VV amplitude, which is, in turn, higher than the HV amplitude, and their short-term variations follow the same trend. Across the season, as a global trend, either the levels are stable with time, or they present a slight increase (in HH and to a lesser extent in HV), particularly for the full forest case. The long-term variations are less than 1 dB over the three months. Such a global increase may be attributed to an evolution of the moisture content in the canopy along the season and to the increase of the contribution of the interaction between canopy and ground. Note that the terrain presents a rather important slope (more than 8%) so that the double bounce contribution for the trunks is strongly reduced.

A zoom (see Fig. 12) around a few dry days of Fig. 11 shows a global variation of the signal in all polarizations, which could follow the change in soil moisture, in particular for HV. The VV intensity appears the most stable with time. This is in agreement with the VV temporal survey from space at higher frequencies [32], [33]. It is to be noted that daily cycles appear in HH with a small amplitude, but they are not significant in VV and HV.

Fig. 10. Temporal variation of the backscattering coefficient computed over the canopy ("volume only") during the rainy period. The red, blue and green curves correspond to the HH, VV and HV polarization. The black curve corresponds to the soil moisture at 10-cm depth, and the purple one corresponds to the rainfall.

Fig. 11. Temporal variation of the backscattering coefficient computed over the full forest during the rainy period. The red, blue and green curves correspond to the HH, VV and HV polarizations. The black curve corresponds to the soil moisture at 10-cm depth, and the purple one corresponds to the rainfall.

Fig. 13 and 14 show the backscattering coefficients computed during the dry period (from September 20, 2012 to October 7, 2012) in the case of volume only and full forest, respectively. The change of levels with respect to the rainy season highlights the seasonal behavior. Note that, the amount of rain is zero. In both cases of 'volume only' and 'full forest' (see Fig. 13), we observe a stable level for all polarizations. One can observe a daily cycle of 1-dB variation between the day and the night possibly linked to the diurnal variation of the tree dielectric constant, and/or to the evapotranspiration phenomena of the trees. Comparing Fig. 13 (volume only) with Fig. 14 (full forest), the daily cycle appears more clearly in the case of full forest than for volume only. Further analysis is here also necessary to interpret this behavior.

Fig. 12. Temporal variation of the backscattering coefficient computed over the full forest (zoom of Fig. 11). The red, blue, green curves correspond to HH, VV and HV polarizations. The black curve corresponds to the soil moisture at 10-cm depth, and the purple one to the rainfall.

Fig. 13. Temporal variation of the backscattering coefficient computed over the canopy ("volume only") during the dry period. The red, blue and green curves correspond to the HH, VV and HV polarizations. The purple curve corresponds to the rainfall (no rainfall in this case).

Fig. 14. Temporal variation of the backscattering coefficient computed over the full forest during the dry period. The red, blue,

Moisture

green curves correspond to the HH, VV and HV polarizations. The purple corresponds to the rainfall (no rainfall in this case).

V. CONCLUSION

The TropiSCAT experiment is deployed in French Guiana since October 2011. Automatic measurements are currently done every 15 min. The impulse responses are processed to derive the time series of coherence and backscattering coefficient. Such time series have been reported for several months of both the rainy season and the dry season. Daily cycles appear clearly on the coherence during the dry season and also during the dry periods of the rainy season. They are perturbed by the rain. The backscattering coefficient presents clearly regular daily cycles in the dry season as well, but it is not the case in the rainy season. At monthly scale, backscattering coefficients are stable or monotonously slightly varying with soil moisture content. Coherence time series envelope presents regular decay with time in the dry season for all polarizations and more abrupt change in the rainy season.

Future work will be focused on an exploitation of longer time series and on a deeper analysis of the influence of the bio- geophysical and meteorological parameters on the radar backscattering signal. Electromagnetic modeling will be performed for a better comprehension of the phenomena. For example, a coherent discrete model such as in [34] will allow to simulate the influence of biophysical parameters like vegetation and soil dielectric constant and to interpret the observations. This database will also be used for performance assessment of repeat pass retrieval algorithms at P-band. Finally, it can be used for the study in other frequency bands.

ACKNOWLEDGMENT

The authors would like to thank the European Space Agency (ESA) and Centre National d'Etudes Spatiales (CNES) for funding the TropiSCAT experiment and the Midi-Pyrénées region for supporting a part of this work. Dr. R. Bianchi (ESA) will be thanked, in particular, for having provided useful insights and discussions. We would also like to thank B. Burban from Ecologie des Forêts de Guyane (ECOFOG), Institut National de la Recherche Agronomique, for the welcome and help at the Paracou station and the Centre de cooperation Internationale en Recherche Agronomique pour le Développement for providing *in situ* data.

References

- K. L. O'Brien, "Tropical deforestation and climate change," *Progress in Physical Geography*, vol. 20, no. 3, pp. 311-335, Sept. 1996.
- [2] J. Shukla, C. Nobre, and P. Sellers, "Amazon deforestation and climate change," *Science*, vol. 247, no. 4948, pp. 1322-1325, Mar. 1990.
- [3] J. Tollefson, "Counting carbon in the amazon," *Nature*, vol. 461, pp. 1048–1052, Oct. 2009.
- [4] Y. Malhi, J. Timmons Roberts, R. A. Betts, T. J. Killeen, L. Wenhong, C. A. Nobre, "Climate change, deforestation, and the fate of the amazon," *Science*, vol. 319, no. 5860, pp. 169-172, Jan. 2008.
- [5] J. Wang, F. Chagnon, E. Williams, A. K. Betts, N. O. Renno, L. A. T. Machado, G. Bisht, R. Knox, and R. L. Bras, "Impact of deforestation in

the Amazon basin on cloud climatology," Proc. Nat. Acad. Sci., vol. 106, no. 10, pp. 3670-3674, Mar. 2009.

- [6] BIOMASS Phase 0 Report for Assessment, European Space Agency, ref. SP1313/2, Nov. 2008.
- [7] T. Le Toan, S. Quegan, M. Davidson, H. Balzter, P. Paillou, K. Papathanassiou, S. Plummer, F. Rocca, S. Saatchi, H. Shugart, L. Ulander, "The BIOMASS Mission : Mapping global forest biomass to better understand the terrestrial carbon cycle," *Remote Sensing of Environment*, vol. 115, no. 11, pp. 2850-2860, Jun. 2011.
- [8] A. Luckman, J. Baker, T. M. Kuplich, C. F. Yanasse, A. C. Frey, "A study of the relashionship between radar backscatter and regenerating tropical forest biomass for space born SAR instruments," *Remote Sensing of Environment*, vol. 60, no. 1, pp. 1-13, Apr. 1997.
- [9] T. Letoan, A. Beaudoin, J. Riom, D. Guyon, "Relating forest biomass to SAR data," *IEEE Trans. on Geoscience and Remote Sensing*, vol. 30, no. 2, pp. 403-411, Mar 1992.
- [10] K. J. Ranson, S. Guoqing, R. H. Lang, N. S. Chauban, R. J. Cacciola, O. Kilic, "Mapping of boreal forest biomass from space born synthetic aperture radar," *Journal of Geophysical research*, vol.102, no. D24, pp. 29599-29610, 1997.
- [11] E. J. Rignot, C. L. Williams, J. Way, L. A. Viereck, "Mapping of forest types in alaskan boreal forests using SAR imagery," *IEEE Trans. on Geoscience and Remote Sensing*, vol. 32, no. 5, pp. 1051-1059, Sept 1994.
- [12] Cloude S.R., and K. Papathanassiou, "A three stage inversion process for polarimetric SAR interferometry," IEE Proceedings, *Radar, Sonar* and Navigation, vol. 150, no. 03, pp. 125-134, Jun. 2003.
- [13] S. Quegan, T. Le Toan, J. J. Yu, and F. Ribbes, "Estimating temporate forest area with multitemporal SAR data," IEEE Trans. on Geoscience and Remote Sensing, vol. 38, no. 2, pp. 741-753, Mar. 2000.
- [14] S. Quegan, J. J. Yu, and T. Le Toan, "Iterated multi-channel filtering of SAR images," Conference Publications, *Geoscience and Remote Sensing Symposium*, vol. 2, pp. 657-659, 2000.
- [15] F. Garestier, P. Dubois-Fernandez, K. Papathanassiou, "Pine forest height inversion using single-pass X-band PolInSar data," *IEEE Trans.* on Geoscience and Remote Sensing, vol. 46, no. 1, pp. 59-68, 2008.
- [16] L. Villard, I. Hajnsek, K. Papathanassiou, P. Borderies, "Pol-InSar simulations in forest bistatic scattering," 7th European Synthetic Aperture Radar (EUSAR), 2-5 Jun 2008.
- [17] M. Mariotti d'Alessandro, S. Tebaldini "Phenomenology of P-Band Scattering From a Tropical Forest Through Three-Dimensional SAR Tomography," IEEE *Geoscience and Remote Sensing Letters*, vol. 9, no. 3, pp. 442 – 446, May 2012.
- [18] P. Dubois-Fernandez et al., "TropiSAR: Exploring the temporal behaviour of P-Band SAR data," *Geoscience and Remote Sensing Symposium (IGARSS)*, 2010 IEEE International proceedings, pp.1319-1322, 25-30 Jul. 2010.
- [19] P. Dubois-Fernandez, T. Le Toan, S. Daniel, H. Oriot, J. Chave, L. Blanc, L. Villard, M. W.J. Davidson, M. Petit, "The TropiSAR airborne campaign, in French Guiana: Objectives, Description and observed temporal behavior of the backscatter signal," *IEEE Trans. on Geoscience and Remote Sensing*, vol. 50, no. 8, pp. 3228-3241, 2012.
- [20] C. Albinet, P. Borderies, T. Koleck, F. Rocca, S. Tebaldini, L. Villard, T. Le Toan, A. Hamadi, D. Ho Tong Minh, "TropiScat: A ground Based Polarimetric experiment in Tropical forests," *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 5, no. 3, pp. 1060–1066, 2012.
- [21] D. Ho Tong Minh, S. Tebaldini, F. Rocca, C. Albinet, P. Borderies, T. Koleck, T. Le Toan, L. Villard, "TropiSCAT: Multi-temporal MultiPolarimetric Tomographic Imaging of Tropical Forests," *Geoscience and Remote Sensing Symposium (IGARSS)*, 2012 IEEE International proceedings, pp. 1536-1539, 23-27, Jul. 2012.
- [22] T. Koleck, P. Borderies, F. Rocca, C. Albinet, D. Ho Tong Minh, S. Tebaldini, A. Hamadi, L. Villard, T. Le Toan, "TropiSCAT: A polarimetric and tomographic scatterometer experiment in French Guiana forests," *IEEE on Geoscience and Remote Sensing Symposium (IGARSS)*, pp. 7597-7600, 22-27 Jul. 2012.
- [23] T.M. Demaze, L. Polidori, "Caractérisation multi-échelle et multicapteur de la déforestation tropicale amazonienne", *Société française de photogrammétrie et de télédétection SFPT*, vol. 2000, no. 161, pp. 74-84, 2001.
- [24] Paracou Guyaflux description: http://www.ecofog.gf/fr/fonctionnement/guyaflux/

- [25] F. T. Ulaby, R. K. Moore, and A. K. Fung, Chapter 10, Microwave Remote Sensing: Active and Passive, Vol. II-Radar Remote Sensing and Scattering Emission Theory. Dedham, MA: Artech House, 1986.
- [26] R. Touzi, A. Lopes, J. Bruniquel, P.W. Vachon, "Coherence estimation for SAR Imagery," IEEE *Trans. on Geoscience and Remote Sensing*, vol. 37, no. 1, pp. 135-149, 1999.
- [27] Zebker, H.A., Villasenor, "Decorrelation in interferometric radar echoes," *IEEE Trans. on Geoscience and Remote Sensing*, vol. 30, no. 5, pp. 950-959, Sept. 1992.
- [28] M.S. Assis, "Comments on Some radio Wave Propagation Mechanisms in the Amazon region," *Piers proceedings*, pp. 265-269, Kuala Lumpur, Malaysia, 27-30 Mar. 2012.
- [29] D.M. Gates, "Water relations of forest trees," *IEEE Trans. on Geoscience and Remote Sensing*, vol. 29, pp. 836-842, Nov. 1991.
- [30] McDonald, K. C.; Zimmermann, R. and Kimball, J.S.; "Diurnal and Spatial Variation of Xylem Dielectric Constant in Norway Spruce (*Picea abies* [L.] Karst.) as Related to Microclimate, Xylem Sap Flow, and Xylem Chemistry", *IEEE Trans. on Geoscience and Remote Sensing*, vol.. 40, no. 9, Sept 2002.
- [31] F. Wagner, "Confronting satellite and field measurements data to improve the understanding of carbon uptake by tree in French Guiana" in *Proc. SELPER*, Nov. 19-23, 2012.
- [32] C. Ruiz, P. Borderies, I. Chênerie, E. Mougin, C. Proisy "Modeling of electromagnetic waves interaction with forest canopies," *CEOS Workshop*, Toulouse, October 1999.
- [33] C. Proisy and E. Mougin, "Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations," *IEEE Trans. on Geoscience and Remote Sensing*, vol. 38, pp. 540-552, Jan. 2000.
- [34] L. Villard, P. Borderies, "Backscattering border effects for forests at C-Band," *Piers Online*, vol 3, no. 5, pp. 731-735, 2007.

A. Hamadi received the M.Sc. degree from the University of Limoges in 2007, France and the Ph.D. degree from the University of Limoges, France, in 2010. She has worked on the Eliare project (TBM Onboard Radar) at the technopole ester in Limoges, France. After, she was working on the processing of TropiSCAT data campaign with the Office National d'Etudes et de Recherches Aérospatiales (ONERA) and with the Centre d'Etudes Spatiales de la Biosphère (CESBIO), in Toulouse.

C. Albinet received the Eng. Degree from Ecole Centrale de Nantes, France, and the M.Sc. degree from the University of Nantes, France, both in 2008. Then, he has worked with Thuy Le Toan on the processing of BIOSAR 2 data campaign during a short term contract of 6 month. Since 2009, he is with the Office National d'Etudes et de Recherches Aérospatiales (ONERA), in the Electromagnetism and Radar Department and in the Radio-Communication and Propagation research Unit, in Toulouse, France.

P. Borderies received the diploma of Engineer from Ecole Supérieure d'Electricité (SUPELEC), Paris, France. After a period of teaching in Venezuela, he joined the Centre d'Etudes et de Recherches de Toulouse, part of Office National d'Etudes et de Recherches Aérospatiales (CERT-ONERA).

Since then, he has been working as a research engineer in the microwaves department. In 1990-91, he spent a sabbatical year at New York University, Farmingdale, NY. In 1997, he obtained

the university diploma of Habilitation to Direct Research. He has worked in the fields of radiation and scattering of antennas, microwave devices, radar targets imaging, frequency selective surfaces, ultra wide band scattering, subsurface targets, electromagnetic modeling, natural targets scattering and remote sensing. His current interests include electromagnetic modeling for radar remote sensing and proximity scattering experiments.

T. Koleck received the M.Sc. degree from the University of Toulouse, France, and the Ph.D. degree from the University of Paris, France, in 1993 and 1998, respectively.

Since 1997, he has been with the Centre National d'Etudes Spatiales (CNES), the French space agency in Toulouse as an Antenna Engineer. He has been involved in research and development of space antennas for many satellite projects. His interests include space antennas, numerical methods for

antenna analysis, antenna/structure interaction analysis, and optimization methods.

L. Villard received the Engineering degree from National School of Civil Aviation (ENAC) and the research master degree in microwave and telecommunications from the Paul Sabatier University in 2005. In 2009, he obtained the Ph.D. from the National School of Aeronautics and Space (ISAE-Supaero, Toulouse) on the subject of 'Forward and Inverse Modeling of Bistatic SAR Observables: Applications in Forest Remote Sensing'. During the Ph.D. thesis he was with

ONERA (the French Aerospace Lab, Toulouse) and DLR (German Aerospace Center, Oberpfaffenhofen). In 2010, he received a post-doc grant from CNES (Centre National d'Etudes Spatiales) to conduct research works at the Centre d'Etudes Spatiales de la Biosphère (CESBIO) in the frame of supporting activities for the Biomass mission. His current interests are in the development of forest above ground biomass retrieval algorithms based on Polarimetric and Interferometric Synthetic Aperture Radar (SAR) data.

Ho Tong Minh D. was born in Pleiku, Vietnam. He received the Ph.D. degree in telecommunications engineering from Politecnico di Milano, Italy, in February 2013. His Ph.D. thesis has been dedicated to support Tomographic Phase of the future Earth Explorer Core Mission BIOMASS.

He was a Lecturer in remote sensing with the Ho Chi Minh City University of Technology, from 2006 to 2009. He is currently working as a researcher at the

Centre d'Etudes Spatiales de la Biosphere (CESBIO), Toulouse, France, from February 2013. He has been actively working on two studies, TropiSAR and TropiScat, funded by European Space Agency. His current research interests include SAR signal processing and estimation techniques for the joint exploitation of multiple SAR images including FMCW SAR, permanent scatterer InSAR, polarimetric SAR tomography and ground based radar tomography.

Le Toan T. has a PhD in atomic and nuclear physics from the Université Paul Sabatier (Toulouse, France). She has been the Head of the Remote Sensing research team at the Centre d'Etudes Spatiales des Rayonnements (CESR) and since 1995 at the Centre d'Etudes Spatiales de la Biosphère (CESBIO) in Toulouse.

Her research activity has been in the area of remote sensing for land applications, including experimentation and modelling of SAR interaction with land surface.

She has been leader of the BIOMASS proposal, selected for implementation in May 2013 by ESA as the 7th Earth Explorer Core Mission. She has been chair of the BIOMASS Assessment Group (2006-2009) and co-chair since 2009 of the BIOMASS Mission Advisory Group.

She is member of the JAXA Kyoto and Carbon Initiatives science team, Member of NASA review panels, Member of Scientific Committees of International Symposia (IGARSS, LandSAR, PolInSAR, Living Planet), Member of the European FP7 project REDDAF ((Reducing Emissions from Deforestation and Degradation in Africa, 2010-2013), leader of an ESA-China

> TGRS-2012-01300R1 <

Dragon project, and leader of a CNES-TOSCA project. She has been Guest editor of 2 special issues of the IEEE Transactions in Geosciences and Remote Sensing.

Publication 4

"Temporal Coherence of Tropical Forests at P-Band: Dry and Rainy Seasons"

Alia Hamadi, Pierre Borderies, Clément Albinet, Thierry Koleck, Ludovic Villard, Thuy Le Toan, Dinh Ho Tong Minh et Benoit Burban.

L'article a été accepté avec révision mineure dans le journal "Geoscience and Remote Sensing Letters" (GRSL) en 2013.

Temporal Coherence of Tropical Forests at P-Band: Dry and Rainy Seasons

A. Hamadi, P. Borderies, C. Albinet, T. Koleck, L. Villard, T. Le Toan, D. H. T. Minh, B. Burban

Abstract- In this paper, the temporal coherence of tropical forest scattering at P-band is addressed. This study is based on the ground based campaign TropiScat in French Guiana, designed to support the BIOMASS mission, which was a candidate for the ESA 7th Earth Explorer. For the BIOMASS mission, temporal coherence is a crucial parameter for coherent processing of Polarimetric SAR Interferometry (PolInSAR) and Tomography in repeat pass acquisitions. During the experiment, data are collected continuously for six months including rainy and dry seasons. For both seasons, the coherence exhibits a daily cycle showing a high decorrelation during day time, which is very likely due to motion in the canopy caused by daily motion and dielectric change effects. Until 20 days baseline, the coherence is much higher in the dry season than in the rainy season (> 0.8). Until 40 days baseline, it becomes of the same order in both seasons (0.6-0.7). For larger temporal baselines, it becomes lower in the dry season. The results are useful for the assessment of the long term coherence of repeat pass observations over a tropical forest. However an extension of this study to more years and over other forest spots would be necessary to draw more general conclusions.

Index Terms— Forest scattering, ground based experiment, P- band, range impulse response, temporal coherence.

I. INTRODUCTION

Reducing carbon emissions from deforestation and degradation of the forests becomes an urgent and pervasive preoccupation across the globe [1]. Tropical forests present 48% of the world forest biomass and changes in biomass due to deforestation and/or to forest regeneration

Manuscript received April, 2013. This work was founded by the European Space Agency (ESA) and the Centre National d'Études Spatiales (CNES). It was also supported in part by the Midi-Pyrénées region.

A. Hamadi is with the Centre d'Etudes Spatiales de la BIOsphère (CESBIO), 18 Avenue Edouard Belin-31401- Toulouse- France and ONERA, e-mail: alia.hamadi@hotmaill.fr.

P. Borderies, C. Albinet, are with Office National d'Études et de Recherches Aérospatiales (ONERA), 2 avenue Edouard Belin BP74025 FR-31055 Toulouse cedex France (Pierre.Borderies@onera.fr).

T. Koleck, L. Villard, T. Le Toan and D. Ho Tong Minh are with CESBIO, 18 Avenue Édouard Belin 31 401 Toulouse cedex 9 FRANCE.

B. Burban is with Ecofog, - BP 316 - 97379 Kourou

strongly affect the terrestrial carbon budget. To measure accurately tropical forest biomass and its temporal change is one of the objectives of the BIOMASS mission. In May 2013, the BIOMASS mission concept was selected to become the candidate for the European Space Agency 7th Earth Explorer Mission [2]. Several studies were performed to assess the retrieval of the forest biomass using P-band synthetic aperture radar (SAR) measurements. The retrieval algorithms currently considered to derive biomass are based on the backscattering coefficient amplitude evolution [3], polarimetric SAR interferometry [4] or tomography [5]. The last two techniques require coherent processing and are foreseen in repeat pass configuration, with time intervals ranging from of a few days to several tenths of days. Their efficiency depends upon the temporal coherence related to these intervals. Then the condition to have exploitable interferometric or tomographic information is to have high temporal coherence over forests for the time intervals compatible with the BIOMASS mission constraints. In this context, the TropiSCAT ground based experiment has been set up in order to acquire a comprehensive dataset which complements the airborne acquisitions [6] in terms of temporal sampling. Consequently, the campaign has been tailored to acquire continuous data in order to investigate the short and long term temporal coherence at in multipolarization.

The system consists of a vertical antenna array set up for the vertical imaging of the forest [7][9]. The correct functioning of the system has been validated and the preliminary results of this campaign were published in [7] and [8]. In the present paper the study of the coherence is carried out thoroughly on the basis of impulse responses, which is less demanding than the vertical imaging in terms of very short term scene decorrelation.

II. EXPERIMENT OVERVIEW AND DATA PROCESSING

The TropiScat experiment provides fully-polarimetric high resolution SAR imagery and interferometric capability in the P band and L band. The goal of this experiment is to provide a long term data set measurements over one year. A full polarimetric array of P to L band antennas is set up on the top of the Guyaflux tower at Paracou in French Guiana at approximately 55 m height. In addition, the system includes a Vector Network Analyzer (VNA), a computer and radio frequency (RF) switch boxes. This RF switch box allows routing the signal between the antennas and the VNA ports to select an antenna pair with a given polarization (HH, HV, VH or VV) and equivalent height. As a result there is a virtual array of 16 antenna pairs for each polarization. In-situ data provided by the Guyaflux project include soil moisture, rain fall, temperature, soil temperature, wind direction and speed. The data are acquired every 15 minutes. In this paper, only data from 400 MHz to 600 MHz, acquired during the whole year 2012, are analyzed.. The frequency domain complex data acquired are transformed into the time domain or range domain by an Inverse Fast Fourier Transform (IFFT), from which the range backscattering profile is derived. So, for the range *i.dr* the impulse response is defined by the complex array S(i), where *i* is the i_{th} range bin and dr is the range bin width. Note that signals corresponding to ranges less than the antenna height do not intercept the soil and will be called in the following as of 'volume only' or 'canopy only' measurements. For ranges greater than the antenna height, both forest volume and underlying soil are intercepted and in this case we will refer to 'full forest' measurements. For more information about this experiment see [9].

III. TEMPORAL COHERENCE

A. Temporal Coherence Computation

Considering simultaneously K antenna pairs illuminating the same range, the temporal complex coherence coefficient between the backscattered signals at t_2 and at t_1 is given by:

$$\gamma_{pq} = \frac{\sum_{k=1}^{K} \sum_{i\min}^{i\max} S_{i1pq}^{k}(i) . S_{i2pq}^{k}(i)^{*}}{\sqrt{\sum_{k=1}^{K} \sum_{i\min}^{i\max} \left| S_{i1pq}^{k}(i) \right|^{2} \sum_{k=1}^{K} \sum_{i\min}^{i\max} \left| S_{i2pq}^{k}(i) \right|^{2}}}$$
(1)

with $p = \Big|_{V}^{H}$ and $q = \Big|_{V}^{H}$, i_{\min} and i_{\max} correspond

to the limits of the range gate under consideration, k refers to the considered antenna pair, K is the number of antenna pairs taken into account. Actually, in (1), the cells of several antenna pair impulse responses are combined and incorporated in a single complex vector. The time interval $t_2 - t_1$ is the temporal baseline. In the following, the coherence will refer to the modulus of the complex coherence coefficient.

To obtain a good estimate of the coherence, a minimum number of independent looks is necessary [10]. To assess the stability of the results, an increasing number of antenna pairs K was considered in (1). The spatial zone was limited to horizontal distances to the tower basis from 45 m to 60 m (the incidence angle on the forest is then 44°). So there are 15 corresponding range cells of which the size is the physical resolution (1m including the apodization factor) per antenna pair. The coherence between the signal of a fix given reference date and time of the day and the signal acquired by K antenna pairs with a temporal sampling of 15 minutes is averaged over one month .

Fig. 1 shows such averaged coherence versus the number of antenna pairs. One can see that for more than 10 antenna pairs such averaged coherence tends to stabilize whatever the polarization. In the following, the 16 antenna pairs will be used for computing the temporal coherence.

Fig. 1: Average coherence versus the number of antenna pairs for the HH (red-square), HV (green-triangle) and VV (blue-circle) polarization.

B. Daily cycle coherence

For a better understanding of the variation of the coherence of the tropical forest, the influence of the geophysical parameters and other sources of decorrelation, the first observation have been done on the daily cycle of the coherence. Fig. 2 - Fig. 4 show examples of the coherence variation observed in detail every 15 minutes over two days (from 22/09/2012 to 24/09/2012) during the dry period for the 'volume only' and the 'full forest' measurements. To compute the coherence, two reference signals were chosen. Fig. 2 shows the coherence of the 'volume only' measurements with a reference at midnight, Fig. 3 shows the coherence of the full forest with a reference at midnight and Fig. 4 the one with a reference at 6 a.m.. The wind speed (m/s) measured on the tower top is also displayed. During the day time the wind speed is between 4 and 5 m/s whereas it is about 2.5 m/s between 6 p.m. and 6 a.m.

Over these two days, a strong decorrelation with oscillations during the daytime is observed whereas the coherence is high and stable between 6 p.m. and 8 a.m.

Firstly, the results at night time are analysed as follows. In Fig. 2, the coherence of 'Volume only' observed at night time is very high (greater than .97) and does not depend on polarization. Reversely, for the 'full forest' (Fig. 3 and Fig. 4), the coherence clearly depends on polarization. It is still very high at the reference time (midnight in Fig. 3 and 6 a.m. in Fig. 4). It is in this time interval still higher than .9 for VV and HV, and higher than .8 for HH. Note that the shape of this daily coherence cycle in night time changes with the reference time. For the midnight reference time, Fig. 3 shows a stronger decorrelation in HH close to 6 a.m. for the 'full forest', and this is not observed for the 'volume only' in Fig. 2. One possible interpretation is that the signal decorrelation for the 'full forest' is related to the soil contribution to the backscatter.

During the day time, the loss of coherence may be linked to the canopy displacements resulting from wind or turbulence [12]. Indeed he wind speed is higher at daytime than at night-time, and also turbulence effects appear at daytime. In the volume case the coherence loss is more important and the amplitude of the oscillations is also larger than in the case of the full forest, which is coherent. Similar variations are observed for all polarizations and reference times.

Fig. 2: Daily cycle of the coherence for the 'volume only' in the dry period computed with a reference at midnight for the HH (red), HV (green) and VV (blue) polarizations. The thick black curve represents the wind speed.

Fig. 3: Daily cycle of the coherence for the full forest in the dry period computed with a reference at midnight for the HH (red), HV (green) and VV (blue) polarizations. The thick black curve represents the wind speed.

Fig. 4: Daily cycle of the coherence for the full forest in the dry period computed with a reference 6 a.m. for the HH (red), HV (green) and VV (blue) polarizations. The thick black curve represents the wind speed.

C. Average Temporal decorrelation

The previous results indicate that for maintaining a high

temporal coherence between repeat pass acquisitions the time of the day should be the same and it should be out of the interval 9 a.m. – 6 p.m.. The following long time series of coherence are analysed in this frame. During the rainy period full polarimetric data are available from 6^{th} December 2011 to 14^{th} March 2012 and in the dry period from 19^{th} September 2012 to 18^{th} December 2012. The daily average precipitation recorded is 15.76 mm in the rainy period and 0.83 mm in the dry period.

The analysis will be performed for given times of the day, in this case at 6 a.m. and 6 p.m., which are possible acquisition local times of BIOMASS. Nevertheless, to increase the number of coherence pairs, all of the 8 available acquisitions between 5-7 a.m. and 5-7p.m. have been considered.

In this section, the goal is to evaluate the statistics of coherence as a function of temporal baseline $(t_2 - t_1)$ over a given period. So, for a given temporal baseline, the set of all possible N_c couples (t_1, t_2) is considered. Within this set, a subset of N_r couples is determined where N_r represents the number of coherence pairs selected to be averaged for any given temporal baseline. The choice of couples (t_1, t_2) is randomly distributed over the period and N_r is the same for all baselines. Note that the system itself introduces temporal system coherence [11]. This system coherence was computed with the complex direct coupling for all antenna pairs (between the reception and the emission antennas) applied to (1). The overall coherence was then divided by the system coherence to deduce the forest coherence.

Fig. 5 presents the mean coherence computed over the 'volume only' for a temporal baseline ranging from 1 and to 30 days with $N_r = 60$ and from 1 and to 60 days with $N_r = 30$, among a total number of available days $N_t = 90$ in the rainy period On the first 30 days, the results for $N_r = 30$ and $N_r = 60$ are very close, which indicates that the number of couples used for averaging the coherence is sufficient. In this case of the volume only, the coherence remains high (>0.8) up to 20 days for HV polarization (a little lower for HH and VV) and it drops to the interval [.65, .7] after 60 days.

Fig. 6 shows the mean coherence for the 'full forest' computed at 6 a.m. in the rainy and dry periods and for temporal baselines ranging up to 60 days, computed as previously. The range gate is the same as in section III.A. In the dry period, the coherence is higher than 0.8 up to 25 days for HV and up to 18 days for VV. This is the most important result since it shows that over such a temporal baseline coherence is sufficiently high for coherent processing based on repeat pass acquisitions. In the rainy

period the coherence drops quickly down to 0.7 in the first few days and decreases very slowly afterwards. It can be observed that up to 20 days the coherence in the dry period is higher than in the rainy period for all polarizations. Up to 60 days, the mean coherence in HH and VV polarizations becomes lower in the dry period than in the rainy period whereas the HV polarization is of the same order in the both cases. Further investigations are necessary to explain this observation which may be specific to the year 2012 for which both the rainfall in the rainy season and the drought during the dry season have been particularly important.

Fig. 5: Mean coherence at 6 a.m. versus temporal baseline of the volume only for the HH (red), HV (green) and VV (blue) polarizations in the rainy period averaged using 30 days (dot line) and averaged over 60 days (full line).

Fig. 6: Mean coherence at 6 a.m. versus temporal baseline of the full forest for the HH (red-square), HV (green-triangle) and VV (blue-circle) polarizations in the dry period (top) and in the rainy period (bottom), averaged over 30 days.

The observations at 6 a.m. are compared with those corresponding to 6 p.m. and to midnight. The latter is interesting to observe because it concerns a time of day when the forest is motionless [12]. Fig. 7 displays the mean coherence computed at 6 a.m., 6 p.m. and at midnight in the

rainy period (top) and in the dry period (bottom). During the rainy period, HH is slightly more coherent than VV, which is more coherent than HV. The effect of the time of the day is small, nevertheless 6 a.m. is the time of day when HH polarization is the most coherent, and 6 p.m. is the one when coherence in VV is slightly weaker. For HV polarization, coherence is approximately of the same order of magnitude for 6 a.m., 6 p.m. and midnight. Globally, in the rainy period, the coherence is more sensitive to the polarization than to the time of day.

Fig. 7: Mean coherence versus temporal baseline of the full forest for the HH (red), HV (green) and VV (blue) polarizations. Top: during the rainy period. Bottom: during the dry period. Full circle: time observation at 6 am, full line: time observation at 6 p.m. and dot line: time observation at midnight.

In the dry period, all polarizations are approximately of the same order for 6a.m., 6 p.m. and midnight, except the coherence of HV polarization at 6 p.m. which is lower. In this last case, because in the average coherence computation the measurements from 5 p.m. to 6 p.m. are included, the motion of the canopy during the daytime (before 6 p.m.) may cause decorrelation of the volume scattering, hence HV is more affected than HH and VV. Fig. 8 shows the histograms related to measurements in Fig. 7 for respectively 3 days and 15 days temporal baselines at 6 a.m.. The histograms correspond to the set of coherences for the 'volume only' in the rainy period, for the 'full forest' in the rainy period and the 'full forest' in the dry period, for the $N_r = 60$ pairs and the 9 measurements around 6 a.m.. It can be observed that, in the rainy period, for 3 and 15 days temporal baseline, the major part of occurrences are localized in the interval [0.8-1] for the 'volume only' whereas the histogram is spread in the interval [0.4-1] for the 'full forest'. This fact indicates the role of the underlying

Fig. 8: Histogram of the coherence for temporal baselines 3 days (left) and 15 days (right). Top panel: results for the canopy in the rainy period, middle: full forest in the rainy period, bottom: full forest in the dry on

soil, directly or through the double bounce, in the decorrelation process in the rainy period. Note that during the rainy season, there are also days without rain (dry conditions). This can explain high values of coherence. Another observation is that there is a strong similarity between histograms corresponding to 3 and 15 days temporal baselines in this period, showing that for these scales of time, the moisture influence is widely more important than time interval in the decorrelation.

In the dry period, one can see a high concentration of the histogram in [.9-1] for the 3 days temporal baseline and in [.8-.9] for the 15 days temporal baseline: in this case, coherence is tightly linked to the temporal baseline.

IV. CONCLUSION

In this paper, the temporal coherences derived from three months of data both in the rainy period and the dry period of the TropiScat campaign in 2012 were analysed. This analysis was carried out with the complete set of the range impulse responses issued from the various antennas pairs of the measurement set up. In the periods free of rain, the coherence exhibits a daily cycle: it varies smoothly during the night and presents fast oscillations during daytime. The smooth variation may be attributed to a change of the dielectric constant of the canopy constituents and the sharp ones to the motion of the canopy which is significant only in the daytime.

For the analysis of the long time series a unique daily time is considered, excluding daytime. The coherence is averaged in each season. During the rainy season the average coherence is nearly independent on the temporal baseline between 3 and 20 days. On the contrary, during the dry season, the mean coherence decreases regularly with temporal baseline. The mean coherence is much higher in the dry season than in the rainy season until 20 days temporal baseline, becomes of the same order until 40 days temporal baselines. The mean coherence is only slightly influenced by the time of acquisition as long as it is not during daytime. This set of results is a very useful database for the assessment of the long terms coherence of repeat pass observations over a tropical forest. However an extension of this study to other years and over other forest spots would be necessary to draw more general conclusions. Also, further steps should include specific measurements of geophysical parameters and the interpretation of the observations, using electromagnetic modelling.

REFERENCES

- Y.Malhi and J. Grace, "Tropical forests and atmospheric carbon dioxide," Trends Ecol. Evol., vol. 15, no. 8, pp. 332–337, Aug. 2000.
- [2] "Report for Assessment: BIOMASS", European Space Agency, Nov. 2008, ref. SP1313/2.
- [3] T. Letoan, A. Beaudoin, J. Riom, D. Guyon, "Relating forest biomass to SAR data," *IEEETG RS*, vol. 30, no. 2, pp. 403-411, Mar 1992.
- [4] S. R. Cloude and K. Papathanassiou, "A three stage inversion process for polarimetric SAR interferometry," IEE Proc., *Radar, Sonar Navig.*, vol. 150, no. 3, pp. 125–134, Jun. 2003.
- [5] M. Mariotti d'Alessandro, S. Tebaldini "Phenomenology of P-Band Scattering From a Tropical Forest Through Three-Dimensional SAR Tomography," *IEEE GRSL*, vol. 9, no. 3, pp. 442 – 446, May 2012.
- [6] P. Dubois, T. Le Toan, S. Daniel, H. Oriot, J. Chave, L. Blanc, L.Villard, M. Davidson, M. Petit, "The TropiSAR airborne campaign, in French Guiana: Objectives, Description and observed temporal behavior of the backscatter signal," *IEEE TGRS* vol. 50, no. 8, pp. 3228-3241, 2012.
- [7] C. Albinet, P. Borderies, T. Koleck, F. Rocca, S. Tebaldini, L. Villard, T. Le Toan, A. Hamadi, D. Ho Tong Minh, "TropiScat: A ground Based Polarimetric experiment in Tropical forests," *IEEE JSTARS*, vol. 5, no. 3, pp. 1060–1066, 2012.
- [8] D. Ho Tong Minh, S. Tebaldini, F. Rocca, T. Koleck, P. Borderies, C. Albinet, L. Villard, A. Hamadi, and T. Le Toan, "Ground-based array for tomographic imaging of the tropical forest in P-band,", *IEEE TGRS*, vol. 51, no. 8, pp. 4460–4472, Aug 2013
- [9] A. Hamadi, C. Albinet, P. Borderies, T. Koleck, L.Villard, D. Ho Tong Minh, T. Le Toan, "Temporal survey of polarimetric P-Band scattering of tropical forests", *IEEE TGRS*, (accepted for publication).
- [10] R. Touzi, A. Lopes, J. Bruniquel, P.W. Vachon, "Coherence estimation for SAR Imagery,", *IEEE TGRS*, vol. 37, no. 1, pp. 135-149, 1999.
- [11] Zebker, H.A., Villasenor, "Decorrelation in interferometric radar echoes," *IEEE TGRS*, vol. 30, no. 5, pp. 950-959, Sep. 1992.
- [12] M.S. Assis "Comments on Some radio Wave Propagation Mechanisms in the Amazon region", *Piers proceedings*, pp. 265-269, Kuala Lumpur, Malaysia, 27-30 Mar. 2012.

Publication 5

"High Resolution Vertical Polarimetric Imaging of Pine Forests"

Clément Albinet, Pierre Borderies, Alia Hamadi, Dubois-Fernandez, Thierry Koleck et Sébastien Angelliaume.

L'article a été accepté avec révision mineure dans le journal "Radio Science" en 2013.

High Resolution Vertical Polarimetric Imaging of Pine Forests

C. Albinet¹, P. Borderies¹, A. Hamadi^{1,2}, P. Dubois-Fernandez³, T. Koleck^{2,4}, S. Angelliaume³

¹ Office National d'Etudes et de Recherches Aérospatiales (ONERA), Toulouse, France.
 ² Centre d'Etudes Spatiales de la BIOsphère (CESBIO), Toulouse, France.
 ³ ONERA, Salon-de-Provence, France.
 ⁴ Centre National d'Etudes Spatiales (CNES), Toulouse, France.

(Corresponding authors: <u>Clement.Albinet@onera.fr</u>, <u>Pierre.Borderies@onera.fr</u>)

Abstract

This paper describes a field campaign performed with a ground-based polarimetric tomographic imager designed to measure the vertical response of several forest plots in order to better understand the mechanisms contributing to the total radar response. The campaign took place in the Mende forest, an artificial forest of European Black Pines, in South of France. The objective is to perform a sensitivity study on the radar observables based on biophysical parameters. This paper presents a description of the experiment hardware and procedure, the results obtained for all sites, and a discussion of the results in the light of the ground truth. The results show the vertical distribution of the backscattered intensity for several parameters like tree density, forest growth, presence of undergrowth and ground slope. The evolution of the energy backscattered by the soil, the volume, and the whole scene is also displayed. These results have shown the interest of such a campaign to improve the understanding of the distribution of radar mechanism along the vertical axis.

Keywords

Remote sensing, radar polarimetry, SAR imaging, PolInSAR, SAR tomography, biomass, forest height estimation, vegetation structure, forest electromagnetic scattering, temperate forest, scattering repartition.

1. Introduction

The retrieval of the bio-physical parameters of forests with remote sensing is nowadays a challenge. In particular, the biomass of the canopy, soil and branches moisture contents are three

parameters of interest. It is well known that the low frequency radars may provide lots of information about some features of forests, and in particular P-band is often proposed for biomass estimation [*Le Toan et al.*, 1992; *Cloude and Papathanassiou*, 1998]. Also the detection of targets under the canopy takes advantage of the properties of penetration of the low frequency waves like P band. The assessment of the algorithms of retrieval and detection benefits from a good understanding of the mechanisms involved in the forest scattering.

A lot of work has been done with high resolution imaging in P-band [Sandberg et al., 2009; Dubois-Fernandez et al., 2012] as well as in L-band [Shimada et al., 2008]. However, a lot of interrogations remain about the vertical distribution of scatterers versus the polarization, even with the polarimetric-interferometric techniques [Garestier et al., 2005] or the polarization coherence tomography [Cloude, 2006; 2007]. Airborne radar tomography has a vertical resolution and shows some promising results [Huang et al., 2011; Tebaldini et al., 2011], but the resolution is too poor to clearly isolate the volume contribution from the soil contribution, to retrieve the extinction profiles or to determine finely which mechanisms generate the forest scattering which is observed. So, many questions remain about the components of the diffraction in the forest, on their geometrical spread and their contribution in the radar response.

To go further, a previous experiment was performed with the TropiScat experiment [*Albinet et al.*, 2012], which goal was to study the temporal evolution of P band coherence and intensity over a land plot of tropical forest with vertical imaging from a tower top.

In this paper, a new experiment is presented similar to the TropiScat one but conducted over a temperate forest with a very high vertical resolution. It is a crane based mobile experiment. Although similar work has been done in the past on agricultural plots [*Brown et al.*, 2003; *Lopez-Sanchez et al.*, 2006], it is the first time to our best knowledge that very high resolution tomography is performed over several forest plots in P band. The global objective of this experiment is the fine study of the vertical distribution of the scatterers on some forest plots presenting varying ground properties, including its upper and lower limits, and to highlight the respective roles of the canopy volume and the underlying soil of the scattering in HH, VV and HV polarizations.

First, in section II, the experiment is introduced and the tomographic reconstruction algorithm is described. Then, Section III consists in the validation of the correct functioning of the radar hardware for the parameters of acquisition. Finally, the results of the ground campaign are shown in section IV and a detailed analysis of these data is performed in section V.

2. Experiment description

2.1. Objectives of the experiment

The main question addressed in the paper concerns the vertical distribution of scatterers in such realistic real forests versus polarization, at P band frequency. This goal can be reached with vertical imaging that allows the spatial separation between the soil, in its direct contribution and in its double bounce one, on the one hand, and the the volume on the other hand.

The experiment consists in the in-situ vertical high resolution imaging of several forest plots with different features such as biomass, structure, undergrowth presence, and slope. The fully polarimetric data are simultaneously acquired in order to obtain high resolution vertical radar images from which average vertical profiles are extracted. Then, the corresponding values are integrated along parts of the vertical axis to derive the energy respectively backscattered by the soil, by the volume and by the whole forest.

2.2. Description of the site

The Mende forest is a public forest created during the 19th century and composed of European Black Pine. The forest is managed by the public organism Office National des Forêts (ONF), which goal is to maintain the forest including cuts, clearings, etc. The ONF has also defined and characterized some forest plots, i.e. areas of statistically homogeneous forest with their characteristics in terms of species, biomass, height, density and ground slope.

Figure 1. Two photographs of the Mende Forest taken from the top of the bucket truck.

2.3. Hardware

Figure 2. Instrument architecture, left, and crane deployment, right.

The radar unit is based on a stepped-frequency Vector Network Analyzer (VNA). Hardware specifications provided by industry include a dynamic range of 65 dB in frequency domain, with an Intermediate Frequency Band Width (IFBW) set to 10 Hz, between 5 kHz to 6 GHz. It measures 4001 frequency points with a speed of 750 μ s for each point. In this experiment, the Intermediate Frequency Bandwidth is set to 10 kHz and the output power is set to +3 dBm.

The VNA is remotely controlled by a PC which launches, gets back and saves the acquired data on its hard disk. Both devices are powered by a power generator. The H and V antennas radiate from the bucket of a bucket truck with a depression angle of 30° and they are connected with N cables to both ports of the VNA. Thus, HH polarization is obtained with S11, HV and VH with S12 and S21, and VV with S22. All the data are measured and stored in frequency domain, with a prior full-port internal calibration for which the reference plane is taken at the antennas plug.

The antennas are wide-band (400 - 1000 MHz) log-periodical antennas. They present the property of relatively similar radiation pattern in both E and H planes, with a measured half-power beam width of 60° in the E plane, and 80° in the H plane. In addition, the isolation between polarizations is better than 20 dB, with very low side lobes and backward radiation less than -23 dB.

2.4. Method of acquisition

At each frequency, the illuminated area obviously results from the antennas radiation pattern, for emission and reception, characterized by the half-power beam widths in the plane of elevation and in the plane of azimuth and the antenna depression angle. The plane of elevation is defined by the beam pointing direction and the vertical axis. The plane of azimuth is perpendicular to the latter and still contains the beam pointing direction. The antenna beam characteristics are roughly characterized by the half-power beam widths in the principal planes: for the **E** plane parallel to the radiated electric field and for the **H** plane perpendicular to the latter, both of them containing the antenna beam pointing direction. So in V polarization the plane of elevation is the **E** plane and the plane of azimuth is the **H** plane, whereas in the H polarization the plane of elevation is the **H** plane and the plane of azimuth is the **E** plane.

At this point, the major requisites for this experiment, which are tightly bound to the antennas constraints, are achieved:

- Illuminating a footprint which is sufficiently large to be representative of the scene under consideration with eliminating the spurious remote echoes ;
- Eliminating as strongly as possible the echo of the metal structure of the arm while illuminating the forest with the required incidence angles ;
- Presenting similar radiation patterns in both E and H planes.

During the tomographic reconstruction, the frequency domain complex data which are acquired are transformed into time domain complex data and are combined to construct a vertical complex image.

For this purpose, the measurements are done at points which are lined up and identically spaced. To ensure the correct alignment of these points, the motion of the bucket is done by making slide only the most remote part of the arm. To reduce the coupling between the antennas and the metallic structure of the arm, the latter is inclined by roughly 15 ° relatively to the vertical. For the determination of the location in space of the points of measurement, an inclinometer gives the inclination of the arm and the height of the highest point of measurement is evaluated with a laser rangefinder. The distance between each measurement point is obtained with a rope attached to the nacelle, with a masonry lead attached at its end, the latter being positioned in a vertical graduated tube.

The proper functioning of the system was verified with some impulse responses measured on an adjustable Dihedral-Trihedral reflector of an edge of 2 m side. Previously, in [*Albinet et al.*, 2012], the feasibility of such vertical imaging has been demonstrated with full tomograms on such reflector. It was shown that the compression was well done and that phase was preserved for a target embedded in the forest and for an acquisition of equivalent duration. Note that the following tomograms do not present absolute calibration.

2.5. Acquisition parameters

If Δf and df are respectively the frequency bandwidth and the frequency step ($\Delta f = (Nf-1) \times df$) then the unambiguous range is $D = \frac{c}{2df}$ and the range resolution is $d_r = \frac{c}{2\Delta f}$.

Figure 3. Illustration of the range resolution d_r and the cross range resolution d_{cr} compared to the antenna **A** and the target **T**.

The cross range resolution d_{cr} will depend on the center frequency f_0 of the frequency band, the aperture A_z of the antennas, the distance *R* between the antenna and the target, and the *y* distance to the ground:

$$d_{cr} = \frac{c R^2}{2f_0 A_Z y}$$

With 33 points and a spacing of 15 cm, the synthetic array is 4.80 m long and as a consequence, the cross range resolution ranges from 1.95 m for the closest target at 20 m high and 10 m range, to 5.50 m for the furthest one on the ground at 80 m range.

2.6. Tomographic reconstruction

For the tomographic reconstruction, which is strictly vertical SAR imaging, the choice was made to work with the Matched Filter Algorithm [*Carrara et al.*, 1995; *Jakowatz et al.*, 1996].

- Several corrections are taken into account during the tomographic reconstruction process: The propagation is corrected considering the volume as a collection of point targets along the azimuth. For all the pixels, for all the measurements, the received power is compensated with R^3 . In fact, the backscattered power decreases as R^{-4} in the power budget for a point target, but the number of targets intercepted is proportional to *R* along the azimuth.
- The antenna gain for emission, G_e , and for reception, G_r , is also compensated for all measurements.
- To diminish the side lobes levels, apodizations are performed: a Hamming window $H(f_k)$ is applied to the frequency data and another one H(p) is applied to the synthetic array, to the detriment of a loss of resolution.

Thus, the response *I* of a point at position (z, y) distant from antenna of $R_p(z, y)$, with measurements *S* made on *K* frequencies with *P* antennas, will be written as:

$$I(z,y) = \frac{1}{PK} \sum_{p=1}^{P} \sum_{k=1}^{K} \sqrt{\frac{R_p^3(z,y)}{G_e(z,y)G_r(z,y)}} S(f_k,R_p)H(p)H(f_k) \exp\left(\frac{+j4\pi f_k R_p(z,y)}{c}\right)$$
(1)

The algorithm is performed for all (z, y) pixels to reconstruct the 2D tomographic image, with a computational complexity in $O(N^4)$. This method is a good tradeoff between computational complexity and image quality [*Jakowatz et al.*, 2004; *Jakowatz and Doren*, 2006].

It appears that an error in the horizontal orientation of the bucket, and thus of the antennas, induces an additional cross-talk. This effect is minimized by the rotation of the polarimetric matrix for every pixel, as presented in [*Quegan*, 1994]. The search of the angle corresponding to the horizontal position was performed with two criteria: the minimization of the intensity σ_{0-HV} on the soil and the minimization of the coherence $\gamma_{HV,HH}$ on the whole scene.

3. Validation of the radar system

The radar system was first validated from a theoretical point of view with simulated point target responses and then from an experimental point of view.

3.1. Theoretical validation of the radar configuration and the tomographic reconstruction with simulated data

In order to validate the choice of the parameters of the radar configuration, like the spacing between measurements or the number of measurements, and also to validate the tomographic reconstruction process, some raw data were simulated and then reconstructed.

The simulation of the raw data is based on the field backscattered by some point targets arbitrarily distributed in the scene. The radar configuration is as previously described. The complete frequency response is obtained for a distribution of diffracting points with ranges from 10 m to 80 m and with height from 15m to 25 m (the soil is 0 m high), with a 5 m spacing in both directions (Figure 4). Then, using these data in equation (1), tomograms with and without apodizations are reconstructed.

Figure 4. Tomograms, for a 25 m high scene made of point targets uniformly distributed and represented by white circles before (left) and after apodization (right). The synthetic array is displayed in red.

To begin with, the relative amplitude between scatterers is retrieved. Then, one can see the effect of apodization on the array: the cross range resolution, as defined in Figure 3, has slightly decreased but the target localization is better.

The 15cm spacing between each antennas positions induces grating lobes that are located outside the image and thus out of the region of interest. A higher spacing between measurements would induce grating lobes closer to the highest part of the forest.

We can see that the 4.80 m array is long enough to allow a cross range resolution of 1.95 m for the closest bright point and 5.50 m for the furthest one, in agreement with section 2.5.

Note that the strong response in the top left of the image is generated by the noise that is strongly increased by the antenna radiation pattern correction. Anyway, this response is located far away from the zone of interest.

3.2. Influence of internal reflections in the antennas

As previously explained, the HH and VV polarization data are obtained with S11 and S22 parameters. These measurements made in reflection mode, i.e. with the same antenna for the emission and the reception, induce spurious reflections inside the antenna, characterized by the Standing Wave Ratio (SWR). The data corresponding to these spurious reflections (antenna in free space) may be approximated with orienting the antennas vertically toward the sky. To determine the consequences of this effect on the quality of the tomograms, a reconstruction was computed as if a sky measurement were performed at the 33 positions which have been introduced previously.

Figure 5. Tomograms made from sky measurements to determine the effect of SWR in HH (left) and VV (right) polarizations. The black line is located at the ground and the grey ones at the highest possible height for the canopy.

One can see that in both HH and VV, the SWR will induce artifacts in the tomograms, in the top part of the canopy, after 50 m range. This result shows that with an analysis performed from 20 m to 50 m in range, the SWR effects do not pollute the results. This is actually an on the side result of this study: with tomography, one may localize the SWR echoes and consequently get rid of them since one can observe that they appear compactly, which makes possible using the S11 mode configuration.

4. Fields campaign

4.1. Imaged forest plots

The data were acquired during two campaigns. The first campaign took place in November 24th and 25th 2011 with two forest plots imaged, and the second one from May 9th to the 11th 2012 with 8 forest plots imaged. The forest plots were selected to cover a large panel of forest configurations in terms of biomass, trees height, ground slope, homogeneity, presence of undergrowth. Aerial photographs of their position in the forest are displayed in Figure 6.

Figure 6. Location of the forest plots in the Northern part of the forest (left) and on the Southern part (right).

4.2. Ground truth and biomass estimation

The forest plots were characterized a first time in October 2011, during the airborne campaign [*Angelliaume et al.*, 2011] which took place shortly before the first in-situ radar campaign. They are characterized again in May 2012, during the second in-situ radar campaign. For each forest plot, sub-plots are defined over which ground truth was collected. Those ground truth measurements include tree density, diameter histograms, height measurements with a dendrometer, soil moisture and ground slope.

Thus the biomass is computed for all forest plots, thanks to the previous measurements and the allometric equations given in [*Fung*, 1994] and [*Saleh et al.*, 2005]. Main ground truth characteristics are summarized in Table 1.

Parameter	P0	P1N	P1M	P2	P3	P4	P5	P6	P7	P8
Date	Nov.	Nov.	May	May	May	May	May	May	May	May
Density (tree/ha)	1800	666	499	1025	633	550	675	675	1822	2857
Average height (m)	6	25.5	25.5	16	24	26.5	27	27	6	7.7
Trunks mean diameters										
(cm)	9	37.5	31.8	27.4	35.2	32.6	39	39	14	12.6
Ground slope	Flat	Flat	Flat	Flat	Down-	Up-	Down-	Up-	Flat	Flat
					slope	slope	slope	slope		
Soil moisture content	Wet	Wet	33%	≈30%	31%	28%	32%	≈30%	27%	25%
Undergrowth	NO	NO	NO	NO	NO	NO	YES	YES	NO	YES
Biomass (ton/ha)	13	260	140	144	206	168	299	299	33	49

Table 1. Ground truth and biomass estimation for all forest plots.

The location P1 is a flat forest plot with high trees, i.e. around 25 m high. It was imaged during both campaigns : in November (P1N) when the biomass was high, around 260 ton/ha, and in May (P1M) just after a clearing performed on big trees, with a lower biomass close to 140 ton/ha. P2 also corresponds to a flat plot of forest, but with lower trees around 16 m high and with a higher density.

P3, P4, P5 and P6 are plots of forest with high trees, close to 25 m high, and a density around 600 trees/ha. The first difference is the ground down-slope for P3 and P5 and the ground up-slope for P4 and P6. The ground slope is close to 7° on all sites. The second difference is the presence of undergrowth on P5 and P6. Note that in these cases, there is also a higher biomass, not necessarily due to the undergrowth.

Finally, P0, P7 and P8 correspond to forest plots with small trees, i.e. around 7 m high, and high densities. The distribution of trees is very heterogeneous and the biomass very low with 13 ton/ha for P0, the distribution is homogeneous for the two other forest plots.

There is a clear correlation between the measured tree heights and the estimated biomasses, as displayed in Figure 7.

Figure 7. Biomass estimated as a function of measured height during the field campaign.

Note that the soil was completely wet during the first campaign and with moisture contents of the order of 30 % during the second campaign.

4.3. Data processing

For the data analysis, the tomograms were computed for all forest plots and polarizations with a resolution of 1 m, and the images were corrected as if the soil were flat, i.e. the soil was made horizontal by means of a rotation of the slope angle. In addition, an apodization was applied on the synthetic array. Figure 8 shows the example of an inclined parcel for all polarizations and the corresponding horizontal with apodization one. One can see the huge informative content of these 2D images in terms of distribution of scatterers as a function of height and range and thereby incidence angle.

Figure 8. Vertical tomogram for HH (left), HV (middle) and VV (right) reconstructed with the measurements performed on P1M. Top: initial images; bottom: images with slope corrected and apodization. The black line corresponds to the soil location and the grey lines to the measured minimum and maximum height of the canopy.

Then, the average intensity along all horizontal lines of pixels, between 20 and 50 m of range, is computed so as to obtain the vertical profiles of backscattering for all polarizations (Figure 9). The corresponding analysis is done in 5.1.

Figure 9. Polarimetric backscattering profiles for P1M. The black solid line corresponds to the soil location and the grey solid lines to the minimum and maximum measured height of the canopy. The dotted lines show the vertical limits of the integration for the computation of backscattered energy by the volume and by the soil, respectively in grey and black.

The energy backscattered by the soil is computed as the integral of the vertical backscattering profiles on a layer situated between -3 m and 3 m high for all forest plots. The volume contribution is also the integral of the vertical backscattering profiles but computed between the bottom local minimum of the volume response and its top local minimum. These high and low limits vary for each scene. For forest plots with low biomass, the volume response is close to the soil response and cannot be separated, due to the cross-range resolution in the
vertical plane. As a consequence, the energy backscattered by the volume and by the soil cannot be derived in this way for P0, P7 and P8.

5. Data Analysis

Note that the following analysis is performed on only 10 tomograms, each one having been acquired on a different forest plot, including a forest plot before and after clearing. It is therefore important to take into consideration that this analysis is done on relatively small number of samples.

5.1. Vertical profiles analysis

The goal of the high resolution tomography is to separate the scatterers response along the vertical axis. In Figure 9, we can see that the volume backscattering can be separated from the soil one. The soil response is localized at the reference level of the soil for all polarizations. Thus, a first conclusion is that the underground is not visible. The cross polarization backscattered by the ground is higher than expected by the models. Its localization at the soil level is also an important result. For the volume, the response is characterized by a staged decrease which shows the attenuation in the canopy. A line of research that will be soon followed is the derivation of the attenuation as a function of height, similar to the possible approach introduced in [*Lopez-Sanchez et al.*, 2006]. It is planned to use the vertical attenuation profiles previously obtained, for the forest height retrieval with the PolInSAR method [*Treuhaft and Siqueira*, 2000].

In Figure 10, we can check that for a short forest, here 6 m high, the volume and the soil contributions cannot be separated. However, a local maximum is visible at a 5 m height for HV only.

Figure 10. Polarimetric backscattering profiles for P7. The black solid line corresponds to the soil location and the grey solid lines to the measured height of the canopy.

It is possible to localize the peak corresponding to the soil and the decrease of the backscattering of the canopy top in all the three polarizations for the high forests. For the short forests, it is only possible with some polarizations. In this way, an estimated height may be derived on the forest plots, when possible. The corresponding results are displayed in Figure 11.

Figure 11. Forest heights measured and forest heights estimated with tomography.

There is a very good agreement between the forest heights given by the ground truth and those which were estimated by the polarimetric tomography. This establishes that the tomographic technique can be performed to retrieve the forest height with good accuracy if the resolution is fine enough, whatever the polarization. For the biomass retrieval, as previously shown in Figure 7, plots of forest with 25 m high trees can be characterized by biomasses from roughly 150 to 300 ton/ha. Thus, the information of forest height is not sufficient to retrieve the biomass, as discussed for example in [*Caicoya et al.*, 2010]. Other observables like the multipolarization intensity should be taken into account and embedded in a more global inversion process.

5.2. Intensity analysis

5.2.1. Global results

As previously explained, the relative intensity backscattered by the volume and by the soil separately was derived from the vertical profiles. These results are displayed for all forest plots in Figure 12. Again, for first time to our best knowledge, volume and soil contributions may be separated so accurately.

Figure 12. Polarimetric relative energy backscattered by the volume and the soil, respectively left and right, for all sites.

The behavior of the volume backscattering is almost similar for all forest plots: HH is the higher, HV is in the order of 6 dB lower and VV is about the average of HH and HV. This peculiar polarization distribution can be explained by the fact that the volume is an oriented medium. Similar results showing clear differences between polarizations were obtained with indoor experiments [*Cloude et al.*, 1999]. In fact, for European black pines, the branches are mainly horizontal and the only vertical elements are the high part of the trunks. For modeling purposes the canopy is generally considered in P band as a collection of dielectric cylinders of finite length. The effect of such a geometric distribution on the relative levels of the polarization intensities is evident since the results are far from those of a uniformly random distribution of dielectric cylinders, for which HH and VV would be of the same order and HV of the order of 6 dB lower. One may think about such a property, demonstrated here experimentally, to derive some volume structure features [*Borderies and Villard*, 2010].

For the soil, the intensity backscattered in all the polarizations varies greatly, more than for the volume. Actually, the energy backscattered at the ground level comes from direct backscattering and double bounce and can be affected by slopes, presence of undergrowth, branches and trunks on the ground, and by the propagation in the volume, which makes the interpretation of the results rather complex. Nevertheless, one can note that HH and VV channels are relatively close in most cases and that there is no dominance of one over the other. The results confirm the fact that a significant backscattering in HV is originated at the soil level, even if its origin may be attributed to various reasons as will be seen in next section, and that it is localized at the soil level.

In addition, the relative total energy backscattered by the whole scene and the share of the volume contribution upon the total contribution were computed and are shown in Figure 13.

Figure 13. Polarimetric energy backscattered by the total scene (left) and the share in percentage of the volume energy upon the total response (right).

The previous components are added so that in general the total backscattering follows the trend of the volume, even if the share of the contribution originated by the volume varies in the total response. The volume represents from 20 to 80 % of the full response, which means that the soil contribution is always significant.

5.2.2. Detailed analysis

It is interesting to compare the forest plot P1, in November 2011 (P1N) and in May 2012 (P1M), after the clearing. The tree density is decreasing from 670 trees/ha to 500 trees/ha and so the biomass from 260 ton/ha to 140 ton/ha. The trunks mean diameter of the trunks is decreasing from 37 cm to 32 cm because the clearing was mainly performed on the biggest trees. The average trees height remains constant around 25m. For most forests, at P-band, the variation of intensity as a function of biomass presents saturation for values higher than 200 ton/ha [*Rosenqvist et al., 1999*]. When comparing the spot before and after clearing, the values for the volume remain of the same order of magnitude, which makes sense since both spots are in the saturation domain.

Concerning the soil, first statement is that the soil of P1M behaves as a random volume made of cylindrical scatterers, with HH and VV close and HV close to 6 dB lower. This may be explained by the fact that, after the clearing, a lot of branches were abandoned on the ground as it can be seen in Figure 14. The soil before clearing behaves quite differently: HH and HV present reasonably expected values, whereas VV is much lower. Indeed, double bounce is strongly attenuated due to a strong attenuation in VV originated by the large and dense vertical trunks [*Borderies and Villard*, 2010]. Finally, it is to note that it is difficult to quantify the effects related to seasonal variations.

Figure 14. Branches resulting from the clearing, on the ground of the forest plot P1M, in May 2012.

Comparing P1M and P2, the forest height decreases from 25.5 m to 16 m, the density increases from 500 trees/ha to 1000 trees/ha and the biomass is of the same order. The volume contribution has increased, with the same differences between polarizations, and the soil one has decreased for all polarizations. One can see that here, with a constant biomass, the increase of the trees density has a higher influence than the decrease of the height on the variation of both the volume and the soil contributions, which is possibly due to a different repartition of the branches with the forest age.

If we look at forest plots P3 and P4, which are forest plots with respectively down-slope and up-slope and at P5 and P6 which are the same with undergrowth, we can see that their volume responses are similar. Concerning the soil response, the influence of the slope can be clearly observed between P3 and P4 which soil response is much lower in HH and VV. This is certainly due to the effect of the slope of the soil on the double bounce which is located at the ground level. The presence of undergrowth in P5 and P6 tends to reduce the soil response to that of a medium of dielectric cylinders with a uniformly random orientation like for P1M. This phenomenon, that is also visible on the total response, is due here to the undergrowth composed of small trees that have lots of branches and thin trunks. So it is interesting to observe that the strong effects of slopes are cancelled by the presence of undergrowth on the soil.

P0, P7 and P8, are forest plots composed of small trees. These trees are similar to those that compose the undergrowth of P5 and P6. For these forest plots, the total polarimetric backscattering again behaves similarly to a medium with a uniform random distribution of cylinders. P0 is farther away because it is very heterogeneous, with holes in it.

6. Conclusion and future prospects

A high resolution polarimetric tomographic imager was designed, the processing chain was set up and the whole system was validated. Metric tomograms were reconstructed and the corresponding vertical profiles and backscattering contributions were deduced. Thereby, the feasibility of such a high resolution vertical imaging has been demonstrated and the interest of the resulting vertical images was clearly exhibited and opens a lot of new paths in the understanding of the scattering mechanisms in the forests.

The results which have been obtained exhibit interesting features, keeping in mind that to make them more general a greater number of measurements would be necessary. Main result is that the tomographic process displays a profile of the forest from the soil to the forest top, giving the true height, and that it separates clearly the volume scattering and the soil one (direct soil added to double bounce). In addition, relevant observations could be done with the corresponding physical interpretation. The soil backscattering is localized at the soil height, which discards any significant underground contribution or low branches contribution or volume multiple scattering in it. The soil contribution presents high values, even for HV polarization, which was generally associated with the presence of cut branches on the soil or of undergrowth. On the spots treated here, the slope of the soil demonstrated a strong influence which is erased by the presence of undergrowth. It was also shown that the analysis of the backscattered intensity in HH, VV and HV over volume and soil gives some insight on the structure properties of the trees under consideration.

To sum up, it was shown that this technique allows measuring detailed backscattering of the soil, the volume, the forest height, accurate volume / floor ratio, possibly the presence of undergrowth. Despite it was not done here, the canopy extinction could be retrieved with the inversion of the profiles of the volume backscattering. The vertical resolution obtained makes easier the analysis of the results.

In terms of relation with models, this separation of the contributions leads to a strong improvement since it permits a comparison of the different contributions and not only the total backscattering. It opens the path to incorporate in the models the various effects which have been observed and which up to now are not always accounted for, like for example those related to the slope, the presence of the undergrowth and a cross-polarization component on the soil.

At a longer term, the radar will be upgraded with a fully automatic and faster instrument; it will be then possible to acquire several tomograms per forest plot and to image a significant number of forest plots and possibly aboard 3D imaging.

Acknowledgment

The authors would like to thank the Office National d'Etudes et de Recherches Aérospatiales (ONERA) for having founded this study with the Federating Research Project ENVIRO, an internal project at ONERA which two major objectives are to demonstrate the ability to provide maps for estimating soil moisture and biomass estimation from the fusion of radar and optical data at metric resolution. They particularly want to thank Emmanuel Rosencher, from ONERA, for his support to the project and the ONF for having provided some precious field measurements.

References

Albinet, C.; Borderies, P.; Koleck, T.; Rocca, F.; Tebaldini, S.; Villard, L.; Le Toan, T.; Hamadi, A. and Ho Tong Minh, D.; "TropiSCAT: A Ground Based Polarimetric Scatterometer Experiment in Tropical Forests", JSTARS, Volume 5, N° 3, June 2012.

Angelliaume, S.; Dubois-Fernandez, P.; Kosuth, P. and Delorme, S.; "Multi-Frequency PolInSAR Data Campaign of Acquisition for Vegetation Characterization", International Geosciences And Remote Sensing Symposium, Vancouver, Canada, 2011.

Borderies, P. and Villard, L.; "Rigorous numeric techniques applied to microwave interaction with natural target", ESA contract n° 16100/02/NL/EC, Volume 3, CCN, 2010.

Brown, S.C.M.; Quegan, S.; Morrison, K.; Bennett, J.C. and Cookmartin, G.; "High-Resolution Measurements of Scattering in Wheat Canopies - Implications for Crop Parameter Retrieval", IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, N° 7, pp. 1602-1610, July 2003.

Caicoya, A.T.; Kugler, F.; Papathanassiou, K.P. and Biber, P. "Biomass estimation as a function of vertical forest structure and forest height - Potential and limitations for Radar Remote Sensing", The 8th European Conference on Synthetic Aperture Radar (EUSAR), pp. 1-4, June 2010.

Carrara, W.; Goodman, R. and Majewski, R.; "Spotlight Synthetic Aperture Radar - Signal Processing Algorithms", Norwood, MA: Artech House, 1995.

Cloude, S.R. and Papathanassiou K.P.; "Polarimetric SAR Interferometry", IEEE Transactions on Remote Geoscience and Remote Sensing, Volume 36, n°5, pp. 1551-1565, September 1998.

Cloude, S.R.; Fortuny, J.; Lopez-Sanchez, J.M. and Sieber, A.J.; "Wide-Band Polarimetric Radar Inversion Studies for Vegetation Layers", IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, N° 5, pp. 2430-2441, September 1999.

Cloude, S.R.; "Polarization coherence tomography", Radio Science, Vol. 41, RS4017, August 2006.

Cloude, S.R.; "Dual-Baseline Coherence Tomography", IEEE Geoscience and Remote Sensing Letters, Vol. 4, pp. 127-131, January 2007.

Dubois-Fernandez, P.; Le Toan, T.; Daniel, S.; Oriot, H.; Chave, J.; Blan, L.; Villard, L.; Davidson, M. W. J. and Petit, M.; "The TropiSAR Airborne Campaign in French Guiana: Objectives, Description, and Observed Temporal Behavior of the Backscatter Signal", IEEE Transactions on Geoscience and Remote Sensing, August 2012.

Fung A. K.; "Microwave scattering and emission models ans their applications", edited by Artech House, February 1994.

Garestier, F. ; Champion, I. ; Dubois-Fernandez, P.; Paillou, P. and Dupuis, X. ; " Polar and PolInSAR analysis of pine forest at L and P band on high resolution data ", International Geosciences And Remote Sensing Symposium, Seoul, Korea, 2005.

Huang, Y.; Ferro-Famil, L. and Lardeux, C.; "Polarimetric SAR Tomography of Tropical Forests at P-Band", International Geosciences And Remote Sensing Symposium, Vancouver, Canada, 2011.

Jakowatz, C.; Wahl, D.; Eichel, P.; Ghiglia, D. and Thompson, P.; "Spotlight-mode synthetic aperture radar: a signal processing approach", Kluwer Academic Pub (1996).

Jakowatz Jr, C.; Wahl, D.; Yocky, D.; Bray, B.; Bow Jr, W. and Richards, J.; "Comparison of algorithms for use in real-time spotlight-mode SAR image formation," in Proceedings of SPIE, 5427, 108, 2004.

Jakowatz Jr, C. and Doren, N.; "Comparison of polar formatting and back-projection algorithms for spotlight-mode SAR image formation," in Proceedings of SPIE, 6237, 62370H, 2006.

Le Toan, T.; Beaudoin, A.; Riom J. and Guyon D.; "Relating Forest Biomass to SAR data", IEEE TGARS, Vol. 30, N° 2, pp. 403 – 411, March 1992.

Lopez-Sanchez, J. M.; Ballester, J.D. and Fortuny, J.; "Indoor Wide-Band Polarimetric Measurements on Maize Plants: A Study of the Differential Extinction Coefficient", IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, N° 4, pp. 758-767, April 2006.

Quegan, S.; "A unified algorithm for phase and cross-talk calibration of polarimetric data-theory and observations", IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, N° 1, pp. 89 – 99, January 1994.

Rosenqvist, Å.; Imhoff, M.; Milne, A. and Dobson, C.; "Remote Sensing and the Kyoto Protocol: A review of available and Future Technology for Monitoring Treaty compliance", Ann Arbor, Michigan USA, Oct. 20-22,1999, workshop report, ISPRS, WG VII/5 and WG VII/6.

Saleh, K.; Porte, A.; Guyon, D.; Ferrazzoli, P.; Wigneron, J.-P. "A Forest Geometric Description of a Maritime Pine Forest Suitable for Discrete Microwave Models", IEEE TGARS, Vol. 43, N° 9, pp. 2024 – 2035, September 2005.

Sandberg, G.; Ulander, L. M. H.; Fransson, J. E. S.; Holmgren, J. and Le Toan, T.; "Comparison of L and P band Biomass Retrievals Based on Backscatter from the BIOSAR Campaign", International Geosciences And Remote Sensing Symposium, Cape Town, South-Africa, 2009.

Shimada, M.; Isoguchi, O. and Rosenqvist, A.; "PALSAR CALVAL and Generation of the Continent Scale Mosaic Products for Kyoto and Carbon Projects", International Geosciences And Remote Sensing Symposium, Boston, USA, 2008.

Tebaldini, S.; Mariotti D'Alessandro, M.; Ho Tong Minh, D. and Rocca, F.; "P Band Penetration in Tropical and Boreal Forests: Tomographical Results", International Geosciences And Remote Sensing Symposium, Vancouver, Canada, 2011.

Treuhaft, R. N. and Siqueira, P.; "Vertical structure of vegetated land surfaces from interferometric and polarimetric radar", Radio Science, Vol. 35, N° 1, pp. 141–177, January 2000.

Publication 6

"Tropical Forest Modeling At P-Band and Comparison with Airborne Data"

Clément Albinet, Pierre Borderies, Pascale Dubois-Fernandez et Ludovic Villard.

L'article sera soumis au journal PIERS Online à la date de la soutenance.

Tropical Forest Modeling At P-Band and Comparison with Airborne Data

C. Albinet¹, P. Borderies¹ and L. Villard².

¹Office National d'Etudes et de Recherches Aérospatiales (ONERA), Toulouse, France. ²Centre d'Etudes Spatiales de la Biosphère (CESBIO), Toulouse, France.

Abstract-The paper describes the comparison between airborne SAR data and simulated data based on a field campaign performed on a primary tropical forest. The results show a very good agreement between the airborne data and the modeling. In addition, it is shown that branches biomass and branches moisture content have the same effect on the total backscattering polarizations is highlighted, which could be problematic for the inversion.

1. Background and Objectives

The context of this paper is BIOMASS, a project of satellite for measuring the terrestrial biomass [1] on a global scale which is candidate to the 7th Earth Explorer Mission of the European Space Agency [2]. In particularly the context is the TROPISAR campaign [3] which took place in 2009 in French Guyana with the airborne radar SETHI. This paper is in the context of a work whose purpose is to give a possible extension to TROPISAR results, in the field of measurement parameters and scene characteristics measured, during the time, and at helping results interpretation, with the help of radar modeling.

The radar model used in this work was developed for temperate pine forest [5], [6]. It has been validated with airborne data acquired on the Lande forest [7]. This model can account for radar mechanisms in forests. This paper aims at establishing a suitable description for tropical forests and at comparing electromagnetic computation with data acquired during the TROPISAR campaign, in order to validate the approach of temperate forests on tropical forests.

To begin with, the collection of ground truth around the GUYAFLUX tower [4] over flown during the TROPISAR campaign is presented in 1., then 2. introduces the vegetation modeling, and finally 3., the comparison with the results of the airborne campaign.

2. Field data Collection

2.1. Description of the site around the GUYAFLUX tower

The areas around the GUYAFLUX tower are particularly interesting because they are managed by Institut National de la Recherche Agronomique (INRA). Detailed and comprehensive ground data are collected or recorded continuously for the flux experiment (meteorological data, soil moisture) and for the forest survey in Paracou (tree measurements).

It should be noted that a traditional ground truth campaign, performed by forest specialists or for higher frequency radar would require much more efforts than those provided here. In addition, the common information given by foresters does not necessarily match the relevant information for radar simulation: thin vertical trunks

are generally neglected, whereas it can have a significant impact in VV radar polarization. Therefore, the collection of this ground truth has to be replaced in the context of P-band SAR simulations.

Figure 1 : Picture of GUYAFLUX tower (left) and diagram of the forest plot at the tower step (right).

2.2. Field data

Figure 2 : Picture of the forest plot (left) and of the leaves (right) considered for the data collection.

The quantities of interest for describing the ground truth were measured on an area of 172 m² which is illustrated in Figure 2. This area is positioned relatively to the tower as shown in Figure 1. The average ground slopes was measured at 15° in the range direction, with no slope in the azimuth direction. The trunks were counted in terms of Diameters at Breast Height (DBH), and height under the crown in Figure 3.

The total height of the forest is between 25 and 30 m above the ground; it was considered equal to 30 m. Stem biomass is estimated to 455 ton/ha considering all trees and with a density of 0.6, and to 228 ton/ha while removing the three largest trees.

Figure 3: Histogram of the measured DBH (left) and heights of trunks under the crown (right).

3. Vegetation Model

The description is based on 3 layers [8], as shown in Figure 4, left. Within each layer, the contents have to be described with a given number of categories of cylindrical scatterers [9] characterized by their mean diameter and its variance, water content, length and its variance, probabilities of orientations.

From the field measurements, an analytical relation between the height under the crown and the trunks DBH is derived and given in Figure 4, right.

Figure 4: Representation of the scatterers in the layers of the forest (left) and analytical relation between heights under the crown and trunks diameters for the acquired field data (right).

To complete the input data, we made the following assumptions:

- 1. Leaves were neglected;
- 2. The total height of these trees was considered as twice the height crown;

3. The bottom layer's height was estimated to 15 m; indeed most of trunks lengths under the crown are worth 15 m, as we can see in Figure 4, right.

4. The two highest layers were considered with the same height, 7.5 m;

5. For the bottom layer, 4 classes of trunks were set from Figure 4, with the first two classes characterized by trunks with a length lower than the layer thickness. The measured data give us this information. Their extrapolation to higher layers, assuming a conical shape, allows us to deduce classes 3 and 4 in all layers;

6. For branches that could not be finely characterized, because of the height of the trees and their highly random character, three degrees of freedom were given:

• For the total branches biomass, the branch biomass / stem biomass ratio considered for the Landes forest, after having removed the three largest trees from the trunk biomass.

This leads to about 40 tons/ha.

- The mean radius of primary branches was taken to 7 cm, with a high variance.
- Secondary branches have an average radius multiplied by a given ratio.
- Proportions of secondary branches versus primary branches are those of [10].

4. Comparison with TROPISAR

Figure 5 to Figure 7 show the simulations obtained with the above data, plus the average values obtained with TROPISAR around the tower. The incidence is here around 30 degrees. To begin with, one can see that with the previously selected values, we obtain a very good agreement between the simulations and the airborne data.

Figure 5 : Variation of the simulated total backscattering with soil moisture content versus airborne data (left) and simulated contributions of the volume and the double bounce (right).

We can see that the soil moisture content has an effect on the double bounce only. In addition, the double bounce is much stronger for HH than for HV and VV. Then, the soil moisture content affects the HH total backscattering only.

The volume backscattering is increasing with the branches moisture content, for all polarizations, with HH and VV close to each other and higher than HV (close to a random medium behaviour). The double bounce will decrease with the branches moisture content, with HH much higher than VV, which is higher than HV. The combination of these two effects leads to a decreasing HH, an increasing VV and HV but with HV 5 dB lower.

Figure 6 : Variation of the simulated total backscattering with branches moisture content versus simulated data (left) and simulated contributions of the volume and the double bounce (right).

While the branches biomass is increasing, the volume backscattering is increasing and the attenuation is also increasing and then the double bounce is decreasing for all polarizations. The resulting behavior is similar to those for increasing branches moisture content, with a decreasing HH and an increasing HV and VV.

To sum up, we have seen here that the branches moisture content and the branches biomass have the same effect on the total backscattering polarizations, which could complicate these parameters inversion.

Figure 7 : Variation of the simulated total backscattering with branches biomass versus airborne data (left) and simulated contributions of the volume and the double bounce (right).

5. Conclusion and future prospect

The field data has been collected around the GUYAFLUX tower, the vegetation modeling has been set up and the comparison has been led between the simulated radar data and the data acquired during the airborne campaign TROPISAR.

A very good agreement is visible between the simulations and the airborne data and the fact that branches

moisture content and branches biomass have the same effect on the total backscattering polarizations, which can be problematic for the inversion.

The forest model can now be extended to interferometry, which is the next stage of this work with the fine use of an in-situ radar campaign on the site of the GUYAFLUX tower: the TROPISCAT campaign [11].

ACKNOWLEDGEMENTS

The authors would like to thank Pascale Dubois-Fernandez with ONERA for her work on the TROPISAR campaign and for her help with the airborne data.

REFERENCES

- 1. Le Toan, T., A. Beaudoin, K. Riom and D. Guyon, "Relating Forest Biomass to SAR data," *IEEE TGARS*, Vol. 30, No. 2, 403–411, 1992.
- 2. "BIOMASS Phase 0 Report for Assessment", European Space Agency, Nov. 2008, ref. SP1313/2.
- Dubois-Fernandez, P.C.; Thuy Le Toan; Daniel, S.; Oriot, H.; Chave, J.; Blanc, L.; Villard, L.; Davidson, M.W.J. and Petit, M.; "The TropiSAR Airborne Campaign in French Guiana: Objectives, Description, and Observed Temporal Behavior of the Backscatter Signal", IEEE TGRS, Vol. 50, N°8, pp. 3228 - 3241, 2012.
- Bonal, D.; Bosc, A.; Ponton, S.; Goret, J.Y.; Burban, B.; Gross, P.; Bonnefond, J.M.; Elbers, J.; Longdoz, B.; Epron, D.; Guelh, J.M. and Granier, A.; "Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana", Global Change Biology, Vol. 14, pp. 1917–1933, 2008.
- 5. Borderies, P. and L. Villard, "Rigorous numeric techniques applied to microwave interaction with natural targets: volume scattering," *ESA Contract*, No. 20449/06/NL/LvH, 2009.
- Borderies, P. and L. Villard, "Relations between biomass and radiometry at P band as a function of forest descriptive parameters," *ESA Contract*, No. 20449/06/NL/LvH/CCN, 2009.
- Champion, I., A. Porté, D. Bert, D. Lousteau, M. Guedon, F. Jean-Courdier, F. Lagane, C. Lambrot, A. Lardit and M. Sartore, "Tree architecture determination in remote sensing analytical models: the Bray experiment," *IJRS*, Vol. 22, No. 9, 1827–1843, 2001.
- Villard, L. and P. Borderies, "Backscattering border effects for forests at C-Band," *PIERS Online*, Vol. 3, No. 5, 731–735, 2007.
- 9. Tsang, L., J. A. Kong, *Scattering of Electromagnetic waves: Advanced Topics*, Wiley-Interscience, New York, 2001.
- Saleh, K., A. Porte, D. Guyon, P. Ferrazzoli and J. P. Wigneron, "A Forest Geometric Description of a Maritime Pine Forest Suitable for Discrete Microwave Models," *IEEE TGARS*, Vol. 43, No. 9, 2024–2035, Sep 2005.
- Albinet, C., P. Borderies, T. Koleck, F. Rocca, S. Tebaldini, L. Villard, T. Le Toan, A. Hamadi and D. Ho Tong Minh, "TropiSCAT: A Ground Based Polarimetric Scatterometer Experiment in Tropical Forests," *JSTARS*, Vol. 5, No. 3, 1060–1066, June 2012.

Publication 7

"Radar and Optical Parallel Modelling of Forest Remote Sensing Data"

Clément Albinet, Pierre Borderies et Sophie Fabre.

L'article est paru dans le journal "International Journal of Remote Sensing Applications" (IJRSA) , Vol. 2, No. 4, en 2012.

Radar and Optical Parallel Modelling of Forest Remote Sensing Data

Clément Albinet¹, Pierre Borderies², Sophie Fabre³

^{1,2}Département Électromagnétisme et Radar

³Département d'Optique Théorique et Appliquée

Office National d'Études et de Recherches Aérospatiales (ONERA)

2 avenue Édouard Belin, FR-31055 Toulouse CEDEX 4, France

¹clement.albinet@onera.fr; ²pierre.borderies@onera.fr; ³sophie.fabre@onera.fr

Abstract

This paper describes a parallel modelling of Remote Sensing radar and optic forest data which aims at retrieving forest parameters. It describes the dual model including a forest growth model fed with biophysical parameters (biomass, leaf moisture content ...). The geometrical description is then the input of an optical model adapted to simulate hyperspectral information in the [0.4-2.5 μ m] spectral domain, giving reflectance spectra, and a Synthetic Aperture Radar (SAR) model, giving the polarimetric and interferometric observables. As an illustration, the first results obtained by both models outputs are presented.

Keywords

Remote Sensing; Radar Simulation; Hyperspectral Simulation; Radar Polarimetry; Forest Electromagnetic Scattering; Biomass; Forest Height Estimation; Moisture Content Estimation

Introduction

Retrieval of bio-physical parameters of forests with remote sensing is nowadays a challenge. In particular, the biomass of the canopy, soil and branches moisture content (m.c.) are three parameters of interest. It is well known that low frequency radars may furnish lots of characteristics of forests, and in particular P band is often proposed [1], [2] for biomass estimation. On the other hand, spectral signatures provided by optical measurements can provide features of forest vegetation, like Leaf Area Index (LAI) [3] and Normalized Difference Vegetation Index (NDVI) and even tree species [4].

Hopefully, using both sources of information through a combination process should improve the determination of the forest characteristic parameters. To evaluate the potential of this combined approach, a focus is done in this paper on a parallel direct modelling approach in which the same forest scenario is simulated in polarimetric P band backscattering and in optical narrow bands corresponding to [0.4-2.5 µm].

In section II the general functioning of the parallel modelling, with the links between the models, is described. Then, in section III a sensitivity study is carried out with the radar model only on a forest with different biomass, soil moisture content and branches moisture content will be presented. Finally, section IV consists in a sensitivity study with the optical model.

Parallel Modelling Description

Common Forest Characterization (growth model)

The characterization of the forest is the same for both models. The term parallel modelling is then introduced. In fact, a ground representation of a maritime pine forest as a function of growing age and consequently growing biomass is obtained thanks to a growth model depicted in [5], which delivers leaves LAI and the statistical parameters of the trunks and branches in terms of size, location and orientation, for a given biomass.

The ground is made of a bare and flat soil. Moisture contents for the soil, branches and trunks are inputs of the model.

The biomass in this works is defined as the sum of branches and trunks biomass. The leaf biomass is considered as negligible.

FIG. 1 GENERAL DIAGRAM OF THE PARALLEL RADAR AND OPTICAL MODEL

As shown in Fig.1, this geometrical information is then used for MIPERS (Multistatic Interferometric Polarimetric Electromagnetic Model for Remote Sensing) simulations of the radar backscattering matrix [6], and for DART (Discrete Anisotropic Radiative Transfer) simulations of the scene spectral reflectance and 3D radiative budget [7]. The optical model uses a discrete ordinate ray tracing method for simulating the scene Bottom of Atmosphere (BOA) spectral reflectance.

Geometric input model Adaptations

The two geometric models are based on different principles. For the radar model MIPERS, the scatterers are represented by cylinders for the trunks and branches, as shown in Fig. 2.

FIG. 2 SCATTERER REPRESENTATION FOR THE RADAR MODEL

At P-Band, the wavelength is 75cm so the leaves have no any influence and so are not considered in the simulation. For each pixel of the Single Look Complex (SLC) data simulated, the coherent sum of the bare soil and the cylinders backscattering is computed.

FIG. 3 REPRESENTATION OF VOLUME (UP) AND SURFACES (DOWN) IN THE OPTICAL MODEL

For the optical model DART, as shown in Fig. 3, two types of elements are considered: volume (for leaf) and surface (for trunks, branches and ground) elements.

In order to have a radar and optical scene geometric representation as close as possible, the cylinders of the radar model are replaced by 3D elements made of polygons. Leaves are represented by volumes with a Leaf Area Index (LAI) given by the growth model. The LAI is a function of age.

Radar and Optical Ground Parameter Simulations

Radar simulations are carried out on an 80 by 80 m wide scene, with a resolution of 1 m, at P band (430 MHz).

The complex backscattering field is then computed for all the pixels associated with the branches, trunks and soil. An average value on the whole scene is then obtained for all polarizations.

The leaf moisture content in optical simulations is linked to the branch moisture content in radar simulations. For soils, the moisture content is independent on leaf or branches moisture content.

Optical simulations are performed with the following parameters:

- Pine leave spectral signature is provided by the ASTER database [8] for undergrowth. LAI is decreasing with biomass from 5.38 m²/m² to 2.45 m²/m²;
- PROSPECT [9] model is coupled with DART to simulate the impact of pine leaf moisture content on the global scene spectral signature.
- Spectral signatures for trunk and branch have been measured on pine bark in 2002 [10];
- The following hypothesis is done: a bare soil corresponds to a null biomass (0 ton/ha).
- The soil spectral signature is extracted from the database at the ONERA including spectral signatures, measured in laboratory, of bare soils according to soil moisture content [11];
- The scene is 12m by 12m wide, with a spatial resolution of 4m. Simulations are lead for 160 spectral bands of the reflective spectral domain (0.4 2.5 μm). These parameters are chosen according to airborne campaigns preformed by the ONERA [12].

For every pixel, and every spectral band, the bottom of atmosphere reflectance is computed.

Then, four optical indexes are deducted:

• The Normalized Difference Vegetation Index (NDVI), linked to the LAI;

- The Cellulose Absorption Index (CAI), which is sensitive to dead branches and trunks in the scene;
- The Global Vegetation Moisture Index (GVMI), linked to the leaves moisture content ;
- The Normalized Index of SWIR domain for soil m.c. estimation from Linear correlation (NINSOL), a bare soil index, is sensitive to soil moisture content.

Radar Simulations

Fig. 4 represents the evolution of polarimetric backscattering as a function of biomass for various soil moisture contents and Fig. 5 represents the evolution of polarimetric backscattering as a function of biomass and branches moisture content.

Soil moisture content varies between a few per cents for very dry soils to more than 50% for very wet, saturated soils, with average values for forests around 20%.

In Fig. 4, the average values of biomass are kept for vegetation, and only soil moisture content is parameterized. Actually, soil moisture content is supposed to vary independently of vegetation moisture content. It can be seen that this parameter poorly influences HV, has a strong influence on VV for low ages, a reduced one at higher ages and is overall prominent for HH.

FIG. 4 GENERAL DIAGRAM OF THE PARALLEL RADAR AND OPTICAL MODEL

Actually, HH intensity follows the same evolution with different offsets. For usual values of moisture content, around 25%, the impact is low. We can notice that HV intensity is poorly influenced by soil characteristics, which is expected. For branch moisture content, according to literature [14], it looks reasonable to consider a variation between a ceiling value of 40% and a top value of 70%.

FIG. 5 GENERAL DIAGRAM OF THE PARALLEL RADAR AND OPTICAL MODEL

In this case, Fig. 5 shows a very strong influence of this parameter on the polarimetric response in P band for all polarizations. Actually, as branch moisture content increases, VV and HV increase but also canopy extinction increases which makes decrease the trunk double bounce with soil which mainly corresponds to HH.

It can be seen that the influence of the input parameters on the output ones is complex, and that incorporating in the analysis additional data may be fruitful.

Optical Simulations

Parameters Validation and Optimization

In order to analyse the impact of some parameters (like the cells resolution, the cylinders number of polygons, and the threshold on minimum branches radius) introduced in the optical simulations which have a strong influence on the computing time, sensitivity study is performed.

To begin with, five identical simulations were performed with various cells side dimensions, from 50 cm to 4 m.

Fig. 6 shows the variation of reflectance spectra in Near Infra Red, between 0.8 and 1.3 μ m, for cells side dimensions higher than 1 m. A resolution of 0.5 m is then chosen in order to have a sufficient margin.

FIG. 6 REFLECTANCE SPECTRA ON A FOREST WITHOUT LEAVES, FOR CELLS RESOLUTIONS FROM 0.5 CM TO 4 M

FIG. 7 3D REPRESENTATIONS OF CYLINDERS WITH, FROM LEFT TO RIGHT, 8 POLYGONS AND A GEOMETRICAL VERTICAL ASYMMETRY, 8 POLYGONS AND SYMMETRY, 12 POLYGONS AND ASYMMETRY, 12 POLYGONS AND SYMMETRY, 16 POLYGONS AND ASYMMETRY, 20 POLYGONS AND SYMMETRY

As previously explain, the perfect cylinders of the radar simulation are represented in the optical simulation by 3D objects made of polygons (c.f. II.C.). Six simulations are performed using a different 3D object, as given in Fig. 7, to represent cylinders.

FIG. 8 IMPACT OF 3D REPRESENTATION OF BRANCHES ON REFLECTANCE SPECTRA

One can see in Fig. 8 that 3D representation of cylinders has no influence on reflectance spectra. As a consequence, the simplest object with 8 asymmetrical cylinders is retained.

Finally, simulations are performed to see if it is possible to keep only the branches with radius higher than 2 cm, or those with radius higher than 4cm.

In front of the considerable differences in the reflectance spectra obtained in Fig. 9, it is decided to keep all the branches that are involved in the radar modelling.

FIG. 9 REFLECTANCE SPECTRA FOR ALL BIOMASSES AND ALL BRANCHES (SOLID LINES), BRANCHES WITH RADIUS HIGHER THAN 2 CM (DASHED LINES) AND BRANCHES WITH RADIUS HIGHER TAN 4 CM (DOTTED LINES)

Optical Simulations for Forests

Here leaves, needles as a matter of fact, are considered. For the first simulation, several soil spectral signatures of the same kind of soil, with moisture content values from 0 % for a dry soil, to 39 % for a wet soil, are retained. The biomass varies the same way as those for radar simulations. The optical indexes have been computed for the previous parameters and shown in Fig. 10.

FIG. 10 SENSITIVITY OF SPECTRAL INDICES FOR SEVERAL BIOMASS AND SOIL MOISTURE CONTENT.

One can notice that the NDVI is a little bit sensitive to the biomass variation and independent of the soil moisture content parameter. In fact, when the biomass is increasing, the LAI is decreasing, because as each tree biomass is growing, their density is decreasing, so the part of the soil in the pixel is increasing.

For same reason, the NINSOL is more sensitive to soil moisture content for high biomass.

For the second simulation, several leaf moisture content values are simulated with PROSPECT, from 39 % to 92 %, and the corresponding spectral signatures are used as input of the optical model. The biomass varies the same way as previously. The result is shown in Fig. 11.

The NDVI is not sensitive to leaf moisture content and evolutes the same way as in Fig. 10. The NDVI is then not sensitive to branch moisture content variation.

FIG. 11 SENSITIVITY OF SPECTRAL INDICES FOR SEVERAL BIOMASS AND LEAVES MOISTURE CONTENT

For the GVMI, strong variations can be seen in the figure. The GVMI is much more significantly linked to leaf moisture content, than to biomass.

The NINSOL presents the same evolution with biomass and leaf moisture content. This index is specified for bare soil and the modelling scene represents forest.

Conclusion

A parallel model for simulating electromagnetic scattering and optical reflectance spectrum of forests has been presented. It starts from a growth model, and the subsequent geometrical discrete description is the common input for both optical and radar models. Simulations parameters have been validated, and a sensitivity analysis has been carried out on both simulation models. This sensitivity analysis has exhibited the benefit which may be withdrawn from the use of both models separately.

The setup of parallel radar and optical model and the analysis of its first results show the perspective of such a model in the combination of radar and optical data.

ACKNOWLEDGMENT

The authors would like to thank the scientific direction of the ONERA for funding this work through the Federator Research Project (PRF) ENVIRO.

REFERENCES

- T. Le Toan, A. Beaudoin, J. Riom and D. Guyon, "Relating Forest Biomass to SAR data", IEEETGARS, Volume 30, n°2, pp. 403 – 411, March 1992.
- [2] S.R. Cloude and K.P. Papathanassiou, "Polarimetric SAR Interferometry", IEEE Transactions on Remote Geoscience and Remote Sensing, Volume 36, n°5, pp. 1551-1565, September 1998.
- [3] R.N. Treuhaft, G.P. Asner, B.E. Law and S. Van Tuyl, "Forest Leaf Area Density Profiles from the Quantitative Fusion of Radar and Hyperspectral Dara", Journal of Geophysical Research, Volume 107, no. D21, 4568, 2002.
- [4] MODIS Terra Land Cover : http://modis.gsfc.nasa.gov/
- [5] K. Saleh, A. Porte, D. Guyon, P. Ferrazzoli and J.P. Wigneron, "A Forest Geometric Description of a Maritime Pine Forest Suitable for Discrete Microwave Models", IEEETGARS, Volume 43, Issue 9, pp. 2024 – 2035, September 2005.
- [6] ESA contract n° 20449/06/NL/LvH "Rigorous numeric techniques applied to microwave interaction with natural targets : volume scattering", CCN, 2010.
- [7] E. Martin, "DART : Modèle 3D Multispectral et Inversion d'Images Optiques de Satellite – Application aux Couverts Forestiers", PhD dissertation, Université Paul Sabatier, July 25th 2006.
- [8] ASTER Spectral Library Version 2.0 : http://speclib.jpl.nasa.gov/
- [9] S. Jacquemoud and F. Baret, "PROSPECT: a model of leaf optical properties spectra", 1990, Remote Sensing of Environment, 34, 75-91.
- [10] M. Lang, A. Kuusk, T. Nilson, T. Lükk, M. Pehk and G. Alm, "Reflectance spectra of ground vegetation in subboreal forests", http://www.aai.ee/bgf/ger2600/, from

Tartu Observatory, Estonia. Accessed May 2, 2002.

- [11] A. Lesaignoux, "Estimation de l'Humidité de Surface des Sols Nus à Partir de l'Imagerie Hyperspectrale sur le Domaine Optique 0.4-14µm", PhD dissertation, Institut Supérieur de l'Aéronautique et de l'Espace, December 16th 2010.
- [12] T. Loke, "High resolution, high speed hyperspectral cameras for laboratory industrial and airborne applications", Norsk Elektro Optikk, http://www.hyspex.no.
- [13] A. Lesaignoux, S. Fabre and X. Briottet, « Influence of soil moisture content on spectral reflectance of bare soils in the $0.4 14 \mu m$ domain », International Journal of Remote Sensing, accepted after modifications.
- [14] D.M. Gates, "Water relations of forest trees", IEEETGARS, Volume 29, Nov. 1991, Page(s): 836 – 842.

Clément Albinet received the Eng. Degree from École Centrale de Nantes, France, and the M.Sc. degree from the University of Nantes, France, both in 2008.

Then, he has worked with Thuy Le Toan on the processing of BIOSAR 2 data campaign during a short term contract of

6 month. Since 2009, he is with the Office National d'Etudes et de Recherches Aérospatiales (ONERA), in the Electromagnetism and Radar Department and in the Radio-

Communication and Propagation research Unit, in Toulouse as a PhD student.

Pierre Borderies was born in France in 1953. He received the diploma of Engineer from Ecole Supérieure d'Electricite (SUPELEC), Paris, France in 1975. After a period of teaching in Venezuela, he joined the Centre d'Etudes et de Recherches de Toulouse, part of Office National d'Etudes et de Recherches Aérospatiales (CERT-ONERA) in 1979.

Since then, he has been working as a research engineer in the microwaves department. In 1990-91, he spent a sabbatical year at New York University, Farmingdale, NY. In 1997, he obtained the university diploma of Habilitation to Direct Research. He has worked in the fields of radiation and scattering of antennas, microwave devices, radar targets imaging, frequency selective surfaces, ultra wide band scattering, subsurface targets, electromagnetic modeling, natural targets scattering and remote sensing. His current interests include electromagnetic modeling for radar remote sensing and proximity scattering experiments.

Sophie Fabre, research engineer, received the post graduate in Signal and Image Processing (UPS, Toulouse III, and France) in 1996 and the doctorate of signal, image and communication (ISAE, Toulouse, France) in 1999 on multi-sensor fusion.

She worked during five year on projects FARMSTAR (precision crop management) and GEOLAND (European project on the vegetation characterization using multitemporal MERIS data) on behalf of ASTRIUM (France). Then, she joined THALES Services (France) during one year to support the specification of the PLEIADES radiometric correction module. Finally, she joined the department DOTA (Theoretical and Applied Optics Department) part of Onera since 2006 in order to work on hyperspectral data processing. She is providing since 2007 the project STAD, ground segment of the Sysiphe system (airborne hyperspectral instruments covering the spectral domain [0.4-12 µm] at a spatial resolution of 0.5 m) for DGA (France). Its recent works first concern the geometric correction, the interinstrument registration in the STAD frame and on the other hand the estimation of physical parameters (soil moisture content ...) owing to hyperspectral data processing.

Publication 8

"Characterization of maritime pine forests with combination of simulated P-Band SAR data and hyperspectral data"

Clément Albinet, Pierre Borderies, et Jean-Philippe Gastellu-Etchegorry.

L'article est paru dans le journal "International Journal of Antennas and Propagation" (IJAP), Vol. 2012, Article ID 409512, en octobre 2012.

Characterization of maritime pine forests with combination of simulated P-Band SAR data and hyperspectral data

C. Albinet, P. Borderies, and J.P. Gastellu-Etchegorry

Abstract—This paper describes a sensitivity study performed on simulated radar and optical remote sensing forest data. It presents how the dual model has been built up. The first step is a forest growth model fed with biophysical parameters. The geometrical description is then the input of an optical hyperspectral model, giving reflectance spectra, and a Synthetic Aperture Radar (SAR) model, giving the polarimetric and interferometric observables. As an illustration, the first results obtained by both models outputs are presented and a fusion of these outputs has been made.

Index Terms—Remote sensing, radar simulation, hyperspectral simulation, principal component analysis, radar polarimetry, forest electromagnetic scattering, biomass, forest height estimation, moisture content estimation.

I. INTRODUCTION

THE retrieval of bio-physical parameters of forests with remote sensing is nowadays a challenge. In particular, the biomass of the canopy, soil and branches moisture content are three parameters of interest. It is well known that low frequency radars may provide lots of characteristics of forests, and in particular P band is often proposed [1], [2] for biomass estimation. On the other hand, spectral signatures provided by optical measurements are able to deliver features of forest vegetation, like Leaf Area Index (LAI) [3] and Normalized Difference Vegetation Index (NDVI) and can be used to determinate tree species [4].

Hopefully, using both sources of information through a combination process should improve the determination of the characteristic parameters of forest. To evaluate the potential of this combined approach, a focus is done in this paper on a parallel direct modeling approach in which the same forest scenario is simulated in polarimetric P band backscattering and in optical bands.

Manuscript received June 22, 2012.

C. Albinet and P. Borderies are with Office National d'Études et de Recherches Aérospatiales (ONERA), 2 avenue Edouard Belin BP74025 FR-31055 Toulouse cedex 4 FRANCE (corresponding authors: Clement.Albinet@onera.fr and Pierre.Borderies@onera.fr).

J.P. Gastellu-Etchegorry is with Centre d'Etudes Spatiales de la Biosphère (CESBIO), 18 avenue Edouard Belin bpi 2801, 31401 Toulouse cedex 9 FRANCE (e-mail: jean-philippe.gastellu-etchegorry@cesbio.cnes.fr).

In section II the general functioning of the parallel modeling, with the inputs and links between the models, is described. Then, in section III a sensitivity study is carried out with the radar model only on a forest with different biomass, soil moisture content and branches moisture content is presented. Section IV consists in a sensitivity study with the optical model. Finally, the results of data analysis, carried out on radar and optical previous data, is shown in section V.

II. PARALLEL MODELING

A. Model Organization

The radar and optical modeling is considered as parallel because the geometrical 3D description of the forest is the same for both models. In fact, a ground representation of a maritime pine forest as a function of growing age and consequently growing biomass is obtained thanks to a growth model depicted in [5], which delivers leaves LAI and the statistical parameters of the trunks and branches in terms of size, location and orientation, for a given biomass.

It is necessary to clarify that the biomass considered in this paper is the sum of branches and trunks biomass, as leaves biomass is considered as negligible.

Fig. 1. General diagram of the parallel radar and optical model.

As shown in Fig.1, this geometrical information is then used for MIPERS (Multistatic Interferometric Polarimetric Electromagnetic Model for Remote Sensing) simulations of the radar backscattering matrix [6], and for DART (Discrete Anisotropic Radiative Transfer) simulations of the scene reflectance and 3D radiative budget [7].

B. Model adaptation

The two models have different ways of functioning.

For the radar model MIPERS, the scatterers are represented by cylinders for the trunks and branches, as shown in Fig. 2.

Fig. 2. Scatterers representation in the radar model

At P-Band, the wavelength is 75cm so the leaves won't have any influence and so haven't been considered in the simulation. For each pixel of the Single Look Complex (SLC) data simulated, the coherent sum of the bare soil and the cylinders backscattering is computed.

Fig. 3. Representation of volume (up) and surfaces (down) in the optical model

For the optical model DART, as shown in Fig. 3, two types of elements are considered: volume (leaves) and surface (trunks, branches and ground) elements.

In order to have radar and optical scene as close as possible, the cylinders of the radar model are replaced by 3D elements made of polygons. A sensitivity study on scene reflectance was performed with 3D representations of cylinders with 8 to 24 polygons per cylinder, and showed that 8 polygons were enough to represent the about 100.000 cylinders of the scene. Leaves are represented by volumes with a Leaf Area Index (LAI) given by the growth model. The optical model uses a discrete ordinate ray tracing method for simulating the scene Bottom Of Atmosphere (BOA) hyperspectral reflectance.

C. Radar and Optical Simulation Ground Parameters

Radar simulations have been carried out on an 80 by 80 m wide scene, with a resolution of 1 m, at P band (430 MHz). Branches and trunks are represented by homogeneous cylinders, and the soil is considered as flat. Moisture content for the soil, branches and trunks are inputs of the model.

The complex backscattering field is then computed on all the pixels, for the branches, trunks and soil. An average value on the whole scene is then obtained for all polarizations.

For optical simulations, the model has been adapted to be able to simulate forest the same way as the radar model. Branches and trunks are represented by 3D objects made of surfaced polygons and leaves are represented by homogenous 3D volumes. The leaves moisture content in optical simulations is linked to the branches moisture content in radar simulations. For soils, the moisture content is the same for both kinds of simulations.

Optical simulations use the following parameters:

- Leaves are made of pine leave spectral signature provided by the ASTER database [8] for undergrowth.
- PROSPECT [9] model is coupled with DART to simulate • the impact of tree leaves moisture content on scene spectral signature.
- Spectral signature for trunks and branches was measured on pine bark in 2002 [10];
- The ground is made of bare soil. The following hypothesis is done: a bare soil corresponds to a ground with a null biomass (0 ton/ha). The spectral information is extracted from database developed at the ONERA and including spectral signature measured in laboratory of bare soils with several moisture content [11];
- The scene is 12m by 12m wide, with a spatial resolution of 4m. Simulations are performed for 160 spectral bands over the entire reflective spectral domain $(0.4 - 2.5 \ \mu m)$. These parameters are common with those considered for airborne campaigns at the ONERA [12].

BIOPHYSICAL PARAMETERS FOR THE SIMULATIONS						
Biophysical parameters	Simulations					
Age of the forest (yr)	6	16	26	36	46	56
Total Biomass (ton/ha)	14	50	88	114	128	133
LAI (m^2/m^2)	5.4	5.1	4.4	3.3	2.9	2.5
Soil m.c. (%)	0	18	24	29	34	39
Branches m.c. (%)	40	46	52	58	64	70
Leaves m.c. (%)	39	49	60	71	81	92

TABLE I

The Age of the forest and LAI are dependent to each other, branches m.c. and leaves m.c. are also dependent to each other, but soil m.c. is an independent parameter.

For every pixel, and every spectral band, a bottom of atmosphere reflectance is computed by DART. The average values of reflectance for each band are then combined to obtain the spectral signature.

With these spectral signatures, 4 optical indexes are computed:

- The Normalized Difference Vegetation Index (NDVI), . linked to the LAI;
- The Cellulose Absorption Index (CAI), which is sensitive . to dead branches and trunks in the scene ;

- The Global Vegetation Moisture Index (GVMI), linked to the leaves moisture content ;
- The NINSOL, an optical index developed at the ONERA [13], and sensitive to the soil moisture content.

III. RADAR SIMULATIONS

Fig. 4 represents the evolution of polarimetric backscattering as a function of biomass for various soil moisture contents and Fig. 5 represents the evolution of polarimetric backscattering as a function of biomass and branches moisture content.

Fig. 4. Radar polarimetric radiometry for several biomasses and soil moisture content.

Soil moisture content varies between a few per cents for very dry soils to more than 50% for very wet, saturated soils, with average values for forests around 20%. In Fig. 4, the average values of biomass are kept for vegetation, and only soil moisture content is parameterized. Actually, soil moisture content is supposed to vary independently of vegetation

Fig. 5. Radar polarimetric radiometry for several biomasses and branches moisture content.

moisture content. It can be seen that this parameter poorly influences HV, has a strong influence on VV for low ages, a reduced one at higher ages and is overall prominent for HH.

Actually, HH intensity follows the same evolution with different offsets. For usual values of moisture content, around 25%, the impact is low. We can notice that HV intensity is poorly influenced by soil characteristics, which is expected.

For branch moisture content, according to literature [14], it looks reasonable to consider a variation between a ceiling value of 40% and a top value of 70%.

In this case, Fig. 5 shows a very strong influence of this parameter on the polarimetric response in P band for all polarizations. Actually, as branch moisture content increases, VV and HV increase but also canopy extinction increases which makes decrease the trunk double bounce with soil which mainly corresponds to HH.

It can be seen that the influence of the input parameters on the output ones is complex, and that incorporating in the analysis additional data may be fruitful.

IV. OPTICAL SIMULATIONS

A. Optical simulations for forest without leaves

First the scene is composed of only flat soil, trunks and branches. No leaves are considered, which corresponds to winter season for deciduous trees.

Fig. 6. Reflectance spectra of the whole scene for different biomasses, as well as for the bare organic soil and for the bark.

Fig. 6 shows the evolution of the spectral reflectance, on such a temperate forest with an organic soil (grass rye), for several biomasses corresponding to growing ages. The soil spectrum and the bark one are plotted also. One can see that the shape of the various scene spectra follows the soil one all the more so as the biomass is low. An explanation of this result is that as forest age is growing the number of branches per unit area decreases, in spite of an increase in branches weight.

It is coherent with the fact that barks spectrum presents low influence, except for small biomasses.

Fig. 7. Reflectance spectra of the whole scene for several highest biomasses, and a mineral soil with two moisture content.

Fig. 7 deals with the same forests with 2 mineral soils: a dry one (moisture content ideally considered at 0%) and a wet one (moisture content of 30%). The 2 mineral soil reflectance spectra have been obtained by measures in laboratory which are described in [13]. One can see that the spectral reflectance of the whole scene tightly follows the soil spectra.

Comparing both scenes, it is clear that scene reflectance spectra are more sensitive to biomass for organic soil than for mineral ones, which can be explained by the fact that the pine bark spectrum is closer to the organic soil spectrum than to the grass spectrum.

We can see here that the spectral reflectance of the scene is more affected by the change in soil moisture content than biomass.

B. Optical simulations for forest with needles

Here leaves, needles as a matter of fact, are considered. For the first simulation, several soil spectral signatures of the same kind of soil, with moisture content from 0 % for a dry soil, to 39 % for a wet soil, have been chosen as the soil spectral signature. The biomass varies the same way as those for radar simulations. The optical indexes have been computed for the previous parameters and shown in Fig. 8.

One can notice that the NDVI is a little bit sensitive to the Biomass evolution and independent of the soil moisture content parameter. In fact, when the biomass is increasing, the LAI is decreasing, because as each tree biomass is growing, their density is decreasing, so the part of the soil in the pixel is more and more important.

For same reason, the NINSOL is more sensitive to soil moisture content for high biomass.

Fig. 8. Sensitivity of spectral indices for several biomass and soil moisture content.

For the second simulation, several leaves moisture content have been simulated with PROSPECT, from 39 % to 92 %, and the corresponding optical signatures have been chosen as the leaves spectral signature. The biomass varies the same way as previously. The result is shown in Fig. 9.

One can observe that the NDVI is not sensitive to leaves moisture content and evolutes the same way as in Fig. 8. We can say that the NDVI is not sensitive to branches moisture content.

For the GVMI, strong variations can be seen in the figure. The GVMI is much more significantly linked to leaves moisture content, than to biomass.

The NINSOL presents the same evolution with biomass and leaves moisture content. This optical index is more sensitive to leaves moisture content that it should be. An explanation is that this optical index has been designed for bare soils, which is not the case here.

Fig. 9. Sensitivity of spectral indices for several biomass and leaves moisture content.

V. RADAR AND OPTICAL COMPLEMENTARITY

With the radar and the optical outputs of the previous simulations on two types of forest, analyses of radar and optical data have been done with an unsupervised data analysis: the Principal Component Analysis (PCA).

All combinations of biophysical parameters were taken into account for a total of 216 simulations: 6 biomasses, 6 soil moisture content, and 6 leaves and branches moisture content, as previously indicated in Table I.

The PCA principle is to represent the data in a new base which maximize the variance along the axis. The axes are given in a decreasing order of variance: the first one is the axis that maximizes the variance; the second one is the axis perpendicular to the first one that maximizes the variance, and so on for the other axis.

These three first axes only will be plotted, in order to link them to biophysical parameters.

A. Forest without leaves

In a first time, the scene with soil, trunks and branches only will be considered. This situation is an approximation of a winter forest without snow in the scene.

Fig. 10. Result of a PCA on radar HH, HV and VV radiometry.

We can see in Fig. 10 that with the polarimetric radar radiometry only as an input of the PCA, there is a separation for soil moisture content, for volume moisture content and for biomasses lower than 50 ton/ha. It seems that there is a saturation for high average and high biomasses.

For Fig.11, the optical index NINSOL is added to the input list of the data analysis. NDVI and GVMI are not computed in this case because there is no leaf in the scene.

We can notice that the biomass separation and the volume moisture content separation are similar, while the soil moisture separation is improved. This result was expected because the NINSOL has been designed to be sensitive to soil moisture content, and so brings information on this parameter variation to the data analysis.

Fig. 11. Result of a PCA on radar HH, HV, VV radiometry and optical NINSOL index for forest without leaves.

B. Forest with needles

Subsequently, simulated data on forest with needles will be injected as input of the PCA.

Fig. 12. Result of a PCA on optical NDVI, GVMI and NINSOL indexes for forests with needles.

With optical indexes only, as in Fig. 12, there is a very good separation for volume moisture content and a good separation for soil moisture content lower than 29 %.

This result may be explained by the fact that NDVI and GVMI are respectively sensitive to LAI, and so biomass, and to leaves moisture content. But, the leaves are occulting the soil, and so the NINSOL which has been designed for bar soils can't be sensitive to soil moisture content, as it was for forest without leaves.

We know that radar waves penetrate under the canopy and therefore, we decided to add them in the PCA inputs. The result is shown in Fig. 13. In this case, we can notice that the separation is in the same order for biomass and volume moisture content as with optical data only as input as the PCA.

Fig. 13. Result of a PCA on radar HH, HV, VV radiometry and optical NDVI, GVMI and NINSOL indexes, for forests with needles.

By cons, the soil moisture content is well separated in this case. This shows the interest of the fusion of radar and optical data to retrieve biophysical parameters.

VI. CONCLUSION

A parallel model for simulating electromagnetic scattering and optical reflectance spectrum of forests has been presented. It starts from a growth model, and the subsequent geometrical discrete description is the common input for both optical and radar models. A sensitivity analysis has been carried out on a first time on radar and on optical data separately, for forests without leaves and for forests with needles. Then, the sensitivity study has continued with fusions of radar and optical data with a data analysis: the Principal Component Analysis.

This sensitivity analysis has exhibited the benefit which may be withdrawn from the use of both models separately in a first time, and later as a prospect the extra benefit from their use in radar and optical data fusion.

REFERENCES

- T. Le Toan, A. Beaudoin, J. Riom, D. Guyon, "Relating Forest Biomass to SAR data", IEEETGARS, Volume 30, n°2, pp. 403 – 411, March 1992.
- [2] S.R. Cloude, K.P. Papathanassiou, "Polarimetric SAR Interferometry", IEEE Transactions on Remote Geoscience and Remote Sensing, Volume 36, n°5, pp. 1551-1565, September 1998.
- [3] R.N. Treuhaft, G.P. Asner, B.E. Law, S. Van Tuyl, "Forest Leaf Area Density Profiles from the Quantitative Fusion of Radar and Hyperspectral Dara", Journal of Geophysical Research, Volume 107, no. D21, 4568, 2002.
- [4] MODIS Terra Land Cover : http://modis.gsfc.nasa.gov/
- [5] K. Saleh, A. Porte, D. Guyon, P. Ferrazzoli, J.P. Wigneron, "A Forest Geometric Description of a Maritime Pine Forest Suitable for Discrete Microwave Models", IEEETGARS, Volume 43, Issue 9, pp. 2024 – 2035, September 2005.
- [6] ESA contract n° 20449/06/NL/LvH "Rigorous numeric techniques applied to microwave interaction with natural targets : volume scattering", CCN, 2010.

- [7] E. Martin, "DART : Modèle 3D Multispectral et Inversion d'Images Optiques de Satellite – Application aux Couverts Forestiers", PhD dissertation, Université Paul Sabatier, July 25th 2006.
- [8] ASTER Spectral Library Version 2.0 : http://speclib.jpl.nasa.gov/
- [9] S. Jacquemoud, F. Baret, "PROSPECT: a model of leaf optical properties spectra", 1990, Remote Sensing of Environment, 34, 75-91.
- [10] M. Lang, A. Kuusk, T. Nilson, T. Lükk, M. Pehk, and G. Alm, ; « Reflectance spectra of ground vegetation in sub-boreal forests » ; http://www.aai.ee/bgf/ger2600/ ; from Tartu Observatory, Estonia. Accessed May 2, 2002.
- [11] A. Lesaignoux, "Estimation de l'Humidité de Surface des Sols Nus à Partir de l'Imagerie Hyperspectrale sur le Domaine Optique 0.4-14µm", PhD dissertation, Institut Supérieur de l'Aéronautique et de l'Espace, December 16th 2010.
- [12] T. Loke, "High resolution, high speed hyperspectral cameras for laboratory industrial and airborne applications", Norsk Elektro Optikk, http://www.hyspex.no
- [13] A. Lesaignoux, S. Fabre, X. Briottet ; « Influence of soil moisture content on spectral reflectance of bare soils in the 0.4 – 14 µm domain » ; International Journal of Remote Sensing, accepted after modifications.
- [14] D.M. Gates, "Water relations of forest trees", IEEETGARS, Volume 29, Nov. 1991, Page(s): 836 – 842

Clément Albinet received the Eng. Degree from École Centrale de Nantes, France, in 2008 and the M.Sc. degree from the University of Nantes, France, in 2008. Then, he has worked on the processing of BIOSAR 2 data campaign during a short term contract of 6 month. Since 2009, he is with the Office National d'Etudes et de Recherches Aérospatiales (ONERA), in Toulouse as a PhD student.

Pierre Borderies was born in France in 1953. He received the diploma of Engineer from Ecole Superieure d'Electricite (SUPELEC), Paris, France in 1975. After a period of teaching in Venezuela, he joined the Centre d'Etudes et de Recherches de Toulouse, part of Office National d'Etudes et de Recherches Aérospatiales (CERT-ONERA) in 1979.

Since then, he has been working as a research engineer in the microwaves department. In 1990-91, he spent a sabbatical year at New York University, Farmingdale, NY. In 1997, he obtained the university diploma of Habilitation to Direct Research. He has worked in the fields of radiation and scattering of antennas, microwave devices, radar targets imaging, frequency selective surfaces, ultra wide band scattering, subsurface targets, electromagnetic modeling, natural targets scattering and remote sensing. His current interests include electromagnetic modeling for radar remote sensing and proximity scattering experiments.

Jean-Philippe Gastellu-Etchegorry received the PhD degree in solar physics and the Ph.D. degree in remote sensing in 1983 and 1989, respectively.

He is currently Professor of physics and remote sensing at Paul Sabatier University, Toulouse, France. He conducts two major research activities: spectrometric remote sensing applied to forest studies for extracting biophysical and biochemical properties as an input to ecosystem functioning models and radiative transfer

modeling for simulating the reflectance, apparent temperature, and radiative environment of forests and vegetation covers. He has been a Principal Investigator in several international projects such as the 1991 NASA Multisensor Aircraft Campaign in Europe and the 1994 European Multi-Airborne Campaign of the European Space Agency (ESA).

Annexes

- 1. Annexe Procédure d'acquisition TropiScat et réseau d'antennes
- 2. Annexe Mesures tomographiques exhaustives
- 3. Annexe Correction de la propagation radar
- 4. Annexe Programme d'acquisition TreeScat
- 5. Annexe Programme d'acquisition TropiScat
- 6. Annexe Programme d'acquisition tomographique

1. Annexe Procédure d'acquisition TropiScat et réseau d'antennes

1.1.Description du réseau d'antenne

Figure 37. Vue d'arrière du réseau d'antenne monté sur la tour. Les termes « R » et « T » correspondent respectivement aux voies de réception et de transmission, et les termes H et V à la polarisation horizontale ou verticale de l'antenne.

Le design du réseau a été conçu par Dinh Ho Tong Minh, Stefano Tebaldini et Fabio Rocca, de l'Université Politecnico di Milano.

1.2.Situation des antennes

Figure 38. Montage sur la tour des antennes correspondant à la transmission des polarisations en H et V.

Figure 39. Montage sur la tour des antennes correspondant à la réception en H et à la transmission en V.

Figure 40. Montage sur la tour des antennes correspondant à la réception des polarisations V et H.

1.3. Taille et noms des fichiers de mesure

Chaque fichier de mesure est stocké au format ASCII (American Standard Code for Information Interchange) et a une taille de 100 934 octets. L'archivage journalier des mesures permet de réduire leur taille au tiers de leur valeur originale.

Le nom de chaque fichier de mesure a été choisi pour être unique et contenir toutes les informations relatives à la mesure. Il est formé d'un préfixe commun à chaque série de mesure et d'un suffixe indiquant le type de la mesure.

Pour une mesure effectuée le dd/mm/yyyy à hh:mn, le format du préfixe est :

« PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii* »

L'indice de la mesure *iiiii* est incrémenté de 1 à chaque mesure et permet de s'affranchir des données manquantes dans les séries de mesures.

Pour le suffixe d'une mesure effectuée sur la bande de fréquence *i* (*1 pour 400-600 MHz, 2 pour 600-800 MHz et 3 pour 800-1000 MHz*), en polarisation *PQ*, 4 formats de mesures sont possibles :

« *_BAND*i_PQ*.CSV » pour une mesure effectuée avec les antennes R1 et T1.

« *_BAND*i* _*PQ*_R*N*_T*M*.CSV » pour une mesure effectuée avec les antennes R*N* et T*M*.

« *_BAND*i* _*PQ*_BURST*jj*.CSV » pour la *jj* ^{ième} mesure, sur 10 mesures effectuées en rafale, avec les antennes R1 et T1.

« *_BAND*i* _CABLE.CSV » pour une mesure du câble de calibration avant la calibration.

Par exemple, le fichier avec le nom « PAR_Y2012-M03-D11_23H15_I14597_BAND1_VH_R2_T5.CSV » correspond à la mesure effectuée le 11 mars 2012 à 23 :15, qui correspond à la 14597^{ème} mesure depuis le lancement de l'expérimentation. Cette mesure a été faite dans la bande 400-600 MHz, en polarisation VH, et avec les antennes R2V et T5H.

1.4.Procédure d'acquisition

• Algorithme

Pour BANDE dans [400-600MHz, 600-800MHz, 800-1000MHz] - Calibration (3s)

> Pour POLARISATION dans [HH, HV, VH, VV] - Mesure (3s)

Si (BANDE = 400-600MHz) ou TOMO_COMPLETE Pour MESURE dans [liste des 15 mesures tomographiques donnée dans le 1.5.] - **Mesure (3s)**

Pour BANDE dans [400-600MHz, 800-1000MHz] - Calibration (3s)

> Pour BURST de 1 à 10 Pour POLARISATION dans [HH, HV, VH, VV] - **Mesure (3s)**

Une tomographie complète est programmée à 00:00(+3min), 00:15(+3min), 00:30(+3min), 00:45(+3min), 06:00, 06:15, 06:30, 06:45, 12:00, 12:15, 12:30, 12:45, 18:00, 18:15, 18:30 et 18:45.

La durée de la séquence de mesures à une date donnée est à peu près de 7 min 40, et de 13 min 40 pour une tomographie complète.

• Liste des mesures

Avec le format de fichiers défini précédement, la séquence de mesures est la suivante :

PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_CABLE.CSV

PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HV.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_VH.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_VV.CSV

PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R2_T1.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R3_T1.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R1_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R2_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R3_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R4_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R1_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R2_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R3_T3.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R4_T3.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R4_T4.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R5_T4.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R1_T5.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R2_T5.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_R3_T5.CSV

PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_CABLE.CSV

PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HV.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_VH.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_VV.CSV

Si tomographie complète uniquement :

PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R2_T1.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R3_T1.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R1_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R2_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R3_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R4_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R1_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R1_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R3_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R3_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R4_T4.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R4_T4.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R4_T4.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R5_T4.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R1_T5.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R1_T5.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R1_T5.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND2_HH_R1_T5.CSV

PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_CABLE.CSV

PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HV.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_VH.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_VV.CSV

Si tomographie complète uniquement :

PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R2_T1.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R3_T1.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R1_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R2_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R3_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R4_T2.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R1_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R1_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R3_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R3_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R4_T3.CSV PAR_Yyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R4_T3.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R5_T4.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R1_T5.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R2_T5.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_R3_T5.CSV

PAR_Yyyyy-Mmm-Ddd_hhHmn_Iiiiii_BAND1_HH_BURST01.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HV_BURST01.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 VH BURST01.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND1 VV BURST01.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 HH BURST02.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND1 HV BURST02.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 VH BURST02.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 VV BURST02.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_BURST03.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_Iiiiii_BAND1_HV_BURST03.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_VH_BURST03.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 VV BURST03.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 HH BURST04.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 HV BURST04.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 VH BURST04.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 VV BURST04.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 HH BURST05.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND1 HV BURST05.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND1 VH BURST05.CSV PAR Yvvvv-Mmm-Ddd hhHmn liiiii BAND1 VV BURST05.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_BURST06.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 HV BURST06.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND1 VH BURST06.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_VV_BURST06.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 HH BURST07.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 HV BURST07.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 VH BURST07.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND1 VV BURST07.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1 HH BURST08.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 HV BURST08.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND1 VH BURST08.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_VV_BURST08.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 HH BURST09.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 HV BURST09.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 VH BURST09.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_VV_BURST09.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND1_HH_BURST10.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND1 HV BURST10.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND1 VH BURST10.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND1 VV BURST10.CSV

PAR_Yyyyy-Mmm-Ddd_hhHmn_Iiiiii_BAND3_HH_BURST01.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_Iiiiii_BAND3_HV_BURST01.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_Iiiiii_BAND3_VH_BURST01.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_Iiiiii_BAND3_VV_BURST01.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HH BURST02.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_Iiiiii_BAND3_HV_BURST02.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_VH_BURST02.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 VV BURST02.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HH BURST03.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HV_BURST03.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_VH_BURST03.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 VV BURST03.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HH BURST04.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HV BURST04.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_VH_BURST04.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND3 VV BURST04.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HH BURST05.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HV_BURST05.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_VH_BURST05.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_VV_BURST05.CSV PAR Yyyyy-Mmm-Ddd hhHmn liiiii BAND3 HH BURST06.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HV BURST06.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 VH BURST06.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_Iiiiii_BAND3_VV_BURST06.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HH BURST07.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HV BURST07.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 VH BURST07.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 VV BURST07.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HH BURST08.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HV_BURST08.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_VH BURST08.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_VV_BURST08.CSV PAR_Yyyyy-Mmm-Ddd_hhHmn_liiiii_BAND3_HH_BURST09.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HV BURST09.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 VH BURST09.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 VV BURST09.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HH BURST10.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 HV BURST10.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 VH BURST10.CSV PAR Yyyyy-Mmm-Ddd hhHmn Iiiiii BAND3 VV BURST10.CSV

Pour chaque date, on a donc 152 mesures sans tomographie complète, et 272 mesures si celle-ci est acquise.

1.5.Distance entre antennes

Couples	Distance entre antennes (m)							
d'antennes	HH	HV-VH	VV					
BURST	0.89	1.65	2.43					
R2_T1	1.44	2.00	2.68					
R3_T1	2.15	2.56	3.12					
R1_T2	1.13	1.79	2.53					
R2_T2	0.80	1.60	2.40					
R3_T2	1.13	1.79	2.53					
R4_T2	1.79	2.26	2.88					
R1_T3	2.15	2.56	3.12					
R2_T3	1.44	2.00	2.68					
R3_T3	0.89	1.65	2.43					
R4_T3	0.89	1.65	2.43					
R4_T4	0.89	1.65	2.43					
R5_T4	0.89	1.65	2.43					
R1_T5	4.08	4.31	4.66					
R2_T5	3.30	3.58	4.00					
R3_T5	2.53	2.88	3.39					

Remarque :

Les mesures RN_TM indiquées dans le tableau sont présentées dans l'ordre chronologique (liste des 15 mesures tomographiques).

1.6.Phase

Les boitiers de commutation représentent une longueur de câble de 29,24 cm et d'où une distance parcourue à la vitesse de la lumière de 34 cm.

Il est donc nécessaire de considérer un trajet supplémentaire à la vitesse de la lumière de 34 cm pour les antennes R5H, T5H et pour toutes les antennes RNV et TMV (avec N, M qui valent [1-5]).

La distance réelle (distance antennes-cible) à enlever est donc 0 cm pour *HH_R1_T1*, de 17 cm pour *HV_R1_T1* ou *VH_R1_T1*, et de 34 cm pour *VV_R1_T1*.

2. Annexe Mesures tomographiques exhaustives

Dans cette annexe est présenté l'ensemble des tomogrammes et des résultats intermédiaires relatifs aux campagnes de mesures tomographiques haute résolution décrites en détail dans la **[Publication 5]**.

2.1.Liste exhaustive des tomogrammes et des profils verticaux correspondants

2.1.1. Parcelle P0

Figure 41. Tomogrammes bruts de PO (gauche) puis avec apodisation et correction de la pente (droite) pour les polarisations, de haut en bas, HH, HV, VH et VV. Les positions des antennes sont dessinées en rouge en haut à gauche, le niveau du sol en noir, et les mesures de hauteur de la canopée en gris.

Figure 42.Profils verticaux de rétrodiffusion de P0 obtenus à partir des tomogrammes avec apodisation.

2.1.2. Parcelle P1

• Campagne de novembre 2011 (P1N)

Figure 43. Tomogrammes bruts de P1N (gauche) puis avec apodisation et correction de la pente (droite) pour les polarisations, de haut en bas, HH, HV, VH et VV. Les positions des antennes sont dessinées en rouge en haut à gauche, le niveau du sol en noir, et les mesures de hauteur de la canopée en gris.

Figure 44.Profils verticaux de rétrodiffusion de P1N obtenus à partir des tomogrammes avec apodisation.

• Campagne de mai 2012 (P1M)

Figure 45. Tomogrammes bruts de P1M (gauche) puis avec apodisation et correction de la pente (droite) pour les polarisations, de haut en bas, HH, HV, VH et VV. Les positions des antennes sont dessinées en rouge en haut à gauche, le niveau du sol en noir, et les mesures de hauteur de la canopée en gris.

Figure 46.Profils verticaux de rétrodiffusion de P1M obtenus à partir des tomogrammes avec apodisation.

2.1.3. Parcelle P2

Figure 47. Tomogrammes bruts de P2 (gauche) puis avec apodisation et correction de la pente (droite) pour les polarisations, de haut en bas, HH, HV, VH et VV. Les positions des antennes sont

dessinées en rouge en haut à gauche, le niveau du sol en noir, et les mesures de hauteur de la canopée en gris.

Figure 48.Profils verticaux de rétrodiffusion de P2 obtenus à partir des tomogrammes avec apodisation.

2.1.4. Parcelle P3

Figure 49. Tomogrammes bruts de P3 (gauche) puis avec apodisation et correction de la pente (droite) pour les polarisations, de haut en bas, HH, HV, VH et VV. Les positions des antennes sont dessinées en rouge en haut à gauche, le niveau du sol en noir, et les mesures de hauteur de la canopée en gris.

Figure 50.Profils verticaux de rétrodiffusion de P3 obtenus à partir des tomogrammes avec apodisation.

2.1.5. Parcelle P4

Figure 51. Tomogrammes bruts de P4 (gauche) puis avec apodisation et correction de la pente (droite) pour les polarisations, de haut en bas, HH, HV, VH et VV. Les positions des antennes sont

dessinées en rouge en haut à gauche, le niveau du sol en noir, et les mesures de hauteur de la canopée en gris.

Figure 52.Profils verticaux de rétrodiffusion de P4 obtenus à partir des tomogrammes avec apodisation.

2.1.6. Parcelle P5

Figure 53. Tomogrammes bruts de P5 (gauche) puis avec apodisation et correction de la pente (droite) pour les polarisations, de haut en bas, HH, HV, VH et VV. Les positions des antennes sont dessinées en rouge en haut à gauche, le niveau du sol en noir, et les mesures de hauteur de la canopée en gris.

Figure 54.Profils verticaux de rétrodiffusion de P5 obtenus à partir des tomogrammes avec apodisation.

2.1.7. Parcelle P6

Figure 55. Tomogrammes bruts de P6 (gauche) puis avec apodisation et correction de la pente (droite) pour les polarisations, de haut en bas, HH, HV, VH et VV. Les positions des antennes sont

dessinées en rouge en haut à gauche, le niveau du sol en noir, et les mesures de hauteur de la canopée en gris.

Figure 56.Profils verticaux de rétrodiffusion de P6 obtenus à partir des tomogrammes avec apodisation.

2.1.8. Parcelle P7

Figure 57. Tomogrammes bruts de P7 (gauche) puis avec apodisation et correction de la pente (droite) pour les polarisations, de haut en bas, HH, HV, VH et VV. Les positions des antennes sont dessinées en rouge en haut à gauche, le niveau du sol en noir, et les mesures de hauteur de la canopée en gris.

Figure 58.Profils verticaux de rétrodiffusion de P7 obtenus à partir des tomogrammes avec apodisation.

2.1.9. Parcelle P8

Figure 59. Tomogrammes bruts de P8 (gauche) puis avec apodisation et correction de la pente (droite) pour les polarisations, de haut en bas, HH, HV, VH et VV. Les positions des antennes sont

dessinées en rouge en haut à gauche, le niveau du sol en noir, et les mesures de hauteur de la canopée en gris.

Figure 60.Profils verticaux de rétrodiffusion de P8 obtenus à partir des tomogrammes avec apodisation.

2.2.Résultats intermédiaires

Dans cette section, une comparaison des profils verticaux et des coefficients de rétrodiffusion obtenus est effectuée en fonction des différents paramètres biophysiques. Les mesures radar sont comparées deux par deux, où chaque paire est choisie pour mettre en évidence l'effet d'un paramètre particulier.

Il est important de noter qu'avec un tomogramme acquis par parcelle de forêt, une certaine prudence doit être exprimée sur la validité statistique des résultats qui suivent, même si les mesures de cette étude ont été réalisées pour de nombreux points de fréquence et de positions des antennes.

2.2.1. Influence de la densité des arbres pour une hauteur constante du couvert forestier

Le premier paramètre considéré est la densité d'arbre (nombre d'arbres par hectare). Les parcelles présentées sont caractérisées par une même hauteur du couvert forestier et par une pente du sol nulle.

Deux cas sont abordés. Les parcelles avec une biomasse importante sont représentées par deux tomogrammes acquis sur un même site avant et après une coupe de certains arbres représentant 120 tonnes/ha. Les parcelles avec des faibles biomasses sont trois parcelles caractérisées par plusieurs densités d'arbres et des biomasses inférieures à 50 tonnes/ha.

• Parcelles avec une faible biomasse

Pour les parcelles avec une faible biomasse, trois parcelles au sol horizontal et avec des arbres d'environ 7 m de haut sont considérées. La première, la parcelle P0 a une densité de 1 800 arbres/ha et un diamètre moyen de troncs de 9 cm, soit une biomasse résultante de 13 tonnes/ha. La parcelle P7 a la même densité d'arbres que P0, mais avec un diamètre moyen plus grand, aux environs de 14 cm, pour une biomasse totale de 33 tonnes/ha. Enfin, la parcelle P8 atteint une biomasse de 49 tonnes/ha, avec le même diamètre moyen des troncs que P7, mais une densité plus élevée, dans les 2 900 arbres/ha.

Figure 61. Profils verticaux de rétrodiffusion de P0, P7 et P8.

Parcelle -	P0 (1	P0 (13 tonnes/ha)			P7 (33 tonnes/ha)			P8 (49 tonnes/ha)		
	HH	HV	VV	HH	HV	VV	HH	HV	VV	
Total	-19.8	-27.7	-20.4	-17.4	-20.8	-16.2	-14.1	-18.8	-14.5	

Table 5. Coefficients de rétrodiffusion des différents contributeurs de P0, P7 et P8.

• Parcelles avec une forte biomasse

La parcelle P1 a été imagée à deux reprises, en novembre 2011 (P1N) et en mai 2012 (P1M), après une coupe d'éclaircie. La densité a diminué de 670 à 500 arbres/ha et la biomasse est passée de 260 à 140 tonnes / ha. Le diamètre moyen de troncs a diminué de 37 à 32 cm, car la coupe a été faite principalement sur des arbres massifs, et la hauteur moyenne des arbres est demeurée constante autour de 25 m.

Figure 62. Profils verticaux de rétrodiffusion de P1 en novembre (P1N) et en mai (P1M).

Parcelle -	P1N (2	60 tonn	es/ha)	P1M (140 tonnes/ha)			
Parcelle	HH	HV	VV	НН	HV	VV	
		Coeffi	cient de	rétrodif	fusion		
Volume	-21.4	-27.9	-23.6	-21.8	-26.9	-25.1	
Sol	-19.5	-26.0	-26.2	-20.5	-25.5	-19.3	
Total	-16.6	-23.1	-20.9	20.9 -17.2		-17.7	
	Part de	e la cont	ribution	dans la	réponse	totale	
Volume	39%	39%	65%	42%	42%	21%	
Sol	61%	61%	35%	58%	58%	79%	

Table 6. Coefficients de rétrodiffusion des différents contributeurs de P1 en novembre (P1N) et enmai (P1M).

2.2.2. Influence de la croissance de la forêt

Pour l'étude de l'influence de la croissance des forêts, trois parcelles des biomasses et des hauteurs d'arbres croissantes ont été sélectionnés. La parcelle P7 est la plus basse, avec une hauteur moyenne d'arbres de 6 m et une densité de 1 800 arbres/ha. Ensuite, la parcelle P2 mesure 16 m de haut et une densité de 1 000 arbres/ha. Enfin, la parcelle P1M a la canopée la plus haute, à 25 m, et a une densité de 500 arbres/ha. Ces parcelles présentent des biomasses croissantes, de 33 à 140 tonnes/ha.

Figure 63. Profils verticaux de rétrodiffusion de P7, P2 et P1M.

Parcelle		P7 (6 m)			P2 (16 m)			P1M (25 m)		
	HH	HV	VV	нн	HV	VV	HH	HV	VV	
	Coefficient de rétrodiffusion									
Volume				-18.8	-23.8	-22.3	-21.8	-26.9	-25.1	
Sol				-21.9	-29.0	-21.5	-20.5	-25.5	-19.3	
Total	-17.4	-20.8	-16.2	-17.0	-22.7	-18.9	-18.1	-23.1	-18.3	
	Part de la contribution dans la réponse totale									
Volume				67%	76%	46%	42%	42%	21%	
Sol				33%	24%	54%	58%	58%	79%	

Table 7. Coefficients de rétrodiffusion des différents contributeurs de P7, P2 et P1M.

2.2.3. Influence de la présence de sous-bois

L'influence de la présence de sous-bois a été étudiée pour deux configurations : pour des parcelles avec pente descendantes et pour des parcelles avec pentes montantes.

• Parcelles avec pente descendante

Deux parcelles en pente descendante ont été imagées : P3, pour laquelle il n'y avait presque pas de sous-bois, et P5, caractérisée par un sous-bois important. La hauteur de la forêt est d'environ 25

m pour les deux parcelles. La densité augmente un peu avec la présence de sous-bois, par contre, la biomasse passe de 200 à 300 tonnes/ha.

Figure 64. Profils verticaux de rétrodiffusion de P3 et P5.

Parcelle	P3 (Pa	s de sou	s-bois)	P5 (Sous-bois)						
Parcelle	HH	HV	VV	HH	ΗV	VV				
		Coefficient de rétrodiffusion								
Volume	-18.9	-26.1	-22.6	-20.6	-26.5	-23.6				
Sol	-17.8	-28.4	-20.5	-24.9	-30.0	-24.0				
Total	-15.3	-24.1	-18.4	-19.3	-24.9	-20.8				
	Part de	Part de la contribution dans la réponse total								
Volume	43%	63%	38%	73%	69%	53%				
Sol	57%	37%	62%	27%	31%	47%				

Table 8. Coefficients de rétrodiffusion des différents contributeurs de P3 and P5.

• Parcelles avec une pente montante

Pour l'étude des pentes montantes, deux autres parcelles ont été prises en compte : P4, une parcelle sans sous-bois, et P5, une parcelle avec un sous bois important. Les deux parcelles ont des hauteurs du couvert d'environ 27 m et des densités similaires. Leur biomasse passe de 170 à 300 tonnes/ha.

Figure 65. Profils verticaux de rétrodiffusion de P4 et P6.

Parcelle	P4 (Pas	s de sou	s-bois)	P6 (Sous-bois)			
Faitelle	HH	ΗV	VV	НН	HV	VV	
		Coeffi	cient de	rétrodif	fusion		
Volume	-23.0	-30.2	-26.3	-24.8	-30.6	-27.7	
Sol	-27.3	-27.8	-27.6	-24.4	-27.4	-22.6	
Total	-21.6	-25.8	-23.9	-21.6	-25.7	-21.5	
	Part de	la cont	ribution	dans la	réponse	totale	
Volume	73%	36%	57%	48%	32%	24%	
Sol	27%	64%	43%	52%	68%	76%	

Table 9. Coefficients de rétrodiffusion des différents contributeurs de P4 et P6.

2.2.4. Influence de la pente

L'influence de la pente du terrain a été étudié sur trois parcelles similaires: P3, qui a une pente descendante, P1M un sol horizontal, et P4, une pente ascendante. Les trois parcelles ont des densités proches de 550 arbres/ha, des hauteurs de la canopée aux environs de 25 m et des biomasses aux alentours de 170 tonnes/ha.

Figure 66. Profils verticaux de rétrodiffusion de P3, P1M et P4.

Parcelle	P3 (Montante)			P1M	P1M (Horizontale)			P4 (Descendante)		
	HH	ΗV	VV	НН	ΗV	VV	HH	HV	VV	
	Coefficient de rétrodiffusion									
Volume	-18.9	-26.1	-22.6	-21.8	-26.9	-25.1	-23.0	-30.2	-26.3	
Sol	-17.8	-28.4	-20.5	-20.5	-25.5	-19.3	-27.3	-27.8	-27.6	
Total	-15.3	-24.1	-18.4	-18.1	-23.1	-18.3	-21.6	-25.8	-23.9	
	Part de la contribution dans la réponse totale									
Volume	43%	63%	38%	42%	42%	21%	73%	36%	57%	
Sol	57%	37%	62%	58%	58%	79%	27%	64%	43%	

Table 10. Coefficients de rétrodiffusion des différents contributeurs de P3, P1M et P4.

3. Annexe Correction de la propagation Radar

Démonstrations des relations entre les SER recherchées et les mesures radar en fonction du type de cible : point, surface, volume ou volume de forêt, considéré.

3.1.Réponse d'une cible ponctuelle

Soit un système radar bistatique (cas général), composé d'une antenne d'émission (e) et d'une antenne de réception (r), qui mesure la réponse d'une cible ponctuelle.

La puissance rayonnée par l'antenne d'émission est proportionnelle à son gain $G_e(\theta_e, \varphi_e)$:

$$P_{rayonn\acute{e}e} = G_e \cdot P_e$$
 [1]

Cette puissance émise va se propager à la vitesse de la lumière en se répartissant sur une surface sphérique.

On a alors la densité de puissance surfacique reçue par la cible à la distance R_1 qui s'écrit :

$$\Pi_c = \frac{G_e}{4\pi R_1^2} P_e \quad [2]$$

La puissance rétrodiffusée par la cible, par définition de la Section Équivalente Radar (SER) notée σ , s'exprime :

$$P_c = \sigma . \Pi_c$$
 [3]

De la même manière que précédemment, la puissance rétrodiffusée par la cible va se répartir sur une sphère de rayon R_2 , avant d'arriver à l'antenne de réception avec la densité de puissance :

$$\Pi_r = \frac{P_c}{4\pi R_2^2} \quad [4]$$

La puissance reçue par l'antenne, en fonction de vecteur de Poynting, est liée à l'ouverture effective de l'antenne A_e :

$$P_r = A_e \cdot \Pi_r \quad [5]$$

Or, cette ouverture est liée au gain $G_r(\theta_r)$ de l'antenne de réception par la relation :

$$G_r = \frac{4\pi \cdot A_e}{\lambda^2} \quad [6]$$

Alors, d'après [2], [3], [4], [5], [6], et en considérant les antennes d'émission et de réceptions comme très proches ($R_1 \approx R_2 = R$), on obtient :

$$P_{r} = \frac{G_{r} \cdot \lambda^{2}}{4\pi} \cdot \frac{1}{4\pi R^{2}} \cdot \sigma \cdot \frac{G_{e}}{4\pi R^{2}} \cdot P_{e} \quad [7]$$

La valeur $|S(r)|^2$ mesurée par l'appareil de mesure n'est pas strictement identique à la valeur $\frac{P_r}{P_e}$ attendue. En effet, il est nécessaire de calibrer, d'un point de vue radiométrique, la mesure de l'appareil.

Pour cela, on mesure l'énergie rétrodiffusée par un réflecteur dans la scène :

$$\int_{t_A}^{t_B} \left| S(t) \right|^2 dt = \sigma_m \quad [8]$$

On fait un changement de variable :

$$\int_{R_A}^{R_B} \left| S(r) \right|^2 dr = \sigma_m \quad [9]$$

On compare cette valeur à la valeur théorique attendue :

- Trièdre à face carrées de *a* de côté, $\sigma_{th} = \frac{12\pi a^4}{\lambda^2}$
- Trièdre à face triangulaires de a de côté, $\sigma_{th} = \frac{4\pi a^4}{3\lambda^2}$

• Dièdre avec l et L comme côtés, $\sigma_{th} = \frac{8\pi \ l^2 L^2}{\lambda^2}$

En écrivant,

$$\frac{P_r}{P_e} = \left| \sqrt{\frac{\sigma_{th}}{\sigma_m}} S(r) \right|^2 \quad [10]$$

On peut alors vérifier qu'on a bien :

$$\int_{R_A}^{R_B} \frac{P_r}{P_e} dr = \sigma_{th} \quad [11]$$

D'autre part, la longueur d'onde λ s'exprime à l'aide de la fréquence centrale f de la bande de fréquence considérée :

$$\lambda = \frac{c}{f} \quad [12]$$

Et les gains d'antennes $\,G_e\,$ et $\,G_r$, en dB, peuvent être approximés par :

$$G_e(\theta_{Ne}) = 3 \left(\frac{\theta_{Ne}}{\theta_{3dB \ e}}\right)^2 \text{ et } G_r(\theta_{Nr}) = 3 \left(\frac{\theta_{Nr}}{\theta_{3dB \ r}}\right)^2 \quad [13]$$

Avec $\theta_{_{3dB}}$ l'ouverture à 3dB de l'antenne dans la polarisation considérée et $\theta_{_N}$ l'angle de visée par rapport à la visée de l'antenne.

Cet angle θ_N se déduit de la hauteur Z de l'antenne, de la distance R de la cible et de l'angle de visée de l'antenne θ_V :

$$\theta_N = A \tan\left(\frac{\sqrt{R^2 - Z^2}}{Z}\right) - \theta_V \quad [14]$$

Alors, avec [10] et [12], [7] devient :

On a donc obtenu une relation reliant la valeur S(R), mesurée par l'analyseur de réseau, et la SER σ recherchée.

3.2. Réponse d'une cible surfacique

Soit un système radar identique au système précédent qui mesure la réponse d'une cible de surface S :

En suivant un raisonnement identique à celui qui a permis d'aboutir à [7], on relie le rapport de puissante à la SER surfacique σ_0 par :

$$\frac{P_r}{P_e} = \iint_{S} \frac{\lambda^2 G_e G_r}{(4\pi)^3 R^4} . \sigma_0 . dS \quad [15]$$

On considère une répartition statistique identique des éléments ponctuels sur la surface, et une longueur d_z très petite devant R, alors :

$$\frac{P_r}{P_e} = \frac{\lambda^2 G_e G_r}{(4\pi)^3 R^4} \cdot \sigma_0 \cdot S \quad [16]$$

On va maintenant exprimer S :

Sachant que l'on a considéré d_z , et donc d_R , très petits devant R, on a alors :

$$S = d_y \cdot d_{az}$$
 avec $d_{az} = \Phi \cdot R$ et $d_y = \frac{dR}{\sin(\theta_i)}$ [17]

Ce qui donne :

$$S = \frac{\Phi \cdot R \cdot dR}{\sin(\theta_i)} \quad [18]$$

Avec

$$\sin(\theta_i) = \frac{\sqrt{R^2 - Z^2}}{R} \quad [19]$$

et

$$dR = \frac{N_f}{N_{fourrier}} \frac{c}{2\Delta f} \quad [20]$$

 Δf étant la bande de fréquence utilisée, Nf le nombre de fréquences lors de la mesure et *Nfourrier* la valeur utilisée pour la transformée de Fourrier inverse.

Alors, avec [10], [18], [19] et [20], [16] permet de retrouver la SER pour un élément surfacique :

$$\sigma_0 = \frac{2 \left(4\pi\right)^3 f^2 \Delta f \,\sigma_{th} \,N_{fourrier}}{c^3 \Phi \,\sigma_m \,N_f} \cdot \frac{R^2 \sqrt{R^2 - Z^2}}{G_e G_r} \left|S(R)\right|^2$$
3.3.Réponse d'une cible volumique

Soit un système radar identique au système précédent qui mesure la réponse d'une cible de volume V:

En suivant un raisonnement identique à celui qui a permis d'aboutir à [7], on relie le rapport de puissante à la SER volumique ρ_0 par :

$$\frac{P_r}{P_e} = \iint_{S} \frac{\lambda^2 G_e G_r}{(4\pi)^3 R^4} \cdot \rho_0 \cdot dV \quad [21]$$

On considère une répartition statistique identique des éléments ponctuels dans le volume, et une longueur d_R très petite devant R, alors :

$$\frac{P_r}{P_e} = \frac{\lambda^2 G_e G_r}{(4\pi)^3 R^4} . \rho_0 . V$$
 [22]

Avec l'hypothèse précédente, on a :

$$V = dR.d_{az}.d_{\theta}$$
 avec $d_{az} = \Phi.R$ et $d_{\theta} = \Theta.R$ [23]

Ce qui donne :

$$V = \Phi \cdot \Theta \cdot R^2 \cdot dR \quad [24]$$

Alors, avec [10], [12], [20] et [24], [22] permet de retrouver la SER pour un élément volumique :

$$\rho_0 = \frac{2 (4\pi)^3 f^2 \Delta f \sigma_{th} N_{fourrier}}{c^3 \Phi \Theta \sigma_m N_f} \cdot \frac{R^2}{G_e G_r} |S(R)|^2$$

3.4. Réponse d'un élément volumique de forêt à hauteur constante

Soit un système radar identique au système précédent qui mesure la réponse d'un élément de volume *V* et de hauteur *h* constante :

Le bilan de puissance est donné par [22], avec le volume élémentaire qui s'exprime :

$$V = S.d_{\theta}$$
 avec $S = \frac{\Phi.R.dR}{\sin(\theta_i)}$ et $d_{\theta} = \Theta.R$ [25]

Mais, alors que R augmente, d_{θ} reste constant.

On approche alors d_{θ} par d_{L} :

$$d_{\theta} = d_L = \frac{h}{\sin(\theta_i)} \quad [26]$$

Ce qui donne :

$$V = \frac{\Phi.h.R.dR}{\sin(\theta_i)^2} \quad [27]$$

D'où, avec [10], [12], [19], [20] et [27], [22] donne la SER pour un élément volumique de hauteur constante :

$$\rho_{0} = \frac{2 (4\pi)^{3} f^{2} \Delta f \sigma_{th} N_{fourrier}}{c^{3} \Phi h \sigma_{m} N_{f}} \cdot \frac{R^{2} \sqrt{R^{2} - Z^{2}}}{G_{e} G_{r}} |S(R)|^{2}$$

ANNÉE 2013

3.5.Réponse d'un élément volumique d'orée de forêt

Soit un système radar identique au système précédent qui mesure la réponse d'un élément de volume V :

Le bilan de puissance est donné par [22], avec le volume élémentaire qui s'exprime :

$$V = dR.d_{az}.d_{\theta}$$
 avec $d_{az} = \Phi.R$ et $d_{\theta} = \frac{\pi}{2}r = \frac{\pi}{2}(R - R_0)$ [28]

Ce qui donne :

$$V = \frac{\pi}{2} \Phi . R.(R - R_0).dR$$
 [29]

Alors, avec [10], [12], [20] et [29], [22] permet de retrouver la SER pour un élément volumique d'orée de forêt :

$$\rho_{0} = \frac{4^{4} \pi^{2} f^{2} \Delta f \sigma_{th} N_{fourrier}}{c^{3} \Phi \sigma_{m} N_{f}} \cdot \frac{R^{3}}{G_{e} G_{r} (R - R_{0})} |S(R)|^{2}$$

ANNÉE 2013

3.6.Réponse d'un élément en tomographie 2D

Soit un système radar identique au système précédent qui mesure la réponse d'un ensemble *L* de diffuseurs ponctuels répartis en azimut :

En suivant un raisonnement identique à celui qui a permis d'aboutir à [7], on relie le rapport de puissante à la SER linéique σ par :

$$\frac{P_r}{P_e} = \iint_L \frac{\lambda^2 G_e G_r}{(4\pi)^3 R^4} . \sigma. dL \quad [30]$$

On considère une répartition statistique identique des éléments ponctuels sur la ligne, alors :

$$\frac{P_r}{P_e} = \frac{\lambda^2 G_e G_r}{(4\pi)^3 R^4} . \sigma . L \quad [31]$$

Avec la longueur L qui est liée au nombre de cibles interceptées par le lobe à 3dB :

$$L = \Phi . R \quad [30]$$

Alors, avec [31], [30] permet de retrouver la SER linéique pour un élément en tomographie 2D :

$$\rho_{0} = \frac{(4\pi)^{3} f^{2} \sigma_{th}}{c^{2} \Phi \sigma_{m}} \cdot \frac{R^{3}}{G_{e}G_{r}} |S(R)|^{2}$$

3.7.Réponse d'un élément en tomographie 3D

Soit un système radar identique au système précédent qui mesure la réponse d'un point P :

Nous nous trouvons dans le cas d'un cible ponctuelle, alors [*] donne directement la SER pour un élément en tomographie 3D :

$$\sigma = \frac{(4\pi)^3 f^2 \sigma_{th}}{c^2 \sigma_m} \cdot \frac{R^4}{G_e G_r} |S(R)|^2$$

4. Annexe Programme d'acquisition TreeScat

4.1.Description

Langage de programmation : C++ et Bash.

Lieu : Toulouse.

Communique avec l'instrument suivant : VNA.

Séquence de mesures : 1 mesure full-pol (HH, HV, VH, VV) dans la bande 400-1000 MHz toutes les 5 minutes.

4.2.Corps du programme

```
/*
                          Automanip V2
+
          Programme d'acquisition regulieres de donnees avec la VNA
*
*
                     Ecrit par Clement ALBINET.
*/
// VISA Library : visa32.lib (must be linked with)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <time.h>
#include <math.h>
#include "C:\Program Files\IVI Foundation\VISA\WinNT\include\visa.h"
#include "functions.h"
using namespace std;
main
int main ()
{
     int i, n, attente;
     time_t rawtime;
     tm * ptm;
   int year, month, day, hour, minute;
   bool nouveau dossier;
     char dossier[256];
     char cmd[256];
     i=1;
     // <u>Attente entre les mesures en</u> minute :
     attente = 5;
```

```
// Nombre d'acquisitions max (limite sur durée de 120 jours)
        n=floor(60/attente)*24*120;
        // ********************* Corps <u>du programme</u>
                                                          cout << "Lancement du Programme." << endl << endl;</pre>
        nouveau dossier = 1;
        // <u>Boucle qui détermine la</u> date <u>de la première</u> acquisition
        do
        {
               wait(5);
               // Get time
               time(&rawtime);
               ptm = localtime(&rawtime);
        } while (floor(float(ptm->tm min)/attente) != float(ptm->tm min)/attente);
       // date de debut :
       day = ptm->tm mday;
       month = ptm->tm mon+1;
      year = ptm->tm year+1900;
       hour = ptm->tm hour;
       minute = ptm->tm min;
        // Attention -> <u>la</u> VNA n'ecrit pas <u>le fichier si la longueur du</u> char <u>donnee dans</u>
viWrite est trop faible.
       while (i<=n)</pre>
        {
                // Get time
               time(&rawtime);
               ptm = localtime(&rawtime);
               if (((ptm->tm_year+1900)==year)&&((ptm->tm_mon+1)==month)&&(ptm-
>tm_mday==day) && (ptm->tm_hour==hour) && (ptm->tm_min==minute))
                {
                       if (nouveau dossier==1)
                        {
                               // <u>Création</u> <u>du</u> <u>dossier</u> <u>des mesures</u> <u>de</u> <u>chaque</u> jour
                               sprintf(dossier, "data_y%i-m%.2i-d%.2i", year, month, day);
                               sprintf(cmd, "md %s", dossier);
                               system(cmd);
                               nouveau dossier=0;
                       }
                       cout << i << "/" << n << " -> ";
                       measurement(ptm->tm year+1900, ptm->tm mon+1, ptm->tm mday, ptm-
>tm_hour, ptm->tm_min, dossier);
                       minute += attente;
                       if (minute >= 60)
                       {
                               minute -= 60;
                               hour += 1;
                        }
                       if (hour >= 24)
                       {
                               sprintf(dossier, "data y%i-m%.2i-d%.2i", year, month, day);
                               // Déplacement des fichiers txt
                               sprintf(cmd, "move *.txt %s\\ ", dossier);
                               system(cmd);
```

```
// Compression <u>du dossier de mesures de la veille</u>
                              sprintf(cmd, "7z.exe a -tzip %s.zip %s\\* >> log commandes.txt",
dossier, dossier);
                              system(cmd);
                              // Copie de l'archive sur serrato
                              sprintf(cmd, "copy %s.zip
\\\\Serrato\\public\\Albinet\\Automanip_acquisitions\\ >> log_commandes.txt", dossier);
                              system(cmd);
                              // Suppression <u>du dossier de mesures temporaire en</u> local
                              sprintf(cmd, "rmdir %s /S /Q >> log_commandes.txt", dossier);
                              system(cmd);
                              cout << " - Archivage des donnees termine -" << endl;</pre>
                              hour -= 24;
                              day += 1;
                              nouveau_dossier = 1;
                      }
                      if ((day > 31)&&(month==1)) // janvier
                      {
                              dav -= 31;
                              month += 1;
                      3
                      if ((day > 28)&&(month==2)) // fevrier
                      {
                              day -= 28;
                             month += 1;
                      }
                      if ((day > 31)&&(month==3)) // mars
                      {
                             day -= 31;
                             month += 1;
                      }
                      if ((day > 30) && (month==4)) // avril
                      {
                              day -= 30;
                              month += 1;
                      }
                      if ((day > 31)&&(month==5)) // mai
                      {
                              day -= 31;
                             month += 1;
                      }
                      if ((day > 30)&&(month==6)) // juin
                      {
                             day -= 30;
                             month += 1;
                      }
                      if ((day > 31)&&(month==7)) // juillet
                      {
                             day -= 31;
                             month += 1;
                      }
                      if ((day > 31) && (month==8)) // aout
                      {
                              day -= 31;
                              month += 1;
                       1
                      if ((day > 30)&&(month==9)) // septembre
                      {
                              day -= 30;
                              month += 1;
```

```
}
                if ((day > 31)&&(month==10)) // octobre
                {
                       day -= 31;
                       month += 1;
                }
                if ((day > 30) && (month==11)) // novembre
                {
                       day -= 30;
                       month += 1;
                }
                if ((day > 31) && (month==12)) // decembre
                {
                       day -= 31;
                      month += 1;
                }
                if (month > 12) // BONNE ANNEE !!!
                {
                       month -= 12;
                       year += 1;
                }
                ++i;
        }
       if (i<n)
        {
                // <u>Attente entre chaque boucle de</u> test <u>de</u> l'heure (<u>en</u> <u>seconde</u>)
                wait(2);
        }
}
cout << endl << "Fin <u>du</u> <u>Programme</u>." << endl;</pre>
```

return 0;

}

// Fonction qui lance et enregistre la mesure
void measurement(int year, int month, int day, int hour, int minute, char* dossier);

// Fonction qui attends le temps donne, en secondes.
void wait(int seconds);

// Convertir un entier en string
string num2str(int num);

```
ANNÉE 2013
```

```
/*
 *
                               Automanip V2
            Programme d'acquisition regulieres de donnees avec la VNA
                         Ecrit par Clement ALBINET.
 */
// VISA Library : visa32.lib (must be linked with)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <time.h>
#include <fstream>
#include <sstream>
#include "C:\Program Files\IVI Foundation\VISA\WinNT\include\visa.h"
#include "functions.h"
using namespace std;
#define BUFFER SIZE 255
#define BIGBUFFER SIZE 524287
****
// Fonction qui lance et enregistre la mesure
void measurement(int year, int month, int day, int hour, int minute, char* dossier)
{
       ViStatus status; // For checking errors
       ViSession defaultRM, instr; // Communication channels
      ViUInt32 retCount; // Return count from string I/O
      ViChar buffer[BUFFER SIZE]; // Buffer for string I/O
       ViChar bigbuffer[BIGBUFFER SIZE]; // Buffer for string I/O
       char tempDisplay[BUFFER_SIZE]; // Display buffer for example
       char bigtempDisplay[BIGBUFFER SIZE]; // Display buffer for example
       char file[256];
       char nom fichier[256];
       int i, pos11, pos12, pos21, pos22, debut11, debut12, debut21, debut22;
       string mesure11, mesure12, mesure21, mesure22;
       char ligne11[40], ligne12[40], ligne21[40], ligne22[40];
       size t length11, longueur11, length12, longueur12, length21, longueur21, length22,
longueur22;
       float freq, temp;
       string temp vna, accuracy;
       ofstream fichier, console;
       // Completer avec les bonnes valeurs :
       float temp calib = 60.0; // Température de calibration en °C
       float freq_min = 0.4;
       float freq_max = 1;
       int nb freq = 4001;
       char *pAddress = "TCPIP::134.212.13.56::inst0::INSTR"; //Changer l'adresse IP si besoin
       // Fichier en cours :
       sprintf(nom fichier, "data y%i-m%.2i-d%.2i %.2ih%.2i.dat", year, month, day, hour,
minute);
       // Begin by initializing the system
       status = viOpenDefaultRM(&defaultRM);
       // Error Initializing VISA...exiting
```

```
if (status < VI SUCCESS) {</pre>
               printf("Error : Can't initialize VISA\n");
               goto echec;
        }
       // Open communication with TCP/IP device
       status = viOpen(defaultRM, pAddress, VI NULL, VI NULL, &instr);
        // Error Handling
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : Can't connect to : " << pAddress << endl;</pre>
               goto echec;
       }
       // Set the timeout for message-based communication
       status = viSetAttribute(instr, VI ATTR TMO VALUE, 120000);
       // Error Handling
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : Can't set the timeout for message-based communication." <<</pre>
endl;
               goto echec;
       }
       // Lancement de l'acquisition
        sprintf(buffer, ":INITiate:IMMediate"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during the acquisition." << endl;</pre>
                goto echec;
        }
        // <u>Attente</u> avant <u>enregistrement</u> (<u>en seconde</u>)
       cout << "Acquisition ";</pre>
       wait(10);
       cout << "*";
       // <u>Sélection</u> <u>des</u> <u>données</u> S11
       sprintf(buffer, ":SENSe:TRACe1:SPARams S11"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during passing the VNA to S11 Display." <<
endl:
               goto echec;
       }
       wait(5);
       cout << ".";
       // Récupération et enregistrement des données à l'écran - S11
       sprintf(bigbuffer, ":TRACe:DATA?");
       status = viWrite(instr, (unsigned char *)&bigbuffer[0], 20, &retCount);
       status = viRead(instr, (unsigned char *)bigbuffer, BIGBUFFER_SIZE,&retCount);
        // Process data
       strncpy(bigtempDisplay, bigbuffer, retCount);
       bigtempDisplay[retCount] = 0; // Null-terminate display string.
       mesure11=bigtempDisplay;
       mesure11.erase(0,8);
       wait(2);
       cout << "-";
       // <u>Sélection</u> <u>des</u> <u>données</u> S12
       sprintf(buffer, ":SENSe:TRACe1:SPARams S12"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
```

```
cerr << "Error : A problem occurred during passing the VNA to S12 Display." <<
endl:
               goto echec;
       }
       wait(5);
       cout << ".";
       // <u>Récupération</u> <u>et</u> <u>enregistrement</u> <u>des</u> <u>données</u> à l'écran - S12
       sprintf(bigbuffer, ":TRACe:DATA?");
       status = viWrite(instr, (unsigned char *)&bigbuffer[0], 20, &retCount);
       status = viRead(instr, (unsigned char *)bigbuffer, BIGBUFFER SIZE,&retCount);
       // Process data
       strncpy(bigtempDisplay, bigbuffer, retCount);
       bigtempDisplay[retCount] = 0; // Null-terminate display string.
       mesure12=bigtempDisplay;
       mesure12.erase(0,8);
       wait(2);
       cout << "-";
       // Affichage des données S21
       sprintf(buffer, ":SENSe:TRACe1:SPARams S21"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during passing the VNA to S21 Display." <<
endl;
               goto echec;
       }
       wait(5);
       cout << ".";
       // <u>Récupération</u> <u>et</u> <u>enregistrement</u> <u>des</u> <u>données</u> à l'écran - S21
       sprintf(bigbuffer, ":TRACe:DATA?");
       status = viWrite(instr, (unsigned char *)&bigbuffer[0], 20, &retCount);
       status = viRead(instr, (unsigned char *)bigbuffer, BIGBUFFER_SIZE,&retCount);
       // Process data
       strncpy(bigtempDisplay, bigbuffer, retCount);
       bigtempDisplay[retCount] = 0; // Null-terminate display string.
       mesure21=bigtempDisplay;
       mesure21.erase(0,8);
       wait(2);
       cout << "-";
       // Affichage des données S22
       sprintf(buffer, ":SENSe:TRACe1:SPARams S22"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during passing the VNA to S22 Display." <<
endl;
               goto echec;
       }
       wait(5);
       cout << ".";
       // <u>Récupération et enregistrement des données</u> à l'écran - S22
       sprintf(bigbuffer, ":TRACe:DATA?");
       status = viWrite(instr, (unsigned char *)&bigbuffer[0], 20, &retCount);
       status = viRead(instr, (unsigned char *)bigbuffer, BIGBUFFER SIZE,&retCount);
       // Process data
       strncpy(bigtempDisplay, bigbuffer, retCount);
       bigtempDisplay[retCount] = 0; // Null-terminate display string.
```

```
mesure22=bigtempDisplay;
       mesure22.erase(0,8);
       wait(2);
       cout << "-";
       // Récupération de la température de <u>la carte mère de la</u> VNA
       sprintf(buffer, ":SYSTem:MBTemperature?");
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       status = viRead(instr, (unsigned char *)buffer, BUFFER SIZE,&retCount);
       // Process data
       strncpy(tempDisplay, buffer, retCount);
       tempDisplay[retCount] = 0; // Null-terminate display string.
       temp vna=tempDisplay;
       cout << "> ";
       // Close down the connection
       status = viClose(instr);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during shutting down the connection." <<</pre>
endl;
               goto echec;
       }
       status = viClose(defaultRM);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during shutting down the connection." <<</pre>
endl;
               goto echec;
       }
       // Précision d<u>e</u> l'étalonnage <u>en fonction</u> <u>de</u> <u>la</u> <u>température</u>
       temp= atof(temp vna.c str());
       if (abs(temp calib-temp)<5) accuracy = "HIGH";</pre>
       else if (abs(temp_calib-temp)<10) accuracy = "MEDIUM";</pre>
       else accuracy = "LOW";
       sprintf(file, "%s/%s", dossier, nom fichier);
       fichier.open(file, ios::out | ios::trunc); // ouverture en écriture avec effacement du
fichier ouvert
       if(fichier){
               i=0:
               pos11 = 0, pos12 = 0, pos21 = 0, pos22 = 0;
               fichier << "Accuracy : " << accuracy << " (temp VNA = " << temp vna << " /
temp calib = " << temp calib << " )" << endl << endl;</pre>
               fichier << "Freq(GHz) S11Re
                                                     S11Im
                                                                 S21Re
                                                                              S21Im
                                                                                          S12Re
S12Im
            S22Re
                       S22Im" << endl;
               while (i<nb_freq) {</pre>
                       debut11 = pos11, debut12 = pos12, debut21 = pos21, debut22 = pos22;
                       pos11 = mesure11.find(","), pos12 = mesure12.find(","), pos21 =
mesure21.find(","), pos22 = mesure22.find(",");
                      mesure11.replace(pos11, 1, " "), mesure12.replace(pos12, 1, " "),
mesure21.replace(pos21, 1, " "), mesure22.replace(pos22, 1, " ");
                      pos11 = mesure11.find(","), pos12 = mesure12.find(","), pos21 =
mesure21.find(","), pos22 = mesure22.find(",");
                      mesure11.replace(pos11, 1, ""), mesure12.replace(pos12, 1, ""),
mesure21.replace(pos21, 1, ""), mesure22.replace(pos22, 1, "");
                      longueur11=pos11-debut11, longueur12=pos12-debut12, longueur21=pos21-
debut21, longueur22=pos22-debut22;
                      length11=mesure11.copy(ligne11,longueur11,debut11),
length12=mesure12.copy(ligne12,longueur12,debut12),
```

```
length21=mesure21.copy(ligne21,longueur21,debut21),
length22=mesure22.copy(ligne22,longueur22,debut22);
                        ligne11[length11]='\0', ligne12[length12]='\0', ligne21[length21]='\0',
ligne22[length22]='\0';
                        freq = freq min + (freq max-freq min)/(nb freq-1)*i;
                        fichier << freq << " " << ligne11 << " " << ligne21 << " " << ligne12
<< " " << ligne22 << "\n";
                        i++;
                1
                fichier.close();
                cout << nom fichier << endl;</pre>
                // <u>Diagnostique</u> <u>de</u> l'acquisition
                console.open("log_console.txt", ios::out | ios::app);
                console << "Acquisition " << nom_fichier << " OK" << endl;</pre>
                console.close();
        } else {
                cerr << "Impossible de creer le fichier " << nom fichier << " !!!!" << endl;</pre>
                // Diagnostique de l'acquisition
                console.open("log console.txt", ios::out | ios::app); // ouverture en écriture
avec effacement <u>du</u> <u>fichier</u> <u>ouvert</u>
                console << "Echec lors de la creation de " << nom_fichier << endl;</pre>
                console.close();
        }
        goto fin;
        // En cas d'echec lors d'un ordre :
        echec :
        cerr << "<u>Echec</u> <u>lors</u> <u>de</u> l'acquisition <u>de</u> " << nom_fichier << endl;
        cerr << "ATTENTION : La connection semble perdue !!!" << endl;</pre>
        // <u>Diagnostique</u> <u>de</u> l'acquisition
        console.open("log_console.txt", ios::out | ios::app); // ouverture en écriture avec
effacement du fichier ouvert
        console << "Echec lors de l'acquisition de " << nom_fichier << endl;</pre>
        console.close();
        fin :
        ;
}
// Fonction qui attends <u>le temps donne</u>, <u>en secondes</u>.
void wait(int seconds)
{
        clock t endwait;
        endwait = clock () + seconds * CLOCKS_PER_SEC ;
        while (clock() < endwait) {}</pre>
}
// Convertir un entier en string
string num2str(int num)
{
    // créer un flux de sortie
    std::ostringstream oss;
    // <u>écrire</u> <u>un</u> <u>nombre</u> <u>dans</u> <u>le</u> <u>flux</u>
    oss << num;
    // récupérer une chaîne de caractères
    std::string result = oss.str();
```

return result;
}

5. Annexe Programme d'acquisition TropiScat

5.1.Description

Langage de programmation : Visual Basic et Bash.

Lieu : Guyanne française.

Communique avec les instruments suivants : *VNA, Commutateurs RF, clef USB et système d'exploitation.*

Séquence de mesures : 16 mesures full-pol (HH, HV, VH, VV) dans la bande 400-600 MHz toutes les 15 minutes, avec en plus deux séquences identiques en bande 600-800 MHz et 800-1000MHz lorsque l'heure est un multiple de 6.

5.2.Corps du programme

```
Imports System.IO
Module controle_principal
    ' Programme d'acquisition de données de la VNA
   ' De C.ALBINET, P.BORDERIES et T.KOLECK.
' TROPISCAT - Juin-juillet 2011
   ' Version du 24 juillet 2012 : Acquisition des bursts commentée.
   Sub Main()
        'Programme Principal
       Dim futur, passe As Date
        Dim attente, indice As Integer
        Dim dossier, fichier, dossier archivage, dossier passe As String
        Dim archiver, copie_locale, copie, redemarrer, diagnostique, tomo_complete As Boolean
        Dim sauve_indice, sauve_diagnostique, log_txt As StreamWriter
        "*************************** Paramètres des mesures *****************************
        ' Attente entre les mesures en minutes
        attente = 15
        Console.WriteLine("Lancement du programme")
       Console.WriteLine("Version compilee du 16 mars 2013, 10:36.")
       archiver = False
       copie_locale = False
       copie = False
        redemarrer = False
        tomo complete = False
       dossier archivage = ""
        ' Evaluation du bon redémmarage
        If File.Exists("diagnostique.txt") Then
            FileOpen(1, "diagnostique.txt", OpenMode.Input)
            diagnostique = LineInput(1)
            FileClose(1)
            If Not diagnostique Then
                ' Mauvais redémarrage
               Console.WriteLine("Probleme, redemarrage non programme (coupure de courant
?)")
                log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
               log txt.WriteLine("Probleme, redemarrage non programme (coupure de courant
?)")
               log txt.Close()
```

```
Else ' Bon redémarrage
                 ' Réinitialisation du fichier diagnostique
                sauve diagnostique = File.CreateText("diagnostique.txt") ' crée ou si existe
écrase
                sauve diagnostique.WriteLine(False)
                sauve_diagnostique.Close()
            End If
        Else
            ' Initialisation du fichier diagnostique
            sauve diagnostique = File.CreateText("diagnostique.txt") ' crée ou si existe
écrase
            sauve_diagnostique.WriteLine(False)
            sauve diagnostique.Close()
        End If
        ' Gestion de l'indice
        If File.Exists("indice.txt") Then
   FileOpen(1, "indice.txt", OpenMode.Input)
   indice = LineInput(1) + 1
            FileClose(1)
        Else
            indice = 1
        End If
        ' Attente car redemarrage VNA plus long que PC
        If Not Directory.Exists("Z:\") Then
            Console.Write("En attente de l'initalisation de la VNA...")
            wait(40)
            Console.WriteLine("")
        End If
        ' Attente jusqu'à la date de la première mesure
        Do
            wait(1)
        Loop Until Minute(Now) \ attente = Minute(Now) / attente
        futur = Now
        ' Boucle des mesures
        Do
            ' Gestion d'une mesure
            If Now > futur Then
                ' Determination de la prochaine date de mesure
                futur = DateAdd("n", attente, futur)
                ' Reveil de la VNA (securite)
                If Not Directory.Exists("Z:\") Then
                    Shell("cmd.exe /c net use z: \\Vna-paracou\archivage resultats")
                    wait(5)
                End If
                 ' Determination des noms du dossier et des fichiers
                dossier = "y" & Year(Now) & "-m" & Format(Month(Now), "00") & "-d" &
Format(Day(Now), "00")
                fichier = "par_" & dossier & "_" & Format(Hour(Now), "00") & "h" &
Format(Minute(Now), "00") & " i" & Format(indice, "00000")
                 ' Heure des redémarrages : 7h et 19h
                If (Hour(Now) = 7 Or Hour(Now) = 19) And (Minute(Now) >= 0 And Minute(Now) <
15) Then
                     redemarrer = True
                End If
                 ' Archivage apres la mesure de 23H45
                If Not Day(futur) = Day(Now) Then
                    archiver = True
                    dossier_archivage = dossier
                End If
                 ' Copie de l'archive en local a 1H00
                If Hour(Now) = 1 And (Minute(Now) >= 0 And Minute(Now) < 15) Then
                    copie_locale = True
                End If
```

```
' copie des archives a 2 heures du matin
                If Hour(Now) = 2 And (Minute(Now) >= 0 And Minute(Now) < 15) Then
                   copie = True
                End If
                ' 4 Tomos completes toutes les 6 heures
                If Hour (Now) Mod 6 = 0 Then
                   tomo_complete = True
                End If
                ' Enregistrement de l'indice
                sauve indice = File.CreateText("indice.txt") ' crée ou si existe écrase
                sauve indice.WriteLine(indice)
                sauve indice.Close()
                ' Creation du dossier des mesures du jour, s'il n'existe pas
                If Not Directory.Exists("Z:\" & dossier) Then
                    Shell("cmd.exe /c md Z:\" & dossier & " >> log.txt 2>&1")
                    wait(5)
                    If Directory.Exists("Z:\" & dossier) Then
                        Console.WriteLine("Création du dossier : " & dossier)
                        log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
                        log txt.WriteLine("Creation du dossier : " & dossier)
                        log_txt.Close()
                    Else
                        Console.WriteLine("Probleme lors de la création du dossier : " &
dossier)
                        log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
                        log txt.WriteLine("Probleme lors de la creation du dossier : " &
dossier)
                        log txt.Close()
                    End If
                End If
                ' Lancement de la sequence de mesures
                sequence mesures (dossier, fichier, tomo complete)
                tomo complete = False
                ' Archivage du dossier de mesure courant, si necessaire (attention au
changement de jour si la mesure est trop longue...)
                If archiver Then
                    Try
                        archivage(dossier archivage)
                        archiver = False
                    Catch
                        Console.WriteLine("Probleme lors de l'archivage du dossier " &
dossier archivage)
                        log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
                        log txt.WriteLine("Probleme lors de l'archivage du dossier : " &
dossier archivage)
                        log_txt.Close()
                    End Try
                End If
                ' Copie de l'archive en local a 1h
                If copie locale Then
                    Try
                        copie local()
                        copie_locale = False
                    Catch
                        Console.WriteLine("Probleme lors de la copie de l'archive " &
dossier archivage & ".zip en local.")
                        log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
                        log txt.WriteLine("Probleme lors de la copie de l'archive " &
dossier archivage & ".zip en local.")
                       log_txt.Close()
                   End Try
                End If
                ' Deplacement de l'archive sur la clef usb a 2H (si celle-ci est branchee)
                If copie Then
                     Suppression du dossier de mesures temporaire en local
                    passe = DateAdd("y", -45, Now)
```

```
dossier passe = "y" & Year (passe) & "-m" & Format (Month (passe), "00") & "-
d" & Format(Day(passe), "00")
                     If Not Directory.Exists("Z:\" & dossier_passe) Then
                         Console.WriteLine("Probleme lors de la suppression du dossier " &
dossier passe & " : dossier introuvable.")
                         log_txt = File.AppendText("log.txt") ' crée ou si existe ajoute
                         log txt.WriteLine("Probleme lors de la suppression du dossier " &
dossier passe & " : dossier introuvable.")
                         log txt.Close()
                     Else
                         Console.WriteLine("Suppression du dossier : " & dossier_passe)
Shell("cmd.exe /c rmdir Z:\" & dossier_passe & " /S /Q >> log.txt
2>&1", AppWinStyle.NormalFocus, True)
                         wait(2)
                          log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
                          log_txt.WriteLine("Suppression du dossier : " & dossier passe)
                          log txt.Close()
                     End If
                     ' Deplacement de l'archive sur la clef usb
                     If Not Directory.Exists("D:\") Then
                          Console.WriteLine("Probleme lors de la copie des archives sur clef USB
: clef introuvable.")
                         log_txt = File.AppendText("log.txt") ' crée ou si existe ajoute
                         log txt.WriteLine("Probleme lors de la copie des archives sur clef USB
: clef introuvable.")
                         log txt.Close()
                     Else
                         Console.WriteLine("Copie de l'archive sur clef USB.")
log_txt = File.AppendText("log.txt") ' crée ou si existe ajoute
                          log txt.WriteLine("Copie de l'archive sur clef USB.")
                         log_txt.Close()
                          wait(1)
                         Shell("cmd.exe /c move Z:\*.zip D:\ >> log.txt 2>&1")
                         wait(90)
                     End If
                     copie = False
                 End If
                 ' lancement d'un redemarrage
                 If redemarrer Then
                     redemarrage()
                 End If
                 ' Incrementation de l'indice
                 indice += 1
            End If
            wait(1)
        Loop
    End Sub
    Sub sequence mesures (ByVal dossier As String, ByVal fichier As String, ByVal tomo complete
As Boolean)
        ' Fonction qui coordonne la sequence de mesures.
        Dim pol, band, mesure As Integer
        Dim sequence()()() As Integer = New Integer(4)()() {}
        Dim polar() As String = New String(3) {"hH", "hV", "vH", "vV"}
        Dim polR, polT As String
        Dim Switch As SwitchesBox
        'Dim burst As Integer
        ' Combinaisons d'antennes pour la procédure d'acquisition
              format : {Tx, Rx}
         ' Polar hH
        sequence(1) = New Integer(15)() {}
        sequence(1)(1) = New Integer(1) \{1, 2\}
        sequence(1)(2) = New Integer(1) \{1, 3\}
        sequence(1)(3) = New Integer(1) \{2, 1\}
        sequence(1)(4) = New Integer(1) \{2, 2\}
        sequence(1)(5) = New Integer(1) \{2, 3\}
```

sequence(1)(6) = New Integer(1) {2, 4}
sequence(1)(7) = New Integer(1) {3, 1}

```
sequence(1)(8) = New Integer(1) \{3, 2\}
sequence(1)(9) = New Integer(1) \{3, 3\}
sequence(1)(10) = New Integer(1) \{3, 4\}
sequence(1)(11) = New Integer(1) \{4, 4\}
sequence(1)(12) = New Integer(1) \{4, 5\}
sequence(1)(13) = New Integer(1) {5, 1}
sequence(1)(14) = New Integer(1) \{5, 2\}
sequence(1)(15) = New Integer(1) \{5, 3\}
' Polar hV
sequence(2) = New Integer(15)() {}
sequence(2)(1) = New Integer(1) \{6, 2\}
sequence(2)(2) = New Integer(1) \{6, 3\}
sequence(2)(3) = New Integer(1) \{7, 1\}
sequence(2)(4) = New Integer(1) \{7, 2\}
sequence(2)(5) = New Integer(1) \{7, 3\}
sequence(2)(6) = New Integer(1) \{7, 4\}
sequence(2)(7) = New Integer(1) \{8, 1\}
sequence(2)(8) = New Integer(1) {8, 2}
sequence(2)(9) = New Integer(1) \{8, 3\}
sequence(2)(10) = New Integer(1) {8, 4}
sequence(2)(11) = New Integer(1) \{9, 4\}
sequence(2)(12) = New Integer(1) \{9, 5\}
sequence(2)(13) = New Integer(1) {10, 1}
sequence(2)(14) = New Integer(1) {10, 2}
sequence(2)(15) = New Integer(1) \{10, 3\}
' Polar vH
sequence(3) = New Integer(15)() {}
sequence(3)(1) = New Integer(1) {1, 7}
sequence(3)(2) = New Integer(1) {1, 8}
sequence(3)(3) = New Integer(1) \{2, 6\}
sequence(3)(4) = New Integer(1) \{2, 7\}
sequence(3)(5) = New Integer(1) \{2, 8\}
sequence(3)(6) = New Integer(1) \{2, 9\}
sequence(3)(7) = New Integer(1) \{3, 6\}
sequence(3)(8) = New Integer(1) {3, 7}
sequence(3)(9) = New Integer(1) \{3, 8\}
sequence(3)(10) = New Integer(1) \{3, 9\}
sequence(3)(11) = New Integer(1) \{4, 9\}
sequence(3)(12) = New Integer(1) \{4, 10\}
sequence(3)(13) = New Integer(1) {5, 6}
sequence(3)(14) = New Integer(1) \{5, 7\}
sequence(3)(15) = New Integer(1) \{5, 8\}
' Polar vV
sequence(4) = New Integer(15)() \{\}
sequence(4)(1) = New Integer(1) \{6, 7\}
sequence(4)(2) = New Integer(1) \{6, 8\}
sequence(4)(3) = New Integer(1) \{7, 6\}
sequence(4)(4) = New Integer(1) \{7, 7\}
sequence(4)(5) = New Integer(1) \{7, 8\}
sequence(4)(6) = New Integer(1) \{7, 9\}
sequence(4)(7) = New Integer(1) \{8, 6\}
sequence(4)(8) = New Integer(1) \{8, 7\}
sequence(4)(9) = New Integer(1) \{8, 8\}
sequence(4)(10) = New Integer(1) \{8, 9\}
sequence(4)(11) = New Integer(1) \{9, 9\}
sequence(4)(12) = New Integer(1) {9, 10}
sequence(4)(13) = New Integer(1) {10, 6}
sequence(4)(14) = New Integer(1) {10, 7}
sequence(4)(15) = New Integer(1) \{10, 8\}
```

Console.Write(fichier)

```
' Reveil de la VNA et initialisation des switches (pas d'exceptions de levees ici)
test_connection()
Switch = New SwitchesBox
```

Try

' Initialisation VNA initialisation()

' ***** Band 1 (400MHz - 600MHz) *****

```
' ***** Band 2 (600MHz - 800MHz) *****
            ' ***** Band 3 (800MHz - 1GHz) *****
            For band = 1 \text{ To } 3
                ' Calibration
                Console.Write(" ")
                Switch.SwitchToCal()
                wait(1)
                calibration (band)
                ' Reponses impulsionnelles dans les trois bandes
                Console.Write("*")
                ' Reponse Impulsionnelle hH
                Switch.SwitchRXAntenna(1)
                Switch.SwitchTXAntenna(1)
                wait(1)
                mesure lvoie(fichier & " Band" & band & " HH")
                ' Reponse Impulsionnelle hV
                Switch.SwitchRXAntenna(1)
                Switch.SwitchTXAntenna(6)
                wait(1)
                mesure lvoie(fichier & " Band" & band & " HV")
                ' Reponse Impulsionnelle vH
                Switch.SwitchRXAntenna(6)
                Switch.SwitchTXAntenna(1)
                wait(1)
                mesure lvoie(fichier & " Band" & band & " VH")
                ' Reponse Impulsionnelle vV
                Switch.SwitchRXAntenna(6)
                Switch.SwitchTXAntenna(6)
                wait(1)
                mesure lvoie(fichier & " Band" & band & " VV")
                ' Tomographies
                If tomo_complete Or band = 1 Then
                    For pol = 1 To 4
                        Console.Write(polar(pol - 1))
                        For mesure = 1 To 15
                             ' Acquisition et enregistrement de la mesure
                            Switch.SwitchRXAntenna(sequence(pol)(mesure)(1))
                            Switch.SwitchTXAntenna(sequence(pol)(mesure)(0))
                            wait(1)
                            If sequence(pol)(mesure)(1) <= 5 Then
                                polR = "H"
                            Else
                            polR = "V"
End If
                            If sequence(pol)(mesure)(0) <= 5 Then</pre>
                                polT = "H"
                            Else
                            polT = "V"
End If
                             'Console.Write("+")
                            mesure_lvoie(fichier & " Band" & band & " " & polR & polT & " R" &
sequence(1) (mesure)(1) & " T" & sequence(1) (mesure)(0))
                        Next mesure
                    Next pol
                End If
                ' Mesure de la boucle sans calibration
                Switch.SwitchToCal()
                calib off()
                mesure lvoie(fichier & " Band" & band & " Cable")
            Next band
            ' Burst en bande P et L
```

```
232
```

```
'Console.Write(" b")
            'For band = 1 To 3
                Switch.SwitchToCal()
                 wait(1)
            .
                 calibration (band)
            ÷
                 For burst = 1 To 10
            1
                      ' reponse impulsionnelle hh
            .
                     Switch.SwitchRXAntenna(1)
            .
                     Switch.SwitchTXAntenna(1)
                     wait(1)
            1
                    mesure lvoie(fichier & " band" & band & " hh burst" & Format(burst,
"00"))
                     ' reponse impulsionnelle hv
                    Switch.SwitchRXAntenna(1)
            .
                    Switch.SwitchTXAntenna(6)
            .
                     wait(1)
                    mesure_lvoie(fichier & "_band" & band & "_hv burst" & Format(burst,
"00"))
                     ' reponse impulsionnelle vh
            1
            .
                     Switch SwitchRXAntenna(6)
                     Switch.SwitchTXAntenna(1)
            .
                     wait(1)
                    mesure lvoie(fichier & " band" & band & " vh burst" & Format(burst,
"00"))
                    ' reponse impulsionnelle vv
            ÷
                    Switch.SwitchRXAntenna(6)
            .
                     Switch.SwitchTXAntenna(6)
                     wait(1)
                    mesure lvoie(fichier & " band" & band & " vv burst" & Format(burst,
"00"))
            .
                Next burst
            .
                 band = band + 1
            'Next band
            ' Déplacement des fichiers enregistrés dans le dossier du jour
            Shell("cmd.exe /c move Z:\*.csv Z:\" & dossier & "\ >> log.txt 2>&1")
            wait(2)
            Console.WriteLine()
        Catch
            redemarrage()
        End Try
    End Sub
    Sub archivage (ByVal dossier As String)
        ' Fonction d'archivage du dossier d'acquisitions journalières
        Dim espaceZ, espaceC As String
        Dim log txt As StreamWriter
        ' Déplacement du fichier log.txt
        If Not Directory.Exists("Z:\" & dossier) Then GoTo erreur
        Shell("cmd.exe /c move log.txt Z:\" & dossier & "\log " & dossier & ".txt")
        wait (5)
        ' Recuperation de l'espace disque restant sur Z: et C:
        espaceZ = ShowAvailableSpace("Z:")
        espaceC = ShowAvailableSpace("C:")
        log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
        log txt.WriteLine(espaceZ)
        log_txt.WriteLine(espaceC)
        log txt.Close()
        wait(2)
        ' Compression du dossier de mesures de la veille
        If Not Directory.Exists("Z:\" & dossier) Then GoTo erreur
        Shell("cmd.exe /c 7z.exe a -mx3 -tzip Z:\" & dossier & ".zip Z:\" & dossier & ".* >>
log.txt 2>&1", AppWinStyle.NormalFocus, True)
        Console.Write("archivage en cours")
```

```
wait(2)
        GoTo fin
erreur:
        Dim e As Exception
        e = New Exception()
        Throw (e)
fin:
        Console.WriteLine(" Archivage des donnees du dossier " & dossier & " termine.")
        log_txt = File.AppendText("log.txt") ' crée ou si existe ajoute
        log txt.WriteLine("Archivage des donnees du dossier " & dossier & " termine.")
        log_txt.Close()
    End Sub
    Sub copie_local()
        ' Copie de l'archive en local
        .
        Dim log txt As StreamWriter
        If Not Directory.Exists("Z:\") Then GoTo erreur
        Shell("cmd.exe /c copy Z:\*.zip C:\archivage resultats\ >> log.txt 2>&1",
AppWinStyle.NormalFocus, True)
        wait(2)
        GoTo fin
erreur:
        Dim e As Exception
        e = New Exception()
        Throw (e)
fin:
        Console.WriteLine(" Copie de l'archive *.zip en local terminee.")
        log_txt = File.AppendText("log.txt") ' crée ou si existe ajoute
        log txt.WriteLine("Copie de l'archive *.zip en local terminee.")
        log txt.Close()
    End Sub
    Sub redemarrage()
        ' Fonction qui redemarre la VNA et l'ordinateur.
        Dim sauve diagnostique, log txt As StreamWriter
        Console.WriteLine("Redemarrage des appareils de mesure.")
        log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
        log_txt.WriteLine("Redemarrage des appareils de mesure.")
        log_txt.Close()
        ' Initialisation du fichier diagnostique
        sauve_diagnostique = File.CreateText("diagnostique.txt") ' crée ou si existe écrase
        sauve diagnostique.WriteLine(True)
        sauve diagnostique.Close()
        wait(2)
        ' Redemarrage VNA
        Shell("cmd.exe /c shutdown -r -f -t 1 -m \\134.212.13.58")
        ' Redemarrage PC
        Shell("cmd.exe /c shutdown -r -f -t 1 -m \\134.212.11.71")
    End Sub
    Sub wait(ByVal secondes As Long)
        ' Fonction d'attente de la durée entrée en s.
        Dim t As DateTime = DateTime.Now
        Do While DateTime.Now < t.AddSeconds(secondes)</pre>
        Loop
    End Sub
    Function ShowAvailableSpace(ByVal drvPath)
        ' Recuperation de l'espace disque restant
        Dim fso, d
```

```
fso = CreateObject("Scripting.FileSystemObject")
d = fso.GetDrive(fso.GetDriveName(drvPath))
ShowAvailableSpace = "Espace libre sur le disque " & UCase(drvPath) & " : " &
FormatNumber(d.AvailableSpace / 1024 / 1024, 0, , , TriState.False) & " Mega-octets."
End Function
```

End Module

Imports System.IO

```
Module vna
    Sub test_connection()
         ' Routine de test de la connection.
        ' De C.ALBINET et P.BORDERIES
        ' TROPISCAT - Juin-juillet 2011
        Dim rm As New Ivi.Visa.Interop.ResourceManager
        Dim fmio As New Ivi.Visa.Interop.FormattedI0488
        Try
            fmio.IO = rm.Open("TCPIP::134.212.13.58::INSTR")
            fmio.IO.Close()
            wait(1)
        Catch
            wait(1)
        End Try
    End Sub
    Sub initialisation()
         ' Routine de remise a zero des parametres de la VNA.
        ' De C.ALBINET et P.BORDERIES
        ' TROPISCAT - Juin-juillet 2011
        Dim rm As New Ivi.Visa.Interop.ResourceManager
        Dim fmio As New Ivi.Visa.Interop.FormattedIO488
        Dim log txt As StreamWriter
        Try
            fmio.IO = rm.Open("TCPIP::134.212.13.58::INSTR")
             fmio.WriteString("*CLS")
             fmio.WriteString(":SYST:PRES") 'Chargement des parametres d'usine
            fmio.WriteString(":SYST:KLOC:KBD ON") 'Bloquage des boutons en facade
fmio.WriteString("SYST:KLOC:MOUS ON") 'Bloquage de l'ecran tactile
            fmio.WriteString(":SYST:BACK OFF") 'Arret du retro-eclairage de l'ecran
            fmio.IO.Close()
            wait(1)
        Catch
            Console.WriteLine("")
            Console.WriteLine("Probleme reseau lors de l'initialisation de la VNA.")
             log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
            log txt.WriteLine("Probleme reseau lors de l'initialisation de la VNA.")
            log_txt.Close()
            Dim e As Exception
            e = New Exception()
            Throw (e)
        End Try
    End Sub
    Sub calibration (ByVal band As Integer)
          Routine de lancement et d'enregistrement de calibration de la VNA.
        ' De C.ALBINET et P.BORDERIES
        ' TROPISCAT - Juin-juillet 2011
        Dim rm As New Ivi.Visa.Interop.ResourceManager
        Dim fmio As New Ivi.Visa.Interop.FormattedIO488
        Dim log txt As StreamWriter
        Try
            fmio.IO = rm.Open("TCPIP::134.212.13.58::INSTR")
             fmio.WriteString(":DISP:WIND:ACT")
             fmio.WriteString(":CALC:PAR:DEF S21")
             fmio.WriteString(":CALC:PAR:SEL")
            fmio.WriteString(":CALC:PAR:COUN 1")
             fmio.WriteString(":INIT:CONT ON")
            fmio.WriteString(":CALC:FORM SCOM")
             fmio.WriteString(":DISP:WIND:TRAC:STAT ON")
            fmio.WriteString(":SENS:SWE:TYPE LIN")
```

```
fmio.WriteString(":SENS:BAND 10000") 'Definition du filtre FI
            fmio.WriteString(":SENS:SWE:TIME:AUTO ON")
            fmio.WriteString(":SOUR:POW 10") 'Definition de la puissance
            ' Definition de la bande de frequence
            Select Case band
                Case 1
                    fmio.WriteString(":SENS:FREQ:STAR 4E8;:SENS:FREQ:STOP 6E8;:SENS:SWE:POIN
1601")
                    Console.Write("b1")
                Case 2
                    fmio.WriteString(":SENS:FREO:STAR 6E8;:SENS:FREO:STOP 8E8;:SENS:SWE:POIN
1601")
                    Console.Write("b2")
                Case 3
                    fmio.WriteString(":SENS:FREQ:STAR 8E8;:SENS:FREQ:STOP 1E9;:SENS:SWE:POIN
1601")
                    Console.Write("b3")
            End Select
            fmio.WriteString(":SENS:AVER OFF") 'Definition du moyennage
            fmio.WriteString(":SENS:CORR:STAT ON")
            fmio.WriteString(":SENS:CORR:COLL:METH:THRU 2,1")
            fmio.WriteString(":SENS:CORR:COLL:THRU 2,1") 'Mesure de la calibration
            wait(2)
            fmio.WriteString(":SENS:CORR:COLL:SAVE") 'Calcul de la calibration
            fmio.IO.Close()
            wait(2)
        Catch
            Console.WriteLine("")
            Console.WriteLine("Probleme reseau lors de la calibration de la VNA.")
            log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
            log txt.WriteLine("Probleme reseau lors de la calibration de la VNA.")
            log_txt.Close()
            Dim e As Exception
            e = New Exception()
            Throw (e)
        End Try
    End Sub
    Sub mesure 1voie (ByVal fichier As String)
        ' Routine de lancement et d'enregistrement de la mesure de la VNA.
        ' De C.ALBINET et P.BORDERIES
        ' TROPISCAT - Juin-juillet 2011
        Dim rm As New Ivi.Visa.Interop.ResourceManager
        Dim fmio As New Ivi.Visa.Interop.FormattedIO488
        Dim log txt As StreamWriter
        Try
            fmio.IO = rm.Open("TCPIP::134.212.13.58::INSTR")
            fmio.WriteString(":TRIG:SOUR BUS")
            fmio.WriteString(":TRIG:SEQ:SING") 'Lancement de la mesure
            wait(2)
            fmio.WriteString(":MMEM:STOR:FDAT 'C:\archivage resultats\" & fichier & ".csv'")
'Enregistrement de la mesure
            fmio.IO.Close()
            wait(1)
        Catch
            Console.WriteLine("")
            Console.WriteLine("Probleme reseau lors de l'envoie de l'ordre de mesure a la
VNA.")
            log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
            log_txt.WriteLine("Probleme reseau lors de l'envoie de l'ordre de mesure a la
VNA.")
            log_txt.Close()
            Dim e As Exception
            e = New Exception()
            Throw (e)
        End Try
```

End Sub

```
Sub calib off()
    ' Routine de non utilisation de la calibration.
    ' De C.ALBINET et P.BORDERIES
    ' TROPISCAT - Mars 2013
    Dim rm As New Ivi.Visa.Interop.ResourceManager
    Dim fmio As New Ivi.Visa.Interop.FormattedIO488
    Dim log_txt As StreamWriter
    Try
         fmio.IO = rm.Open("TCPIP::134.212.13.58::INSTR")
         fmio.WriteString(":SENS:CORR:STAT OFF")
         fmio.IO.Close()
         wait(1)
    Catch
         Console.WriteLine("")
         Console.WriteLine("Probleme reseau lors de la suspension de la calibration.")
log_txt = File.AppendText("log.txt") ' crée ou si existe ajoute
         log txt.WriteLine("Probleme reseau lors de la suspension de la calibration.")
        log_txt.Close()
Dim e As Exception
         e = New Exception()
         Throw (e)
    End Try
End Sub
```

End Module

```
Imports NationalInstruments.DAQmx
Imports System.IO
REM Ce code permet de piloter les switches RF de l'expérimentation TropiSCAT
REM Il s'agit de la version avec 20 antennes + la boucle de calibration.
' De T.KOLECK et C.ALBINET
Public Class SwitchesBox
    Dim SW1writer, SW2writer, SW3writer, SW4writer As DigitalSingleChannelWriter
    Dim SW1Task, SW2Task, SW3Task, SW4Task As Task
    Dim SW1SELECT, SW2SELECT, SW3SELECT, SW4SELECT As String
    Dim ant2sw1(10), ant2sw2(10), ant2sw3(10), ant2sw4(10) As Integer
    Public Sub New()
        Try
            SW1SELECT = "dev1/port0/line0:5"
            SW1SELECT = "dev1/port0/line6:7,/dev1/port1/line0:3"
SW3SELECT = "dev1/port2/line0:5"
            SW4SELECT = "dev1/port2/line6:7,/dev1/port1/line4:7"
            SW1Task = New Task("")
            SW1Task.DOChannels.CreateChannel(SW1SELECT, "SW1SELECT",
ChannelLineGrouping.OneChannelForAllLines)
            SW1writer = New DigitalSingleChannelWriter(SW1Task.Stream)
            SW2Task = New Task("")
            SW2Task.DOChannels.CreateChannel(SW2SELECT, "SW2SELECT",
ChannelLineGrouping.OneChannelForAllLines)
            SW2writer = New DigitalSingleChannelWriter(SW2Task.Stream)
            SW3Task = New Task("")
            SW3Task.DOChannels.CreateChannel(SW3SELECT, "SW3SELECT",
ChannelLineGrouping.OneChannelForAllLines)
            SW3writer = New DigitalSingleChannelWriter(SW3Task.Stream)
            SW4Task = New Task("")
            SW4Task.DOChannels.CreateChannel(SW4SELECT, "SW4SELECT",
ChannelLineGrouping.OneChannelForAllLines)
            SW4writer = New DigitalSingleChannelWriter(SW4Task.Stream)
            ant2sw1(0) = \&H4
            ant2sw2(0) = \&H0
            ant2sw1(1) = &H20
            ant2sw2(1) = &H0
            ant2sw1(2) = \&H8
            ant2sw2(2) = \&H0
            ant2sw1(3) = \&H2
            ant2sw2(3) = &H0
            ant2sw1(4) = &H10
            ant2sw2(4) = \&H0
            ant2sw1(5) = \&H1
            ant2sw2(5) = &H100
            ant2sw1(6) = &H1
            ant2sw2(6) = \&H400
            ant2sw1(7) = \&H1
            ant2sw2(7) = \&H40
            ant2sw1(8) = &H1
            ant2sw2(8) = &H200
            ant2sw1(9) = \&H1
            ant2sw2(9) = \&H80
            ant2sw1(10) = &H1
            ant2sw2(10) = \&H800
            ant2sw3(0) = &H4
            ant2sw4(0) = \&H0
            ant2sw3(1) = &H20
            ant2sw4(1) = &H0
            ant2sw3(2) = &H8
            ant2sw4(2) = &H0
            ant2sw3(3) = &H2
            ant2sw4(3) = &H0
            ant2sw3(4) = \&H10
            ant2sw4(4) = &H0
            ant2sw3(5) = \&H1
            ant2sw4(5) = &H1000
            ant2sw3(6) = &H1
            ant2sw4(6) = \&H4000
            ant2sw3(7) = \&H1
            ant2sw4(7) = \&H40
            ant2sw3(8) = &H1
            ant2sw4(8) = \&H2000
```

```
ant2sw3(9) = &H1
            ant2sw4(9) = \&H80
            ant2sw3(10) = &H1
            ant2sw4(10) = &H8000
        Catch
            ' Pas de remontee d'exception
            wait(1)
        End Try
    End Sub
    Public Sub SwitchTXAntenna (ByVal n As Integer)
        Dim log_txt As StreamWriter
        Try
            SW1writer.WriteSingleSamplePort(True, ant2sw1(n))
            SW2writer.WriteSingleSamplePort(True, ant2sw2(n))
        Catch
            Console.WriteLine("")
            Console.WriteLine("Probleme avec le pilotage des switches (TX) par USB.")
            log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
            log_txt.WriteLine("Probleme avec le pilotage des switches (TX) par USB.")
            log_txt.Close()
            Dim e As Exception
            e = New Exception()
            Throw (e)
        End Try
    End Sub
    Public Sub SwitchRXAntenna (ByVal n As Integer)
        Dim log txt As StreamWriter
        Try
            SW3writer.WriteSingleSamplePort(True, ant2sw3(n))
            SW4writer.WriteSingleSamplePort(True, ant2sw4(n))
        Catch
            Console.WriteLine("")
            Console.WriteLine("Probleme avec le pilotage des switches (RX) par USB.")
            log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
            log_txt.WriteLine("Probleme avec le pilotage des switches (RX) par USB.")
            log_txt.Close()
            Dim e As Exception
            e = New Exception()
            Throw (e)
        End Try
    End Sub
    Public Sub SwitchToCal()
        Dim log_txt As StreamWriter
        Try
            SW1writer.WriteSingleSamplePort(True, ant2sw1(0))
            SW2writer.WriteSingleSamplePort(True, ant2sw2(0))
            SW3writer.WriteSingleSamplePort(True, ant2sw3(0))
            SW4writer.WriteSingleSamplePort(True, ant2sw4(0))
        Catch
            Console.WriteLine("")
            Console.WriteLine("Probleme avec le pilotage des switches (CAL) par USB.")
            log txt = File.AppendText("log.txt") ' crée ou si existe ajoute
            log txt.WriteLine("Probleme avec le pilotage des switches (CAL) par USB.")
            log_txt.Close()
            Dim e As Exception
            e = New Exception()
            Throw (e)
        End Try
    End Sub
End Class
```

6. Annexe Programme d'acquisition tomographique

6.1.Description

Langage de programmation : C++ et Bash.

Lieu : Mobile (forêt de Mende dans le cadre de la thèse).

Communique avec l'instrument suivant : VNA.

Séquence de mesures : 1 mesure full-pol (HH, HV, VH, VV) dans la bande 400-1000 MHz à chaque fois que l'opérateur le décide.

6.2.Corps du programme

```
/*
                           Tomomanip V1
          Programme d'acquisition de donnees tomographiques avec la VNA
                     Ecrit par Clement ALBINET.
 * /
// VISA Library : visa32.lib (must be linked with)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "C:\Program Files\IVI Foundation\VISA\WinNT\include\visa.h"
#include <iostream>
#include <time.h>
#include <fstream>
#include "functions.h"
using namespace std;
#define BUFFER_SIZE 255
main
int main ()
{
     int mode, i;
   string nom, ecraser;
   char c;
      cout << "Lancement du Programme Tomo_manipV1." << endl;</pre>
     choix :
   cout << endl << "Mode d'acquisition ? (1 FullPol, 2 monoPol S21, 3 quitter) : ";</pre>
   cin >> mode;
   // Mode d'acquisitions FullPol
   if (mode == 1) {
```

```
cout << "Mode d'acquisitions FullPol." << endl << endl;</pre>
        cout << "Prefixe des noms de fichiers ? ";</pre>
        cin >> nom;
        string nom_fichier = nom + ".txt";
        std::ifstream fichier( nom fichier.c str() );
               if(!fichier.fail()) {
                       cout << endl << "Attention : le fichier " << nom_fichier << " existe</pre>
deja !" << endl;</pre>
                    cout << endl << "Voulez-vous l'ecraser ? (o/n) : ";</pre>
                    cin >> ecraser;
                    if (!(ecraser=="o"))
                       goto choix;
                }
        cout << "-Entree- pour lancer une acquisition et -.- pour quitter." << endl;</pre>
        c=getchar();
        system("pause");
        cout << endl;</pre>
        i = 1;
        while (c != '.') {
               measurement dat fullpol(nom, i);
             i++;
            c=getchar();
        }
        goto choix;
    // Mode d'acquisitions S21
    } else if (mode == 2) {
       cout << "Mode d'acquisitions S21." << endl << endl;</pre>
        cout << "Prefixe des noms de fichiers ? ";</pre>
        cin >> nom;
        string nom fichier = nom + ".txt";
        std::ifstream fichier( nom fichier.c str() );
               if(!fichier.fail()) {
                       cout << endl << "Attention : <u>le fichier</u> " << nom_fichier << " <u>existe</u>
deja !" << endl;</pre>
                    cout << endl << "Voulez-vous l'ecraser ? (o/n) : ";</pre>
                    cin >> ecraser;
                    if (!(ecraser=="o"))
                       goto choix;
                }
        cout << "-Entree- pour lancer une acquisition et -.- pour quitter." << endl;</pre>
        c=getchar();
        system("pause");
        cout << endl;</pre>
        i = 1;
        while (c != '.') {
               measurement_dat_s21(nom, i);
            i++;
            c=getchar();
        }
        goto choix;
    // Pour quitter
    } else if (mode == 3) {
       goto quitter;
    } else {
```

```
cout << "Valeur non reconnue." << endl;
goto choix;
}
quitter :
    cout << endl << "Fin <u>du Programme</u>." << endl;
return 0;
```

}

void wait(float seconds);

/* * Tomo<u>manip</u> V1 * * Programme d'acquisition de donnees tomographiques avec la VNA Ecrit par Clement ALBINET. */ #include <string.h> using namespace std; // <u>Decalage horaire entre</u> UTM <u>et lieu de la manip</u> #define TLSE 1 // <u>Heure</u> d'ete <u>ou</u> pas... **#define** heure_ete 0 ***** // Fonction <u>qui</u> lance <u>et enregistre la mesure</u>, <u>en</u> local, <u>en</u> <u>fullpol</u> void measurement_dat_fullpol(string nom, int indice); // Fonction <u>qui</u> lance <u>et enregistre</u> <u>la mesure</u>, <u>en</u> local, <u>en</u> s21 void measurement_dat_s21(string nom, int indice); // Fonction <u>qui</u> attends <u>le temps</u> <u>donne</u>, <u>en milli-secondes</u>.

244
/*

```
*
                               Tomomanip V1
            Programme d'acquisition de donnees tomographiques avec la VNA
                         Ecrit par Clement ALBINET.
 * /
// VISA Library : visa32.lib (must be linked with)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "C:\Program Files\IVI Foundation\VISA\WinNT\include\visa.h"
#include <iostream>
#include <time.h>
#include <fstream>
#include <math.h>
#include "functions.h"
using namespace std;
#define BUFFER SIZE 255
#define BIGBUFFER SIZE 524287
****
// Fonction qui lance et enregistre la mesure, en local, en fullpol
void measurement_dat_fullpol(string nom, int indice)
{
       ViStatus status; // For checking errors
       ViSession defaultRM, instr; // Communication channels
      ViUInt32 retCount; // Return count from string I/O
      ViChar buffer[BUFFER SIZE]; // Buffer for string I/O
       ViChar bigbuffer[BIGBUFFER SIZE]; // Buffer for string I/O
       char tempDisplay[BUFFER_SIZE]; // Display buffer for example
       char bigtempDisplay[BIGBUFFER SIZE]; // Display buffer for example
       char file[256];
       char nom fichier[256];
       int i, posl1, posl2, posl2, posl2, debut11, debut12, debut21, debut22;
       string mesure11, mesure12, mesure21, mesure22;
       char ligne11[40], ligne12[40], ligne21[40], ligne22[40];
       size t length11, longueur11, length12, longueur12, length21, longueur21, length22,
longueur22;
       float freq, temp;
       string temp vna, accuracy;
       ofstream fichier, console;
       time_t rawtime;
       tm * ptm;
       // Completer avec les bonnes valeurs :
       float temp_calib = 46.5; // Température de calibration en °C
       float freq min = 0.4;
       float freq_max = 1;
       int nb_freq = 4001;
       char *pAddress = "TCPIP::134.212.13.56::inst0::INSTR"; //Changer l'adresse IP si besoin
       // Fichier en cours :
       sprintf(nom fichier, "%s %i.dat", nom.c str(), indice);
       // Begin by initializing the system
       status = viOpenDefaultRM(&defaultRM);
```

```
// Error Initializing VISA...exiting
       if (status < VI SUCCESS) {</pre>
               printf("Error : Can't initialize VISA\n");
               goto echec;
       }
       // Open communication with TCP/IP device
       status = viOpen(defaultRM, pAddress, VI NULL, VI NULL, &instr);
       // Error Handling
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : Can't connect to : " << pAddress << endl;</pre>
               goto echec;
       }
       // Set the timeout for message-based communication
       status = viSetAttribute(instr, VI ATTR TMO VALUE, 120000);
       // Error Handling
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : Can't set the timeout for message-based communication." <<</pre>
endl:
              goto echec;
       }
       // Lancement de l'acquisition
       sprintf(buffer, ":INITiate:IMMediate"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during the acquisition." << endl;
               goto echec;
       }
       // Attente avant enregistrement (en seconde)
       cout << "Acquisition ";</pre>
       wait(10);
       cout << "*";
       // <u>Sélection des données</u> S11
       sprintf(buffer, ":SENSe:TRACe1:SPARams S11"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during passing the VNA to S11 Display." <<</pre>
endl:
               goto echec;
       }
       wait(5);
       cout << ".";
       // Récupération et enregistrement des données à l'écran - S11
       sprintf(bigbuffer, ":TRACe:DATA?");
       status = viWrite(instr, (unsigned char *)&bigbuffer[0], 20, &retCount);
       status = viRead(instr, (unsigned char *)bigbuffer, BIGBUFFER SIZE,&retCount);
       // Process data
       strncpy(bigtempDisplay, bigbuffer, retCount);
       bigtempDisplay[retCount] = 0; // Null-terminate display string.
       mesure11=bigtempDisplay;
       mesure11.erase(0,8);
       wait(2);
       cout << "-";
       // <u>Sélection</u> <u>des</u> <u>données</u> S12
       sprintf(buffer, ":SENSe:TRACe1:SPARams S12"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
```

```
cerr << "Error : A problem occurred during passing the VNA to S12 Display." <<
endl:
               goto echec;
       }
       wait(5);
       cout << ".";
       // <u>Récupération</u> <u>et</u> <u>enregistrement</u> <u>des</u> <u>données</u> à l'écran - S12
       sprintf(bigbuffer, ":TRACe:DATA?");
       status = viWrite(instr, (unsigned char *)&bigbuffer[0], 20, &retCount);
       status = viRead(instr, (unsigned char *)bigbuffer, BIGBUFFER SIZE,&retCount);
       // Process data
       strncpy(bigtempDisplay, bigbuffer, retCount);
       bigtempDisplay[retCount] = 0; // Null-terminate display string.
       mesure12=bigtempDisplay;
       mesure12.erase(0,8);
       wait(2);
       cout << "-";
       // Affichage des données S21
       sprintf(buffer, ":SENSe:TRACe1:SPARams S21"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during passing the VNA to S21 Display." <<
endl;
               goto echec;
       }
       wait(5);
       cout << ".";
       // <u>Récupération</u> <u>et</u> <u>enregistrement</u> <u>des</u> <u>données</u> à l'écran - S21
       sprintf(bigbuffer, ":TRACe:DATA?");
       status = viWrite(instr, (unsigned char *)&bigbuffer[0], 20, &retCount);
       status = viRead(instr, (unsigned char *)bigbuffer, BIGBUFFER_SIZE,&retCount);
       // Process data
       strncpy(bigtempDisplay, bigbuffer, retCount);
       bigtempDisplay[retCount] = 0; // Null-terminate display string.
       mesure21=bigtempDisplay;
       mesure21.erase(0,8);
       wait(2);
       cout << "-";
       // Affichage des données S22
       sprintf(buffer, ":SENSe:TRACe1:SPARams S22"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during passing the VNA to S22 Display." <<</pre>
endl;
               goto echec;
       }
       wait(5);
       cout << ".";
       // <u>Récupération et enregistrement des données</u> à l'écran - S22
       sprintf(bigbuffer, ":TRACe:DATA?");
       status = viWrite(instr, (unsigned char *)&bigbuffer[0], 20, &retCount);
       status = viRead(instr, (unsigned char *)bigbuffer, BIGBUFFER SIZE,&retCount);
       // Process data
       strncpy(bigtempDisplay, bigbuffer, retCount);
       bigtempDisplay[retCount] = 0; // Null-terminate display string.
```

```
mesure22=bigtempDisplay;
       mesure22.erase(0,8);
       wait(2);
       cout << "-";
       // Récupération de la température de <u>la carte mère de la</u> VNA
       sprintf(buffer, ":SYSTem:MBTemperature?");
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       status = viRead(instr, (unsigned char *)buffer, BUFFER SIZE,&retCount);
       // Process data
       strncpy(tempDisplay, buffer, retCount);
       tempDisplay[retCount] = 0; // Null-terminate display string.
       temp vna=tempDisplay;
       cout << "> ";
       // Close down the connection
       status = viClose(instr);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during shutting down the connection." <<</pre>
endl;
               goto echec;
       }
       status = viClose(defaultRM);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during shutting down the connection." <<</pre>
endl;
               goto echec;
       }
       // Précision d<u>e</u> l'étalonnage <u>en fonction</u> <u>de</u> <u>la</u> <u>température</u>
       temp= atof(temp vna.c str());
       if (abs(temp calib-temp)<5) accuracy = "HIGH";</pre>
       else if (abs(temp_calib-temp)<10) accuracy = "MEDIUM";</pre>
       else accuracy = "LOW";
       //sprintf(file, "%s/%s", dossier, nom_fichier);
       sprintf(file, "%s", nom fichier);
       fichier.open(file, ios::out | ios::trunc); // ouverture en écriture avec effacement du
fichier ouvert
       if(fichier) {
               i = 0:
               pos11 = 0, pos12 = 0, pos21 = 0, pos22 = 0;
               fichier << "Accuracy : " << accuracy << " (temp VNA = " << temp vna << " /
temp calib = " << temp calib << " )" << endl << endl;</pre>
               fichier << "Freq(GHz) S11Re S11Im
                                                                S21Re
                                                                            S21Im
                                                                                         S12Re
                       S22Im" << endl;
            S22Re
S12Tm
               while (i<nb freq) {</pre>
                      debut11 = pos11, debut12 = pos12, debut21 = pos21, debut22 = pos22;
                      pos11 = mesure11.find(","), pos12 = mesure12.find(","), pos21 =
mesure21.find(","), pos22 = mesure22.find(",");
                      mesure11.replace(pos11, 1, " "), mesure12.replace(pos12, 1, " "),
mesure21.replace(pos21, 1, " "), mesure22.replace(pos22, 1, " ");
                      pos11 = mesure11.find(","), pos12 = mesure12.find(","), pos21 =
mesure21.find(","), pos22 = mesure22.find(",");
                      mesure11.replace(pos11, 1, ""), mesure12.replace(pos12, 1, ""),
mesure21.replace(pos21, 1, ""), mesure22.replace(pos22, 1, "");
                      longueur11=pos11-debut11, longueur12=pos12-debut12, longueur21=pos21-
debut21, longueur22=pos22-debut22;
                      length11=mesure11.copy(ligne11,longueur11,debut11),
length12=mesure12.copy(ligne12,longueur12,debut12),
```

```
length21=mesure21.copy(ligne21,longueur21,debut21),
length22=mesure22.copy(ligne22,longueur22,debut22);
                       ligne11[length11]='\0', ligne12[length12]='\0', ligne21[length21]='\0',
ligne22[length22]='\0';
                       freq = freq min + (freq max-freq min)/(nb freq-1)*i;
                       fichier << freq << " " << ligne11 << " " << ligne21 << " " << ligne12
<< " " << ligne22 << "\n";
                       i++;
                }
               fichier.close();
               cout << nom fichier;</pre>
               // <u>Enregistrement de la date dans un fichier</u> .<u>txt</u> pour <u>le post traitement</u>
(durée).
               string nom fichier = nom + ".txt";
                // Get time
               time (&rawtime):
               ptm = gmtime(&rawtime);
               if (indice == 1) {
                       ofstream fichier(nom_fichier.c_str(), ios::out | ios::trunc); //
ouverture en écriture avec effacement du fichier ouvert
                       if(fichier)
                       {
                               fichier << "indice jour/mois/annee heure:minutes:secondes" <<</pre>
endl;
                               fichier << " " << indice << "
                                                                    " << ptm->tm mday << " / "
<< ptm->tm mon+1 << " / " << ptm->tm_year+1900 << " " << (ptm->tm_hour+TLSE+heure_ete)%24
<< " : " << ptm->tm min << " : " << ptm->tm sec << endl;
                               fichier.close();
                       } else
                               cerr << "Impossible <u>de creer</u> <u>fichier</u> .<u>txt</u> !" << endl;
                } else {
                       ofstream fichier(nom_fichier.c_str(), ios::out | ios::app); //
ouverture en écriture
                       if(!fichier.fail() && fichier)
                       {
                               fichier << " " << indice << " " << ptm->tm mday << " / "
<<pre><< ptm->tm_mon+1 << " / " << ptm->tm_year+1900 << " " << (ptm->tm_hour+TLSE+heure_ete)%24
<< " . " << (ptm->tm_hour+TLSE+heure_ete)%24

<< " : " << ptm->tm min << " : " << ptm->tm sec << "
                                                              " << (clock())%1000 << endl;
                               fichier.close();
                       } else
                               cerr << "Erreur lors de l'ouverture du fichier .txt !" << endl;</pre>
               }
        } else {
               cerr << "Impossible de creer le fichier " << nom fichier << " !!!" << endl;</pre>
        }
        goto fin;
        // En cas d'echec lors d'un ordre :
        echec :
        // Close down the connection
        status = viClose(instr);
        if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during shutting down the connection." <<</pre>
endl;
        }
        status = viClose(defaultRM);
       if (status < VI SUCCESS) {</pre>
```

```
cerr << "Error : A problem occurred during shutting down the connection." <<
endl:
        }
        cerr << "<u>Echec</u> <u>lors</u> <u>de</u> l'acquisition <u>de</u> " << nom fichier << endl;
        cerr << "ATTENTION : La connection semble perdue !!!" << endl;</pre>
       // <u>Diagnostique</u> <u>de</u> l'acquisition
       console.open("log_console.txt", ios::out | ios::app); // ouverture en écriture avec
effacement <u>du</u> <u>fichier</u> <u>ouvert</u>
       console << "Echec lors de l'acquisition de " << nom_fichier << endl;</pre>
       console.close();
       fin :
       i=0;
}
// Fonction <u>qui</u> lance <u>et enregistre</u> <u>la mesure</u>, <u>en</u> local, <u>en</u> s21
void measurement dat s21(string nom, int indice)
{
       ViStatus status; // For checking errors
       ViSession defaultRM, instr; // Communication channels
        ViUInt32 retCount; // Return count from string I/O
       ViChar buffer[BUFFER SIZE]; // Buffer for string I/O
       ViChar bigbuffer[BIGBUFFER SIZE]; // Buffer for string I/O
       char tempDisplay[BUFFER SIZE]; // Display buffer for example
        char bigtempDisplay[BIGBUFFER SIZE]; // Display buffer for example
        char file[256];
       char nom fichier[256];
       int i, pos21, debut21;
       string mesure21;
       char ligne21[40];
       size t length21, longueur21;
       float freq, temp;
       string temp_vna, accuracy;
       ofstream fichier, console;
       time t rawtime;
       tm * ptm;
        // Completer avec les bonnes valeurs :
        float temp_calib = 41.0; // Température de calibration en °C
        float freq min = 0.4;
        float freq_max = 1;
        int nb freq = 4001;
        char *pAddress = "TCPIP::134.212.13.56::inst0::INSTR"; //Changer l'adresse IP si besoin
        // Fichier en cours :
        sprintf(nom fichier, "%s %i.dat", nom.c str(), indice);
        // Begin by initializing the system
        status = viOpenDefaultRM(&defaultRM);
        // Error Initializing VISA...exiting
        if (status < VI SUCCESS) {</pre>
               printf("Error : Can't initialize VISA\n");
               goto echec;
        }
        // Open communication with TCP/IP device
        status = viOpen(defaultRM, pAddress, VI NULL, VI NULL, &instr);
        // Error Handling
       if (status < VI SUCCESS) {</pre>
```

```
cerr << "Error : Can't connect to : " << pAddress << endl;
               goto echec;
       }
       // Set the timeout for message-based communication
       status = viSetAttribute(instr, VI ATTR TMO VALUE, 120000);
        // Error Handling
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : Can't set the timeout for message-based communication." <<</pre>
endl;
               goto echec;
       }
       // Lancement de l'acquisition
       sprintf(buffer, ":INITiate:IMMediate"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during the acquisition." << endl;</pre>
               goto echec;
       }
       // Attente avant enregistrement (en seconde)
       cout << "Acquisition ";</pre>
       wait(10);
       cout << "*";
       // <u>Affichage</u> <u>des</u> <u>données</u> S21
       sprintf(buffer, ":SENSe:TRACe1:SPARams S21"); // 25 caracteres de base
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during passing the VNA to S21 Display." <<
endl;
               goto echec;
       }
       wait(5);
       cout << ".";
       // <u>Récupération</u> <u>et</u> <u>enregistrement</u> <u>des</u> <u>données</u> à l'écran - S21
       sprintf(bigbuffer, ":TRACe:DATA?");
       status = viWrite(instr, (unsigned char *)&bigbuffer[0], 20, &retCount);
       status = viRead(instr, (unsigned char *)bigbuffer, BIGBUFFER SIZE,&retCount);
        // Process data
       strncpy(bigtempDisplay, bigbuffer, retCount);
       bigtempDisplay[retCount] = 0; // Null-terminate display string.
       mesure21=bigtempDisplay;
       mesure21.erase(0,8);
       wait(2);
       cout << "-";
       // <u>Récupération de la température de la carte mère de la</u> VNA
        sprintf(buffer, ":SYSTem:MBTemperature?");
       status = viWrite(instr, (unsigned char *)&buffer[0], 50, &retCount);
       status = viRead(instr, (unsigned char *)buffer, BUFFER SIZE,&retCount);
       // Process data
       strncpy(tempDisplay, buffer, retCount);
       tempDisplay[retCount] = 0; // Null-terminate display string.
       temp vna=tempDisplay;
       cout << "> ";
       // Close down the connection
       status = viClose(instr);
       if (status < VI SUCCESS) {</pre>
```

```
cerr << "Error : A problem occurred during shutting down the connection." <<</pre>
endl:
               goto echec;
       }
       status = viClose(defaultRM);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during shutting down the connection." <<</pre>
endl;
               goto echec;
       }
       // <u>Précision</u> <u>de</u> l'étalonnage <u>en fonction</u> <u>de</u> <u>la</u> <u>température</u>
       temp= atof(temp_vna.c_str());
       if (abs(temp_calib-temp)<5) accuracy = "HIGH";</pre>
       else if (abs(temp calib-temp)<10) accuracy = "MEDIUM";</pre>
       else accuracy = "LOW";
       //sprintf(file, "%s/%s", dossier, nom fichier);
       sprintf(file, "%s", nom fichier);
       fichier.open(file, ios::out | ios::trunc); // ouverture en écriture avec effacement du
fichier ouvert
       if(fichier) {
               i=0;
               pos21 = 0;
               fichier << "Accuracy : " << accuracy << " (temp VNA = " << temp vna << " /
temp calib = " << temp calib << " )" << endl << endl;</pre>
               fichier << "Freq(GHz) S21Re S21Im" << endl;</pre>
               while (i<nb_freq) {</pre>
                       debut21 = pos21;
                       pos21 = mesure21.find(",");
                       mesure21.replace(pos21, 1, " ");
                       pos21 = mesure21.find(",");
                       mesure21.replace(pos21, 1, "");
                       longueur21=pos21-debut21;
                       length21=mesure21.copy(ligne21,longueur21,debut21);
                       ligne21[length21]='\0';
                       freq = freq_min + (freq_max-freq_min) / (nb_freq-1)*i;
                       fichier << freq << " " << ligne21 << "\n";
                       i++;
               }
               fichier.close();
               cout << nom fichier;</pre>
               // Enregistrement de la date dans un fichier .txt pour le post traitement
(durée).
               string nom fichier = nom + ".txt";
               // Get time
               time(&rawtime);
               ptm = gmtime(&rawtime);
               if (indice == 1) {
                       ofstream fichier(nom_fichier.c_str(), ios::out | ios::trunc); //
<u>ouverture en écriture avec effacement du fichier ouvert</u>
                       if(fichier)
                       {
                               fichier << "indice jour/mois/annee heure:minutes:secondes" <<</pre>
endl:
                              fichier << " " << indice << " " << ptm->tm mday << " / "
<< ptm->tm mon+1 << " / " << ptm->tm_year+1900 << "
                                                        " << (ptm->tm hour+TLSE+heure ete)%24
<< " : " << ptm->tm min << " : " << ptm->tm sec << endl;
```

ANNÉE 2013

```
fichier.close();
                       } else
                               cerr << "Impossible de creer fichier .txt !" << endl;</pre>
               } else {
                       ofstream fichier(nom fichier.c str(), ios::out | ios::app); //
ouverture en écriture
                       if(!fichier.fail() && fichier)
                       {
                               fichier << " " << indice << " " << ptm->tm_mday << " / "
<<pre><< ptm->tm_mon+1 << " / " << ptm->tm_year+1900 << " " << (ptm->tm_hour+TLSE+heure_ete)%24
                                                             " << (clock())%1000 << endl;
<< " : " << ptm->tm min << " : " << ptm->tm sec << "
                              fichier.close();
                       } else
                               cerr << "Erreur lors de l'ouverture du fichier .txt !" << endl;
               }
        } else {
               cerr << "Impossible de creer le fichier " << nom fichier << " !!!" << endl;</pre>
        }
       goto fin;
       // En cas d'echec lors d'un ordre :
       echec :
       // Close down the connection
       status = viClose(instr);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during shutting down the connection." <<
endl;
       }
       status = viClose(defaultRM);
       if (status < VI SUCCESS) {</pre>
               cerr << "Error : A problem occurred during shutting down the connection." <<</pre>
endl;
       }
       cerr << "Echec lors de l'acquisition de " << nom_fichier << endl;</pre>
       cerr << "ATTENTION : La connection semble perdue !!!" << endl;</pre>
       // <u>Diagnostique</u> <u>de</u> l'acquisition
       console.open("log console.txt", ios::out | ios::app); // ouverture en écriture avec
effacement du fichier ouvert
       console << "Echec lors de l'acquisition de " << nom fichier << endl;</pre>
       console.close();
       fin :
       i=0;
}
// Fonction qui attends <u>le temps donne</u>, <u>en secondes</u>.
void wait(float seconds)
{
       clock t endwait;
       endwait = clock () + seconds * CLOCKS_PER_SEC ;
       while (clock() < endwait) {}</pre>
```

}

Bibliographie

[Bamler et Hartl, 1998] Bamler, R. et Hartl, P.; "Synthetic Aperture Radar Interferometry", Inverse Problems, Vol. 14, N° 4, R1–R54, 1998.

[Beaudoin et al., 1994] Beaudoin, A.; Le Toan, T.; Goze, S.; Nezry, E.; Lopes, A.; Mougin, E.; Hsu, C.C.; Han, H.C.; Kong, J.A. et Shin, R.T.; "Retrieval of Forest Biomass from SAR Data", International Journal of Remote Sensing, Vol. 15, pp. 2777–2796, 1994.

[Borderies and Villard, 2009] Borderies, P. and L. Villard, "Relations between biomass and radiometry at P band as a function of forest descriptive parameters," ESA Contract, No. 20449/06/NL/LvH, CCN, 2009.

[Borderies et al., 2009] Borderies, P.; Villard, L. et Fourestié, B.; "Sensitivity study of random volume over ground electromagnetic scattering versus volume fraction", International Symposium on Antennas and Propagation, Bangkok, 2009.

[Borderies and Villard, 2010] Borderies, P. and L. Villard, "Relations between biomass and radiometry at P band as a function of forest descriptive parameters," ESA Contrat, No. 20449/06/NL/LvH/CCN.

[Borderies and Villard, 2010] Borderies, P. and L. Villard, "Rigorous numeric techniques applied to microwave interaction with natural targets: volume scattering," ESA Contract, No. 20449/06/NL/LvH, CCN, 2010.

[Canadell et al., 2007] Canadell, J.G., Le Quere, C., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P., Conway, T.J., Gillett, N.P., Houghton, R.A. et Marland, G.; "Contributions to Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Sinks", Proceedings of the National Academy of Sciences, Vol. 104, pp. 18866–18870, 2007.

[Carrara et al., 1995] Carrara, W.; Goodman, R. and Majewski, R.; "Spotlight Synthetic Aperture Radar - Signal Processing Algorithms", Norwood, MA: Artech House, 1995.

[Ceccato et al, 2002] Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B. and Tarantola, S.; "Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 Theoretical approach", RSE, Vol. 82, pp. 188-197, 2002.

[Cloude and Papathanassiou, 2003] S. R. Cloude and K. Papathanassiou, "A three stage inversion process for polarimetric SAR interferometry," IEE Proc. Radar, Sonar Navig., vol. 150, no. 3, pp. 125–134, Juin 2003.

[Cloude et Papathanassiou, 1998] Cloude, S.R. et Papathanassiou, K.P.; "Polarimetric SAR Interferometry", IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, N° 5, pp. 1551–1565, 1998.

[Cloude, 2007] Cloude, S.R.; "Dual-baseline coherence tomography", IEEE Geoscience and Remote Sensing Letters, Vol. 4, N° 1, pp. 127–131, 2007.

[Curlander et Donough, 1991] Curlander, J.C. et Mc Donough, R.N.; "Synthetic Aperture Radar-Systems and Signal Processing", Wiley series in remote sensing, 1991.

[Demaze et al., 2001] Demaze, M.T.; Polidori, L. et Fotsing, J.M.; "Caractérisation multi-échelle et multi-capteur de la déforestation tropicale amazonienne ", bulletin SFPT, N° 161, 2000.

[Dobson et al., 1992] Dobson, M.C.; Ulaby, F.T.; Le Toan, T.; Beaudoin, A.; Kasischke, E. et Christensen, N.L.; "Dependence of Radar Backscatter on Coniferous Forest Biomass", IEEE Transactions Geoscience and Remote Sensing, Vol. 30, N° 2, pp. 412–415, 1992.

[Dubois-Fernandez et al., 2010] Dubois-Fernandez P.; Oriot, H.; Coulombeix, C.; Cantalloube, H.; Ruault du Plessis, O.; Le Toan, T.; Daniel, S.; Chave, J.; Blanc, L. et Davidson, M.; "TropiSAR, a SAR data acquisition campaign in French Guiana", 8th European Conference on Synthetic Aperture Radar (EUSAR), Aachen, Germany, 2010.

[Dubois-Fernandez et al., 2012] Dubois-Fernandez P.; Le Toan, T.; Daniel, S.; Oriot, H.; Chave, J.; Blanc, L.; Villard, L.; Davidson, M. et Petit, M.; "The TropiSAR Airborne Campaign in French Guiana: Objectives, Description and Observed Temporal Behavior of the Backscatter Signal", IEEE Transactions in Geoscience and Remote Sensing, Vol. 50, N° 8, pp. 3228-3241, 2012.

[Durandeau et al., 2002] Durandeau, J.P.; Durupthy, A.; et al.; "Physique-Chimie Term. S, Enseignement de spécialité", Hachette Éducation, 256 pp., 2002.

[ESA, 2008] "BIOMASS Phase 0 Report for Assessment", European Space Agency, ref. SP1313/2, Novembre 2008.

[Garestier et al, 2008] Garestier, F. ; Dubois-Fernandez, P. et Champion, I. ; "Forest Height Inversion Using High Resolution P-Band PolInSAR Data", IEEE Transactions on Geosciences and Remote Sensing, Vol. 46, N° 10, pp. 3544–3559, 2008.

[Garestier et al, 2010a] Garestier, F. et Le Toan, T.; "Forest Modeling for Height Inversion Using Single Baseline InSAR/PolInSAR Data", IEEE Transactions on Geosciences and Remote Sensing, Vol. 48, N° 3, pp. 1528–1539, 2010a.

[Garestier et al, 2010b] Garestier, F. et Le Toan T.; "Estimation of a Forest Backscatter Profile at P-Band Using Single Baseline PolInSAR", IEEE Transactions on Geosciences and Remote Sensing, Vol. 48, N° 9, pp. 3340–3348, 2010b.

[Garestier et al., 2005] Garestier, F. ; Champion, I. ; Dubois-Fernandez, P.; Paillou, P. and Dupuis, X. ; " Polar and PolInSAR analysis of pine forest at L and P band on high resolution data ", IGARSS 2005, Séoul, Corée.

[Garestier et al., 2008] F. Garestier, P. Dubois-Fernandez, K. Papathanassiou, "Pine forest height inversion using single-pass X-band PolInSar data", IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 1, pp. 59-68, 2008.

[Garestier, 2006] Garestier, F.; "'Evaluation du potentiel de la technique PolInSAR pour l'estimation des paramètres physiques de la végétation en conditions satellitaires", Manuscrit de thèse, 2006.

[Gascon et al., 2001] Gascon, F.; Gastellu-Etchegorry, J.P. and Levefre, M.J.; "Radiative Transfer Model for Simulating High-Resolution Satellite Images", IEEE TGRS, Vol. 39, N° 9, Septembre 2001.

[Gastellu-Etchegorry et al., 2012] Gastellu-Etchegorry, J.P.; Grau, E. et Lauret, N. ; "DART: A 3D Model for Remote Sensing Images and Radiative Budget of Earth Surfaces, Modeling and Simulation in Engineering" Editions Catalin Alexandru, ISBN: 978-953-51-0012-6, InTech, DOI: 10.5772/31315, 2012.

[Gates, 1991] Gates, D. M.; "Water relations of forest Trees", IEEE TGRS, Vol. 29, Issue 6, pp. 836-842, Novembre 1991.

[GCOS, 2003] GCOS; "Second Report on the Adequacy of the Global Observing System for Climate in Support of the UNFCCC", GCOS-82, WMO/TD N° 1143, World Meteorological Organization, 74 pp., 2003.

[GCOS, 2004] GCOS; "Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC", GCOS-92, WMO/TD N° 1219, World Meteorological Organization, 153 pp., 2004.

[GCOS, 2010] GCOS; "Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC", GCOS-1338 (ES), World Meteorological Organization, 25 pp., 2010.

[Hajnsek et al, 2008] Hajnsek I.; Scheiber, R.; Ulander, L.; Gustavsson, A.; Sandberg, G.; Tebaldini, S.; Guarnieri, A.M.; Rocca, F.; Bombardini, F. et Pardini, M.; "BIOSAR 2007: Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2007 Experiment", Final Report, ESA contract N°: 20755/07/NL/CB, 2008.

[Hajnsek et al., 2009] Hajnsek, I.; Kugler, F.; Lee, S.K. et Papathanassiou, K.P.; "Tropical Forest Parameter Estimation by Means of PolInSAR: The INDREX-II Campaign", IEEE Transactions in Geoscience and Remote Sensing, Vol. 47, N°2, pp. 481–493, 2009.

[Hallikainen et al., 1985] Hallikainen, M. T.; Dobson, M. C.; Ulaby, F. T.; El-Rayes, M. A. et Wu, L. K.; "Microwave dielectric behaviour of wet soil", IEEE Transaction on Geoscience and Remote Sensing, Vol. 23, N° 1, janvier 1985.

[Hawkins et al., 1999] Hawkins, R. K.; Attema, E. P. W.; Crapolicchio, R.; Lecomte, P.; Closa, J.; Meadows, P. J. et Srivastava, S. K.; "Stability of Amazon Backscatter at C-Band: Spaceborne SAR Results from ERS-2 and RADARSAT-I", CEOS SAR Workshop, Toulouse, Octobre 1999.

[Hellwich et al., 2002] Hellwich, O.; Reigber, A. et Lehman, H.; "Sensor and Data Fusion Contest: Test imagery to Compare and Combine Airborne SAR and Optical sensors for mapping", IEEE International Geoscience and Remote Sensing Symposium (IGARSS), June 2002.

[Ho Tong Minh et al., 2012] Ho Tong Minh, D.; Tebaldini, S.; Rocca, F.; Albinet, C.; Borderies, P.; Koleck, T.; Le Toan , T. and Villard, L.; "TropiScat: Multi-temporal MultiPolarimetric Tomographic Imaging of Tropical Forests" IGARSS, Munich, IEEE International proceedings, pp. 1536-1539, Juillet 2012.

[Hotelling, 1933] Hotelling, H.; "Analysis of a Complex of Statistical Variables with Principal Components", Journal of Educational Psychology, 1933.

[Houghton et al., 2009] Houghton, R.A.; Hall, F. et Goetz, S. J.; "Importance of Biomass in the Global Carbon Cycle", Journal of Geophysical Research, Vol. 114, G00E03, 2009.

[Houghton, 2005] Houghton, R.A.; "Aboveground Forest Biomass and the Global Carbon Cycle", Global Change Biology, Vol. 11, pp. 945–958, 2005.

[Huang et al., 2011] Huang, Y.; Ferro-Famil, L. and Lardeux, C.; "Polarimetric SAR Tomography of Tropical Forests at P-Band", IGARSS 2011, Vancouver, Canada.

[IPCC, 2003] IPCC (eds. Penman, P., Gytarsky, M., Hiraish, T., Krug, T., Kruger, D., Pipatta, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. et Wagner, F.); "Good Practice Guidance for Land Use, Land Use Change and Forestry", 2003.

[IPCC, 2007] IPCC; "IPCC Fourth Assessment Report: Climate Change 2007, The Physical Science Basis", Cambridge University Press, Cambridge, 2007.

[ITU, 2004] International Telecommunication Union, "Frequency Allocations", ITU-2004, the Radio Regulations, Article 5, 2004.

[Jacquemoud et al., 2009] Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C. and Ustin, S.L.; "PROSPECT+SAIL models: A review of use for vegetation characterization", RSE, Vol. 113, 2009.

[Jacquemoud et Baret, 1990] Jacquemoud, S. et Baret, F.; "PROSPECT: A model of leaf optical properties spectra", Remote Sensing of Environment, Vol. 34, pp. 75–91, 1990

[Jakowatz et al., 1996] Jakowatz, C.; Wahl, D.; Eichel, P.; Ghiglia, D. and Thompson, P.; "Spotlightmode synthetic aperture radar: a signal processing approach", Kluwer Academic Pub, 1996.

[Jameson, 1966] Jameson, D. A.; "Diurnal and seasonal fluctuations in moisture content of pinyon and juniper", Rocky Mountain Forest and Range Experiment Station, Forest Service, U.S. Dept. of Agriculture, 1966.

[Kasischke et al., 1997] Kasischke, E.S.; Melack, J.M. et Dobson, M.C.; "The Use of Imaging Radars for Ecological Applications – A Review", Remote Sensing of Environment, Vol. 59, pp. 141–156, 1997.

[Kriegler et al., 1969] Kriegler, F.J.; Malila, W.A.; Nalepka, R.F. and Richardson, W.; "Preprocessing transformations and their effects on multispectral recognition", Proceedings of the 6th International Symposium on Remote Sensing of Environment, pp. 97-131, 1969.

[Krus et al., 1976] Krus, D.J., et al. ; "Rotation in canonical analysis", Educational and Psychological Measurement, Vol. 36, pp. 725-730, 1976.

[Kugler et al, 2006] Kugler, F.; Papathanassiou, K.P.; Hajnsek, I. et Hoekman, D.; "Forest Height Estimation in Tropical Rain Forest Using PolInSAR Techniques", IEEE International Geoscience and Remote Sensing Symposium, Denver, USA, 2006.

[Kuplich et al, 2000] Kuplich, T.M.; Freitas, C.C. et Soares, J.V.; "The study of ERS-1 and LANDSAT TM synergism for land use classification", International Journal of Remote Sensing, Vol. 21, N° 10, pp. 2101-2111, 2000.

[Lanczos, 1961] Lanczos, C. "Linear differential operators", Londres & New York, éditions Van Nostrand, ISBN 0-486-68035-5, 1961, "Local smoothing by integration".

[Le Toan et al., 1992] T. Le Toan, A. Beaudoin, et al., "Relating forest biomass to SAR data", IEEE TGRS, vol. 30, no. 2, pp. 403-411, Mars 1992.

[Le Toan et al., 2011] T. Le Toan, S. Quegan, M. Davidson, H. Balzter, P. Paillou, K. Papathanassiou, S. Plummer, F. Rocca, S. Saatchi, H. Shugart, L. Ulander, "The BIOMASS Mission : Mapping global forest biomass to better understand the terrestrial carbon cycle," Remote Sensing of Environment, vol. 115, no. 11, pp. 2850-2860, Juin 2011.

[Lee et al, 2008] Lee, S.K.; Kugler, F.; Papathanassiou, K.P. et Hajnsek, I.; "Quantifying Temporal Decorrelation over Boreal Forest at L- and P-band", 7th European conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, Germany, 2008.

[Lesaignoux et al., 2013] Lesaignoux, A. ; Fabre, S. and Briottet, X.; « Influence of soil moisture content on spectral reflectance of bare soils in the 0.4 – 14 μ m domain », IJRS, Vol. 34, N° 7, pp. 2268-2285, 2013.

[Lesaignoux, 2010] Lesaignoux, A.; "Estimation de l'Humidité de Surface des Sols Nus à Partir de l'Imagerie Hyperspectrale sur le Domaine Optique 0.4-14µm", Manuscrit de thèse, Institut Supérieur de l'Aéronautique et de l'Espace, Décembre 2010.

[Luscombea et al., 2000] Luscombea, A. P.; Chotoo, K. et Huxtableb, B. D.; "Polarimetric Calibration for RADARSAT-2", IEEE International Geoscience And Remote Sensing Symposium (IGARSS), Honolulu, Juillet 2000.

[Mc Donald et al., 2002] Mc Donald, K. C.; Zimmermann, R. and Kimball, J.S. ; "Diurnal Diurnal and Spatial Variation of Xylem Dielectric Constant in Norway Spruce (Picea abies [L.] Karst.) as Related to Microclimate, Xylem Sap Flow, and Xylem Chemistry", IEEE TGRS, Vol. 40, No. 9, Septembre 2002.

[Mougin et al., 1993] Mougin, E.; Lopez, A.; Karam, M.A. et Fung, A.K.; "Effect of Tree Structure on X-Band Microwave Signature of Conifers", IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, N° 3, pp. 370-381, 1993.

[Nagler et al., 2003] Nagler, P.L.; Inoue, Y.; Glenn, E.P.; Russ, A.L. and Daughtry, C.S.T.; "Cellulose absorption index (CAI) to quantify mixed soil–plant litter scenes", Remote Sensing of Environment, Vol. 87, N° 2–3, pp. 310-325, Octobre 2003.

[Papathanassiou et al., 2008] Papathanassiou, K. P.; Kugler, F.; Lee, S.; Marotti, L. et Hajnsek, I.; "Recent Advances in Polarimetric SAR Interferometry for Forest Parameter Estimation", IEEE Radar Conference, Rome, 2008. [Papathanassiou et Cloude, 2001] Papathanassiou, K.P. et Cloude, S.R.; "Single-baseline Polarimetric SAR Interferometry", IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, N° 11, pp. 2352–2363, 2001.

[Pearson, 1901] Pearson, K., "On Lines and Planes of Closest Fit to Systems of Points in Space", Philosophical Magazine, vol. 2, no 6, p. 559–572, 1901.

[Praaks et al, 2007] Praaks, J.; Kugler, F.; Papathanassiou, K.P.; Hajnsek, I. et Hallikainen, M.; "Treeheight Estimation for Boreal Forest by Means of L- and X-Band POLInSAR and HUTSCAT Scatterometer", IEEE Transactions on Geoscience and Remote Sensing Letters, Vol. 4, N° 3, pp. 466– 470, 2007.

[Proisy et al., 2000] Proisy, C.; Mougin, E.; Dufrêne, E. et Le Dantec, V.; "Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations", IEEE TGARS, Vol. 38, N° 1, pp. 540-552, Janvier 2000.

[Ranson et al., 1997] Ranson, K.J.; Sun, G.; Lang, R.H.; Chauhan, N.S.; Cacciola, R.J. et Kilic, O.; "Mapping of Boreal Forest Biomass from Spaceborne Synthetic Aperture Radar", Journal of Geophysical Research, Vol. 102, N° D24, pp. 599–629, 1997.

[Reigber et Moreira, 2000] Reigber, A. et Moreira, A.; "First Demonstration of Airborne SAR Tomography Using Multi-Baseline L-Band Data", IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, N° 5, pp. 2142–2152, 2000.

[Saleh et al., 2005] K. Saleh, A. Porte, D. Guyon, P. Ferrazzoli and J.P. Wigneron, "A Forest Geometric Description of a Maritime Pine Forest Suitable for Discrete Microwave Models", IEEETGARS, Volume 43, Issue 9, pp. 2024 – 2035, Septembre 2005.

[Sandberg et al., 2009] Sandberg, G.; Ulander, L. M. H.; Fransson, J. E. S.; Holmgren, J. and Le Toan, T.; "Comparison of L and P band Biomass Retrievals Based on Backscatter from the BIOSAR Campaign", IGARSS 2009, Cape Town, Afrique du Sud.

[Shimada et al., 2003] Shimada, M. ; Tanaka, H. ; Tadono, T. et Watanabe, M.; "Calibration and validation of palsar (II) use of polarimetric active radar calibrator and the Amazon rainforest data", IEEE International Geoscience And Remote Sensing Symposium (IGARSS), Toulouse, Juillet 2003.

[Shimada et al., 2004] Shimada, M.; Tadono, T. et Watanabe, M.; "Determination of Polarimetric calibration parameters of L band SAR using uniform forest data", IEEE International Geoscience And Remote Sensing Symposium (IGARSS), Anchorage, Septembre 2004.

[Shimada et al., 2008] Shimada, M.; Isoguchi, O. and Rosenqvist, A.; "PALSAR CALVAL and Generation of the Continent Scale Mosaic Products for Kyoto and Carbon Projects", IGARSS 2008, Boston, USA.

[Shimada, 2011] Shimada, M.; "Model-Based Polarimetric SAR Calibration Method Using Forest and Surface-Scattering Targets", IEEE Transactions on Geoscience and Remote Sensing (TGRS), Vol. 49, N° 5, Mai 2011.

[Soja, 2012] Soja, M.J.; Sandberg, G. et Ulander, L.M.H.; "Regression-Based Retrieval of Boreal Forest Biomass in Sloping Terrain Using P-Band SAR Backscatter Intensity Data", IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, N° 5, pp. 2646-2665, 2012.

[Tebaldini et al., 2011] Tebaldini, S.; Mariotti D'Alessandro, M.; Ho Tong Minh, D. and Rocca, F.; "P Band Penetration in Tropical and Boreal Forests: Tomographical Results", IGARSS 2011, Vancouver, Canada.

[Tebaldini et Rocca, 2008] Tebaldini, S. et Rocca, F.; "Polarimetric SAR Tomography of forested area : a covariance matching approach", EuSAR, 2008.

[Tebaldini et Rocca, 2012] Tebaldini, S. et Rocca, F.; "Multibaseline Polarimetric SAR Tomography of a Boreal Forest at P- and L-Bands", IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, N° 1, pp. 232–246, 2012.

[Tebaldini, 2009] Tebaldini, S.; "Multi-Baseline SAR Imaging: Models And Algorithms", manuscript de thèse, Politecnico Di Milano, 2009.

[Tebaldini, 2010] Tebaldini, S.; "Single and Multipolarimetric SAR Tomography of Forested Areas: A Parametric Approach", IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, N° 5, pp. 2375–2387, 2010.

[Touzi and Shimada, 2009] Touzi, R. et Shimada, M.; "Polarimetric PALSAR Calibration", IEEE Transactions on Geoscience and Remote Sensing (TGRS), Vol. 47, N° 12, Décembre 2009.

[Treuhaft et al., 2002] Treuhaft, R.N. et al.; "Forest Leaf Area Density Profiles from the quantitative fusion of Radar and hyperspectral data", Journal of Geophysical Research, Vol. 107, N° D21, pp. 4568, 2002.

[Ulaby et al., 1986] Ulaby, F. T.; Moore, R. K. et Fung, A. K.; "Microwave remote sensing, active and passive", Artech House, Vol. 3 "From theory to applications", 1986.

[Ulander, 2011] Ulander, L.M.H.; Sandberg, G. et Soja, M.J.; "Biomass Retrieval Algorithm Based on P-Band BioSAR Experiments of Boreal Forest", IEEE International Geoscience and Remote Sensing Symposium, pp. 4245–4248, Vancouver, 2011.

[Villard et al., 2008] L. Villard, I. Hajnsek, K. Papathanassiou, P. Borderies, "Pol-InSar simulations in forest bistatic scattering", 7th European Synthetic Aperture Radar (EUSAR), 2-5 Juin 2008.

[Villard et Le Toan, 2013] Villard, L. and Le Toan, T.; "Relating P-band SAR Intensity to Biomass for Tropical Dense Forests in Hilly Terrain : γ_0 or t_0 ?", Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), Final review, April 2013.

[Way et al.; 1991] Way, J.B. et al.; "Diurnal Change in Trees as Observed by Optical and Microwave Sensors: the EOS Synergism Study", IEEE Transactions on Geoscience and Remote Sensing, Vol. 29, N° 6, 1991.

[Zebker et Villasenor, 1992] Zebker, H.A. et Villasenor, J.; "Decorrelation in Interferometric Radar Echoes", IEEE Transactions of Geoscience and Remote Sensing, Vol. 30, N° 9, pp. 950–959, 1992.

Le Directeur de Thèse

(Nom et Prénom)

VU :

Le Responsable de l'École Doctorale

VU pour autorisation de soutenance

Rennes, le

Le Président de l'Université de Rennes 1

Guy CATHELINEAU

VU après soutenance pour autorisation de publication :

Le Président de Jury,

(Nom et Prénom)