72 research outputs found

    Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data

    Get PDF
    Monitoring and understanding climate-induced changes in the boreal and arctic vegetation is critical to aid in prognosticating their future. Weused a 33 year (1982-2014) long record of satellite observations to robustly assess changes in metrics of growing season (onset: SOS, end: EOS and length: LOS) and seasonal total gross primary productivity. Particular attention was paid to evaluating the accuracy of these metrics by comparing them to multiple independent direct and indirect growing season and productivity measures. These comparisons reveal that the derived metrics capture the spatio-temporal variations and trends with acceptable significance level (generally p < 0.05). We find that LOS has lengthened by 2.60 d dec(-1) (p < 0.05) due to an earlier onset of SOS (-1.61 d dec(-1), p < 0.05) and a delayed EOS (0.67 d dec(-1), p < 0.1) at the circumpolar scale over the past three decades. Relatively greater rates of changes in growing season were observed in Eurasia (EA) and in boreal regions than in North America (NA) and the arctic regions. However, this tendency of earlier SOS and delayed EOS was prominent only during the earlier part of the data record (1982-1999). During the later part (2000-2014), this tendency was reversed, i.e. delayed SOS and earlier EOS. As for seasonal total productivity, we find that 42.0% of northern vegetation shows a statistically significant (p < 0.1) greening trend over the last three decades. This greening translates to a 20.9% gain in productivity since 1982. In contrast, only 2.5% of northern vegetation shows browning, or a 1.2% loss of productivity. These trends in productivity were continuous through the period of record, unlike changes in growing season metrics. Similarly, we find relatively greater increasing rates of productivity in EA and in arctic regions than in NA and the boreal regions. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation during last three decades

    Spatial-temporal dynamics of land surface phenology over Africa for the period of 1982–2015

    Get PDF
    Knowledge of the dynamics of vegetation phenology is essential for the understanding of vegetation-climate interactions. Although the interest in phenology study is growing, vegetation phenology in Africa received far less attention compared to the Northern Hemisphere. Africa straddles the northern and southern hemispheres, and the climate has a clear latitudinal gradient, which facilitates the study of the interaction between phenology and climate. In this study, the latitudinal and longitudinal gradients and temporal trends of start of growing season (SOS), peak of growing season (POS), and end of growing season (EOS) were examined using long-term satellite dataset during 1982–2015. The latitudinal variations in these phenology metrics were larger in the northern than those in the southern Africa, especially from 6°N northwards to 16°N. The latitudinal variations in southern Africa had no clear patterns due to the more complex climate systems. For the longitudinal variation, the temporal trends in POS and EOS exhibited a gradient-decreasing rate in northern Africa. Over the period from 1982 to 2015, the overall trends of the phenology in Africa were ‘later SOS’, ‘later POS’, and ‘later EOS’. The faster rate of delay in EOS than in SOS resulted in a prolonged length of growing season (LOS) with 0.50 days/year on average in northern Africa, while a slower rate of delay in EOS than in SOS resulted in a shorter LOS with −0.12 days/year in southern Africa. The prolonged LOS in northern Africa contributes to the increase in the yearly-averaged Normalized Difference Vegetation Index (NDVI) from 1982 to 2000. Nevertheless, the NDVI appeared to have reached saturation around the 2000s, although the LOS was still extending after 2000s. Overall, the findings of this study provide an overall view of the spatial and temporal patterns of land surface phenology in the African continent, and a necessary component for future studies on the response of phenology to climate.</p

    Toward a better understanding of changes in Northern vegetation using long-term remote sensing data

    Get PDF
    Cascading consequences of recent changes in the physical environment of northern lands associated with rapid warming have affected a broad range of ecosystem processes, particularly, changes in structure, composition, and functioning of vegetation. Incomplete understanding of underlying processes driving such changes is the primary motivation for this research. We report here the results of three studies that use long-term remote sensing data to advance our knowledge of spatiotemporal changes in growing season, greenness and productivity of northern vegetation. First, we improve the remote sensing-based detection of growing season by fusing vegetation greenness, snow and soil freeze/thaw condition. The satellite record reveals extensive lengthening trends of growing season and enhanced annual total greenness during the last three decades. Regionally varying seasonal responses are linked to local climate constraints and their relaxation. Second, we incorporate available land surface histories including disturbances and human land management practices to understand changes in remotely sensed vegetation greenness. This investigation indicates that multiple drivers including natural (wildfire) and anthropogenic (harvesting) disturbances, changing climate and agricultural activities govern the large-scale greening trends in northern lands. The timing and type of disturbances are important to fully comprehend spatially uneven vegetation changes in the boreal and temperate regions. In the final part, we question how photosynthetic seasonality evolved into its current state, and what role climatic constraints and their variability played in this process and ultimately in the carbon cycle. We take the ‘laws of minimum’ as a basis and introduce a new framework where the timing of peak photosynthetic activity (DOYPmax) acts as a proxy for plants adaptive state to climatic constraints on their growth. The result shows a widespread warming-induced advance in DOYPmax with an increase of total gross primary productivity across northern lands, which leads to an earlier phase shift in land-atmosphere carbon fluxes and an increase in their amplitude. The research presented in this dissertation suggests that understanding past, present and likely future changes in northern vegetation requires a multitude of approaches that consider linked climatic, social and ecological drivers and processes

    Spatio-Temporal Modeling of Vegetation Change Dynamics in the Guinea Savannah Region of Nigeria using Remote Sensing and GIS Techniques

    Get PDF
    The use of Normalized Difference Vegetation Index (NDVI) time series over the last decades has increased our understanding of vegetation change dynamics from global to regional scale through quantitative analysis of inter-annual trends in NDVI and climatological parameters (rainfall and temperature). Change in land cover induced by human activities such as livestock grazing and deforestation for large-scale farming (subsistence and mechanized) has influenced the ecological pattern of the Guinea savannah region (GSR) of Nigeria, thereby resulting in loss of biodiversity and changes in vegetation cover. In the context of the GSR of Nigeria where agriculture still plays a major role in people’s economy, it is important to identify the relationship between climatic variables, vegetation productivity and human activities which can be used to understand the on-going transition processes. This study, therefore, examines the spatial and temporal relationship between NDVI and climate parameters, land use land cover change (LULCC) and the perspective of local people on vegetation change dynamics in the study region. In order to do this, bi-monthly NDVI3g time series datasets from Global Inventory Modeling and Mapping Studies (GIMMS), monthly rainfall datasets from Tropical Applications of Meteorology Satellite (TAMSAT), monthly temperature datasets from Climate Research Unit (CRU), national land use land cover (LULC) data of Nigeria from Forestry Management Evaluation & Coordination Unit (FORMECU), global land cover datasets from European Space Agency, Landsat imagery and socio-economic field data collection were used in order to understand vegetation change dynamics across the Guinea savannah regions of Nigeria. Time series analysis (TSA) was applied to both NDVI and climate data used in order to examine the temporal dynamics of vegetation cover change and to detect NDVI-climate relationship during the period from 1983 through 2011. Both parametric and non-parametric statistical models were employed for the assessment of long-term inter-annual trend on the decomposed time series datasets for the whole region (Guinea savannah region) and selected locations. In addition to the TSA, harmonic regression analysis was performed on NDVI and rainfall datasets in order to examine change in seasonality and phyto-phenological characteristics of vegetation. Detection of change in land use and land cover was done by extracting information from existing land cover datasets (ancillary datasets). CLASlite was used for the assessment of the extent of deforestation, while linkage between remotely sensed data and social science was carried out via field surveys based on questionnaires in order to understand the drivers of vegetation change. The study reveals that about 90 % of the Guinea savannah region show positive NDVI trends which indicate greening over time, while about 10 % of the region shows negative trends. This greening trends are closely related to regions where intensive agriculture is being practiced (also along inland valleys) while regions with negative trends show significant loss in woodlands (forest and shrublands) as well as herbaceous vegetation cover due to over-grazing by agro-pastoralism. The result confirms that there is a good relationship (statistically significant positive correlation) between rainfall and NDVI both on intra-annual and inter annual time scale for some selected locations in the study region (> 65 %), while negative statistical correlation exists between NDVI and temperature in the selected locations. This implies that vegetation growth (productivity) in the region is highly dependent on rainfall. The result of the harmonic regression analysis reveals a shift in the seasonal NDVI pattern, indicating an earlier start and a more prolonged growing season in 2011 than in 1983. This study proves significant change in LULC with evidence of an increase in the spatial extent of agricultural land (+ 30 %) and loss of woodlands (- 55 %) between 2000 and 2009 for Kogi State. The results of the socio-economic analysis (people’s perception) highlight that vegetation change dynamics in the study region are the resultant effects of increased anthropogenic activities rather than climatic variability. This study couples data from remote sensing and ground survey (socio-economics) for a better understanding of greening trend phenomena across the Guinea savannah region of Nigeria, thus filling the gap of inadequate information on environmental condition and human perturbation which is essential for proper land use management and vegetation monitoring

    GEOCLIM : a global climatology of LAI, FAPAR, and FCOVER from VEGETATION observations for 1999-2010

    Get PDF
    Altres ajuts: Programes Copernicus, le Pôle Thématique Surfaces Continentales THEIA, GIOBIO (32-566) i LONGLOVE (32-594).Land-surface modelling would benefit significantly from improved characterisation of the seasonal variability of vegetation at a global scale. GEOCLIM, a global climatology of leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR)-both essential climate variables-and fraction of vegetation cover (FCOVER), is here derived from observations from the SPOT VEGETATION programme. Interannual average values from the GEOV1 Copernicus Global Land time series of biophysical products at 1-km resolution and 10-day frequency are computed for 1999 to 2010. GEOCLIM provides the baseline characteristics of the seasonal cycle of the annual vegetation phenology for each 1-km pixel on the globe. The associated standard deviation characterises the interannual variability. Temporal consistency and continuity is achieved by the accumulation of multi-year observations and the application of techniques for temporal smoothing and gap filling. Specific corrections are applied over cloudy tropical regions and high latitudes in the Northern Hemisphere where the low number of available observations compromises the reliability of estimates. Artefacts over evergreen broadleaf forests and areas of bare soil are corrected based on the expected limited seasonality. The GEOCLIM data set is demonstrated to be consistent, both spatially and temporally. GEOCLIM shows absolute differences lower than 0.5 compared with MODIS (GIMMS3g) climatology of LAI for more than 80% (90%) of land pixels, with higher discrepancies in tropical and boreal latitudes. ECOCLIMAP systematically produces higher LAI values. The phenological metric for the date of maximum foliar development derived from GEOCLIM is spatially consistent (correlation higher than 0.9) with those of MODIS, GIMMS3g, ECOCLIMAP and MCD12Q2 with average differences within 14 days at the global scale

    Responses of boreal vegetation to recent climate change

    Get PDF
    The high northern latitudes have warmed faster than anywhere else in the globe during the past few decades. Boreal ecosystems are responding to this rapid climatic change in complex ways and some times contrary to expectations, with large implications for the global climate system. This thesis investigates how boreal vegetation has responded to recent climate change, particularly to the lengthening of the growing season and changes in drought severity with warming. The links between the timing of the growing season and the seasonal cycle of atmospheric CO2 are evaluated in detail to infer large-scale ecosystem responses to changing seasonality and extended period of plant growth. The influence of warming on summer drought severity is estimated at a regional scale for the first time using improved data. The results show that ecosystem responses to warming and lengthening of the growing season in autumn are opposite to those in spring. Earlier springs are associated with earlier onset of photosynthetic uptake of atmospheric CO2 by northern vegetation, whereas a delayed autumn, rather than being associated with prolonged photosynthetic uptake, is associated with earlier ecosystem carbon release to the atmosphere. Moreover, the photosynthetic growing season has closely tracked the pace of warming and extension of the potential growing season in spring, but not in autumn. Rapid warming since the late 1980s has increased evapotranspiration demand and consequently summer and autumn drought severity, offsetting the effect of increasing cold-season precipitation. This is consistent with ongoing amplification of the hydrological cycle and with model projections of summer drying at northern latitudes in response to anthropogenic warming. However, changes in snow dynamics (accumulation and melting) appear to be more important than increased evaporative demand in controlling changes in summer soil moisture availability and vegetation photosynthesis across extensive regions of the boreal zone, where vegetation growth is often assumed to be dominantly temperature-limited. Snow-mediated moisture controls of vegetation growth are particularly significant in northwestern North America. In this region, a non-linear growth response of white spruce growth to recent warming at high elevations was observed. Taken together, these results indicate that net observed responses of northern ecosystems to warming involve significant seasonal contrasts, can be non-linear and are mediated by moisture availability in about a third of the boreal zone

    Vegetation baseline phenology from kilometric global LAI satellite products

    Get PDF
    Land surface phenology derived from remotely sensed satellite data can substantially improve our macroecological knowledge and the representation of phenology in earth system models. We characterized the baseline phenology of the vegetation at the global scale from the GEOCLIM climatology of leaf area index (LAI) estimated from 1-km SPOT-VEGETATION time series for 1999-2010. The phenological metrics were calibrated over an ensemble of ground observations of the timing of leaf unfolding and autumnal colouring of leaves. The start and end of season were best identified using respectively 30% and 40% threshold of LAI amplitude values. The accuracy of the derived phenological metrics, evaluated using available ground observations for birch forests over Europe (and lilac shrubs over North America), improved as compared to those derived from MODIS-EVI and produced an overall root mean square error of 7 days (19 days) for the timing of the start of season, 15 for the end of season, and 16 for the length of season. The spatial patterns of the derived LAI phenology agreed well with those from MODIS-EVI and -NDVI, although the timing of the start, end, and length of season differed by about one month at the global scale, with higher uncertainties in areas of limited seasonality of the satellite signal and systematic biases due to the differences in the methodologies and datasets. The baseline LAI phenology was spatially consistent with the global distributions of climatic drivers and biome land cover

    Evaluation of VEGETATION and PROBA-V Phenology Using PhenoCam and Eddy Covariance Data

    Get PDF
    High-quality retrieval of land surface phenology (LSP) is increasingly important for understanding the effects of climate change on ecosystem function and biosphere-atmosphere interactions. We analyzed four state-of-the-art phenology methods: threshold, logistic-function, moving-average and first derivative based approaches, and retrieved LSP in the North Hemisphere for the period 1999-2017 from Copernicus Global Land Service (CGLS) SPOT-VEGETATION and PROBA-V leaf area index (LAI) 1 km V2.0 time series. We validated the LSP estimates with near-surface PhenoCam and eddy covariance FLUXNET data over 80 sites of deciduous forests. Results showed a strong correlation (R2 > 0.7) between the satellite LSP and ground-based observations from both PhenoCam and FLUXNET for the timing of the start (SoS) and R2 > 0.5 for the end of season (EoS). The threshold-based method performed the best with a root mean square error of ~9 d with PhenoCam and ~7 d with FLUXNET for the timing of SoS (30th percentile of the annual amplitude), and ~12 d and ~10 d, respectively, for the timing of EoS (40th percentile)
    • …
    corecore