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Abstract: High-quality retrieval of land surface phenology (LSP) is increasingly important for
understanding the effects of climate change on ecosystem function and biosphere—atmosphere
interactions. We analyzed four state-of-the-art phenology methods: threshold, logistic-function,
moving-average and first derivative based approaches, and retrieved LSP in the North Hemisphere
for the period 1999-2017 from Copernicus Global Land Service (CGLS) SPOT-VEGETATION and
PROBA-V leaf area index (LAI) 1 km V2.0 time series. We validated the LSP estimates with near-surface
PhenoCam and eddy covariance FLUXNET data over 80 sites of deciduous forests. Results showed
a strong correlation (R? > 0.7) between the satellite LSP and ground-based observations from both
PhenoCam and FLUXNET for the timing of the start (SoS) and R? > 0.5 for the end of season (EoS). The
threshold-based method performed the best with a root mean square error of ~9 d with PhenoCam
and ~7 d with FLUXNET for the timing of SoS (30th percentile of the annual amplitude), and ~12 d
and ~10 d, respectively, for the timing of EoS (40th percentile).

Keywords: Land-surface phenology; SPOT-VEGETATION; PROBA-V; leaf area index; PhenoCam;
FLUXNET

1. Introduction

The study of vegetation phenology and its patterns on a global scale have become more important
since the late twentieth century for analyzing the effects of climate change [1,2]. Remote sensing is a
useful tool for characterizing land surface phenology (LSP) [3] and global changes of vegetation [4-6].
De Beurs et al. [7] analyzed a broad range of statistical methods designed to extract phenological
metrics from satellite time series based on threshold percentiles [8-10], moving averages [11], first
derivatives [12,13], smoothing functions [14] and fitted models [15].

Most literature on LSP has focused on the use of time series of vegetation indices mainly derived
from MODIS data [6,16,17]. In previous studies, we showed the added value of using Copernicus
Global Land Service (CGLS) leaf area index (LAI) time series derived from VEGETATION and
PROBA-V data [10,18]. Bornez et al. [18] found that the phenological metrics extracted from the CGLS
LAI Version 2 (V2) time series agreed best with the available human-based ground observations of
phenological transition dates for deciduous broadleaf forest in Europe (PEP727) and United States
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of America (USA-NPN) as compared to other biophysical variables and NDVI vegetation index or
previous version V1 of the CGLS products.

Validating LSP is challenging due, in part, to the differences in the definition of satellite metrics
and ground phenophases [13,19]. Volunteer observers have traditionally collected data for the timing
of specific phenophases of individual plants [20]. Human observations of phenology, however,
are not uniform and may induce uncertainties, despite efforts to establish protocols for monitoring
phenophases [21-23].

Near-surface remote sensing using conventional red-green-blue (RGB) digital cameras provides an
alternative to human observations to monitor vegetation phenology [24-28] because of their low cost,
ease of set up and capacity to collect detailed spectral information at high temporal frequencies [29]
of individual plants, species or canopies [30] across broad spatial scales [31-33]. PhenoCam [34] is a
network of digital cameras that currently includes >600 site-years of imagery, with high-quality and
high temporal resolution providing data of vegetation phenology. Deciduous broadleaved forests
(68 sites) are the dominant vegetation type within the PhenoCam Network [35], and the focus of this
study. A growing number of studies have compared transition dates derived from the PhenoCam time
series of green chromatic coordinates (GCC) with satellite phenological metrics derived mainly from
MODIS data [29,36-38].

Continuous flux measurements from eddy covariance technique also started to be used as a
new perspective for estimating LSP at the landscape level [5,39-43]. The flux measurements sites are
organized as a confederation of regional networks around the world, called FLUXNET [44]. Until the
last updated of February 2020, the most recent dataset produces was the FLUXNET2015 dataset [44]
which includes data from 212 sites [45].

In this study, we build on our previous work [18] and take advantage now of PhenoCam and
FLUXNET capability of continuous monitoring of vegetation seasonal growth at very high temporal
resolution, with data every 30 minutes [26,46—49]. This allows a more robust and accurate comparison
with LSP derived from satellite time series avoiding problems related to the differences in the definition
of phenology metrics. We evaluated four methods for estimating phenology: the threshold method
based on percentiles [10], the derivative method [12], the autoregressive moving-average method [11]
and the logistic-function method [50]. These methods were applied both to satellite CGLS LAI V2 time
series and ground observations from PhenoCam GCC and eddy covariance flux towers over deciduous
forests to assess the accuracy of LSP retrievals.

2. Materials and Methods

2.1. Study Area

The study was conducted over the North Hemisphere in pixels classified as deciduous forests or
mixed vegetation according to the annual C3S Global Land Cover for the year 2018 [51]. The validation
was done over PhenoCam sites distributed across North America and one in Europe, and FLUXNET
towers sites both in North America and Europe and one in Japan. We selected only deciduous forests
sites with at least 2 years of available observations. This resulted in 64 sites from PhenoCam, and 16
towers of FLUXNET covering a broad range of latitudes (30-60°N) and elevations (1-1870 m a.s.1.)
(Figure 1 and Table S1).
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Figure 1. Locations of the selected PhenoCam sites (red) and FLUXNET towers (black) over
deciduous forests.

2.2. Satellite Data: CGLS LAI

We used Copernicus land surface products (CGLS LAI V2) derived from SPOT-VEGETATION
(1999-2013) and PROBA-V (2014-2017) data. The spatial resolution is 1 km and the temporal frequency
is 10 d [52].

The algorithm for LAI V2 product [53,54] capitalizes on the development and validation of
already existing products (CYCLOPES version 3.1 and MODIS collection 5 products) and the use of
neural networks [55]. The inputs of the neural networks are daily top of the canopy reflectances from
VEGETATION and PROBA-V in the red, near-infrared and shortwave infrared spectral bands and the
sun and view geometry. A multi-step procedure for filtering, temporal smoothing, gap-filling and
compositing is then applied to the daily estimates to generate the final 10 d products [53].

2.3. PhenoCam Data

We used PhenoCam Dataset V1.0 [34,56]. It provides digital images every 30 min. In each image,
a “region of interest” was defined manually based on the dominant vegetation type in the camera field
of view [35] (Figure 2). The size of the ROI typically ranges from ~50 to ~500 m? [34,35]. The green
chromatic coordinate (GCC) index [35] was calculated from the red (R), green (G) and blue (B) digital

numbers (DN) as:
GDN

~ RDN + GDN + BDN ™)

We used the 90th percentile Gcc value and 1 d high quality composites to avoid noise from
variations in meteorological, atmospheric or illumination conditions [57]. We manually filtered the
poor-quality G¢c observations and then gap-filled the missing data with a locally weighted scatter-plot
smoother (lowess)-based filter [35].

Gcee
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Figure 2. PhenoCam images captured in (A) spring, (B) summer, (C) autumn and (D) winter over the
NEON.D05.UNDE.DP1.00033 site (46.23°N, 89.54°W). The red rectangle indicates the borders of the
selected region of interest.

2.4. FLUXNET Data

We used FLUXNET 2015 collection of gross primary production (GPP) flux data over 16
forest tower sites (Figure 1) for the period 20032014 (110 site-years) [44]. We used the daily GPP
(g Cm~2d™!) derived from half-hourly eddy covariance flux measurements using the night time based
approach [58,59]. We smoothed the series of the daily GPP by using a Savitzky—-Golay filter based on a
second degree polynomial and a 30-day smoothing window [60-62].

2.5. Methods for Estimating Vegetation Phenology

We tested four methods for estimating phenology (Table 1 and Figure 3, [18]) from satellite
(CGLS LALI time series) and ground-based data (PhenoCam GCC, FLUXNEX GPP) (e.g., Figure S2
in Supplementary Materials). The phenological metrics are the timing of the start of the growing
season (S0S), the end of the growing season (EoS) and the length of the growing season (LoS). LoS was
estimated as the length of time between the EoS and the SoS. The CGLS LAI 10 d time series were
linearly interpolated at daily steps before phenological retrieval.
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Table 1. Description of the evaluated methods for the extraction of phenology metrics.

Method. Reference Principles and Parameters

SoS is defined as the first day of the year (DoY) when the vegetation variable exceeds
a particular threshold. EoS is defined as the DoY when an index descends below a
threshold. We established dynamic thresholds per pixel based on a percentile (10th,
25th, 30th, 40th and 50th) of the annual amplitude

Threshold based on percentiles Verger et al. [10]

SoS is defined as the DoY with the first local maximum rate of change in the curvature
Logistic function Zhang et al. [50] of a logistic function fitted to the time series. EoS is defined as the DoY with the first
local minimum rate of change in the curvature

SoS is defined as the DoY of the maximum increase (maximum first derivative) in the

First derivative Tateishi and Ebata. [12] curve. EoS is defined as the DoY of the maximum decrease in the curve

A moving average is first computed at a given time lag (we tested 10-50 d and
Autoregressive moving average Reed et al. [11] selected a 30 d time lag). SoS and EoS are then defined as the DoY when the
moving-average curves cross the original time series of the vegetation index
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Figure 3. Illustration of the threshold (a), logistic-function (b), derivative (c¢) and moving-average
(d) phenological extraction methods applied to PhenoCam G time series of Acadia site (44.37°N,
68.26°W) for 2014. The green and red points correspond to SoS and EoS, respectively. The different
points in panel a correspond to the percentiles 10th, 25th, 30th, 40th and 50th. The purple line
corresponds to the first derivative in ¢, and to the moving average in d.

2.6. Validation Approach

The LSP derived from VEGETATION and PROBA-V LAI V2 time series was compared with
the LSP estimates using ground data from PhenoCam and FLUXNET when the same phenological
extraction method was applied (Section 3.1). The statistical metrics used for assessing the performance
are the root mean square error (RMSE), the mean error (bias); the coefficient of determination (R?),
slope and intercept of the Reduced Major Axis regression (RMA). Further the spatial patterns and
latitudinal gradients of LSP estimates were assessed in Section 3.2. We used RStudio for the statistical
analysis, Google Earth Engine (GEE, https://earthengine.google.org) for the retrieval of LSP over the
North Hemisphere, and ESRI ArcGIS 10.5 and gvSIG-desktop-2.3.1 for the graphs and maps.

3. Results

3.1. Comparison of Satellite and Ground Phenologies

The coefficient of determination, RZ, between the satellite- and ground-based estimates from
PhenoCam and FLUXNET phenology ranges from 0.01 to 0.81 (p < 0.001) (Table 2). The threshold-based
method provided the best performances. The 30th percentile of annual amplitude was the best
threshold for the SoS (RMSE < 9 d, bias < 2 d and R? = 0.74 with p < 0.001 for CGLS LAI V2 estimates
compared to PhenoCam; and RMSE < 7 d, bias <4 d and R? = 0.81 with p < 0.001 when compared to
FLUXNET) and the 40th percentile for the EoS (RMSE = 12 d, bias < 1 d and R? = 0.51 with p 0.001
compared to PhenoCam; RMSE < 10 d, bias < 5 d and R? = 0.53 with p < 0.001 compared to FLUXNET).
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Table 2. Statistics of the comparison between the SOS and EOS dates retrieved using the LAI, GCC,
and GPP estimates for the four methods: thresholds, logistic function, derivative and moving average.
* indicates significant correlations at p < 0.05; **, significant correlations at p < 0.001. The bold type
highlights the best method. Evaluation over the 64 PhenoCam sites (356 samples (sites X years)) and
16 FLUXNET towers (110 samples (sites X years)) over deciduous forests in the North Hemisphere

(Figure 1).
Metric Validation Method RMSE BIAS R? Slope Intercept
SoS PhenoCam  Threshold (10th percentile) 17.80 -0.53 0.29 1.07 —8.57
Threshold (25th percentile) 9.92 1.29 0.61 ** 1.02 —8.57
Threshold (30th percentile) 8.82 1.96 0.74 ** 1.01 0.7
Threshold (40th percentile) 9.05 2.61 0.67 ** 1.02 -0.39
Threshold (50th percentile) 9.45 3.74 0.65 ** 1.00 2.98
Logistic function 10.79 1.21 0.58 ** 0.99 1.18
Derivative 19.27 2.40 0.18 0.93 11.12
Moving average 15.49 0.48 0.42* 1.24 -30.9
SoS FLUXNET Threshold (10th percentile) 16.50 3.54 0.31 0.90 14.03
Threshold (25th percentile) 791 -2.08 0.7 ** 1.00 -291
Threshold (30th percentile) 6.77 —-3.56 0.81 ** 1.03 —-8.02
Threshold (40th percentile) 7.21 -3.91 0.80 ** 0.99 -3.24
Threshold (50th percentile) 8.42 -5.65 0.77 ** 1.04 -11.8
Logistic function 8.05 -0.42 0.69 ** 0.94 6.06
Derivative 23.63 -14.31 0.19 0.61 41.66
Moving average 16.09 1.99 0.37% 0.79 30.13
EoS PhenoCam  Threshold (10th percentile) 15.33 5.59 0.33* 0.88 40.86
Threshold (25th percentile) 12.90 2.27 0.45* 0.91 28.12
Threshold (30th percentile) 13.49 1.36 0.39* 0.92 22.75
Threshold (40th percentile) 12.07 0.65 0.51 ** 0.95 13.51
Threshold (50th percentile) 29.31 7.23 0.09 0.49 142.16
Logistic function 17.64 -0.93 0.26 0.82 52.52
Derivative 50.74 -1.50 0.03 0.33 179.59
Moving average 27.40 2.15 0.01 1.46 —140.06
EoS FLUXNET Threshold (10th percentile) 10.84 6.25 0.5 ** 1.00 5.93
Threshold (25th percentile) 9.80 5.29 0.55 ** 1.04 -5.93
Threshold (30th percentile) 9.99 4.90 0.44 * 1.06 -12.38
Threshold (40th percentile) 9.67 4.67 0.53 ** 1.18 —46.54
Threshold (50th percentile) 17.39 9.88 0.18 0.76 719
Logistic function 10.26 2.97 0.41* 1.10 —26.47
Derivative 48.06 32.40 0.01 —-0.09 289.18
Moving average 31.50 -14.30 0.04 0.53 114.78

Figures 4 and 5 show the scatter plots of the comparison of satellite and ground-based SoS and
EoS retrievals for the four methods. The points were very close to the 1:1 line using the percentile and
logistic-function methods while the derivative and moving-average methods produced worse results
with more widely dispersed points, especially for the timing of EoS.

The satellite SoS (Figure 4, Figure 5 and Figure S1) retrieved with threshold and logistic-function
methods showed RMSE < 11 d and bias < 2 d compared to PhenoCam, and RMSE < 8 d and bias
< 4 d with FLUXNET (Table 2). Higher discrepancies for the SoS were found with the derivative
and moving-average methods: RMSE of 19 d and 15 d, and bias of 2 d and < 1 d, respectively using
PhenoCam estimates, and RMSE of 24 d and 16 d, and bias of 14 d and 2 d, respectively with FLUXNET
estimates (Table 2).

The EoS can be also robustly estimated using remote sensing observations (Figure 4, Figure 5 and
Figure S1) although we observed a degradation of performances for all the methods for the estimation
of the EoS as compared to the SoS: higher dispersion of points, higher RMSE and lower correlation for
EoS (Table 2). The EoS estimates from satellite time series of LAI agreed the best with GCC and GPP
derived phenology metrics using the threshold method followed by the logistic function: RMSE of
12 d and 18 d, respectively, and biases < 1 d compared to PhenoCam, and RMSE of 10 d and bias <5 d
with FLUXNET (Table 2). The performance highly decreased for the derivative and moving average
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methods with RMSE of 50 d and 27 d, respectively, compared to PhenoCam, and RMSE of 48 d and 31
d with FLUXNET, and no significant correlation (R? < 0.2) (Table 2).
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Figure 4. Scatterplots for SoS (in green) and EoS (in orange) estimated from CGLS LAI V2 and
PhenoCam GCC time series by the threshold (10th (a), 25th (b), 30th (c), 40th (d) and 50th (e) percentiles
of LAI amplitude), logistic-function (f), derivative (g) and moving-average (h) methods. Statistics of
the comparison are presented in Table 2.



Remote Sens. 2020, 12, 3077

3
S

7 R?%=0.50 .
a RMSE=10.84 o /«’
320  Bias=6.25 9’
Slope=1.00 8
Intercept=5.93
270 ... _1:1line N
s
o .
8 220 -
o >
= .
& 170 - s
g
120 + °® < R=0.31
RMSE= 16.50
70 /' » Bias=3.54
P Slope=0.90
L Intercept=14.03
20 T T T T T T "
20 70 120 170 220 270 320 370
GPP-P.10 (DoY)
370 1 pe-0.44 Ee
c RMSE= 9.99 it
320 { Bias=4.90
Slope=1.06 g
Intercept=-12.38 o 9
A270 1 ----1:1line
> v
) L
2 220 o2
° e
@0 P
& 170 - ’
g
120 1 R?=0.81
P RMSE= 6.77
704 7 Bias= -3.56
Slope=1.03
. Intercept= -8.02
20 T T T T T T ]
20 70 120 170 220 270 320 370
GPP-P.30 (DoY)
370 - ,
e R?=0.18 L
RMSE=17.39 //
320 - Bias=9.88 7
Slope=0.76 &o 5
270 Intercept=71.9
—_ ----1:1line o
3
a 220 | 8
o 2%
n .
& 170 - f
3
120 R=0.77
//’ RMSE=8.42
70 L7 Bias=-5.65
yi Slope=1.04
25 Intercept=-11.8
20 T T T T T T "
20 70 120 170 220 270 320 370
GPP-P.50 (DoY)
370 1 Re=0.01
g RMSE= 48.06
320 { Bias=32.40
Slope=-0.09
- Intercept=289.18
> 270 1 ... 1:1line
L=
.g 220 -
=
®
>
‘= 170 4
]
2
S 120 | R?= 0.19
L 0 RMSE= 23.63
70 - Bias= -14.31
s Slope=0.61
Intercept= 41.66
20 + T T T T T T "
20 70 120 170 220 270 320 370

GPP-derivative (DoY)

LAI-P.25 (DoY) (=2
- N N w w
~ N ~ N ~
(=] o (=] o o

[
N
o

~
o

20

Q.

320

270

220

170

LAI-P.40 (DoY)

120

70

20

370

-~

320

270

220

170

120

LAl-logistic function (DoY)

70

20

LAl-moving average (DoY) =
(< - N N w w
~N N ~ N ~ N ~
o (-] o o o o o

L]
o

370 4

9of17

7 R2=0.56 X
RMSE= 9.80
J Bias=5.29 R
Slope=1.04
Intercept=-5.93 o
1----1L1line
.
1 R?=0.70
RMSE=7.91
] o7 Bias=-2.08
Slope=1.00
,/ Intercept=-2.91
20 70 120 170 220 270 320 370
GPP-P.25 (DoY)
R?=0.46 Pig
RMSE= 9.67 Pt
- Bias=4.67
Slope=1.18 4
Intercept=-46.54
1 ----1:1line o
1 R?=0.80
L RMSE=7.21
1 Bias=-3.91
’/ Slope=0.99
rd Intercept=-3.24
20 70 120 170 220 270 320 370
GPP-P.40 (DoY)
7 rR=0.41 o
RMSE=10.26 Pid
] Bias=2.97
Slope=1.10 o
Intercept=-26.47 00
1 ----1:1line ?[ °
#7 o
1 ® R?= 0.69
RMSE= 8.05
] o Bias=-0.42
e Slope=0.94
27 Intercept=6.06
20 70 120 170 220 270 320 370
GPP-logistic function (DoY)
7 R>=0.05
RMSE= 31.50
4 Bias=-14.30
Slope=0.53
Intercept=114.78
T ----1:1line
4 e
L XX )
L4 R?=0.37
o RMSE= 16.09
| 7 Bias= 1.99
Slope=0.79
s Intercept=30.13
20 70 120 170 220 270 320 370

GPP-moving average (DoY)

Figure 5. Scatterplots for SoS (in green) and EoS (in orange) estimated from CGLS LAI V2 and
FLUXNET GPP time series by the threshold (10th (a), 25th (b), 30th (c), 40th (d) and 50th (e) percentiles
of LAI amplitude, logistic-function (f), derivative (g) and moving-average (h) methods. Statistics of the

comparison are presented in Table 2.
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3.2. Latitudinal Gradients of Satellite and Ground-Based Phenology

Figure S3 shows the spatial distribution of the GCLS LAI phenological estimates (SoS, EoS, and
LoS) from 2000 to 2017 over the North Hemisphere using the threshold method. The length of the
vegetation cycles regularly decreases from 220 days to 80 days when latitude increases from temperate
to boreal regions. The SoS ranges widely from late march in the south to approximately mid-July in
the north. The SoS is slightly earlier in central Europe than in North America for the same latitude.
The EoS date ranges from early August to December.

The latitudinal patterns of the timings of SoS and Eos derived from CGLS LAI V2 (Figure S3) and
PhenoCam GCC over deciduous forests from 30°N to 53°N in North America showed a very good
agreement with a gradual decrease in the length of growing season of approximately five days per
degree of latitude which resulted from symmetric variations of 2.5 days per degree of latitude in the
start and end of season (Figure 6). We found a correlation R? of 0.92 for the timing of SoS and 0.88 for
the EoS when comparing the average satellite and PhenoCam phenology per latitude.
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Figure 6. Latitudinal gradients of average phenological metrics for the start (S0S), end (EoS) and length
of season (LoS) extracted from CGLS LAI V2 and PhenoCam GCC time series over the PhenoCam
deciduous sites in North America (Figure 1). Data was aggregated in five groups of latitude, taking
into account the number of sites: 30-34°N, 34-38°N, 38-42°N, 42-46°N and 46-53°N.

4. Discussion

We assessed the agreement of the phenological metrics derived from satellite LAI (CGLS LAI V2
from VEGETATION and PROBA-V time series, 1999-2017) with those derived from PhenoCam (GCC)
and FLUXNET flux towers (GPP) across 80 sites of deciduous forests mainly located in North America
and Europe. The agreement between satellite and ground-based estimates depends on the method used
to extract the transition dates. We compared four phenology methods: thresholds based on percentiles
of the annual amplitude [10], first derivatives [12], autoregressive moving average [11] and a logistic
function fitting approach [50]. Thresholds and logistic function resulted the most robust methods
and the phenological metrics extracted from CGLS LAI V2 time series were strongly correlated with
those derived from PhenoCam GCC and FLUXNET GPP. On the contrary the derivative and moving
average methods showed higher discrepancies between satellite and ground estimates specifically for
the timing of the EoS.
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The threshold-based method performed the best in terms of accuracy of satellite estimates for the
timing of the SoS and EoS: RMSE ~ 9 d and bias < 2d for the SoS, RMSE ~12 d and bias < 1d for the
EoS, and correlation of R2~0.7 compared to PhenoCam data; and RMSE < 7d and bias < 4d for the
S0S, RMSE < 10 d and bias < 5d for the EoS, and correlation R2~0.8 compared to FLUXNET data. In
both PhenoCam and FLUXNET comparison, the 30th percentile of the annual amplitude provided
the best performances for the timing of the SoS and the 40th percentile for the EoS, confirming our
previous findings [10,18]. These thresholds slightly outperformed 10th, 25th and 50th percentiles of
the amplitude as proposed in PhenoCam Dataset V1.0 for the extraction of the phenological transition
dates [35]. For the sites with concomitant measurements from the 3 sources of data: satellite LAI,
PhenoCam GCC and FLUXNET GPP, we observed that the phenology derived from LAI V2 using
percentiles 30 and 40 accurately reproduce the interannual variation of the SoS and EoS and usually
provides an intermediate solution between PhenoCam and FLUXNET estimates with differences lower
than 10 days (Figure 7). The latitudinal gradient in the northern hemisphere of the CGLS LAI V2
phenophases highly agree with PhenoCam observations with an advance (delay) of 2.5 days per degree
of latitude from low to high latitudes in response to the South-North gradient of temperature and
photoperiod [63,64]. These results are comparable to other studies [65]. The spatial variability in
phenophases can be explained not only by the difference in climatic patterns but also by the elevation
and soil conditions [66].
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Figure 7. Interannual variation of the (a) start of the growing season (SoS), and (b) end of season (EoS)
estimated from the CGLS LAI V2, PhenoCam GCC and FLUXNET GPP with the threshold method
(percentile 30 for the timing of SoS, and percentile 40 for the timing of EoS) over the Harvard Forest
(Latitude 42.54°, Longitude -72.17°).

Detecting phenology from carbon flux and PhenoCam data also faces some challenges [26,46].
The flux measurements are potentially ~20% biased due to the lack of energy balance closure,
instrument response time, pathlength averaging and incomplete measurement of nocturnal CO2
exchange [46,67,68] which can lead uncertainties in phenology estimates. However, these errors are
difficult to quantify and correct [26]. Furthermore, for some FLUXNET sites, there are substantial data
gaps due to instrument malfunction or bad data quality [46]. In these cases, the gap-filling may lead to
uncertainty in GPP time series and, consequently, in the phenological estimates [69].

The scale difference between ~1km VEGETATION and PROBA-V satellite pixels and the
deca-/hectometric footprints of PhenoCam cameras and flux towers may introduce some difficulties
for the comparison. This is partially minimized because our validation is limited to deciduous forests
which tend to form large patches of the same vegetation type, reducing the influence of mixed or border
pixels [26,70,71] The mixed signal due to multi-canopy layers may also introduce confounding effects
since the understorey may have a different phenological cycle [70]. The emergence of forest understorey
is interpreted in both ground-based and satellite observations as an increase in the greening signal.

The agreement between the PhenoCam, FLUXNET and remotely sensed phenological metrics
showed generally a higher accuracy for SoS than EoS, consistent with previous studies [18,29,64,72-75].
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Differences in the structure, ecophysiology and dynamics of the vegetation canopy at the start and end
of the growing season [37] may partially explain this. The phenological dynamics for the timing of EoS
tend to vary with species, age, dispersion and homogeneity, and can also differ across the same species,
with differences of up to two weeks within the same ROI [26,43,71,76,77]. Further studies will use
high resolution satellite data from Sentinel-2 to mitigate these issues and capture the spatial variability
of EoS [78]. Note, however, that monitoring EoS is affected by the intrinsic uncertainties of satellite
remote sensing at northern latitudes in autumn: atmospheric effects, snow and poor illumination
conditions [79].

5. Conclusions

Phenological data from PhenoCam, FLUXNET and satellite remotely sensed data have become
a broad resource for analyzing the relationships between global change and vegetation [29,35]. The
network of PhenoCam webcams and eddy covariance towers cover only small areas around the camera
or flux tower [40,80]. Satellite imagery has the advantage of providing continuous spatio-temporal
coverage at the global scale. Near-surface digital cameras and flux towers have nevertheless become a
good tool for characterizing local phenology and validate satellite estimates [26,37,57,81]. The high
temporal frequency of PhenoCam and flux measurements provide continuous time series for applying
the same phenology extraction methods to ground and satellite time series. This way, we avoid some of
the issues identified in our previous research [18] related to the differences in the definition of satellite
phenology metrics and ground phenophases when PEP725 and USA-NPN data were used for the
validation (e.g.; the representativity and spatial distribution of the data as well as the gaps in the time
series of ground measurements).

Results validate the land surface phenology estimated from CGLS LAI V2 time series, as well as
the robustness of PhenoCam and FLUXNET data to analyze vegetation phenology. This study has put
bounds on the uncertainty in satellite-derived phenological transitions, which should allow to analyze
changes in the phenological distribution pattern and serve as a starting point for other studies that
characterize anomalies and trends over vegetation phenology, as well as its possible relationship with
changes in the climate pattern as a result of climate change.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/18/3077/s1,
Figure S1: “Boxplots of the bias errors of satellite-based minus the near-surface estimates of SoS (a) and EoS (b)
over the 64 PhenoCam sites (a,b), and the 16 FLUXNET towers (c,d) for the four extraction methods: threshold
method (the 30th percentile of annual amplitude for the SoS (a, c) and the 40th percentile for the EoS (b, d)), the
logistic-function, first derivatives and moving-average. An elongated boxplot indicates a larger dispersion of the
average bias”. Figure S2: “Time series of CGLS LAI, PhenoCam GCC and FLUXNET GPP for the Harvard Forest site
(42.5378N, -72.17150) over the 2008-2012 period”. Figure S3: “Maps of average SoS (a), EoS (b) and LoS (c) derived
from CGLS LAI V2 time series (1999-2017) using the threshold method (30th percentile of annual LAI amplitude
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on the annual C3S Global Land Cover for the year 2018 (http://maps.elie.ucl.ac.be/CCl/viewer/download.php).
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based on climate data are from WorldClim. Primary and secondary vegetation types are as follows: AG =
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