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Major Professor: Ranga B. Myneni, Professor of Earth and Environment 
 

ABSTRACT 

Cascading consequences of recent changes in the physical environment of 

northern lands associated with rapid warming have affected a broad range of ecosystem 

processes, particularly, changes in structure, composition, and functioning of vegetation. 

Incomplete understanding of underlying processes driving such changes is the primary 

motivation for this research. We report here the results of three studies that use long-term 

remote sensing data to advance our knowledge of spatiotemporal changes in growing 

season, greenness and productivity of northern vegetation. First, we improve the remote 

sensing-based detection of growing season by fusing vegetation greenness, snow and soil 

freeze/thaw condition. The satellite record reveals extensive lengthening trends of 

growing season and enhanced annual total greenness during the last three decades. 

Regionally varying seasonal responses are linked to local climate constraints and their 

relaxation. Second, we incorporate available land surface histories including disturbances 

and human land management practices to understand changes in remotely sensed 

vegetation greenness. This investigation indicates that multiple drivers including natural 

(wildfire) and anthropogenic (harvesting) disturbances, changing climate and agricultural 

activities govern the large-scale greening trends in northern lands. The timing and type of 
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disturbances are important to fully comprehend spatially uneven vegetation changes in 

the boreal and temperate regions. In the final part, we question how photosynthetic 

seasonality evolved into its current state, and what role climatic constraints and their 

variability played in this process and ultimately in the carbon cycle. We take the ‘laws of 

minimum’ as a basis and introduce a new framework where the timing of peak 

photosynthetic activity (DOYPmax) acts as a proxy for plants adaptive state to climatic 

constraints on their growth. The result shows a widespread warming-induced advance in 

DOYPmax with an increase of total gross primary productivity across northern lands, 

which leads to an earlier phase shift in land-atmosphere carbon fluxes and an increase in 

their amplitude. The research presented in this dissertation suggests that understanding 

past, present and likely future changes in northern vegetation requires a multitude of 

approaches that consider linked climatic, social and ecological drivers and processes. 
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CHAPTER 1: Introduction 

1.1 Background 

1.1.1 Changing north and vegetation dynamics 

Northern terrestrial vegetation plays a critical role in the Earth system by 

interactively regulating global energy, water, and carbon cycles (Bonan, 2008). During 

the last half-century, high-latitude regions have experienced drastic temperature increases 

of 0.3 to 1.0 °C per decade higher than anywhere else on the Earth (Serreze & Barry, 

2011). Ongoing acceleration of climate change at high latitudes results in reduced volume 

and area of sea ice in the Arctic ocean (Bhatt et al., 2010), warming and thawing of 

permafrost (Serreze et al., 2000), increases in the frequency and severity of climate-

driven disturbances (Kasischke & Turetsky, 2006), widespread changes to surface water 

extent (Pekel et al., 2016) and soil moisture (Barichivich et al., 2014). In addition, 

humans have transformed more than 50 % of Earth’s land surface and extensive land 

use/management pressures on some parts of northern territories have led substantial and 

drastic land surface changes as well (Hooke et al., 2012; White et al., 2017). Cascading 

consequences of the changes in physical environments have already affected on a broad 

range of ecosystem processes (Hinzman et al., 2005; Soja et al., 2007; Beck et al., 2011a; 

Bjorkman et al., 2018). In particular, changes in composition, structure, and functioning 

of vegetation lead to multi-faceted implications for the regional carbon balance (Forkel et 

al., 2016). These changes will feed back to climate directly through their effects on 

atmospheric CO2 concentrations, and also indirectly by altering terrestrial energy budgets 

and hydrologic cycles (Chapin et al., 2008). Therefore, understanding changes in 
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northern terrestrial vegetation is a key step in diagnosing and prognosticating responses 

of atmospheric CO2 to global and/or regional warming. 

Warming is generally thought to ease the climatic constraint on photosynthetic 

activity of vegetation in the northern land. Indeed, recent growing season studies based 

on field observation (Parmesan & Yohe, 2003), eddy covariance (Richardson et al., 

2010), remote sensing (Keenan et al., 2014) and atmospheric CO2 (Barichivich et al., 

2013) have concordantly indicated that the growing season duration for northern 

vegetation has significantly extended over the past decades due to both advanced 

beginning and delayed termination. This prolonged growing season over northern land 

drives a longer carbon assimilation period due to the relaxation of low-temperature limits 

on metabolism, and in turn increased productivity is observed (Xu et al., 2013; Forkel el 

al., 2016). Indeed, many ground-based studies have reported vegetation changes 

including vegetation encroachment into non-vegetated land (Frost & Epstein, 2014; 

Myers-Smith & Hik, 2018), increasing biomass of existing vegetation (Pan et al., 2011), 

changes in community composition (Beck et al., 2011a), and/or changes in plant traits 

(e.g., leaf area, height, etc.) (Zhu et al., 2016; Bjorkman et al., 2018). However, longer 

and warmer growing seasons also promote environmental conditions that favor surface 

drying and thus intensified summer droughts, tree mortality and wildfires have resulted in 

summer productivity decline (Kasischke & Turetsky, 2006; Peng et al., 2011; Barichivich 

et al., 2014). Furthermore, recent studies have reported a reduced or reversed rate of 

regional growing season changes (Høgda et al 2013, Wang et al 2015). These dynamics 

are highly variable in space and over time with substantive differences in magnitude and 



	

	

3 

even direction of change. Human-induced land use change and management have 

transformed the state of northern lands and diversify vegetation response to changing 

environments as well. Thus, these complexities justify the need for a comprehensive 

examination of the magnitude and direction of changes of northern vegetation across the 

continental or hemispheric landscape. 

 

1.1.2 Satellite remote sensing of vegetation dynamics 

Because northern terrestrial ecosystems are both extensive and remote, inventory 

data for these biomes is not widely available and acquiring field data is challenging. 

Hence, many studies focused on large-scale changes in these ecosystems have relied on 

remote sensing (Myneni et al., 1997; Goetz et al., 2005; Xu et al., 2013; Sulla-Menashe et 

al., 2018). Two satellite sensors, Advanced Very High Resolution Radiometer (AVHRR) 

and Moderate Resolution Imaging Spectroradiometer (MODIS), have been successfully 

and widely used to monitor vegetation changes from regional to global scale. These two 

sensors onboard series of sun-synchronous NOAA and NASA satellites have provided 

daily global observations for the Earth. Although the relatively low spatial resolution of 

AVHRR data is insufficient to explore local variability, the third generation Global 

Inventory Modeling and Mapping Studies (GIMMS) product from the AVHRR provides 

an incomparable opportunity to investigate long-term vegetation dynamics (from 1981 to 

present). The MODIS product facilitates retrieving more consistent reflectance signatures 

(advantages from better onboard calibration, physics-based atmospheric correction, etc.) 

of vegetation dynamics at the fine scale, and the combination of Terra (from 2000 to 



	

	

4 

present) and Aqua (from 2002 to present) products may alleviate deficiencies in 

individual sensor data. 

Particularly seasonal productivity surrogated by reflectance-based indices such as 

the normalized difference vegetation index (NDVI; Tucker, 1979) has been used to 

explore vegetation growing season and productivity changes. NDVI is the normalized 

ratio of red and near-infrared (NIR) reflectance, which is influenced by the chemical and 

structural components of leaves (chlorophyll and mesophyll respectively), and is thus 

generally considered a good proxy for photosynthetic activity (Sellers, 1987). Leaf area 

index (LAI) is another important measure of vegetation biophysical parameter from 

remote sensing because of its significant role in the exchange of fluxes of energy, mass 

(e.g., water, nutrient, and CO2) and momentum between the biosphere and atmosphere 

(Richardson et al., 2013). Furthermore, incorporating ecosystem models based on the 

light use efficiency (LUE) concept given by Monteith (1972) into remotely sensed 

biophysical parameters and meteorological data can retrieve gross primary productivity 

(GPP) (Running et al., 1999). Satellite remote sensing based NDVI, LAI, and GPP have 

widely used to monitor changes in large-scale vegetation dynamics. In this dissertation, 

we use these three key measures of vegetation structure and functioning to address three 

questions described in the following Section 1.2. 

 

1.2 Research objectives and dissertation structure 

Two pioneering studies in the late 1990s unveiled the enhanced seasonal CO2 

amplitude (Keeling et al., 1996) and vegetation “greening” (Myneni et al., 1997) in the 
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north. Note that the “greening” (“browning”) is defined as a trend showing increasing 

(decreasing) vegetation greenness or productivity. The findings have inspired a broad 

range of research communities to understand the past and current state of northern 

vegetation, in particular, greening/browning pattern and its drivers, and to project its fate 

under changing environments in the future. Nevertheless, the response of northern 

vegetation structure and function to global environmental changes is one of the most 

critical elements that are not well incorporated in the global carbon monitoring, modeling 

and forecasting. Three research questions are identified in this dissertation, and chapters 

2, 3 and 4 are presented here as self-contained scientific papers answering the three 

questions. 

 

• First, how has growing season changed and characterized annual total greenness (or 

productivity) during the last three decades?  

• Second, what are roles of overlooked land surface changes (e.g., disturbance and 

human land use/management) in the remotely sensed greening/browning patterns?  

• Third, what does photosynthetic seasonality mean? and how has it evolved and what 

are their implications on the large-scale carbon cycle?  

 

In chapter two of this dissertation, we investigate changes in metrics of growing 

season (onset: SOS, end: EOS and length: LOS) and seasonal total greenness from 

AVHRR NDVI to ultimately understand how they have characterized greening/browning 

patterns in the north. Particular attention is paid to evaluating the accuracy of these 
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metrics by comparing them to multiple independent direct and indirect growing season 

and productivity measures. The primary objectives of this study are to i) evaluate the 

reliability of long-term growing season duration and productivity metrics inferred from 

satellite data, ii) investigate the spatiotemporal pattern and trend of changes in growing 

season duration and productivity, and iii) characterize contribution of growing season on 

productivity changes.  

In chapter three of this dissertation, we examine what are roles of disturbance and 

human activity in the remotely sensed greening/browning trends in Canadian and 

Alaskan territories where relatively long and extensive disturbance histories exist. We 

measure how much leaf area has been increased or decrease across biomes and quantify 

how much of them are associated with disturbance event itself and following recovery 

processes. The primary objectives of this study are to i) quantify contribution of 

disturbance and human land use/management in the remotely sensed long-term leaf area 

change, ii) identify primary factors driving the observed spatial patterns of greening and 

browning, iii) to examine the results from the most widely used MODIS and AVHRR 

LAI data. 

In chapter four of this dissertation, we investigate how photosynthetic seasonality 

evolved into its current state, and what role climatic constraints and their variability 

played in this process and ultimately in the carbon cycle. We take the ‘laws of minimum’ 

as a basis and introduce a new framework where the timing of peak photosynthetic 

activity (DOYPmax) acts as a proxy for plants adaptive state to climatic constraints on their 

growth. The objectives of this study are to i) evaluate the DOYPmax framework and 
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characterizing the timing of peak photosynthesis, ii) quantify changes in DOYPmax and its 

implication on annual GPP, and iii) project their changes in a future climate change 

scenario and CO2 fluxes. 

Finally, in chapter five, we summarize the main findings of this dissertation in the 

context of northern vegetation in a time of global environmental changes and discuss 

future research direction. This research was supported by collaborative grant 

NNX16AO34H, the NASA Earth and Space Science Fellowship and two NASA funded 

research grants for global MODIS and VIIRS LAI/FPAR production (NNX14AP80A and 

NNX14AI71G). 
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CHAPTER 2: Changes in growing season duration and productivity of northern 

vegetation inferred from long-term remote sensing data 

 

2.1 Introduction 

Boreal and arctic ecosystems cover 22% of the terrestrial surface and stretch over 

North America (NA) and Eurasia (EA). They play a crucial role in the Earth system by 

regulating energy-water-carbon exchanges between the land surface and the planetary 

boundary layer (Chapin et al., 2000). During the last half-century, these regions have 

experienced temperature increases of 0.3 to 1.0 °C per decade higher than anywhere else 

on the Earth, particularly during the winter and spring seasons (Solomon, 2007). A 

changing thermal regime and its consequences on physical, hydrological and 

biogeochemical conditions such as snow depth, soil moisture, disturbance, etc. have 

already affected northern vegetation structure and function (Walther et al., 2002). For 

example, increasing shrub cover across a broad range of hemispheric tundra area, termed 

as “shrubification” has been documented (Tape et al., 2006) and changing tree growth 

has been observed in NA boreal forests (Beck et al., 2011b). As these changes may 

feedback on regional and global climate, an accurate characterization of changes during 

the recent past and some idea of future changes is a critical topic of research. 

As a way to diagnose vegetation response to climate change, monitoring growing 

season duration and productivity has drawn particular attention because these are 

sensitive and easily measurable indicators (Richardson et al., 2013). Field studies have 

indicated that the growing season duration for northern vegetation has significantly 
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lengthened over the past decades due to both an earlier start and delayed ending 

(Parmesan & Yohe 2003; Menzel et al., 2006). This is generally thought to result in a 

longer carbon assimilation period due to a relaxation of low-temperature limits on 

metabolism (Nemani et al., 2003), and in turn an increase in primary productivity (Xu et 

al., 2013; Forkel et al., 2016). Indeed, ground observations confirm enhanced 

productivity from a lengthened photosynthetically active period (Richardson et al., 2010, 

Keenan et al., 2014).  

Satellite observations have been employed to monitor and understand changes in 

growing season duration and productivity at large spatial scales. Remote sensing data 

reveal widespread lengthening of the growing season and an increase in greenness or 

gross primary productivity, also called “greening”, both of which are associated with 

warmer air temperatures in the high latitudes during the 1980s and 1990s (Myneni et al., 

1997). After this period, divergent responses in productivity between boreal (decrease in 

greenness or productivity called “browning”) and arctic (contiguous greening) vegetation 

(Goetz et al., 2005; Piao et al .,2011; Bjerke et al., 2014), and a reduced or reversed rate 

of regional growing season changes were also reported (Høgda et al., 2013; Wang et al., 

2015). Furthermore, asymmetric seasonal warming (Serreze et al., 2000) and a multitude 

of drivers greatly complicates the characterization of variations in growing season 

duration and productivity. This complexity justifies the need for a comprehensive 

examination of the magnitude and direction of changes across the northern hemispheric 

landscape using the longest satellite data set currently available. 
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The primary objectives of this study are to 1) evaluate the reliability of long-term 

growing season duration and productivity metrics inferred from satellite data, 2) 

investigate the spatiotemporal pattern and trend of changes in growing season duration 

and productivity, and 3) quantify changes across continents (EA and NA), biomes (arctic 

and boreal) and vegetation types. To achieve these objectives, we used a satellite dataset 

covering the northern high latitude region (>45°N) for the period 1982 to 2014 (33 years 

long). We first define pixel-wise growing season duration and productivity metrics, then 

introduce independent datasets to assess the reliability of metrics inferred from satellite 

data. Robust statistical tests and trend analyses are used to evaluate long-term vegetation 

dynamics. 

 

2.2 Materials and Methods 

This study is focused on vegetation in the boreal and arctic regions depicted in 

Figure A1.1. We define 12 sub-vegetation classes and 4 vegetation groups using the 

Moderate Resolution Imaging Spectroradiometer (MODIS) International Geosphere-

Biosphere Programme (IGBP) land cover (Friedl et al., 2010) and Circumpolar Arctic 

Vegetation Map (CAVM, Walker et al., 2005). Details for vegetation map can be found 

in Appendix A1.1.1. All data sets used in this study are briefly described in Appendix 

A1.1.2 and their spatial resolutions are identically harmonized into 1/12° for comparison 

purpose. 
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2.2.1. Determination of long-term (33-year) growing season and productivity 

Normalized Difference Vegetation Index (NDVI) is a radiometric measure of the 

amount of photosynthetically active radiation (~400 to 700 nm) absorbed by vegetation. 

It is calculated from contrasting reflectances at near-infrared (ρnir) and red (ρred) bands: 

NDVI = (ρnir  ̶ ρred) / (ρnir + ρred) (Tucker,1979). NDVI has been widely used in studies of 

phenology, productivity, biomass and disturbance monitoring as it has been proven to be 

a good surrogate of vegetation photosynthetic activity (Pettorelli et al., 2005). Here, we 

used the latest version of Global Inventory Modeling and Mapping Studies (GIMMS) 

NDVI dataset (NDVI3g) which is spanning from July 1981 to December 2014 with a 

native resolution of 1/12° at bimonthly time steps (Pinzon & Tucker, 2014).  

The growing season summed NDVI (or, GSSNDVI) has been found to be a good 

proxy for vegetation gross primary productivity (Goward et al., 1985; Wang et al., 2004). 

We derived long-term GSSNDVI from 1982 to 2014 through the inferred corresponding 

growing season metrics: onset, end and length of growing season (SOS, EOS, and LOS, 

respectively). Two preprocessing steps were first performed to maintain distinct seasonal 

vegetation trajectory and minimize spurious signals (e.g., cloud and snow): 1) 

implementing the Savitzky-Golay filter to smooth the NDVI3g time series (Jönsson et al., 

2004; Chen et al., 2004); 2) identifying background NDVI and replacing NDVI that 

varied irregularly during the winter period (Beck et al., 2006). After that, we linearly 

interpolated the dataset to a daily time step. We also use the daily freeze/thaw (FT) state 

of the ground to define the photosynthetically active period because vegetation may 

remain green during the dormant season. 
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Based on the daily NDVI and FT time series, we define pixel-wise 

photosynthetically active growing season metrics as follows (Figure A1.2, Zhu et al., 

2016): (a) SOS is the day when the NDVI value is greater than 0.1 and has increased by 

25% of the growing season amplitude; (b) EOS is the day when the NDVI value is 

greater than 0.1 and has decreased by 25% of the growing season amplitude; (c) the 

ground should be in thawed state; (d) LOS is the duration between SOS and EOS. Note 

that the growing season amplitude, which represents the difference between the 

maximum NDVI and the base level, is determined by long-term (1982-2014) mean 

seasonal NDVI profile. This approach can reduce possible uncertainty involvement in 

seasonal amplitude determination due to varying maximum NDVI state (Karlsen et al., 

2006), whereas can’t take account of varying base state of vegetation. Based on the 

extracted growing season, the pixel-wise GSSNDVI for each grid (p) and year (y) can be 

calculated by cumulating daily NDVI (fNDVI(t)) over LOS as below. 

!""#$%&((,*) = -./01(2)((,*)
345(6,7)

545(6,7)
 

 

2.2.2 Evaluation of growing season and productivity 

We used several independent datasets to evaluate the reliability of inferred SOS, 

EOS, LOS, and GSSNDVI metrics. For growing season metrics, we utilized three 

different sets of growing season metrics from MODIS products: Standard land surface 

phenology product (MCD12Q2, 2001-2012) and independently derived two NDVI 

(MOD13C1 and MCD43C4, 2000-2014) based growing season metrics via the same 
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method used in NDVI3g. Additionally, we used growing season metrics derived from 

flux tower measurements of gross primary productivity (GPP; Figure A1.2, SI Section 

2.5). Similarly, to evaluate the NDVI3g based GSSNDVI, we used flux tower GPP, the 

MODIS GPP product (MOD17A3, 2000-2014, SI Section 2.6), and a GPP product based 

on Multi-Tree Ensemble (MTE) approach from the Max Planck Institute (MTE-GPP, 

1982-2011). Temperature based potential SOS (PSOS), EOS (PEOS), LOS (PLOS) and 

growing season summed warmth index (GSSWI) were also used (see Appendix A1.1.2) 

as the temporal coverage, i.e. the number of years, of other reference datasets was 

limited. 

The cross-comparisons were performed at both site and continental scales. For 

site scale evaluation, we selected 109 sample sites based on the latest Benchmark Land 

Multisite Analysis and Intercomparison of Products (BELMANIP-2) scheme as it 

provided a good sampling across biomes and land surface types (Baret et al., 2006). For 

the flux tower versus satellite data comparisons, valid flux sites and data were ascertained 

as follows: (i) more than 95% of the days had daily GPP data, and (ii) the mean daily 

quality flag was more than 0.75 (Richardson et al 2010). For continental scale 

comparisons, all the metrics were converted to anomalies with respect to their common 

period and then spatially averaged over North America (NA), Eurasia (EA) and the entire 

circumpolar (CP) region. 
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2.2.3. Quantification of growing season and productivity change 

We used Vogelsang’s t−PST test (significance level of 0.1) to evaluate the 33-

year temporal trends in growing season and productivity metrics. This method is a robust 

model for trend estimation and does not require a priori knowledge of stationarity and 

also avoids the estimation of autocorrelation parameters (Vogelsang, 1998). We also 

assessed trends with the Mann-Kendall test (Mann, 1945), but these results are not 

presented as they were largely similar to those using Vogelsang’s method. In view of a 

hiatus in warming in the recent years (Trenberth & Fasullo, 2013), the analysis was also 

performed separately for the early (1982–1999) and later (2000–2014) periods to 

compare with the entire period of the data record (1982–2014). 

 

2.2.4. Quantification of growing season and maximum NDVI contributions to GSSNDVI 

variability 

It is also interesting to be answered how the retrieved growing season and 

maximum NDVI characterize long-term GSSNDVI changes. We here used a semi-partial 

regression approach to quantify relative contributions of SOS, EOS, and MAX in 

explaining inter-annual variability of GSSNDVI time series. This approach provides a 

measure of the association between two variables (e.g., an independent, X1, and 

dependent variable, Y) that remains after controlling for the effects of one or more other 

predictor variables (X2,..., Xk). This approach quantifies the proportion of (unique) 

variance accounted for by the predictor X1, relative to the total variance of Y. We 

detrended time series of SOS, EOS, MAX, and GSSNDVI and applied the semi-partial 
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regression to measure the relative contribution of SOS, EOS, and MAX on GSSNDVI 

changes. 

  

2.3 Result and Discussion 

2.3.1. Evaluation of NDVI3g based growing season and productivity metrics 

The NDVI3g based metrics of growing season (SOS, EOS, and LOS) and 

seasonal total productivity (GSSNDVI) agree well with corresponding metrics derived 

from other evaluation datasets (Table 2.1 and Figure 2.1−2.2). Table 2.1 provides a 

summary of comparison for the 109 BELMANIP-2 sites distributed over the northern 

vegetated lands. The correspondence between NDVI3g based metrics and those from the 

improved MODIS NDVI (MCD43C4) is good - R2 and RMSE of 0.96 and 5.23 days for 

SOS, 0.77 and 9.23 days for EOS and 0.89 and 12.37 days for LOS, respectively. 

Similarly, reasonable agreement is seen for SOS (R2=0.74) and LOS (R2=0.59) between 

NDVI3g and the MODIS phenology product (MCD12Q2). However, EOS from NDVI3g 

tended to be much later (bias=22.42 days). This could be due to varying data-fitting 

techniques (Savitzky-Golay vs. piecewise logistic) and/or detection methods (amplitude 

threshold vs. curvature; White et al., 2009; Ganguly et al., 2010).  

GSSNDVI captures the spatiotemporal patterns of productivity metrics derived 

from the other datasets (Table 2.1). The GSSNDVI explains more than 80% of the spatial 

variation in the MODIS GPP product (MOD17A3; R2=0.81). Additional comparisons 

with MTE-GPP indicate that GSSNDVI captures both spatial (R2=0.85) and temporal 

(R=0.52) variations in gross primary productivity. 
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At the continental scale, the SOS metrics from NDVI3g and temperature (PSOS) 

agree quite well (R=0.86 in EA, R=0.80 in NA, R=0.82 in CP) (Figure 2.1a). They show 

a gradual transition from positive to negative anomalies, thus demonstrating the 

advancing onset of thermal and photosynthetic growing seasons during the last three 

decades. Unlike SOS, the NDVI3g based EOS metric does not exhibit a close 

correspondence with temperature-based PEOS over the last three decades (Figure 2.1b). 

Previous studies have noted that while SOS of northern vegetation is mostly controlled 

by preseason temperature, EOS has multiple driving factors such as photoperiod, 

temperature, nutrients, etc. (White et al., 1997; Gill et al., 2015). Nevertheless, a close 

association between LOS and PLOS is seen (R=0.74 in CP; Figure 2.1c). We also note 

well-synchronized temporal variations with MODIS LOS metrics from three different 

MODIS datasets (MCD12Q2, MOD13C1, and MCD43C4). Overall, NDVI3g based 

growing season metrics reveal good temporal agreements with those of MODIS although 

we observed some deviations in later common period (2012~), particularly for SOS and 

LOS. This divergence has been caused by the differences in NDVI/EVI response to 

vegetation growth between sensors, rather than by the processing methods (See detail 

explanations in Figure A1.3). 

GSSNDVI at the circumpolar scale provides a reasonable representation of the 

long-term MTE-GPP (R=0.67) and GSSWI (R=0.79). Statistically significant strong 

correlations indicate cumulative growing season temperature as the driver of inter-annual 

and long-term variations in growing season photosynthetic activity. GSSNDVI variations 

also agree with those seen in four different productivity proxies from MODIS data 
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(Figure 2.1d). In particular, productivity proxies based on integral NDVI or EVI over the 

growing season (MOD13C1, MCD43C4, and MCD12Q2) show relatively stronger 

correlations than model-based GPP estimates (MOD17A3).  

The long-term SOS, EOS, LOS and GSSNDVI anomalies reflect the impact of 

global climate events such as the eruption of Mt. Pinatubo in 1991 (shorter growing 

season and decreased productivity) (Lucht et al., 2002) and the strong El Niño event in 

1997-98 (longer growing season and increased productivity) (Buermann et al., 2003). A 

particularly prominent feature in these metrics is the intense photosynthetic activity in 

NA during 2010, which is about three standard deviations above the mean GSSNDVI. 

This exceptional anomaly in NA is a consequence of the greatest warmth in 2010 

(Blunden et al., 2011) and it is also seen in metrics of MODIS data or other previous 

studies (Friedl et al., 2014, Xia et al., 2015). These matching characteristics features in 

metrics inferred from data from different sensors are particularly noteworthy.  

As for metrics from 36 FLUXNET sites (140 site years), NDVI3g explains 73%, 

77% and 82% of variations in SOS, EOS, and LOS, respectively (Figure 2.2a). NDVI3g 

SOS and EOS estimates are, on average, 4.2 and 14.6 days later than those inferred from 

tower GPP data. This translates to a growing season that is 10.5 days longer. Still, 

NDVI3g data capture the large variation (60 to 260 days) in growing season across a 

range of vegetation types (mixed forests, evergreen needleleaf forests, grasses, and 

tundra) (Table A1.1). It is worthy to note that the pre-processing with background NDVI 

estimation greatly improves the quality of growing season as shown in our internal 

comparison (see Figure A1.4). Similarly, NDVI3g data capture about 80% of the tower-
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based variations in GPP. However, GSSNDVI tends to saturate and shows large variation 

when GPP is above 1.5kgC/m2/year (Figure 2.2b). This saturation is a well-known 

behavior of vegetation index data in dense and productive vegetation types (Sellers, 

1985; Myneni & Williams, 1994). The saturation has less impact in our study area 

because only 3.7% of the vegetation exhibits GSSNDVI greater than 150. 

 

2.3.2. Long-term changes in growing season over northern lands 

The growing season in the north has lengthened, on an average, by 8.58 days over 

the past 33 years (2.60 days·decade-1, p<0.05, Table 2.2). The lengthening is greater in 

EA than in NA (3.04 vs. 1.83 days·decade-1, p<0.05). Changes during spring contributed 

less than changes in autumn to this lengthening in the case of NA. The opposite is the 

case in EA. Interestingly, changes in growing season duration differed between the first 

two decades of the data record (1982-1999; 5.06 days·decade-1, p<0.05), which was an 

exceptionally warm period (Trenberth & Fasullo, 2013) and the latter part of the data 

record (2000-2014; -1.08 days·decade-1, p>0.1) during which a warming hiatus was noted 

(Table 2). This switch from a lengthened (i.e., advancing SOS and delaying EOS) to a 

shortened (i.e., delaying SOS and advancing EOS) duration was also reported in other 

studies (Høgda et al., 2013; Wang et al., 2015; Zhao et al., 2015). However, MODIS 

indicates lengthening growing season during the later period (2000-2014), although the 

trend estimates from both datasets are not statistically significant from zero (p>0.1) due 

to the short time-span and large inter-annual variations (Table A1.2). Interestingly, at 

least of the same signs are reported when observed abrupt divergence is ignored.  
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About 30.6% of northern vegetated land shows statistically significant 

(Vogelsang’s t-PS_T test at 10% significance level) changes in SOS over the past 33 

years (Figure 2.3a,b and Table A1.3). A majority of these (27.9%) shows an advancing 

SOS trend, that is, a trend towards earlier springtime greening. Only 2.7% show the 

opposite trend. The former is especially pronounced in EA while the latter is seen mostly 

in boreal NA. However, the degree of advancing trend in SOS over the boreal region 

(Max. PDFs in EA: -2.8 days·decade-1, NA: -3.0 days·decade-1) is relatively higher than 

in the arctic region (Max. PDFs EA: -2.5 days·decade-1, NA: -2.3 days·decade-1). This 

pattern was reported by previous studies (Shen et al., 2014; 2015) and it implies that an 

earlier SOS in a warmer region may have higher temperature sensitivity than those in a 

colder region. Reported less sensitive green-up response in arctic vegetation is also 

possibly associated with increasing snowfall in winter/spring time which may hinder 

much earlier green-up in warmer arctic (e.g., Bienik et al., 2015). 

About 21.9% of the study region displays a significant delay in autumn 

senescence (EOS) over the 33-year period of record (Figure 2.3c,d and Table A1.3). The 

opposite is seen in about 7.8% of the study area. Boreal regions in both NA and EA show 

predominant delaying EOS, however, the patterns vary between arctic regions in the two 

continents. Large proportions (>75% of significant changes) of arctic NA show the 

delayed EOS trend. In EA, this is observed in only about 25% of the vegetated arctic 

region showing significant changes. These trends in spring greening and autumn 

senescence resulted in nearly 33% of the northern vegetation experiencing a lengthened 

growing season (Figure 2.3e,f and Table A1.3). In most such regions, the longer growing 
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season was due to earlier springtime greening. As shown in Figure 2.3f, trends in LOS 

over boreal regions in both continents (Max. PDFs in EA: 3.50 days·decade-1, NA: 3.75 

days·decade-1) have relatively greater lengthening rate than those in arctic regions (Max. 

PDFs in EA: 2.25 days·decade-1, NA: 3.25 days·decade-1). 

 

2.3.3. Long-term changes in productivity over northern lands  

The analysis indicates that growing season summed NDVI (GSSNDVI), a 

measure of seasonal gross primary productivity, has increased by 2.97 decade-1 (p<0.01) 

over the circumpolar region. The rate of increase in NA  (2.32 decade-1, p<0.01) is less 

than in EA (3.34 decade-1, p<0.01) since the early 1980s (Table 2.2). GSSNDVI exhibits 

a continuously increasing trend throughout this period, unlike the growing season metrics 

which show opposite trends between the early (1982 to 1999) and later (2000 to 2014) 

periods of the data record. However, the GSSNDVI trend during the later period (1.87 

decade-1, p>0.1) is lower than in the earlier period (4.23 decade-1, p>0.05). These results 

are concordant between AVHRR based NDVI3g data and MODIS NDVI data (Table 

A1.2). 

About 44.4% of the northern vegetated lands exhibit significant changes (p<0.1). 

42.0% of the area experience increasing (greening) GSSNDVI trends (Figure 2.4a and 

Table 2.3). Only a small proportion displays a decreasing trend (browning, 2.5%). The 

greening is more prominently observed in North American mixed forests to the east and 

arctic coastal tundra and in Eurasian needle-leaf and mixed forests, shrublands and 

tundra. A fragmented pattern of greening and browning, mostly over evergreen needle-
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leaf forest and the forest-shrub ecotone, is seen in the NA boreal region, unlike its 

counterpart in EA, which shows widespread contiguous greening. This fragmented 

browning in the interior NA has been reported as consequences of increasing drought 

stress and fire disturbance (Goetz et al., 2005, Beck et al., 2011a).  

For a large browning area located in the eastern Bering coast of Alaska (Figure 

2.4a), according to Bienik et al (2015), this may be linked to delayed snowmelt due to 

increased snow depth in the late winter/early spring as well as increased cloud cover 

during midsummer. Another large patch of decreasing productivity is prominently seen in 

the central Siberian plateau (Figure 2.4a) which is mostly composed by open larch forest, 

shrub, and erect shrub tundra. This declined productivity is mostly due to the 

anthropogenic influence (i.e., Cu-Ni smelters) (Toutoubalina & Rees, 1999). And smaller 

areas with such a decline are also found around similar smelters in Kola Peninsula in the 

western part of Russia (Tømmervik et al., 2003).  

As shown in Figure 2.4b, arctic vegetation in both NA and EA (Max. PDFs EA: 

5.0% decade-1, NA: 6.5% decade-1) displays relatively greater greening rates (with 

respect to 1982) than boreal vegetation (Max. PDFs EA: 3.5% decade-1, NA: 4.0% 

decade-1). The areal proportion of boreal browning is dominant (67.9% of browning area 

in CP) in the northern lands. In particular, North American boreal vegetation accounts for 

55.6% of the browning area in the circumpolar region.  

The seasonal maximum value of NDVI (MAX) determines the seasonal trajectory 

of photosynthetic activity. Thus, examining changes in MAX helps to better understand 

spatiotemporal changes in GSSNDVI. The spatial distribution of statistically significant 
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increasing trends in MAX, shown in Figure A1.5, closely resembles that of GSSNDVI 

(Figure 2.4a), especially in the coastal arctic regions. Whereas resembled trend pattern 

between GSSNDVI and growing season duration (Figure 2.3e) can be found in the 

relatively warmer vegetated area. This implies that the seasonal maximum productivity 

and growing season duration jointly control inter-annual variation and trend of 

GSSNDVI with differently characterized relative contributions (Xia et al., 2015).  

Figure 2.4c displays the GSSNDVI time series of four different vegetation 

groups. The GSSNDVI of forests, other woody vegetation, and herbaceous vegetation are 

scaled to the GSSNDVI of tundra for comparison purposes. All four vegetation groups 

show increasing GSSNDVI trends with tundra exhibiting the largest trend (8.5% decade-

1) and forests displaying the lowest (5.5% decade-1). This reflects the higher sensitivity of 

tundra vegetation productivity as compared to boreal forests (Verbyla, 2008; Beck & 

Goetz, 2011). There is considerable variation in the trajectory of these time series and the 

declining greening rate can be clearly seen after the late 1990s. These flattened or slowed 

change rates are coincident with recently observed warming deceleration (Trenberth & 

Fasullo 2013) and divergent vegetation growth responses imply differently characterized 

sensitivities to changing climate. For instance, continued warming may appear to no 

longer promote boreal forest growth, while the warming may benefit tundra growth 

(Beck & Goetz, 2011; Bi et al., 2013).  

Our analysis indicates that 42.0% of the total northern vegetated area shows a 

greening trend over the past three decades (Table 2.3). This translates to a 20.9% gain in 

productivity since 1982. In contrast, 2.5% of browning regions resulted in a decrease of 
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about 1.2% of gross primary productivity since 1982. Note that the quantities of 

productivity changes represent only regions showing significant directional changes. All 

forests, in particular, the mixed and evergreen needleaf forests, contributed significantly 

to the observed gains in productivity. Equally noteworthy is the contribution of 

shrublands and the forest-shrub ecotone to productivity gains in view of the large 

greening extent observed in these vegetation types (Table 2.3). 

 

2.3.4. Contribution of growing season and maximum NDVI to GSSNDVI variability 

Based on the semi-partial regression analysis, we identified a regionally varying 

contribution of each variable (SOS, EOS, and MAX) to GSSNDVI inter-annual 

variability (Figure 2.5a). The high explanatory power of three variables for GSSNDVI 

variance implies that SOS, EOS, and MAX jointly control GSSNDVI interannual 

variability (Figure 2.5b). Our result indicates that about 51 % of the study region is 

dominantly controlled by SOS (more than 50 % of the total variance is explained by 

SOS), while respective 13 % and 7 % of the region show EOS- and MAX-driven 

GSSNDVI changes during the last three decades (Table 2.4). The rest of the region (30 

%) is co-controlled by three variables together (i.e., the contribution of each variable is 

less than 50 %). Interestingly, the western and eastern EA regions reveal a clear 

distinction indicating contrasting regional long-term GSSNDVI changes driven by EOS 

and SOS. Indeed, Garonna et al. (2014) reported asymmetric changes in SOS and EOS 

over Europe and found strong EOS driven LOS changes. Buitenwerf et al. (2015) also 

noticed regionally varying patterns of seasonal NDVI changes and their results are 
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closely aligned with the results presented in Figure 2.5a, though they only visually 

described a dominant spring NDVI increment over the large portion of northern land.  

This analysis further suggests a seasonally uneven NDVI enhancement over the 

greening regions during the last three decades. This asymmetric importance in seasonal 

NDVI changes may reveal seasonally varying climatic constraints on plant growth and its 

dynamism. In general, thermal inertia induced decoupling of radiation and temperature 

characterizes a unique seasonal climate environment to local vegetation, i.e., strong 

temperature limit on plant growth in spring season while radiation limitation in the fall 

season (Garonna et al., 2018). Thus, relatively strong vegetation response to spring 

warming under less limits of other climate constraints over the temperature-constrained 

ecosystems may regulate GSSNDVI’s interannual variability. For the relatively warmer 

regions, accumulated water stress in the late growing season may explain the most of 

interannual variation in GSSNDVI (Garonna et al., 2018). These intrinsic physical 

environments indicate contrasting responses (sensitivity) of vegetation greenness to 

spring versus autumn warming, in turn, annual greenness changes. 

 

2.4 Conclusion 

We investigated changes in metrics of growing season (SOS, EOS, and LOS) and 

gross primary productivity proxy (GSSNDVI) over the boreal and arctic lands using 

long-term satellite observations (GIMMS NDVI3g). An accurate derivation of growing 

season duration from satellite data is a challenging task. Also, the vegetation index data 

accumulated over the derived growing season must reflect gross primary productivity. In 
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this sense, the main discriminating point of this work is threefold: 1) this study 

introduced the photosynthetically active growing season definition by combining 

optically measured vegetation greenness and ground freeze/thaw data to properly 

demonstrate photosynthetic activities in northern vegetation. 2) Moreover, we 

incorporated yearly varying growing season to productivity characterization, thus we 

enable to understand the relative contribution of growing season and peak greenness on 

annual gross productivity variability. 3) We evaluated retrieved growing season and 

productivity metrics using independent multiple direct and indirect measures, particularly 

eddy-covariance measurements encompassing a wide range of biomes and regions. 

Special emphasis was placed on assuring that the derived metrics were accurate by 

comparing them to several independent direct and indirect reference data sets. Overall, 

these inter-comparison and evaluation analyses reflected that the metrics derived from 

NDVI3g were reasonably accurate at a range of spatiotemporal scales. Statistical analyses 

presented in this study provided comprehensive information about patterns in inter-

annual variations and long-term trends over the past three decades. At the hemispheric 

scale, we observed a significant advance in SOS, delay in EOS and lengthened LOS, all 

of which are concordant with thermal growing season variations. The longer growing 

season and increasing photosynthetic activity resulted in a predominant greening trend 

over 42.0% of the northern vegetated area. This translated to a 20.9% gain in gross 

primary productivity during the last three decades. The GSSNDVI exhibited a 

continuously increasing trend throughout the 1982 to 2014 period, unlike the growing 

season metrics which showed opposite trends between the early (1982 to 1999) and later 
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(2000 to 2014) periods of the data record. The arctic and boreal regions showed 

surprisingly different variations – greater rate of productivity change and smaller rate of 

growing season duration change in the arctic versus the opposite in the boreal vegetation 

– perhaps reflective of the biome-specific temperature sensitivity of the vegetation. 

Together these results document large-scale spatiotemporal changes happening in the 

northern vegetation. 
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Figure 2.1 Continental scale comparison between NDVI3g and six different evaluation datasets (MCD12Q2, MOD13C1, MCD43C4, 
MOD17A3, TSURF, MTE-GPP). Correlation coefficients between growing season and productivity metrics from NDVI3g and 
evaluation datasets are calculated (***: p<0.01, **: p<0.05, *: p<0.1) and given with corresponding color scheme. CP, NA, and EA are 
for Circumpolar, North America and Eurasia regions, respectively. 
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Figure 2.2 Evaluation of NDVI3g based growing season and productivity (GSSNDVI) retrievals 
using FLUXNET gross primary productivity (GPP) based growing season and productivity. (a) 
Comparison between NDVI3g and GPP-based growing season metrics over all possible 
observations (140 site-years), (b) Comparison between NDVI3g GSSNDVI and annual GPP over 
the observations. 
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Figure 2.3 Spatial pattern of long-term (1982-2014) trends in vegetation growing season onset 
(SOS, a), end (EOS, c) and duration (LOS, e). The trend was calculated using Vogelsang’s t-
PS_T test at 10% significance level. Non-vegetated pixels and pixels without significant trend 
were shown in white and gray, respectively. Probability density function (PDF) of change rate 
per decade for only significant positive and negative changes is also provided for SOS (b), EOS 
(d) and LOS (f). PDFs are normalized to the total area showing significant changes in each 
continent and biome (Table A1.3). NA and EA are for North America and Eurasia. In PDFs, 
green and red lines represent significant positive and negative changes. Solid and dash lines 
stand for arctic and boreal regions, respectively.  
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Figure 2.4 a, Long-term (1982-2014) trend in vegetation productivity (GSSNDVI) over Northern 
vegetated area. The trend was calculated using Vogelsang’s t-PS_T test at 10% significance 
level. Non-vegetated pixels and pixels without significant trend were shown in white and gray, 
respectively. b, Probability density function (PDF) of GSSNDVI change rate per decade for only 
showing significant positive and negative changes. PDFs are normalized to the total area 
showing significant changes in each continent and biome (Table A1.3). Green and red lines 
represent significant positive and negative PDFs. Solid and dash lines stand for arctic and boreal 
regions, respectively. c, Trend in spatially aggregated GSSNDVI by grouped vegetation types 
from 1982 to 2014. Only significant greening and browning pixels were aggregated. For 
comparison purpose, the GSSNDVIs of all vegetation types were scaled to the GSSNDVI of 
tundra. NA and EA are for North America and Eurasia, respectively.   
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Figure 2.5 a, Map of relative contributions of onset of growing season (SOS), end of growing 
season (EOS), and maximum NDVI (MAX) over Northern vegetation area. b, The proportion of 
explained inter-annual GSSNDVI variance by three components. 
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Table 2.1 Evaluation of NDVI3g based onset of growing season (SOS), end of growing season (EOS), length of growing season (LOS), 
and growing season summed normalized difference vegetation index (GSSNDVI) at site scale. Respective results of spatial (abbreviated 
as S) and temporal (abbreviated as T) evaluations are indicated by the coefficient of determination (R2) and the correlation coefficient 
(R).  

 NDVI3g 

 SOS  EOS  LOS  GSSNDVI 

 S (R2) T (R)  S (R2) T (R)  S (R2) T (R)  S (R2) T (R) 

MOD13C1a 0.93 0.54  0.78 0.38  0.86 0.44  0.92 0.62 

MCD43C4a 0.96 0.70  0.77 0.34  0.89 0.50  0.92 0.64 

MCD12Q2b 0.74 0.58  0.28 0.24  0.59 0.42  0.84 0.50 

MOD17A3c          0.81 0.48 

MTE-GPPc          0.85 0.52 

 
a: NDVI based growing season and productivity (i.e., growing season summed NDVI) derivations. 
b: EVI based growing season and productivity (i.e., growing season summed EVI) derivations. 
c: Gross Primary Productivity (GPP) estimate. 
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Table 2.2 Observed 33-year long-term (1982 to 2014) growing season and productivity trends over continental scale. Trends over 
separated 1982-1999 and 2000-2014 periods are also calculated. The trends were evaluated by Vogelsang’s t-PS_T test. CP, NA, and EA 
are for circumpolar, North America and Eurasia regions, respectively. 

 1982-2014  1982-1999  2000-2014 

 CP NA EA  CP NA EA  CP NA EA 

SOS (days·decade-1) -1.61** -0.13 -2.45**  -3.67** -3.20 -3.93**  0.85 2.33 0.00 

EOS (days·decade-1) 0.67* 1.20* 0.36  1.22 0.78 1.46  -0.69 -0.56 -0.76 

LOS (days·decade-1) 2.60** 1.83** 3.04**  5.06* 4.74 5.24*  -1.08 -2.30 -0.38 

GSSNDVI (decade-1) 2.97*** 2.32*** 3.34***  4.23* 3.31* 4.75*  1.87 1.65 2.00 
***: p<0.01, **: p<0.05, *: p<0.1 
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Table 2.3 Area and productivity (GSSNDVI) changes of vegetation classes showing statistically significant (10% level) trend in 
GSSNDVI. The trends were calculated pixel by pixel from GSSNDVI between 1982 and 2014 using the Vogelsang model. For area 
changes, positive trends indicate greening (abbreviated as G), negative trends indicate browning (abbreviated as B) and no-change 
(abbreviated as N). Also, the total area of each vegetation classes is given (abbreviated as T). For productivity change, productivity 
increase is abbreviated as I; productivity decrease is abbreviated as D. Productivity change columns show the change in productivity 
(%) over the area only showing significant changes (positive or negative) between 1982 and 2014. The changes were calculated by by 

!!"# ∙ %& ∙ '&()*+
&,-  , where NVCi is the total pixel number of the ith vegetation classes showing significant positive or negative changes, 

Tp is the yearly common productivity trend (yr-1) of pixel p, Ap is the area weight (unitless) of pixel p, G1982 (= 9.04×108, unitless) and B1982 
(= 5.89×107, unitless) are the total GSSNDVI of greening pixels and total GSSNDVI of browning pixels in 1982 (Table A1.4). Total 
vegetated area is about 26.02 million km2. 

Vegetation Class 
Area   

Productivity 
(GSSNDVI) 

G (%) B (%) N (%) T (%)  I (%) D (%) 

Mixed Forests 10.43 0.10 7.03 17.56  6.12 -0.06 

Deciduous Needleleaf Forests 3.67 0.07 5.36 9.10  1.40 -0.02 

Evergreen Needleleaf Forests 8.10 0.71 12.01 20.82  4.93 -0.47 

Forest-Shrubs Ecotone 4.01 0.51 7.91 12.43  1.81 -0.22 

Closed Shrublands 0.16 0.01 0.21 0.38  0.08 -0.01 

Open Shrublands 9.72 0.71 14.41 24.84  4.11 -0.28 

Grasslands/ Wetlands (North of Forests) 0.35 0.02 0.88 1.25  0.25 -0.02 

Erect Shrub Tundra 2.41 0.11 2.48 5.00  1.01 -0.06 

Prostrate Shrub Tundra 0.57 0.04 1.30 1.91  0.18 -0.01 

Graminoid Tundra 2.13 0.12 3.11 5.36  0.87 -0.05 

Wetlands 0.41 0.08 0.88 1.37  0.17 -0.04 

Total 41.96 2.48 55.56 100.00  20.92 -1.23 
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Table 2.4 Fraction of area of categorized dominant type driving interannual variability of 
growing season summed NDVI (GSSNDVI) over Northern vegetation area. Relative 
contributions of onset of growing season (SOS), end of growing season (EOS), and maximum 
photosynthetic status (MAX) were calculated by semi-partial correlation analysis and 
normalized. 

Dominant Type Relative Contribution Range (%) Fraction of Area 
(%) SOS MAX EOS 

Co- Dominant 0	– 50 0	– 50 0	– 50 29.78 
EOS Dominant 0	– 50 0	– 50 50	– 100 13.07 
MAX Dominant 0	– 50 50	– 100 0	– 50 6.56 
SOS Dominant 50	– 100 0	– 50 0	– 50 50.59 

Total    100.00 
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CHAPTER 3: Disturbance, cultivation, and climate drive a widespread North 

American vegetation greening 

 

3.1 Introduction 

Rapid warming in northern lands has affected on a broad range of ecosystem 

processes including composition, structure, and functioning of the arctic and boreal 

vegetation. The relaxation of thermal constraint on photosynthetic activity of vegetation 

is expected to enhance plant growth and carbon uptake (Myneni et al., 1997; Nemani et 

al., 2003; Forkel et al., 2016; Park et al., 2019). Extensive long-term ground studies have 

confirmed warming induced longer growing seasons (Xu et al., 2013; Park et al., 2016), 

vegetation encroachment into non-vegetated land (Frost & Epstein, 2014; Myers-Smith & 

Hik, 2018), increasing biomass (or growth rate) of existing vegetation (Pan et al., 2011), 

changes in community composition (Beck et al., 2011a), and/or changes in plant traits 

(e.g., leaf area, height, etc.) (Bjorkman et al., 2018).  

The warmer condition in the north is not always favoring plant growth. 

Particularly, over the boreal region, warming-induced intensified summer drought, tree 

mortality and wildfires have resulted in the decline of summer ecosystem productivity 

(Barber et al., 2000; Kasischke & Turetsky, 2006; Allen et al., 2010). Furthermore, 

warmer winter increases the risk of frost damages on plants in the Arctic region and it 

also causes a negative impact on vegetation growth (Phoenix & Bjerke, 2016). These 

vegetation changes lead to multi-faceted implications for the regional/global carbon 

balance (Chapin et al., 2008; Forkel et al., 2016), thus, understanding changes in northern 
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terrestrial vegetation is a key step in diagnosing and prognosticating responses of 

atmospheric CO2 to global and/or regional warming. 

Satellite remote sensing has been proven to be an invaluable tool to monitor such 

vegetation changes. The contrasting vegetation changes named ‘greening (increasing 

greenness or productivity)’ and ‘browning (decreasing greenness or productivity)’ are 

highly variable in space and over time, and indicate a complex interaction of multiple 

causal factors on the observed plant growth and its dynamism (Nemani et al., 2003; Zhu 

et al., 2016). In particular, studies based on long-term satellite records have reported that 

North American terrestrial ecosystems have experienced extremely heterogeneous 

patterns of greening and browning during the last three decades (Goetz et al., 2005; Park 

et al., 2016; Ju et al., 2016; Sulla-Menashe et al., 2018), yet understanding of details of 

satellite-observed changes and underlying mechanisms are still largely lacking or 

debating (Alcaraz-Segura et al., 2010; Girardin et al., 2016; Danneyrolles et al., 2019).  

One of the most important yet overlooked components of North American (NA) 

vegetation dynamics is disturbance (Goetz et al., 2007; Johnstone et al., 2010; Beck et al., 

2011a; Sulla-Menashe et al., 2018). Wildfire is the most prevalent form of stand-

replacing disturbance across the North American boreal forest, significantly affecting the 

capacity of the boreal forest to sequester and store carbon (Bond-Lamberty et al., 2007). 

Over the past several decades, fire activity has increased in many NA regions (Kasischke 

& Turetsky, 2006), highlighting the importance of understanding its effects on vegetation 

changes. In addition, about one million hectares of the boreal forest is clear-cut each year 

in NA forests (NRC, 2018) and human-managed agricultural land is another emerging 
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landscape that leads to a heterogeneous pattern of vegetation changes (Chen et al., 2019) 

suggesting a complex human-nature interaction in these interfaces. This naturally 

prioritizes our understandings on what underlying processes driving such variation in the 

remotely sensed vegetation greening/browning trends over different climate, abiotic, and 

biotic gradients.  

In this study, we mainly use the latest version of MODIS LAI data and 

disturbance history records informing the timing of the event and its type to address the 

following research questions: a) what is the role of wildfire, harvesting, and agricultural 

activity in NA’s vegetation changes? b) what other controllers drive spatial variations in 

greening/browning over the non-disturbed and non-managed landscape? We also ask 

whether two most widely used LAI datasets (i.e., MODIS and AVHRR) are consistent or 

inconsistent over NA vegetated areas. We use information related to land cover type, 

disturbance history, topographical features, and changes in climate in NA to characterize 

the role and relative contributions of disturbance history and climate change in observed 

geographic patterns of greening and browning. Satellite-based fractional estimates of tree 

and short vegetation covers are additionally used to understand composition changes in 

NA’s ecosystems. 

 

3.2 Data & Method 

In this study, our focused area (~ 9 × 106 km2) consists of all of Canada and 

Alaska (exclusive of the Aleutian Islands). We used a terrestrial ecoregion scheme (Olson 

et al., 2001) of the World Wildlife Fund (WWF) to discriminate the bioclimatic zones. 
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Based on the WWF’s eco-region scheme, tundra and boreal forests/taiga ecoregions were 

assigned into the arctic and boreal bioclimatic zones, respectively. Temperate broadleaf 

and mixed forests, temperate coniferous forests, temperate grasslands, savannas, and 

shrublands were identified as the temperate bioclimatic zone. Croplands include 

croplands and mosaics of croplands and natural vegetation. Spatial distribution of four 

biomes is shown in Figure B1.1. 

 

3.2.1 MODIS Leaf Area Index  

The latest version (Collection 6, C6) of Terra and Aqua MODIS LAI products 

(MOD15A2H and MYD15A2H, Myneni et al., 2015a,b) is used in this study (Yan et al., 

2016a). These LAI datasets are provided as 8-day composites with a 500-m sinusoidal 

projection. The datasets are further refined by rigorous checking of the quality fags of the 

LAI products and of the simultaneous vegetation index products, following the 

previously described methods (Samanta et al., 2011). This filtering provides the highest 

quality MODIS LAI observations that minimize any residual contamination from clouds, 

aerosols, snow, and shadow. The two LAI datasets (that is, four 8-day composites) are 

then combined into a 16-day composite by taking the mean of all valid LAIs (temporal 

average). The quality of C6 MODIS LAI datasets has been comprehensively evaluated 

against ground-based measurements of LAI and through inter-comparisons with other 

satellite LAI products (Yan et al., 2016b). These datasets represent the latest and highest 

quality LAI products that are currently available. In this study, we use the time series of 

18-year MODIS LAI averaged over the summer season (June – August).  
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3.2.2 AVHRR Leaf Area Index 

We have generated a new version of the LAI data (LAI3gV1) based on the 

previously described methodology (Zhu et al., 2013). The data provides global coverage 

with bimonthly frequency at a 1/12° spatial resolution. It spans the period from July 1981 

to December 2017. Full time series of LAI3gV1 (hereafter, AVHRR LAI) data was 

generated by an artificial neural network algorithm that was trained with the overlapping 

data (2000–2017) of NDVI3gV1 and C6 Terra MODIS LAI datasets. Here, NDVI3gV1 

refers to the new version of the third-generation normalized difference vegetation index 

data provided by Global Inventory Modeling and Mapping Studies (GIMMS) AVHRR 

(Pinzon & Tucker, 2014). AVHRR LAI data prior to 2000 are not evaluated due to the 

absence of required field data. Ground data collected as part of MODIS validation efforts 

after 2000 were used to test the quality of AVHRR LAI data and these have been 

described previously (Zhu et al., 2013).  

 

3.2.3 MODIS Vegetation Continuous Field 

The latest version of Terra MODIS C6 vegetation continuous field (VCF, 

Dimiceli et al., 2015) is additionally used in this study. The data is a yearly product that 

presents a continuous, subpixel fraction of land surface cover with a 250-m sinusoidal 

projection from 2000 to 2016. The fraction of land surface cover comprises by three 

components including the percentage of tree cover (TC), percentage of short (non-tree) 

vegetation cover (SVC) and percentage of non-vegetated cover (NVC). The 250-m data 

are aggregated to 500m and projected into a geographical projection for this study. 
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3.2.4 MODIS Land Cover 

We introduced MODIS land cover data which has been developed by the North 

American Land Change Monitoring System initiative (Colditz et al., 2014). Nineteen land 

cover classes were defined using the Land Cover Classification System standard 

developed by the Food and Agriculture Organization (FAO) and two-epoch LC series 

(2005 & 2010) at 250 m are available. In this study, we used this LC in 2005 to 

investigate how varying disturbance history has changed northern landscapes and reached 

to LC state in 2005. Over the study region, only eleven vegetative classes are present and 

we recategorized these classes into five broad land cover classes (i.e., coniferous forest, 

deciduous forest, mixed forest, shrubland, and grassland) with a harmonized spatial 

resolution (500 m) by applying a majority rule.  

 

3.2.5 Disturbance history 

Disturbance history at each pixel was characterized using the combined the 

Alaskan Large Fire History Database (AFDB, FRAMES, 2018) and the Canadian Large 

Fire Database (CNFDB, Stocks et al 2002). The AFDB currently contains fire perimeters 

for the state of Alaska from 1940 through the present (FRAMES, 2018)). Over the 

Alaskan region, we additionally introduced USFS timber harvest perimeter records to 

demonstrate historical harvesting activities (USFS, 2019). For the Canadian territory, the 

CNFDB compiling Providence level data provides fire perimeters since 1910. Note that 

the exact year range varies by Province. The all fire perimeter vector files were 

rasterized. We additionally supplemented disturbance information by introducing Landsat 
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based wall-to-wall characterization of wildfire and harvest in Canada. Time series of 

Landsat data were used to characterize national trends in stand-replacing forest 

disturbances caused by wildfire and harvest for the period 1985-2015 for Canadian 

terrestrial ecosystems (Hermosilla et al., 2016; White et al. 2017). Landsat data has a 30m 

spatial resolution, so the change information is highly detailed and is commensurate with 

that of human impacts. These data represent annual stand-replacing forest changes. The 

stand-replacing disturbances types labeled are wildfire and harvest, with lower 

confidence wildfire and harvest, also shared. In this study, we considered lower 

confidence wildfire and harvest as wildfire and harvest because they are generally found 

to be in the correct category (Hermosilla et al., 2016). An overview on the data, image 

processing, and time series change detection methods applied, as well as information on 

independent accuracy assessment of the data can be found in Hermosilla et al. (2016). 

Note that if an area was disturbed multiple times, only the latest occurrence date and type 

were recorded in the disturbance database. 

 

3.2.6 Climate and Topography 

Temperature, precipitation, and radiation time series were derived from a gridded 

(1 km x 1 km) climate product, Daymet (Thornton et al., 2018). Daymet is a data product 

derived from a collection of algorithms and computer software designed to interpolate 

and extrapolate from daily meteorological observations to produce gridded estimates of 

daily weather parameters. The daily data was aggregated at monthly composition, then 

summer time (JJA) averaged climate data was used in this study. Topography is a good 



	

	

43 

proxy of site conditions because it influences organic layer thickness, carbon density, 

drainage and permafrost thaw by means of its control on microclimate. Here, we used the 

Global Multi-resolution Terrain Elevation Data (GMTED2010) product that provides 15 

arc-second spatial resolution and in geographic coordinates with a WGS-84 datum. We 

derived elevation, slope, transformed aspect (TRASP, Roberts & Cooper, 1989), and 

topographic position index (TPI, Jenness, 2006). TRASP is defined as  

!"#$% = 1 − (cos -./012 − 30 )
2  

where aspect is in degrees. TRASP ranges from 0 to 1, with values of 0 corresponding to 

cooler, wetter north-northeaster aspects, and values of 1 corresponding to hotter, dryer 

south-southwestern aspects. Another factor that was used for the classification of the 

landscape into morphological categories is TPI. It shows the difference in elevation 

between a focal cell and all cells in the neighborhood (Jenness, 2006). In the case of plan 

curvature, negative curvatures illustrate concave, zero curvature represent flat, whereas, 

positive curvatures are known as convex. 

 

3.2.7 Analytical Approaches 

Trends in summer time (June to August) mean MODIS LAI (2000 to 2017) and 

AVHRR LAI3gV1 (2000 to 2017) are evaluated by the Mann–Kendall test, which is a 

non-parametric test to detect a monotonic trend in time series data. We used the function 

‘zyp.trend.vector’ with the Yue–Pilon pre-whitening method provided by R package 

‘zyp’ to conduct the trend test. The trends with P < 0.1 are considered to be statistically 
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significant changes in this study. This procedure has been applied to prepare trends of 

climate data time series including JJA temperature, precipitation, and solar radiation for 

analyzing spatial patterns of greening/browning. We then quantified LAI, TC/SVC, and 

LC changes through a chronosequence approach with disturbance and LC information.  

In order to quantify the factors modulating the spatial patterns of satellite 

observed LAI trends to environmental changes, the random forest regression model was 

used to examine the relationship between the satellite LAI trends and explanatory 

covariates. Note that this analysis was only applied for the non-disturbed vegetation to 

explore how vegetation responses vary across different climate norm, change and 

morphological state. Random forest regression is a non-parametric statistical method 

requiring no distributional assumptions on covariate in relation to the response variable 

(Breiman, 2001). The random forest algorithm here uses 1000 binary decision trees. In 

standard trees, each node is split using the best split among all variables. The explanatory 

covariates used are long-term means (LAI_mean, T_mean, P_mean, and R_mean) and 

trends (LAI_trend, T_ trend, P_ trend and R_ trend) of JJA LAI, temperature, 

precipitation, and solar radiation, DEM, TPI, TRASP. With the random forest regression 

model, variable importance ranking for variable selection was also calculated. The 

variable importance measures how much the error increases if we scramble the values of 

a variable. Larger error before and after permutation means larger importance of the 

variable in the forest and contribute more to predictive accuracy than other variables 

(Breiman, 2001). All analysis was done with the ‘treebagger’ package in Matlab. The 

MODIS-based LAI trend was assessed with respect to the land cover type and 
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disturbance history, and also compared with a trend based on the most recent AVHRR 

LAI dataset, LAI3g (Zhu et al., 2013). 

 

3.3 Result 

3.3.1 Large scale greening and browning patterns in NA 

According to MODIS LAI data, we observe the increased green leaf area over the 

33.2 % (~ 3 × 106 km2) of the vegetated regions in Alaskan and Canadian territory (~ 9 × 

106 km2) during the last two decades, while about 5 % (~ 0.5 × 106 km2) of the study 

region shows a decrease of leaf area (Figure 3.1a and Table 3.1). The remaining areas 

(61.8 %) either have small LAI trends that are not significantly different from zero or 

exhibited significant year-to-year variability that precludes statistical confidence (p ≥ 

0.1). The areas showing greening in NA are 6 times larger than those showing browning, 

and this dominant greening pattern is more obvious in the arctic (38.7 %, 48 times larger 

than browning) and cropland (42.5 %, 13 times larger than browning) vegetation. 

Particularly, the most extensive and intensive greening has occurred primarily in most 

areas of Canadian Prairies (the southern regions of Alberta, Saskatchewan, and 

Manitoba) and tundra regions. Among tundra regions, the eastern Canadian arctic regions 

in Quebec and Labrador reveal the rapid increase of LAIs. For the temperate regions, 

greening (23.1%) is still prevalent but the ratio (3.5 times) between the areas showing 

greening and browning is less than the other regions. The MODIS LAI data captures very 

heterogeneous patches showing both greening and browning trends scattered across the 

Alaskan and Canadian boreal and temperate zones. Most browning patterns can be seen 
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in the boreal forest of central Alaska, the northern parts of Alberta and Saskatchewan, 

and the central Manitoba. A strong negative LAI trend is visible in the forest area near 

Quebec City in the 2000-2017 period. 

 

3.3.2 Disturbance associated changes in greening and browning patterns 

The combined historical fire (15.9 %) and harvesting (4.9 %) data shows that 

about 20.8 % of the total vegetated area has experienced at least one disturbance event 

(either fire or harvesting) during the last decades and the undisturbed vegetation 

constituted 79 % of our study region (Figure 3.1b and Table 3.1). Most of the recorded 

fire and harvesting events have happened over the boreal (74 % of the total disturbed 

area) and temperate (21 % of the total disturbed area) regions, and it explains the 

observed heterogeneous spatial pattern of greening and browning patches. Over the 

boreal and temperate regions, fire is a dominant disturbance component in the boreal 

ecosystem while harvesting is a main disturbance type in the temperate zone. About 40 % 

of the regions showing either greening or browning trend is tightly associated with 

disturbance-induced changes over the boreal and temperate regions. Unlike the boreal 

and temperate regions, fire and harvesting are not a main causal factor for the observed 

LAI changes in AR, although few fire-related changes have been observed (e.g., 2007 

Anaktuvuk River Fire) and projected to increase.  

Dominant greening trends over the one-third of the vegetated area during the 18 

years is translated into 9.4 × 105 km2 net leaf area gain (Table 3.2). This is equivalent to 

about 6.5 % of total baseline (i.e., LAI at 2000, 14.6 × 106 km2) leaf area of the NA 
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vegetated area. The boreal vegetation changes contribute the half (48 %) of total net leaf 

area gain, and the cropland, temperate, and arctic regions are responsible for 21 %, 18 %, 

and 14 % of the net leaf area changes, respectively. The normalized net leaf area changes 

by corresponding land area give a comparable rate of vegetation changes over the unit 

land area. The rate of normalized leaf area changes in CR (0.64 m2 m-2) is the largest and 

followed by TE (0.42 m2 m-2), BO (0.26 m2 m-2), and AR (0.13 m2 m-2).  About 42% (3.9 

× 105 km2) of the net leaf area gain is associated with disturbance, particularly fire and its 

following recovery (29%, 2.7 × 105 km2). Note that the areal extent associated with 

historical disturbance events is about 20.8 % of the total vegetated area but the area is 

responsible for 42 % of the total net leaf area change estimate implying a rapid growth in 

the post-disturbance recovery phase (see details in Section 3.3.3). Surprisingly, the net 

leaf area gain in the disturbed boreal region is about 2.1 times larger than that of the non-

disturbed boreal vegetation, while the net leaf area gains from the areas with/without 

disturbance are comparable in the temperate region. Varying importance of disturbance 

types over different biome type is also noticeable: the burned area in the boreal region 

and the harvested area in the temperate zone are responsible for 81 % and 79 % of the 

respective net leaf area gain. The net leaf area changes in AR and CR without disturbance 

far outweigh those with disturbance, and CR shows the highest rate of change under non-

disturbed condition. This result suggests how regionally different underlying drivers 

characterize the remotely sensed greening/browning patterns in NA ecosystems.   

Spatial details of local disturbance history, land cover, and topography help our 

understandings on the dominant patterns in LAI changes over different biomes. We 
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present here four example sites for each biome (Figure B1.2-4). Site A is the Yukon Flats 

located in the interior Alaska where is one of the most wildfire-prone regions over NA. 

Site B is the area near the southeastern Ontario where heavy forestry activities have been 

conducted. Observed patches with greening or browning trends in MODIS LAI over Site 

A and B correspond well to the fire perimeters and harvested forest patches, respectively. 

Furthermore, the detected browning or greening trends depend on the time since the event 

as noticed in Section 3.3.3. Site C and D cover the northeastern part of tundra vegetation 

in Quebec and the southern parts of Alberta and Saskatchewan, respectively. Both sites 

are the areas showing the strongest greening signals from MODIS LAI over the arctic and 

cropland regions. Unlike Site A and B, Site C and D have not likely been disturbed by 

wildfire and harvesting seriously implying a strong control driven by other natural or 

anthropogenic factors other than disturbance. Particularly, the most greening in Site C is 

prevalent in the open shrub-dominated landscape while a cropland-grassland transition in 

Site D exhibits a strong spatial contrast in degree of greening trends. It is also worthy to 

note that the greening patterns observed in Site C are not randomly situated, in other 

words, more complex mechanisms/drivers govern such spatial pattern of vegetation 

changes rather than large-scale warming simply drives ubiquitous changes in this 

temperature limited ecosystems. Further results will be discussed in Section 3.3.6. 

 

3.3.3 Disturbance type and timing  

The observed LAI trends over the study regions are shown as a function of timing 

of the latest disturbance event in Figure 3.2a. We note that regions with disturbances 
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prior to 1980 show relatively small positive LAI trends. The trend magnitudes increase 

for those areas burned or harvested between 1980 and 2000. Both averaged decadal 

trends of LAI for fire (0.38 ± 0.29 m2 m-2·decade–1) and harvesting (0.39 ± 0.38 m2 m-

2·decade–1) peaks at after 15 (harvesting) or 20 (wildfire) years post-disturbance. They 

then decrease and also show negative trends, as expected, for those areas disturbed 

recently. See Site A and B in Figure B1.2 and 3. This implies that the trajectory of 

vegetation change and its state characterize the long-term LAI changes as satellite 

captures a snapshot (2000 – 2017) of the long-term recovery and succession. 

Interestingly, the following recovery rate of harvested area is faster than that of the 

burned area, for example, after 10 years disturbance event (i.e., disturbed in 2006 – 

2010), harvested vegetation shows increase of 0.10 ± 0.34 leaf area per decade, while 

burned vegetation shows a smaller decrease of leaf area (–0.03 ± 0.22 m2 m-2·decade–1). 

The difference in LAI trends for two disturbance types at 10 years old are statistically 

significant (t-test, p < 0.001).  

The estimates of net leaf area changes over the historically disturbed area with 

wildfire and harvesting vary by functions of trends of LAI and total area disturbed 

(Figure 3.2c,d). In general, the area disturbed by harvesting is relatively stable (16 % of 

coefficient of variance) over the last three decades, while the inter-annual variability of 

the fire-disturbed area varies largely (23 % of coefficient of variance) with respect to a 

long-term mean of the common period (1985 – 2017). The respective total burned and 

harvested areas were reported to 1.49 × 106 km2 and 4.71 × 105 km2. Together with the 

rate of LAI change, the net leaf area gains peak at 1991-1995 and 2005-2010 for burned 
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(9.29 ×104 km2) and harvested (5.34 ×104 km2) areas, respectively. Interestingly, the area 

disturbed before 1970 is approximately 27.2 ×104 km2, yet its contribution to net leaf area 

gain is minimal. This indicates a large variation in LAI change along the different 

disturbance and recovery states suggesting that a history of land surface change is critical 

to understand current vegetation changes. 

 

3.3.4 Tree and short vegetation cover changes in recovery trajectories 

To roughly investigate how vegetation composition has been changed, we 

introduced MODIS VCF and LC data. Our results for the decadal changes in TC and 

SVC indicate that positive trends in SVC until first 20 years after a disturbance event, 

then slow transition to negative SVC with positive TC trends can be observed (Figure 

3.2b). This transition corroborates a general view of post-disturbance succession, i.e., 

herbaceous vegetation initially dominates after high mortality disturbance events until the 

newly established tree seedlings grow to dominate the canopy. Interestingly, TC and SVC 

changes from MODIS data differentiate recovery trajectories between two disturbance 

types, i.e., the area burned generally lose most of the vegetation and slowly recover with 

herbaceous vegetation but the area cut shows a rapid increase in SVC right after 

disturbance event likely thanks to remained understory vegetation or more favorable 

seedling conditions.  

An additional investigation based on MODIS LC with a “space-time substitution” 

approach assuming LC at 2005 can represent a general successional LC transition and 

reveals distinct discrepancies between two disturbance types (Figure 3.3). Most 
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harvesting activities detected in this study have occurred the areas where coniferous (~ 55 

%) & mixed (~ 30 %) forests existing and the post-disturbed LC slowly recover 

coniferous forest even deciduous and mixed forests first dominate the lands. As our 

harvesting record only covers since 1985, a further successional transition of LC is hardly 

inferred. For the burned area, fires strongly prefer to burn over coniferous forests (~ 74 

%) and the area burned before 1985 have turned back to a coniferous dominated forest 

(~45%). A greater occurrence of shrub and grassland can be seen in the recently burned 

area, while the recently cut area still mostly remain as forests. Our inference based on LC 

corroborates the finding from MODIS VCF (Figure 3.2b). Our results clearly yet roughly 

demonstrate this compositional transition from short vegetation to tree dominated, 

especially coniferous and mixed forest ecosystems over time. Also, different disturbance 

types show the different trajectory of the recovering process even vegetation greenness 

(e.g., NDVI and LAI) may not differentiate the discrepancy. 

Over the non-disturbed areas showing greening, four biomes have shown different 

patterns of the tree and short vegetation cover changes. For the cropland region, 

vegetation cover including both tree and short vegetation cover increases the most 

(especially, SVC), i.e., non-vegetated area has rapidly diminished. Over the arctic region, 

short vegetation increase is most common while the boreal region shows a dominant 

pattern of tree cover increase. Note that we also observe a pattern of TC increase over the 

boreal-tundra ecotone (see Figure B1.3b-c as an example). Interestingly, the temperate 

zone, we observe a negative trend of tree cover but positive for short vegetation. This is 

likely due to unaccounted disturbances and agricultural expansions, frequent drought-
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induced increasing tree mortality in temperate regions. 

 

3.3.5 LAI changes in MODIS and AVHRR 

One of the key issues to be answered over these vegetation greenness changes 

over northern lands is consistency across different data products or sensors. As noticed 

earlier, AVHRR LAI is one of the most widely used datasets to investigate global 

vegetation changes, yet recently raised its reliability issue urges an additional comparison 

between the changes in MODIS and AVHRR LAIs (Park et al., 2016; Ju & Masek, 2016; 

Sulla-Menashe et al., 2018). A lack of accounting disturbance history in interpreting the 

results of previous studies based on AVHRR additionally justify this comparison. 

Overall, AVHRR shows a similar pattern of LAI changes compared to MODIS data 

indicating a dominant greening (2.3 times larger than browning) yet more browning area 

across Alaskan and Canadian territories during the last 18 years (Figure B1.5a and Table 

B1.1). This difference can be translated into 1.69 × 105 km2 less net leaf gain during the 

last two decades (Table 3.2 and Table B1.2). Interestingly, degree of LAI changes in AR 

from AVHRR (0.25 m2·m–2) is much stronger than that of MODIS (0.13 m2·m–2) 

although its areal extent of greening is smaller than MODIS. This discrepancy leads to a 

more net leaf area gain (0.52 × 105 km2) from AVHRR LAI over the arctic vegetation. 

For CR case, 63 % of CR area is getting greener by adding 2.59 × 105 km2 more leaves 

during 2000 – 2017 period. This area extent and net leaf area change estimates from 

AVHRR LAI are 20 % and 0.66 × 105 km2 larger than those of MODIS estimates. For 

BO region, AVHRR gives more browning and less greening areas indicating less net leaf 
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gain from this biome type. As shown in Figure B1.5b, for the same burned area, the 

AVHRR results in many cases did show the effect of fires and its post-recovery process, 

however, LAI changes from smaller fires or clear-cut logging activities are not detected 

or even show opposite trends while the responses of MODIS LAI well correspond to the 

history of land surface changes (i.e., harvesting and fire) (see Figure B1.5c,d).  

 

3.3.6 Biome-specific important drivers in spatial LAI changes  

We use a random forest-based analysis to identify which environmental drivers 

characterize spatial patterns of landscape-level LAI changes (Figure 3.4). Our results 

point out that initial LAI is the most important feature to explain the spatial variability of 

LAI trends in the arctic vegetation. In other words, if there is less vegetation with lower 

LAI, we have seen relatively smaller changes in LAI while more LAI increase seen 

where more vegetation is already existing. Also, topography is another important 

predictor of the spatial pattern of greening trends across all biomes as hinted in Figure 

3.4. While the landscape is generally flat, locations with higher slopes and elevations are 

negatively correlated with the frequency of detecting greening trends. North- and 

northeast-facing slopes are least likely to exhibit a positive trend, and western and 

southwestern facing slopes are the most likely in this cold environment. Topographic 

associations between valley bottoms and vegetation growth likely reflect more favorable 

edaphic conditions along the channel banks, as well as more sheltered microclimates and 

available water (McManus et al., 2012). Our result does not identify strong correlations 

between the magnitude of recent temperature changes and increases in vegetation 
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greenness, possibly due to consistent and strong warming across the entire study region. 

Given favorable climatic conditions, landscape heterogeneity and species level responses 

may be stronger predictors of vegetation change. 

 

3.4 Discussion 

In this study, we used the latest version of MODIS LAI, VCF, LC, and AVHRR 

LAI to investigate underlain drivers in the remotely sensed vegetation greenness changes, 

called, greening/browning patterns. Most of the significant changes in different biome 

types are driven by different causes and we were noticed that simply vegetation 

greenness, i.e., LAI (or NDVI), only reflect a partial aspect of the change rather than 

explaining ongoing complex changes in NA vegetation (e.g., land cover transition, 

compositional change, etc.). Here, we further discuss relevance of our results to previous 

studies and what we need to consider in future studies by identifying knowledge gaps. 

 

3.4.1 Regional drivers in North American vegetation changes 

This study investigates a continental scale LAI change together with tracking its 

potential drivers including fire, harvesting, cultivation, and changing climate. Our data-

driven results point the regionally contrasting underlain primary drivers in the Alaskan 

and Canadian territories. First, we’ve detected the greatest LAI changes during the last 

two decades over the cropland regions. Cropland greening is mainly attributable to the 

direct driver without discounting the minor contributions of the indirect drivers (e.g., CO2 

fertilization and climate change) (Rosenzweig et al., 1994). Human-driven direct 
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management activities include quick-growing hybrid cultivars, multiple cropping, 

irrigation, fertilizer use, pest control, better quality seeds, and farm mechanization (Foley 

et al., 2011). About 1.4 × 104 km2 increase in Canadian cropland during the last two 

decades is partly responsible for this observed LAI change (Statistics Canada, 2019). The 

observed SVC increase in cropland regions in our study supports this statistic. This 

emphasizes the importance of human land management/conversion and it is applicable to 

the managed temperate/boreal region as well (Chen et al., 2019).  

Over the temperate region, forestry activity is the main driver of vegetation 

changes together with wildfire, while wildfire is a more important driver in the boreal 

vegetation change (Table 3.1 and 3.2). In Canada, about 90% of Canada’s forests are 

located on provincial and territorial Crown lands (NRC, 2018). The provincial and 

territorial governments are therefore responsible for forest management for sustainable 

timber production, i.e., strict regulations for an allowable annual cut including both the 

annual level of harvest allowed on a particular area and the minimum forest age at the 

time of harvest. Thus, as shown in Figure 3.2d, about 8 × 104 km2 of forested lands has 

been stably harvested every year. Also, by law, all forests harvested on public lands must 

be regenerated, thus, a half of the harvested area is artificially regenerated by planting 

and seeding activities (NRC, 2018). This intense human-managed forestry partially 

explains why we found a relatively more rapid LAI and TC change over the harvested 

area than the burned area. 

For the boreal region, about 44 % of a total number of historical fires are initiated 

by lightning and this type of fire is accountable to 77 % of the total burned area 
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(Veraverbeke et al., 2017; NRC, 2018). It means most of the burned area is naturally 

combusted and recovered. Multiple studies have reported an increasing trend of wildfire 

frequency and burned area during the last century, and future projection under changing 

climate indicates a continuous its increasing trend (Veraverbeke et al., 2017). This will 

critically impact on carbon sequestered in woody biomass in the boreal forest. Indeed, 

Canadian forest service announced that their boreal forest has already transitioned to net 

carbon source mostly due to natural disturbances including inset outbreak and wildfire 

(NRC, 2018). To sum up, as reported, these natural and anthropogenic disturbances are 

critical components characterizing spatial patterns of the remotely sensed greening and 

browning, and they contribute about half of total net green leaf area gain in NA.  

Previous studies have suggested that warming-induced water stress may 

exacerbate growth condition of coniferous boreal forests and consequentially a nontrivial 

pattern of decrease in vegetation greenness (Beck et al., 2011b; Buermann et al., 2014). 

In contrast, our result reports that about 32 % (7.2 %) of the boreal vegetation in NA is 

getting greener (browner) in the 2000-2017 period and only 4.5 % (18.7 %) of the region 

reveals browning (greening) pattern without disturbance history (Table 3.1). Ground-

based studies based on dendrochronology noticed that both responsive direction and 

degree may differ by species, i.e., broadleaved trees like aspen favor such warmer 

condition while coniferous species like black spruce may not (D’Orangeville et al., 

2018). In other words, a slow process of transition in stand composition with species 

competition may be detected as greening even some species’ growth may decline or even 

die off (e.g., Hilmers et al., 2019). Our result based on MODIS VCF hints this point of 
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view.  

The extensive arctic greening observed in the 18-year MODIS LAI is likely due 

to the widely accepted changing climate, i.e., warming (Myneni et al., 1997; Xu et al., 

2013; Zhu et al., 2016; Park et al., 2016). Warming-induced shrub expansion in tundra 

ecosystem is circumarctic phenomenon widely reported in many field studies (Sturm et 

al., 2001; Tape et al., 2006; Myers-Smith et al., 2011; Myers-Smith & Hik, 2018; 

Bjorkman et al., 2018).  However, the spatial pattern of LAI changes is not aligned with 

regional warming pattern implying that localized microclimate, vegetation establishment, 

geomorphology, disturbances including herbivory, thermokarst, erosion, fire, etc. 

characterize the remotely sensed LAI changes. For instance, in addition to the direct 

warming induced stimulus on plant growth, warming-driven disturbances (e.g., glacial 

retreat, thermokarst) and their implications are also critical processes in understanding 

vegetation changes in the arctic landscape as well (Pastick et al., 2019, see more 

discussion in Section 3.4.2). Some regional studies have reported the decreased or 

browned vegetation greenness in recent years even as the climate continues to warm 

(Pheonix & Bjerke 2016). Early snowmelt and frosting events also have been identified 

as an important process in tundra browning (Pheonix and Bjerke 2016). The ecological 

mechanisms regulating tundra browning remain elusive.  

 

3.4.2 Role of disturbance in compositional changes and land cover transition 

Our chronological approaches based on MODIS VCF and LC support a general 

view of post-disturbance recovery stages implying a demographic feature is very 
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important to understand the current state of northern vegetation and its projection to 

changing climate. Generally, disturbance and its regime shift could critically affect many 

land cover transitions because the early recovery stage after disturbance plays a large role 

in the structure and functioning of vegetation and its legacy effect persists for decades 

(Johnstone et al., 2010; Johnstone et al., 2016). It catalyzes more rapid vegetation 

changes by removing established plant cover in areas where newly exposed surfaces may 

follow an altered successional trajectory favoring current (rather than historical) climatic 

norms (Johnstone et al., 2010; Roland et al., 2016; Hermosilla et al., 2018). This likely 

has crucial implications on carbon, water and energy balances over disturbed regions, in 

turn, leading to regional and global consequences. For instance, many ground-based 

studies have informed that disturbance-induced increase of deciduousness. Deciduous 

forests are considered more productive indicating more carbon sequestration but higher 

albedo compared to coniferous species reduces positive feedback to global warming 

(Beck et al., 2011a). Indeed, our LC analysis informed that the areas with older 

disturbance events tend to be more mixed and deciduous forests even coniferous forest 

occurrence has increased as time goes by (Figure 3.3). 

Furthermore, Goulden et al. (2011) emphasized that the relative importance of 

deciduous and evergreen plants shifted during post-fire succession, with deciduous herbs 

(grass and fireweed) and shrubs (alder and willow) assuming initial importance, and 

evergreens (black spruce and moss) dominating older stands. The distribution of 

production by plant functional type paralleled the changes in LAI and species 

composition. Production at the younger stands was dominated by shrubs and herbaceous 
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plants; production at the older stands was dominated by trees. In addition, an extensive 

field surveying over burned and harvested areas identified that the relative contribution of 

each carbon pool (live biomass and deadwood) to total ecosystem carbon varied 

considerably between disturbance types (Seedre et al., 2014). They noticed that live 

biomass carbon was significantly higher following harvesting compared to fire because 

of residual live trees, advanced regeneration, and left shrubs and herbs. These support our 

finding in Figure 3.2 and Figure 3.3 suggesting a varying rate of TC/SVC and LC change 

across different disturbance type and timing. It thus conforms a general idea that the rate 

at which a forest recovers from a disturbance is influenced by a wide range of factors that 

are related to local site conditions, regional climate, disturbance history (intensity, type, 

etc.), regional species pool, and species life histories (Harper et al., 2005).  

This significant role of disturbance is also critical in the arctic region. A repeated 

photograph-based study did not find a widespread encroachment of shrub/tree into 

tundra/shrub dominant landscapes during the last century (Bodie et al., 2019). They only 

found such transitions over the historically disturbed areas while they identified an 

increase of shrub/tree density over the shrub/tree established areas. Our results also 

support this finding as most increases of LAI correspond to the area where already more 

vegetation existing. Also, tree cover is barely increased in tundra-boreal ecotone and tree 

cover increase is evident in the area where tree stand already existing yet sparse.  
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3.4.3 Incomplete land history and its implications   

In this study, we utilized available disturbance records over the Alaskan and 

Canadian territories with regionally varying temporal coverages and these data 

reasonably well explained MODIS LAI changes. However, still, there are many other 

disturbance factors we need to account for a complete picture of vegetation change. For 

instance, Canadian and US Forest Service have reported that insect outbreak and its 

impact has been increasing since the 2000s. The area damaged by insect outbreaks over 

Canada from 2000 to 2016 is approximately 1 × 106 km2 and it is 3.4 times larger than 

total area burned and cut during the same time period (NRC, 2018). However, in our 

analysis, we only captured about 4 – 5 % of the area showing browning without fire and 

harvesting over the boreal and temperate regions. Interestingly, MODIS LAI is able to 

capture the recent 2014 defoliation event in Quebec and it gives a clear showcase of how 

insect outbreak-induced defoliation has reduced large-scale leaf area. Possible 

explanations for the less MODIS LAI decline (or browning) during the last two decades 

due to insect damages are two-fold: a) MODIS temporal coverage is likely capturing only 

the recovering phase over the most of damaged regions because a large portion of insect 

outbreaks occurs in the early MODIS era, b) Canadian forest service has counted forests 

where more than 20 % of leaves are defoliated, i.e., some of the reported damages may be 

too weak or ephemeral to be detected, thus masked by strong adjacent greening signals 

(Senfet al., 2015; Pastick et al., 2019).   

Observed LAI trends over the areas categorized as non-disturbed may reflect a 

recovery from historic disturbances, despite efforts to mask out large-scale disturbances 
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from fires and forestry operations visible during the Landsat era and a century-long fire 

database. For instance, Tømmervik et al. (2019) incorporated all available historical 

records of natural and anthropogenic disturbances since 1900 and found that legacies of 

human-induced land use changes over Eurasian boreal-tundra ecotone (> 67º N) are main 

predictors explaining the observed vegetation biomass changes rather than climate 

change. It is more striking because a long and old history of human influence continues to 

have major impacts on the current forest and tundra structure even these far-northern 

isolated lands considered as pristine. In our study, we found that the net leaf area changes 

in the area disturbed before 1970 are not noticeable (Figure 3.2), yet disturbance induced 

legacy effect (e.g., compositional discrepancy, see Figure 3.3) between disturbed and 

non-disturbed vegetation may diversify responses to environmental changes (Johnstone et 

al., 2016) suggesting a critical importance of the completed land surface history.  

In this study, we only studied NA vegetation where the longest and spatially 

explicit disturbance history data available. Over the Eurasian territories, more vast 

regions need to be investigated to completely understand northern vegetation changes at 

the continental/global scale. In contrast to NA, fewer archived Landsat data over the 

region limits to detect historical disturbance occurrences over a whole Landsat era (Zhu 

et al., 2019). Reasonable disturbance detection is only available from the 2000s over EA 

(e.g., Hansen et al., 2013). However, we believed that a large proportion of remotely 

sensed vegetation changes in EA are also tightly associated with land surface history 

including fire, forestry, cropland expansion, herbivory, human land exploitation, etc., 

thus local knowledge and historical data are useful to understand these changes. 
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3.4.4 Confidence in multi-data-based investigation 

This study confirms that the observed consistent and inconsistent patterns of 

vegetation changes in NA from MODIS and AVHRR LAIs. In addition to the AVHRR, a 

simple visual comparison practice to a Landsat based study (Ju & Masek, 2016) 

corroborates dominant greening patterns in NA from MODIS and confirmed low 

confidence in the trends in AVHRR. For instance, Landsat reproduces the extensive and 

intensive greening in Canadian tundra in Quebec and Labrador where AVHRR does not 

show significant changes during the last decades. Also, a strong greening signal in north 

slope from AVHRR LAI is less evident in MODIS LAI and Landsat NDVI. The 

observed apparent relative insensitivity of the AVHRR LAI to fires in these examples 

probably can be explained by the fact that the footprint of the 8-km GIMMS AVHRR 

pixel does not fully cover a 64 km2 area; rather, the signal comes from an area that 

comprises only 7 % of the pixel size and its location varies within the 8 km cell over time 

(Hall et al., 2006). Previous studies reported that sensor artifacts are responsible for some 

of the inconsistency between vegetation changes observed from multiple satellite data 

(e.g., Guay et al., 2014). These artifacts are evident in AVHRR data which is due to the 

loss of sensor calibration, orbital drift of satellites, atmospheric contamination of 

vegetation signals, disjointed stitching of data from multiple sequential sensors, and 

harmonization of the signal from different sensors (Tian et al., 2015; Chen et al., 2019). 

The observed inconsistency in the AVHRR LAI, which is the most broadly used dataset 

for monitoring ecosystem and carbon balance changes, have broad implications for the 

evaluation of vegetation and carbon dynamics in this region and globally. This 
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comparison and observed discrepancy suggest a special caution to interpret the results 

from AVHRR data underscoring the importance of further investigation on the properties 

of AVHRR and MODIS LAIs. Emerging potentials from new sensors (e.g., VIIRS) and 

technologies including drone and near-surface remote sensing enable to investigate finer 

scale vegetation changes by reducing scale discrepancy. 

 

3.5 Conclusion 

This study attempts to incorporate available disturbance histories, climate, and 

topography data to understand the remotely sensed vegetation changes during the last 18 

years over Alaskan and Canadian territories. The latest version of 500 m MODIS LAI 

with strict quality controls allows us to reasonably depict details of recent vegetation 

changes with accounting land surface history. Our investigation clearly indicates that 

multiple drivers including natural (wildfire) and anthropogenic (harvesting) disturbances, 

changing climate, and agricultural activities together govern the dominant large-scale 

greening trends in NA. Timing and type of disturbances are important to fully 

comprehend spatially uneven vegetation changes in the boreal and temperate regions. 

Over the arctic ecosystems, given long-term climate norms and morphological features 

shaping the past and current state of vegetation are critical to understanding the observed 

LAI changes. The strongest greening trends in the cropland regions implies the 

importance of human land management in continental-scale vegetation change. The 

chronological analysis also reveals a gradual change in LAI as well as stand composition 

even only tree and short vegetation covers are discriminated. Additional comparisons to 
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AVHRR and Landsat (only by visual comparison) provide some degree of confidence in 

our study and urges more extensive and precise investigations across different sensors 

and datasets. The bottom line suggested by this study is that understanding the NA 

vegetation changes in the past, present, and future requires a multitude of approaches that 

consider together linked climatic, geomorphic, and social-ecological drivers and 

processes. 
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Figure 3.1 Spatial pattern of MODIS LAI trends during the last 18 years (2000 – 2017, a) and historical disturbance events (b) over NA 
regions. The trend and significance are derived using the non-parametric Mann–Kendall Tau-b with Sen’s method. Only statistically 
significant changes (p < 0.1) are color coded. The historical disturbance information is derived from multiple databases and augmented 
by additional disturbances identified from Landsat data. Four red squares (A – D) in each panel are selected to showcase dominant 
vegetation change patterns in each biome type (i.e., Arctic, Boreal, Temperate, and Cropland biome types, See Figure S1 for biome type 
map). 
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Figure 3.2 Distribution of LAI, TC, and SVC trend estimates grouped by the latest disturbance 
year across NA regions. Markers show the mean trend estimates of each variable and ±1SD of 
estimates are also given. Purple, cyan, and green stand for the vegetated area experiencing fire, 
harvesting, and no disturbance. Note that circle and triangle markers in below panel represent 
TC and SVC, respectively. 
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Figure 3.3 Land cover distribution grouped by the latest disturbance year across NA regions. 
Percent of each land cover occurrence is calculated by the total area of each group classified by 
disturbance year. NALCMS land cover product (circa 2005) was used. 
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Figure 3.4 Random Forest based variable importance rank for each biome: AR (a), BO (b) and TE (c). 
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Table 3.1 Proportion (%) of vegetated land showing greening and browning trends in MODIS LAI with or without historical 
disturbance events. Note that statistically significant positive and negative changes are defined as greening (G) and browning (B), and 
others are insignificant changes (N.S.). Bracketed numbers in “Disturbed” column represents the solely fire-induced changes, i.e., the 
changes induced by harvesting can be calculated by subtracting the fire-induced changes from all disturbance-induced changes. 

Biome 
(Area, 106 km2) 

Proportion of vegetated land (%) 
All Disturbed (fire-induced change) Non-disturbed 

B N.S. G B N.S. G B N.S. G 
AR (2.5) 0.8 60.5 38.7 0.1 (0.1) 1.2 (1.1) 0.5 (0.5) 0.7 59.3 38.2 
BO (4.5) 7.2 61 31.8 2.7 (2.4) 15.4 (13.3) 13.1 (11.6) 4.5 45.7 18.7 
TE (1.3) 6.6 70.3 23.1 2.3 (0.9) 17.2 (5.6) 8.6 (2.5) 4.3 53.1 14.5 
CR (0.7) 3.2 54.3 42.5 1.0 (0.9) 5.0 (4.0) 1.5 (1.1) 2.1 49.4 41.0 
All (9.0) 5.0 61.8 33.2 1.8 (1.4) 10.9 (8.1) 8.1 (6.4) 3.2 50.8 25.1 
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Table 3.2 Net leaf area and mean leaf area index changes during the last 18 years (2000 – 2017) from MODIS LAI. Note that only 
vegetated areas showing greening and browning are considered in this calculation. Net leaf area and mean leaf area index changes are 
calculated as follows: !"#	%"&'	&("& = 	 *("+,- ∙ /("&- ∙ 0"(-1,!

-23 , 4"&+	%"&'	&("&	-+,"5 =
*("+,- ∙ /("&- ∙ 0"(-1,!

-23 /("&-!
-23 . Bracketed numbers in “Disturbed” column represents the solely fire-induced changes, i.e., 

the changes induced by harvesting can be calculated by subtracting the fire-induced changes from all disturbance-induced changes. 

 Net leaf area (105 km2) Mean leaf area index (m2 m-2) 

Biome All Disturbed (fire-induced change) Non-disturbed All Disturbed (fire-induced change) Non-disturbed 
AR 1.30 0.06 (0.06) 1.24 0.13 0.39 (0.40) 0.13 
BO 4.49 3.04 (2.47) 1.45 0.26 0.43 (0.39) 0.14 
TE 1.68 0.81 (0.17) 0.87 0.42 0.55 (0.37) 0.34 
CR 1.93 0.03 (0.02) 1.90 0.64 0.17 (0.11) 0.67 
All 9.40 3.93 (2.71) 5.47 0.25 0.44 (0.39) 0.21 
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CHAPTER 4: Changes in timing of seasonal peak photosynthetic activity in 

northern ecosystems 

 

4.1 Introduction 

Warming is generally thought to ease climate constraint on photosynthetic activity 

of vegetation in northern lands. Indeed, recent growing season studies based on ground 

observation (Parmesan & Yohe, 2003), eddy covariance (Richardson et al., 2010; Keenan 

et al., 2014), remote sensing (Xu et al., 2013; Park et al., 2016), and model simulation 

(Duveneck & Thompson, 2017) have concordantly indicated that the growing season 

duration for northern terrestrial vegetation has significantly extended over the past 

decades due to both an earlier start and delayed termination. This prolonged growing 

season over northern land drives a longer carbon assimilation period due to the relaxation 

of low-temperature limits on metabolism, and in turn increased productivity and carbon 

uptake have been observed (Xu et al., 2013; Forkel el al., 2016). However, longer and 

warmer growing seasons also promote environmental conditions that favor surface 

drying, and thus intensified summer droughts, tree mortality, and wildfires have resulted 

in summer productivity decline (Peng et al., 2011; Barichivich et al., 2014; D’Orangeville 

et al., 2018). These consequential dynamics are highly variable in space and over time, 

and indicate a complex interaction of multiple climate constraints on plant growth and its 

dynamism (Nemani et al., 2003; Garonna et al., 2018; Reich et al., 2018). To accurately 

project the response of northern vegetation to future climate, we need to better understand 

how climate-vegetation interaction has evolved to its current state, and what role climatic 
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constraints and their variability played in this process.  

Photosynthetic seasonality is an integrated outcome of how plants adapt to 

seasonal variations in climatic constraints (Chuine & Beaubien, 2001; Jolly et al., 2005; 

Eagleson, 2005; Garonna et al., 2018), and is thus a critical indicator of vegetation-

climate interaction. For instance, gross primary productivity (GPP) tracks the seasonal 

course of temperature in northern high-latitude ecosystems, while the synchrony between 

GPP and temperature is gradually lost southwards towards warmer and drier 

environments (see Figure 1 in Rotenberg & Yakir, 2010). The laws of minimum 

(Sprengel, 1828; Liebig, 1841; Blackman, 1905) explain these shifts in GPP with respect 

to varying climatic conditions (Eagleson, 2005). The laws state that although 

photosynthetic activity is controlled by multiple factors (e.g., radiation, temperature, 

water availability, etc.), the prevailing rate is set by the most deficient of these factors 

(Sprengel, 1828; Liebig, 1841; Blackman, 1905). This suggests that the timing (Day of 

Year) of peak photosynthetic rate (DOYPmax) during the seasonal course corresponds to 

the period when the primary climatic factor controlling plant growth is least limiting. 

This simple yet intuitive indicator has an indispensable role not only indicating the timing 

and magnitude of resource availability (i.e., constraint) but also the capacity of terrestrial 

ecosystem productivity (Xia et al., 2015; Zhou et al., 2017). Ongoing climate change in 

the north is expected to alter the state of climatic constraints on plant growth, and 

therefore, changes in DOYPmax and productivity. Previous studies have observed trends 

toward an earlier peak of the growing season (Buitenwerf et al., 2015; Gonsamo et al., 

2018). However, the underlying mechanisms for spatially varying relations between its 
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changes and implications on seasonal total productivity and carbon cycle are still largely 

unknown.  

In this study, we take the ‘laws of minimum’ as a basis and introduce a new 

framework where the timing of peak photosynthetic activity (DOYPmax) acts as a proxy 

for plant’s adaptive state to climatic constraints on its growth. Two basic principles 

formulate this new framework (Figure 4.1). First, under non-limiting climatic conditions, 

DOYPmax will show a tendency to coincide with the period of seasonal peak radiation 

load so as to result in maximum photosynthetic capacity conditions (Eagleson, 2005; 

Bauerle et al., 2012) (Case 1 in Figure 4.1). Second, if a climatic factor acts as the 

primary constraint to photosynthetic activity, DOYPmax should shift towards the period in 

the seasonal course at which that limiting resource is more available (Eagleson, 2005; 

Rotenberg & Yakir, 2010) (Cases 2–4 in Figure 4.1). In this framework, the timings of 

peak GPP (DOYPmax) and three climatic factors including temperature (DOYTmax), 

radiation (DOYRmax), and water availability (DOYWmax) serve as key proxies for climate 

resource availability. We only introduce these three abiotic controls of GPP because it is 

widely known that they interact to primarily impose complex and varying limitations on 

vegetation activity (Nemani et al., 2003). Thanks to reduced water losses during the cold 

season over northern terrestrial ecosystems and thermal inertia, a sequential order of the 

timings of peak climatic factors (DOYWmax < DOYRmax < DOYTmax) simplifies our 

framework (Figure C1.1). In other words, this suggests that positioning of DOYPmax with 

respect to DOYRmax (δDOYP,R = DOYPmax – DOYRmax) can indicate the primary climatic 

constraint on ecosystems, i.e., water (δDOYP,R < 0) or temperature (δDOYP,R > 0). 
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δDOYP,T defined as DOYPmax – DOYTmax is additionally introduced to subdivide 

dominant temperature constrained northern ecosystems. 

Our primary objectives of this study are two-fold: 1) to examine the proposed 

framework using independent multiple datasets and understand how northern vegetation 

seasonality has been characterized; 2) to investigate changes in DOYPmax and its impact 

on seasonal total productivity and carbon cycle. To accomplish the objectives, we apply 

the proposed framework to GPP dynamics from the satellite observed vegetation 

photosynthetic activity to evaluate its validity and changes in DOYPmax. Two independent 

sources of vegetation productivity (tower measured GPP and satellite driven Sun-Induced 

Fluorescence, SIF) are used to further test the framework. We use the atmospheric CO2 

observations at Point Barrow (71.3° N, 156.6° W) and two state-of-the-art CO2 inversion 

estimates to investigate the potential impact of shifting DOYPmax on terrestrial ecosystem 

carbon cycle. A set of Earth System Models (ESMs) is additionally introduced to 

evaluate the reproducibility of the observed DOYPmax changes and their consequences 

under historical and future climate scenarios. 

 

4.2 Materials and Methods 

4.2.1 Study area and bioclimatic zones  

Only non-agricultural vegetation over north of 30°N is considered in this study to 

minimize human-induced influence. Three bioclimatic zones including arctic, boreal and 

temperate regions were used to present outcomes of this study. To discriminate the 

bioclimatic zones, we combined a terrestrial ecoregion scheme (Olson et al., 2001) of the 
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World Wildlife Fund (WWF) and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) International Geosphere-Biosphere Programme (IGBP) land cover data (Friedl 

et al., 2010) (Collection 5.1). We first used MODIS IGBP to keep only non-agricultural 

vegetation classes (Class 1-10, and 16). Then, based on the WWF’s eco-region scheme, 

tundra and boreal forests/taiga ecoregions were assigned into the arctic and boreal 

bioclimatic zones, respectively. Temperate broadleaf and mixed forests, temperate 

coniferous forests, temperate grasslands, savannas, and shrublands were identified as the 

temperate bioclimatic zone. We further excluded the pixels containing more than 25% of 

cropland based on the International Institute for Applied Systems Analysis (IIASA) 

cropland fraction data (Fritz et al., 2015).  

 

4.2.2 Multi-scale GPP and its proxy: satellite and tower measurements 

In this study, we mainly used 17-year (2000 to 2016) time series of GPP data 

from the MODIS aboard NASA's Terra satellite (Running et al., 2015) to examine the 

framework and to investigate DOYPmax change in northern lands. The latest version 

(Collection 6) of MODIS GPP with 8-day temporal composite was spatially aggregated 

into 0.05 degree grid. Its high temporal frequency is advantageous to capture the seasonal 

variation of photosynthetic activity. MODIS GPP is based on a production efficiency 

model that uses the product of the absorbed photosynthetically active radiation by 

vegetation and a light use efficiency factor. The quality of MODIS GPP data sets has 

been comprehensively evaluated against multiple eddy-covariance tower measurements 

of GPP and through inter-comparisons with other GPP products (Zhao et al., 2005; 
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Heinsch et al., 2006). 

We additionally introduced satellite-driven SIF and eddy-covariance based GPP 

data to verify our framework and results from MODIS GPP. The SIF is retrieved near the 

λ = 740 nm far-red peak in chlorophyll fluorescence emission from the Global Ozone 

Monitoring Experiment-2 (GOME-2) instrument onboard Eumetsat’s MetOp-A satellite. 

The monthly SIF record (version 27, level 3) covering 2007 to 2016 was used in this 

study (Joiner et al., 2016). SIF is an electromagnetic emission in the 650-800 nm range 

originating from plant photosynthetic machinery, and it is theoretically linearly correlated 

with the electron transport rate of photosynthetic activity (Zhang et al., 2014).  

The eddy-covariance tower measurements from the FLUXNET2015 database (tier 

1, Pastorello et al., 2017) were used in this study. FLUXNET is a global network of 

micrometeorological tower sites that use eddy covariance methods to measure the 

exchanges of carbon, water, and energy between terrestrial ecosystems and the 

atmosphere (Baldocchi et al., 2001). We used GPP estimates based on the flux 

partitioning approach proposed by Lasslop et al. (2010). A total of 92 sites (those with 

more than 3 site-year measurements) were selected for the evaluation of our DOYPmax 

framework spanning a large climatic and biome gradient (Figure C1.2a). 

 

4.2.3 Multi-scale climate data  

We used daily climate datasets provided by Global Modeling and Assimilation 

Office (GMAO) Reanalysis of NASA (Gelaro et al., 2017). The current version of 

GMAO is an hourly time step dataset generated by Goddard Earth Observing System-5 
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(GEOS-5) data assimilation system. We aggregated the native hourly data into the daily 

scale to retrieve pixel-wise phases of climate variables. Surface air temperature and 

down-welling photosynthetically active radiation were employed in this analysis. Daily 

climate datasets were used to characterize DOYTmax and DOYRmax. We also obtained 

potential evapotranspiration (PET) and actual evapotranspiration (AET) to quantify water 

availability on plant growth by calculating a ratio of AET to PET (RAP) (Prentice et al., 

1992). Both AET and PET were obtained by Global Land Data Assimilation Systems 

(GLDAS, Version 2.1) (Rodell et al., 2004). We characterized summer climate using 

mean temperature and RAP during June–August for investigating how DOYPmax 

positioning varies as functions of climate constraints, i.e., temperature and water 

availability. For the tower measured GPP, the ancillary microclimate datasets including 

air temperature and incoming radiation (Photosynthetic photon flux density, PPFD) 

simultaneously measured with GPP were additionally obtained.  

 

4.2.4 Earth System Model simulated historical and future GPP 

We also introduced a set of the most recent climate-carbon simulations of ESMs 

contributing to the fifth phase of the Coupled Model Intercomparison Project, CMIP5 

(Taylor et al., 2012). Seven ESMs, which are available at CMIP5 archive, were used in 

this study: NorESM1-M, MIROC-ESM, CanESM2, HadGEM2-ES, IPSL-CM5A-MR, 

MPI-ESM-MR and CCSM4. The datasets provided monthly GPP output (1980 to 2099) 

for simulations of both Historical and Representative Concentration Pathway (RCP) 4.5 

(Thomson et al., 2011). Data from the Historical and RCP4.5 scenario periods were 
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combined to generate continuous variable fields from 1980 to 2099. All model outputs 

were processed at the native spatial resolutions and aggregated into regional scales (i.e., 

arctic, boreal, and temperate regions) for trend and correlation estimates.  

 

4.2.5 Timings of peak seasonal photosynthetic activity and climate  

We extracted three metrics indicating a maximal state of seasonal photosynthetic 

activity (DOYPmax), radiation (DOYRmax), and temperature (DOYTmax) at two different 

scales: site and regional scale. For both scales, to reduce noise and maintain a distinct 

seasonal feature of GPP (or SIF) and climate datasets, the singular spectrum analysis was 

first implemented at yearly basis (Vautard et al., 1992). The singular spectrum analysis is 

a nonparametric approach that does not need a priori specification of models of time 

series, thus it is data-adaptive. It first decomposes a time series into oscillatory 

components and noises according to the singular value decomposition, thereafter 

reconstructs specific components (i.e., seasonal signal) from the original time series. This 

non-parametric approach has been widely used to reconstruct the time series of GPP and 

other environmental variables by reducing their noise components (Keenan et al., 2014; 

Zhou et al., 2017). Time series of GPP and meteorological datasets were used to retrieve 

DOYPmax, DOYRmax, and DOYTmax on a yearly basis. Note that multi-year averaged daily 

GPP, radiation, and temperature time series were used for FLUXNET retrievals. For the 

case of monthly data (SIF and CMIP5 GPP), we assigned middle of the month as the day 

of the year for each month and then implemented the same procedures used in MODIS 

and FLUXNET. Finally, δDOYP,R (i.e., DOYPmax – DOYRmax) and δDOYP,T (i.e.,  
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DOYPmax – DOYTmax) were also calculated. We additionally retrieved pixel-wise growing 

season length from MODIS GPP by applying a fixed threshold, i.e., 10% of the multi-

year average maximum GPP (Zhou et al., 2017). 

 

4.2.6 Atmospheric CO2 concentration and fluxes: zero-crossing date and seasonal 

amplitude  

Daily atmospheric CO2 concentration at Point Barrow (71.3° N, 156.6° W) was 

obtained from the in-situ measurement dataset provided by the National Oceanic and 

Atmospheric Administration / Earth System Research Laboratory (NOAA / ESRL). The 

spring downward CO2 zero-crossing date (DOYZero-Crossing) was extracted by following 

the approach described in Piao et al. (2008). We first detrended the interannual trend in 

the atmospheric CO2 concentration with a quadratic polynomial curve, four harmonics in 

the seasonal function, and time-filtered residuals. We then used the harmonics plus the 

residuals (detrended CO2 seasonal cycle) to define the downward CO2 DOYZero-Crossing as 

the day on which the detrended curve crossed the zero line from positive to negative. All 

aforementioned processes were achieved by the use of the standard package CCGCRV 

from NOAA/ESRL (Thoning et al., 1989). We used DOYZero-Crossing as an indicator of 

proximal DOYPmax for three reasons, although DOYZero-Crossing is not an accurate term of 

peak photosynthesis timing. First, seasonal trajectory of GPP strongly governs changes in 

net biome productivity seasonality and its trend (Ito et al., 2016; Forkel et al., 2016). 

Second, DOYZero-Crossing can be determined more accurately and it is roughly 

corresponding to the time of maximum carbon uptake by the biosphere (Ito et al., 2016). 
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Third, a relative change in the phase of the cycle identified at one point (e.g. DOYZero-

Crossing) will be matched by relative phase changes at all other points since the shape of the 

seasonal cycle does not change significantly (Barichivich et al., 2012). We further 

extracted the seasonal cycle amplitude (SCA) because its changes reflect vegetation GPP 

driven changes in net carbon uptake (Forkel et al., 2016).  

We additionally used two gridded carbon fluxes from atmospheric CO2 inversion 

products: the Copernicus Atmosphere Monitoring Service (Chevallier et al., 2010) 

(CAMS, version v15r2, 1979-2015) and the Jena CarboScope (Rödenbeck et al., 2003) 

(JENA, version s81_v3.8, 1981-2015). Atmospheric CO2 inversions estimate net carbon 

exchange fluxes between surface and atmosphere by utilizing CO2 concentrations at 

measurement sites, combined with an atmospheric transport model and prior information 

on fossil fuel carbon emissions and carbon exchange between the atmosphere and land 

(and ocean). We used daily mean net flux estimates on a spatial resolution of 3.75° 

latitude and 5° longitude (JENA) and 1.875° latitude and 3.75° longitude (CAMS) over 

the vegetated land surface. Both products were firstly aggregated into regional scales then 

DOYZero-Crossing and SCA of carbon fluxes were respectively extracted. Note that the flux 

amplitude is indirectly related to the amplitude in the atmospheric CO2 concentration, as 

the atmospheric concentration is roughly the integral of the fluxes (Welp et al., 2016). 

 

4.2.7 Analytical approach 

Based on the extracted MODIS DOYPmax, we first tested the validity of 

framework by relating it to summer climate conditions (i.e., temperature and water 
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availability). The first principle we formulated for the framework justifies using summer 

season as a period when the primary climate constraint dictates vegetation photosynthetic 

seasonality, and therefore, DOYPmax. Both seasonal total (GPPTotal) and maximum GPP 

(GPPPmax) were calculated to investigate the spatial and temporal relations between 

DOYPmax and vegetation productivity. In order to capture the seasonal distribution of GPP 

with a simple metric, we evaluated the ratio (GPPRatio) of total GPP during the first half 

(January 1st to the long-term mean DOYPmax) to that of the whole year. Additionally, the 

length of growing season together with GPPPmax was considered to explain the observed 

pattern between DOYPmax and GPPTotal (e.g., Xia et al., 2015). All explored relationships 

were explained as functions of δDOYP,R and δDOYP,T. Independent eddy-covariance 

tower GPP and GOME-2 SIF based retrievals were used for further testing of the 

framework. Note that we limited the use of these independent data only for verifying the 

framework and not the change analysis because of limited temporal frequency and 

coverage of the data.  

For the time series analysis, all trends in time series were computed as the slope 

of linear trends based on ordinary least squares regression. The significance of the trend 

was computed by using the non-parametric Mann-Kendall trend test. The standard error 

of the trend slope is also reported. We estimated the decadal trend based on the 5-year 

moving average approach to reduce the potential impact of first, last and outlier points. 

The Kendall’s rank correlation coefficient (r) was used to measure the ordinal association 

between given two quantities. To understand how warming-induced DOYPmax shift has 

characterized northern land vegetation productivity, we investigated changes in 
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temperature, DOYPmax, GPPTotal, and GPPRatio. This analysis was applied to both MODIS 

and ESMs based retrievals. A trend in DOYzero-crossing of three CO2 data was respectively 

computed and correlation analysis between annual variations in DOYzero-crossing and SCA 

was performed.  

 

4.3 Results 

4.3.1 Spatial pattern of MODIS DOYPmax and its determinants 

A distinct spatial gradient exists in DOYPmax and in its positioning with respect to 

the seasonal course of radiation and temperature (Figures 4.2a and Figure C1.2a,b). 

Overall, DOYPmax in arctic ecosystems is more closely aligned with DOYTmax (δDOYP,T = 

−9.3 ± 5.5 days, mean ± 1 s.d.) than DOYRmax (δDOYP,R = 29.1 ± 8.5 days), while in the 

boreal ecosystems it shows a much closer alignment with peak radiation levels (δDOYP,T 

= −13.3 ± 5.4 days, δDOYP,R = 12.9 ± 10.5 days). In the temperate regions, δDOYP,R is 

negative (−9.5 ± 27.0 days), i.e., DOYPmax precedes DOYRmax. Temperature and water 

availability (i.e., RAP) limiting photosynthetic activity elucidate the observed regional 

variations in DOYPmax positioning. Every 1 °C increase in temperature results in a 

δDOYP,R change of −5.7 ± 0.1 days (slope ± SE, Figure 4.2b). In regions with negative 

δDOYP,R, every 1% decrease in water availability results in a δDOYP,R change of −1.8 ± 

0.1 days (Figure 4.2c). These results follow the two tenets of our framework, as outlined 

earlier complying with the laws of minimum (Sprengel, 1828; Liebig, 1841; Blackman, 

1905). This suggests that the use of DOYPmax and its positioning in relation to DOYRmax 
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and DOYTmax represents a feasible approach to assess plant’s adaptive state to climatic 

constraints. 

 

4.3.2 Climate constraints, MODIS DOYPmax and seasonal vegetation productivity 

Emerging climatic constraints to plant growth are directly linked to changes in 

both GPPTotal (Figure 4.2d) and GPPPmax (Figure C1.2c). Regions with large GPPPmax are 

associated with tight synchrony between DOYPmax and DOYRmax, i.e., both energy and 

water accessibility are least limiting (Bauerle et al., 2012). Ecosystems under either 

temperature- (δDOYP,R > 0) or water-limited (δDOYP,R < 0) environments show lower 

photosynthetic capacity by complying the general idea of climatic constraints to plant 

growth. Such interaction limiting photosynthetic activity is also tightly associated with 

growing season duration (Figure C1.2d). It is interesting to note that in areas with the 

largest GPPTotal (~ 1.07 kg C m−2), DOYPmax slightly precedes DOYRmax (δDOYP,R ≈ −7 

days) because of a joint control by growing season length and GPPPmax (Xia et al., 2015). 

The longest growing season duration (~ 6.5 months) is found when δDOYP,R is 

approximately equal to −17 days. This is known as ‘phenological trade-off’, i.e., a longer 

growing season imposed by warmer environment may result in a higher GPPTotal, but 

warmer and drier summers may suppress GPPPmax, potentially offsetting the increased 

amount of GPPTotal (Duveneck & Thompson, 2017). 
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4.3.3 Confirmed patterns from two independent data: SIF and Eddy-Covariance tower 

GPP  

Flux tower-measured GPP data from the eddy-covariance network and GOME-2 

SIF confirm the above patterns observed in MODIS GPP products, thus lending further 

support for the proposed DOYPmax framework (Figures 4.3 and Figure C1.3). 

 

4.3.4 Changes in MODIS DOYPmax during last 17 years 

Trend analyses reveal a widespread shift in MODIS DOYPmax towards earlier in 

the growing season dominating across 60.6 % of the northern vegetated area during last 

17 years, and 32.8 % of the area showing a significant negative trend (P < 0.1, Figure 

4.4). These changes are seen across all three bioclimatic zones, i.e., 31.9 %, 38.7 % and 

26.8 % of the arctic, boreal and temperate regions, respectively. At a hemispheric scale, 

we detected a significant trend towards an earlier peak photosynthetic rate of −1.66 ± 

0.30 days decade-1 (slope ± s.e., P < 0.001) (Figure 4.5a), with regionally varying degree 

of advancing trends: a steeper change in the boreal region (−2.46 ± 0.47 days decade−1, P 

< 0.001) relative to the temperate (−1.07 ± 0.26 days decade−1, P < 0.001) and arctic 

regions (−1.09 ± 0.29 days decade−1, P < 0.001). These changes are mostly associated 

with warming in the lands north of 30°N (Figure 4.4b and Figure 4.5b). The sensitivity of 

DOYPmax to warming was detected to be greater in the temperate (−4.27 ± 1.50 days °C−1, 

P < 0.001) than in the arctic (−3.88 ± 1.29 days °C−1, P < 0.001) and boreal (−3.91 ± 1.02 

days °C−1, P < 0.001) regions. Note that regionally varying warming rates (TE < AR < 

BO) lead to a different order of trend and sensitivity estimates. These changes in 
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DOYPmax are interpreted as shifts in δDOYP,R across the arctic (−1.98 ± 7.30 days, mean 

± SD, t-test, P < 0.001), boreal (−3.21 ± 5.83 days, P < 0.001) and temperate (−1.28 ± 

12.76 days, P < 0.001) regions (Figure C1.4a,b). We find that the observed shift in 

DOYPmax is mainly responsible for the changes in δDOYP,R (and δDOYP,T) because of 

relatively stable DOYRmax and DOYTmax changes (Figure C1.4 and Table C1.1). 

According to the principles in our framework, the shifts resulting a newly established 

photosynthetic seasonality with respect to seasonal climate factors imply changes in 

vegetation response to varying climatic constraints, i.e., reduced relative importance of 

thermal constraint in the arctic and boreal vegetation while enhanced role of water 

availability in the temperate regions (Garonna et al., 2018; Piao et al., 2017; Fu et al., 

2015; Allen et al., 2010) (Figures 4.2b,c and 4.5a). Note that some regions transitioning 

from positive to negative δDOYP,R might experience a critical tipping point where the 

ecosystems move from temperature- towards water-limited ecosystems (Figure C1.5). 

 

4.3.5 Implications of changing MODIS DOYPmax on seasonal vegetation productivity  

The changes in DOYPmax have regionally varying impacts on GPPTotal. An ‘earlier 

peak–larger productivity’ pattern is dominant over the arctic (−0.004 ± 0.002 kg C m−2 

day−1, slope ± s.e., P < 0.05) and boreal (−0.006 ± 0.002 kg C m−2 day−1, P < 0.05) 

regions under a warming climate (Figure 4.5c). The framework proposed earlier informs 

that more favorable thermal conditions enable vegetation to increase its synchrony with 

seasonality in incoming radiation, with the seasonal course of photosynthetic activity 

tending toward the peak of radiation. Widely reported growing season extension (likely 
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inferred from DOYPmax shift, Figure C1.2d) partly explains such ‘earlier peak–larger 

productivity’ relation across the arctic and boreal regions (Xu et al., 2013; Park et al., 

2016). Warmer temperatures might also enhance access to key nutrients (e.g., nitrogen), 

thus stimulating photosynthetic rates over the course of the entire growing season (Natali 

et al., 2012). A weaker ‘earlier peak–less productivity’ pattern in the temperate regions 

emerges due to complex climate-vegetation interactions (Figure 4.5c). Here, warmer 

conditions without moisture-stress result in an earlier DOYPmax and larger GPPPmax and 

GPPTotal. In other parts, where moisture stress is stronger, a significant decline in both 

GPPPmax and GPPTotal is seen despite earlier DOYPmax (e.g., southwestern Eurasia) 

(Angert et al., 2005). In order to capture the seasonal distribution of GPP with a simple 

metric we evaluated the ratio (GPPRatio) of total GPP during the first half (January 1st to 

the long-term mean DOYPmax) to that of the whole year. We find that DOYPmax occurring 

one day earlier in the season increases GPPRatio by 0.28 ± 0.07 (temperate, slope ± SE, P 

< 0.001) to 0.58 ± 0.08 % (boreal, P < 0.001), clearly indicating an advance in gross 

carbon assimilation activity (Figure 4.5d) (Duveneck & Thompson, 2017). This is an 

important indicator, as the photosynthetic activity is tightly linked to the atmosphere via 

carbon, water and energy cycles. Thus, phase shifts in carbon, water and energy cycles 

could be anticipated (Richardson et al., 2013). 

 

4.3.6 Changes in phase and amplitude of CO2 seasonal cycle 

We found that earlier peak photosynthesis and more carbon assimilation in the 

early part of the growing season altered the seasonal course of atmospheric CO2 
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concentration. We used CO2 observations from Point Barrow and two state-of-the-art 

CO2 inversion datasets (i.e., CAMS and JENA). The springtime downward CO2 zero-

crossing date (DOYZero-Crossing) shows trends towards earlier downward DOYZero-Crossing in 

the three CO2 datasets (Figure 4.6a). The phase of atmospheric CO2 at Point Barrow has 

advanced by 1.84 ± 0.20 days decade-1 (slope ± SE, P < 0.001) since 1972. We also 

observe advancing trends but steeper changes in both CAMS (−2.42 ± 0.21 days decade-1, 

P < 0.001) and JENA (−3.26 ± 0.21 days decade-1, P < 0.001). This shift corroborates the 

advancing DOYPmax of gross photosynthetic activity observed from space and shows the 

potential implications of enhanced gross carbon assimilation in the early growing season 

(i.e., increased GPPRatio) (Barichivich et al., 2012; Randerson et al., 1999) (Figure 4.5a,d). 

Furthermore, like as what we observed in the analysis of DOYPmax and GPPTotal (Figure 

4.5c), SCA of three CO2 data is negatively associated with DOYZero-Crossing (Figure 4.6b). 

These phase shifts in the CO2 data and their association with the enhanced seasonal 

amplitudes are in accordance with several observations (Barichivich et al., 2012; 

Randerson et al., 1999; Graven et al., 2013) and modeling studies (Duveneck & 

Thompson, 2017; Zhao & Zeng, 2014) suggesting enhanced peak photosynthetic activity 

and its advancing shift. 

 

4.3.7 Changes in ESMs simulated vegetation productivity and DOYPmax 

We lastly ask whether state-of-the-art terrestrial biosphere models can reproduce 

the observed DOYPmax changes and their consequences under historical and future 

climate scenarios (Figure 4.7). The ESMs project an advancing DOYPmax across all 
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northern bioclimatic zones for the period 1980 to 2030. We see a pattern of regional 

DOYPmax trends from ESMs analogous to satellite observations, i.e. a strong trend for 

shifting to earlier in the season over the boreal (−0.94 ± 0.67 days decade−1, mean ± 1 s.d. 

across all ESMs), arctic (−0.86 ± 0.71 days decade−1) and temperate (−0.58 ± 0.61 days 

decade−1) regions. All models show a tightly linked negative relation between DOYPmax 

and GPPTotal, revealing the ‘earlier peak-larger productivity’ tendency as in current 

satellite observations. Particularly, temperature-constrained arctic and boreal regions 

have a tighter linkage between DOYPmax and GPPTotal than the warmer temperate regions. 

The shift in DOYPmax also increases the GPPRatio, indicating more carbon assimilation in 

the early part of the growing season than in the later period (Duveneck & Thompson, 

2017; Zhao & Zeng, 2014). The pace of future (2050 – 2100) DOYPmax shift and its 

contribution to productivity is projected to continue, but to be slower and weaker than at 

present. 

 

4.4 Discussion 

Our analyses from long-term satellite records and ESMs reveal a widespread shift 

in DOYPmax towards earlier in the growing season. The changes are associated with 

divergent consequences on GPPTotal depending on different states of climate constraints 

on plant growth. For high latitude arctic ecosystems, the advancement in DOYPmax likely 

continues in a warmer future climate as seen in the ESM simulations. Our framework 

translates the change into a continuous relaxation of temperature limit on arctic 

vegetation photosynthetic activity. A recent remote sensing-based study supports our 
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study by identifying a 16.4% decline in the area of vegetated land that is limited by 

temperature (Keenan & Riley, 2018). Yet, our framework suggests a reduction in the 

relative importance of temperature control on plant photosynthetic activity rather than a 

transitional state where other climate constraints primarily govern the ecosystem (Figure 

C1.4a). Indeed, long-term ground-based studies in the Arctic tundra have shown that 

temperature is a primary driver of shrub growth and its expansion in arctic environment, 

while soil moisture controls the sensitivity of growth response to warming (Myers-Smith 

et al., 2015).  

Some of boreal ecosystems (northwest Russia and south Fennoscandia, south and 

southeast Canada) show a transition from positive to negative δDOYP,R during last two 

decades (Figure C1.5). This transition does not necessarily signify a decline of GPPTotal 

because of the “phenological tradeoff” mechanism (Figure C1.2d). However, it is critical 

to monitor these ecosystems continuously because our framework suggests that there may 

be a tipping point where they move from temperature- towards water-limited ecosystems. 

That is, continuous warming and drying conditions may exacerbate moisture stress, and 

therefore, productivity reduction in these ecosystems. Interestingly, a recent tree-ring 

based study revealed that while 2 °C of warming may increase overall forest productivity, 

additional warming could reverse this trend and lead to substantial moisture stress 

(D’Orangeville et al., 2018). Also, multiple warming experiments confirm the dynamism 

of climate constraints on plant growth in the southern boreal forest and highlight the 

vulnerability of the ecosystem to excess warming and drying (e.g., Reich et al., 2018).  

Warmer and drier conditions over temperate vegetation, where negative δDOYP,R 
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is dominant, generally result in a decrease of plant growth. Widespread increase of tree 

mortality of this susceptible ecosystem to worsening moisture stress has been reported 

(Allen et al., 2010). Most epidemic climate-induced tree mortality events occur over the 

regions where water availability is the primary climate constraint on photosynthetic 

activity (i.e., δDOYP,R < 0, see Figure C1.5). It agrees with the ‘earlier peak–less 

productivity’ pattern in warmer temperate vegetation from MODIS data. However, the 

relation was not reproduced by the ESMs. The models projected that warming-induced 

earlier peak photosynthesis leads to an enhanced seasonal total productivity (Figure 4.7a). 

Recent studies have shown that current terrestrial carbon-cycle models substantially 

overestimate (underestimate) positive (negative) effects associated with warming 

(Buermann et al., 2018). It is possibly because these models inadequately capture the 

effects of the seasonal build-up of water stress on seasonal vegetation growth.  

Our analyses of DOYzero-crossing and SCA confirm the advancing and enhancing 

CO2 seasonal cycle in northern lands (Barichivich et al., 2012; Graven et al., 2013; Forkel 

et al., 2016). An additional remark made here for ongoing changes in biosphere-

atmosphere interaction is an asymmetric enhancement of terrestrial photosynthetic 

activity. We find a widespread warming-induced DOYPmax advancement and GPPTotal 

increase across northern lands, and these changes possibly play a role in ongoing shift 

and amplified atmospheric CO2 seasonal cycle. This is because peak photosynthesis rate 

explains about 78% of the variation of seasonal total productivity and only 21% can be 

explained by growing season changes (Xia et al., 2015). Our results confirm that a larger 

beneficial carbon uptake from an extended growing season is dominated by the later part 
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of spring, when more fully developed leaf area with more favorable light and temperature 

is available for photosynthetic activity (Keenan et al., 2014). Together with these earlier 

studies, our findings suggest that an intra-seasonal scale may provide a possible but 

overlooked mechanism for the changes in atmospheric CO2 seasonal cycle. Furthermore, 

the observed shift in the relative importance of climate constraints on plant growth may 

be a possible mechanism for the recently reported weakening temperature controls on 

spring carbon uptake across northern lands (Piao et al., 2017).  

Furthermore, our framework also gives insight into the changes in growing season 

duration and its implication on carbon cycle. As described in Figure 4.1, thermal inertia 

induced decoupling of radiation and temperature characterizes a unique seasonal climate 

environment to local vegetation. For temperature-constrained ecosystems (see Case-2 in 

Figure 4.1), DOYTmax-ward DOYPmax positioning leads to strong temperature dependence 

in spring photosynthesis while light availability emerges as an important controller in 

autumnal activity (Garonna et al., 2018). This intrinsic physical environment indicates 

contrasting responses of photosynthetic activity to spring versus autumn warming. In this 

cold environment, spring warming generally stimulates carbon uptake by extending onset 

of growing season (Pulliainen et al., 2017). In contrast, autumnal growing season 

extension and its photosynthetic carbon gain will be strongly limited by radiation 

(Bauerle et al., 2012). Multiple studies have reported that the increase of autumn 

temperature results in net carbon loss indicating more respiratory loss than photosynthetic 

gain in northern lands (Piao et al., 2008; Commane et al. 2017). These contrasting 

seasonal responses also partially explain the observed and projected asymmetric 
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enhancement of photosynthetic activity and carbon cycles in northern lands. However, 

further studies will be required to identify which case the autumn growing season 

extension can lead to increased photosynthesis sufficient to balance the higher respiration 

carbon loss. 

Most of ESMs as well as MODIS GPP estimate used in this study do not include 

photosynthetic temperature acclimation process. This physiological adjustment is 

commonly observed as a shift in the optimum temperature for carbon assimilation rate by 

modulating local plant’s metabolism (Yamori et al., 2014). We expect that taking the 

photosynthetic thermal acclimation likely lead to a slightly closer alignment between 

DOYPmax and DOYRmax than the one without the process. It also may reduce the observed 

DOYPmax sensitivity to warming (Smith et al., 2016). Nevertheless, we believe that the 

proposed DOYPmax framework and its changes are valid because of multiple evidence 

from independent datasets in this work (Figures 4.3 and Figure C1.3) and previous 

studies (Rotenberg & Yakir, 2010; Buitenwerf et al., 2015; Gonsamo et al., 2018). 

Interestingly, dendrometer based intra-annual tree growth studies also support our 

framework (e.g., Rossi et al., 2006). Ongoing efforts for advancements in modeling 

communities (Rogers et al., 2017) will help to deploy temperature acclimation modules in 

ESMs and thus better understandings on seasonal photosynthesis and DOYPmax changes 

are expected. 
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4.5 Conclusion 

This study took the ‘laws of minimum’ as a basis and introduced a new 

framework where the timing (Day of Year) of peak photosynthetic activity (DOYPmax) 

acts as a proxy for plant’s adaptive state to climatic constraints on its growth. Our 

analyses confirmed that spatial variations in DOYPmax reflect spatial gradients in climatic 

constraints as well as seasonal maximum and total productivity. We found a widespread 

warming-induced advance in DOYPmax (−1.66 ± 0.30 days decade-1, P < 0.001) across 

northern lands, indicating a spatiotemporal dynamism of climatic constraints to plant 

growth. We showed that the observed changes in DOYPmax are associated with an 

increase in total gross primary productivity through enhanced carbon assimilation early in 

the growing season, which leads to an earlier phase shift in land-atmosphere carbon 

fluxes and an increase in their amplitude. Such changes are expected to continue in the 

future based on our analysis of Earth System Model projections. This is a critical 

development because the shifts in peak photosynthesis may cause cascading perturbations 

in Earth system components that include carbon, water and energy balances (Richardson 

et al., 2013), as well as ecological interactions (Walther, 2010). The framework proposed 

here is one of the first attempts to introduce the time of peak photosynthesis as an 

indicator of a plant’s adaptive state to climatic constraints and provides a simplified yet 

realistic framework for the complex mechanisms by which various climatic factors 

constrain plant growth. 
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Figure 4.1 Conceptual illustration of the proposed DOYPmax framework. Seasonal cycle of 
temperature (T, red), radiation (R, green), water availability (W, blue) and GPP (P, black) over 
common northern terrestrial ecosystems. Vertical lines indicate when each variable reaches a 
maximum state. DOYPmax, DOYTmax, DOYRmax, and DOYWmax stand for the day of year when 
GPP, temperature, radiation, and precipitation reach respective maximum state during each 
seasonal course of the year. Four idealized cases are shown to demonstrate how photosynthetic 
seasonality of the ecosystem under given climate constraint differs from each other: non- (solid 
line, Case 1), temperature- (dot-dash line, Case 2), water- (long-dash line, Case 3), and 
radiation- (solid line, Case 4) constrained ecosystems. 
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Figure 4.2 Relative positioning of peak photosynthetic activity timing with respect to the 
seasonal course of temperature and radiation, and its relation to climatic constraints and 
productivity. a, Geographical distribution of δDOYP,T (DOYPmax – DOYTmax) and δDOYP,R 
(DOYPmax – DOYRmax) for northern ecosystems. Regional distribution of δDOYP,T and 
δDOYP,R over Arctic (AR), Boreal (BO) and Temperate (TE) regions is given in the inset violin 
plot with mean and 1 SD (bracket). b, Positioning of DOYPmax seen as the relation between 
δDOYP,R and δDOYP,T, with respect to temperature (°C). c, Same as b but for water 
availability (i.e., RAP). d, Same as b but for GPPTotal (kg C m-2). MODIS-derived outcomes are 
used for these panels. 
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Figure 4.3 a, Same as Figure 2a but for the independent satellite Sun-Induced Fluorescence 
(SIF). b-d, Same as Figure 4.2b-d but for the eddy covariance tower measurement. Total 92 
FLUXNET sites (Figure C1.2a) were used and each dot represents a single site. 
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Figure 4.4 Spatial pattern of changes in DOYPmax and temperature during the last 17 years 
(2000 – 2016). a, Decadal trend of MODIS based DOYPmax over northern land during the last 
17 years. b, Same as a but for summer temperature (June – August). The trend was derived 
based on ordinary least squares regression. 

	 	



	

	

98 

 

Figure 4.5 Changes in DOYPmax during last 17 years (2000 – 2016) and their implications on 
northern vegetation productivity. a, Inter-annual variation of DOYPmax by regions (Arctic: 
AR, Boreal: BO, Temperate: TE, Northern Hemisphere: NH) and its trend over the last 17 
years. The decadal trend is estimated based on the 5-year moving average approach to reduce 
the potential impact of first, last and outlier points. Thin solid line with markers and thick 
solid line represent annual DOYPmax and 5-year moving average. Calculated trend (slope ± SE) 
based on ordinary least squares regression is given with its significance level (double asterisks 
denote P < 0.001, single asterisks denote P < 0.05). The significance was computed by using the 
non-parametric Mann-Kendall trend test. b, Relation between regional DOYPmax and summer 
temperature (June – August) anomalies. c–d, Same as b but for respective relation between 
DOYPmax and GPPTotal, and DOYPmax and GPPRatio anomalies. Significance of the slope 
estimate (β ± SE) is denoted as double (P < 0.001) and single (P < 0.05) asterisks. The 
Kendall’s rank correlation coefficient (r) between two variables is also given. Dark blue, light 
blue, green and gray stand for AR, BO, TE, and NH, respectively. 
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Figure 4.6 Analysis of atmospheric CO2 concentration at Point Barrow and two CO2 inversion 
estimates. a, Time series of DOYZero-Crossing observed at Point Barrow atmospheric observatory 
and two independent CO2 inversion datasets (CAMS and JENA). Note that the CO2 fluxes for 
DOYZero-Crossing retrieval of the inversion datasets are based on regionally integrated fluxes 
over the arctic and boreal zones, and all trend estimates are based on the 5-year moving 
average approach. Calculated trend (slope ± SE) based on ordinary least squares regression is 
given with its significance level (double asterisks denote P < 0.001, single asterisks denote P < 
0.05). The significance was computed by using the non-parametric Mann-Kendall trend test. 
b, Relation between DOYZero-Crossing and seasonal cycle amplitude (SCA) of atmospheric CO2 
concentration and flux estimates. SCA anomaly was expressed as a percentage of the long-
term mean. Significance of the slope estimate (β ± SE) is denoted as double (P < 0.001) and 
single (P < 0.05) asterisks. The Kendall rank correlation coefficient (r) was used to measure 
the degree of association. Red, blue, and green stand for CO2 data from Point Barrow, CAMS, 
and JENA, respectively. 
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Figure 4.7 Analysis of multiple CMIP5 ESMs during two separate periods: a, 1980-2030 and b, 
2050-2100. Decadal trend of DOYPmax (left) and its association to GPPTotal (center) and 
GPPRatio (right) over northern lands inferred from the seven ESMs. Bar charts with error bars 
depict mean ± 1 SD across all ESMs. The Kendall rank correlation coefficient (r) was used to 
measure the degree of association. Dark blue, light blue, green and gray stand for AR, BO, 
TE, and NH, respectively. 
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CHAPTER 5: Concluding remarks 

 

Recent changes in physical environments associated with substantial warming in 

northern lands have affected on a broad range of ecosystem processes, particularly, 

changes in structure, composition, and functioning of vegetation. These changes have 

been detected from satellite and have shown spatiotemporally varying trends (i.e., 

greening or browning) and complex mechanisms. Incomplete understanding of 

underlying processes driving such changes is the primary motivation for this research. 

This dissertation contributes to the growing body of literature on remote sensing-based 

monitoring of northern terrestrial ecosystems by tackling three scientific questions: how 

growing season has changed and characterized annual total greenness (Chapter 2), as 

well as how multiple agents driven environmental pressures (fire, harvesting, cultivation, 

etc.) have driven northern vegetation changes (Chapter 3) and how photosynthetic 

seasonality has been changing and modulating atmospheric CO2 exchange (Chapter 4). 

This dissertation research uses a set of long-term remote sensing data as a fundamental 

tool to investigate changes in growing season, greenness and productivity of northern 

vegetation. Ground observations (e.g., eddy covariance and atmospheric CO2 

concentration) and multiple state-of-the-art Earth System Models (ESMs) are also 

introduced to imbue confidence in the findings from satellite observations. Results from 

the research presented in this dissertation provide improved understandings regarding 

spatial and temporal patterns of changes in growing season, greenness and productivity of 

northern vegetation. Here, we summarize the major findings and remained pressing 
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issues as well as future directions of my research. 

 

• Chapter 2: Complex snow-scape and permafrost dynamics complicate the remote 

sensing-based detection of vegetation growing season over high-latitude 

environments. Incorporating both snow and freeze/thaw conditions into vegetation 

greenness helps to adequately characterize northern vegetation growing season. We 

found that the remote sensing record from AVHRR reveals extensive lengthening 

trends of growing season and enhanced annual total greenness during the last three 

decades. Regionally varying seasonal responses are linked to local climate constraints 

and their relaxation. These results highlight spatially and temporally varying 

vegetation dynamics and are reflective of biome-specific responses of northern 

vegetation during the last three decades. 

• Chapter 3: Disturbance and human land use/management are often neglected in 

large-scale studies monitoring northern vegetation dynamics under changing climate. 

Our approach incorporating land surface histories (disturbance and agricultural 

activity) revealed that natural (wildfire) and anthropogenic (harvesting) disturbances, 

changing climate and agricultural activities together govern the large-scale greening 

trends in northern lands. We also showed that the timing and type of disturbances are 

important to fully comprehend spatially uneven vegetation changes in the boreal and 

temperate regions. This study suggests climatic, social and ecological causes and 

processes are important to understand the underlain process of changes in remotely 

sensed vegetation greenness. 
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• Chapter 4: It is important to understand how photosynthetic seasonality evolved into 

its current state, and what role climatic constraints and their variability played in this 

process and ultimately in the carbon cycle. We take the ‘laws of minimum’ as a basis 

and introduce a new framework where the timing of peak photosynthetic activity 

(DOYPmax) acts as a proxy for plants adaptive state to climatic constraints on their 

growth. Our analyses confirm that spatial variations in DOYPmax reflect spatial 

gradients in climatic constraints as well as seasonal maximum and total productivity. 

The result captures a widespread warming-induced advance in DOYPmax with an 

increase of total gross primary productivity across northern lands, which leads to an 

earlier phase shift in land-atmosphere carbon fluxes and an increase in their 

amplitude. Such changes are expected to continue in the future based on our analysis 

of ESM projections. 

 

This dissertation research also identified three key features that should be 

considered for future observing systems, data production and analytical approach to 

tackle further questions potentially raised from the dissertation research.  

• First, spatial scale of observing system is critical for improving the process-oriented 

understandings on vegetation changes because of its degree of detective capability. 

For instance, AVHRR and MODIS have provided 8 km to 250 m vegetation indices 

and they are unable to identify smaller-scale land surface changes (e.g., land cover 

change, species specific phenology response etc.) usually hidden (or unobservable) in 

medium resolution remote sensing studies. The opening of the Landsat archive, 
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continuous operation of Landsat/Sentinel series and recent development of high 

computing powers will help us to track vegetation changes with high spatial details (< 

30 m) and longest records (since 1972) where sufficient images are available (e.g., 

Melaas et al., 2013). This advantageous data and computational power will enhance 

our capability to differentiate heterogeneous and finer land surface processes and 

their causes. In the same vein, there is another pressing need to gather geo-referenced 

microclimate data to minimize the gap between remote sensing and meteorological 

observations (Zellweger et al., 2019). Significant efforts on incorporating ground- and 

satellite- measurements will enable an improved understanding of the drivers of 

microclimate dynamics and how they deviate from the macroclimate, which will have 

important implications for estimating the velocity, and thus impact of climate change 

on vegetation changes.  

• Second, biophysical metrics beyond the use of NDVI help to better understanding of 

northern vegetation dynamics. This dissertation revealed that disturbance induced 

changes in species composition and land cover changes implying rapid modification 

in spectral state of vegetation communities. For instance, we observed grass and 

shrub dominated successional state after fire disturbance (Figure 3.3). Increases of 

unit leaf area of plant functional types (e.g., grass vs. deciduous forest) may lead to a 

large difference in spectral response that is used to calculate the vegetation indices. In 

other words, identical increase of NDVI for different plant functional types mean 

different biophysical changes. This suggests a more robust parameterization of 

spectral characteristics in canopy structure modeling. MODIS LAI algorithm 
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sophisticatedly formulates biome-specific canopy structure and spectral 

characteristics by accounting the discrepancy (Knyazikhin et al., 1998), but we may 

need to carefully revisit the parameterization for the regions with disturbance induced 

rapid land cover changes. Furthermore, integrating optical remote sensing to active 

sensors including lidar and radar is beneficial to reconstruct canopy structure, 

composition and functioning (Choi et al., 2016). Ongoing efforts on spatially finer 

and temporally more frequent global SIF measurements also will promote our 

understandings on the seasonal and diurnal variation in vegetation photosynthetic 

activity (Yang et al., 2015). 

• Third, the trend estimation of vegetation greenness and its interpretation may need to 

be carefully revisited in future study. Most of important ecological processes 

associated with disturbances in the northern lands generally show sudden decline of 

spectral vegetation indices then a rapid increase of the indices in the following 

multiple years (~ 10 years), yet many studies using satellite datasets like our study 

look across multiple decades. The time period under consideration, whether a 

disturbance has occurred, and when it occurred during that time period can also 

influence whether a trend is detected (and the direction of that trend). To adequately 

interpret these vegetation changes, we may need to implement time-segmented 

approach such as polynomial break point analysis suggested by Verbesselt et al. 

(2010). This approach can be a potential solution to segment each ecological process 

and enhance our understandings on northern vegetation changes. 
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All of the studies presented in this dissertation are independently extendable as 

stand-alone research projects and I will continue the work along with the following 

directions.  

(1) Improving phenology in Earth System Models: There are urgent needs for 

improving the representation of phenology in ESMs because uncertainties from 

incomplete phenology characterization in the models have significantly impacted on 

carbon, water, and energy exchange (Richardson et al., 2012). Resulting phenology 

retrievals from AVHRR and MODIS in this dissertation can effectively characterize 

long-term trends and anomalies in growing season phenology of northern vegetation. 

Implementing spatiotemporally explicit phenology retrievals from remote sensing will 

help to adequately parameterize phenology modules (e.g., Spring Warming model, 

Hunter & Lechowicz, 1992) in ESMs and ultimately will characterize how changes in 

phenology arising from changes in climate will affect regional carbon, water, and energy 

budgets of northern lands. In parallel, the land surface phenology from the remote 

sensing and ESM models can be evaluated with a subset of sites in the FLUXNET 

database having distinct carbon exchange seasonality, near-surface remote sensing (e.g., 

PhenoCam, PEN) and ground observations (e.g., PEP725, NPN). Note that the timing of 

peak photosynthesis (DOYPmax) introduced in Chapter 4 is another good indicator to 

evaluate the models’ performance in simulating the photosynthetic seasonality. The 

improved phenology modules can be used to simulate how conventional modules may 

influence carbon, water and energy cycles in northern lands under future climate 

scenarios. Furthermore, implementing the growing season detection approach into the 
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geostationary satellites (e.g., Himawari, GOES and Geo-Kompsat2) will be an emerging 

avenue to track seasonal vegetation and associated matter exchanges with highly frequent 

observations.  

(2) Albedo and radiative forcing in the rapidly changing landscapes: Spectral 

properties of land surface constituents such as leaves, soils, and vegetation structure 

determine surface reflectivity, i.e., albedo. The results from Chapter 3 clearly 

demonstrate how disturbance events lead to rapid changes in not only vegetation structure 

(e.g., LAI) but also compositional or land cover transition through the disturbance itself 

and following recovery processes. The extensive greening pattern associated with shrub 

expansion, i.e., compositional change, in the artic region is expected to result in 

substantial changes in the albedo and radiative forcing. Furthermore, warming-induced 

shifts in vegetation phenology together with changing snow-scape lead to significant 

impacts on land surface albedo. The MODIS albedo product is readily useable to monitor 

how disturbance and changed LAI alter land surface energy budget and ultimately land-

atmosphere feedback. Particularly, it will be interesting to explore how the albedo varies 

as functions of different disturbance types and intensity, vegetation composition and 

different seasons.  

 (3) Carbon balance in the disturbance frequent landscapes: In the 3rd chapter, we 

quantified how much of net leaf area has been changed during the last two decade and 

mainly scrutinized the trends of LAI as functions of disturbance timing and types. For 

accurate carbon monitoring, there are urgent needs for a synergistic combination between 

mechanistic models and remote sensing observations for explicitly depicting 
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spatiotemporally complex land surface processes (e.g., fire, harvesting, etc.) in these 

disturbance frequent environments. I have involved in developing an integrative approach 

to fuse multiple optical and active remote sensing data into the mechanistic modeling 

scheme, called Allometric Scaling Resource Limitation that encode principles of 

metabolic scaling, structural stability, allometry and constraints from resource limitations 

(Ni & Park et al., 2014; Choi et al., 2016). Future research on this fusing approach 

ultimately aims to map time series of forest height and aboveground biomass with a 

reasonable accuracy using NASA’s two promising spaceborne lidar missions (i.e., 

ICESat2 and GEDI). Together with this modeling work, experimentally deployed eddy 

covariance towers over the disturbed area with chronological variations may provide a 

chance to evaluate the model performance by carbon exchange over variation in 

successional trajectory.  

(4) Multi-sensor based comparative and multi-scale studies: Chapter 2 and 3 

reveal some degree of discrepancy in growing season metrics and LAIs from MODIS and 

AVHRR records. The observed inconsistency and recently raised reliability issue in 

AVHRR (e.g., Tian et al., 2015), which is the most broadly used dataset for monitoring 

ecosystem and carbon balance changes, have broad implications for the evaluation of 

vegetation and carbon dynamics. An extensive evaluation across sensors and data is an 

emerging challenge to be addressed in research communities by interpreting complex, 

variable but inherently scale dependent remotely sensed land surface changes. Bridging 

patterns of spatiotemporal changes in the coarse (e.g., AVHRR) and moderate (e.g., 

MODIS) satellite data to high-resolution (e.g., Landsat/Sentinel) satellite observation will 
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shed light on finer land surface processes hidden in a large and blurry pixel. Some 

emerging opportunities already have been made through developing international 

research networks (e.g., High Latitude Drone Network; HiLDEN) and it will enhance our 

process-oriented understandings in northern vegetation changes by giving details of land 

surface changes.  

Continuous and accurate monitoring of vegetation dynamics is a keystone for 

improving our understanding of the past and current state, and the fate of the earth’s 

terrestrial ecosystems in the future. This dissertation tried to identify and answer the 

overlooked yet important three research questions. From the lessons earned from this 

dissertation research and the plan I identified above, I will continuously explore the 

northern vegetation changes using remote sensing together with other potential data or 

approaches that help capturing and interpreting real changes in the northern vegetation.  
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Appendix A: Chapter 2. Changes in growing season duration and productivity of 

northern vegetation inferred from long-term remote sensing data 

 

This section contains supplementary text, tables and figures for the “Chapter 2”. 

 

A1.1 Supplementary Data and Methods 

A1.1.1 Study region and vegetation cover map 

This study focuses on northern vegetated region (>45°N), which includes Boreal and 

Arctic ecosystems. To define both regions, we compiled the latest version of the MODIS 

International Geosphere-Biosphere Programme (IGBP) land cover map (Friedl et al 

2010) and the Circumpolar Arctic Vegetation Map (CAVM) (Walker et al 2005). MODIS 

IGBP identified 17 land cover classes including 11 natural vegetation classes, three 

developed and mosaicked land classes, and three non-vegetated land classes. The CAVM 

map was used to identify the tundra vegetation and associated characteristics of the 

circumpolar region as a supplement to the IGBP classes. Arctic (8.16 million km2) is 

defined as the vegetated area north of 65°N, excluding crops and forests, but including 

the tundra south of 65°N. Boreal region (17.86 million km2) is defined as the vegetated 

area between 45°N and 65°N, excluding crops, tundra, broadleaf forests, but including 

needleleaf forests north of 65°N. Grasslands south of the mixed forests are excluded as 

these are not conventionally considered as Boreal vegetation. Combined vegetation map 

of the Arctic and Boreal regions with 14 different vegetation classes (additionally 

aggregated into 4 vegetation groups) are described in Figure A1.1.  
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A1.1.2 Data  

A1.1.2.1 GIMMS NDVI3g: In this study, we mainly used the Global Inventory 

Modeling and Mapping Studies (GIMMS) NDVI dataset obtained from the Advanced 

Very High Resolution Radiometer (AVHRR) sensors onboard the NOAA satellite series 

(7 to 19). The latest version of GIMMS NDVI data (a.k.a. NDVI3g) spans 1981–2014 

with a native resolution of 1/12° at bimonthly temporal resolution (Pinzon & Tucker 

2014). Recently resolved high latitude discontinuity issue and improved snowmelt and 

cloud detection have granted a better observation for northern high latitude vegetation 

dynamic research. Based on given growing season and productivity definition, obtained 

metrics were used to investigate long-term northern vegetation phenology and 

productivity changes. 

 

A1.1.2.2 MODIS Phenology (MCD12Q2): The MODIS Land Cover Dynamics 

(MCD12Q2) product (a.k.a., MODIS Global Vegetation Phenology product) provides 

estimates of the timing of vegetation phenology based on Nadir-BRDF Adjusted 

Reflectance (NBAR) enhanced vegetation index (EVI). Four different phenological 

phases provided are the onset of greenness increase (same as SOS in this study), onset of 

greenness maximum, onset of greenness decrease and onset of greenness minimum (same 

as EOS in this study). Cumulative EVI area provided in MCD12Q2 is conceptually 

overlapped with GSSNDVI of NDVI3g. Native resolution is 500m and temporal 

coverage spans from 2001 to 2012 (12 years). For comparison purpose, annual growing 

season and productivity metrics are spatially harmonized with GIMMS NDVI3g data 
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(1/12°). We have to note that MODIS phenology uses different quality control, seasonal 

trajectory fitting (logistic model) and phenology detection (curvature-based approach). 

Details can be found in Zhang et al (2003) and Ganguly et al. (2010). 

 

A1.1.2.3. MODIS NDVI (MOD13C1): MODIS Collection 5 standard NDVI product 

which spans from 2000 to 2014 with 16-day temporal composite at 0.05 degree is used in 

this study. For comparison purpose, it is harmonized with GIMMS NDVI3g spatial 

resolution (1/12°) via bicubic method. Growing season (i.e., SOS, EOS, and LOS) and 

productivity (i.e., GSSNDVI) are obtained by exactly same definition and method used in 

NDVI3g. 

 

A1.1.2.4. MODIS NBAR NDVI (MCD43C4): Nadir Bidirectional Reflectance 

Distribution Function (BRDF)-Adjusted Reflectance (NBAR), which spans same 

temporal coverage (2000-2014) with MOD13C1 is used in this study. Spatial resolution 

(0.05°) is adjusted into NDVI3g (1/12°) and then growing season (i.e., SOS, EOS, and 

LOS) and productivity (i.e., GSSNDVI) metrics are obtained via identical definition and 

method used in GIMMS NDVI3g. 

 

A1.1.2.5. FLUXNET GPP: We used gap-filled daily tower GPP data at 39 flux tower 

sites (140 site-years observation) distributed across northern hemisphere to validate 

remotely sensed growing season and a proxy of GPP based on GIMMS NDVI3g. 

Selection of valid site and data is performed by following two criteria: (i) more than 95 % 
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of the days had daily GPP data, and (ii) the mean daily quality flag was more than 0.75 

(Richardson et al 2010). The daily data was then aggregated to monthly and later to 

yearly time step. Details of the individual towers are provided in Table A1.2. The data 

used in this study is obtained from FLUXNET “Fair-Use” data archive and the spatial 

distribution of the flux towers is shown in Figure S1.  

 

A1.1.2.6. MODIS GPP (MOD17A3): Terra MODIS Net Primary Production 

(MOD17A3) provides 15 years (2000-2014) long annual 1km GPP estimate based on 

light-use efficiency model. Theoretical and practical details underpinning this product 

can be found in Running et al (1999). For evaluation purpose, we coarsely aggregated 

1km GPP product into NDVI3g grid format (1/12°).  

 

A1.1.2.7. Model Tree Ensemble GPP (MTE-GPP): Statistical model-based MTE-GPP 

is used for evaluating GSSNDVI of GIMMS NDVI3g. This model incorporates flux 

tower local observations, satellite retrievals of fraction of absorbed photosynthetically 

active radiation (fAPAR), and climate fields to upscale ground level GPP. A machine 

learning system where the target variable (i.e., GPP) is predicted by a set of multiple 

linear regressions from explanatory variable is implemented in this model. Detail 

information on MTE-GPP can be found in Jung et al (2011). This product provides global 

annual GPP from 1982 to 2011 at 0.5 degree with monthly time step. Annually 

aggregated and specially resampled MTE-GPP is compared with NDVI3g GSSNDVI for 

evaluation purpose. 
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A1.1.2.8. MODIS Snow Cover (MOD10C2): MODIS Snow Cover 8-Day product 

(MOD10C2) is used to obtain snow cover information to additionally minimize snow-

contamination during processing of GIMMS NDVI3g, MOD13C1, and MCD43C4 

growing season and productivity determination. We first combined two consecutive 8-

day composite to 16-day composite with conservative way (Minimum value composite: 

take lower snow cover percentage as representative). This approach can be justified, as 

all vegetation indices are composited by maximum value compositing approach. Then we 

defined a pixel as snow-contaminant pixel when snow occupies more than 20%. 

Identified 15-years (from 2000 to 2014) snow cover information is incorporated to 

determine background NDVI.  

 

A1.1.2.9. MEaSUREs Freeze-Thaw (FT): The FT-ESDR is a NASA MEaSUREs 

(Making Earth System Data Records for Use in Research Environments) funded effort to 

provide a consistent long-term global data record of land surface freeze/thaw (FT) state 

dynamics for all vegetated regions where low temperatures are a major constraint to 

ecosystem processes (Kim et al 2012). The FT-ESDR data set provides four FT status 

(frozen, thawed, transitional and inverse transitional) and five filled values for the whole 

global with daily temporal frequency. In our analysis, we defined those days classified as 

frozen, transitional and inverse transitional as non-photosynthetic days. To the contrary, 

the other days are defined as photosynthetic days. The NDVI based growing season was 

adjusted by the photosynthetic/non-photosynthetic information derived from FT data set. 
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The rule is that a day must be in the NDVI based growing season and identified as 

photosynthetically active days by FT data set. 

 

A1.1.2.10. MERRA Temperature: Daily MERRA Temperature products (Version 1) 

are used in this study. To obtain temperature based potential growing season and growing 

season summed warmth index, we firstly aggregated daily temperature to 15-day time 

step to smooth and enhance efficiency, then used following role to define thermal 

growing season metrics: (a) the start of the temperature based growing season is the day 

when the temperature is crossing 0 °C with rising phase; (b) the end of the temperature 

based growing season is the day when the temperature is crossing 0 °C decreasing phase; 

(c) the length of thermal growing season is the duration between start day and end day of 

the thermal growing season; (d) the growing season summed warmth index is the 

summation of temperature during the growing season. 
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Figure A1.1 Northern Boreal and Arctic vegetation map (a). Vegetation classes 9 to 12 are as per the Circumpolar Arctic Vegetation 
Map (Walker et al 2005). The rest of the vegetation classes are based on the MODIS International Geosphere-Biosphere Programme 
(IGBP) land covers (definitions in Friedl et al 2010). Yellow star marker shows spatial distribution of used FLUXNET (N=39) sites for 
evaluation purposes. (b) Arctic vegetation only, (c) Boreal vegetation only. Class1: Oceans and inland lakes, Class2: Mixed Forests, 
Class3: Deciduous Needleleaf Forests, Class4: Evergreen Needleleaf Forests, Class5: Forest-Shrubs Ecotone, Class6: Closed Shrublands, 
Class7: Open Shrublands, Class8: Grasslands/ Wetlands (North of Forests), Class9: Erect Shrub Tundra, Class10: Prostrate Shrub 
Tundra, Class11: Graminoid Tundra, Class12: Wetlands, Class13: Other Vegetation (e.g., crops): Not considered in this study, Class14: 
Barren. Group1 (Forest): Class2-4, Group2 (Other woody vegetation): Class5-7, Group3 (Herbaceous vegetation): Class8, Group4 
(Tundra): Class9-12.
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Figure A1.2 Definition of growing season and productivity from remotely sensed NDVI and 
FLUXNET GPP data (a). One year NDVI3g and tower measured GPP from US-ICh FLUXNET 
site were used for this example case. (b) Examples of retrieved NDVI3g and GPP based growing 
season metrics over four FLUXNET sites where have more than 6 years valid GPP observations. 

	 	



 

	

118 

−3
−2
−1

0
1
2
3

MAM (NDVI3g & MODIS)

CP R= 0.577**, 0.184, 

−3
−2
−1

0
1
2
3

St
an

da
rd

iz
ed

 A
no

m
al

ie
s

NA R= 0.819***, 0.609**, 

2000 2005 2010 2014
−3
−2
−1

0
1
2
3

EA R= 0.755***, 0.373, 

Year

 

 

NDVI3g
MOD13C1
MCD43C4

−3
−2
−1

0
1
2
3

MAM (NDVI3g & MODIS)

CP R= 0.577**, 0.184, 

−3
−2
−1

0
1
2
3

St
an

da
rd

iz
ed

 A
no

m
al

ie
s

NA R= 0.819***, 0.609**, 

2000 2005 2010 2014
−3
−2
−1

0
1
2
3

EA R= 0.755***, 0.373, 

Year

 

 

NDVI3g
MOD13C1
MCD43C4

																			 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1.3 Continental scale comparison between NDVI3g and MODIS (MOD13C1 and 
MCD43C4) spring (March to May) NDVIs. Correlation coefficients between NDVIs from 
NDVI3g and MODIS datasets are calculated (***: p<0.01, **: p<0.05, *: p<0.1) and given with 
corresponding color scheme. CP, NA and EA are for Circumpolar, North America and Eurasia 
regions, respectively. Increase in March-May NDVIs corresponds to an advance in the green-up 
date while a decrease corresponds to delay. As shown in below figure, the spring AVHRR NDVI 
showed strong negative anomalies and the other two vegetation indices from MODIS showed 
slight positive anomalies during 2012–2014. Therefore, the different response to vegetation 
growth of the AVHRR NDVI when compared with the MODIS vegetation indices appears to be 
responsible for the differences in the SOS and LOS variation. This comparison clearly indicates 
that divergence between NDVI3g and MODIS we observed (Figure 2.1a and 2.1c) should have 
been caused by the differences in response of vegetation indices to vegetation growth between 
sensors, rather than by the processing methods. 
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Figure A1.4 Evaluation of NDVI3g based growing season retrievals without background NDVI 
pre-processing using FLUXNET gross primary productivity (GPP) based growing season. This 
is same as Figure 2.2a but for the growing season metrics without background NDVI pre-
processing. 
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Figure A1.5 Spatial pattern of long-term (1982-2014) trends in maximum NDVI (MAX, a). The 
trend was calculated using Vogelsang’s t-PS_T test at 10% significance level. Non-vegetated 
pixels and pixels without significant trend were shown in white and gray, respectively. 
Probability density function (PDF) of change rate per decade for only significant positive and 
negative changes is also provided (b). PDFs are normalized to total area showing significant 
changes in each continent and biome (Table A1.3). NA and EA are for North America and 
Eurasia. In PDFs, green and red lines represent significant positive and negative changes. Solid 
and dash lines stand for arctic and boreal regions, respectively. 
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Table A1.1. Information of selected global FLUXNET Sites (N=39, Number of observed site-years =140). Selection of valid site and data 
is performed by following two criteria: (i) more than 95 % of the days have daily GPP data, and (ii) the mean daily quality flag is more 
than 0.75 (Richardson et al., 2010). 

Site Latitude Longitude IGBP N. Obs. Site Latitude Longitude IGBP N. Obs. 
AT-Neu 47.117 11.318 GRA 1 IT-Lav 45.955 11.281 ENF 2 
BE-Bra 51.309 4.521 MF 3 IT-MBo 46.016 11.047 GRA 4 
BE-Vie 50.306 5.997 MF 7 IT-Mal 46.117 11.703 GRA 1 

CA-Man 55.880 -98.481 ENF 2 IT-Ren 46.588 11.435 ENF 5 
CA-NS1 55.879 -98.484 ENF 2 NL-Loo 52.168 5.744 ENF 7 
CA-NS2 55.906 -98.525 ENF 2 PL-wet 52.762 16.309 WET 2 
CA-NS3 55.912 -98.382 ENF 3 RU-Fyo 56.462 32.924 ENF 7 
CA-NS5 55.863 -98.485 ENF 1 SE-Deg 64.183 19.550 WET 1 
CA-NS7 56.636 -99.948 OSH 2 SE-Fla 64.113 19.457 ENF 3 
CA-Qcu 49.267 -74.037 ENF 4 SE-Nor 60.087 17.480 ENF 4 
CA-Qfo 49.693 -74.342 ENF 3 SE-Sk2 60.130 17.840 ENF 1 
CZ-BK1 49.503 18.538 ENF 1 UK-EBu 55.866 -3.206 GRA 1 
DE-Bay 50.142 11.867 ENF 2 UK-Gri 56.607 -3.798 ENF 5 
DE-Gri 50.950 13.513 GRA 1 US-Ho1 45.204 -68.740 ENF 9 
DE-Tha 50.964 13.567 ENF 10 US-Ho2 45.209 -68.747 ENF 6 
DE-Wet 50.454 11.458 ENF 5 US-ICh 68.607 -149.296 OSH 7 
FI-Hyy 61.847 24.295 ENF 8 US-ICs 68.606 -149.311 OSH 7 
FI-Kaa 69.141 27.295 WET 5 US-ICt 68.606 -149.304 OSH 7 
FI-Sod 67.362 26.638 ENF 5 US-WCr 45.806 -90.080 DBF 2 
IT-LMa 45.581 7.155 GRA 1      
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Table A1.2 Continental scale trend estimation for NDVI3g and MODIS based growing season and productivity metrics over common 
temporal periods. We used the two different common periods (one for 2001-2012 and the other for 2000-2014) due to relatively short 
time span of MCD12Q2. Estimates in parentheses represent trends during 2000-2014. The trends were evaluated by Vogelsang’s t-PS_T 
test. CP, NA and EA are for circumpolar, North America and Eurasia regions, respectively. ***: p<0.01, **: p<0.05, *: p<0.1, N.A.: Not 
available 

 NDVI3g  MODIS 

 CP NA EA   CP NA EA 

SOS (days·dec-1) 0.06 
(0.85) 

2.25 
(2.33) 

-0.98 
(0.00) 

 MOD13C1 -2.24 
(-1.98) 

0.01 
(-1.05) 

-3.33 
(-2.51) 

 MCD43C4 -3.29 
(-4.71) 

-1.73 
(-4.13) 

-4.04 
(-5.03*) 

 MCD12Q2 -3.46 
(N.A.) 

-1.88 
(N.A.) 

-4.23 
(N.A.) 

EOS 
(days·dec-1) 

0.95 
(-0.69) 

1.88 
(-0.56) 

0.43 
(-0.76) 

 MOD13C1 2.45 
(1.34) 

2.90 
(1.41) 

2.19 
(1.30) 

 MCD43C4 2.89 
(1.58) 

2.71 
(1.49) 

2.94 
(1.63) 

 MCD12Q2 1.38 
(N.A.) 

0.72 
(N.A.) 

1.71 
(N.A.) 

LOS 
(days·dec-1) 

1.41 
(-1.08) 

0.18 
(-2.30) 

1.98 
(-0.38) 

 MOD13C1 4.96 
(3.45*) 

3.43 
(2.73*) 

5.72 
(3.85*) 

 MCD43C4 6.52 
(6.48) 

5.22* 

(6.09) 
7.19 

(6.70*) 

 MCD12Q2 4.65 
(N.A.) 

2.42* 
(N.A.) 

5.80 
(N.A.) 

GSSNDVI 
(dec-1) 

4.81 
(1.87) 

4.36 
(1.65) 

5.01 
(2.00) 

 MOD13C1 3.10 
(2.21*) 

2.28 
(1.92*) 

3.50 
(2.37*) 

 MCD43C4 4.03 
(4.42) 

3.16 
(4.19) 

4.46 
(4.55) 

 MCD12Q2 1.29 
(N.A.) 

0.41* 
(N.A.) 

1.74 
(N.A.) 
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Table A1.3. Area of long-term (1982-2014) SOS, EOS, LOS, MAX and GSSNDVI trends by continents and biomes. Significant trends 
are calculated by Vogelsang’s t-PS_T test at 10% significance level. Total area focused from this study is 26.02 million km2. CP, NA, EA, 
AR and BO are for circumpolar, North America, Eurasia, arctic and boreal regions, respectively. All areal quantities in percent (%) are 
calculated with respect to total vegetated area in CP.  

Metric Type Trend Type CP NA EA 
All AR BO All AR BO All AR BO 

SOS 
Sig. Positive 2.7 0.5 2.2 2.3 0.4 1.8 0.5 0.1 0.4 
Sig. Negative 27.9 8.7 19.3 5.7 1.8 3.9 22.2 6.8 15.4 

InSig. or No Change  69.4 21.3 48.1 30.3 10.1 20.3 39.0 11.2 27.8 

EOS 
Sig. Positive 21.9 3.1 18.8 9.9 1.9 7.9 12.1 1.2 10.9 
Sig. Negative 7.7 4.3 3.5 1.9 0.8 1.1 5.8 3.5 2.3 

InSig. or No Change  70.3 23.0 47.3 26.5 9.5 16.9 43.9 13.5 30.4 

LOS 
Sig. Positive 33.2 7.7 25.4 10.1 2.8 7.3 23.1 4.9 18.2 
Sig. Negative 2.7 1.2 1.6 1.7 0.5 1.2 1.1 0.6 0.4 

InSig. or No Change 64.1 21.6 42.5 26.5 8.9 17.6 37.6 12.6 25.0 

MAX 
Sig. Positive 28.7 11.3 17.4 8.3 4.5 3.7 20.5 6.8 13.7 
Sig. Negative 5.2 1.1 4.0 3.1 0.4 2.7 2.1 0.7 1.4 

InSig. or No Change  66.1 18.0 48.1 26.9 7.3 19.6 39.1 10.7 28.5 

GSSNDVI 
Sig. Positive 42.0 12.8 29.1 12.8 5.2 7.6 29.1 7.6 21.5 
Sig. Negative 2.5 0.8 1.7 1.7 0.3 1.4 0.8 0.5 0.3 

InSig. or No Change  55.6 16.8 38.8 23.7 6.7 17.0 31.9 10.1 21.7 
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Table A1.4. Productivity (GSSNDVI) in 1982 and productivity change between 1982 and 2014 of vegetation classes. The Greening 
(abbreviated as G, shown in green color), Browning (abbreviated as B, shown in red color) and No change (abbreviated as N, shown in 
black color) was defined by calculating productivity trend between 1982 and 2014 pixel by pixel using the Vogelsang model at 10% 
significance level. Increased productivity (abbreviated as I, shown in green color) and decreased productivity (abbreviated as D, shown 
in red color) are calculated by !!"# ∙ %& ∙ '&()*+

&,- , where NVCi is the total pixel number of the ith vegetation classes showing significant 
positive or negative changes, Tp is the yearly common productivity trend (yr-1) of pixel p, Ap is the area weight (unitless) of pixel p. Area 
weighted total GSSNDVI over the greening (G1982 = 9.04×108) and browning (B1982 = 5.89×107) regions in 1982 was used as denominator 
to calculate Table 2.3 quantities. All quantities listed in below are unitless. 

Vegetation Class 
GSSNDVI in 1982  

GSSNDVI Change 
(1982-2014) 

G B N  I D 

Mixed Forests 3.18×108 3.66×106 2.19×108  5.89×107 -5.40×105 
Deciduous Needleleaf Forests 8.76×107 1.87×106 1.32×108  1.35×107 -2.16×105 

Evergreen Needleleaf Forests 2.01×108 2.13×107 3.08×108  4.75×107 -4.55×106 
Forest-Shrubs Ecotone 7.58×107 1.16×107 1.63×108  1.74×107 -2.13×106 

Closed Shrublands 2.91×106 2.87×105 4.29×106  7.63×105 -6.27×104 
Open Shrublands 1.44×108 1.38×107 2.17×108  3.95×107 -2.67×106 

Grasslands/ Wetlands (North of Forests) 9.72×106 5.60×105 1.82×107  2.41×106 -1.47×105 
Erect Shrub Tundra 3.17×107 2.17×106 3.58×107  9.77×106 -5.44×105 

Prostrate Shrub Tundra 4.73×106 3.98×105 7.91×106  1.70×106 -1.13×105 
Graminoid Tundra 2.36×107 1.75×106 2.95×107  8.33×107 -5.03×105 

Wetlands 4.80×106 1.47×106 1.13×107  1.62×106 -3.53×105 

Total 9.04×108 5.89×107 1.15×109  2.01×108 -1.18×107 
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Appendix B: Chapter 3. Disturbance, cultivation and climate drive a widespread 

North American vegetation greening 

 

This section contains supplementary tables and figures for the “Chapter 3”. 

 

 

Figure B1.1 Geographical distribution of four classified biome types including Arctic (AR), 
Boreal (BO), Temperate (TE), and Cropland (CR) zones. Four red squares (A – D) in each panel 
are selected to showcase dominant vegetation change patterns in each biome type. 
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Figure B1.2 Regional subsets of high-resolution satellite image (GeoEye, a), disturbance year (b), and MODIS land cover (c) over the 
selected four example sites. Each column represents each site with alphabetical order (left to right, A to D) and red lines in all panels 
represent fire perimeters. 
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Figure B1.3 Same as Figure B1.2 but for decadal MODIS LAI (d), tree cover (TC, e) and short vegetation cover (SVC, f) trends. 
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Figure B1.4 Same as Figure B1.2 but for MODIS LAI (d), tree cover (TC, e) and short vegetation cover (SVC, f) at 2000.  
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Figure B1.5 Spatial pattern of AVHRR LAI trends during last 18 years (a, same as Figure 3.1a but for AVHRR), distribution of LAI 
trend estimates grouped by the latest disturbance year (b, same as Figure 3.2a but for AVHRR and MODIS comparison), and four 
example sites showing details of vegetation changes (c-f, same as Figure 3.2c but for AVHRR). 
	
	 	



	

	

130 

Table B1.1 Proportion (%) of vegetated land showing greening and browning trends in AVHRR LAI with or without historical 
disturbance events. Note that statistically significant positive and negative changes are defined as greening (G) and browning (B), and 
others are insignificant changes (N.S.). Bracketed numbers in “Disturbed” column represents the solely fire-induced changes, i.e., the 
changes induced by harvesting can be calculated by subtracting the fire-induced changes from all disturbance-induced changes. 

Biome 
(Area, 106 km2) 

Proportion of vegetated land (%) 
All Disturbed (fire induced change) Non-disturbed 

B N.S. G B N.S. G B N.S. G 
AR (2.5) 5.2 70.4 24.4 0.1 (0.1) 1.0 (1.0) 0.6 (0.6) 5.0 69.4 23.8 
BO (4.5) 11.7 66.1 22.1 3.7 (3.2) 18.3 (15.7) 9.2 (8.4) 8.0 47.8 12.9 
TE (1.3) 11.0 68.3 20.7 3.7 (1.4) 17.9 (5.6) 6.6 (2.0) 7.3 50.8 14.1 
CR (0.7) 1.6 35.8 62.6 0.6 (0.5) 4.6 (3.8) 2.2 (1.7) 1.0 31.2 60.4 
All (9.0) 9.0 65.4 25.5 2.5 (1.9) 12.4 (9.2) 5.9 (4.8) 6.6 53.0 19.6 
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Table B1.2 Net leaf area and mean leaf area index changes during last 18 years (2000 – 2017) from AVHRR LAI. Note that only 
vegetated areas showing greening and browning are considered in this calculation. Net leaf area and mean leaf area index changes are 
calculated as follows: !"#	%"&'	&("& = 	 *("+,- ∙ /("&- ∙ 0"(-1,!

-23 , 4"&+	%"&'	&("&	-+,"5 =
*("+,- ∙ /("&- ∙ 0"(-1,!

-23 /("&-!
-23 	. Bracketed numbers in “Disturbed” column represents the solely fire-induced changes, i.e., 

the changes induced by harvesting can be calculated by subtracting the fire-induced changes from all disturbance-induced changes. 

 Net leaf area (105 km2) Mean leaf area index (m2 m-2) 

Biome All Disturbed (fire induced change) Non-disturbed All Disturbed (fire induced change) Non-disturbed 
AR 1.82 0.06 (0.06) 1.75 0.25 0.33 (0.33) 0.24 
BO 2.32 1.37 (1.26) 0.95 0.15 0.23 (0.24) 0.10 
TE 0.98 0.27 (0.05) 0.71 0.23 0.19 (0.11) 0.25 
CR 2.59 0.06 (0.05) 2.52 0.61 0.34 (0.31) 0.62 
All 7.71 1.77 (1.42) 5.94 0.25 0.23 (0.24) 0.25 
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Appendix C: Chapter 4. Changes in timing of seasonal peak photosynthetic activity 

in northern ecosystems 

 

This section contains supplementary tables and figures for the “Chapter 4”. 

 

 

Figure C1.1 Temporal differences between the timings of peak climatic factors over northern 
terrestrial ecosystems. Temperature (DOYTmax), radiation (DOYRmax) and water availability 
(DOYWmax) serve as key proxies for climate resource availability. Reduced water losses during 
the cold season and thermal inertia lead to a sequential order of the timings of peak climatic 
factors. 
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Figure C1.2. Satellite observed relation of positioning maximal photosynthetic activity to 
growing season length and maximal GPP. a, Spatial distribution of MODIS DOYPmax, 
FLUXNET and Point Barrow sites. Long-term (2000-2016) mean of DOYPmax is used here. b, 
Density distribution of δDOYP,T and δDOYP,R for northern vegetation. c, Positioning of maximal 
photosynthetic activity (DOYPmax) seen as the relation between δDOYP,R and δDOYP,T, with 
respect to maximum GPP (GPPPmax, g C m-2). d, Same as c but for growing season length (GSL, 
days). MODIS derived outcomes are used for these panels. 
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Figure C1.3 Analysis of eddy-covariance tower and GOME-2 SIF based maximal photosynthetic 
activity timing and its relation to productivity. a, Comparison between MODIS and FLUXNET 
based retrievals of DOYPmax. b, Observed positioning of maximal photosynthetic activity 
(DOYPmax) seen as the relation between δDOYP,R and δDOYP,T, with respect to GPPPmax (g C    
m-2). 92 FLUXNET sites are used and their geographical locations can be found in Figure C1.2a. 
c, Density distribution of δDOYP,T and δDOYP,R for northern vegetation based on GOME-2 SIF. 
d, Positioning of maximal photosynthetic activity (DOYPmax) seen as the relation between 
δDOYP,R and δDOYP,T, with respect to maximum SIF (SIFPmax). 
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Figure C1.4 Changes in δDOYP,R and its relation to δDOYP,T during two separate periods. a, 
Distribution of δDOYP,R during first (2000 – 2004, blue) and last (2012 – 2016, red) 5-year 
periods over AR, BO and TE regions. b, Shift of δDOYP,R from the initial (2000 – 2004) to the 
last (2012 – 2016) period over three bioclimatic zones. Mean and 1 SD of changes in δDOYP,R 
are given. c, Scatter density plot between the shift in δDOYP,R from the initial to the last period 
and the shift in δDOYP,T during the period. Significance of the slope estimate (β ± SE) is denoted 
as double (P < 0.001) and single (P < 0.05) asterisks. The Kendall rank correlation coefficient (r) 
was used to measure degree of association.  
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Figure C1.5 Spatial pattern of changes in sign of δDOYP,R during first (2000 – 2004) and last 
(2012 – 2016) periods. For example, P −>N denotes the regions where positive δDOYP,R changes 
into negative one. 
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Table C1.1 Changes in DOYRmax, DOYTmax, and DOYWmax over three different regions during 
last 17 years (2000 – 2016). The decadal trend is estimated based on the 5-year moving average 
approach to reduce the potential impact of first, last and outlier points. Calculated trend (slope 
± SE) based on ordinary least squares regression is given with its significance level. The 
significance was computed by using the non-parametric Mann-Kendall trend test. 

Biome 
DOYRmax 

(days decade−1) 
DOYTmax 

(days decade−1) 
DOYWmax 

(days decade−1) 
AR −0.21	± 0.45 (P = 0.40) −0.43	± 0.57 (P = 0.46) −1.38	± 0.61 (P = 0.04) 
BO −0.23	± 0.31 (P = 0.33) −0.34	± 0.56 (P = 0.57) −1.73	± 1.33 (P = 0.21) 
TE 0.05	± 0.06 (P = 0.27) 0.56	± 0.38 (P = 0.19) −2.24	± 1.18 (P = 0.08) 
NH −0.15	± 0.65 (P = 0.60) −0.02	± 0.07 (P = 0.97) −1.84	± 0.55 (P = 0.05) 

 



 

	

138 

BIBLIOGRAPHY 

Alcaraz�Segura, D.O.M.I.N.G.O., Chuvieco, E., Epstein, H.E., Kasischke, E.S. and 
Trishchenko, A., 2010. Debating the greening vs. browning of the North American 
boreal forest: differences between satellite datasets. Global Change Biology, 16(2), 
pp.760-770. 

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, 
M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.T. and Gonzalez, P., 2010. 
A global overview of drought and heat-induced tree mortality reveals emerging 
climate change risks for forests. Forest Ecology and Management, 259(4), pp.660-
684. 

Angert, A., Biraud, S., Bonfils, C., Henning, C.C., Buermann, W., Pinzon, J., Tucker, 
C.J. and Fung, I., 2005. Drier summers cancel out the CO2 uptake enhancement 
induced by warmer springs. Proceedings of the National Academy of Sciences of the 
United States of America, 102(31), pp.10823-10827. 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., 
Bernhofer, C., Davis, K., Evans, R. and Fuentes, J., 2001. FLUXNET: A new tool to 
study the temporal and spatial variability of ecosystem-scale carbon dioxide, water 
vapor, and energy flux densities. Bulletin of the American Meteorological Society, 
82(11), pp.2415-2434. 

Barber, V.A., Juday, G.P. and Finney, B.P., 2000. Reduced growth of Alaskan white 
spruce in the twentieth century from temperature-induced drought stress. Nature, 
405(6787), p.668. 

Baret, F., Morissette, J.T., Fernandes, R.A., Champeaux, J.L., Myneni, R.B., Chen, J., 
Plummer, S., Weiss, M., Bacour, C., Garrigues, S. and Nickeson, J.E., 2006. 
Evaluation of the representativeness of networks of sites for the global validation and 
intercomparison of land biophysical products: Proposition of the CEOS-BELMANIP. 
IEEE Transactions on Geoscience and Remote Sensing, 44(7), pp.1794-1803. 

Barichivich, J., Briffa, K., Myneni, R., Schrier, G., Dorigo, W., Tucker, C., Osborn, T. 
and Melvin, T., 2014. Temperature and snow-mediated moisture controls of summer 
photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. 
Remote Sensing, 6(2), pp.1390-1431. 

Barichivich, J., Briffa, K.R., Osborn, T.J., Melvin, T.M. and Caesar, J., 2012. Thermal 
growing season and timing of biospheric carbon uptake across the Northern 
Hemisphere. Global Biogeochemical Cycles, 26(4). 

Bauerle, W.L., Oren, R., Way, D.A., Qian, S.S., Stoy, P.C., Thornton, P.E., Bowden, 
J.D., Hoffman, F.M. and Reynolds, R.F., 2012. Photoperiodic regulation of the 



 

	

139 

seasonal pattern of photosynthetic capacity and the implications for carbon cycling. 
Proceedings of the National Academy of Sciences of the United States of America, 
109(22), pp.8612-8617. 

Beck, P.S. and Goetz, S.J., 2011. Satellite observations of high northern latitude 
vegetation productivity changes between 1982 and 2008: ecological variability and 
regional differences. Environmental Research Letters, 6(4), p.045501. 

Beck, P.S., Atzberger, C., Høgda, K.A., Johansen, B. and Skidmore, A.K., 2006. 
Improved monitoring of vegetation dynamics at very high latitudes: A new method 
using MODIS NDVI. Remote Sensing of Environment, 100(3), pp.321-334. 

Beck, P.S., Goetz, S.J., Mack, M.C., Alexander, H.D., Jin, Y., Randerson, J.T. and 
Loranty, M.M., 2011a. The impacts and implications of an intensifying fire regime on 
Alaskan boreal forest composition and albedo. Global Change Biology, 17(9), 
pp.2853-2866. 

Beck, P.S., Juday, G.P., Alix, C., Barber, V.A., Winslow, S.E., Sousa, E.E., Heiser, P., 
Herriges, J.D. and Goetz, S.J., 2011b. Changes in forest productivity across Alaska 
consistent with biome shift. Ecology Letters, 14(4), pp.373-379. 

Bergeron, Y. and Harvey, B., 1997. Basing silviculture on natural ecosystem dynamics: 
an approach applied to the southern boreal mixed wood forest of Quebec. Forest 
Ecology and Management, 92(1-3), pp.235-242. 

Bergeron, Y., Chen, H.Y., Kenkel, N.C., Leduc, A.L. and Macdonald, S.E., 2014. Boreal 
mixedwood stand dynamics: ecological processes underlying multiple pathways. The 
Forestry Chronicle, 90(2), pp.202-213. 

Bhatt, U.S., Walker, D.A., Raynolds, M.K., Comiso, J.C., Epstein, H.E., Jia, G., Gens, 
R., Pinzon, J.E., Tucker, C.J., Tweedie, C.E. and Webber, P.J., 2010. Circumpolar 
Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions, 14(8), 
pp.1-20. 

Bi, J., Xu, L., Samanta, A., Zhu, Z. and Myneni, R., 2013. Divergent arctic-boreal 
vegetation changes between North America and Eurasia over the past 30 years. 
Remote Sensing, 5(5), pp.2093-2112. 

Bieniek, P.A., Bhatt, U.S., Walker, D.A., Raynolds, M.K., Comiso, J.C., Epstein, H.E., 
Pinzon, J.E., Tucker, C.J., Thoman, R.L., Tran, H. and Mölders, N., 2015. Climate 
drivers linked to changing seasonality of Alaska coastal tundra vegetation 
productivity. Earth Interactions, 19(19), pp.1-29. 

Bjerke, J.W., Karlsen, S.R., Høgda, K.A., Malnes, E., Jepsen, J.U., Lovibond, S., 
Vikhamar-Schuler, D. and Tømmervik, H., 2014. Record-low primary productivity 



 

	

140 

and high plant damage in the Nordic Arctic Region in 2012 caused by multiple 
weather events and pest outbreaks. Environmental Research Letters, 9(8), p.084006. 

Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Normand, S., Rüger, N., Beck, 
P.S., Blach-Overgaard, A., Blok, D., Cornelissen, J.H.C., Forbes, B.C. and Georges, 
D., 2018. Plant functional trait change across a warming tundra biome. Nature, 
562(7725), p.57. 

Blackman, F.F., 1905. Optima and limiting factors. Annals of Botany, 19(74), pp.281-
295. 

Blunden, J., Arndt, D.S. and Baringer, M.O., 2011. State of the climate in 2010. Bulletin 
of the American Meteorological Society, 92(6), pp.S1-S236. 

Bond-Lamberty, B., Peckham, S.D., Ahl, D.E. and Gower, S.T., 2007. Fire as the 
dominant driver of central Canadian boreal forest carbon balance. Nature, 450(7166), 
p.89. 

Breiman, L., 2001. Random forests. Machine Learning, 45(1), pp.5-32. 

Brodie, J.F., Roland, C., Stehn, S. and Smirnova, E., 2019. Variability in the expansion of 
trees and shrubs in boreal Alaska. Ecology, p.e02660. 

Buermann, W., Anderson, B., Tucker, C.J., Dickinson, R.E., Lucht, W., Potter, C.S. and 
Myneni, R.B., 2003. Interannual covariability in Northern Hemisphere air 
temperatures and greenness associated with El Niño�Southern Oscillation and the 
Arctic Oscillation. Journal of Geophysical Research: Atmospheres, 108(D13). 

Buermann, W., Forkel, M., O’Sullivan, M., Sitch, S., Friedlingstein, P., Haverd, V., Jain, 
A.K., Kato, E., Kautz, M., Lienert, S. and Lombardozzi, D., 2018. Widespread 
seasonal compensation effects of spring warming on northern plant productivity. 
Nature, 562(7725), p.110. 

Buermann, W., Parida, B., Jung, M., MacDonald, G.M., Tucker, C.J. and Reichstein, M., 
2014. Recent shift in Eurasian boreal forest greening response may be associated with 
warmer and drier summers. Geophysical Research Letters, 41(6), pp.1995-2002. 

Buitenwerf, R., Rose, L. and Higgins, S.I., 2015. Three decades of multi-dimensional 
change in global leaf phenology. Nature Climate Change, 5(4), p.364. 

Chapin Iii, F.S., McGuire, A.D., Randerson, J., Pielke, R., Baldocchi, D., Hobbie, S.E., 
Roulet, N., Eugster, W., Kasischke, E., Rastetter, E.B. and Zimov, S.A., 2000. Arctic 
and boreal ecosystems of western North America as components of the climate 
system. Global Change Biology, 6(S1), pp.211-223. 



 

	

141 

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., 
Ciais, P., Fensholt, R. and Tømmervik, H., 2019. China and India lead in greening of 
the world through land-use management. Nature Sustainability, 2(2), p.122. 

Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B. and Eklundh, L., 2004. A 
simple method for reconstructing a high-quality NDVI time-series data set based on 
the Savitzky–Golay filter. Remote Sensing of Environment, 91(3-4), pp.332-344. 

Chevallier, F., Ciais, P., Conway, T.J., Aalto, T., Anderson, B.E., Bousquet, P., Brunke, 
E.G., Ciattaglia, L., Esaki, Y., Fröhlich, M. and Gomez, A., 2010. CO2 surface fluxes 
at grid point scale estimated from a global 21 year reanalysis of atmospheric 
measurements. Journal of Geophysical Research: Atmospheres, 115(D21). 

Choi, S., Kempes, C.P., Park, T., Ganguly, S., Wang, W., Xu, L., Basu, S., Dungan, J.L., 
Simard, M., Saatchi, S.S. and Piao, S., 2016. Application of the metabolic scaling 
theory and water–energy balance equation to model large�scale patterns of 
maximum forest canopy height. Global Ecology and Biogeography, 25(12), pp.1428-
1442. 

Chuine, I. and Beaubien, E.G., 2001. Phenology is a major determinant of tree species 
range. Ecology Letters, 4(5), pp.500-510. 

Colditz, R.R., Pouliot, D., Llamas, R.M., Homer, C., Latifovic, R., Ressl, R.A., Tovar, 
C.M., Hernández, A.V. and Richardson, K., 2014. Detection of North American land 
cover change between 2005 and 2010 with 250m MODIS data. PE&RS, 
Photogrammetric Engineering & Remote Sensing, 80(10), pp.918-924. 

Commane, R., Lindaas, J., Benmergui, J., Luus, K.A., Chang, R.Y.W., Daube, B.C., 
Euskirchen, E.S., Henderson, J.M., Karion, A., Miller, J.B. and Miller, S.M., 2017. 
Carbon dioxide sources from Alaska driven by increasing early winter respiration 
from Arctic tundra. Proceedings of the National Academy of Sciences of the United 
States of America, 114(21), pp.5361-5366. 

D’Orangeville, L., Houle, D., Duchesne, L., Phillips, R.P., Bergeron, Y. and Kneeshaw, 
D., 2018. Beneficial effects of climate warming on boreal tree growth may be 
transitory. Nature Communications, 9(1), p.3213. 

Danneyrolles, V., Dupuis, S., Fortin, G., Leroyer, M., de Römer, A., Terrail, R., Vellend, 
M., Boucher, Y., Laflamme, J., Bergeron, Y. and Arseneault, D., 2019. Stronger 
influence of anthropogenic disturbance than climate change on century-scale 
compositional changes in northern forests. Nature Communications, 10(1), p.1265. 

Dimiceli, C., Carroll, M., Sohlberg, R., Kim, D.H., Kelly, M. and Townshend, J.R.G., 
2015. MOD44B MODIS/Terra vegetation continuous fields yearly L3 Global 250 m 
SIN Grid V006. NASA EOSDIS Land Processes DAAC. 



 

	

142 

Duveneck, M.J. and Thompson, J.R., 2017. Climate change imposes phenological 
trade�offs on forest net primary productivity. Journal of Geophysical Research: 
Biogeosciences, 122(9), pp.2298-2313. 

Eagleson, P.S., 2005. Ecohydrology: Darwinian expression of vegetation form and 
function. Cambridge University Press. 

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., 
Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C. and Balzer, C., 2011. Solutions 
for a cultivated planet. Nature, 478(7369), p.337. 

Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M., Thonicke, K., 
Zaehle, S. and Reichstein, M., 2016. Enhanced seasonal CO2 exchange caused by 
amplified plant productivity in northern ecosystems. Science, 351(6274), pp.696-699. 

FRAMES, 2018. Alaska Large Fire Database. Accessed February 21, 2018 
<https://www.frames.gov/catalog/10465>. 

Friedl, M.A., Gray, J.M., Melaas, E.K., Richardson, A.D., Hufkens, K., Keenan, T.F., 
Bailey, A. and O’Keefe, J., 2014. A tale of two springs: using recent climate 
anomalies to characterize the sensitivity of temperate forest phenology to climate 
change. Environmental Research Letters, 9(5), p.054006. 

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. and 
Huang, X., 2010. MODIS Collection 5 global land cover: Algorithm refinements and 
characterization of new datasets. Remote Sensing of Environment, 114(1), pp.168-
182. 

Fritz, S., See, L., McCallum, I., You, L., Bun, A., Moltchanova, E., Duerauer, M., 
Albrecht, F., Schill, C., Perger, C. and Havlik, P., 2015. Mapping global cropland and 
field size. Global Change Biology, 21(5), pp.1980-1992. 

Frost, G.V. and Epstein, H.E., 2014. Tall shrub and tree expansion in Siberian tundra 
ecotones since the 1960s. Global Change Biology, 20(4), pp.1264-1277. 

Fu, Y.H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., 
Menzel, A., Peñuelas, J. and Song, Y., 2015. Declining global warming effects on the 
phenology of spring leaf unfolding. Nature, 526(7571), p.104. 

Ganguly, S., Friedl, M.A., Tan, B., Zhang, X. and Verma, M., 2010. Land surface 
phenology from MODIS: Characterization of the Collection 5 global land cover 
dynamics product. Remote Sensing of Environment, 114(8), pp.1805-1816. 

Garonna, I., De Jong, R., De Wit, A.J., Mücher, C.A., Schmid, B. and Schaepman, M.E., 
2014. Strong contribution of autumn phenology to changes in satellite-derived 



 

	

143 

growing season length estimates across Europe (1982–2011). Global Change 
Biology, 20(11), pp.3457-3470. 

Garonna, I., de Jong, R., Stöckli, R., Schmid, B., Schenkel, D., Schimel, D. and 
Schaepman, M.E., 2018. Shifting relative importance of climatic constraints on land 
surface phenology. Environmental Research Letters, 13(2), p.024025. 

Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, 
C.A., Darmenov, A., Bosilovich, M.G., Reichle, R. and Wargan, K., 2017. The 
modern-era retrospective analysis for research and applications, version 2 (MERRA-
2). Journal of Climate, 30(14), pp.5419-5454. 

Gill, A.L., Gallinat, A.S., Sanders-DeMott, R., Rigden, A.J., Short Gianotti, D.J., 
Mantooth, J.A. and Templer, P.H., 2015. Changes in autumn senescence in northern 
hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Annals of 
Botany, 116(6), pp.875-888. 

Girardin, M.P., Bouriaud, O., Hogg, E.H., Kurz, W., Zimmermann, N.E., Metsaranta, 
J.M., de Jong, R., Frank, D.C., Esper, J., Büntgen, U. and Guo, X.J., 2016. No growth 
stimulation of Canada’s boreal forest under half-century of combined warming and 
CO2 fertilization. Proceedings of the National Academy of Sciences of the United 
States of America, 113(52), pp.E8406-E8414. 

Goetz, S.J., Bunn, A.G., Fiske, G.J. and Houghton, R.A., 2005. Satellite-observed 
photosynthetic trends across boreal North America associated with climate and fire 
disturbance. Proceedings of the National Academy of Sciences of the United States of 
America, 102(38), pp.13521-13525. 

Goetz, S.J., Mack, M.C., Gurney, K.R., Randerson, J.T. and Houghton, R.A., 2007. 
Ecosystem responses to recent climate change and fire disturbance at northern high 
latitudes: observations and model results contrasting northern Eurasia and North 
America. Environmental Research Letters, 2(4), p.045031. 

Gonsamo, A., Chen, J.M. and Ooi, Y.W., 2018. Peak season plant activity shift towards 
spring is reflected by increasing carbon uptake by extratropical ecosystems. Global 
Change Biology, 24(5), pp.2117-2128. 

Goulden, M.L., McMillan, A.M.S., Winston, G.C., Rocha, A.V., Manies, K.L., Harden, 
J.W. and Bond�Lamberty, B.P., 2011. Patterns of NPP, GPP, respiration, and NEP 
during boreal forest succession. Global Change Biology, 17(2), pp.855-871. 

Goward, S.N., Tucker, C.J. and Dye, D.G., 1985. North American vegetation patterns 
observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio, 
64(1), pp.3-14. 



 

	

144 

Graven, H.D., Keeling, R.F., Piper, S.C., Patra, P.K., Stephens, B.B., Wofsy, S.C., Welp, 
L.R., Sweeney, C., Tans, P.P., Kelley, J.J. and Daube, B.C., 2013. Enhanced seasonal 
exchange of CO2 by northern ecosystems since 1960. Science, 341(6150), pp.1085-
1089. 

Guay, K.C., Beck, P.S., Berner, L.T., Goetz, S.J., Baccini, A. and Buermann, W., 2014. 
Vegetation productivity patterns at high northern latitudes: a multi�sensor satellite 
data assessment. Global Change Biology, 20(10), pp.3147-3158. 

Hall, F., Masek, J.G. and Collatz, G.J., 2006. Evaluation of ISLSCP Initiative II FASIR 
and GIMMS NDVI products and implications for carbon cycle science. Journal of 
Geophysical Research: Atmospheres, 111(D22). 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A.A., Tyukavina, 
A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R. and Kommareddy, A., 2013. 
High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 
pp.850-853. 

Harper, K.A., Macdonald, S.E., Burton, P.J., Chen, J., Brosofske, K.D., Saunders, S.C., 
Euskirchen, E.S., Roberts, D.A.R., Jaiteh, M.S. and Esseen, P.A., 2005. Edge 
influence on forest structure and composition in fragmented landscapes. Conservation 
Biology, 19(3), pp.768-782. 

Heinsch, F.A., Zhao, M., Running, S.W., Kimball, J.S., Nemani, R.R., Davis, K.J., 
Bolstad, P.V., Cook, B.D., Desai, A.R., Ricciuto, D.M. and Law, B.E., 2006. 
Evaluation of remote sensing based terrestrial productivity from MODIS using 
regional tower eddy flux network observations. IEEE Transactions on Geoscience 
and Remote Sensing, 44(7), pp.1908-1925. 

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C. and Hobart, G.W., 2018. 
Disturbance-informed annual land cover classification maps of Canada's forested 
ecosystems for a 29-year Landsat time series. Canadian Journal of Remote Sensing, 
44(1), pp.67-87. 

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W. and Campbell, 
L.B., 2016. Mass data processing of time series Landsat imagery: pixels to data 
products for forest monitoring. International Journal of Digital Earth, 9(11), pp.1035-
1054. 

Hilmers, T., Avdagić, A., Bartkowicz, L., Bielak, K., Binder, F., Bončina, A., Dobor, L., 
Forrester, D.I., Hobi, M.L., Ibrahimspahić, A. and Jaworski, A., 2019. The 
productivity of mixed mountain forests comprised of Fagus sylvatica, Picea abies, 
and Abies alba across Europe. Forestry 92(5), pp.512–522. 



 

	

145 

Hinzman, L.D., Bettez, N.D., Bolton, W.R., Chapin, F.S., Dyurgerov, M.B., Fastie, C.L., 
Griffith, B., Hollister, R.D., Hope, A., Huntington, H.P. and Jensen, A.M., 2005. 
Evidence and implications of recent climate change in northern Alaska and other 
arctic regions. Climatic Change, 72(3), pp.251-298. 

Høgda, K., Tømmervik, H. and Karlsen, S., 2013. Trends in the start of the growing 
season in Fennoscandia 1982–2011. Remote Sensing, 5(9), pp.4304-4318. 

Hooke, R.L., Martín-Duque, J.F. and Pedraza, J., 2012. Land transformation by humans: 
a review. GSA Today, 22(12), pp.4-10. 

Hunter, A.F. and Lechowicz, M.J., 1992. Predicting the timing of budburst in temperate 
trees. Journal of Applied Ecology, pp.597-604. 

Ito, A., Inatomi, M., Huntzinger, D.N., Schwalm, C., Michalak, A.M., Cook, R., King, 
A.W., Mao, J., Wei, Y., Post, W.M. and Wang, W., 2016. Decadal trends in the 
seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of 
terrestrial biosphere models. Tellus B: Chemical and Physical Meteorology, 68(1), 
p.28968. 

Jenness, J., 2006. Topographic Position Index (tpi_jen. avx) extension for ArcView 3. x, 
v. 1.3 a. Jenness Enterprises. 

Johnstone, J.F., Allen, C.D., Franklin, J.F., Frelich, L.E., Harvey, B.J., Higuera, P.E., 
Mack, M.C., Meentemeyer, R.K., Metz, M.R., Perry, G.L. and Schoennagel, T., 2016. 
Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in 
Ecology and the Environment, 14(7), pp.369-378. 

Johnstone, J.F., Chapin, F.S., Hollingsworth, T.N., Mack, M.C., Romanovsky, V. and 
Turetsky, M., 2010. Fire, climate change, and forest resilience in interior Alaska. 
Canadian Journal of Forest Research, 40(7), pp.1302-1312. 

Joiner, J., Yoshida, Y., Guanter, L. and Middleton, E.M., 2016. New methods for the 
retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: 
simulations and application to GOME-2 and SCIAMACHY. Atmospheric 
Measurement Techniques, 9(8). 

Jolly, W.M., Nemani, R. and Running, S.W., 2005. A generalized, bioclimatic index to 
predict foliar phenology in response to climate. Global Change Biology, 11(4), 
pp.619-632. 

Jönsson, P. and Eklundh, L., 2004. TIMESAT—a program for analyzing time-series of 
satellite sensor data. Computers & Geosciences, 30(8), pp.833-845. 



 

	

146 

Ju, J. and Masek, J.G., 2016. The vegetation greenness trend in Canada and US Alaska 
from 1984–2012 Landsat data. Remote Sensing of Environment, 176, pp.1-16. 

Jung, M., Reichstein, M., Margolis, H.A., Cescatti, A., Richardson, A.D., Arain, M.A., 
Arneth, A., Bernhofer, C., Bonal, D., Chen, J. and Gianelle, D., 2011. Global patterns 
of land�atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived 
from eddy covariance, satellite, and meteorological observations. Journal of 
Geophysical Research: Biogeosciences, 116(G3). 

Karlsen, S.R., Elvebakk, A., Høgda, K.A. and Johansen, B., 2006. Satellite�based 
mapping of the growing season and bioclimatic zones in Fennoscandia. Global 
Ecology and Biogeography, 15(4), pp.416-430. 

Kasischke, E.S. and Turetsky, M.R., 2006. Recent changes in the fire regime across the 
North American boreal region—Spatial and temporal patterns of burning across 
Canada and Alaska. Geophysical Research Letters, 33(9). 

Keeling, C.D., Chin, J.F.S. and Whorf, T.P., 1996. Increased activity of northern 
vegetation inferred from atmospheric CO2 measurements. Nature, 382(6587), p.146. 

Keenan, T.F. and Riley, W.J., 2018. Greening of the land surface in the world’s cold 
regions consistent with recent warming. Nature Climate Change, 8(9), p.825. 

Keenan, T.F., Gray, J., Friedl, M.A., Toomey, M., Bohrer, G., Hollinger, D.Y., Munger, 
J.W., O’Keefe, J., Schmid, H.P., Wing, I.S. and Yang, B., 2014. Net carbon uptake 
has increased through warming-induced changes in temperate forest phenology. 
Nature Climate Change, 4(7), p.598. 

Kim, Y., Kimball, J.S., Zhang, K. and McDonald, K.C., 2012. Satellite detection of 
increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications 
for regional vegetation growth. Remote Sensing of Environment, 121, pp.472-487. 

Knyazikhin, Y., Martonchik, J.V., Myneni, R.B., Diner, D.J. and Running, S.W., 1998. 
Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of 
absorbed photosynthetically active radiation from MODIS and MISR data. Journal of 
Geophysical Research: Atmospheres, 103(D24), pp.32257-32275. 

Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A., Stoy, P. 
and Wohlfahrt, G., 2010. Separation of net ecosystem exchange into assimilation and 
respiration using a light response curve approach: critical issues and global 
evaluation. Global Change Biology, 16(1), pp.187-208. 

Lucht, W., Prentice, I.C., Myneni, R.B., Sitch, S., Friedlingstein, P., Cramer, W., 
Bousquet, P., Buermann, W. and Smith, B., 2002. Climatic control of the high-



 

	

147 

latitude vegetation greening trend and Pinatubo effect. Science, 296(5573), pp.1687-
1689. 

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the 
Econometric Society, pp.245-259. 

McManus, K.M., Morton, D.C., Masek, J.G., Wang, D., Sexton, J.O., Nagol, J.R., 
Ropars, P. and Boudreau, S., 2012. Satellite�based evidence for shrub and 
graminoid tundra expansion in northern Quebec from 1986 to 2010. Global Change 
Biology, 18(7), pp.2313-2323. 

Melaas, E.K., Friedl, M.A. and Zhu, Z., 2013. Detecting interannual variation in 
deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote 
Sensing of Environment, 132, pp.176-185. 

Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm�Kübler, K., 
Bissolli, P., Braslavská, O.G., Briede, A. and Chmielewski, F.M., 2006. European 
phenological response to climate change matches the warming pattern. Global 
Change Biology, 12(10), pp.1969-1976. 

Myers-Smith, I.H., Elmendorf, S.C., Beck, P.S., Wilmking, M., Hallinger, M., Blok, D., 
Tape, K.D., Rayback, S.A., Macias-Fauria, M., Forbes, B.C. and Speed, J.D., 2015. 
Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change, 
5(9), p.887. 

Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, 
K.D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque, E. and Boudreau, S., 2011. 
Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. 
Environmental Research Letters, 6(4), p.045509. 

Myers-Smith, I.H. and Hik, D.S., 2018. Climate warming as a driver of tundra shrubline 
advance. journal of ecology, 106(2), pp.547-560. 

Myneni, R., Knyazikhin, Y. and Park, T., 2015a. MOD15A2H MODIS/terra leaf area 
index/FPAR 8-day L4 global 500 m SIN grid V006. NASA EOSDIS Land Processes 
DAAC. 

Myneni, R., Knyazikhin, Y. and Park, T., 2015b. MYD15A2H MODIS/terra leaf area 
index/FPAR 8-day L4 global 500 m SIN grid V006. NASA EOSDIS Land Processes 
DAAC. 

Myneni, R.B. and Williams, D.L., 1994. On the relationship between FAPAR and NDVI. 
Remote Sensing of Environment, 49(3), pp.200-211. 



 

	

148 

Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G. and Nemani, R.R., 1997. Increased 
plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626), 
p.698. 

Natali, S.M., Schuur, E.A. and Rubin, R.L., 2012. Increased plant productivity in Alaskan 
tundra as a result of experimental warming of soil and permafrost. Journal of 
Ecology, 100(2), pp.488-498. 

Natural Resources Canada (NRC), 2018. The state of Canada's forests: Annual report 
2018. Accessed May 1, 2019 < http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/39336.pdf 
>. 

Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., 
Myneni, R.B. and Running, S.W., 2003. Climate-driven increases in global terrestrial 
net primary production from 1982 to 1999. Science, 300(5625), pp.1560-1563. 

Ni, X., Park, T., Choi, S., Shi, Y., Cao, C., Wang, X., Lefsky, M., Simard, M. and 
Myneni, R., 2014. Allometric scaling and resource limitations model of tree heights: 
Part 3. Model optimization and testing over continental China. Remote Sensing, 6(5), 
pp.3533-3553. 

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V., 
Underwood, E.C., D'amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C. and Loucks, 
C.J., 2001. Terrestrial Ecoregions of the World: A New Map of Life on EarthA new 
global map of terrestrial ecoregions provides an innovative tool for conserving 
biodiversity. BioScience, 51(11), pp.933-938. 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., 
Shvidenko, A., Lewis, S.L., Canadell, J.G. and Ciais, P., 2011. A large and persistent 
carbon sink in the world’s forests. Science, 333(6045), pp.988-993. 

Park, T., Chen, C., Macias-Fauria, M., Tømmervik, H., Choi, S., Winkler, A., Bhatt, 
U.S., Walker, D.A., Piao, S., Brovkin, V. and Nemani, R.R., 2019. Changes in timing 
of seasonal peak photosynthetic activity in northern ecosystems. Global Change 
Biology 25(7), pp.2382–2395. 

Park, T., Ganguly, S., Tømmervik, H., Euskirchen, E.S., Høgda, K.A., Karlsen, S.R., 
Brovkin, V., Nemani, R.R. and Myneni, R.B., 2016. Changes in growing season 
duration and productivity of northern vegetation inferred from long-term remote 
sensing data. Environmental Research Letters, 11(8), p.084001. 

Parmesan, C. and Yohe, G., 2003. A globally coherent fingerprint of climate change 
impacts across natural systems. Nature, 421(6918), p.37. 



 

	

149 

Pastick, N.J., Jorgenson, M.T., Goetz, S.J., Jones, B.M., Wylie, B.K., Minsley, B.J., 
Genet, H., Knight, J.F., Swanson, D.K. and Jorgenson, J.C., 2019. Spatiotemporal 
remote sensing of ecosystem change and causation across Alaska. Global Change 
Biology, 25(3), pp.1171-1189. 

Pastorello, G., Papale, D., Chu, H., Trotta, C., Agarwal, D., Canfora, E., Baldocchi, D. 
and Torn, M., 2017. A new data set to keep a sharper eye on land-air exchanges. Eos, 
Transactions American Geophysical Union (Online), 98(8). 

Pekel, J.F., Cottam, A., Gorelick, N. and Belward, A.S., 2016. High-resolution mapping 
of global surface water and its long-term changes. Nature, 540(7633), p.418.  

Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X. and 
Zhou, X., 2011. A drought-induced pervasive increase in tree mortality across 
Canada's boreal forests. Nature Climate Change, 1(9), p.467. 

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, C.J. and Stenseth, N.C., 
2005. Using the satellite-derived NDVI to assess ecological responses to 
environmental change. Trends in Ecology & Evolution, 20(9), pp.503-510. 

Phoenix, G.K. and Bjerke, J.W., 2016. Arctic browning: extreme events and trends 
reversing arctic greening. Global Change Biology, 22(9), pp.2960-2962. 

Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., Margolis, 
H., Fang, J., Barr, A., Chen, A. and Grelle, A., 2008. Net carbon dioxide losses of 
northern ecosystems in response to autumn warming. Nature, 451(7174), p.49. 

Piao, S., Liu, Z., Wang, T., Peng, S., Ciais, P., Huang, M., Ahlstrom, A., Burkhart, J.F., 
Chevallier, F., Janssens, I.A. and Jeong, S.J., 2017. Weakening temperature control 
on the interannual variations of spring carbon uptake across northern lands. Nature 
Climate Change, 7(5), p.359. 

Piao, S., Wang, X., Ciais, P., Zhu, B., Wang, T.A.O. and Liu, J.I.E., 2011. Changes in 
satellite�derived vegetation growth trend in temperate and boreal Eurasia from 1982 
to 2006. Global Change Biology, 17(10), pp.3228-3239. 

Pinzon, J. and Tucker, C., 2014. A non-stationary 1981–2012 AVHRR NDVI3g time 
series. Remote Sensing, 6(8), pp.6929-6960. 

Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. and Solomon, 
A.M., 1992. Special paper: a global biome model based on plant physiology and 
dominance, soil properties and climate. Journal of Biogeography, pp.117-134. 

Pulliainen, J., Aurela, M., Laurila, T., Aalto, T., Takala, M., Salminen, M., Kulmala, M., 
Barr, A., Heimann, M., Lindroth, A. and Laaksonen, A., 2017. Early snowmelt 



 

	

150 

significantly enhances boreal springtime carbon uptake. Proceedings of the National 
Academy of Sciences of the United States of America, 114(42), pp.11081-11086. 

Randerson, J.T., Field, C.B., Fung, I.Y. and Tans, P.P., 1999. Increases in early season 
ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at 
high northern latitudes. Geophysical Research Letters, 26(17), pp.2765-2768. 

Reich, P.B., Sendall, K.M., Stefanski, A., Rich, R.L., Hobbie, S.E. and Montgomery, 
R.A., 2018. Effects of climate warming on photosynthesis in boreal tree species 
depend on soil moisture. Nature, 562(7726), p.263. 

Richardson, A.D., Andy Black, T., Ciais, P., Delbart, N., Friedl, M.A., Gobron, N., 
Hollinger, D.Y., Kutsch, W.L., Longdoz, B., Luyssaert, S. and Migliavacca, M., 
2010. Influence of spring and autumn phenological transitions on forest ecosystem 
productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 
365(1555), pp.3227-3246. 

Richardson, A.D., Anderson, R.S., Arain, M.A., Barr, A.G., Bohrer, G., Chen, G., Chen, 
J.M., Ciais, P., Davis, K.J., Desai, A.R. and Dietze, M.C., 2012. Terrestrial biosphere 
models need better representation of vegetation phenology: results from the N orth A 
merican C arbon P rogram S ite S ynthesis. Global Change Biology, 18(2), pp.566-
584. 

Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O. and Toomey, 
M., 2013. Climate change, phenology, and phenological control of vegetation 
feedbacks to the climate system. Agricultural and Forest Meteorology, 169, pp.156-
173. 

Roberts, D.W. and Cooper, S.V., 1989. Concepts and techniques of vegetation mapping. 
General Technical Report INT-US Department of Agriculture, Forest Service, 
Intermountain Research Station (USA). 

Rodell, M., Houser, P.R., Jambor, U.E.A., Gottschalck, J., Mitchell, K., Meng, C.J., 
Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M. and Entin, J.K., 2004. 
The global land data assimilation system. Bulletin of the American Meteorological 
Society, 85(3), pp.381-394. 

Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M., 2003. CO 2 flux history 
1982–2001 inferred from atmospheric data using a global inversion of atmospheric 
transport. Atmospheric Chemistry and Physics, 3(6), pp.1919-1964. 

Rogers, A., Medlyn, B.E., Dukes, J.S., Bonan, G., Von Caemmerer, S., Dietze, M.C., 
Kattge, J., Leakey, A.D., Mercado, L.M., Niinemets, Ü. and Prentice, I.C., 2017. A 
roadmap for improving the representation of photosynthesis in Earth system models. 
New Phytologist, 213(1), pp.22-42. 



 

	

151 

Roland, C.A., Stehn, S.E., Schmidt, J. and Houseman, B., 2016. Proliferating poplars: 
The leading edge of landscape change in an Alaskan subalpine chronosequence. 
Ecosphere, 7(7). 

Rosenzweig, C. and Parry, M.L., 1994. Potential impact of climate change on world food 
supply. Nature, 367(6459), p.133. 

Rossi, S., Deslauriers, A., Anfodillo, T., Morin, H., Saracino, A., Motta, R. and 
Borghetti, M., 2006. Conifers in cold environments synchronize maximum growth 
rate of tree�ring formation with day length. New Phytologist, 170(2), pp.301-310. 

Rotenberg, E. and Yakir, D., 2010. Contribution of semi-arid forests to the climate 
system. Science, 327(5964), pp.451-454. 

Running, S., Mu, Q., & Zhao, M. (2015). MOD17A2H MODIS/Terra Gross Primary 
Productivity 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes 
DAAC. 

Running, S.W., Nemani, R., Glassy, J.M. and Thornton, P.E., 1999. MODIS daily 
photosynthesis (PSN) and annual net primary production (NPP) product (MOD17) 
Algorithm Theoretical Basis Document. University of Montana, SCF At-Launch 
Algorithm ATBD Documents (available online at: www. ntsg. umt. 
edu/modis/ATBD/ATBD_MOD17_v21. pdf). 

Samanta, A., Costa, M.H., Nunes, E.L., Vieira, S.A., Xu, L. and Myneni, R.B., 2011. 
Comment On “Drought-Induced Reduction In Global Terrestrial Net Primary 
Production From 2000 Through 2009”. Science 333(6046), pp.1093. 

Seedre, M., Taylor, A.R., Brassard, B.W., Chen, H.Y. and Jõgiste, K., 2014. Recovery of 
ecosystem carbon stocks in young boreal forests: a comparison of harvesting and 
wildfire disturbance. Ecosystems, 17(5), pp.851-863.  

Sellers, P.J., 1985. Canopy reflectance, photosynthesis and transpiration. International 
Journal of Remote Sensing, 6(8), pp.1335-1372. 

Senf, C., Seidl, R. and Hostert, P., 2017. Remote sensing of forest insect disturbances: 
current state and future directions. International Journal of Applied Earth Observation 
and Geoinformation, 60, pp.49-60. 

Serreze, M.C., Walsh, J.E., Chapin, F.S., Osterkamp, T., Dyurgerov, M., Romanovsky, 
V., Oechel, W.C., Morison, J., Zhang, T. and Barry, R.G., 2000. Observational 
evidence of recent change in the northern high-latitude environment. Climatic 
Change, 46(1-2), pp.159-207. 



 

	

152 

Shen, M., Cong, N. and Cao, R., 2015. Temperature sensitivity as an explanation of the 
latitudinal pattern of green�up date trend in Northern Hemisphere vegetation during 
1982–2008. International Journal of Climatology, 35(12), pp.3707-3712. 

Shen, M., Tang, Y., Chen, J., Yang, X., Wang, C., Cui, X., Yang, Y., Han, L., Li, L., Du, 
J. and Zhang, G., 2014. Earlier-season vegetation has greater temperature sensitivity 
of spring phenology in Northern Hemisphere. PLoS One, 9(2), p.e88178. 

Smith, N.G., Malyshev, S.L., Shevliakova, E., Kattge, J. and Dukes, J.S., 2016. Foliar 
temperature acclimation reduces simulated carbon sensitivity to climate. Nature 
Climate Change, 6(4), p.407. 

Soja, A.J., Tchebakova, N.M., French, N.H., Flannigan, M.D., Shugart, H.H., Stocks, 
B.J., Sukhinin, A.I., Parfenova, E.I., Chapin III, F.S. and Stackhouse Jr, P.W., 2007. 
Climate-induced boreal forest change: predictions versus current observations. Global 
and Planetary Change, 56(3-4), pp.274-296. 

Solomon, S., Qin, D., Manning, M., Averyt, K. and Marquis, M. eds., 2007. Climate 
change 2007-the physical science basis: Working group I contribution to the fourth 
assessment report of the IPCC (Vol. 4). Cambridge University Press. 

Sprengel, C., 1828. Von den Substanzen der Ackerkrume und des Untergrundes (About 
the substances in the plow layer and the subsoil). Journal für Technische und 
Ökonomische Chemie, 2, pp.423–474, and 3, pp.42–99, pp.313–352, pp.397–421. 

Statistics Canada, 2019. Total farm area and cropland area, Canada, 1921 to 2016. 
Accessed May 1, 2019 < https://www150.statcan.gc.ca/n1/daily-quotidien/170510/cg-
a002-eng.htm >. 

Stocks, B.J., Mason, J.A., Todd, J.B., Bosch, E.M., Wotton, B.M., Amiro, B.D., 
Flannigan, M.D., Hirsch, K.G., Logan, K.A., Martell, D.L. and Skinner, W.R., 2002. 
Large forest fires in Canada, 1959–1997. Journal of Geophysical Research: 
Atmospheres, 107(D1), pp.FFR-5. 

Sturm, M., Racine, C. and Tape, K., 2001. Climate change: increasing shrub abundance 
in the Arctic. Nature, 411(6837), p.546. 

Sulla-Menashe, D., Woodcock, C.E. and Friedl, M.A., 2018. Canadian boreal forest 
greening and browning trends: an analysis of biogeographic patterns and the relative 
roles of disturbance versus climate drivers. Environmental Research Letters, 13(1), 
p.014007. 

Tape, K.E.N., Sturm, M. and Racine, C., 2006. The evidence for shrub expansion in 
Northern Alaska and the Pan�Arctic. Global Change Biology, 12(4), pp.686-702. 



 

	

153 

Taylor, K.E., Stouffer, R.J. and Meehl, G.A., 2012. An overview of CMIP5 and the 
experiment design. Bulletin of the American Meteorological Society, 93(4), pp.485-
498. 

Thomson, A.M., Calvin, K.V., Smith, S.J., Kyle, G.P., Volke, A., Patel, P., Delgado-
Arias, S., Bond-Lamberty, B., Wise, M.A., Clarke, L.E. and Edmonds, J.A., 2011. 
RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Climatic Change, 
109(1-2), p.77. 

Thoning, K.W., Tans, P.P. and Komhyr, W.D., 1989. Atmospheric carbon dioxide at 
Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. Journal 
of Geophysical Research: Atmospheres, 94(D6), pp.8549-8565. 

Thornton, M.M., P.E. Thornton, Y. Wei, R.S. Vose, and A.G. Boyer. 2018. Daymet: 
Station-Level Inputs and Model Predicted Values for North America, Version 3. 
ORNL DAAC, Oak Ridge, Tennessee, USA. 
https://doi.org/10.3334/ORNLDAAC/1391  

Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S. and Wang, Y., 2015. 
Evaluating temporal consistency of long-term global NDVI datasets for trend 
analysis. Remote Sensing of Environment, 163, pp.326-340. 

Tømmervik, H., Bjerke, J.W., Park, T., Hanssen, F. and Myneni, R.B., Legacies of 
Historical Exploitation of Natural Resources Are More Important Than Summer 
Warming for Recent Biomass Increases in a Boreal–Arctic Transition Region. 
Ecosystems, pp.1-18. 

Tømmervik, H., Høgda, K.A. and Solheim, I., 2003. Monitoring vegetation changes in 
Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal 
Landsat MSS/TM data. Remote Sensing of Environment, 85(3), pp.370-388. 

Toutoubalina, O.V. and Rees, W.G., 1999. Remote sensing of industrial impact on Arctic 
vegetation around Noril'sk, northern Siberia: preliminary results. International Journal 
of Remote Sensing, 20(15-16), pp.2979-2990. 

Trenberth, K.E. and Fasullo, J.T., 2013. An apparent hiatus in global warming? Earth's 
Future, 1(1), pp.19-32. 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring 
vegetation. Remote Sensing of Environment, 8(2), pp.127-150. 

United States Forest Service (USFS), 2019. Timber Harvests (Feature Layer). Accessed 
May 1, 2019 <https://enterprisecontent-
usfs.opendata.arcgis.com/datasets/2228fa1c8ce94350984871e39acfeeaf_8>. 



 

	

154 

Vautard, R., Yiou, P. and Ghil, M., 1992. Singular-spectrum analysis: A toolkit for short, 
noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1-4), pp.95-126. 

Veraverbeke, S., Rogers, B.M., Goulden, M.L., Jandt, R.R., Miller, C.E., Wiggins, E.B. 
and Randerson, J.T., 2017. Lightning as a major driver of recent large fire years in 
North American boreal forests. Nature Climate Change, 7(7), p.529. 

Verbesselt, J., Hyndman, R., Newnham, G. and Culvenor, D., 2010. Detecting trend and 
seasonal changes in satellite image time series. Remote Sensing of Environment, 
114(1), pp.106-115. 

Verma, M., Friedl, M.A., Richardson, A.D., Kiely, G., Cescatti, A., Law, B.E., 
Wohlfahrt, G., Gielen, B., Roupsard, O., Moors, E.J. and Toscano, P., 2014. Remote 
sensing of annual terrestrial gross primary productivity from MODIS: An assessment 
using the FLUXNET La Thuile data set. Biogeosciences, 11, pp.2185–2200. 

Vogelsang, T.J., 1998. Trend function hypothesis testing in the presence of serial 
correlation. Econometrica, 66(1), pp.123-148. 

von Liebig, J.F., Playfair, L.P.B. and Webster, J.W., 1841. Organic chemistry in its 
applications to agriculture and physiology. J. Owen. 

Walker, D.A., Raynolds, M.K., Daniëls, F.J., Einarsson, E., Elvebakk, A., Gould, W.A., 
Katenin, A.E., Kholod, S.S., Markon, C.J., Melnikov, E.S. and Moskalenko, N.G., 
2005. The circumpolar Arctic vegetation map. Journal of Vegetation Science, 16(3), 
pp.267-282. 

Walther, G.R., 2010. Community and ecosystem responses to recent climate change. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 
pp.2019-2024. 

Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., Fromentin, 
J.M., Hoegh-Guldberg, O. and Bairlein, F., 2002. Ecological responses to recent 
climate change. Nature, 416(6879), p.389. 

Wang, J., Rich, P.M., Price, K.P. and Kettle, W.D., 2004. Relations between NDVI and 
tree productivity in the central Great Plains. International Journal of Remote Sensing, 
25(16), pp.3127-3138. 

Wang, X., Piao, S., Xu, X., Ciais, P., MacBean, N., Myneni, R.B. and Li, L., 2015. Has 
the advancing onset of spring vegetation green�up slowed down or changed abruptly 
over the last three decades? Global Ecology and Biogeography, 24(6), pp.621-631. 

Welp, L.R., Patra, P.K., Rödenbeck, C., Nemani, R., Bi, J., Piper, S.C. and Keeling, R.F., 
2016. Increasing summer net CO 2 uptake in high northern ecosystems inferred from 



 

	

155 

atmospheric inversions and comparisons to remote-sensing NDVI. Atmospheric 
Chemistry and Physics, 16(14), pp.9047-9066. 

White, J.C., Wulder, M.A., Hermosilla, T., Coops, N.C. and Hobart, G.W., 2017. A 
nationwide annual characterization of 25 years of forest disturbance and recovery for 
Canada using Landsat time series. Remote Sensing of Environment, 194, pp.303-321. 

White, M.A., de Beurs, K.M., Didan, K., Inouye, D.W., Richardson, A.D., Jensen, O.P., 
O'KEEFE, J.O.H.N., Zhang, G., Nemani, R.R., van Leeuwen, W.J. and Brown, J.F., 
2009. Intercomparison, interpretation, and assessment of spring phenology in North 
America estimated from remote sensing for 1982–2006. Global Change Biology, 
15(10), pp.2335-2359. 

White, M.A., Thornton, P.E. and Running, S.W., 1997. A continental phenology model 
for monitoring vegetation responses to interannual climatic variability. Global 
Biogeochemical Cycles, 11(2), pp.217-234. 

Xia, J., Niu, S., Ciais, P., Janssens, I.A., Chen, J., Ammann, C., Arain, A., Blanken, P.D., 
Cescatti, A., Bonal, D. and Buchmann, N., 2015. Joint control of terrestrial gross 
primary productivity by plant phenology and physiology. Proceedings of the National 
Academy of Sciences of the United States of America, 112(9), pp.2788-2793. 

Xu, L., Myneni, R.B., Chapin Iii, F.S., Callaghan, T.V., Pinzon, J.E., Tucker, C.J., Zhu, 
Z., Bi, J., Ciais, P., Tømmervik, H. and Euskirchen, E.S., 2013. Temperature and 
vegetation seasonality diminishment over northern lands. Nature Climate Change, 
3(6), p.581. 

Yamori, W., Hikosaka, K. and Way, D.A., 2014. Temperature response of photosynthesis 
in C 3, C 4, and CAM plants: temperature acclimation and temperature adaptation. 
Photosynthesis Research, 119(1-2), pp.101-117. 

Yan, K., Park, T., Yan, G., Chen, C., Yang, B., Liu, Z., Nemani, R., Knyazikhin, Y. and 
Myneni, R., 2016a. Evaluation of MODIS LAI/FPAR product collection 6. Part 1: 
Consistency and improvements. Remote Sensing, 8(5), p.359. 

Yan, K., Park, T., Yan, G., Liu, Z., Yang, B., Chen, C., Nemani, R., Knyazikhin, Y. and 
Myneni, R., 2016b. Evaluation of MODIS LAI/FPAR product collection 6. Part 2: 
Validation and intercomparison. Remote Sensing, 8(6), p.460. 

Yang, X., Tang, J., Mustard, J.F., Lee, J.E., Rossini, M., Joiner, J., Munger, J.W., 
Kornfeld, A. and Richardson, A.D., 2015. Solar�induced chlorophyll fluorescence 
that correlates with canopy photosynthesis on diurnal and seasonal scales in a 
temperate deciduous forest. Geophysical Research Letters, 42(8), pp.2977-2987. 



 

	

156 

Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. and Coomes, D., 2019. Advances in 
microclimate ecology arising from remote sensing. Trends in Ecology & Evolution, 
34(4), pp.327–341. 

Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C., Gao, F., Reed, B.C. 
and Huete, A., 2003. Monitoring vegetation phenology using MODIS. Remote 
Sensing of Environment, 84(3), pp.471-475. 

Zhang, Y., Guanter, L., Berry, J.A., Joiner, J., van der Tol, C., Huete, A., Gitelson, A., 
Voigt, M. and Köhler, P., 2014. Estimation of vegetation photosynthetic capacity 
from space�based measurements of chlorophyll fluorescence for terrestrial 
biosphere models. Global Change Biology, 20(12), pp.3727-3742. 

Zhao, F. and Zeng, N., 2014. Continued increase in atmospheric CO 2 seasonal amplitude 
in the 21st century projected by the CMIP5 Earth system models. Earth System 
Dynamics, 5(2), pp.423-439. 

Zhao, J., Zhang, H., Zhang, Z., Guo, X., Li, X. and Chen, C., 2015. Spatial and temporal 
changes in vegetation phenology at middle and high latitudes of the Northern 
Hemisphere over the past three decades. Remote Sensing, 7(8), pp.10973-10995. 

Zhao, M., Heinsch, F.A., Nemani, R.R. and Running, S.W., 2005. Improvements of the 
MODIS terrestrial gross and net primary production global data set. Remote Sensing 
of Environment, 95(2), pp.164-176. 

Zhou, S., Zhang, Y., Ciais, P., Xiao, X., Luo, Y., Caylor, K.K., Huang, Y. and Wang, G., 
2017. Dominant role of plant physiology in trend and variability of gross primary 
productivity in North America. Scientific Reports, 7, p.41366. 

Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R. 
and Myneni, R., 2013. Global data sets of vegetation leaf area index (LAI) 3g and 
fraction of photosynthetically active radiation (FPAR) 3g derived from global 
inventory modeling and mapping studies (GIMMS) normalized difference vegetation 
index (NDVI3g) for the period 1981 to 2011. Remote Sensing, 5(2), pp.927-948. 

Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., 
Friedlingstein, P., Arneth, A. and Cao, C., 2016. Greening of the Earth and its drivers. 
Nature Climate Change, 6(8), p.791. 

Zhu, Z., Wulder, M.A., Roy, D.P., Woodcock, C.E., Hansen, M.C., Radeloff, V.C., 
Healey, S.P., Schaaf, C., Hostert, P., Strobl, P. and Pekel, J.F., 2019. Benefits of the 
free and open Landsat data policy. Remote Sensing of Environment, 224, pp.382-385.



 157 

CURRICULUM VITAE 

 



 158 



 

	

159 



 

	

160 



 

	

161 



 

	

162 



 

	

163 



 164 



 

	

165 



 

	

166 




