199 research outputs found

    Validation and Opportunities of Electrocardiographic Imaging: From Technical chievements to Clinical Applications

    Get PDF
    [EN] Electrocardiographic imaging (ECGI) reconstructs the electrical activity of the heart from a dense array of body-surface electrocardiograms and a patient-specific heart-torso geometry. Depending on how it is formulated, ECGI allows the reconstruction of the activation and recovery sequence of the heart, the origin of premature beats or tachycardia, the anchors/hotspots of re-entrant arrhythmias and other electrophysiological quantities of interest. Importantly, these quantities are directly and non-invasively reconstructed in a digitized model of the patient's three-dimensional heart, which has led to clinical interest in ECGI's ability to personalize diagnosis and guide therapy. Despite considerable development over the last decades, validation of ECGI is challenging. Firstly, results depend considerably on implementation choices, which are necessary to deal with ECGI's ill-posed character. Secondly, it is challenging to obtain (invasive) ground truth data of high quality. In this review, we discuss the current status of ECGI validation as well as the major challenges remaining for complete adoption of ECGI in clinical practice. Specifically, showing clinical benefit is essential for the adoption of ECGI. Such benefit may lie in patient outcome improvement, workflow improvement, or cost reduction. Future studies should focus on these aspects to achieve broad adoption of ECGI, but only after the technical challenges have been solved for that specific application/pathology. We propose 'best' practices for technical validation and highlight collaborative efforts recently organized in this field. Continued interaction between engineers, basic scientists, and physicians remains essential to find a hybrid between technical achievements, pathological mechanisms insights, and clinical benefit, to evolve this powerful technique toward a useful role in clinical practice.This study received financial support from the Hein Wellens Fonds, the Cardiovascular Research and Training Institute (CVRTI), the Nora Eccles Treadwell Foundation, the National Institute of General Medical Sciences of the National Institutes of Health (P41GM103545), the National Institutes of Health (NIH HL080093), the French government as part of the Investments of the Future program managed by the National Research Agency (ANR-10-IAHU-04), from the VEGA Grant Agency in Slovakia (2/0071/16), from the Slovak Research and Development Agency (APVV-14-0875), the Fondo Europeo de Desarrollo Regional (FEDER), the Instituto de Salud Carlos III (PI17/01106) and from Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana (AICO/2018/267) and NIH grant (HL125998) and National Science Foundation (ACI-1350374).Cluitmans, M.; Brooks, D.; Macleod, RS.; Dossel, O.; Guillem Sánchez, MS.; Van Dam, P.; Svehlikova, J.... (2018). Validation and Opportunities of Electrocardiographic Imaging: From Technical chievements to Clinical Applications. Frontiers in Physiology. 9. https://doi.org/10.3389/fphys.2018.01305S9Andrews, C. M., Srinivasan, N. T., Rosmini, S., Bulluck, H., Orini, M., Jenkins, S., … Rudy, Y. (2017). Electrical and Structural Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy Determined Using Noninvasive Electrocardiographic Imaging and Late Gadolinium Magnetic Resonance Imaging. Circulation: Arrhythmia and Electrophysiology, 10(7). doi:10.1161/circep.116.005105Aras, K., Good, W., Tate, J., Burton, B., Brooks, D., Coll-Font, J., … MacLeod, R. (2015). Experimental Data and Geometric Analysis Repository—EDGAR. Journal of Electrocardiology, 48(6), 975-981. doi:10.1016/j.jelectrocard.2015.08.008Austen, W., Edwards, J., Frye, R., Gensini, G., Gott, V., Griffith, L., … Roe, B. (1975). A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation, 51(4), 5-40. doi:10.1161/01.cir.51.4.5Bayley, R. H., & Berry, P. M. (1962). The electrical field produced by the eccentric current dipole in the nonhomogeneous conductor. American Heart Journal, 63(6), 808-820. doi:10.1016/0002-8703(62)90065-0Bear, L. R., Huntjens, P. R., Walton, R. D., Bernus, O., Coronel, R., & Dubois, R. (2018). Cardiac electrical dyssynchrony is accurately detected by noninvasive electrocardiographic imaging. Heart Rhythm, 15(7), 1058-1069. doi:10.1016/j.hrthm.2018.02.024Bear, L. R., LeGrice, I. J., Sands, G. B., Lever, N. A., Loiselle, D. S., Paterson, D. J., … Smaill, B. H. (2018). How Accurate Is Inverse Electrocardiographic Mapping? Circulation: Arrhythmia and Electrophysiology, 11(5). doi:10.1161/circep.117.006108Berger, T., Fischer, G., Pfeifer, B., Modre, R., Hanser, F., Trieb, T., … Hintringer, F. (2006). Single-Beat Noninvasive Imaging of Cardiac Electrophysiology of Ventricular Pre-Excitation. Journal of the American College of Cardiology, 48(10), 2045-2052. doi:10.1016/j.jacc.2006.08.019Berger, T., Pfeifer, B., Hanser, F. F., Hintringer, F., Fischer, G., Netzer, M., … Seger, M. (2011). Single-Beat Noninvasive Imaging of Ventricular Endocardial and Epicardial Activation in Patients Undergoing CRT. PLoS ONE, 6(1), e16255. doi:10.1371/journal.pone.0016255Dubois, R., Pashaei, A., Duchateau, J., & Vigmond, E. (2016). Evaluation of Combined Noninvasive Electrocardiographic Imaging and Phase Mapping approach for Atrial Fibrillation: A Simulation Study. 2016 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2016.037-540Duchateau, J., Potse, M., & Dubois, R. (2017). Spatially Coherent Activation Maps for Electrocardiographic Imaging. IEEE Transactions on Biomedical Engineering, 64(5), 1149-1156. doi:10.1109/tbme.2016.2593003Erem, B., Brooks, D. H., van Dam, P. M., Stinstra, J. G., & MacLeod, R. S. (2011). Spatiotemporal estimation of activation times of fractionated ECGs on complex heart surfaces. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2011.6091455Erem, B., van Dam, P. M., & Brooks, D. H. (2014). Identifying Model Inaccuracies and Solution Uncertainties in Noninvasive Activation-Based Imaging of Cardiac Excitation Using Convex Relaxation. IEEE Transactions on Medical Imaging, 33(4), 902-912. doi:10.1109/tmi.2014.2297952Erkapic, D., & Neumann, T. (2015). Ablation of Premature Ventricular Complexes Exclusively Guided by Three-Dimensional Noninvasive Mapping. Cardiac Electrophysiology Clinics, 7(1), 109-115. doi:10.1016/j.ccep.2014.11.010Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586Faes, L., & Ravelli, F. (2007). A morphology-based approach to the evaluation of atrial fibrillation organization. IEEE Engineering in Medicine and Biology Magazine, 26(4), 59-67. doi:10.1109/memb.2007.384097Fitzpatrick, A. P., Gonzales, R. P., Lesh, M. D., odin, G. W., Lee, R. J., & Scheinman, M. M. (1994). New algorithm for the localization of accessory atrioventricular connections using a baseline electrocardiogram. Journal of the American College of Cardiology, 23(1), 107-116. doi:10.1016/0735-1097(94)90508-8Geselowitz, D. B. (1989). On the theory of the electrocardiogram. Proceedings of the IEEE, 77(6), 857-876. doi:10.1109/5.29327Geselowitz, D. B. (1992). Description of cardiac sources in anisotropic cardiac muscle. Journal of Electrocardiology, 25, 65-67. doi:10.1016/0022-0736(92)90063-6Ghanem, R. N., Jia, P., Ramanathan, C., Ryu, K., Markowitz, A., & Rudy, Y. (2005). Noninvasive Electrocardiographic Imaging (ECGI): Comparison to intraoperative mapping in patients. Heart Rhythm, 2(4), 339-354. doi:10.1016/j.hrthm.2004.12.022Ghosh, S., Rhee, E. K., Avari, J. N., Woodard, P. K., & Rudy, Y. (2008). Cardiac Memory in Patients With Wolff-Parkinson-White Syndrome. Circulation, 118(9), 907-915. doi:10.1161/circulationaha.108.781658Ghosh, S., Silva, J. N. A., Canham, R. M., Bowman, T. M., Zhang, J., Rhee, E. K., … Rudy, Y. (2011). Electrophysiologic substrate and intraventricular left ventricular dyssynchrony in nonischemic heart failure patients undergoing cardiac resynchronization therapy. Heart Rhythm, 8(5), 692-699. doi:10.1016/j.hrthm.2011.01.017Grace, A., Verma, A., & Willems, S. (2017). Dipole Density Mapping of Atrial Fibrillation. European Heart Journal, 38(1), 5-9. doi:10.1093/eurheartj/ehw585Dorset, D. L. (1996). Electron crystallography. Acta Crystallographica Section B Structural Science, 52(5), 753-769. doi:10.1107/s0108768196005599Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421HAISSAGUERRE, M., HOCINI, M., SHAH, A. J., DERVAL, N., SACHER, F., JAIS, P., & DUBOIS, R. (2013). Noninvasive Panoramic Mapping of Human Atrial Fibrillation Mechanisms: A Feasibility Report. Journal of Cardiovascular Electrophysiology, 24(6), 711-717. doi:10.1111/jce.12075Han, C., Pogwizd, S. M., Killingsworth, C. R., & He, B. (2011). Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia. Heart Rhythm, 8(8), 1266-1272. doi:10.1016/j.hrthm.2011.03.014Bin He, Guanglin Li, & Xin Zhang. (2003). Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Transactions on Biomedical Engineering, 50(10), 1190-1202. doi:10.1109/tbme.2003.817637Bin He, & Dongsheng Wu. (2001). Imaging and visualization of 3-D cardiac electric activity. IEEE Transactions on Information Technology in Biomedicine, 5(3), 181-186. doi:10.1109/4233.945288Horáček, B. M., Sapp, J. L., Penney, C. J., Warren, J. W., & Wang, J. J. (2011). Comparison of epicardial potential maps derived from the 12-lead electrocardiograms with scintigraphic images during controlled myocardial ischemia. Journal of Electrocardiology, 44(6), 707-712. doi:10.1016/j.jelectrocard.2011.08.009Horáček, B. M., Wang, L., Dawoud, F., Xu, J., & Sapp, J. L. (2015). Noninvasive electrocardiographic imaging of chronic myocardial infarct scar. Journal of Electrocardiology, 48(6), 952-958. doi:10.1016/j.jelectrocard.2015.08.035Jamil-Copley, S., Vergara, P., Carbucicchio, C., Linton, N., Koa-Wing, M., Luther, V., … Kanagaratnam, P. (2015). Application of Ripple Mapping to Visualize Slow Conduction Channels Within the Infarct-Related Left Ventricular Scar. Circulation: Arrhythmia and Electrophysiology, 8(1), 76-86. doi:10.1161/circep.114.001827Janssen, A. M., Potyagaylo, D., Dössel, O., & Oostendorp, T. F. (2017). Assessment of the equivalent dipole layer source model in the reconstruction of cardiac activation times on the basis of BSPMs produced by an anisotropic model of the heart. Medical & Biological Engineering & Computing, 56(6), 1013-1025. doi:10.1007/s11517-017-1715-xKnecht, S., Sohal, M., Deisenhofer, I., Albenque, J.-P., Arentz, T., Neumann, T., … Rostock, T. (2017). Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study. EP Europace, 19(8), 1302-1309. doi:10.1093/europace/euw168Kuck, K.-H., Schaumann, A., Eckardt, L., Willems, S., Ventura, R., Delacrétaz, E., … Hansen, P. S. (2010). Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. The Lancet, 375(9708), 31-40. doi:10.1016/s0140-6736(09)61755-4Identification of Rotors during Human Atrial Fibrillation Using Contact Mapping and Phase Singularity Detection: Technical Considerations. (2017). IEEE Transactions on Biomedical Engineering, 64(2), 310-318. doi:10.1109/tbme.2016.2554660Leong, K. M. W., Ng, F. S., Yao, C., Roney, C., Taraborrelli, P., Linton, N. W. F., … Varnava, A. M. (2017). ST-Elevation Magnitude Correlates With Right Ventricular Outflow Tract Conduction Delay in Type I Brugada ECG. Circulation: Arrhythmia and Electrophysiology, 10(10). doi:10.1161/circep.117.005107Chenguang Liu, Eggen, M. D., Swingen, C. M., Iaizzo, P. A., & Bin He. (2012). Noninvasive Mapping of Transmural Potentials During Activation in Swine Hearts From Body Surface Electrocardiograms. IEEE Transactions on Medical Imaging, 31(9), 1777-1785. doi:10.1109/tmi.2012.2202914MacLeod, R. S., Ni, Q., Punske, B., Ershler, P. R., Yilmaz, B., & Taccardi, B. (2000). Effects of heart position on the body-surface electrocardiogram. Journal of Electrocardiology, 33, 229-237. doi:10.1054/jelc.2000.20357Metzner, A., Wissner, E., Tsyganov, A., Kalinin, V., Schlüter, M., Lemes, C., … Kuck, K.-H. (2017). Noninvasive phase mapping of persistent atrial fibrillation in humans: Comparison with invasive catheter mapping. Annals of Noninvasive Electrocardiology, 23(4), e12527. doi:10.1111/anec.12527Modre, R., Tilg, B., Fischer, G., Hanser, F., Messnarz, B., Seger, M., … Roithinger, F. X. (2003). Atrial Noninvasive Activation Mapping of Paced Rhythm Data. Journal of Cardiovascular Electrophysiology, 14(7), 712-719. doi:10.1046/j.1540-8167.2003.02558.xNarayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022NG, J., KADISH, A. H., & GOLDBERGER, J. J. (2007). Technical Considerations for Dominant Frequency Analysis. Journal of Cardiovascular Electrophysiology, 18(7), 757-764. doi:10.1111/j.1540-8167.2007.00810.xOosterhoff, P., Meijborg, V. M. F., van Dam, P. M., van Dessel, P. F. H. M., Belterman, C. N. W., Streekstra, G. J., … Oostendorp, T. F. (2016). Experimental Validation of Noninvasive Epicardial and Endocardial Activation Imaging. Circulation: Arrhythmia and Electrophysiology, 9(8). doi:10.1161/circep.116.004104Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R., & Rudy, Y. (1997). Noninvasive Electrocardiographic Imaging. Circulation, 96(3), 1012-1024. doi:10.1161/01.cir.96.3.1012Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R., & Rudy, Y. (1998). Electrocardiographic Imaging. Circulation, 97(15), 1496-1507. doi:10.1161/01.cir.97.15.1496PEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931Ploux, S., Lumens, J., Whinnett, Z., Montaudon, M., Strom, M., Ramanathan, C., … Bordachar, P. (2013). Noninvasive Electrocardiographic Mapping to Improve Patient Selection for Cardiac Resynchronization Therapy. Journal of the American College of Cardiology, 61(24), 2435-2443. doi:10.1016/j.jacc.2013.01.093Potyagaylo, D., Segel, M., Schulze, W. H. W., & Dössel, O. (2013). Noninvasive Localization of Ectopic Foci: A New Optimization Approach for Simultaneous Reconstruction of Transmembrane Voltages and Epicardial Potentials. Lecture Notes in Computer Science, 166-173. doi:10.1007/978-3-642-38899-6_20Punshchykova, O., Švehlíková, J., Tyšler, M., Grünes, R., Sedova, K., Osmančík, P., … Kneppo, P. (2016). Influence of Torso Model Complexity on the Noninvasive Localization of Ectopic Ventricular Activity. Measurement Science Review, 16(2), 96-102. doi:10.1515/msr-2016-0013RAMANATHAN, C., & RUDY, Y. (2001). Electrocardiographic Imaging: II. Effect of Torso Inhomogeneities on Noninvasive Reconstruction of Epicardial Potentials, Electrograms, and Isochrones. Journal of Cardiovascular Electrophysiology, 12(2), 241-252. doi:10.1046/j.1540-8167.2001.00241.xReddy, V. Y., Reynolds, M. R., Neuzil, P., Richardson, A. W., Taborsky, M., Jongnarangsin, K., … Josephson, M. E. (2007). Prophylactic Catheter Ablation for the Prevention of Defibrillator Therapy. New England Journal of Medicine, 357(26), 2657-2665. doi:10.1056/nejmoa065457Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008ROTEN, L., PEDERSEN, M., PASCALE, P., SHAH, A., ELIAUTOU, S., SCHERR, D., … HAÏSSAGUERRE, M. (2012). Noninvasive Electrocardiographic Mapping for Prediction of Tachycardia Mechanism and Origin of Atrial Tachycardia Following Bilateral Pulmonary Transplantation. Journal of Cardiovascular Electrophysiology, 23(5), 553-555. doi:10.1111/j.1540-8167.2011.02250.xRudy, Y. (2013). Noninvasive Electrocardiographic Imaging of Arrhythmogenic Substrates in Humans. Circulation Research, 112(5), 863-874. doi:10.1161/circresaha.112.279315Ghosh, S., Avari, J. N., Rhee, E. K., Woodard, P. K., & Rudy, Y. (2008). Noninvasive electrocardiographic imaging (ECGI) of epicardial activation before and after catheter ablation of the accessory pathway in a patient with Ebstein anomaly. Heart Rhythm, 5(6), 857-860. doi:10.1016/j.hrthm.2008.03.011Rudy, Y., Plonsey, R., & Liebman, J. (1979). The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circulation Research, 44(1), 104-111. doi:10.1161/01.res.44.1.104SALINET, J. L., TUAN, J. H., SANDILANDS, A. J., STAFFORD, P. J., SCHLINDWEIN, F. S., & NG, G. A. (2013). Distinctive Patterns of Dominant Frequency Trajectory Behavior in Drug-Refractory Persistent Atrial Fibrillation: Preliminary Characterization of Spatiotemporal Instability. Journal of Cardiovascular Electrophysiology, 25(4), 371-379. doi:10.1111/jce.12331Dalu, Y. (1978). Relating the multipole moments of the heart to activated parts of the epicardium and endocardium. Annals of Biomedical Engineering, 6(4), 492-505. doi:10.1007/bf02584552Sánchez, C., Bueno-Orovio, A., Pueyo, E., & Rodríguez, B. (2017). Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics. Frontiers in Bioengineering and Biotechnology, 5. doi:10.3389/fbioe.2017.00029Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011Sapp, J. L., Bar-Tal, M., Howes, A. J., Toma, J. E., El-Damaty, A., Warren, J. W., … Horáček, B. M. (2017). Real-Time Localization of Ventricular Tachycardia Origin From the 12-Lead Electrocardiogram. JACC: Clinical Electrophysiology, 3(7), 687-699. doi:10.1016/j.jacep.2017.02.024Sapp, J. L., Dawoud, F., Clements, J. C., & Horáček, B. M. (2012). Inverse Solution Mapping of Epicardial Potentials. Circulation: Arrhythmia and Electrophysiology, 5(5), 1001-1009. doi:10.1161/circep.111.970160Sapp, J. L., Wells, G. A., Parkash, R., Stevenson, W. G., Blier, L., Sarrazin, J.-F., … Tang, A. S. L. (2016). Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. New England Journal of Medicine, 375(2), 111-121. doi:10.1056/nejmoa1513614Schulze, W. H. W., Chen, Z., Relan, J., Potyagaylo, D., Krueger, M. W., Karim, R., … Dössel, O. (2016). ECG imaging of ventricular tachycardia: evaluation against simultaneous non-contact mapping and CMR-derived grey zone. Medical & Biological Engineering & Computing, 55(6), 979-990. doi:10.1007/s11517-016-1566-xShah, D. C., Jaïs, P., Haïssaguerre, M., Chouairi, S., Takahashi, A., Hocini, M., … Clémenty, J. (1997). Three-dimensional Mapping of the Common Atrial Flutter Circuit in the Right Atrium. Circulation, 96(11), 3904-3912. doi:10.1161/01.cir.96.11.3904Shome, S., & Macleod, R. (s. f.). Simultaneous High-Resolution Electrical Imaging of Endocardial, Epicardial and Torso-Tank Surfaces Under Varying Cardiac Metabolic Load and Coronary Flow. Lecture Notes in Computer Science, 320-329. doi:10.1007/978-3-540-72907-5_33SIMMS, H. D., & GESELOWITZ, D. B. (1995). Computation of Heart Surface Potentials Using the Surface Source Model. Journal of Cardiovascular Electrophysiology, 6(7), 522-531. doi:10.1111/j.1540-8167.1995.tb00425.xSvehlikova, J., Teplan, M., & Tysler, M. (2018). Geometrical constraint of sources in noninvasive localization of premature ventricular contractions. Journal of Electrocardiology, 51(3), 370-377. doi:10.1016/j.jelectrocard.2018.02.013Tsyganov, A., Wissner, E., Metzner, A., Mironovich, S., Chaykovskaya, M., Kalinin, V., … Kuck, K.-H. (2018). Mapping of ventricular arrhythmias using a novel noninvasive epicardial and endocardial electrophysiology system. Journal of Electrocardiology, 51(1), 92-98. doi:10.1016/j.jelectrocard.2017.07.018Umapathy, K., Nair, K., Masse, S., Krishnan, S., Rogers, J., Nash, M. P., & Nanthakumar, K. (2010). Phase Mapping of Cardiac Fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(1), 105-114. doi:10.1161/circep.110.853804Van Dam, P. M., Oostendorp, T. F., Linnenbank, A. C., & van Oosterom, A. (2009). Non-Invasive Imaging of Cardiac Activation and Recovery. Annals of Biomedical Engineering, 37(9), 1739-1756. doi:10.1007/s10439-009-9747-5Van Oosterom, A. (2001). Genesis of the T wave as based on an equivalent surface source model. Journal of Electrocardiology, 34(4), 217-227. doi:10.1054/jelc.2001.28896Van Oosterom, A. (2002). Solidifying the solid angle. Journal of Electrocardiology, 35(4), 181-192. doi:10.1054/jelc.2002.37176Van Oosterom, A. (2004). ECGSIM: an interactive tool for stu

    Fiber Organization has Little Effect on Electrical Activation Patterns during Focal Arrhythmias in the Left Atrium

    Get PDF
    Over the past two decades there has been a steady trend towards the development of realistic models of cardiac conduction with increasing levels of detail. However, making models more realistic complicates their personalization and use in clinical practice due to limited availability of tissue and cellular scale data. One such limitation is obtaining information about myocardial fiber organization in the clinical setting. In this study, we investigated a chimeric model of the left atrium utilizing clinically derived patient-specific atrial geometry and a realistic, yet foreign for a given patient fiber organization. We discovered that even significant variability of fiber organization had a relatively small effect on the spatio-temporal activation pattern during regular pacing. For a given pacing site, the activation maps were very similar across all fiber organizations tested

    In Situ Procedure for High-Efficiency Computational Modeling of Atrial Fibrillation Reflecting Personal Anatomy, Fiber Orientation, Fibrosis, and Electrophysiology

    Get PDF
    We previously reported the feasibility and efficacy of a simulation-guided clinical catheter ablation of atrial fibrillation (AF) in an in-silico AF model. We developed a highly efficient realistic AF model reflecting the patient endocardial voltage and local conduction and tested its clinical feasibility. We acquired > 500 endocardial bipolar electrograms during right atrial pacing at the beginning of the AF ablation procedures. Based on the clinical bipolar electrograms, we generated simulated voltage maps by applying fibrosis and local activation maps adjusted for the fiber orientation. The software's accuracy (CUVIA2.5) was retrospectively tested in 17 patients and feasibility prospectively in 10 during clinical AF ablation. Results: We found excellent correlations between the clinical and simulated voltage maps (R = 0.933, p < 0.001) and clinical and virtual local conduction (R = 0.958, p < 0.001). The proportion of virtual local fibrosis was 15.4, 22.2, and 36.9% in the paroxysmal AF, persistent AF, and post-pulmonary vein isolation (PVI) states, respectively. The reconstructed virtual bipolar electrogram exhibited a relatively good similarities of morphology to the local clinical bipolar electrogram (R = 0.60 ± 0.08, p < 0.001). Feasibility testing revealed an in situ procedural computing time from the clinical data acquisition to wave-dynamics analyses of 48.2 ± 4.9 min. All virtual analyses were successfully achieved during clinical PVI procedures. We developed a highly efficient, realistic, in situ procedural simulation model reflective of individual anatomy, fiber orientation, fibrosis, and electrophysiology that can be applied during AF ablation.ope

    Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology

    Get PDF
    We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter–electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future

    A computational framework to benchmark basket catheter guided ablation in atrial fibrillation

    Get PDF
    Catheter ablation is a curative therapeutic approach for atrial fibrillation (AF). Ablation of rotational sources based on basket catheter measurements has been proposed as a promising approach in patients with persistent AF to complement pulmonary vein isolation. However, clinically reported success rates are equivocal calling for a mechanistic investigation under controlled conditions. We present a computational framework to benchmark ablation strategies considering the whole cycle from excitation propagation to electrogram acquisition and processing to virtual therapy. Fibrillation was induced in a patient-specific 3D volumetric model of the left atrium, which was homogeneously remodeled to sustain reentry. The resulting extracellular potential field was sampled using models of grid catheters as well as realistically deformed basket catheters considering the specific atrial anatomy. The virtual electrograms were processed to compute phase singularity density maps to target rotor tips with up to three circular ablations. Stable rotors were successfully induced in different regions of the homogeneously remodeled atrium showing that rotors are not constrained to unique anatomical structures or locations. Density maps of rotor tip trajectories correctly identified and located the rotors (deviation < 10 mm) based on catheter recordings only for sufficient resolution (inter-electrode distance ≤3 mm) and proximity to the wall (≤10 mm). Targeting rotor sites with ablation did not stop reentries in the homogeneously remodeled atria independent from lesion size (1–7 mm radius), from linearly connecting lesions with anatomical obstacles, and from the number of rotors targeted sequentially (≤3). Our results show that phase maps derived from intracardiac electrograms can be a powerful tool to map atrial activation patterns, yet they can also be misleading due to inaccurate localization of the rotor tip depending on electrode resolution and distance to the wall. This should be considered to avoid ablating regions that are in fact free of rotor sources of AF. In our experience, ablation of rotor sites was not successful to stop fibrillation. Our comprehensive simulation framework provides the means to holistically benchmark ablation strategies in silico under consideration of all steps involved in electrogram-based therapy and, in future, could be used to study more heterogeneously remodeled disease states as well

    CyberCardia: Patient-specific electrophysiological heart model for assisting left atrium arrhythmia ablation

    Full text link
    Atrial arrhythmia can be categorized into tachycardia, flutter, and fibrillation. Atrial fibrillation is a prevalent heart disease that results in weak and irregular contractions of the atria. It affects millions people worldwide and contributes to hundreds of thousands deaths annually. Cardiac ablation is among the most successful treatment options, involving the use of radio frequency energy to kill diseased cells or create lesion lines that obstruct abnormal activation waves. During the procedure, catheters are inserted into the left atrium to map the atrium geometry and record endocardium electrograms that are then converted into electroanatomical maps to pinpoint the arrhythmia source locations. However, identifying these sources is challenging. The electrograms are asynchronous and can be susceptible to noise. The spatial distribution of sampling sites is non-uniform, which leads to inaccurate maps. Identifying arrhythmia source locations is not a trivial task. Therefore, an ablation procedure often lasts from 3 to 6 hours, and arrhythmia recurrence within 12 months after first ablation is around 50%. To address these challenges, we developed an integrated computational heart mode for clinical left atrium arrhythmia ablation. Our system takes in the left atrium geometry and electrograms, processes them to extract regional tissue properties, which are used to tune a heart model, creating a patient-specific whole-atrium model. With this model, we can simulate and detect arrhythmia sources, and provide ablation assistance. To build such a system, we investigated the fiber effects on atrial activation patterns. We developed a fast heart model tuning method which takes only a few seconds of computation time on a personal computer, enabling real-time assistance during the ablation procedure. We achieved high accuracy in simulating arrhythmias, which we validated on patient data.Comment: PhD thesi

    Current Status and Future of Cardiac Mapping in Atrial Fibrillation

    Get PDF

    Personalized ablation vs. conventional ablation strategies to terminate atrial fibrillation and prevent recurrence

    Get PDF
    Aims The long-term success rate of ablation therapy is still sub-optimal in patients with persistent atrial fibrillation (AF), mostly due to arrhythmia recurrence originating from arrhythmogenic sites outside the pulmonary veins. Computational modelling provides a framework to integrate and augment clinical data, potentially enabling the patient-specific identification of AF mechanisms and of the optimal ablation sites. We developed a technology to tailor ablations in anatomical and functional digital atrial twins of patients with persistent AF aiming to identify the most successful ablation strategy. Methods and results Twenty-nine patient-specific computational models integrating clinical information from tomographic imaging and electro-anatomical activation time and voltage maps were generated. Areas sustaining AF were identified by a personalized induction protocol at multiple locations. State-of-the-art anatomical and substrate ablation strategies were compared with our proposed Personalized Ablation Lines (PersonAL) plan, which consists of iteratively targeting emergent high dominant frequency (HDF) regions, to identify the optimal ablation strategy. Localized ablations were connected to the closest non-conductive barrier to prevent recurrence of AF or atrial tachycardia. The first application of the HDF strategy had a success of >98% and isolated only 5–6% of the left atrial myocardium. In contrast, conventional ablation strategies targeting anatomical or structural substrate resulted in isolation of up to 20% of left atrial myocardium. After a second iteration of the HDF strategy, no further arrhythmia episode could be induced in any of the patient-specific models. Conclusion The novel PersonAL in silico technology allows to unveil all AF-perpetuating areas and personalize ablation by leveraging atrial digital twins
    corecore