530 research outputs found

    ๋“ค๋œฌ ์ƒํƒœ ์ „์ด๊ธˆ์† ์ด‰๋งค๋ฅผ ์‚ฌ์šฉํ•œ ํƒ„์†Œโ€“์งˆ์†Œ ๋ฐ ํƒ„์†Œโ€“ํ™ฉ ๊ฒฐํ•ฉํ˜•์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€, 2019. 2. ์ด์ฒ ๋ฒ”.Iridium and ruthenium polypyridyl complexes have become a powerful tool for harvesting visible-light photonic energy in organic reactions (Chapter 1). The 3MLCT complex formed after photo-excitation can activate molecules to their different electronic structures which can not be attained through thermal activation strategies. Moreover, an excited-state metal complex that can act as both strong reductant and oxidant in a redox catalytic cycle enables the cyclometalated complexes to mediate facile one-electron reduction and oxidation in a single reaction system. Additionally, triplet-excited states accessed via the Dexter energy transfer of the photocatalyst allow for organic chemists to bypass the poor absorbance and spin-orbit coupling during the unfavored intersystem crossing of most organic compounds. Using the single electron transfer mechanism of the photocatalyst, we developed a mild aromatic Cโ€“H functionalization protocol for the efficient synthesis of aniline derivatives (Chapter 2). The activation of an Nโ€“Cl bond via photoredox catalysis generated an electron-deficient nitrogen radical intermediate which subsequently furnished aryl amines from unactivated aromatic compounds. More specifically, in the presence of a catalytic amount of an iridium photocatalyst, irradiation with visible light-induced reduction of an Nโ€“Cl bond and oxidation of cyclohexadienyl radical intermediate, thus forming Cโ€“N bond by substituting aryl Csp2โ€“H bond. Transition metal-catalyzed cross-coupling of amines with aromatic halides have been widely utilized for the synthesis of aromatic amines which are mainstay fragments of widespread utility in various areas (Chapter 3). Decades of investigations have led to the structural sophistication of transition metal complexes to promote more efficient catalytic amination reactions. Recently, visible-light-activated photocatalysts have added a new dimension to this transition metal-catalyzed amination by involving a different electronic state of the cross-coupling catalyst. In this strategy, the insufficient reactivity of first-row transition metals is circumvented by changing the electronic structure of the organometallic intermediates. We have invented a nickel-catalyzed method for the sulfonamidation of aryl halides making use of a photocatalyst that helps bypass disfavored reductive elimination of NiII (Chapter 4). Using this dual-catalytic strategy, two complementary reaction conditions have been developed for the sulfonamidation of aromatic halides, one using ligand-free nickel and the other employing a small amount of dtbbpy ligand. Applying these two protocols, we have demonstrated that efficient sulfonamidation take place with a broad array of aromatic halides. Preliminary mechanistic studies have revealed that the triplet-excitation of the nickel center facilitates the Cโ€“N bond-making reductive elimination of the otherwise unreactive NiII amido complex. In addition, we have detected the bipyridyl ligand decomposition of an iridium photocatalyst. This observation further inspired us to propose the ligand to play an additional role in the recovery of a decomposed photocatalyst. Recently, there has been increased interest in the development of SO2 surrogates for the efficient synthesis of sulfinate salts en route to sulfones and sulfonamides. However, the arylation of sulfinates has relied on the harsh palladium-catalyzed sulfonylation process, which was developed more than ten years ago. Considering the importance of aryl sulfones in various pharmaceutical, agrochemical, and materials areas, we embarked on a research program aimed at the development of an alternative, more efficient palladium-catalyzed method for sulfonylation. We postulated that the inconvenient reaction conditions utilized in the traditional sulfone synthesis might be due to the impediment of a sulfinate ligand in the oxidative addition of the palladium center. Thus, we proposed a change of the oxidative addition pathway to involve the formation of an aryl radical intermediate by using visible light activation, which might provide rapid access to the palladium sulfinato complex. Based on this mechanistic proposition, our investigations led to the discovery of a visible-light-activated palladium-catalyzed sulfonylation reaction (Chapter 5). Preliminary mechanistic studies hinted at the involvement of a radical intermediate in the cross-coupling process. An alternative mechanism is also proposed which involves a one-electron oxidative addition to be responsible for electron transfer mediated radical formation.์ด๋ฆฌ๋“๊ณผ ๋ฃจํ…Œ๋Š„ ํด๋ฆฌํ”ผ๋ฆฌ๋”œ ๋ณตํ•ฉ์ฒด๋“ค์€ ์œ ๊ธฐํ™”ํ•™๋ฐ˜์‘์—์„œ ๊ด‘์ž์—๋„ˆ์ง€๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ๋Š” ํ›Œ๋ฅญํ•œ ๋„๊ตฌ๋กœ ์‚ฌ์šฉ๋˜์–ด ์™”๋‹ค(Chapter 1). ๋น›์„ ๋ฐ›์•„ 3MLCT ํ˜•ํƒœ๋กœ ๋“ค๋œฌ ์ด ๋ณตํ•ฉ์ฒด๋Š” ์—ด์  ํ™œ์„ฑ๋ฐฉ๋ฒ•์œผ๋กœ ํ˜•์„ฑํ•˜๊ธฐ ์–ด๋ ค์šด ์ „์ž๊ตฌ์กฐ์˜ ์ค‘๊ฐ„์ฒด ํ˜•์„ฑ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•œ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ๊ฐ•ํ•œ ์‚ฐํ™”์ œ์™€ ํ™˜์›์ œ๋กœ ๋™์‹œ์— ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ด 3MLCT ๋ณตํ•ฉ์ฒด๋กœ ์ธํ•ด ํ•˜๋‚˜์˜ ๋ฐ˜์‘์‹œ์Šคํ…œ์—์„œ ๋ถ„์ž์˜ ๋‹จ์ „์ž ํ™˜์›๊ณผ ์‚ฐํ™”๋ฅผ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ด ๋“ค๋œฌ ๊ณ ๋ฆฌํ˜• ๊ธˆ์†ํ™”ํ•ฉ๋ฌผ์˜ ๋ฑ์Šคํ„ฐ ์—๋„ˆ์ง€์ „์ด(Dexter Energy Transfer) ๊ธฐ์ž‘์€ ๋Œ€๋‹ค์ˆ˜ ์œ ๊ธฐ๋ถ„์ž๋“ค์˜ ํก๊ด‘ ๋ฐ ํ•ญ๊ฐ„๊ต์ฐจ์˜ ๋‚ฎ์€ ํšจ์œจ์„ ๊ทน๋ณตํ•˜๊ณ  ์ƒˆ๋กœ์šด ์‚ผ์ค‘ํ•ญ ์ƒํƒœ์˜ ๋“ค๋œฌ ๋ถ„์ž ํ˜•์„ฑ์— ์œ ์šฉํ•˜๊ฒŒ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ˆ˜๋‹จ์ด๋‹ค. ๊ด‘์ด‰๋งค์˜ ๋‹จ์ „์ž ์ „๋‹ฌ ๊ธฐ์ž‘์„ ์ด์šฉ, ์šฐ๋ฆฌ๋Š” ๋ฐฉํ–ฅ์กฑ ํƒ„์†Œโ€“์ˆ˜์†Œ ๊ฒฐํ•ฉ์„ ์งˆ์†Œ๋กœ ์น˜ํ™˜ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ•˜์˜€๊ณ  ์ด๋ฅผ ํ†ตํ•ด ํšจ์œจ์ ์œผ๋กœ ์•„๋‹๋ฆฐ ์œ ๋„์ฒด๋“ค์„ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค(Chapter 2). ์šฐ๋ฆฌ๋Š” ์ „์ž๊ฐ€ ๋ถ€์กฑํ•œ ์งˆ์†Œ ์ค‘์‹ฌ ๋ผ๋””์นผ์„ ๊ด‘์ด‰๋งค๋ฅผ ์‚ฌ์šฉํ•œ ์งˆ์†Œโ€“์—ผ์†Œ ๊ฒฐํ•ฉ์˜ ํ™œ์„ฑํ™”๋ฅผ ํ†ตํ•ด ํ˜•์„ฑํ•˜์˜€๊ณ , ์ด ์ค‘๊ฐ„์ฒด๋ฅผ ์ด์šฉํ•ด ํ™œ์„ฑํ™”๋˜์ง€ ์•Š์€ ๋ฐฉํ–ฅ์กฑํ™”ํ•ฉ๋ฌผ์— ์งˆ์†Œ ์น˜ํ™˜๊ธฐ๋ฅผ ๋„์ž…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ „์ด๊ธˆ์† ์ด‰๋งค๋ฅผ ์‚ฌ์šฉํ•œ ๋ฐฉํ–ฅ์กฑ ํ• ๋ผ์ด๋“œ์™€ ์•„๋ฏผ์˜ ์ง์ง€์Œ ๋ฐ˜์‘์€ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์— ์œ ์šฉํ•˜๊ฒŒ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉํ–ฅ์กฑ ์•„๋ฏผ์˜ ํ•ฉ์„ฑ์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค(Chapter 3). ์ด์— ๋Œ€ํ•œ ์ˆ˜๋…„๊ฐ„์˜ ์—ฐ๊ตฌ๋Š” ์ •๊ตํ•œ ๊ธˆ์†์ด‰๋งค์˜ ๊ฐœ๋ฐœ๋กœ ์ด์–ด์กŒ๊ณ , ์ด ์ด‰๋งค๋“ค์€ ํšจ์œจ์ ์ธ ๋ฐฉํ–ฅ์กฑ ์นœ์ „์ž์ฒด๋“ค์˜ ์•„๋ฏผํ™”๋ฐ˜์‘์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜์˜€๋‹ค. ์ตœ๊ทผ ๊ฐ€์‹œ๊ด‘์„ ์„ ์‚ฌ์šฉํ•œ ๊ด‘์ด‰๋งค๋Š” ์ƒˆ๋กœ์šด ์ „์ž์  ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋Š” ๊ธˆ์† ์ค‘๊ฐ„์ฒด๋ฅผ ์ด์ „์˜ ์ง์ง€์Œ ์ด‰๋งค ์ˆœํ™˜์— ๋„์ž…, ์ด๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๊ฐœ๋…์˜ ์•„๋ฏผํ™” ๋ฐ˜์‘์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์˜€๋‹ค. ์ด ์ „๋žต์˜ ์ค‘์š”์ ์€ 4์ฃผ๊ธฐ ์ „์ด๊ธˆ์†์˜ ๋ถ€์กฑํ•œ ๋ฐ˜์‘์„ฑ์„ ์ „์ž์  ๊ตฌ์กฐ ๋ณ€ํ™˜์„ ํ†ตํ•ด ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด๋ฅผ ํ™œ์šฉํ•ด ๋‹ˆ์ผˆ์˜ ๋Š๋ฆฐ ํ™˜์›์  ํƒˆ๋ฆฌ ๊ธฐ์ž‘์„ ์ „์ž์ ์œผ๋กœ ๋“ค๋œฌ ๋‹ˆ์ผˆ ์ค‘๊ฐ„์ฒด๋ฅผ ํ˜•์„ฑํ•ด ํ•ด๊ฒฐํ•˜์—ฌ์„œ ๋ฐฉํ–ฅ์กฑ ์นœ์ „์ž์ฒด์— ์„คํฐ์•„๋ฏธ๋“œ๊ธฐ๋ฅผ ๋„์ž…ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค(Chapter 4). ํŠนํžˆ, ๋ฆฌ๊ฐ„๋“œ์˜ ์กด์žฌ์— ๋”ฐ๋ผ ์ƒํ˜ธ๋ณด์™„์ ์ธ ๋ฐ˜์‘์„ฑ์„ ๋ณด์ด๋Š” ๋‘๊ฐœ์˜ ๋ฐ˜์‘์กฐ๊ฑด์„ ์ˆ˜๋ฆฝํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋„“์€ ๋ฒ”์œ„์˜ ๋ฐฉํ–ฅ์กฑ ํ™”ํ•ฉ๋ฌผ๋กœ๋ถ€ํ„ฐ 2์ฐจ ์„คํฐ์•„๋ฏธ๋“œ ํ™”ํ•ฉ๋ฌผ์„ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ดˆ๊ธฐ ๊ธฐ์ž‘์—ฐ๊ตฌ์—์„œ ์‚ผ์ค‘ํ•ญ ์ƒํƒœ๋กœ ๋“ค๋œฌ ๋‹ˆ์ผˆ ์ค‘๊ฐ„์ฒด๊ฐ€ ํƒ„์†Œโ€“์งˆ์†Œ ๊ฒฐํ•ฉ์˜ ํ™˜์›์  ํƒˆ๋ฆฌ ๊ณผ์ •์„ ์ด‰์ง„ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์‚ฌ์šฉ๋œ ๊ด‘์ด‰๋งค์˜ ๋ฐ”์ดํ”ผ๋ฆฌ๋”˜ ๋ฆฌ๊ฐ„๋“œ์˜ ์ด‰๋งค ์ดํƒˆ์„ ๊ด€์ธกํ•˜์˜€๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ณ„๋„๋กœ ์ฒจ๊ฐ€๋œ ๋ฆฌ๊ฐ„๋“œ๊ฐ€ ๋ถ„ํ•ด๋œ ๊ด‘์ด‰๋งค์˜ ํšŒ๋ณต์— ๊ด€์—ฌํ•œ๋‹ค๋Š” ๋ฆฌ๊ฐ„๋“œ์˜ ์ƒˆ๋กœ์šด ์—ญํ•  ๋˜ํ•œ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ ์„คํ•€์‚ผ์—ผ์˜ ํ•ฉ์„ฑ์„ ์œ„ํ•œ SO2 ๋Œ€์ฒดํ™”ํ•ฉ๋ฌผ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ด๋ฅผ ํ™œ์šฉํ•ด ์„คํฐ๊ณผ ์„คํฐ์•„๋ฏธ๋“œ ํ™”ํ•ฉ๋ฌผ์„ ํ•ฉ์„ฑํ•˜๋Š” ๊ฒƒ์ด ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์„คํ•€์‚ฐ์—ผ์œผ๋กœ๋ถ€ํ„ฐ ๋ฐฉํ–ฅ์กฑ ์„คํฐ ํ™”ํ•ฉ๋ฌผ์„ ํ•ฉ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์—ฌ์ „ํžˆ ๊ณ ์ „์  ํŒ”๋ผ๋“ ์ด‰๋งค ๋ฐ˜์‘์„ ํ†ตํ•ด ์ˆ˜ํ–‰๋˜์–ด ์™”๋‹ค. ๋ฐฉํ–ฅ์กฑ ์„คํฐ์€ ์˜์•ฝ, ๋†์•ฝ ๊ทธ๋ฆฌ๊ณ  ์žฌ๋ฃŒ ๋ถ„์•ผ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ค‘์š”ํ•œ ๊ตฌ์กฐ์ด๊ธฐ ๋•Œ๋ฌธ์— ์šฐ๋ฆฌ๋Š” ์ด ์„คํฐ ํ™”ํ•ฉ๋ฌผ์˜ ํ•ฉ์„ฑ์„ ์œ„ํ•ด ๊ธฐ์กด์˜ ํŒ”๋ผ๋“ ์ด‰๋งค ๋ฐ˜์‘๋ณด๋‹ค ๋” ํšจ์œจ์ ์ธ ๋Œ€์•ˆ์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด์ „์˜ ํŒ”๋ผ๋“์„ ์ด์šฉํ•œ ์„คํฐ ํ•ฉ์„ฑ์˜ ๋†’์€ ๋ฐ˜์‘์˜จ๋„ ์กฐ๊ฑด์˜ ์›์ธ์„ ์„คํ•€์‚ผ์—ผ์˜ ์ž‘์šฉ์— ์˜ํ•œ ์‚ฐํ™”์  ์ฒจ๊ฐ€ ๊ธฐ์ž‘์˜ ์ €ํ•ด์ผ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ€์‹œ๊ด‘์„ ์„ ์ด์šฉํ•ด ํŒ”๋ผ๋“์˜ ์‚ฐํ™”์  ์ฒจ๊ฐ€ ๊ธฐ์ž‘์„ ๋ณ€ํ™˜ํ•˜์—ฌ ์•„๋ฆด ๋ผ๋””์นผ ์ค‘๊ฐ„์ฒด๋ฅผ ํ˜•์„ฑํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋น ๋ฅด๊ฒŒ ์œ ๊ธฐ๊ธˆ์† ํŒ”๋ผ๋“ ์ค‘๊ฐ„์ฒด๋ฅผ ํ˜•์„ฑํ•œ๋‹ค๋ฉด ๋ณด๋‹ค ๋” ํšจ์œจ์ ์ธ ์„คํฐ ํ•ฉ์„ฑ๋ฒ•์„ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜์˜€๋‹ค. ์ด ์ œ์•ˆ์„ ๋ฐ”ํƒ•์œผ๋กœ ์šฐ๋ฆฌ๋Š” ๊ฐ€์‹œ๊ด‘์„ ์— ์˜ํ•ด ํ™œ์„ฑํ™”๋˜๋Š” ํŒ”๋ผ๋“ ์ด‰๋งค ์„คํฐ ํ•ฉ์„ฑ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค(Chapter 5). ์ดˆ๊ธฐ ๊ธฐ์ž‘์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ํƒ„์†Œ ๋ผ๋””์นผ ์ค‘๊ฐ„์ฒด๊ฐ€ ๋ฐ˜์‘์— ๊ด€์—ฌํ•œ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ๋ผ๋””์นผ ์ค‘๊ฐ„์ฒด์˜ ํ˜•์„ฑ์ด ๋‹จ์ „์ž์˜ ์ „๋‹ฌ์ด ์•„๋‹Œ ๋‹จ์ „์ž ์‚ฐํ™”์  ์ฒจ๊ฐ€๋ฅผ ํ†ตํ•œ ํƒ„์†Œ ๋ผ๋””์นผ์˜ ํ˜•์„ฑ์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฐ˜์‘ ๊ธฐ์ž‘๋„ ์ œ์•ˆํ•˜์˜€๋‹ค.Chapter 1. Visible-Light-Activated Ruthenium and Iridium Photocatalysts 1 1.1. Brief Introduction to Photochemical Organic Reactions 1 1.2. Ruthenium and Iridium Photocatalysts in Organic Synthesis 3 1.3. Photochemical Properties of Ruthenium and Iridium Polypyridyl Complexes 5 1.4. Conclusion 11 1.5. References 12 Chapter 2. Radical Cโ€“H Amination of Aromatic Compounds 14 2.1. Introduction to Nitrogen-Centered Radicals 14 2.2. Visible Light-Mediated Synthesis of Nitrogen Radicals 16 2.3. Nitrogen-Centered Radical-Mediated Cโ€“H Imidation of Arenes 19 2.3.1. Discovery and Optimization of Reaction Conditions 21 2.3.2. Reaction Scope 23 2.3.3. Photoredox-Catalyzed Cโ€“H Amination of Arenes 27 2.4. Conclusion 28 2.5. References 29 2.6. Experimental Section 31 2.6.1. General Information 31 2.6.2. General Imidation Procedure 32 2.6.3. Experimental Data for Imidation 34 2.6.4. References Cited 54 Chapter 3. Transition Metal-Catalyzed Cโ€“N Bond Synthesis 55 3.1. Cross-Coupling of Aromatic Bromides and Amines 55 3.1.1. Palladium- and Nickel-Catalyzed Amination 58 3.1.2. Copper-Catalyzed Amination 60 3.1.3. Recent Palladium-, Nickel-, and Copper-Catalyzed Amination 61 3.2. Photoinduced Cross-Coupling Chemistry 62 3.2.1. Photoredox/Nickel-Catalyzed Amination 62 3.2.2. Photoinduced Copper-Catalyzed Amination 64 3.3. Conclusion 66 3.4. References 67 Chapter 4. Photosensitized Nickel-Catalyzed Cโ€“N Bond Synthesis 69 4.1. Photosensitized Nickel Catalysis 69 4.1.1. Halogen Radical Formation by Excited Nickel Catalysis 70 4.1.2. Ether Bond Synthesis by Excited Nickel Catalysis 72 4.2. Photosensitized Nickel-Catalyzed Sulfonamidation of Aryl Halides 74 4.2.1. Discovery and Optimization of Sulfonamidation 77 4.2.2. Reaction Scope 91 4.2.3. Mechanistic Studies 99 4.2.4. Photocatalyst Decomposition Studies 103 4.3. Conclusion 108 4.4. References 109 4.5. Experimental Section 112 4.5.1. General Information 112 4.5.2. Preparation of Substrates 113 4.5.3. General Sulfonamidation Procedure 117 4.5.4. Experimental Data for Sulfonamidation Products 120 4.5.5. Stoichiometric Ligated Nickel Reductive Elimination 157 4.5.6. Photocatalyst Decomposition Studies 157 4.5.7. Oxidative Addition Rates 158 4.5.8. References Cited 159 Chapter 5. Transition Metal-Catalyzed Cโ€“S Bond Synthesis 160 5.1. Transition Metal-Catalyzed Sulfonylation of Aryl Halides 160 5.1.1 Palladium-, and Copper-Catalyzed Sulfone Synthesis 161 5.1.2. Photoredox/Nickel-Catalyzed Sulfone Synthesis 162 5.2. Visible-Light-Activated Palladium Catalysis 164 5.3. Visible-Light-Activated Palladium-Catalyzed Sulfonylation of Aryl Halides 167 5.3.1. Discovery and Optimization of Sulfonylation 169 5.3.2. Reaction Scope 175 5.3.3. Mechanistic Studies 177 5.4. Conclusion 181 5.5. References 182 5.6. Experimental Section 185 5.6.1. General Information 185 5.6.2. Preparation of Substrates 186 5.6.3. General Sulfonylation Procedure 192 5.6.4. Experimental Data for Sulfonylation Products 193 5.6.5. Additional Observations during Alkene Addition Studies 201 5.6.6. Radical Trapping Experiment 202 5.6.7. Redox-Active Ester Experiments 203 5.6.8. Intermolecular Radical Addition Experiments 204 5.6.9. References Cited 205 Abstract in Korean 206Docto

    Prototype Development of a Deployable Measurement System for Civil Infrastructures

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€,2019. 8. ๊น€ํ˜ธ๊ฒฝ.Although the science of theoretical fluid mechanics has been well developed and the computational methods are rapidly advancing, the measurement of the wind-induced pressure and vibration of civil infrastructures, such as long-span bridges, high-rise buildings, wind barriers, etc., is essential to understand the structural performance of the infrastructure. The conventional measurement system requires many devices such as a power source, a data acquisition device, sensors, cables, etc., which pose difficulty in installation and measurement on bridges or buildings that are in use. Therefore, it is necessary to develop a miniaturized device so that researchers and engineers can easily obtain wind-induced pressure and vibration data at any desired locations without interrupting the use of the infrastructure. This paper proposes a prototype development which can measure wind pressure acting on a structure and acceleration of the structure. In this study, micro-electronic-mechanical-system (MEMS) sensors are used in the prototype device such as acceleration and pressure sensors. It is expected that the successful development of the sensor module will help engineers and researchers measure wind pressure acting on a structure and associated structural vibration.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ† ๋ชฉ ์ธํ”„๋ผ ๊ตฌ์กฐ๋ฌผ์˜ ๋™์  ํŠน์„ฑ์„ ๊ณ„์ธกํ•˜๊ธฐ ์œ„ํ•œ ์„ค์น˜ ํŽธ์˜ํ˜• ๊ณ„์ธก ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด๋ก ์  ์œ ์ฒด์—ญํ•™์ด ์ง€์†์ ์œผ๋กœ ๋ฐœ์ „๋˜์—ˆ๊ณ  ์œ ์ฒด์˜ ํ๋ฆ„์„ ํ•ด์„ํ•˜๋Š” ๋ฐฉ๋ฒ•๋“ค์ด ๋น ๋ฅด๊ฒŒ ๊ฐœ๋ฐœ๋˜์—ˆ์ง€๋งŒ, ์žฅ๋Œ€๊ต๋Ÿ‰๊ณผ ๊ณ ์ธต๋นŒ๋”ฉ, ๋ฐฉํ’๋ฒฝ ๋“ฑ๊ณผ ๊ฐ™์ด ๋ฐ”๋žŒ์˜ ์˜ํ–ฅ์œผ๋กœ ์ง„๋™์ด ํฌ๊ฒŒ ๋ฐœ์ƒํ•˜๋Š” ์ธํ”„๋ผ ๊ตฌ์กฐ๋ฌผ๋“ค์€ ์‹ค์ œ ์›€์ง์ž„์„ ๊ณ„์ธกํ•˜์—ฌ ๋™์  ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ํ˜„์žฌ ๊ณ„์ธก ์‹œ์Šคํ…œ์€ ๋ฐœ์ „๊ธฐ์™€ ๋ฐ์ดํ„ฐ ์ €์žฅ์žฅ์น˜, ์„ผ์„œ, ์ผ€์ด๋ธ” ๋“ฑ ๋งŽ์€ ์žฅ๋น„๊ฐ€ ํ•„์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ์šด์˜ ์ค‘์ธ ๊ต๋Ÿ‰๊ณผ ๊ณ ์ธต๋นŒ๋”ฉ์— ์„ค์น˜ํ•˜์—ฌ ๊ณ„์ธกํ•˜๋Š” ๊ณผ์ •์— ๋งŽ์€ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ „์›๊ณผ ๋ฐ์ดํ„ฐ ์ €์žฅ์žฅ์น˜, ์„ผ์„œ๊ฐ€ ์ผ์ฒดํ™”๋œ ๋ฌด์„  ๊ณ„์ธก ์žฅ์น˜๋ฅผ ๊ฐœ๋ฐœํ•  ํ•„์š”๊ฐ€ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์—ฐ๊ตฌ์ž์™€ ๊ณตํ•™์ž๋“ค์ด ์ธํ”„๋ผ ๊ตฌ์กฐ๋ฌผ ์šด์˜์— ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š์œผ๋ฉด์„œ ์›ํ•˜๋Š” ์ง€์ ์—์„œ ๊ตฌ์กฐ๋ฌผ์˜ ์ง„๋™์„ ๊ณ„์ธกํ•˜๋Š” ๊ฒƒ์— ๋„์›€์„ ์ค„ ๊ฒƒ์ด๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” GPS๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธฐ๊ธฐ๊ฐ„ ์‹œ๊ฐ„ ๋™๊ธฐํ™”๋ฅผ ์œ ์ง€ํ•˜๊ณ , MEMS ๊ฐ€์†๋„ ์„ผ์„œ ๋ฐ MEMS ์••๋ ฅ ์„ผ์„œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ตฌ์กฐ๋ฌผ์˜ ์ง„๋™๊ณผ ๊ตฌ์กฐ๋ฌผ์— ์ž‘์šฉํ•˜๋Š” ์••๋ ฅ์„ ๊ณ„์ธกํ•˜๋Š” ์„ค์น˜ ํŽธ์˜ํ˜• ๊ณ„์ธก ์žฅ์น˜๋ฅผ ์ œ์•ˆํ•œ๋‹ค.TABLE OF CONTENTS CHAPTER 1 1 INTRODUCTION 1 1.1 RESEARCH BACKGROUND 1 1.2 PREVIOUS WORK AND PROBLEM DEFINITION 3 1.3 ISSUES OF COMMERCIAL WIRELESS SENSOR 3 1.4 ISSUES OF DESIGNED WIRELESS SENSOR 4 1.5 PROTOTYPE OF DEPLOYABLE MEASUREMENT DEVICE 5 CHAPTER 2 7 TIME SYNCHRONIZATION 7 2.1 MICRO CONTROL UNIT (MCU) CLOCK 7 2.2 REAL TIME CLOCK (RTC) 8 2.3 GLOBAL POSITIONING SYSTEM (GPS) 10 CHAPTER 3 13 ACCELEROMETER 13 3.1 TYPE OF ACCELEROMETER 13 3.1.1 Piezo electric type accelerometer 13 3.1.2 Capacitive type accelerometer 14 3.2 ACCELEROMETER VALIDATION TEST 15 3.2.1 Sinusoidal motion 16 3.2.2 Seismic motion 19 3.3 APPLICATION OF PROPOSED DEVICE 20 3.3.1 Suspended footbridge 21 CHAPTER 4 34 PRESSURE SENSOR 34 4.1 TYPE OF PRESSURE SENSOR 34 4.1.1 Piezo-resistive type pressure sensor 34 4.2 PRESSURE SENSOR VALIDATION TEST 35 4.2.1 Pressure change test according to volume change in closed cylinder 35 4.2.2 Pressure change test according to wind speed in wind tunnel test 37 CHAPTER 5 42 SUMMARY AND CONCLUSIONS 42 REFERENCES 44Maste

    HoMnO3 ์™€ Cd2Os2O7 ์— ๋Œ€ํ•œ ๋งˆ๊ทธ๋…ผ-ํฌ๋…ผ ๊ฒฐํ•ฉ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€(๋ฌผ๋ฆฌํ•™์ „๊ณต), 2021. 2. ๋ฐ•์ œ๊ทผ.Interactions between fundamental degrees of freedom in solids are essential in the modern condensed matter physics field. Since such interactions exist in most cases, it is crucial to determine the interaction mechanism's consequence. Spin-lattice coupling is a type of these interactions in which interactions occur between the spin and lattice degrees of freedom. Although it is an old concept already appearing in literature in the 1950s, a complete understanding of the spin-lattice coupling is still lacking. For example, magnonโ€“phonon coupling, the dynamical aspect of spin-lattice coupling, has been recently studied in hexagonal manganite and delafossite chromates by taking advantage of the state-of-the-art neutron and X-ray instruments. Both are noncollinear magnets with a triangular lattice. Because of the nonocollinearity, the interaction between magnon and phonon or magnon is expected to exist theoretically. Although studies have successfully explained several features that arise from the couplings, they are limited to quantifying two different interactions. The inelastic neutron scattering study on HoMnO3 can reveal the anomalous features in magnon dispersions and which is the dominant interaction. The simple linear spin-wave theory cannot reproduce the measured magnon spectra, the energy renormalization of overall magnons, and the unexpected dispersion shape. Using models including magnonโ€“magnon interaction and magnonโ€“phonon coupling, we can demonstrate that the dominant interaction in HoMnO3 is the magnonโ€“phonon coupling that originates through the exchange-striction mechanism. The exchange-striction model is the usual candidate to explain the spin-lattice coupling that appeared in magnetic materials. However, unconventional spin-phonon (SP) coupling occurs in the 5d transition metal oxide Cd2Os2O7. The phonons obtained by the infra-red optical spectroscopy study show that strong energy renormalization occurs through spin ordering. The main driving factor for the SP coupling has been known to be single-ion anisotropy. Since phonons measured by optical spectroscopy is limited to a long-wavelength limit, more comprehensive investigations of the phonons are highly desirable to shed light on the spin-phonon coupling. We studied the phonon mode and momentum dependence of the SP coupling using inelastic X-ray scattering experiments. Our first-principle calculations considering spin-orbit coupling (SOC) and noncollinear magnetic structure are in good agreement with the phonons at the coupled phase, suggesting that our theoretical model captures the SP coupling physics without invoking any other factors. By controlling the SOC strength, we can reproduce the observed phonon mode dependency and temperature dependence of the SP coupling. As a result, SOC is assumed to be the primary factor for SP coupling.์‘์ง‘๋ฌผ์งˆ๋ฌผ๋ฆฌํ•™์—์„œ ๊ณ ์ฒด ๋‚ด์˜ ๊ธฐ๋ณธ์ ์ธ ์ž์œ ๋„ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์€ ํ”ํžˆ ๋‚˜ํƒ€๋‚˜๋Š” ํ•„์ˆ˜์ ์ธ ํ˜„์ƒ์ด๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ ์ด๋Ÿฐ ์ƒํ˜ธ์ž‘์šฉ๋“ค์ด ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ๊ฐ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ ๊ทธ์— ๋”ฐ๋ฅธ ๊ฒฐ๊ณผ๋“ค์„ ๊ทœ๋ช…ํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ์Šคํ•€-๊ฒฉ์ž ๊ฒฐํ•ฉ์€ ํ•˜๋‚˜์˜ ์˜ˆ๋กœ์„œ ๊ณ ์ฒด ๋‚ด ์Šคํ•€๊ณผ ๊ฒฉ์ž ์ž์œ ๋„ ๊ฐ„์˜ ๊ฒฐํ•ฉ์„ ๋งํ•œ๋‹ค. 1950๋…„๋Œ€๋ถ€ํ„ฐ ์—ฐ๊ตฌ๊ฐ€ ์‹œ์ž‘๋œ ์˜ค๋ž˜๋œ ๊ฐœ๋…์ด์ง€๋งŒ ์•„์ง ์™„์ „ํžˆ ์ดํ•ด๋˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค. ์Šคํ•€-๊ฒฉ์ž ๊ฒฐํ•ฉ์˜ ํ•œ ๋ถ€๋ถ„์ธ ๋งˆ๊ทธ๋…ผ-ํฌ๋…ผ ๊ฒฐํ•ฉ (magnon-phonon coupling) ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ค‘์„ฑ์ž ๋ฐ ์—‘์Šค์„  ๊ธฐ์ˆ  ๋ฐœ๋‹ฌ์— ์˜ํ•ด ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด ์ง€๊ณ  ์žˆ๊ณ  ํŠนํžˆ RMnO3 ๋‚˜ ACrO2 ๋“ฑ์˜ ๋ฌผ์งˆ์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ๋‘ ๋ฌผ์งˆ ๋ชจ๋‘ ๋น„์„ ํ˜• ์ž๊ธฐ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋Š” ์‚ผ๊ฐ๊ฒฉ์ž ์ž์„ฑ์ฒด์ด๋‹ค. ์ด๋ก ์ ์œผ๋กœ ๋น„์„ ํ˜• ์ž๊ธฐ๊ตฌ์กฐ์—์„œ ๋งˆ๊ทธ๋…ผ-ํฌ๋…ผ ๊ฒฐํ•ฉ์ด๋‚˜ ๋งˆ๊ทธ๋…ผ-๋งˆ๊ทธ๋…ผ ์ƒํ˜ธ์ž‘์šฉ (magnon-magnon interaction) ์ด ์ผ์–ด๋‚  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ์—์„œ ์ด๋ฏธ ๋งˆ๊ทธ๋…ผ-ํฌ๋…ผ ๊ฒฐํ•ฉ ๋ฐ ๋งˆ๊ทธ๋…ผ-๋งˆ๊ทธ๋…ผ ์ƒํ˜ธ์ž‘์šฉ์— ์˜ํ•ด ๋‚˜ํƒ€๋‚˜๋Š” ์—ฌ๋Ÿฌ ์ด์ƒ ํ˜„์ƒ๋“ค์ด ์‹คํ—˜์ ์œผ๋กœ ๊ด€์ธก๋˜์—ˆ์ง€๋งŒ, ๋‘ ์ƒํ˜ธ์ž‘์šฉ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๋น„๊ตํ•˜๋Š” ๋ฐ์— ํ•œ๊ณ„๊ฐ€ ๋“œ๋Ÿฌ๋‚˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ์ฒซ ๋ถ€๋ถ„์—์„œ๋Š” ๋น„ํƒ„์„ฑ ์ค‘์„ฑ์ž ์‚ฐ๋ž€ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ HoMnO3 ์˜ ๋งˆ๊ทธ๋…ผ ๋ถ„์‚ฐ ๊ด€๊ณ„๋ฅผ ์ธก์ •ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋งˆ๊ทธ๋…ผ-ํฌ๋…ผ ๊ฒฐํ•ฉ ๋ฐ ๋งˆ๊ทธ๋…ผ-๋งˆ๊ทธ๋…ผ ์ƒํ˜ธ์ž‘์šฉ์— ๊ธฐ์ธํ•˜๋Š” ์ด์ƒํ˜„์ƒ๋“ค์„ ๊ด€์ธกํ•œ ์—ฐ๊ตฌ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ๋˜ํ•œ ์„ธ ๊ฐ€์ง€์˜ ๋‹ค๋ฅธ ์ด๋ก ์  ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ๋‘ ์ƒํ˜ธ์ž‘์šฉ ์ค‘ ์–ด๋–ค ๋ถ€๋ถ„์ด ๋” ์˜ํ–ฅ์„ ์ฃผ๋Š”์ง€ ๊ทœ๋ช…ํ•œ๋‹ค. ๊ฐ„๋‹จํ•œ ์„ ํ˜• ์Šคํ•€ํŒŒ ์ด๋ก ์œผ๋กœ ๋Œ€๋ถ€๋ถ„์˜ ๋งˆ๊ทธ๋…ผ์„ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ๋งˆ๊ทธ๋…ผ-ํฌ๋…ผ ๊ฒฐํ•ฉ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ๊ณ„์‚ฐ์œผ๋กœ ๋งˆ๊ทธ๋…ผ ์—๋„ˆ์ง€ ์žฌ๊ทœ๊ฒฉํ™” ํ˜„์ƒ๊ณผ ๋งˆ๊ทธ๋…ผ ๋ถ„์‚ฐ๊ด€๊ณ„๋ฅผ ์™„์ „ํžˆ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ, ์ธก์ •๋˜๋Š” ์‹ ํ˜ธ์˜ ์„ธ๊ธฐ๊นŒ์ง€ ์ผ์น˜ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณผ ๋•Œ, ๋งˆ๊ทธ๋…ผ-ํฌ๋…ผ ๊ฒฐํ•ฉ์ด HoMnO3 ์—์„œ ๋” ์ง€๋ฐฐ์ ์ธ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋งˆ๊ทธ๋…ผ-ํฌ๋…ผ ๊ฒฐํ•ฉ์„ ์„ค๋ช…ํ•  ๋•Œ์— ํ”ํžˆ ์“ฐ์ด๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ exchange-striction ๋ชจ๋ธ์ด ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์Šคํ•€-๊ถค๋„ ๊ฒฐํ•ฉ (spin-orbit coupling) ์ด ๊ฐ•ํ•  ๊ฒฝ์šฐ ๋‹ค๋ฅธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ์Šคํ•€-๊ฒฉ์ž ๊ฒฐํ•ฉ์ด ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. 5d ์ „์ด ๊ธˆ์† ์‚ฐํ™”๋ฌผ ์ค‘์˜ ํ•˜๋‚˜์ธ Cd2Os2O7 ์—์„œ ๊ฐ•ํ•œ ์ž๊ธฐ ์ด๋ฐฉ์„ฑ์œผ๋กœ ์ธํ•ด ๋‚˜ํƒ€๋‚˜๋Š” ์Šคํ•€-ํฌ๋…ผ ๊ฒฐํ•ฉ (spin-phonon coupling) ์ด ๊ด€์ธก๋˜์—ˆ๋‹ค. ๊ด‘ํ•™์  ๋ถ„๊ด‘๋ฒ•์œผ๋กœ ์ธก์ •ํ•œ ํฌ๋…ผ์—์„œ ์ž๊ธฐ ์ƒ์ „์ด ์ „ํ›„๋กœ ํฌ๋…ผ์˜ ์—๋„ˆ์ง€๊ฐ€ ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๋ณ€ํ•œ๋‹ค. ์ฃผ์š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ๋Š” ๊ฐ•ํ•œ ์Šคํ•€-๊ถค๋„ ๊ฒฐํ•ฉ์œผ๋กœ ์ธํ•ด ๋‚˜ํƒ€๋‚˜๋Š” ์ž๊ธฐ ์ด๋ฐฉ์„ฑ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ด‘ํ•™์  ๋ถ„๊ด‘๋ฒ•์€ ํฌ๋…ผ ๋ถ„์‚ฐ๊ด€๊ณ„๋ฅผ ์ธก์ •ํ•˜๋Š”๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์œผ๋ฏ€๋กœ, Cd2Os2O7 ์˜ ์Šคํ•€-ํฌ๋…ผ ๊ฒฐํ•ฉ์„ ์™„์ „ํžˆ ์ดํ•ดํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์ด ์กด์žฌํ•œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ๋‘ ๋ฒˆ์งธ ๋ถ€๋ถ„์—์„œ๋Š” ๋น„ํƒ„์„ฑ ์—‘์Šค์„  ์‚ฐ๋ž€์„ ์ด์šฉํ•˜์—ฌ Cd2Os2O7 ์˜ ํฌ๋…ผ์„ ๋„“์€ ์šด๋™๋Ÿ‰ ๋ฐ ์—๋„ˆ์ง€ ๊ณต๊ฐ„์—์„œ ์ธก์ •ํ•˜์—ฌ ๋ถ„์„ํ•œ ๋‚ด์šฉ์„ ๋‹ค๋ฃฌ๋‹ค. ๋˜ํ•œ ์ œ์ผ์›๋ฆฌ ์ด๋ก ์„ ํ†ตํ•ด ๊ณ„์‚ฐํ•œ ํฌ๋…ผ๊ณผ ๋น„๊ตํ•˜์—ฌ ์Šคํ•€-๊ถค๋„ ๊ฒฐํ•ฉ์— ๋”ฐ๋ฅธ ์˜ํ–ฅ์„ ์•Œ์•„๋ณด์•˜๋‹ค. ์ œ์ผ์›๋ฆฌ ๊ณ„์‚ฐ์„ ํ†ตํ•ด ์–ป์€ ํฌ๋…ผ๋“ค์ด ์ €์˜จ์—์„œ ์ธก์ •๋œ ํฌ๋…ผ๊ณผ ์ผ์น˜ํ•˜์˜€์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์Šคํ•€-๊ถค๋„ ๊ฒฐํ•ฉ์˜ ์„ธ๊ธฐ๋ฅผ ์ด๋ก ์ ์œผ๋กœ ์กฐ์ ˆํ•จ์— ๋”ฐ๋ผ ์‹คํ—˜์ ์œผ๋กœ ๊ด€์ธก๋œ ํฌ๋…ผ์˜ ์˜จ๋„ ์˜์กด์„ฑ์„ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์Šคํ•€-๊ถค๋„ ๊ฒฐํ•ฉ์ด Cd2Os2O7 ์— ๋‚˜ํƒ€๋‚˜๋Š” ์Šคํ•€-ํฌ๋…ผ ๊ฒฐํ•ฉ์—์„œ ์ค‘์š”ํ•œ ์š”์†Œ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค.Abstract .............................................................................................................................. i List of Tables .................................................................................................................... vi List of Figures ................................................................................................................. vii 1 Introduction .............................................................................................................. 1 1.1 Couping between spin and lattice .................................................................... 1 1.1.1 Magnon-phonon coupling in a noncollinear magnet ..............................2 1.1.2 Spin-phonon coupling in 5d transition metal oxide............................... 7 1.2 Outline of the thesis ......................................................................................... 9 2 Theoretical backgrounds ....................................................................................... 14 2.1 Linear spin-wave theory ................................................................................ 14 2.1.1 Spin Hamiltonian for triangular antiferromagnet ................................ 14 2.1.2 Holstein-Primakoff transformation ...................................................... 16 2.2 Magnon-magnon interaction .......................................................................... 19 2.2.1 Three-magnon interaction term ............................................................ 20 2.3 Magnon-phonon coupling .............................................................................. 23 2.3.1 Exchange-striction model .................................................................... 24 2.3.2 Einstein site phonon model .................................................................. 26 2.4 Phonon Hamiltonian ....................................................................................... 28 3 Experimental techniques ........................................................................................ 36 3.1 Inelastic neutron and X-ray scattering ........................................................... 36 3.1.1 Basic principles .................................................................................... 37 3.1.2 INS experiment at 4SEASONS in J-PARC ......................................... 40 3.1.3 IXS experiment at BL43LXU in SPring-8 .......................................... 45 4 Renormalization of spin-excitations in triangular lattice antiferromagnet HoMnO3 ................................................................................................................... 50 4.1 Hexagonal rare-earth manganites (h-RMnO3)................................................. 50 4.1.1 An ideal platform to study noncollinear magnetism ............................ 51 4.1.2 Magnon-magnon interaction ................................................................ 53 4.1.3 Magnon-phonon coupling .................................................................... 54 4.2 Spin-excitations in HoMnO3 .......................................................................... 55 4.2.1 INS data and fitting by using LSWT ................................................... 55 4.2.2 Anomalous features in magnon dispersion .......................................... 57 4.3 Model fitting using quasiparticle interactions ................................................ 59 4.3.1 XXZ+1/S expansion: magnon-magnon interaction ............................. 59 4.3.2 ESP model: magnon-phonon coupling ................................................ 59 4.4 Discussion and summary ................................................................................ 62 4.4.1 Dominant interaction in HoMnO3 ........................................................ 62 4.4.2 Summary .............................................................................................. 64 5 Spin-orbit coupling effect on spin-phonon coupling in Cd2Os2O7 ...................... 67 5.1 5d pyrochlore oxide Cd2Os2O7 ....................................................................... 67 5.1.1 Properties related to spin-orbit coupling .............................................. 67 5.1.2 Unconventional spin-phonon coupling ................................................ 70 5.2 IXS experiments and DFT calculations ......................................................... 71 5.2.1 Renormalization of phonons ................................................................ 71 5.2.2 SOC effect on the phonons .................................................................. 77 5.3 Discussion and summary ................................................................................ 80 5.3.1 A common features of temperature and SOC effect ............................ 80 5.3.2 Summary .............................................................................................. 81 6 Summary and Outlook ........................................................................................... 85 6.1 Summary ........................................................................................................ 85 6.2 Outlook .......................................................................................................... 87 Appendix: ....................................................................................................................... 90 Publication lists .............................................................................................................. 99 ๊ตญ๋ฌธ ์ดˆ๋ก (Abstract in Korean) ................................................................................ 101 ๊ฐ์‚ฌ์˜ ๊ธ€ (Acknowledgement) ................................................................................. 104Docto

    Current Anticoagulant Usage Patterns and Determinants in Korean Patients with Nonvalvular Atrial Fibrillation

    Get PDF
    PURPOSE: Stroke prevention in patients with atrial fibrillation (AF) is influenced by many factors. Using a contemporary registry, we evaluated variables associated with the use of warfarin or direct oral anticoagulants (OACs). MATERIALS AND METHODS: In the prospective multicenter CODE-AF registry, 10529 patients with AF were evaluated. Multivariate analyses were performed to identify variables associated with the use of anticoagulants. RESULTS: The mean age of the patients was 66.9ยฑ14.4 years, and 64.9% were men. The mean CHAโ‚‚DSโ‚‚-VASc and HAS-BLED scores were 2.6ยฑ1.7 and 1.8ยฑ1.1, respectively. In patients with high stroke risk (CHAโ‚‚DSโ‚‚-VASc โ‰ฅ2), OACs were used in 83.2%, including direct OAC in 68.8%. The most important factors for non-OAC treatment were end-stage renal disease [odds ratio (OR) 0.27; 95% confidence interval (CI): 0.19-0.40], myocardial infarct (OR 0.53; 95% CI: 0.40-0.72), and major bleeding (OR 0.57; 95% CI: 0.39-0.84). Female sex (OR 1.40; 95% CI: 1.21-1.61), cancer (OR 1.78; 95% CI: 1.38-2.29), and smoking (OR 1.60; 95% CI: 1.15-2.24) were factors favoring direct OAC use over warfarin. Among patients receiving OACs, the rate of combined antiplatelet agents was 7.8%. However, 73.6% of patients did not have any indication for a combination of antiplatelet agents. CONCLUSION: Renal disease and history of valvular heart disease were associated with warfarin use, while cancer and smoking status were associated with direct OAC use in high stroke risk patients. The combination of antiplatelet agents with OAC was prescribed in 73.6% of patients without definite indications recommended by guidelines.ope

    ํ•œ๊ตญ ์‚ฐ์–‘์‚ผ ์‚ฐ์—… ์ •์ฑ… ๋ณ€ํ™” ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ตญ์ œ๋†์—…๊ธฐ์ˆ ๋Œ€ํ•™์› ๊ตญ์ œ๋†์—…๊ธฐ์ˆ ํ•™๊ณผ, 2021. 2. ๋ฐ•๋ฏธ์„ .Global interest in non-timber forest products (NTFPs) is increasing considering its contribution to improving and diversifying forest livelihoods. In the Republic of Korea (ROK), wild simulated ginseng (WSG), an NTFP, has received attention in terms of promoting the livelihood of mountain villages and providing healthy food. The government's policy for supporting the production of WSG has for decades been established and implemented according to the National Forest Plan. This paper aims to scrutinise the changes in policies for improving the cultivation and trade of WSG in the ROK. Using a policy arrangement approach, four dimensions are analysed: 1) discourses on WSG, 2)rules for cultivating WSG, 3) participation and cooperation of actors, and 4) actors' resources or power. Chronological changes in the discourse and regulations related to NTFPs and WSG, the relationships between multiple actors, the resources and power for designing and implementing policies on WSG quality management are indicated. The results show that the policy for the WSG industry in the ROK has been established and implemented through the close interconnection of four dimensions. Policies are led by the government with a command-control approach in the quality management system, with a focus on regulation reinforcement and insufficient resources to conduct the policy. This study provides a comprehensive view of the dynamic procedure of policy implementation with practical example cases of the WSG industry in the ROK. It provides evidence of the dominant power of government in the development of the WSG industry.๋น„๋ชฉ์žฌ์ž„์‚ฐ๋ฌผ์€ ์ž„๊ฐ€ ์†Œ๋“ ์ฆ๋Œ€์™€ ์†Œ๋“ ์ˆ˜๋‹จ ๋‹ค์–‘ํ™”์— ๊ธฐ์—ฌํ•œ๋‹ค. ๋น„๋ชฉ์žฌ์ž„์‚ฐ๋ฌผ์ธ ์‚ฐ์–‘์‚ผ์€ ๊ณ ์†Œ๋“ ์ž‘๋ฌผ์ด๋ฉด์„œ ๊ฑด๊ฐ•ํ•œ ๋จน๊ฑฐ๋ฆฌ๋กœ์„œ ํ•œ๊ตญ์‚ฌํšŒ์—์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ •๋ถ€๋Š” ์‚ฐ์–‘์‚ผ ์‚ฐ์—… ์ง€์› ์ •์ฑ…์„ ์ˆ˜๋ฆฝํ•˜์—ฌ ์‹œํ–‰ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตญ๋‚ด ์‚ฐ์–‘์‚ผ ์‚ฐ์—… ์ •์ฑ… ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ •์ฑ…๋ถ„์„๋ฐฉ๋ฒ•์ธ Policy Arrangement ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์ •์ฑ…์˜ ๋„ค ๊ฐ€์ง€ ์ฐจ์›์„ ๋ถ„์„ํ•˜์˜€๋‹ค; 1)์‚ฐ์–‘์‚ผ ๊ด€๋ จ ์ •์ฑ… ๋‹ด๋ก , 2)์‚ฐ์–‘์‚ผ ์ƒ์‚ฐ ๋ฐ ํŒ๋งค์— ๊ด€ํ•œ ๊ทœ์น™, 3)์ดํ•ด๊ด€๊ณ„์ž์˜ ์ฐธ์—ฌ์™€ ํ˜‘๋ ฅ, 4)์ดํ•ด๊ด€๊ณ„์ž๊ฐ€ ๋ณด์œ ํ•œ ์ž์›์ด๋‚˜ ๊ถŒ๋ ฅ. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„๋ชฉ์žฌ์ž„์‚ฐ๋ฌผ ๋ฐ ์‚ฐ์–‘์‚ผ ๊ด€๋ จ ๋‹ด๋ก ๊ณผ ๊ทœ์น™์˜ ๋ณ€ํ™”, ์ดํ•ด๊ด€๊ณ„์ž ๊ฐ„ ํ˜‘๋ ฅ ๋ฐ ๊ฐˆ๋“ฑ ๊ด€๊ณ„, ์‚ฐ์–‘์‚ผ ํ’ˆ์งˆ๊ด€๋ฆฌ ๊ทœ์ • ์‹œํ–‰ ๊ณผ์ •์—์„œ์˜ ์ž์› ๋ถ„ํฌ์™€ ๊ถŒ๋ ฅ ๊ด€๊ณ„๋ฅผ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ์‚ฐ์–‘์‚ผ ์‚ฐ์—… ์ •์ฑ…์˜ ๋„ค ๊ฐ€์ง€ ์ฐจ์›์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์ž„๊ฐ€ ์†Œ๋“ ์ฆ๋Œ€๋ฅผ ๊ฐ•์กฐํ•˜๋Š” ์‚ฐ์–‘์‚ผ ์ •์ฑ… ๋‹ด๋ก ์— ๋”ฐ๋ผ ์‚ฐ์–‘์‚ผ ํ’ˆ์งˆ๊ด€๋ฆฌ์— ๊ด€ํ•œ ์ƒˆ๋กœ์šด ๊ทœ์ •์ด ์ˆ˜๋ฆฝ๋˜๊ณ , ๊ทœ์ •์— ๋”ฐ๋ผ ์ œํ•œ์ ์ธ ์žฌ๋ฐฐํ™œ๋™๊ณผ ์ง€์—ญ ๋ฐœ์ „์„ ์œ„ํ•œ ํˆฌ์ž ํ™œ๋™์„ ํ™•์ธํ•˜์˜€๋‹ค. ์‚ฐ์–‘์‚ผ ํ’ˆ์งˆ๊ด€๋ฆฌ ์ œ๋„๋Š” ์ •๋ถ€ ์ฃผ๋„์˜ ๊ทœ์ œ์ •์ฑ… ์ค‘์‹ฌ์œผ๋กœ ์‹คํ–‰๋˜๋ฉด์„œ ์‚ฐ์–‘์‚ผ ์ƒ์‚ฐ ๋ฐ ํŒ๋งค ํ™œ๋™์— ๋Œ€ํ•œ ๊ฒฝ์ œ์  ์ธ์„ผํ‹ฐ๋ธŒ๋‚˜ ์ปจ์„คํŒ…๊ณผ ๊ฐ™์€ ์ง€์› ์ •์ฑ…์€ ํ™œ๋ฐœํžˆ ์ถ”์ง„๋˜์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹ด๋ก , ๊ทœ์น™, ์ดํ•ด๊ด€๊ณ„์ž, ์ž์› ๋ฐ ๊ถŒ๋ ฅ์˜ ์ƒํ˜ธ ์ž‘์šฉ ๋ถ„์„์„ ํ†ตํ•ด ์ •๋ถ€ ์ฃผ๋„ ๊ทœ์ œ ์ค‘์‹ฌ ์‚ฐ์–‘์‚ผ ์‚ฐ์—… ์ •์ฑ…์˜ ๋ณ€ํ™”๋ฅผ ์ฆ๋ช…ํ•จ์œผ๋กœ์จ ์‚ฐ์–‘์‚ผ ์‚ฐ์—… ์ •์ฑ… ํ˜•์„ฑ๊ณผ ์‹คํ–‰์˜ ์—ญ๋™์ ์ธ ์ ˆ์ฐจ์— ๋Œ€ํ•œ ์ข…ํ•ฉ์ ์ธ ์ดํ•ด๋ฅผ ๋•๋Š”๋‹ค. ์ด๋Š” ๋น„๋ชฉ์žฌ์ž„์‚ฐ๋ฌผ ์‚ฐ์—…ํ™” ์ •์ฑ… ํ˜•์„ฑ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.Abstract i Contents โ…ฒ List of Tables โ…ณ List of Figures โ…ด List of Abbreviations โ…ต 1. Introduction 1 2. Literature Review 4 3. Quality Management 8 4. Wild Simulated Ginseng in the Republic of Korea 12 4.1. Status of Wild Simulated Ginseng 12 4.2. Korean Research related to Wild Simulated Ginseng 18 5. Research Design 19 6. Results 24 6.1. Discourses 24 6.2. Rules of the Game 31 6.3. Actors 40 6.4. Resources 46 7. Discussion 54 8. Conclusion 62 References 65 Abstract in Korean 86Maste

    A Case of Systemic Capillary Leak Syndrome Presenting as Septic Shock

    Get PDF
    Systemic capillary leak syndrome is a rare disease characterized by life-threatening attacks of reversible plasma extravasation and vascular collapse accompanied by hypotension, hemoconcentration, and hypoalbuminemia. A 36-year-old woman was admitted to this hospital with a fever, along with symptoms consistent with an upper respiratory tract infection and hypotension. Initial laboratory tests revealed several abnormal findings, including an elevated leukocyte count and hematocrit, hypoalbuminemia, and acute renal failure. Here, we report a case of successful treatment of systemic capillary leak syndrome, which can be difficult to distinguish from septic shock.ope

    Analysis of Parasite-Specific-Antibody Positive Patients for Clonorchis sinensis, Paragonimus westermani, Cysticercus and Sparganum using ELISA

    Get PDF
    Background: Although human parasitic infestations have decreased generally in Korea, Clonorchis sinensis, Paragonimus westermani, Cysticercus and Sparganum are still a serious concern due to their relatively high prevalence and severe complications. A definitive diagnosis, however cumbersome and occasionally invasive, is required in order to detect adult worms, eggs, or cysts. The parasite- specific IgG antibody (PSA) test using the ELISA method has been recently developed to diagnose and monitor the infestations of those four parasites. We analysed PSA positive patients for Clonorchis sinensis, Paragonimus westermani, Cysticercus and Sparganum. Methods: The serum samples referred to the Neodin Medical Institute for PSA were tested by the ELISA method using crude extracts of C. sinensis, P. westermani, Sparganum and cystic fluid of Cysticercus. The PSA results during the 7-month period from January to July 2001 were retrospectively analysed. The medical records of the patients at Asan Medical Center (AMC) with positive PSA were reviewed with stool examinations for parasites, skin tests for C. sinensis and P. westermani, radiological findings and antiparasitic management. Results: A total of 865 specimens were tested for PSA and 84 samples (9.7%) of 76 patients were positive; C. sinensis, Cysticercus, Sparganum, and P. westermani were positive in 26 patients (3.0%), 26 (3.0%), 14 (1.6%) and 10 (1.2%), respectively. 26 specimens from 18 AMC patients were positive for one or more PSA; 6 Cysticercus. 4 C. sinensis, 5 Sparganum and 3 P. westermani. All PSA-positive cases for Cysticercus, C. sinensis and P. westermani were compatible with the clinical diagnosis; however, it was difficult to elucidate in the clinical correlation of 3 out of 5 Sparganum-positive cases. Conclusion: Cysticercus, C. sinensis and P. westermani are currently prevalent in Korea. Positive PSA ELISA tests for Cysticercus, C. sinensis and P. westermani are reliable indicators in diagnosing present infestations among the clinically suspected patients.ope

    ๋ง์—์„œ detomidine๊ณผ tramadol์˜ ์ •๋งฅ ํˆฌ์—ฌ์— ์˜ํ•œ ์ง„์ • ๋ฐ ์ง„ํ†ต ํšจ๊ณผ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜์˜ํ•™๊ณผ(์ˆ˜์˜์ƒ๋ฆฌํ•™์ „๊ณต), 2013. 2. ์ดํ•ญ.This study was performed to evaluate the sedative and analgesic effects of intravenous (IV) administration of detomidine (D) and tramadol (T) to horses. Six warmblood horses each received D (10 ใŽ/kg), T (2 mg/kg), and a combination of DT (10 ใŽ/kg and 2 mg/kg, respectively). Heart rate (HR), respiratory rate (RR), rectal temperature (RT) and indirect arterial pressure (IAP) were measured by a patient monitor (MEDIANAยฎ). Degree of sedation was scored using two methods. One was a measurement of lip height from the ground, the other thing was a 4 - point criteria system. Ataxia was also calculated by a 4 - point criteria. The analgesic effect was examined by 4 - point scale of electrical stimulator and pinprick. Blood samples were analyzed by i-STATยฎ. Gastrointestinal (GI) motility was evaluated by 5 - point scale using auscultation. No significant differences were found for HR, RR, RT, IAP and GI motility between D and DT. The sedative effect was shown at 5 min after D and DT administration. However, DT induced slightly longer sedation than D alone. D and DT showed a similar analgesic effect until 50 min after injection, but D recovered sharply from the analgesic condition and DT showed a longer analgesic effect. An increase in blood glucose was seen for D until 30 min after the injection, but not for DT. A horse with T and DT showed excited behavior within 5 min of the injection. This study suggests that the DT combination could be used for diagnostic procedures and simple surgery in standing horses, with caution taken for CNS excitement in the early phase after the administration.INTRODUCTION 1 MATERIAL AND METHODS 4 1. Experimental animals 4 2. Procedures 4 3. Statistical analysis 8 RESULTS 10 DISCUSSION 26 REFERENCE 32 ABSTRACT IN KOREAN 38Maste

    ์ง€์—ญ์˜ ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€์ด ๊ฑด๊ฐ•๊ฒฐ๊ณผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ: ์ฒญ์žฅ๋…„์ธต์˜ ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ณ‘์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌํšŒ๋ณต์ง€ํ•™๊ณผ, 2016. 2. ๋ฐ•์ •๋ฏผ.๋ณธ ์—ฐ๊ตฌ๋Š” ์ฒญ์žฅ๋…„์ธต์˜ ๊ณ ํ˜ˆ์•• ๋ฐ ๋‹น๋‡จ๋ณ‘ ์œ ๋ณ‘์—ฌ๋ถ€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ, ๊ฑฐ์ฃผํ•˜๋Š” ์ง€์—ญ์˜ ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€์ด ๊ฐœ์ธ์˜ ๊ฑด๊ฐ•๊ฒฐ๊ณผ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ๋ฐํžˆ๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ๋‹ค. ์†Œ๋“๋ถˆํ‰๋“ฑ๊ฐ€์„ค(Income Inequality Hypothesis, IIH)์— ๊ธฐ์ดˆํ•œ ์—ฐ๊ตฌ์ž๋“ค์€ ๊ฐœ์ธ์˜ ์ ˆ๋Œ€์ ์ธ ์†Œ๋“์ˆ˜์ค€๋ณด๋‹ค๋Š” ์‚ด๊ณ  ์žˆ๋Š” ์ง€์—ญ์˜ ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€์ด ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ ํ˜„์ƒ์„ ๋” ์ž˜ ์„ค๋ช…ํ•œ๋‹ค๊ณ  ์ฃผ์žฅํ–ˆ๋‹ค. ์†Œ๋“๋ถˆํ‰๋“ฑ๊ฐ€์„ค์€ ๊ธฐ๋Œ€์ˆ˜๋ช…์˜ ์ฆ๊ฐ€๊ฐ€ ์ •์ฒด๋˜๋Š” ์ผ์ •์ˆ˜์ค€ ์ด์ƒ์˜ ๊ฒฝ์ œ์ˆ˜์ค€์„ ๋‹ฌ์„ฑํ•œ ๊ตญ๊ฐ€๋“ค์—์„œ ์„ค๋“๋ ฅ์„ ๊ฐ€์ง„๋‹ค๋Š” ์ ์—์„œ ์ฃผ๋ชฉ๋ฐ›์•˜๋‹ค. ๋˜ํ•œ ๊ต์œก์ด๋‚˜ ๋…ธ๋™ ์ •์ฑ…๊ณผ ๊ฐ™์€ ๊ฑฐ์‹œ์ ์ธ ์‚ฌํšŒ์ •์ฑ…์„ ํ†ตํ•ด ์†Œ๋“๋ถˆํ‰๋“ฑ์„ ํ•ด์†Œํ•จ์œผ๋กœ์จ ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ ๋ฌธ์ œ์— ๋Œ€์‘ํ•ด์•ผ ํ•จ์„ ๊ฐ•์กฐํ•œ๋‹ค๋Š” ์ ์—์„œ ์ •์ฑ…์ ์œผ๋กœ๋„ ์ค‘์š”ํ•œ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์†Œ๋“๋ถˆํ‰๋“ฑ๊ฐ€์„ค์— ๋Œ€ํ•ด ๋ฐ˜๋ก ์„ ์ œ๊ธฐํ•˜๋Š” ์—ฐ๊ตฌ์ž๋“ค๋„ ์žˆ๋‹ค. ์†Œ๋“๋ถˆํ‰๋“ฑ๊ฐ€์„ค์ด ์†Œ๋“๋ถˆํ‰๋“ฑ์˜ ์ธก์ •๋‹จ์œ„(๊ตญ๊ฐ€, ์ฃผ, ๋„์‹œ ๋“ฑ)๋‚˜ ๊ฑด๊ฐ•๊ฒฐ๊ณผ์˜ ์ธก์ •๋ฐฉ์‹(๊ฐ๊ด€์  ๊ฑด๊ฐ•, ์ฃผ๊ด€์  ๊ฑด๊ฐ•ํ‰๊ฐ€) ๋“ฑ์— ๋”ฐ๋ผ ์ผ๊ด€๋˜์ง€ ์•Š์€ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๊ฑด๊ฐ•๊ฒฐ๊ณผ์˜ ์ธก์ •๋ฐฉ์‹์ด๋‚˜ ์†Œ๋“๋ถˆํ‰๋“ฑ์˜ ์ธก์ •๋‹จ์œ„ ๋“ฑ์„ ๋‹ฌ๋ฆฌํ•˜๋Š” ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๊ฐ€ ์ถ•์ ๋˜์–ด์•ผ ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ํ•œํŽธ, ๋‹ค์–‘ํ•œ ๊ฑด๊ฐ•๊ฒฐ๊ณผ ์ค‘ ๊ณ ํ˜ˆ์••์ด๋‚˜ ๋‹น๋‡จ๋ณ‘๊ณผ ๊ฐ™์€ ๋งŒ์„ฑ์งˆํ™˜์€ ๊ฐœ์ธ์˜ ๊ฑด๊ฐ•์€ ๋ฌผ๋ก , ์˜๋ฃŒ๋ณด์žฅ ์žฌ์ •์— ์น˜๋ช…์ ์ธ ๋ถ€๋‹ด์„ ์ฃผ์–ด ํ˜„๋Œ€ ๋ณด๊ฑด์ •์ฑ…์˜ ์ฃผ์š”ํ•œ ๋„์ „๊ณผ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์†Œ๋“์ˆ˜์ค€์ด๋‚˜ ์ง€์—ญ์— ๋”ฐ๋ฅธ ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ณ‘์—์„œ์˜ ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ์ด ํ™•์ธ๋˜๊ณ  ์žˆ๋‹ค. ์‚ฌํšŒ๊ฒฝ์ œ์  ์กฐ๊ฑด ๋“ฑ์— ๋”ฐ๋ฅธ ๋งŒ์„ฑ์งˆํ™˜์—์„œ์˜ ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ์ด ์ง€์† ๋˜๋Š” ํ™•๋Œ€๋  ๊ฒฝ์šฐ, ํ–ฅํ›„ ๋งŒ์„ฑ์งˆํ™˜ ๊ด€๋ฆฌ์— ๋Œ€ํ•œ ๋ถ€๋‹ด์„ ๋”์šฑ ํ‚ค์šธ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ๊ด€์‹ฌ์ด ์š”๊ตฌ๋œ๋‹ค. ๊ทธ๊ฐ„ ๊ตญ๋‚ด์—์„œ๋Š” ๊ฐœ์ธ์˜ ์‚ฌํšŒ๊ฒฝ์ œ์  ์กฐ๊ฑด์— ๋”ฐ๋ฅธ ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์— ๋น„ํ•ด ์ง€์—ญ์˜ ์‚ฌํšŒ๊ฒฝ์ œ์  ์กฐ๊ฑด์ด ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ์˜ ์„ค๋ช…๋ณ€์ˆ˜์ž„์„ ๊ณ ์ฐฐํ•œ ์—ฐ๊ตฌ๋“ค์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋ถ€์กฑํ–ˆ๋‹ค. ์ง€์—ญ์˜ ์†Œ๋“๋ถˆํ‰๋“ฑ์ด ๊ฑด๊ฐ•๊ฒฐ๊ณผ์˜ ์ฐจ์ด์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ์—ฐ๊ตฌ๊ฒฐ๊ณผ๊ฐ€ ์ผ๋ถ€ ๋ณด๊ณ  ๋˜์—ˆ์œผ๋‚˜, ๊ด‘์—ญ์‹œ๋„ ์ˆ˜์ค€ ๋˜๋Š” ์„œ์šธ ๋“ฑ ์ผ๋ถ€ ์ง€์—ญ์— ๊ตญํ•œํ•ด ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€์„ ์ธก์ •ํ•˜์˜€๋‹ค๋Š” ์ ์—์„œ ์ผ๋ฐ˜ํ™”ํ•˜๊ธฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๊ฐ๊ด€์  ๊ฑด๊ฐ•๊ฒฐ๊ณผ๊ฐ€ ์•„๋‹Œ ์ฃผ๊ด€์  ๊ฑด๊ฐ•ํ‰๊ฐ€ ๊ฒฐ๊ณผ๋ฅผ ๊ฒฐ๊ณผ๋ณ€์ˆ˜๋กœ ํ™œ์šฉํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์—์„œ, ์†Œ๋“๋ถˆํ‰๋“ฑ๊ฐ€์„ค์— ๋Œ€ํ•œ ๋ฐ˜๋ก ์œผ๋กœ๋ถ€ํ„ฐ ์ž์œ ๋กญ์ง€ ๋ชปํ•˜๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฐ๊ด€์  ๊ฑด๊ฐ•์ง€ํ‘œ์ธ ์ฒญ์žฅ๋…„์ธต์˜ ๊ณ ํ˜ˆ์•• ๋ฐ ๋‹น๋‡จ๋ณ‘ ์œ ๋ณ‘์—ฌ๋ถ€์— ์‹œ๊ตฐ๊ตฌ ๋‹จ์œ„๋กœ ์ธก์ •ํ•œ ์ง€์—ญ์˜ ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€์ด ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ๋ฐํžˆ๊ณ ์ž ํ–ˆ๋‹ค. ์ „๊ตญ์˜ ๋ชจ๋“  ์‹œ๊ตฐ๊ตฌ๋ณ„ ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€๊ณผ ๊ฐœ์ธ์˜ ๊ฑด๊ฐ•๊ฒฐ๊ณผ ๋“ฑ์€ 2013๋…„๋ถ€ํ„ฐ ๋ฏผ๊ฐ„์— ๊ณต๊ฐœ๋œ ๊ตญ๋ฏผ๊ฑด๊ฐ•๋ณดํ—˜๊ณต๋‹จ์˜ ํ‘œ๋ณธ์—ฐ๊ตฌDB์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ธก์ •ํ–ˆ๋‹ค. ๊ฐ ๊ฐœ์ธ ๋ฐ ์ง€์—ญ์˜ ์‚ฌํšŒ๊ฒฝ์ œ์  ์กฐ๊ฑด์„ ํ†ต์ œํ•˜๊ณ  ๋‹ค์ˆ˜์ค€๋ถ„์„์„ ํ†ตํ•ด ๊ฐœ์ธ์˜ ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ณ‘ ์—ฌ๋ถ€์— ์ง€์—ญ์˜ ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€์ด ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ๊ฒ€์ฆํ–ˆ๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, ์‹œ๊ตฐ๊ตฌ๋ณ„๋กœ ๊ฐœ์ธ์˜ ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ณ‘๊ฐ€๋Šฅ์„ฑ์˜ ์ฐจ์ด๊ฐ€ ํ™•์ธ๋˜๊ธด ํ–ˆ์œผ๋‚˜, ์†Œ๋“๋ถˆํ‰๋“ฑ์ด ์ด๋Ÿฌํ•œ ์ฐจ์ด๋ฅผ ์„ค๋ช…ํ•˜๋Š” ์š”์ธ์€ ์•„๋‹ˆ์—ˆ๋‹ค. ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€์ด ๋†’์€ ์ง€์—ญ์— ์‚ฌ๋Š” ๊ฒฝ์šฐ, ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€์ด ๋‚ฎ์€ ์ง€์—ญ์— ์‚ฌ๋Š” ๊ฒฝ์šฐ์™€ ๋น„๊ตํ•ด ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ณ‘ ๊ฐ€๋Šฅ์„ฑ์ด ๋” ๋†’์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๊ธด ํ–ˆ์œผ๋‚˜ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ณ‘ ์—ฌ๋ถ€์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ฃผ์š”ํ•œ ์ง€์—ญ์ˆ˜์ค€ ๋ณ€์ˆ˜๋Š” ๋นˆ๊ณค์œจ, ๊ต์œก์ˆ˜์ค€๊ณผ ๊ณ ์šฉ๋ฅ ์ธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ฐœ์ธ์ˆ˜์ค€ ๋ณ€์ˆ˜ ์ค‘์—๋Š” ๊ฐœ์ธ์˜ ์†Œ๋“์ˆ˜์ค€, ๊ฑด๊ฐ•๋ณดํ—˜์ž๊ฒฉ, ๊ณ ์œ„ํ—˜ ์Œ์ฃผ์™€ ๋น„๋งŒ๊ด€๋ฆฌ ์ˆ˜์ค€ ๋“ฑ์ด ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๊ด‘์—ญ์‹œ๋„ ์ˆ˜์ค€์—์„œ ์†Œ๋“๋ถˆํ‰๋“ฑ์„ ์ธก์ •ํ•˜๊ณ , ์ฃผ๊ด€์  ๊ฑด๊ฐ•ํ‰๊ฐ€๋ฅผ ๊ฒฐ๊ณผ๋ณ€์ˆ˜๋กœ ํ–ˆ๋˜ ๊ตญ๋‚ด ์—ฐ๊ตฌ๋“ค์ด ์†Œ๋“๋ถˆํ‰๋“ฑ๊ฐ€์„ค์„ ์ง€์ง€ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•œ ๊ฒƒ๊ณผ ๋‹ค๋ฅด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฑด๊ฐ•๊ฒฐ๊ณผ์˜ ์ธก์ •๋ฐฉ์‹์ด๋‚˜ ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€์„ ์ธก์ •ํ•˜๋Š” ์ง€์—ญ๊ทœ๋ชจ๋ฅผ ๋‹ฌ๋ฆฌํ–ˆ๋˜ ์™ธ๊ตญ ์„ ํ–‰์—ฐ๊ตฌ๋“ค์—์„œ๋Š” ์†Œ๋“๋ถˆํ‰๋“ฑ์ด ๊ฑด๊ฐ•์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ ๊ฒฐ๋ก ์ด ์ผ๊ด€๋˜์ง€ ์•Š๋‹ค๋Š” ์ ์„ ๊ณ ๋ คํ–ˆ์„ ๋•Œ, ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๊ตญ๋‚ด์—์„œ๋„ ๋‹ค์–‘ํ•˜๊ณ  ์ •๊ตํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค์ด ์ถ•์ ๋˜์–ด์•ผ ํ•จ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋˜ํ•œ ์ ˆ๋Œ€์ ์ธ ์†Œ๋“์ˆ˜์ค€์ด๋‚˜ ๊ฑด๊ฐ•์ฆ์ง„ํ–‰์œ„ ์ˆ˜์ค€์ด ์ฒญ์žฅ๋…„์ธต์˜ ๋งŒ์„ฑ์งˆํ™˜(๊ณ ํ˜ˆ์••, ๋‹น๋‡จ๋ณ‘) ์œ ๋ณ‘์— ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ณ  ์žˆ์Œ์ด ๋“œ๋Ÿฌ๋‚ฌ๋‹ค. ์ด๋Š” ๋งŒ์„ฑ์งˆํ™˜ ๊ด€๋ฆฌ์— ์žˆ์–ด ์ทจ์•ฝ ์ง‘๋‹จ์„ ์ค‘์‹ฌ์œผ๋กœ ๊ฑด๊ฐ•์ฆ์ง„ํ–‰์œ„๋ฅผ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•˜๋Š” ํ˜„์žฌ์˜ ์ •์ฑ…์  ์ ‘๊ทผ์ด ์œ ํšจํ•œ ์ „๋žต์ผ ์ˆ˜ ์žˆ์Œ์„ ๊ฐ„์ ‘์ ์œผ๋กœ ์‹œ์‚ฌํ•œ๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ๋ฌธ์ œ 5 ์ œ 2 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  7 ์ œ 1 ์ ˆ ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ์˜ ๊ฐœ๋…๊ณผ ๊ฑด๊ฐ•๊ฒฐ์ •๋ชจํ˜• 7 1. ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ์˜ ๊ฐœ๋… 7 2. ๊ฑด๊ฐ•๊ฒฐ์ •๋ชจํ˜• 9 ์ œ 2 ์ ˆ ์ง€์—ญ์˜ ์‚ฌํšŒ๊ฒฝ์ œ์  ์กฐ๊ฑด๊ณผ ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ 14 1. ์†Œ๋“๋ถˆํ‰๋“ฑ๊ฐ€์„ค 14 2. ์†Œ๋“๋ถˆํ‰๋“ฑ๊ฐ€์„ค์— ๋Œ€ํ•œ ๋ฐ˜๋ก  18 3. ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ง€์—ญ์˜ ์‚ฌํšŒ๊ฒฝ์ œ์  ์กฐ๊ฑด 21 ์ œ 3 ์ ˆ ๊ฑด๊ฐ•๊ฒฐ๊ณผ์˜ ์ธก์ •๊ณผ ๋งŒ์„ฑ์งˆํ™˜ 25 1. ๊ฑด๊ฐ•๊ฒฐ๊ณผ์˜ ์ธก์ • 25 2. ๋งŒ์„ฑ์งˆํ™˜์—์„œ์˜ ๊ฑด๊ฐ•๋ถˆํ‰๋“ฑ ์—ฐ๊ตฌ 27 3. ์ง€์—ญ์˜ ์‚ฌํšŒ๊ฒฝ์ œ์  ์กฐ๊ฑด๊ณผ ๋งŒ์„ฑ์งˆํ™˜ 29 ์ œ 3 ์žฅ ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 33 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ๋ชจํ˜• ๋ฐ ๊ฐ€์„ค 33 ์ œ 2 ์ ˆ ๋ถ„์„ ์ž๋ฃŒ ๋ฐ ์—ฐ๊ตฌ๋Œ€์ƒ 34 ์ œ 3 ์ ˆ ๋ณ€์ˆ˜ ์ •์˜ 37 ์ œ 4 ์ ˆ ๋ถ„์„๋ฐฉ๋ฒ• 42 ์ œ 4 ์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 46 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ๋Œ€์ƒ์ž์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ 46 1. ์—ฐ๊ตฌ๋Œ€์ƒ์ž์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ 46 2. ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ณ‘์—ฌ๋ถ€์— ๋”ฐ๋ฅธ ์—ฐ๊ตฌ๋Œ€์ƒ์ž์˜ ํŠน์„ฑ. 49 ์ œ 2 ์ ˆ ์ง€์—ญ์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ 51 1. ์ง€์—ญ์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ 51 2. ์ง€์—ญ์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ๊ณผ ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ณ‘๋ฅ . 55 ์ œ 3 ์ ˆ ๋ณ€์ˆ˜๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„ 56 ์ œ 4 ์ ˆ ๋‹ค์ˆ˜์ค€๋ถ„์„ ๊ฒฐ๊ณผ 58 1. ์ง€์—ญ์— ๋”ฐ๋ฅธ ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ณ‘๊ฐ€๋Šฅ์„ฑ์˜ ์ฐจ์ด 58 2. ์ง€์—ญ์˜ ์†Œ๋“๋ถˆํ‰๋“ฑ ์ˆ˜์ค€์ด ๊ฐœ์ธ์˜ ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ณ‘์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 61 3. ๋…ผ์˜ 63 ์ œ 5 ์žฅ ๊ฒฐ๋ก  66 ์ œ 1 ์ ˆ ๋ถ„์„๊ฒฐ๊ณผ ์š”์•ฝ 66 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•จ์˜ ๋ฐ ํ•œ๊ณ„ 69 ์ฐธ๊ณ ๋ฌธํ—Œ 71 Abstract 83Maste

    Electrical and Structural Properties of Inkjet-Printed Single-Walled Carbon Nanotube Thin Film, and Its Applications

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 8. ํ™์šฉํƒ.Recently, flexible and stretchable features have been introduced for the use in various devices such as sensor, thin film transistor, and organic light-emitting diode. Advance developments in terms of materials, device physics, chemistry, and mechanics allow various devices to sustain their performance under deformation. But, many researches are still required to achieve stretchable electronic devices having high performance. Among the element, it is expected that the materials have an important role and lead to high performance. A carbon nanotube is one of the promising materials for the use in the stretchable electronics due to its excellent properties resulted from unusual structure of the carbon nanotube. In addition, tunable properties using functionalized group on the tube are advantages of the carbon nanotube. So, the use of carbon nanotube in stretchable electronics has been increased using the excellent properties. However, some technical issues such as low dispersion stability, scalability, and lower properties than individual carbon nanotube remain, which should be solved. First, we used an inkjet printer to improve the low scalability. In contrast to spin coating or screen printing reported in previous paper, the inkjet printing system reduces loss of materialsthis is advantage for the use of single-walled carbon nanotube that suffers from high cost. Instead of the organic solvent having toxicity, the single-walled carbon nanotube was dispersed in aqueous solution. The low dispersion stability of the single-walled carbon nanotube in the aqueous solution was solved using surfactant. The synthesized ink was printed on stretchable substrate. Well-shaped film was obtained by controlling substrate temperature, UV ozone treatment. To reduce the surfactant used for dispersion stability, two post treatments (water rinsing and nitric acid treatment) were performed. Significant results of both treatments were confirmed from conductivity and structural properties. The inkjet-printed single-walled carbon nanotube thin films exhibited excellent mechanical properties under deformation. The thin films did not lose conductivity in even high tensile strain (100%), and the conductivity was maintained in cyclic stretching test although little variation of resistance was shown. The specific phenomenon was confirmed from microstructure of the thin film, which was crack bridging of carbon nanotube. The property was demonstrated using a integration with light-emitting diode. Response of the single-walled carbon nanotube thin film on the external strain could be controlled by structural properties of the thin film without loss of durability. Inkjet-printed pre-pattern caused cracks on the thin film, which improved the response on the external strain. When the conditions of the pre-pattern were optimized, the thin film had high sensitivity, durability, linearity. The printed thin films were demonstrated by detecting human motions. Strain sensor system consists of stretchable electrode and strain sensor were fabricated using tunable response of the inkjet-printed single-walled carbon nanotube thin film on the tensile strain.Contents List of Figures List of Tables Chapter 1. Introduction 1.1 Motivation 1.2 Carbon nanotube 1.3 Properties of carbon nanotube 1.3.1 Structure of carbon nanotube 1.3.2 Electrical properties of carbon nanotube 1.3.3 Mechanical properties of carbon nanotube 1.3.4 Other properties of carbon nanotube 1.4 Dispersions of carbon nanotube 1.4.1 Fabrication ink for a solution process 1.4.2 Fabrication carbon nanotube composite in polymer matrix 1.5 Applications of carbon nanotube 1.5.1 Stretchable electronics 1.5.2 Thin film transistor 1.5.3 Energy storage device Chapter 2. Synthesis of single-walled carbon nanotube ink in aqueous solvent and optimization of printing conditions for inkjet-printed SWCNT thin film 2.1 Introduction 2.2 Synthesis of single-walled carbon nanotube ink in aqueous solution 2.3 Printing conditions of the synthesized ink 2.4 Fundamental properties of Inkjet-printed SWCNT film 2.5 Conclusion Chapter 3. Inkjet-Printed Stretchable Single-Walled Carbon Nanotube Electrodes with Excellent Mechanical Properties 3.1 Introduction 3.2 Material and equipment for inkjet-printed single-walled carbon nanotube stretchable electrode 3.3 Excellent mechanical properties of inkjet-printed SWCNT thin film 3.4 Applications of inkjet-printed SWCNT thin film 3.5 Conclusion Chapter 4. A highly sensitive and repeatable strain sensor based on inkjet-printed single-walled carbon nanotube 4.1 Introduction 4.2 Effect of periodically-ordered patterns on the structural and electrical properties of the inkjet-printed SWCNT thin films 4.3 Fundamental properties of the inkjet-printed strain sensor 4.4 Application of the inkjet-printed strain sensor 4.5 Conclusion Chapter 5. Conclusion Abstract in KoreanDocto
    • โ€ฆ
    corecore