149 research outputs found

    Cycling chaos: its creation, persistence and loss of stability in a model of nonlinear magnetoconvection

    Get PDF
    We examine a model system where attractors may consist of a heteroclinic cycle between chaotic sets; this ‘cycling chaos’ manifests itself as trajectories that spend increasingly long periods lingering near chaotic invariant sets interspersed with short transitions between neighbourhoods of these sets. Such behaviour is robust to perturbations that preserve the symmetry of the system; we examine bifurcations of this state. We discuss a scenario where an attracting cycling chaotic state is created at a blowout bifurcation of a chaotic attractor in an invariant subspace. This differs from the standard scenario for the blowout bifurcation in that in our case, the blowout is neither subcritical nor supercritical. The robust cycling chaotic state can be followed to a point where it loses stability at a resonance bifurcation and creates a series of large period attractors. The model we consider is a ninth-order truncated ordinary differential equation (ODE) model of three-dimensional incompressible convection in a plane layer of conducting fluid subjected to a vertical magnetic field and a vertical temperature gradient. Symmetries of the model lead to the existence of invariant subspaces for the dynamics; in particular there are invariant subspaces that correspond to regimes of two-dimensional flows, with variation in the vertical but only one of the two horizontal directions. Stable two-dimensional chaotic flow can go unstable to three-dimensional flow via the cross-roll instability. We show how the bifurcations mentioned above can be located by examination of various transverse Liapunov exponents. We also consider a reduction of the ODE to a map and demonstrate that the same behaviour can be found in the corresponding map. This allows us to describe and predict a number of observed transitions in these models. The dynamics we describe is new but nonetheless robust, and so should occur in other applications

    On the interaction of stochastic forcing and regime dynamics

    Get PDF
    Stochastic forcing can, sometimes, stabilise atmospheric regime dynamics, increasing their persistence. This counter-intuitive effect has been observed in geophysical models of varying complexity, and here we investigate the mechanisms underlying stochastic regime dynamics in a conceptual model. We use a six-mode truncation of a barotropic ÎČ-plane model, featuring transitions between analogues of zonal and blocked flow conditions, and identify mechanisms similar to those seen previously in work on low-dimensional random maps. Namely, we show that a geometric mechanism, here relating to monotonic instability growth, allows for asymmetric action of symmetric perturbations on regime lifetime and that random scattering can “trap” the flow in more stable regions of phase space. We comment on the implications for understanding more complex atmospheric systems

    Robust Transitivity in Hamiltonian Dynamics

    Get PDF
    A goal of this work is to study the dynamics in the complement of KAM tori with focus on non-local robust transitivity. We introduce CrC^r open sets (r=1,2,...,∞r=1, 2, ..., \infty) of symplectic diffeomorphisms and Hamiltonian systems, exhibiting "large" robustly transitive sets. We show that the C∞C^\infty closure of such open sets contains a variety of systems, including so-called a priori unstable integrable systems. In addition, the existence of ergodic measures with large support is obtained for all those systems. A main ingredient of the proof is a combination of studying minimal dynamics of symplectic iterated function systems and a new tool in Hamiltonian dynamics which we call symplectic blender.Comment: 52 pages, 3 figure

    Contributions of plasma physics to chaos and nonlinear dynamics

    Full text link
    This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016

    Effects of Repulsive Coupling in Ensembles of Excitable Elements

    Get PDF
    Die vorliegende Arbeit behandelt die kollektive Dynamik identischer Klasse-I-anregbarer Elemente. Diese können im Rahmen der nichtlinearen Dynamik als Systeme nahe einer Sattel-Knoten-Bifurkation auf einem invarianten Kreis beschrieben werden. Der Fokus der Arbeit liegt auf dem Studium aktiver Rotatoren als Prototypen solcher Elemente. In Teil eins der Arbeit besprechen wir das klassische Modell abstoßend gekoppelter aktiver Rotatoren von Shinomoto und Kuramoto und generalisieren es indem wir höhere Fourier-Moden in der internen Dynamik der Rotatoren berĂŒcksichtigen. Wir besprechen außerdem die mathematischen Methoden die wir zur Untersuchung des Aktive-Rotatoren-Modells verwenden. In Teil zwei untersuchen wir Existenz und StabilitĂ€t periodischer Zwei-Cluster-Lösungen fĂŒr generalisierte aktive Rotatoren und beweisen anschließend die Existenz eines Kontinuums periodischer Lösungen fĂŒr eine Klasse Watanabe-Strogatz-integrabler Systeme zu denen insbesondere das klassische Aktive-Rotatoren-Modell gehört und zeigen dass (i) das Kontinuum eine normal-anziehende invariante Mannigfaltigkeit bildet und (ii) eine der auftretenden periodischen Lösungen Splay-State-Dynamik besitzt. Danach entwickeln wir mit Hilfe der Averaging-Methode eine Störungstheorie fĂŒr solche Systeme. Mit dieser können wir RĂŒckschlĂŒsse auf die asymptotische Dynamik des generalisierten Aktive-Rotatoren-Modells ziehen. Als Hauptergebnis stellen wir fest dass sowohl periodische Zwei-Cluster-Lösungen als auch Splay States robuste Lösungen fĂŒr das Aktive-Rotatoren-Modell darstellen. Wir untersuchen außerdem einen "StabilitĂ€tstransfer" zwischen diesen Lösungen durch sogenannte Broken-Symmetry States. In Teil drei untersuchen wir Ensembles gekoppelter Morris-Lecar-Neuronen und stellen fest, dass deren asymptotische Dynamik der der aktiven Rotatoren vergleichbar ist was nahelegt dass die Ergebnisse aus Teil zwei ein qualitatives Bild fĂŒr solch kompliziertere und realistischere Neuronenmodelle liefern.We study the collective dynamics of class I excitable elements, which can be described within the theory of nonlinear dynamics as systems close to a saddle-node bifurcation on an invariant circle. The focus of the thesis lies on the study of active rotators as a prototype for such elements. In part one of the thesis, we motivate the classic model of repulsively coupled active rotators by Shinomoto and Kuramoto and generalize it by considering higher-order Fourier modes in the on-site dynamics of the rotators. We also discuss the mathematical methods which our work relies on, in particular the concept of Watanabe-Strogatz (WS) integrability which allows to describe systems of identical angular variables in terms of Möbius transformations. In part two, we investigate the existence and stability of periodic two-cluster states for generalized active rotators and prove the existence of a continuum of periodic orbits for a class of WS-integrable systems which includes, in particular, the classic active rotator model. We show that (i) this continuum constitutes a normally attracting invariant manifold and that (ii) one of the solutions yields splay state dynamics. We then develop a perturbation theory for such systems, based on the averaging method. By this approach, we can deduce the asymptotic dynamics of the generalized active rotator model. As a main result, we find that periodic two-cluster states and splay states are robust periodic solutions for systems of identical active rotators. We also investigate a 'transfer of stability' between these solutions by means of so-called broken-symmetry states. In part three, we study ensembles of higher-dimensional class I excitable elements in the form of Morris-Lecar neurons and find the asymptotic dynamics of such systems to be similar to those of active rotators, which suggests that our results from part two yield a suitable qualitative description for more complicated and realistic neural models
    • 

    corecore