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MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES

MATHIEU DESROCHES∗, JOHN GUCKENHEIMER†, BERND KRAUSKOPF∗, CHRISTIAN KUEHN‡,
HINKE M. OSINGA∗, MARTIN WECHSELBERGER§

Abstract. Mixed-mode oscillations (MMOs) are trajectories of a dynamical system in which there is an altern-
ation between oscillations of distinct large and small amplitudes. MMOs have been observed and studied for over
thirty years in chemical, physical and biological systems. Few attempts have been made thus far to classify different
patterns of MMOs, in contrast to the classification of the related phenomena of bursting oscillations. This paper
gives a survey of different types of MMOs, concentrating its analysis on MMOs whose small-amplitude oscillations
are produced by a local, multiple-time-scale “mechanism.” Recent work gives substantially improved insight into
the mathematical properties of these mechanisms. In this survey, we unify diverse observations about MMOs and
establish a systematic framework for studying their properties. Numerical methods for computing different types of
invariant manifolds and their intersections are an important aspect of the analysis described in this paper.

1. Introduction. Oscillations with clearly separated amplitudes have been observed in
several application areas, notably in chemical reaction dynamics. Figure 1 reproduces Fig-
ure 12 in Hudson, Hart and Marinko [103]. It shows a time series of complex chemical
oscillations of the Belousov-Zhabotinsky (BZ) reaction [18, 237] in a stirred tank reactor.
The series appears to be periodic, and there is evident structure of the oscillations within
each period. In particular, pairs of small-amplitude oscillations (SAOs) alternate with pairs
of large-amplitude oscillations (LAOs). The result is an example of amixed-mode oscilla-
tion, or MMO, displaying cycles of (at least) two distinct amplitudes. There is no accepted
criterion for this distinction between amplitudes, but the separation between large and small
is clear in the case of Figure 1. The pattern of consecutive large and small oscillations in
an MMO is an aspect that draws immediate attention. Customarily, the notationLs1

1 Ls2
2 · · · .

is used to label series that begin withL1 large amplitude oscillations, followed bys1 small-
amplitude oscillations,L2 large-amplitude oscillations,s2 small-amplitude oscillations, and
so on. We will callLs1

1 Ls2
2 · · · the MMO signature; it may be periodic or aperiodic. Sig-

natures of periodic orbits are abbreviated by giving the signature of one period. Thus, the
time series in Figure 1, which appears to be periodic, has signature22. As Hudson, Hart
and Marinko varied the flow rate through their reactor, MMOs with varied signatures were
observed, as well as simple oscillations with only large or only small amplitudes. Similar
results to those presented in their paper have been found in other experimental and model
chemical systems. Additionally, MMOs have been observed in laser systems and in neurons.
We present an overview with references to experimental studies of MMOs in these and other
areas in Table 9.1 of the last section of this survey.

Dynamical systems theory studies qualitative properties of solutions of differential equa-
tions. The theory investigates bifurcations of equilibria and periodic orbits, describing how
these limit sets depend upon system parameters. Mixed-mode oscillations may be periodic or-
bits, but we then ask questions that go beyond those typically examined by standard/classical
dynamical systems theory. Specifically, we seek to dissect the MMOs into their epochs of
small- and large-amplitude oscillations, identify each of these epochs with geometric objects
in the state space of the system, and determine how transitions are made between these. When
the transitions between epochs are much faster than the oscillations within the epochs, we are
led to seek models for MMOs with multiple time scales.
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FIG. 1. Bromide ion electrode potential in the Belousov-Zhabotinsky reaction; reproduced from Hudson, Hart
and Marinko, J. Chem. Phys. 71(4): 1601–1606, 1979.

Early studies of MMOs in model systems typically limited their investigations to cata-
loging the patterns of MMO signatures found as a parameter is varied. Barkley [16] is an
exception: he assessed the capability of multiple-time-scale models for MMOs to produce the
behavior observed by Hudson, Hart and Marinko [103]. He compared the MMOs from these
experiments and from a seven-dimensional model for the BZ reaction proposed by Showalter,
Noyes and Bar-Eli [205] with three-dimensional multiple-time-scale models. The MMOs that
Barkley studied in some respects resembled homoclinic orbits to a saddle-focus equilibrium.
In particular, small-amplitude oscillations of growing amplitude were produced by trajector-
ies that spiraled away from the equilibrium along its unstable manifold. This type of homo-
clinic orbit was studied by L. Shilnikov[204], but Barkley noted that the MMOs appeared
to persist over open regions of system parameters rather than to occur along a codimension-
one submanifold of parameter space as is the case with homoclinic orbits in generic systems.
Moreover, large parts of the state space of model systems appeared to converge to a tiny re-
gion at the beginning of the small-amplitude growing oscillations. Barkley was unable to
produce a three-dimensional model with these characteristics, but such models were sub-
sequently found. This paper discusses two of these models, emphasizing the one proposed
and studied by Koper [122]. Koper’s model is similar to a normal form for singular Hopf
bifurcation [85], a codimension-one bifurcation that arises in the context of systems with two
slow variables and one fast variable. Our central focus is upon MMOs whose SAOs are a
byproduct of local phenomena occurring in generic multiple-time-scale systems. Analog-
ous to the role of normal forms in bifurcation theory, understanding the multiple-time-scale
dynamics of MMOs in their simplest manifestations leads to insights into the properties of
MMOs in more complex systems.

The geometry of multiple-time-scale dynamical systems is intricate. Section 2 provides a
short review. Beginning with the work of the “Strasbourg” school [48] and Takens’ work [214]
on “constrained vector fields” in the 1970’s, geometric methods have been used to study gen-
eric multiple-time-scale systems with two slow variables and one fast variable.Folded sin-
gularitiesare a prominent phenomenon in this work. As described in Section 2, they lie on
a fold of thecritical manifold, where an attracting and a repelling sheet meet. Folded sin-
gularities yield equilibria of adesingularized reduced vector fieldthat is constructed in the
singular limit of the time scale parameter. More recently, Dumortier and Roussarie [55], and
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Szmolyan and Wechselberger [212] introduced singular blow-up techniques for the analyt-
ical study of the dynamics near folded singularities. These methods give information about
canard orbitsthat connect attracting and repellingslow manifolds.

Canard orbits organize the number of small-amplitude oscillations for MMOs associated
with folded nodes. The unfoldings of folded nodes [86, 233], folded saddle-nodes [84, 143]
and singular Hopf bifurcations [85] give insight into the characteristics of MMOs and how
they are formed as system parameters vary. Passage of trajectories through the region of a
folded node is one mechanism for generating MMOs that we discuss at length in Section 3.1
and illustrate with examples in Sections 4 and 5.Singular Hopf bifurcationand the closely
relatedfolded saddle-node bifurcation of type IItogether constitute a second mechanism that
produces SAOs and MMOs in a robust manner within systems having two slow variables and
one fast variable. These bifurcations occur when a (true) equilibrium of the slow-fast system
crosses a fold curve of a critical manifold. Singular Hopf bifurcation is discussed in Sec-
tion 3.2 and also illustrated in Sections 4 and 5. We discuss a third mechanism for producing
small-amplitude oscillations in slow-fast systems that is organized by aHopf bifurcation in
the layer equationsand requires two fast variables. We call this mechanism adynamic Hopf
bifurcationand distinguish trajectories that pass by a dynamic Hopf bifurcation with adelay
and trajectories with atourbillion [232] whose small-amplitude oscillations have larger mag-
nitude than those of a delayed Hopf bifurcation. Dynamic Hopf bifurcation is discussed in
Section 3.4 and illustrated in Sections 6 and 7.

Complementary to theoretical advances in the analysis of slow-fast systems, numerical
methods have been developed to compute and visualize geometric structures that shape the
dynamics of these systems. Slow manifolds and canard orbits can now be computed in con-
crete systems; see Guckenheimer [85, 89] and Desroches, Krauskopf and Osinga [40, 41, 42,
43]. The combination of new theory and new numerics has produced new understanding of
MMOs in many examples that have been previously studied. This paper reviews and synthes-
izes these advances. It is organized as follows. Section 2 gives background about relevant
parts of geometric singular perturbation theory. Multiple-time-scale mechanisms that produce
SAOs in MMOs are then discussed and illustrated in Section 3. The four subsequent sections
provide case studies that illustrate and highlight recent theoretical advances and computa-
tional techniques. More details on the computational methods used in this paper can be found
in Section 8. The final Section 9 includes a brief survey of the MMO literature and discusses
other mechanisms that are not associated with a split between slow and fast variables.

2. Geometric singular perturbation theory of slow-fast systems.We consider here a
slow-fast vector field that takes the form

{
ε ẋ = ε dx

dτ = f(x, y, λ, ε),

ẏ = dy
dτ = g(x, y, λ, ε),

(2.1)

where(x, y) ∈ Rm × Rn are state space variables,λ ∈ Rp are system parameters, and
ε is a small parameter0 < ε ¿ 1 representing the ratio of time scales. The functions
f : Rm × Rn × Rp × R → Rm and g : Rm × Rn × Rp × R → Rn are assumed to
be sufficiently smooth, typicallyC∞. The variablesx are fast and the variablesy are slow.
System (2.1) can be rescaled to

{
x′ = dx

dt = f(x, y, λ, ε),

y′ = dy
dt = ε g(x, y, λ, ε),

(2.2)

by switching from the slow time scaleτ to the fast time scalet = τ/ε.
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Several viewpoints have been adopted to study slow-fast systems, starting with asymp-
totic analysis [56, 164] using techniques such as matched asymptotic expansions [118, 148].
Geometric Singular Perturbation Theory (GSPT) takes a geometric point of view and fo-
cuses upon invariant manifolds, normal forms for singularities and analysis of their unfold-
ings [10, 69, 110, 111, 215]. Fenichel’s seminal work [69] on invariant manifolds was an
initial foundation of GSPT and it is also called Fenichel theory. A third viewpoint was ad-
opted by a group of French mathematicians in Strasbourg. Using nonstandard analysis, they
made many important discoveries [19, 20, 22, 23, 47, 48] about slow-fast systems. This paper
adopts the GSPT viewpoint. We only focus on the results of GSPT that are necessary to study
MMOs. There are other important techniques that are part of GSPT, such as the Exchange
Lemma [110, 112], the blow-up method [55, 142, 233] and slow-fast normal form theory [10]
that are not described in this paper.

2.1. The critical manifold and the slow flow. Solutions of a slow-fast system fre-
quently exhibit slow and fast epochs characterized by the speed at which the solution ad-
vances. Asε → 0, the trajectories of (2.1) converge during fast epochs to solutions of thefast
subsystemor layer equations

{
x′ = f(x, y, λ, 0),
y′ = 0.

(2.3)

During slow epochs, on the other hand, trajectories of (2.2) converge to solutions of
{

0 = f(x, y, λ, 0),
ẏ = g(x, y, λ, 0), (2.4)

which is a differential-algebraic equation (DAE) called theslow flowor reduced system. One
goal of GSPT is to use the fast and slow subsystems, (2.3) and (2.4), to understand the dy-
namics of the full system (2.1) or (2.2) forε > 0. The algebraic equation in (2.4) defines the
critical manifold

S := {(x, y) ∈ Rm × Rn | f(x, y, λ, 0) = 0}.
We remark thatS may have singularities [141], but we assume here that this does not hap-
pen so thatS is a smooth manifold. The points ofS are equilibrium points for the layer
equations (2.3).

Fenichel theory [69] guarantees persistence ofS (or a subsetM ⊂ S) as a slow manifold
of (2.1) or (2.2) forε > 0 small enough ifS (or M ) is normally hyperbolic. The notion of
normal hyperbolicity is defined for invariant manifolds more generally, effectively stating
that the attraction to and/or repulsion from the manifold is stronger than the dynamics on the
manifold itself; see [66, 67, 68, 95] for the exact definition. Normal hyperbolicity is often
difficult to verify when there is only a single time scale. However, in our slow-fast setting,
S consists entirely of equilibria and the requirement of normal hyperbolicity ofM ⊂ S
is satisfied as soon as allp ∈ M are hyperbolic equilibria of the layer equations, that is, the
Jacobian(Dxf)(p, λ, 0) has no eigenvalues with zero real part. We call a normally hyperbolic
subsetM ⊂ S attracting if all eigenvalues of(Dxf)(p, λ, 0) have negative real parts for
p ∈ M ; similarly M is calledrepelling if all eigenvalues have positive real parts. IfM is
normally hyperbolic and neither attracting nor repelling we say it is ofsaddle type.

Hyperbolicity of the layer equations fails at points onS where its projection onto the
space of slow variables is singular. Generically, such points are folds in the sense of singu-
larity theory [10]. At a fold pointp∗, we havef(p∗, λ, 0) = 0 and(Dxf)(p∗, λ, 0) has rank
m−1 with left and right null vectorsw andv, such thatw · [(D2

xxf)(p∗, λ, 0) (v, v)] 6= 0 and
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w · [(Dyf)(p∗, λ, 0)] 6= 0. The set of fold points forms a submanifold of codimension one in
then-dimensional critical manifoldS. In particular, whenm = 1 andn = 2, the fold points
form smooth curves that separate attracting and repelling sheets of the two-dimensional crit-
ical manifoldS. In this paper we do not consider more degenerate singular points of the
projection ofS onto the space of slow variables.

Away from fold points the implicit function theorem implies thatS is locally the graph
of a functionh(y) = x. Then the reduced system (2.4) can be expressed as

ẏ = g(h(y), y, λ, 0). (2.5)

We can also keep the DAE structure and write (2.4) as the restriction toS of the vector field

{
ẋ = − (Dxf)−1 (Dyf) g,
ẏ = g,

(2.6)

on Rm × Rn by observing thatf = 0 and ẏ = g imply ẋ = − (Dxf)−1 (Dyf) g. The
vector field (2.6) blows up whenf is singular. It can bedesingularizedby scaling time by
− det (Dxf), at the expense of changing the direction of the flow in the region where this
determinant is positive. This desingularized system plays a prominent role in much of our
analysis. IfS is normally hyperbolic, not onlyS, but also the slow flow onS persists for
ε > 0; this is made precise in the following fundamental theorem.

THEOREM 2.1 (Fenichel’s Theorem [69]). SupposeM = M0 is a compact normally
hyperbolic submanifold (possibly with boundary) of the critical manifoldS of (2.2)and that
f, g ∈ Cr, r < ∞. Then forε > 0 sufficiently small the following holds:

(F1) There exists a locally invariant manifoldMε diffeomorphic toM0. Local invariance
means thatMε can have boundaries through which trajectories enter or leave.

(F2) Mε has a Hausdorff distance ofO(ε) fromM0.
(F3) The flow onMε converges to the slow flow asε → 0.
(F4) Mε is Cr-smooth.
(F5) Mε is normally hyperbolic and has the same stability properties with respect to the

fast variables asM0 (attracting, repelling or saddle type).
(F6) Mε is usually not unique. In regions that remain at a fixed distance from the bound-

ary ofMε, all manifolds satisfying (F1)–(F5) lie at a Hausdorff distanceO(e−K/ε)
from each other for someK > 0 with K = O(1).

The normally hyperbolic manifoldM0 has associated local stable and unstable manifolds

W s
loc(M0) =

⋃

p∈M0

W s
loc(p), and Wu

loc(M0) =
⋃

p∈M0

Wu
loc(p),

whereW s
loc(p) andWu

loc(p) are the local stable and unstable manifolds ofp as a hyperbolic
equilibrium of the layer equations, respectively. These manifolds also persist forε > 0
sufficiently small: there exist local stable and unstable manifoldsW s

loc(Mε) andWu
loc(Mε),

respectively, for which conclusions (F1)–(F6) hold if we replaceMε andM0 by W s
loc(Mε)

andW s
loc(M0) (or similarly byWu

loc(Mε) andWu
loc(M0)).

We callMε a Fenichel manifold. Fenichel manifolds are a subclass ofslow manifolds,
invariant manifolds on which the vector field has speed that tends to0 on the fast time scale
asε → 0. We use the convention that objects in the singular limit have subscript0, whereas
the associated perturbed objects have subscriptsε.

2.1.1. The critical manifold and the slow flow in the Van der Pol equation.Let us
illustrate these general concepts of GSPT with an example. One of the simplest systems in
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FIG. 2. Phase portraits of the Van der Pol equation(2.7) for λ = 0 (a) and forλ = 1 (b). Shown are
the critical manifoldS (grey solid curve) and they-nullcline (dashed line); double arrows indicate the direction
of the fast flow and single arrows that of the slow flow. Panel (a) shows a candidate for a relaxation oscillation
(black) surrounding an unstable equilibrium. Panel (b) is the moment of the singular Hopf bifurcation with a folded
singularity at the local minimump+.

which the concepts are manifest, and historically perhaps also the first, is the Van der Pol
equation [222, 223, 224] with constant forcingλ ∈ R given by

{
ε ẋ = y − 1

3x3 + x,
ẏ = λ− x.

(2.7)

This slow-fast system has only one fast and one slow variable, but it already exhibits com-
plicated dynamics that were truly surprising when they were first discovered [48]. By setting
ε = 0 in (2.7), we obtain the reduced system with an algebraic equation that defines the
critical manifold of (2.7) as the cubic curve

S = {(x, y) ∈ R2 | y = 1
3x3 − x =: c(x)}. (2.8)

It is normally hyperbolic away from the local maximum and minimump± = (±1,∓ 2
3 ) of

the cubic, whereS has a fold with respect to the fast variablex. At p± normal hyperbolicity
fails, since ∂

∂xf(x, y, λ, 0) = 1 − x2 is zero atp±. Hence,p± are the fold points and they
naturally decompose the critical manifold into three branches,

S = Sa,− ∪ {p−} ∪ Sr ∪ {p+} ∪ Sa,+,

whereSa,− := S ∩ {x < −1}, Sa,+ := S ∩ {x > 1} andSr = S ∩ {−1 < x < 1}. From
the sign of ∂

∂xf(x, y, λ, 0) we conclude that the two branchesSa,− andSa,+ are attracting,
and the branchSr is repelling. The critical manifoldS is shown as the grey cubic curve in
Figure 2; note thatS and its attracting/repelling nature does not depend onλ, so it is the same
both in panel (a), whereλ = 0, and panel (b), whereλ = 1. The dynamics of any point not on
S is entirely controlled by the direction of the fast variablex, which is indicated in Figure 2
by the horizontal double arrows; observe that the middle branch ofS is repelling and the two
unbounded branches are attracting.

To obtain the slow flow (2.5) onS in the Van der Pol equation (2.7) it is not actually
necessary to solve the cubic equationy = c(x) for x on Sa,−, Sr andSa,+. It is more
convenient to write the slow (reduced) flow in terms of the fast variablex. To this end, we
differentiatef(x, y, λ, 0) = y − c(x) = 0 with respect toτ and obtain

ẏ = ẋ x2 − ẋ = ẋ (x2 − 1).
6



Combining this result with the equation forẏ we get:

(x2 − 1) ẋ = λ− x or ẋ =
λ− x

x2 − 1
. (2.9)

The direction of the slow flow onS is indicated in Figure 2 by the arrows on the grey curve;
panel (a) is forλ = 0 and panel (b) forλ = 1. The slow flow does depend onλ, because the
direction of the flow is partly determined by the location of the equilibrium atx = λ on S.
The slow flow is well defined onSa,−, Sr andSa,+, but not atx = ±1 (as long asλ 6= ±1).
We can desingularize the slow flow nearx = ±1 by rescaling time with the factor(x2 − 1).
This gives the equatioṅx = λ − x of thedesingularized flow. Note that this time rescaling
reverses the direction of time on the repelling branchSr, so care must be taken when relating
the phase portrait of the desingularized system to the phase portrait of the slow flow.

Let us now focus specifically on the case forλ = 0, shown in Figure 2(a), because it is
representative for the range|λ| < 1. They-nullcline of (2.7) is shown as the dashed black
vertical line (thex-nullcline isS) and the origin is the only equilibrium, which is a source for
this value ofλ. The closed curve is a singular orbit composed of two fast trajectories starting
at the two fold pointsp± concatenated with segments ofS. Such continuous concatenations
of trajectories of the layer equations and the slow flow are calledcandidates[20]. The singular
orbit follows the slow flow onS to a fold point, then itjumps, that is, it makes a transition
to a fast trajectory segment that flows to another branch ofS. The same mechanism returns
the singular orbit to the initial branch ofS. It can be shown [142, 164] that the singular orbit
perturbs forε > 0 to a periodic orbit of the Van der Pol equation that liesO(ε) close to this
candidate. Van der Pol introduced the termrelaxation oscillationto describe periodic orbits
that alternate between epochs of slow and fast motion.

2.2. Singular Hopf bifurcation and canard explosion. The dynamics of slow-fast sys-
tems in the vicinity of points on the critical manifold where normal hyperbolicity is lost can
be surprisingly complicated and nothing like what we know from systems with a single time
scale. This section addresses the phenomenon known as acanard explosion, which occurs
in planar slow-fast systems after asingular Hopf bifurcation. We discuss this first for the
example of the Van der Pol equation (2.7).

2.2.1. Canard explosion in the Van der Pol equation.As mentioned above, the phase
portrait in Figure 2(a) is representative for a range ofλ-values. However, the phase portrait
for λ = 1, shown in Figure 2(b), is degenerate. Linear stability analysis shows that for
ε > 0 the unique equilibrium point(x, y) = (λ, 1

3λ3 − λ) is a source for|λ| < 1, but a
sink for |λ| > 1. Supercritical Hopf bifurcations occur atλH = ±1. The analysis of how
the observed stable dynamics of the Van der Pol equation (2.7) changes withλ from a stable
focus to relaxation oscillations whenε > 0 is small was a major development in the theory of
slow-fast systems. Figure 3(a) shows the result of a numerical continuation in the parameter
λ of the periodic orbit forε = 0.05 that emerges from the Hopf bifurcation. Close to the
Hopf bifurcation atλH = 1.0 the periodic orbit is small (cyan curve), as is to be expected.
However, asλ decreases, the periodic orbit grows very rapidly, where it follows the repelling
slow manifoldSr

ε for a long time. In fact, the values ofλ for all orange orbits in Figure 3(a)
areλ ≈ 0.993491, that is, they agree to six decimal places. Note that we show the growing
orbits only up to a characteristic intermediate size: the largest periodic orbit in Figure 3(a) just
encompasses the fold pointp−. Upon further continuation inλ this periodic orbit continues to
grow rapidly until it reaches the shape of a relaxation oscillation; compare with Figure 2(a).

The Hopf bifurcation atλH = 1 occurs when the equilibrium moves over the fold point
p+. It is called a singular Hopf bifurcation. The eigenvalues at the Hopf bifurcation have
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FIG. 3. Numerical continuation of periodic orbits in the Van der Pol’s equation(2.7) for ε = 0.05. Panel (a)
shows a selection of periodic orbits: the cyan orbit is a typical small limit cycle near the Hopf bifurcation atλ = λH ,
whereas all the orange orbits occur in a very small parameter interval atλ ≈ 0.993491. Panels (b) and (c) are
sketched bifurcation diagrams corresponding to supercritical and subcritical singular Hopf bifurcations; hereA
denotes the amplitude of the limit cycle.

magnitudeO(ε−1/2), so that the periodic orbit is born at the Hopf bifurcation with an inter-
mediate period between the fastO(ε−1) and slowO(1) time scales. The size of this periodic
orbit grows rapidly from diameterO(ε1/2) to diameterO(1) in an interval of parameter val-
uesλ of lengthO(exp(−K/ε)) (for someK > 0 fixed) that isO(ε) close toλH . Figures 3(b)
and (c) are sketches of possible bifurcation diagrams inλ for the singular Hopf bifurcation
in a supercritical case (which one finds in the Van der Pol system) and in a subcritical case,
respectively; the vertical axis represents the maximal amplitude of the periodic orbits. The
two bifurcation diagrams are sketches that highlight the features described above. There is a
very small interval ofλ where the amplitude of the oscillation grows in a square-root fashion,
as is to be expected near a Hopf bifurcation. However, the amplitude then grows extremely
rapidly until it reaches a plateau that corresponds to relaxation oscillations.

The rapid growth in amplitude of the periodic orbit near the Hopf bifurcation is called a
canard explosion. The name canard derives originally from the fact that some periodic orbits
during the canard explosion look a bit like a duck [48]. In fact, the largest periodic orbit in
Figure 3(a) is an example of such a “duck-shaped” orbit. More generally, and irrespective of
its actual shape, one now refers to a trajectory as acanard orbitif it follows a repelling slow
manifold for a time ofO(1) on the slow time scale. A canard orbit is called amaximal canard
if it joins attracting and repelling slow manifolds. Since the slow manifolds are not unique,
this definition depends upon the selection of specific attracting and repelling slow manifolds;
compare (F6) of Theorem 2.1. Other choices yield trajectories that are exponentially close to
one another. In the Van der Pol equation (2.7) the canard explosion occursO(e−K/ε)-close in
parameter space to the point where the manifoldsSa,+

ε andSr
ε intersect in a maximal canard.

It is associated with the parameter valueλ = 1 where the equilibrium lies at the fold point
p+ of the critical manifoldS; see Figure 2(b).

2.3. Singular Hopf bifurcation and canard explosion in generic planar systems.In
the Van der Pol equation (2.7) the singular Hopf bifurcation takes place atλ = 1 where the
equilibrium lies at a fold point. In a generic family of slow-fast planar systems a singular
Hopf bifurcation does not happen exactly at a fold point, but at a distanceO(ε) in both phase
space and parameter space from the coincidence of the equilibrium and fold point. One can
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obtain a generic family by modifying the slow equation of the Van der Pol equation (2.7) to

ẏ = λ− x + a y.

In this modified system the equilibrium and fold point still coincide atx = 1, but the Hopf
bifurcation occurs forx =

√
1 + ε a. A detailed dynamical analysis of canard explosion and

the associated singular Hopf bifurcation using geometric or asymptotic methods exists for
planar slow-fast systems [12, 13, 55, 56, 140, 142]; we summarize these results as follows.

THEOREM 2.2 (Canard Explosion inR2 [142]). Suppose a planar slow-fast system has
a generic fold pointp∗ = (xp, yp) ∈ S, that is,

f(p∗, λ, 0) = 0,
∂

∂x
f(p∗, λ, 0) = 0,

∂2

∂x2
f(p∗, λ, 0) 6= 0,

∂

∂y
f(p∗, λ, 0) 6= 0.

(2.10)
Assume the critical manifold is locally attracting forx < xp and repelling forx > xp and
there exists a folded singularity forλ = 0 at p∗, namely,

g(p∗, 0, 0) = 0,
∂

∂x
g(p∗, 0, 0) 6= 0,

∂

∂λ
g(p∗, 0, 0) 6= 0. (2.11)

Then a singular Hopf bifurcation and a canard explosion occur at

λH = H1 ε + O(ε3/2) and (2.12)

λc = (H1 + K1) ε + O(ε3/2). (2.13)

The coefficientsH1 andK1 can be calculated explicitly from normal form transformations [142]
or by considering the first Lyapunov coefficient of the Hopf bifurcation [144].

In the singular limit we haveλH = λc. For anyε > 0 sufficiently small, the linearized
system [88, 147] at the Hopf bifurcation point has a pair ofsingular eigenvalues[27]

σ(λ; ε) = α(λ; ε) + i β(λ; ε),

with α(λH ; ε) = 0, ∂
∂λα(λH ; ε) 6= 0 and

lim
ε→0

β(λH ; ε) = ∞, on the slow time scaleτ , and

lim
ε→0

β(λH ; ε) = 0, on the fast time scalet.

2.4. Folded singularities in systems with one fast and two slow variables.A canard
explosion for a planar system happens in an exponentially small parameter interval. However,
as soon as there is more than one slow variable, canard orbits can exist forO(1) ranges of a
parameter. To illustrate this, we consider (2.1) for the special casem = 1 andn = 2, and
write it as





ε ẋ = f(x, y, λ, ε),
ẏ1 = g1(x, y, λ, ε),
ẏ2 = g2(x, y, λ, ε).

(2.14)

We assume that the critical manifoldS = {f = 0} of (2.14) has an attracting sheetSa and a
repelling sheetSr that meet at a fold curveF as is shown in Figure 4. We also assume that
the fold pointsp∗ ∈ F onS are generic in the sense of singularity theory, that is,

f(p∗, λ, 0) = 0,
∂f

∂x
(p∗, λ, 0) = 0,

∂2f

∂x2
(p∗, λ, 0) 6= 0, Dyf(p∗, λ, 0) has full rank one.
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FIG. 4. The critical manifoldS with attracting sheetSa (red) and repelling sheetSr (blue) that meet at a fold
curveF (grey). The fast flow transverse toS is indicated by double (large) arrows and the slow flow onS near a
folded node by single (small) arrows; see also Figure 5(b).

The slow flow is not defined on the fold curve before desingularization. At most fold points,
trajectories approach or depart from both the attracting and repelling sheets ofS. In generic
systems, there may be isolated points, calledfolded singularities, where the trajectories of
the slow flow switch from incoming to outgoing. Figure 4 shows an example of the slow flow
on S and the thick dot onF is the folded singularity at whichF changes from attracting to
repelling (with respect to the slow flow).

Folded singularities are equilibrium points of the desingularized slow flow. As described
above, the desingularized slow flow can be expressed as





ẋ =
(

∂
∂y1

f
)

g1 +
(

∂
∂y2

f
)

g2 ,

ẏ1 = − (
∂
∂xf

)
g1,

ẏ2 = − (
∂
∂xf

)
g2,

(2.15)

restricted toS. A fold point p∗ ∈ F is a folded singularity if

g1(p∗, λ, 0)
∂f

∂y1
(p∗, λ, 0) + g2(p∗, λ, 0)

∂f

∂y2
(p∗, λ, 0) = 0.

There are different possibilities for the stability ofp∗ in (2.15). Letσ1 andσ2 denote the
eigenvalues of the Jacobian matrix restricted toS and evaluated at a folded singularityp∗.
We callp∗ a





folded saddle, if σ1 σ2 < 0, σ1,2 ∈ R,
folded node, if σ1 σ2 > 0, σ1,2 ∈ R,
folded focus, if σ1 σ2 > 0, Im(σ1,2) 6= 0.

Figure 5 shows phase portraits of the (linearized) slow flow, in panels (a) and (b), and the
associated desingularized slow flow, in panels (c) and (d), respectively. Panels (a) and (c) are
for the case of a folded saddle and panels (b) and (d) of a folded node. For the case of a folded
node one generically has an inequality of the form|σ1| > |σ2|, and we write|σs| > |σw|,
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FIG. 5. Phase portraits of the locally linearized slow flow near a folded saddle (a) and a folded node (b); the
singular canards defined by the eigendirections are shown as thick lines. The corresponding desingularized slow
flow is shown in panels (c) and (d), respectively.

replacing the numeric labels withs andw to emphasize the strong and weak eigendirections.
Note that the phase portraits for the slow flow in Figure 5(a) and (b) are obtained by reversing
the direction of the flow onSr where ∂

∂xf > 0, that is, by reversing the arrows aboveF in
the phase portraits of the desingularized slow flow in panels (c) and (d). It is an important
observation that the trajectories of the slow flow that lie along the eigendirections of the folded
saddle or node connect the two sheets of the critical manifold through the folded singularity
in finite (slow) time; such a trajectory is called asingular canard. We remark that there
are no singular canards for the case of a folded focus, which is why it is not shown here.
Notice further for the case of the folded node in Figure 5(b) that the strong singular canard
γ̃s and the fold curve bound a full (shaded) sector of trajectories that cross fromSa to Sr by
passing through the folded node. The linearized system in Figure 5(b) should be compared
with Figure 4, which shows a nonlinear slow flow near a folded node and, hence, also has a
full sector of trajectories that pass through the folded singularity.

Singular canards act as candidates of maximal canards of the full system forε > 0. This
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is described in the next theorem [19, 23, 31, 212, 233].
THEOREM 2.3 (Canards inR3). For the slow-fast system(2.14)with ε > 0 sufficiently

small the following holds:
(C1) There are no maximal canards generated by a folded focus.
(C2) For a folded saddle the two singular canardsγ̃1,2 perturb to maximal canardsγ1,2.

(C3.1) For a folded node letµ := σw/σs < 1. The singular canard̃γs (“the strong
canard”) always perturbs to a maximal canardγs. If µ−1 6∈ N then the singular
canardγ̃w (“the weak canard”) also perturbs to a maximal canardγw. We callγs

andγw primary canards.
(C3.2) For a folded node supposek > 0 is an integer such that2k + 1 < µ−1 < 2k + 3

andµ−1 6= 2(k + 1). Then, in addition toγs,w, there arek other maximal canards,
which we call secondary canards.

(C3.3) The primary weak canard of a folded node undergoes a transcritical bifurcation for
oddµ−1 ∈ N and a pitchfork bifurcation for evenµ−1 ∈ N.

3. Slow-fast mechanisms for MMOs.In this section we present key theoretical results
of how MMOs arise in slow-fast systems with SAOs occurring in a localized region of the
phase space. The LAOs, on the other hand, are associated with large excursions away from
the localized region of SAOs. More specifically, we discuss four local mechanisms that give
rise to such SAOs:

• passage near a folded node, discussed in Section 3.1;
• singular Hopf bifurcation, discussed in Section 3.2;
• three-time-scale problems with a singular Hopf bifurcation, discussed in Section 3.3;
• tourbillion, discussed in Section 3.4.

Each of these local mechanisms has its distinctive characteristics and can give rise to MMOs
when combined with aglobal return mechanismthat takes the trajectory back to the region
with SAOs. Such global return mechanisms arise naturally in models from applications and
a classic example is an S-shaped slow manifold; see Section 3.2 and the examples in Sec-
tions 4–6. We do not discuss global returns in detail, but rather concentrate on the nature of
the local mechanisms. From the analysis of normal forms we estimate quantities that can be
measured in examples of MMOs produced from both numerical simulations and experimental
data. Specifically, we consider the number of SAOs and the changes in their amplitudes from
cycle to cycle. We also consider in model systems the geometry of nearby slow manifolds
that are associated with the approach to and departure from the SAO regions.

3.1. MMOs due to a folded node.Folded nodes are only defined for the singular
limit (2.4) of system (2.1) on the slow time scale. However, they are directly relevant to
MMOs because forε > 0 small enough, trajectories of (2.1) that flow through a region where
the reduced system has a folded node, undergo small oscillations. Benoit [19, 20] first re-
cognized these oscillations. Wechselberger and collaborators [31, 212, 233] gave a detailed
analysis of folded nodes while Guckenheimer and Haiduc [86] and Guckenheimer [84] com-
puted intersections of slow manifolds near a folded node and maps along trajectories passing
through these regions. From Theorem 2.3 we know that the eigenvalue ratio0 < µ < 1 at
the folded node is a crucial quantity that determines the dynamics in a neighborhood of the
folded node. In particular,µ controls the maximal number of oscillations. The studies men-
tioned above use normal forms to describe the dynamics of oscillations near a folded node.
Two equivalent versions of these normal forms are





ε ẋ = y − x2,
ẏ = z − x,
ż = −ν,

(3.1)
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and




ε ẋ = y − x2,
ẏ = −(µ + 1)x− z,
ż = 1

2µ.
(3.2)

Note thatµ is the eigenvalue ratio of system (3.2) and thatν 6= 0 andµ 6= 0 imply that no
equilibria exist in (3.1) and (3.2). If we replace(x, y, z) in system (3.1) by(u, v, w) and call
the time variableτ1, then we obtain system (3.2) via the coordinate change

x = (1 + µ)1/2 u, y = (1 + µ) v, z = −(1 + µ)3/2 w,

and the rescaling of timeτ = τ1/
√

1 + µ, which gives

ν =
µ

2(1 + µ)2
or µ =

−1 +
√

1− 8ν

−1−√1− 8ν
.

Therefore, in system (3.1) the number of secondary canards changes with the parameterν.
Whenν is small,µ ≈ 2ν. If the “standard” scaling [212]x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄,
andt = ε1/2 t̄, is applied to system (3.1), we obtain





x̄′ = ȳ − x̄2,
ȳ′ = z̄ − x̄,

z̄′ = −ν .

(3.3)

Hence, the phase portraits of system (3.1) for different values ofε are topologically equivalent
via linear maps. The normal form (3.3) describes the dynamics in the neighborhood of a
folded node, which is at the origin here. Trajectories that come fromy = ∞ with x > 0
and pass through the folded-node region make a number of oscillations in the process, before
going off toy = ∞ with x < 0. There are no returns to the folded-node region in this system.

Let us first focus on the number of small oscillations. If2k + 1 < µ−1 < 2k + 3, for
somek ∈ N, andµ−1 6= 2(k + 1) then the primary strong canardγs twists once and the
i-th secondary canardξi, 1 ≤ i ≤ k, twists2i + 1 times around the primary weak canardγw

in anO(1) neighborhood of the folded node singularity in system (3.3), which corresponds
to anO(

√
ε) neighborhood in systems (3.1) and (3.2) [212, 233]. (A twist corresponds to

a half rotation.) We illustrate this in Figure 6 for system (3.3) withν = 0.025. Note that
ν = 0.025 corresponds toµ ≈ 0.0557. Hence,2k + 1 < µ−1 ≈ 17.953 < 2k + 3
for k = 8, so Theorem 2.3 states that there exist eight secondary canardsξi, 1 ≤ i ≤ 8,
along with the strong and weak canardsγs/w. Figure 6 shows the attracting slow manifold
Sa

ε and the repelling slow manifoldSr
ε of (3.3) in a three-dimensional region bounded by

the planes{z = ±α}, denotedΣα andΣ−α, with α = 0.14; see Section 8 for details on
how these computations were done. Even though the rescaled normal form (3.3) does not
depend onε anymore, we still indicate theε-dependence of the slow manifolds to distinguish
them from the attracting and repelling sheets of the critical manifold; furthermore,Sa

ε andSr
ε

can be thought of as the slow manifolds of (3.1) or (3.2). Both manifolds are extensions of
Fenichel manifolds and illustrate how the slow manifolds intersect near the fold curve of the
critical manifold; the fold curve is thez-axis. The intersection curves are the canard orbits;
highlighted are the primary strong canardγs (black) and the first three secondary canardsξ1

(orange),ξ2 (magenta) andξ3 (cyan). The inset shows the intersection curves ofSa
ε andSr

ε

with the planeΣfn := {z = 0} that contains the folded node at the origin; the intersection
points of the highlighted canard orbits are also indicated. Due to the symmetry of the normal
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FIG. 6. Invariant slow manifolds of(3.3) with ν = 0.025 in a neighborhood of the folded node. Both the
attracting slow manifoldSa

ε (red) and the repelling slow manifoldSr
ε (blue) are extensions of Fenichel manifolds.

The primary strong canardγs (black curve) and three secondary canardsξ1 (orange),ξ2 (magenta) andξ3 (cyan)
are the first four intersection curves ofSa

ε and Sr
ε ; the inset shows how these objects intersect a cross-section

orthogonal to the fold curve{x = 0, y = 0}.

form (3.3), the two slow manifoldsSa
ε andSr

ε are each other’s image under rotation byπ
about they-axis in Figure 6(a).

A trajectory entering the fold region becomes trapped in a region bounded by strips
of Sa

ε and Sr
ε and two of their intersection curves. The intersection curves are maximal

canards, and the trajectory is forced to follow the oscillations of these two bounding canard
orbits. Figure 6 does not show very clearly how many canards there are, nor does it indicate
the precise number of oscillations. We calculate the flow map of (3.3) withν = 0.025 to
illustrate this better. Due to the strong contraction alongSa

ε , the flow map through the fold
region is strongly contracting in one direction for trajectories that do not extend alongSr

ε .
Hence, the flow map will be almost one dimensional and can be approximated by following
trajectories starting on the critical manifold far away from the fold curve. Figure 7(a) shows
the result of integrating500 equally-spaced initial values on the line segment{x = 20, y =
x2 = 400, −3.25 ≤ z ≤ −0.75} until they reach the planex = −10; plotted are the
z-coordinates of the final values versus the initial values. One can see ten segments in this
flow map that are separated by discontinuities. These discontinuities mark sectors on the
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FIG. 7. Numerical study of the number of rotational sectors for system(3.3) with ν = 0.025. Panel (a)
illustrates the flow map through the folded node by plotting thez-coordinatesz out of the first return to a cross-
sectionx = −10 of 500 trajectories with equally-spaced initial values(x, y, z) = (20, 400, z in), where−3.25 ≤
z in ≤ −0.75. Panels (b1)–(b4) show four trajectories projected onto the(x, y)-plane that correspond to the points
labeled in panel (c), wherez in = −1.25 in panel (b1),z in = −1.5 in panel (b2),z in = −2 in panel (b3), and
z in = −2.25 in panel (b4).

line segment{x = 20, y = x2 = 400, −3.25 ≤ z ≤ −0.75} that correspond to an
increasing number of SAOs; in fact, each segment corresponds to a two-dimensional sector
Ii, 0 ≤ i ≤ 9, on the attracting sheetSa

ε of the slow manifold. The outer sectorI0 on the right
in Figure 7(a) is bounded on the left by the primary strong canardγs; sectorI1 is bounded
by γs and the first maximal secondary canardξ1; sectorsIi, i = 2, . . . , 8, are bounded by
maximal secondary canard orbitsξi−1 andξi; and the last (left outer) sectorI9 is bounded
on the right byξ8. On one side of the primary strong canardγs and each maximal secondary
canardξi, 1 ≤ i ≤ 8, trajectories follow the repelling slow manifoldSr

ε and then jump with
decreasing values ofx. On the other side ofγs andξi, trajectories jump back to the attracting
slow manifold and make one more oscillation through the folded node region before flowing
towardx = −∞. The four panels (b1)–(b4) in Figure 7 show portions of four trajectories
projected onto the(x, y)-plane; their initial values are(x, y, z) = (20, 400, z in) with z in as
marked in panel (a), that is,z in = −1.25, z in = −1.5, z in = −2 andz in = −2.25 for
(b1)–(b4), respectively. The trajectory in panel (b1) was chosen from the sectorI2, bounded
by ξ1 andξ2; this trajectory makes two oscillations. The trajectory in panel (b2) comes from
I5 and, indeed, it makes five oscillations. The other two trajectories, in panel (b3) and (b4),
make seven and nine oscillations, respectively, but some of these oscillations are too small to
be visible.

The actual widths of the rotational sectors in Figure 7 are very similar due to theε-
dependent rescaling used to obtain (3.3). When the equations depend onε as in (3.1) and
(3.2), however, the widths of the sectors depend onε. In fact, every sector is very small
except for the sector corresponding to maximal rotation, which is bounded byξk and the fold
curve. For an asymptotic analysis of the widths of the rotational sectors that organize the
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FIG. 8. Schematic diagram of the candidate periodic orbitΓc that gives rise to MMOs with SAOs produced by
a folded node singularity. The candidateΓc approaches the folded node along the attracting sheetSa (red) of the
critical manifold (red) in the sector of maximal rotation associated with the weak singular canardγ̃w. The distance
to the strong singular canard̃γs is labeledδ. When the trajectory reaches the folded node (filled circle) it jumps
along a layer and proceeds to make a global return.

oscillations, system (3.2) is more convenient, because the eigenvalues of the desingularized
slow flow are−µ and−1. Brøns, Krupa and Wechselberger [31] found the following.

THEOREM 3.1. Consider system(2.14) and assume it has a folded node singularity.
At an O(1)-distance from the fold curve, all secondary canards are in anO(ε(1−µ)/2)-
neighborhood of the primary strong canard. Hence, the widths of the rotational sectorsIi,
1 ≤ i ≤ k, is O(ε(1−µ)/2) and the width of sectorIk+1 is O(1).

Note that, asµ → 0 (the folded saddle-node limit), the number of rotational sectors
increases indefinitely, and the upper bounds on their widths decrease toO(ε1/2).

3.1.1. Folded node with a global return mechanism.A global return mechanism may
reinject trajectories to the folded node funnel to create an MMO. Assuming that the return
happensO(1) away from the fold curve, Theorem 3.1 predicts the number of SAOs that
follow. We create a candidate trajectory by following the fast flow starting at the folded
node until it returns to the folded node region; this is sketched in Figure 8. The global
return mechanism produces one LAO. Letδ denote the distance of the global return point
of a trajectory from the singular strong canardγ̃s measured on a cross-section at a distance
O(1) away from the fold; we use the convention thatδ > 0 indicates a return into the funnel
region. Providedδ is large enough, so that the global return point lands in the sectorIk+1 of
maximal rotation, one can show the existence of astableMMO with signature1k+1, where
k is determined byµ [31]. We summarize this existence result (in a more general setting) in
the following theorem.

THEOREM 3.2 (Generic1k+1 MMOs). Consider system(2.14)with the following as-
sumptions:

(A0) Assume that0 < ε ¿ 1 is sufficiently small,ε1/2 ¿ µ and k ∈ N is such that
2k + 1 < µ−1 < 2k + 3.

(A1) The critical manifoldS is (locally) a folded surface.
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(A2) The corresponding reduced problem possesses a folded node singularity.
(A3) There exists a candidate periodic orbit (as constructed in Figure 8) which consists of

a segment onSa (red) within the singular funnel (bounded byF and γ̃s such that it
containsγ̃w) with the folded node singularity as an endpoint, fast fibers of the layer
problem and a global return segment.

(A4) A transversality hypothesis is satisfied that is not stated here because it is cumber-
some to formulate precisely in a general setting; see e.g., [31] for the case of a
cubic-shaped critical manifold.

Then there exists a stable MMO with signature1k+1.
Theorem 3.2 not only requires sufficiently small0 < ε ¿ 1 but alsoµ À ε1/2 (while

0 < µ < 1). However,ε is usually of the orderO(10−2) in applications, so thatµ must be
close to 1 in order for the theorem to apply. Therefore, such maximal MMO signatures are
seldom seen in applications. Furthermore, the SAOs for an MMO with signature1k+1 tend
to be too small to be readily visible.

Figure 7 illustrates that the amplitudes of the SAOs are much larger for trajectories that
approach the folded node close to the strong canard and lie in one of the sectorsIi with
i ≤ k rather thanIk+1. We know from Theorem 3.1 that the maximal width of a sectorIi

with i ≤ k is bounded from above byO(ε(1−µ)/2) with µ < 1/3. Whenδ is O(ε(1−µ)/2)
one can, indeed, find MMOs withi ≤ k SAOs that are stable. Geometrically, different
stable MMOs are selected as one moves the flow map in Figure 7(a) up or down; since the
rotational sectorIk+1 for generalε-dependent systems has much larger width than the other
sectors, one should expect that the transitions throughIi with i ≤ k happen rather quickly
during a parameter-induced variation ofδ. We have the following result [31].

THEOREM 3.3. Suppose system(2.14)satisfies assumptions (A0)–(A3) of Theorem 3.2
and additionally:

(A5) For δ = 0, the global return point is on the singular strong canardγ̃s and asδ
passes through zero the return point crossesγ̃s with nonzero speed.

Suppose now thatδ = O(ε(1−µ)/2) > 0. Then, for sufficiently small0 < ε ¿ 1 and
k ∈ N such that2k + 1 < µ−1 < 2k + 3 the following holds. For eachi, 1 ≤ i ≤
k, there exist subsectors̃Ii ⊂ Ii with corresponding distance intervals(δ−i , δ+

i ) of widths
O(ε(1−µ)/2), which have the property that ifδ ∈ (δ−i , δ+

i ) then there exists a stable MMO
with signature1i.

Theorem 3.3 says that we should observe a succession of stable1i MMOs with increas-
ingly more SAOs asδ increases (assuming thatµ remains fixed in such a parameter variation).
In the transition from a1i to a1i+1 MMO signature, that is, in the regions in between intervals
(δ−i , δ+

i ) and(δ−i+1, δ+
i+1) we expect to find more complicated signatures, which are usually

a mix of 1i and1i+1. As with Theorem 3.2, the amplitudes of most SAOs will be tiny ifε is
small, except for those MMOs that have only a few SAOs after each LAO.

If µ = O(ε1/2), that is, assumption (A0) does not hold, then we may still expect stable
MMO signatures of type1k+1, as soon as the global returns falls inside the funnel region and
δ = O(1) [143]; note thatk = O(1/ε1/2) and the amplitudes of the SAOs for such an MMO
will again be tiny. Ifµ = O(ε1/2) andδ = O(ε1/2) as well, the mixed MMO signatures
with larger-amplitude SAOs are more likely to occur. For example, Figure 20 in Section 4
displays an MMO of type1213 in the Koper model. Here, global returns come very close to
the secondary maximal canardξ2, first slightly to the left (hence, into the rotational sectorI2

with two SAOs) and then slightly to the right (hence, into the rotational sectorI3 with three
SAOs), creating this MMO signature.

The theory described so far does not capture all of the possible dynamics near a folded
node. If higher-order terms are included in the normal forms (3.1)-(3.2), then equilibria may
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appear in anO(ε1/2) neighborhood of the folded node as soon asµ = O(ε1/2) or smaller.
This observation motivates our study of the singular Hopf bifurcation in three dimensions.

3.2. MMOs due to a singular Hopf bifurcation. Equilibria of a slow-fast system (2.1)
always satisfyf(x, y, λ, ε) = 0; generically, they are located in regions where the associated
critical manifoldS is normally hyperbolic. However, in generic one-parameter families of
slow-fast systems, the equilibrium may cross a fold ofS. In generic families with two slow
variables, the fold point (including the specific parameter value) at which the equilibrium
crosses the fold curve of the critical manifold has been called afolded saddle-node of type
II [161]. Folded nodes and saddles of the reduced system are not projections of equilibria of
the full slow-fast system, but the folded saddle-nodes of type II are. Whenε > 0, the system
has a singular Hopf bifurcation, which occurs generically at a distanceO(ε) in parameter
space from the folded saddle-node of type II [85].

In order to obtain a normal form for the singular Hopf bifurcation, we follow [85] and
add higher-order terms to the normal form (3.1) of the folded node, to obtain





ε ẋ = y − x2,
ẏ = z − x,
ż = −ν − a x− b y − c z.

(3.4)

As with (3.1), we apply the standard scaling [212]x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄, and
t = ε1/2 t̄; system (3.4) then becomes





x̄′ = ȳ − x̄2,
ȳ′ = z̄ − x̄,

z̄′ = −ν − ε1/2 a x̄− ε b ȳ − ε1/2 c z̄.

(3.5)

This scaled vector field provides anO(ε1/2)-zoom of the neighborhood of the folded sin-
gularity where SAOs are expected to occur. The scaling removesε from the first equations
while the coefficientsa, b andc of the third equation becomeε-dependent;ν remains fixed.
Note that the coefficient of̄y tends to0 faster than those of̄x, z̄ asε → 0. This feature makes
the definition of normal forms for slow-fast systems somewhat problematic: scalings of the
state-space variables and the singular perturbation parameterε interact with each other. These
ε-dependent scalings play an important role in “blow-up” analysis of fold points and folded
singularities.

In contrast to the normal form (3.1) of a folded node, system (3.5) possesses equilibria
for all values ofν. If ν = O(1) then these equilibria are far from the origin, with coordinates
that areO(ε−1/2) or larger. Since we want to study the dynamics near a folded singularity,
theε-dependent terms in (3.5) play little role in this parameter regime and the system can be
regarded as an inconsequential perturbation of the folded node normal form (3.3) and Theor-
ems 3.2 and 3.3 apply. On the other hand, ifν = O(ε1/2) or smaller then one equilibrium
lies within anO(1)-size domain of the phase space. This equilibrium is determined by the
coefficientsa andc (to leading order) and plays an important role in the local dynamics near a
folded singularity [85, 143]. In particular, the equilibrium undergoes a singular Hopf bifurca-
tion for ν = O(ε) [85]. Thus, for parameter valuesν = O(ε1/2) or smaller, the higher-order
terms in the third equation of (3.5) are crucial.

So what is the most appropriate normal form of a system that undergoes a singular Hopf
bifurcation? Several groups have derived system (3.4), but drop the termby because it has
higher order inε after the scaling. However, this term appears in the formula for the lowest-
order term inε of the first Lyapunov coefficient of the Hopf bifurcation of (3.4) and, hence,
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FIG. 9. Phase portrait of an MMO periodic orbitΓ (black curve) for system(3.6) with (ν, a, b, c, ε) =
(0.0072168,−0.3872,−0.3251, 1.17, 0.01). The critical manifoldS (grey) is the S-shaped surface with folds at
x = 0 andx = − 2

3
. The orbitΓ is composed of two slow segments near the two attracting sheets ofS and two fast

segments, with SAOs in the region near the equilibriump on the repelling sheetSr of S just past the fold atx = 0.
Panel (a) shows a three-dimensional view and panel (b) the projection onto the(x, y)-plane.

must be retained if we hope to determine a complete unfolding of the singular Hopf bifurca-
tion [85].

The MMOs that occur close to the singular Hopf bifurcation have a somewhat dif-
ferent character than those generated via the folded node mechanism. Guckenheimer and
Willms [93] observed that a subcritical (ordinary) Hopf bifurcation may result in large regions
of the parameter space being funneled into a small neighborhood of a saddle equilibrium with
unstable complex eigenvalues. After trajectories come close to the equilibrium, SAOs grow
in magnitude as the trajectory spirals away from the equilibrium. Similar MMOs may pass
near a singular Hopf bifurcation. Then the equilibrium is a saddle-focus and trajectories on
the attracting Fenichel manifold are funneled into a region close to the one-dimensional stable
manifold of the equilibrium. SAOs occur as the trajectory spirals away from the equilibrium.
We review here our incomplete understanding of singular Hopf bifurcations and the MMOs
passing nearby.

The normal form (3.4) does not yield MMOs because there is no global return mech-
anism; trajectories that leave the vicinity of the equilibrium point and the fold curve flow to
infinity in finite time. This property can be changed by adding a cubic term to the normal
form that makes the critical manifold S-shaped, similar to the Van der Pol equation:





ε ẋ = y − x2 − x3,
ẏ = z − x,
ż = −ν − a x− b y − c z.

(3.6)

This version of the normal form for singular Hopf bifurcation with global reinjection has been
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FIG. 10. A chaotic MMO trajectory of system (3.6) with (ν, a, b, c, ε) =
(0.004564,−0.2317, 0.2053, 1.17, 0.01). Panel (a) shows the time series of thex-coordinate of the tra-
jectory fromt = 100 to t = 200, and panel (b) the projection of the trajectory onto the(x, y)-plane.

derived repeatedly as a “reduced” model for MMOs [122, 138]. An example of the overall
structure of MMOs in system (3.6) with smallν is shown in Figure 9 for(ν, a, b, c, ε) =
(0.0072168,−0.3872,−0.3251, 1.17, 0.01); note thatν = O(ε). The S-shaped critical man-
ifold S is the grey surface in Figure 9(a); a top view is shown in panel (b). The manifoldS has
two fold curves, one atx = 0 and one atx = − 2

3 , that decomposeS into one repelling and
two attracting sheets. For our choice of parameters there exists a saddle-focus equilibriump
on the repelling sheet that is close to the origin (which is the folded node singularity). The
equilibriump has a pair of unstable complex conjugate eigenvalues. A stable MMO periodic
orbit Γ, shown as the black curve in Figure 9, interacts withp as follows. Starting just past
the fold atx = 0, that is, in the region near the origin withx < 0, the orbitΓ spirals away
from p along its two-dimensional unstable manifold and repeatedly intersects the repelling
sheetSr of S. As soon asΓ intersects the repelling slow manifold (not shown), it jumps to
the attracting sheet ofS with x < − 2

3 . The orbitΓ then follows this sheet to the fold at
x = − 2

3 , after which it jumps to the attracting sheet ofS with x > 0. ThenΓ returns to the
neighborhood ofp and the periodic motion repeats.

The MMO periodic orbitΓ displayed in Figure 9 is only one of many types of complex
dynamics present in system (3.6). One aspect of the complex dynamics in system (3.6) is
the fate of the periodic orbits created in the Hopf bifurcation. There are parameter regimes
for (3.6) with stable periodic orbits of small amplitude created by a supercritical Hopf bi-
furcation. Subsequent bifurcations of these periodic orbits may be period-doubling or torus
bifurcations [85]. Period-doubling cascades can give rise to small-amplitude chaotic invariant
sets that may be associated with chaotic MMOs. For example, Figure 10 plots a chaotic MMO
trajectory for (3.6) with(ν, a, b, c, ε) = (0.004564,−0.2317, 0.2053, 1.17, 0.01) that arises
from such a period-doubling cascade of the periodic orbit emerging from the singular Hopf
bifurcation. It appears that it is chaotic because of the nonperiodicity of its time series, shown
for the x-coordinate in Figure 10(a). A two-dimensional projection onto the(x, y)-plane
is shown in panel (b). Note that this trajectory does not come close to either the equilibrium
pointp or the folded singularity at the origin. Asν decreases from the value used in Figure 10
(whereν is already of orderO(ε)), the large-amplitude epochs of the trajectories become less
frequent and soon disappear, resulting in a small-amplitude chaotic attractor. Section 4 dis-
cusses a rescaled subfamily of (3.6), giving further examples of complex dynamics and some
analysis of the organization of MMOs associated with this system.

We would like to characterize the parameter regimes with MMOs for which the SAOs
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FIG. 11. Tangency between the unstable manifoldW u(p) of the equilibrium and the repelling slow manifold
Sr

ε of (3.6) with (ν, a, b, c, ε) = (0.007057, 0.008870,−0.5045, 1.17, 0.01). Panel (a) shows trajectories of
W u(p) (red) andSr

ε (blue) that are terminated on the green cross-sectionΣ defined byy = 0.3. The intersections
W u(p) ∩ Σ (with points on computed trajectories marked ’o’) andSr

ε ∩ Σ (with points on computed trajectories
marked ’x’) are shown in panel (b).

are solely or partially due to spiraling along the unstable manifoldWu(p) of a saddle-focus
p. Analysis of this issue appears to be significantly more complicated than that for folded
nodes and has barely begun. We offer a few insights in locating these parameter regimes.
First, we think ofν in the normal form (3.6) of the singular Hopf bifurcation as the “primary”
bifurcation parameter and seek ranges ofν where MMOs are found. If the Hopf bifurca-
tion at ν = νH is supercritical then, for parameters close enough to the Hopf bifurcation,
the limit set ofWu(p) is just the bifurcating stable periodic orbit. The onset of MMOs is
observed to occur at a distanceν = O(ε) from the Hopf bifurcation due to a new type
of bifurcation [85]. This bifurcation occurs at parameters wherep is a saddle-focus and
Wu(p) is tangent to the two-dimensional repelling Fenichel manifoldSr

ε . At first glance
one might think that two unstable objects in a dynamical system cannot intersect. However,
recall thatWu(p) consists of trajectories that approachp as t → −∞ while Sr

ε consists
of forward trajectories that remain slow for anO(1) time on the slow time scale. Con-
sequently, it is possible for a single trajectory to satisfy the criteria to belong to both of these
objects. Figure 11 illustrates an example of a tangency betweenWu(p) andSr

ε for (3.6) with
(ν, a, b, c, ε) = (0.007057, 0.008870,−0.5045, 1.17, 0.01) (note thatν = O(ε) and, hence,
very close toνH ≈ −8.587 × 10−5). Shown are a collection of trajectories onWu(p) (red)
that start close top and end in the cross-sectionΣ := {y = 0.3}, together with a collection
of trajectories onSr

ε that start on the repelling sheet of the critical manifold and also end in
Σ; see Section 8.1 for details of the method used to compute these manifolds. Figure 11(b)
shows the tangency of the two intersection curves ofWu(p) andSr

ε with Σ. The manifold
Sr

ε is a surface that separates trajectories that make large-amplitude excursions from ones that
remain in the vicinity ofp. For values ofν such thatWu(p) andSr

ε do not intersect, the limit
set ofWu(p) remains small. By varyingν such that we move further away fromνH , the
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MMOs arise as soon asWu(p) andSr
ε begin to intersect; see also Section 4.

The number of SAOs that an MMO periodic orbitΓ makes alongWu(p) is determined
by how closeΓ comes top and by the ratio of real to imaginary parts of the complex eigen-
values ofp. The only way to approachp is along its stable manifoldW s(p), so an MMO
like that displayed in Figure 9 must come very close toW s(p). The minimum distanced
between an MMO andW s(p) is analogous to the distanceδ of a trajectory from the primary
strong canard in the case of folded nodes. Unlike the case of a folded node, the maximal
amplitude of the SAOs observed nearWu(p) is largely independent ofd. What does change
asd → 0 is that the epoch of SAOs increases in length and begins with oscillations that are
too small to be detectable. There has been little investigation of how the parameters of the
normal form (3.6) influenced, but Figure 8 in Guckenheimer [85] illustrates thatd depends
upon the parameterc in a complex manner. There are parameter regions where the global
returns of MMO trajectories are funneled close toW s(p). Since MMOs are not found im-
mediately adjacent to supercritical Hopf bifurcations, the ratio of real to imaginary parts of
the complex eigenvalues remains bounded away from0 on MMO trajectories. This prevents
the appearance of extraordinarily long transients with oscillations that grow arbitrarily slowly
like those found near a subcritical Hopf bifurcation; see Section 5 and also [87, Figure 5].

The singular-Hopf and folded-node mechanisms for creating SAOs are not mutually ex-
clusive and can be present in a single MMO in the transition regime withν = O(ε1/2). The
specific behavior that one finds depends in part on whether the equilibriump near the singular
Hopf bifurcation is a saddle-focus with a pair of complex eigenvalues or a saddle with two
real eigenvalues. The MMO displayed in Figure 21 contains some SAOs that lie inside the
rotational sectors between the attracting and repelling slow manifolds and some SAOs that
follow the unstable manifold of the saddle-focus equilibrium. On the other hand, we note
that SAOs cannot be associated with a saddle equilibrium that has only real eigenvalues; this
occurs in a parameter region withν > (a + c)ε1/2 (to leading order), butν = O(ε1/2).
In this case, SAOs are solely associated with the folded node-type mechanism described for
ν = O(1) (that is,µ = O(1)). Krupa and Wechselberger [143] analyzed the transition regime
ν = O(ε1/2) and showed that the folded node theory can be extended into this parameter re-
gime provided the global return mechanism projects into the funnel region.

3.3. MMOs in three-time-scale systems.When the coefficientsν, a, b and c in the
normal forms (3.4) and (3.6) of the singular Hopf bifurcation are of orderO(ε) or smaller,
thenz evolves slowly relative toy and the system actually has three time scales: fast, slow
and super slow. Krupa et al. [138] studied this regime with geometric methods and asymptotic
expansions for the casea = c = 0. They observed MMOs for which the amplitudes of the
SAOs remain relatively large. Their analysis is based upon rescaling the system such that it
has two fast variables and one slow variable. To make the three-time-scale structure explicit,
we setν = εν̂, a = εâ, b = εb̂ andc = εĉ. Rescaling the singular-Hopf normal form (3.6) of
Section 3.2 byx = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄, andt = ε1/2 t̄ yields





ẋ = y − x2 − ε1/2x3,
ẏ = z − x,

ż = ε(−ν̂ − ε1/2 â x− ε b̂ y − ε1/2 ĉ z),
(3.7)

which is still a singularly perturbed system, but now with two fast variables,x andy, and a
slow variablez. An equilibrium lies within anO(1)-size domain around the origin if̂ν =
O(ε1/2) or smaller, i.e.,ν = O(ε3/2) or smaller. This equilibrium plays an important role in
the dynamics if it is of saddle-focus type. In particular, it undergoes a Hopf bifurcation for
ν̂ = O(ε), i.e.,ν = O(ε2).
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FIG. 12. Phase portraits of system(3.8) for three different values ofz. Shown are several trajectories (blue)
and one trajectory (red) that approximates a separatrix. For eachz, there is a single equilibrium pointp at (x, y) =
(z, z2). Panels (a)–(c) are forz = 2, z = 0.25 and z = 0, for whichp is a stable node, a stable focus and a
center surrounded by a continuous family of periodic orbits, respectively. The boundary of this family is the maximal
canard.

The two-dimensional layer problem of (3.7)




ẋ = y − x2,
ẏ = z − x,
ż = 0,

(3.8)

in which z acts as a parameter, is exactly the same system obtained in the analysis of the
planar canard problem, where the parameterλ is replaced byz; compare with system (2.7).

Note that (3.8) has a unique equilibriump for each value ofz, given by(x, y) = (z, z2).
Figure 12 shows phase portraits of (3.8) in the(x, y)-plane for three different values ofz,
namelyz = 2, z = 0.25 andz = 0 in panels (a), (b) and (c), respectively. Forz > 0,
the equilibriump is an attracting fixed point in the(x, y)-plane; it is a node forz > 1 and
a focus for0 < z < 1; note that this information also determines the type of equilibrium
of (3.7) obtained for̂ν = O(ε1/2) to leading order — the same argument can also be used
to determine the basin boundary of the saddle-focus equilibrium in Section 3.2. The basin
boundary ofp is an unbounded trajectory that is shown in red in panels (a) and (b). When
z = 0, the vector field (3.8) has a time-reversing symmetry that induces the existence of
a family of periodic orbits. Indeed, the functionH(x, y) = exp(−2y) (y − x2 + 1

2 ) is an
integral of the motion and the level curveH = 0 is a parabola that separates periodic orbits
surroundingp (the origin) from unbounded orbits that lie below the parabola and become
unbounded withx → ±∞ in finite time.

System (3.7) can be viewed as a perturbation of (3.8) whenz remains small and is slowly
varying compared tox andy. In this case, changes inH can be used to monitor the SAOs of
trajectories. We focus on the casea = c = 0 studied in [138]. To find parameters for which
system (3.6) has MMOs, we fixb = −0.005 andε = 0.01 and varyν so thatz increases
when y is large but decreases when the system has SAOs. More precisely, we want the
average value ofz to increase during epochs of SAOs and decrease during epochs of LAOs.
The changes inz should be of sufficient magnitude to drive the trajectory across the slow
manifolds and trigger a transition between these epochs. Figure 13(a) displays a periodic
MMO with signature14 found atν = 0.00015 (which is of orderO(ε2)). The projection
in panel (a2) of the orbit onto the(z, y)-plane shows thatz decreases approximately from
−0.003713 to −0.004143 while the trajectory makes four SAOs, andz increases during a
single LAO. Note thatż = 0 on the planey = 0.03. System (3.6) also possesses two
equilibria withz-coordinates given by±

√
−ν/(b ε), which equals±√3 in this case. Since

the MMO signature shown in Figure 13(a2) is confined to the area near the origin (in the
z-direction), these two equilibria have no influence on the dynamics.

As ν increases, the value ofy for which ż = 0 increases, and trajectories have a

23



250 275 300
−0.95

−0.2

0.55

−0.0046 −0.00405 −0.0035
−0.02

0.1

0.22

250 275 300
−0.95

−0.2

0.55

−0.0046 −0.00405 −0.0035
−0.02

0.1

0.22

t

x

(b1)

t

x

(a1)

z

y

9
1

(b2)

z

y 1
4

(a2)

.

.

FIG. 13. Stable periodic MMOs of system(3.6) with (a, b, c, ε) = (0,−0.005, 0, 0.01). Row (a) shows the
periodic MMO with signature14 for ν = 0.00015 as a time series ofx in panel (a1) and in projection onto the
(z, y)-plane in panel (a2); similar projections are shown in row (b) forν = 0.00032, where the periodic MMO has
signature91.

propensity to pass more quickly through the region of SAOs. Figure 13(b) shows a peri-
odic MMO with signature91 obtained forν = 0.00032. This value ofν lies close to the
upper end of the range in which MMOs seem to exist for the chosen values of(a, b, c, ε) =
(0,−0.005, 0, 0.01). As the projection in panel (b2) illustrates, the average value ofz in-
creases (|z| decreases) during each LAO, but it takes nine LAOs before it crosses the threshold
into the region of SAOs. On the other hand, a single SAO takes the trajectory back to the re-
gion of LAOs.

For intermediate values ofν ∈ (0.00015, 0.00032), the system displays aperiodic MMOs
as well as periodic MMOs with a variety of signatures. These signatures can be analyzed via
an approximately one-dimensional return map to a cross-section atx = 0. Returns to this
cross-section withx decreasing appear to lie along a thin strip; this is illustrated in Fig-
ure 14(a) forν = 0.0003, for which the system appears to have aperiodic MMOs. The thin
strip in Figure 14(a) is approximately given by the liney = 0.1153 z−0.004626 (andx = 0).
If we take600 initial conditions on this line withz ∈ [−0.0043,−0.004] then their next return
to the cross-section fall onto two segments that are close to the initial line and within the seg-
mentz ∈ [−0.0043,−0.004]. Figure 14(b) graphs these returns, showing thez-coordinates
z out of returns of the600 initial conditions versus their initalz-coordinatesz in; the diagonal
z out = z in is also pictured. This figure suggests that the return map near the line segment
can be approximated by a rank-one map with two segments of slopes close to one, separated
by a steep segment for initial valuesz in ≈ −0.004055. The return map increasesz on the
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FIG. 14. Return map of system(3.6)with (ν, a, b, c, ε) = (0.0003, 0,−0.005, 0, 0.01) to the sectionx = 0.
Panel (a) shows that the return is almost one dimensional along a line that is approximately given byy = 0.1153 z−
0.004626. Thez-coordinates of the returns for initial conditions along this line withz ∈ [−0.0043,−0.004] are
plotted versus their initialz-values in panel (b).

left “branch” of this map and decreasesz on the right branch. This is the behavior described
above since larger values ofz correspond to SAOs, the smaller values to LAOs. Trajectories
that do not hit the steep section of the map go back and forth repeatedly between the two
branches. Asν varies, the “shape” of the return map remains qualitatively the same: the two
branches still have slopes close to one, but their off-set from the diagonal varies. Approx-
imately forν < 0.00013, the image of the right branch, representing SAOs, maps to itself,
while for ν > 0.00034, the image of the left branch maps to itself, and the system only has a
large periodic relaxation oscillation with no SAOs. In the range ofν where MMOs do exist,
kneading theoryfor one-dimensional maps [38] can be applied to the numerically generated
return maps to predict the signatures of the MMOs.

Further insight into the steep segment of the return map atz = z in ≈ −0.004055
comes from computing intersections of the attracting and repelling slow manifolds. We com-
puted forward trajectories from initial conditions on the attracting sheet (withx < − 2

3 )
and backward trajectories from initial conditions on the repelling sheet of the critical man-
ifold to their intersection with the cross-section{x = 0}. Since the trajectories quickly
converge to the attracting and repelling slow manifolds, their intersections with{x = 0}
give a good approximation of the intersection curves of the slow manifolds with{x = 0}.
These two intersection curves have one point in common, which is approximately(y, z) =
(−0.0050941,−0.0040564). Hence, this point lies in the region that gives rise to the steep
segment shown in Figure 14(b). By definition, the intersection of the attracting and repelling
slow manifolds is a maximal canard. Initial conditions on the cross-section{x = 0} to one
side of the repelling manifold result in SAOs while trajectories on the other side result in fast
jumps to the other sheet of the attracting slow manifold (withx > 0). Thus, we have con-
firmed numerically that canard orbits separate the two branches of the return map displayed
in Figure 14(b); compare also with Figure 7(a), which illustrates that the one-dimensional
return map calculated near a folded node has several steep sections that correspond to the
primary strong canard and the maximal secondary canards of the problem.

3.4. MMOs due to dynamic Hopf bifurcation and tourbillion. Recall from Sec-
tion 3.3 that the abrupt transitions between SAOs and LAOs in system (3.7) are a consequence
of the three-time-scale structure, which allows us to view the system as having two fast vari-
ables and only one slow variable. Such a system with two or more fast variables may have
a Hopf bifurcation in the layer equations. We now consider this situation, and assume that a
pair of complex eigenvalues of the layer equations cross the imaginary axis as one follows a
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trajectory of the reduced system. Whenε 6= 0 one observes a slow motion or drift of traject-
ories through the region near the Hopf bifurcation in the layer equations. Due to the complex
eigenvalues in the fast directions, trajectories spiral around the slow manifold, which gives
rise to oscillations. The amplitude of such an oscillation initially decreases (while the real
part of the complex eigenvalues is negative) and then increase again (after the real part be-
comes positive). We refer to this situation as adynamic Hopf bifurcation. Our primary goal
is to determine when MMOs have SAOs that are associated with a dynamic Hopf bifurcation.
Note that, unlike in systems with a single fast variable, this type of SAO is neither associated
with a folded singularity of the critical manifold nor with a (singular) Hopf bifurcation of the
system forε 6= 0.

A well-known example of a dynamic Hopf bifurcation is the phenomenon of delayed
Hopf bifurcation. For simplicity, we discuss it here for a system with one slow and two fast
variables, the lowest dimensions possible. Consider a segmentL on the one-dimensional
critical manifoldS along which the layer equations undergo a Hopf bifurcation. That means
that the linearization of the layer equations alongL has a pair of complex eigenvaluesα± iβ
that cross the imaginary axis transversally. In the case of a supercritical Hopf bifurcation, a
one-parameter family of attracting periodic orbits of the layer equations, parameterized by the
slow variable, emanates from the pointL0 ∈ L whereα = 0. If a trajectoryu(t) of the full
system comes close toL near a pointLu ∈ L that lies at a distanceδ = |Lu − L0| = O(1)
from L0, thenu(t) will come exponentially close toL on the slow time scale. The layer
equations undergo a Hopf bifurcation, but, in analytic systems,u(t) remains close toL for
anO(1)-distanceafter the Hopf bifurcation has occurred [168]. Thisdelayhappens because
it takes anO(1) time for u(t) to be repelled away fromL. In particular,u(t) does not
immediately follow the periodic orbits of the layer equations emanating fromL0. The slow-
fast analysis identifies a definite “jump” point (called abuffer point) at whichu(t) leaves
L and approaches the periodic orbits, if it has not done so earlier. There are SAOs along
L in a delayed Hopf bifurcation, but they are exponentially small nearL0 and the jump
from L to the periodic orbits may occur within a single period of the SAOs. Thus, SAOs
near a delayed Hopf bifurcation are typically so small that they are unobservable in practical
examples. This situation is reminiscent of MMOs associated with folded nodes withδ =
O(1). More specifically, Theorem 3.2 predicts maximal1k+1 MMO signatures but, due to
strong contraction toward the primary weak canardγw on Sa,ε, only the final rotation is
actually observed; see Figure 7(b4).

In a number of examples, such as those in Sections 6 and 7, one actually observes MMOs
with SAOs near a dynamic Hopf bifurcation whose amplitudes remain observably large. We
adopt the termtourbillion from Wallet [232] to describe the trajectories passing through a
dynamic Hopf bifurcation with oscillations whose amplitude remains above an observable
threshold. We discuss the tourbillion and how it gives rise to MMOs also in systems with one
slow and two fast variables. Consider the model system





ẋ = −y + z x,
ẏ = x + z y,
ż = ε,

(3.9)

that is obtained by linearization of the layer equations for a dynamic Hopf bifurcation. This
equation is separable in polar coordinates, yieldingṙ = ε t r for trajectories that have initial
conditions in the plane{z = 0}. Hence, the general solution isr(t) = r(0) exp(ε t2/2),
which means that the amplitude of a solution decreases forz < 0 and then increases for
z > 0. We conclude thatr(1/

√
ε)

r(0) = exp( 1
2 ) and that the oscillations have almost constant

amplitude over a time interval of1/
√

ε. If the r coordinate of a trajectory decreases tor = 1
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FIG. 15. Time series of thex-coordinate of a trajectory of(3.10) with initial point (x, y, z) =
(−1, 0.8,−0.12). Panels (a)–(c) are forλ = 0.1 and forε = 0.006, ε = 0.012 andε = 0.02, respectively.

at a value ofz that isO(
√

ε), then the minimum amplitude of the oscillations associated with
the dynamic Hopf bifurcation will still be observable. The amplitudes of these oscillations
and the coupling ofε with the distance of approach to the dynamic Hopf point characterize the
tourbillion regime and distinguishes it from a delayed Hopf bifurcation. In a delayed Hopf
bifurcation, a trajectory approaches the slow manifold at distanceO(1) from the dynamic
Hopf point, while in a tourbillion, the approach to the slow manifold occurs withinO(

√
ε)

of the layer containing the dynamic Hopf point. Whenε is fixed in a system, the distinction
between a delayed Hopf point and a tourbillion becomes blurred, but the distinction is clear
in many examples.

The system (3.9) describes SAOs with distinctly nonzero amplitudes locally near the
point where the dynamic Hopf bifurcation occurs in the layer not account for characteristic
abrupt transitions at the beginning and end of an SAO epoch within an MMO, such as those in
Sections 6 and 7, because these transitions depend upon mechanisms that are not part of the
local analysis of system (3.9) . There is as yet no comprehensive study of possible geometric
mechanisms that determine the sudden start and the end of a section of SAOs arising from
a tourbillion. This paper largely avoids this issue and concentrates on local mechanisms for
generating the SAOs of MMOs. Nevertheless, the following example illustrates one mech-
anism for an abrupt jump away from SAOs of a tourbillion. Consider a “dynamic” section
through the unfolding of the codimension-two Bogdanov-Takens bifurcation [88], defined as





ẋ = y,
ẏ = λ + z y − x2 − x y,
ż = ε.

(3.10)

As before, we regardz as a slowly varying parameter. Forλ > 0 andε = 0, the system has
two straight lines of equilibria defined byx = ±

√
λ andy = 0. A supercritical Hopf bifurc-

ation occurs along the line of equilibria withx > 0. The family of periodic orbits born at
this bifurcation terminates at a homoclinic orbit. Moreover, there is always a bounded region
of the(x, y)-plane in which oscillations around the equilibrium occur; this is the tourbillion
region. The line of (saddle) equilibria withx < 0 of the layer equations perturbs to a Fenichel
manifold of saddle type and its stable and unstable manifolds guide the entrance and exit to
the tourbillion in this example. As we have seen, the number of oscillations and their min-
imum amplitude is determined both by the magnitude of the initial condition and ofε. This
is illustrated in Figure 15 with trajectories of system (3.10) forλ = 0.1 and different values
of ε — all starting from the initial condition(x, y, z) = (−1, 0.8,−0.12) that lies outside the
tourbillion region. Note thatx andy areO(1) quantities, and so the condition for a tourbil-
lion is that|z| is of order

√
ε. In Figure 15(a) forε = 0.006 we do not find a tourbillion but
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observe oscillations that decay rapidly, are very small for a while and then grow rapidly again
before the trajectory jumps away. In panel (b) forε = 0.012, on the other hand, the oscil-
lations decay and then grow more gradually and they remain of observable size throughout.
We conclude thatε is now just about large enough to speak of a tourbillion region, passage
through which results in seven SAOs before the jump occurs. For even larger values ofε the
same initial condition results in oscillations that maintain an almost constant amplitiude; see
Figure 15(c) forε = 0.02. Observe that, owing to the faster drift through the region near the
Hopf bifurcation in the layer system, we now find only four SAOs before the trajectory jumps
away.

It is interesting to compare the SAOs associated with a tourbillion with those occurring
near a folded node or near a singular Hopf bifurcation. One difference is that the period of the
oscillations isO(ε) (slow time) for the tourbillion, while it isO(

√
ε) for the other two cases.

In each of the cases, the data that determines the number of SAOs is slightly different. For
the folded node, the eigenvalue rationµ determines the number of rotational sectors, and the
distance of the global return to the weak canard relative to the singular perturbation parameter
determines which rotational sector a trajectory enters. For the singular Hopf bifurcation, the
distance of the global return to the stable manifold of the saddle-focus equilibrium sets the
minimum amplitude and duration of the SAOs. For a tourbillion, the number of SAOs is
governed by the singular perturbation parameter and the distance of the global return to the
delayed Hopf bifurcation point. Moreover, the termination of the SAOs for a tourbillion
depends upon either a global mechanism or an arbitrary threshold for the amplitude of SAOs.
In contrast, the oscillations of a folded node end “on their own,” while the intersections of
the unstable manifold of the equilibrium and the repelling slow manifold typically limit the
amplitude of SAOs near a singular Hopf bifurcation.

3.5. Summary of local mechanisms for SAOs.We now summarize the main results
of this review section on the local mechanisms that give rise to MMOs. For systems with a
single fast variable, the local mechanisms responsible for SAOs must involve a mixture of the
two time scales. We distinguish three regions near folded nodes and folded saddle-nodes that
yield MMOs:

1. Folded Nodes:If the parameters satisfy suitable order conditions (ν = O(1)) so
that no equilibrium of the full system is near the folded node then the theory of
Section 3.1 applies and SAOs are due to thetwisting of slow manifolds.

2. Singular Hopf:As is shown in the Section 3.2, the dynamics near a singular Hopf bi-
furcation (ν = O(ε)) tends to be quite complicated. SAOs occur when the trajectory
follows theunstable manifold of a saddle-focus.

3. Transition Regime:The folded-node and singular-Hopf regimes are separated by a
transition regime with intermediate values ofν = O(

√
ε). Extensions of the folded

node theory have been developed in [143]; note that the parameterµ in [143] not
only represents the eigenvalue ratio but also describes the distance of the equilibrium
to the folded node in a blown-up system. In this transition regime, it is possible for
the SAOs to pass through the rotational sectors of the folded nodeas well asspiral
along the unstable manifold of the saddle-focus equilibrium.

In systems with at least two fast variables the tourbillion provides a different local mech-
anism that generates SAOs. Here, the layer equations have complex eigenvalues and the
SAOs are aligned with the fast directions of the system. Little systematic study of the tour-
billion as a mechanism that generates MMOs has been carried out, and the theory remains
fragmentary.

Finally, three-dimensional systems with three time scales can exhibit all of the mech-
anisms discussed in this section. Namely a three-time-scale system may be considered as
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having two slow variables, in which case the folded-node and singular-Hopf mechanisms
may be found, or, alternatively, as having two fast variables, which allows for the possibility
of a tourbillion.

The following sections are case studies that illustrate these different local mechanisms
for MMOs:

• TheKoper modelin Section 4 is a three-dimensional slow-fast system with a folded
node and a supercritical singular Hopf bifurcation.

• The three-dimensionalreduced Hodgkin–Huxley modelin Section 5 also features a
folded node, but has a subcritical singular Hopf bifurcation.

• The four-dimensionalOlsen model of the peroxidase-oxidase reactionin Section 6
displays MMOs associated with a tourbillion.

• The Showalter–Noyes–Bar-Eli modelin Section 7 is a seven-dimensional system
that exhibits MMOs. The global mechanism that organizes these MMOs is un-
known, but we show here that their SAOs are due to a tourbillion.

4. MMOs in the Koper model of chemical reactors. Our first case study is a system
introduced by Koper [122]. We use it to illustrate how MMOs arise near a folded node and
near a (supercritical) singular Hopf bifurcation in a specific model equation. The equations
of the Koper model are





ε1 ẋ = k y − x3 + 3 x− λ,
ẏ = x− 2 y + z,
ż = ε2 (y − z),

(4.1)

whereλ andk are parameters. Koper studied this three-dimensional idealized model of chem-
ical reactions with MMOs. While this example is well known, we revisit its analysis and
enhance it by using the recently developed theory outlined in the previous sections. When
ε1 andε2 are both small, system (4.1) has three time scales; when onlyε1 is small, it is a
slow-fast system with two slow variablesy andz and one fast variablex. We note that a
two-dimensional variant of (4.1) was first studied by Boissonade and De Kepper [26] in their
efforts to understand bistability and oscillations of chemical systems. The first analysis of
MMOs in the three-dimensional extended model was carried out by Koper who explained the
MMOs by invoking the presence of a Shil′nikov homoclinic bifurcation.

As mentioned in Section 3.2, the Koper model (4.1) is a rescaled subfamily of the cubic
normal form (3.6) for the singular Hopf bifurcation. To see this, replace(x, y, z) in sys-
tem (4.1) by(u, v, w) and consider the affine coordinate change

x =
u− 1

3
, y =

k v − λ + 2
27

, z =
2 v − w − 1

3
.

Now also scale time by the factor−k
9 , where we assume thatk < 0. Then (4.1) becomes (3.6)

with ε = −k ε1/81, a = 18/k, b = 81 ε2/k2, c = −9 (ε2 + 2)/k andν = (3 ε2 λ − 6 ε2 −
3 k ε2/k2. Note that the coefficients of the normal form satisfy

2 b− a c + a2 = 0,

which means that the Koper model (4.1) is only equivalent to a subfamily of the singular-Hopf
normal form (3.6). However, (4.1) still has a folded node and a singular Hopf bifurcation in
certain parameter regimes.

Let us first analyze the parameter regimes where SAOs are organized by a folded node.
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To this end, we work both with system (4.1) and the equivalent system




ε1 ẋ = y − x3 + 3 x,
ẏ = k x− 2 (y + λ) + z,
ż = ε2 (λ + y − z),

(4.2)

which we refer to as the symmetric Koper model, because it has the symmetry

(x, y, z, λ, k, τ) → (−x,−y,−z,−λ, k, τ). (4.3)

System (4.2) is obtained by replacing(x, y, z) in system (4.1) by(u, v, w) and applying the
coordinate changex = u, y = k v − λ andz = k w. We focus our analysis on the case
ε2 = 1 and consider (4.2) as a system with two slow variables. Observe that the critical
manifold of (4.2),

S = {(x, y, z) ∈ R3 | y = x3 − 3 x =: c(x)},

no longer depends onk andλ. This cubic-shaped critical manifoldS has two fold curves
F± = {(x, y, z) ∈ R3 | x = ±1, y = ∓2}, which gives the decomposition

S = Sa,− ∪ F− ∪ Sr ∪ F+ ∪ Sa,+,

whereSa,− = S ∩ {x < −1}, Sr = S ∩ {−1 < x < 1} andSa,+ = S ∩ {1 < x}
are normally hyperbolic. Note thatSa,± are attracting andSr is repelling. To derive the
desingularized slow flow onS we consider the algebraic equation0 = y − c(x), obtained by
settingε1 = 0 in (4.2), and differentiate implicitly with respect toτ . Then the time rescaling
τ 7→ τ(3x2 − 3) gives

{
ẋ = k x− 2 (c(x) + λ) + z,
ż = (3 x2 − 3) (λ + c(x)− z). (4.4)

The desingularization reverses the direction of time on the repelling partSr of S. We find
folded singularities as equilibria of (4.4) that lie on the fold linesF±. The only equilibrium
on F+ is (x, z) = (1, 2λ − 4 − k), with y = −2, and the only one onF− is (x, z) =
(−1, 2λ + 4 + k), with y = 2. The associated Jacobian matrices are

A± =
(

k 1
6 (2 + k ∓ λ) 0

)
. (4.5)

By classifying the folded singularities according to their type and stability, we obtain a
“singular” bifurcation diagram; we then use results from Section 3 to identify possible MMO
regions. Figure 16 shows this singular bifurcation diagram in(k, λ)-space, where we use the
notationeh

± to indicate the typee and stabilityh of the folded singularities;e is f , n or s for
focus, node or saddle, andh is a, r or sa for attractor, repellor or saddle, respectively. The
different parameter regions are divided by three types of curves. Folded saddle-nodes of type
II occur whendet(A±) = 0 ⇔ λ = ±(k + 2). The eigenvalues change from real to complex
conjugate along the parabolic curves tr(A±)2 − 4 det(A±) = k2 + 24 (k ∓ λ) + 48 = 0.
The vertical line tr(A±) = k = 0 is the locus where the real part of a complex eigenvalue
changes sign. The enlargement in panel (b) resolves the region near(k, λ) = (−2, 0).

MMOs are likely to exist in the regions where system (4.2) has a folded node, provided
the global return mechanism brings orbits back into the associated funnel region. Recall from
Section 3.1 the construction of a candidate periodic orbitΓc that consists of a segment onSa

30



−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

−2.2 −2

−0.2

−0.1

0

0.1

0.2

k

λ (a)

na

+na

-

fa

+na

-

na

+fa

-

fa

+ssa

-

fa

+fa

-

ssa

+fa

-

fr

+ssa

-

ssa

+fr

-

nr

+ssa-

ssa+nr

-

ssa

+ssa

-

k

λ (b)

fa

+fa

-

fa

+na

-

na

+fa

-

fa

+ssa

-

na

+na

-

ssa

+fa

-

na

+ssa

-

ssa

+ na

-

ssa+ssa-

.

.

FIG. 16. The “singular” bifurcation diagram in the(k, λ)-plane of the desingularized slow flow(4.4). Shown
are the folded saddle-node of type II (straight lines), the transition from a folded node to a folded focus (parabolas),
and the curve indicating where the candidate trajectory from the folded node returns withδ = 0 (dashed curve,
obtained numerically), which is not shown in panel (b). Panel (a) gives a global view and panel (b) is an enlargement
of the region near the right intersection point of the two parabolic curves. The types of folded equilibria in each
parameter region are indicated as follows:f = folded focus,n = folded node ands = folded saddle. The
subscripts indicate whether the equilibrium lies onF+ or F−. The superscriptsa, r and sa stand for attractor,
repellor and saddle, respectively.
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FIG. 17. The candidate periodic orbitΓc of the folded nodena
+ of (4.2)with (ε1, ε2, λ, k) = (0, 1,−7,−10)

returns at a distanceδ from the strong singular canard̃γs. Panel (a1) shows all ofΓc and panel (a2) an enlargement
nearna

+ to illustrate the definition ofδ. Panel (b) showsδ as a function ofλ, with all other parameters fixed. The
distanceδ only has meaning forδ > 0 and for values ofλ larger than its value at the folded saddle-node of type II
at λ = −8.
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FIG. 18. Bifurcation diagram for equilibria of the full system(4.2) with ε1 = 0.01. Shown are saddle-node
bifurcations (green, labeled SN) and Hopf bifurcations (blue, labeled H). The saddle-node bifurcation curve has
a cusp point (labeled C) and meets the Hopf bifurcation curve in two Bogdanov-Takens points (labeled BT). The
dashed curves are folded saddle-nodes of type II (red, labeled FSN II) that occur in the singular limit(4.4).

ending at the folded node, followed by a fast fiber of the layer problem and a global return
mechanism. Figure 17(a1) illustrates this construction for a candidate periodic orbit passing
throughna

+, where we usedk = −10 andλ = −7; this is a computational example of the
sketch shown in Figure 8. Starting atna

+, the candidateΓc jumps toSa,−, which is followed
by a slow segment untilΓc reachesF−. After another jumpΓc returns inside the singular
funnel, as shown in Figure 17(a2), and we measure the distanceδ to the strong singular
canard̃γs. This distanceδ depends on the parameters, for example,δ varies as a function of
λ with k = −10 fixed in Figure 17(b). Note thatδ < 0 means thatΓc no longer returns to the
singular funnel; as long asδ > 0 the candidateΓc gives rise to periodic MMOs asε1 > 0.
Hence, the curve in the(k, λ)-plane along whichδ = 0 marks the start of the MMO regime.
Figure 16(a) shows the locus ofδ = 0 as a dashed curve; its symmetrical image corresponds
to candidate periodic orbits forna

−. The two (symmetric) parameter regions bounded by the
lines of folded saddle-nodes of type II, wheressa

± changes tona
±, and the curves whereδ = 0

are the regimes where MMOs are predicted to exist; note that the curvesδ = 0 run all the
way up to the folded saddle-nodes of type II, which is not shown in Figure 16(b).

Koper identified a parameter region of “complex and mixed-mode oscillations” forε > 0
by using continuation methods; see Figure 1 on page 75 of [122]. We can interpret his results
as perturbations of the MMO regimes we identified in the singular bifurcation diagram in
Figure 16(a). To this end we consider bifurcations of equilibria of (4.2) forε > 0; this
analysis was already carried out by Koper [122] for (4.1). The bifurcation diagram in the
(k, λ)-plane is shown in Figure 18 forε1 = 0.01, with the saddle-node curves (green) labeled
SN, the Hopf curves (blue) labeledH. Included are the curves of folded saddle-nodes of
type II (dashed red) labeledFSN II; the curvesFSN II already predict the “cross-shaped”
bifurcation diagram for the full system withε1 > 0 sufficiently small [26]. The cross-shaped
bifurcation structure persists over a wide range ofε1. We find the saddle-node and Hopf
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curves as follows. The Jacobian matrixA of (4.2) on the fast time scale has the characteristic
polynomialσ3 + c2 σ2 + c1 σ + c0 with coefficients

c2 = 3 (ε1 + x2 − 1), c1 = ε1 (ε1 + 9 x2 − k − 9), c0 = ε2
1 (3x2 − 3− k),

wherex corresponds to an equilibirum, that is,x3− (k +3) x+λ = 0. Hence, a saddle-node
bifurcation occurs for

c0 = − det(A) = 0 ⇔ λ = ±2
(

1 +
k

3

)3/2

,

which has a cusp point atk = −3 and does not depend onε1; the cusp point is labeledC in
Figure 18. The Hopf bifurcation is defined byc0 − c1 c2 = 0, providedc1 > 0. To first order
in ε1, we find

λ = ±
(

2 + k − 1
3

k ε1 + O(ε2
1)

)
,

which lies O(ε1) close to the curves of folded saddle-nodes of type II, as expected; The
saddle-node and Hopf bifurcation curves coincide at two Bogdanov-Takens points (labeled
BT) defined byk = − 1

2 ε1. The MMO regime forε1 > 0 lies in the region withk < 0 and it
has a lower bound with respect toλ along a curve that is close toH. We discuss this in more
detail for fixedk = −10. Note that from now on we use the original equations (4.1), but this
does not alter the bifurcation diagrams of the(k, λ)-plane in Figures 16 and 18.

Koper [122] computed a numerical bifurcation diagram for fixedk = −10 andε1 = 0.1
with λ > 0 as the free parameter; he found isolated closed curves of MMO periodic orbits.
We computed more detailed bifurcation diagrams, using the same system (4.1) as Koper,
where we concentrate on the (symmetrically related) regionλ < 0 and usedε1 = 0.01 as
well as ε1 = 0.1. The result is shown in Figure 19, where row (a) is forε1 = 0.1 and
row (b) forε1 = 0.01. The vertical axis in panels (a1) and (b1) is the periodT of the periodic
orbits, while in panels (a2) and (b2) it is the maximum absolute value of thex-coordinate.
A family of stable periodic orbits emanates from the Hopf bifurcationH, but it quickly loses
stability in a period-doubling bifurcationPD. We abuse notation and label this family10;
the period-doubled family is labeled20 and note that it appears as a disconnected curve in
the (λ, T )-projection because the period doubled. The10 orbit becomes stable again in a
second period-doubling bifurcation, which is quickly followed by a fold (not labeled) that
renders it unstable, until a second foldSL, after which relaxation oscillations are persistent.
The MMOs reside on isolas that exist for the range ofλ roughly in between the two period-
doubling bifurcations. We used alternatingly light- and dark-blue colors to highlight these
families; we found MMOs with signatures1s with s ranging from 3 to 14 as indicated in
Figure 19.

The MMOs on the isolas in Figure 19 are generated by the folded node mechanism; we
refer to Section 5 for a more detailed discussion of MMOs on such isolas. Here, we focus on
the fact that MMOs with more complicated signatures can be found as soon as the candidate
periodic orbit returns close to a maximal canard. Figure 20 shows the stable MMO that exists
for λ = −7; here, we usedε1 = 0.1. Panel (a) shows a time series of thex-coordinate,
which identifies the signature of this MMO as1213; a projection onto the(z, y)-plane is
shown in panel (b). We computed the attracting and repelling slow manifoldsSa

ε1
andSr

ε1
,

respectively. They are shown in Figure 20(c) along with three maximal secondary canard
orbits ξ2, ξ3 andξ4 that are also drawn in panel (b). The figure shows how both LAOs are
funneled into the folded node region, practically onSa

ε1
and very close toξ2. Figure 20(b)
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FIG. 19. Bifurcation diagram inλ for the Koper model(4.1) with (ε2, k) = (1,−10). Panels (a1) and (a2)
are for ε1 = 0.01 and panels (b1) and (b2) forε1 = 0.1 as used by Koper. Panels (a1) and (b1) plot the period
T and panels (a2) and (b2) maxima of|x| versusλ. A branch of periodic orbits (an “MMO” with signature10)
emanates from the Hopf bifurcation H and coexists with isolas of MMOs with different signatures.

illustrates that they are actually separated bySr
ε1

on either “side” ofξ2, which means that
the number of SAOs that follow for one of the LAOs is two, while for the other it is three,
as dictated byξ3. Referring to Figure 7(a), a one-dimensional approximation of the return
map will have branches corresponding to trajectories that make increasingly larger numbers
of SAOs as they pass through the folded node, and the trajectory shown in Figure 20(c) has
returns that alternate between the branches corresponding to two and three SAOs.

We observe that the last of the three SAOs has a distinctly larger amplitude, which Fig-
ure 20 suggests is due to this oscillation following a canard and then executing a jump back
to Sa

ε1
. However, there is also an equilibriumq nearby. Fork = −10 a singular Hopf bi-

furcation occurs forλ = λH ≈ −7.67. We found that the folded node in Figure 20 is at
(x, y, z) = (1, [λ − 2]/k, [2λ − 4 − k]/k) = (1, 0.9, 0.8) and the nearby equilibriumq at
(x, y, z) = (xq, xq, xq), wherexq ≈ 0.897 is a root ofx3 − (k + 3) x + λ.
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FIG. 20. An MMO with signature1213 (black) generated by a folded node singulartiy of(4.1) for
(ε1, ε2, λ, k) = (0.1, 1,−7,−10). Panel (a) shows a time series of thex-coordinate. Panel (b) is the projec-
tion onto the(z, y)-plane and includes nearby canard orbitsξ2, ξ3 andξ4 and panel (c) shows this in phase space
together with the attracting and repelling slow manifoldsSa

ε1
(red) andSr

ε1
(blue), respectively.
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FIG. 21. An MMO near a singular Hopf bifurcation for(4.1) with (ε1, ε2, λ, k) = (0.1, 1,−7.52,−10).
Panel (a) shows the time series of thex-coordinate. The bifurcation diagram in panel (b) illustrates how close
the parameters are to a tangency bifurcation betweenW u(q) and Sr

ε (dashed cyan); the Hopf H (solid blue),
folded saddle-node of type II FSN II (dashed red), andδ = 0 (dashed black) curves are shown as well; see
also Figure 16. The slow manifoldsSa

ε and Sr
ε shown in panel (c) guide the MMO toward the equilibrium

q ≈ (0.951, 0.951, 0.951), after whichW u(q) organizes the SAOs. The high compression and twisting ofSr
ε

nearW u(q) is highlighted in panel (d).
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FIG. 22. A periodic MMO of(4.1) for (ε1, ε2, λ, k) = (0.01, 1,−0.063,−2.1) that exhibits SAOs near the
maximum as well as the minimum of the LAO.

We find pronounced SAOs generated by a singular Hopf bifurcation if we decreaseλ closer
to the valueλH ; note that we have to stay above the value ofλ for which there is a tangency
between the unstable manifoldWu(q) of q and the repelling slow manifoldSr

ε1
; see also

Section 3.2. Figure 21 shows the MMO of (4.1) forλ = −7.52. The time series of thex-
coordinate shows SAOs that are quite different from the SAOs in Figure 20(a). Figure 21(b)
shows an enlarged bifurcation diagram in the(k, λ)-plane with the parameter location of the
two MMOs for Figures 20 and 21 indicated by two black dots atk = −10. The Hopf curve
(solid blue) and the curve of folded saddle-nodes of type II (dashed red) are labeledH and
FSN II, respectively. The MMO region is bounded by the curveδ = 0 (dashed black) and
the tangency betweenWu(q) andSr

ε1
(dashed cyan); in between the Hopf and this tangency

bifurcation the periodic orbits have small amplitudes and the transition to MMOs occurs
O(ε) away from the Hopf curve. The dot corresponding to Figure 21 lies very close to the
tangency curve, while the dot corresponding to Figure 20 lies well inside the MMO region.
Figure 21(c) shows geometrically how the SAOs are organized. The red and blue surfaces are
the attracting and repelling slow manifoldsSa

ε1
andSr

ε1
, respectively. During the epoch of

SAOs, the MMO periodic obit lies almost onSa
ε1

and it cannot pass throughSr
ε1

, which twists
very tightly and forces a decrease in the amplitudes of the SAOs; this first part of the SAOs
is still reminiscent of the passage through a folded node, which lies at(1, [λ − 2]/k, [2λ −
4 − k]/k) = (1, 0.952, 0.904), and their amplitudes decrease withε1. SinceSr

ε1
spirals

around the one-dimensional stable manifold ofq, the MMO periodic orbit comes very close
to q = (xq, xq, xq), with xq ≈ 0.951. The SAOs that follow are organized byWu(q) and
their amplitudes are increasing to relatively large values before the LAO.

In summary, if we fixk in Figure 21(b) and increaseλ, we observe the following typical
sequence of events near a singular Hopf bifurcation of an equilibriumq. For small enough
λ there are no MMOs and the attractor is an equilibrium. This equilibrium crosses a fold
of the critical manifold atFSN II, but it remains stable until a supercritical (singular) Hopf
bifurcation at distanceO(ε1) away gives rise to small oscillations. The transition to MMOs
occurs after a tangency betweenWu(q) andSr

ε1
; for λ-values just past this tangency the

MMOs have many SAOs that all lie nearWu(q). As λ increases further, the MMOs exhibit
SAOs organized by the folded node. Finally, a crossing of the curveδ = 0 corresponds to a
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transition to relaxation oscillations.
To end this case study, we report the existence of a different type of MMO not found

by Koper; it is shown in Figure 22. The MMO has SAOs both near the maximum and the
minimum of the LAO. Hence, this MMO passes near folded nodesna

± on both fold curves.
The parameter region where this occurs is quite small, so that it is difficult to locate such an
MMO using simulation; it is the region in Figure 16 neark = −2 that can only be seen in
the enlargement in panel (b). We found the MMO by selecting parametersk = −2.1 and
λ = −0.063 in this region and chooseε1 = 0.01 rather small; a more detailed study of the
range of parameters for which such MMOs with two SAO epochs remains future work.

5. MMOs in a reduced Hodgkin–Huxley system.As the next case study we consider
a three-dimensional reduced version of the famous Hodgkin–Huxley equations [102] that
describe the generation of action potentials in the squid giant axon; see [115, 196] for the
derivation and also [43], where the same example was used. The reduced model only de-
scribes the dynamics for voltage (V ), the activation of the potassium channels (n) and the
inactivation of the sodium channels (h); the activation of the sodium channels (m) is very
fast and it reaches its equilibrum statem = m∞(V ) (almost) instantaneously which can be
justified mathematically by a center-manifold reduction [196]. The evolution of the gatesn
andh is considered slow while the evolution of the voltageV is considered fast. To justify
this time-scale separation, we nondimensionalize the Hodgkin–Huxley equations by introdu-
cing a dimensionless voltage variablev = V/kv and a dimensionless timeτ = t/kt where
kv = 100 mV is a reference voltage scale andkt = 1 ms is a fast reference time scale; this
gives





εv̇ = f(v, h, n) := Ī −m3
∞(v)h (v − ĒNa)

− ḡk n4 (v − ĒK)− ḡl (v − ĒL),

ḣ = g1(v, h) :=
kt

τh

(h∞(v)− h)
th(v)

,

ṅ = g2(v, n) :=
kt

τn

(n∞(v)− n)
tn(v)

,

(5.1)

with dimensionless parameters̄Ex = Ex/kv, ḡx = gx/gNa, with x ∈ {m, n, h}, Ī =
I/(kvgNa) andε = C/(ktgNa) =: τv/kt. The original Hodgkin–Huxley parameter values
are given in Table 5.1. Thus,ε = 1

120 ≈ 0.01 ¿ 1 and system (5.1) represents a singularly
perturbed system withv as a fast variable and(n, h) as slow variables. The functionsx∞(v)
andtx(v), with x ∈ {m, n, h}, describe the (dimensionless) steady-state values and time
constants of the gating variables, respectively; they are given by

x∞(v) =
αx(v)

αx(v) + βx(v)
and tx(v) =

1
αx(v) + βx(v)

,

with

αm(v) = (kvv+40)/10
1−exp(−(kvv+40)/10) , βm(v) = 4 exp(−(kvv + 65)/18),

αh(v) = 0.07 exp(−(kvv + 65)/20), βh(v) = 1
1+exp(−(kvv+35)/10) ,

αn(v) = (kvv+55)/100
1−exp(−(kvv+55)/10) , βn(v) = 0.125 exp(−(kvv + 65)/80).

The orginal Hodgkin–Huxley equations with scaling parametersτh = τn = τm = 1
shows no MMOs [102], but ifτh > τh,e > 1 or τn > τn,e > 1 are beyond certain threshold
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gNa gk gl ENa EK EL τh τn C

120.0 36.0 0.3 50.0 −77.0 −54.4 1.0 1.0 1.0
TABLE 5.1

Original parameter values of the Hodgkin–Huxley equations(5.1).

values then MMOs are observed [43, 196, 197]. Here, we focus on a specific case with
τh = 6.0, τn = 1.0 andC = 1.2 (so thatε = 0.01). We use the applied currentI (in units
of µA/cm2) of the original Hodgkin–Huxley equations, that is, the rescaledĪ in (5.1), as the
only free parameter. Furthermore, in order to facilitate comparison with other studies, we
represent output in terms of the non-rescaled voltageV = 100 v, which is in units of mV.

From a mathematical point of view, the MMOs are generated due to the presence of a
(subcritical) singular Hopf bifurcation atI = IH ≈ 8.359 and a folded node in the singular
limit ε = 0. The critical manifold of (5.1) is defined by,

n4(v, h) =
Ī −m∞(v)3 h (v − ĒNa)− ḡL (v − Ēl)

ḡk (v − Ēk)
,

which is a cubic-shaped surfaceS = Sa,−∪F−∪Sr∪F+∪Sa,+ for physiologically relevant
values ofI. The outer sheetsSa,± are stable, the middle sheetSr is unstable, andF± denote
fold curves [196]. The desingularized reduced system on this manifold is given by

{
v̇ =

(
∂

∂hf
)

g1 +
(

∂
∂nf

)
g2,

ḣ = − (
∂
∂v f

)
g1.

A phase-plane analysis of the desingularized reduced flow in the physiologically relevant
range shows that there exists a folded node singularity onF− for I > IFSN ≈ 4.83. Fur-
thermore, it can be shown that the global-return mechanism projects into the funnel region
for I < Ir ≈ 15.6; see [196, 197]. Hence, the folded node theory predicts the existence of
stable MMOs for a range ofI-values that converges toIFSN < I < Ir in the singular limit
asε → 0.

Figure 23(a) shows the folded node singularity forI = 12, where it lies approximately
at (v, h, n) = (−0.593, 0.298, 0.407), in projection onto the(n, V )-plane. The two black
curves are the strong singular canardγ̃s and the primary weak canardγw that pass through
the folded node. The other two curves are maximal secondary canardsξ5 andξ6 that were
found as intersections of extended slow manifolds computed near the folded node; see also
Section 8 and [43, Figure 6]. Their projections onto the(h, V )-plane, which illustrate the
oscillating nature ofξ5 andξ6, are shown in Figure 23(b). Notice that the final oscillations
of the primary weak canardγw in Figure 23(a) show the distinct characteristics of saddle-
focus-induced SAOs. Indeed, a saddle-focus equilibriumq ≈ (−0.589, 0.379, 0.414) exists
relatively close to the folded node, due to the singular Hopf bifurcation atIH ≈ 8.359.
DecreasingI from I = 12 towardI = IH causesq to move closer to the folded node and the
mix of folded node induced SAOs and saddle-focus induced SAOs will be more pronounced;
compare with Figure 21(c).

The equilibriumq for I = 12 persists whenI is varied. A partial bifurcation diagram is
shown in Figure 24(a), where we plot the maximum ofV versusI. Similar to the analysis
in [43], a unique equilibrium exists for allI and it is stable forI < IH and, approximately,
I > 270.772. The (singular) Hopf bifurcation (labeledH) at IH gives rise to a family of
saddle-type periodic orbits. This family of periodic orbits undergoes three fold bifurcations
(SL) at I ≈ 6.839, I ≈ 27.417 andI = ISL ≈ 14.860, after which both non-trivial Floquet
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FIG. 23. Maximal secondary canard orbitsξ5 and ξ6 of the three-dimensional reduced Hodgkin–Huxley
equations(5.1) with τh = 6.0, τn = 1.0, C = 1.2 and I = 12. Panel (a) shows the two canard orbits in
projection onto the(n, V )-plane; also shown are the strong singular canardγ̃s and the weak primary canardγw.
The projection ofξ5 and ξ6 onto the(h, V )-plane in panel (b) shows that they make five and six oscillations,
respectively.
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FIG. 24. MMO periodic orbits of the three-dimensional reduced Hodgkin–Huxley equations(5.1) with τh =
6.0, τn = 1.0 and C = 1.2. Panel (a) shows a bifurcation diagram where the maximalV -value is plotted
versus the applied currentI. Isolas of MMO periodic orbits exist over a range ofI bounded by a period-doubling
bifurcation PD and a saddle-node of limit cycle bifurcationSL. The isolas are colored in alternating light and
dark blue. Panel (b) shows an enlargement near the Hopf bifurcation. All isolas shown have a fold bifurcation for
ISL ≈ 8.087. The periodic orbitΓ shown in panel (c) is the stable MMO forI = 12; panel (d) showsΓ when it
has a maximalV -value of−20 mV.
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multipliers are less than 1 in modulus and the associated stable periodic orbits correspond to
tonic spiking. Figure 24(a) shows that the firstSL is quickly followed by a period-doubling
bifurcation (PD) atI ≈ 7.651, where one of the Floquet multipliers, which are both unstable
after this firstSL, passes through−1. Hence, the periodic orbits afterPD are non-orientable
and of saddle type. Note that a secondPD (not shown in Figure 24(a)) must take place before
the secondSL.

MMOs exist as isolated families of periodic orbits for a range ofI; Figure 24(a) shows
eleven of these isolas colored in alternating light and dark blue. All periodic orbits on a
single isola have the same number of oscillations. Each isola contains a short plateau with
large maximalV nearV = 40 mV where the associated MMOs are stable and have signatures
1s. For our specific choiceε = 0.01, we found that the stable MMO interval appears to be
bounded byIH on the left and byISL on the right, that is,8.359 < I < 14.860. Recall that
the theory based on the singular limit asε → 0 predicts the existence of stable MMO periodic
orbits with signatures1s for 4.83 ≈ IFSN < I < Ir ≈ 15.6; the match is surprisingly good,
even thoughε is relatively large. AsI ↓ IH , the numbers in the stable1s MMO signatures
approaches infinity, since a homoclinic orbit through the Hopf singularity is formed; see
also [43]. Furthermore, there exist stable MMO signatures with more complicated signatures
1s11s2 · · · ; see [197]. The MMO periodic orbits go through several bifurcations along the
isolas (mostly period-doubling and/or saddle-node of limit cycle bifurcations); compare also
Figure 19 for the Koper model in Section 4. The maximalV -value indicates the amplitude of
the largest of the oscillations of the respective MMO periodic orbit. Note the folded structure
of the isolas forV = VF+ ≈ −20 mV which is approximately the repolarization threshold
value for action potentials. This value also corresponds to theV -value of the upper fold curve
F+, at which a trajectory jumps back. For MMOs on a plateau, the LAOs correspond to a full
action potential, while thes SAOs that follow are subthreshold oscillations.

Figure 24(b) shows an enlargement of how the isolas of MMO periodic orbits accumulate
near the Hopf bifurcation, which is the region where theory predicts a signature1s, that
is, an MMO with one large excursions ands SAOs. This is organised by how the global-
return mechanism projects onto the critical manifoldS asI varies. If the return projects onto
a secondary canard then part of the periodic orbit follows the secondary canards onto the
unstable branchSr,ε of the slow manifold. However, only canard periodic orbits that reach the
region of the upper fold curveF+ are maximal secondary canards. Hence, the corresponding
family of secondary canards can be split into two groups: we call the secondary canards with
maximumV < VF+ jump-backcanards and those with maximumV > VF+ jump-away
canards. This is an important distinction in this application, because the jump-away canards
will create action potentials, the jump-back canards will not.

We illustrate the canards along one of the isolas in Figures 24(a) and (b). The stable
MMO periodic orbitΓ that exists on the plateau forI = 12 is shown in Figure 24(c); its
signature is16 and it lies on the isola that corresponds to periodic orbits with a total of seven
oscillations. Note that the large excursion ofΓ is above threshold. The six SAOs ofΓ are due
to the fact that the global return lands on the rotational sector bounded by the maximal sec-
ondary canardsξ5 andξ6 for I = 12 (not shown); compare Figures 23(b). When the periodic
orbit Γ is continued in the direction of increasingI, the maximalV -value decreases and the
LAO changes from an action potential to a sub-threshold oscillation. Figure 24(d) showsΓ
(which is now unstable) when its maximalV -value is approximately−20 mV. Observe that
Γ still has a total of seven oscillations, but now two of them have a fast segment. These fast
segments are jump-back canards. More precisely, the periodic orbitΓ consists of a segment of
a jump-back canard of theξ6 canard family that connects to a segment of a jump-back canard
of the strong canard family, which in turn connects to the former segment, hence, closing the
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FIG. 25. Continuation of a family of periodic orbits that consist of ten oscillations. The continuation starts and
ends atI = 12 with a fold atI ≈ 8.087. Panel (a) shows a three-dimensional “waterfall diagram” visualization
of the time series ofV for 90 computed periodic orbits along this part of the isola; the boldface periodic orbit lies
at the fold point. The orbits in blue correspond to the part of isola in between the fold point and theI-value that
corresponds to the Hopf bifurcation, that is,IH ≈ 8.359. Panel (b) shows the maximalV -value along the branch
in the(I, V )-plane, where the arrows indicate the direction of the continuation. Panel (c) shows the periodic orbit
at the fold together with a coexisting small periodic orbit in projection onto the(n, v)-plane.

loop. One could classifyΓ in Figure 24(d) as an MMO with signature25, because only five
of its oscillations have really small amplitude due to the passage near the folded node, while
there are two clearly distinguishable larger oscillations with fast segments due to jump-back
canards. However, none of these larger canard oscillations ofΓ are full action potentials,
meaning that all oscillations are classified as SAOs in this application context.

Figure 25 illustrates the characteristics of the periodic orbits along the lower parts of
the isolas in Figure 24(a), where they are very close to the branch of saddle periodic orbits
bifurcating from the Hopf bifurcation. More specifically, Figure 25(a) shows a “waterfall
diagram” representation of the time series of 90 periodic orbits along the lower part, for
I ≤ 12, of the isola along which one finds a total of ten oscillations. This part of the branch is
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TABLE 6.1
Parameter values used in the four-dimensional Olsen model(6.1)

k1 k2 k3 k4 k5 k6 k7 k−7 k8 α
0.28 250 0.035 20 5.35 0 0.8 0.1 0.825 1

shown in Figure 25(b). The fold point for this isola is atI = ISL ≈ 8.087, and the associated
periodic orbit is drawn in boldface in Figure 25(a). The periodic orbits on the part of the
branch forISL ≤ I ≤ IH are highlighted in blue. The periodic orbits along this part of the
isola are quite different from the MMOs one finds near the plateaux of the isolas; Namely,
they consist of a mix of SAOs and jump-back canards, ten in total. Figure 25(c) shows the
projection of the periodic orbit at the fold onto the(n, V )-plane; also shown is the coexisting
small periodic orbit that lies on the branch emanating from the Hopf bifurcation. This figure
suggests that the periodic orbit at the fold is approaching a homoclinic cycle of the small
periodic orbit.

6. MMOs in Olsen’s four-dimensional model of the PO reaction.Many applications
do not lead to models that have a clear split into slow and fast time scales. Often some
assumptions to that extent can be made, but most variables will be slow in certain regions
of phase space and fast in others. The following case study illustrates how the geometrical
ideas from slow-fast systems can be used in such a context. We study a four-dimensional
model of the peroxidase-oxidase (PO) biochemical reaction that was introduced by Olsen
and collaborators [37, 172]; see also [42], where this same example was used. The Olsen
model describes dynamics of the concentrations of two substrates (O2 andNADH) and two
free radicals, denotedA, B, X andY , respectively; it is given by the differential equations





A′ = −k3ABY + k7 − k−7A,
B′ = α(−k3ABY − k1BX + k8),
X ′ = k1BX − 2k2X

2 + 3k3ABY − k4X + k6,
Y ′ = −k3ABY + 2k2X

2 − k5Y.

(6.1)

Note thatα is an artificial time-scale parameter that we introduced for the purpose of this
case study;α = 1 in [37, 172]. The other parameters are reaction rates and we chose their
values as given in Table 6.1, such that the periodic orbits that exist for these parameter values
are representative for the Olsen model (6.1). We focus our study on a stable MMO periodic
orbit, denotedΓ; its time series of the variableA is shown in Figure 26(b). We observe that
Γ has signature1s, and we estimate thats is about15. Below, we show that the SAOs of
this example occur during passage through a dynamic Hopf bifurcation, and we analyze the
global return mechanism of this trajectory.

6.1. Bifurcations of the fast subsystem.There is no clear split between the different
time scales in the Olsen model (6.1), but it is known thatB evolves on a slower time scale
than the other variables [153]. Hence, it makes sense to consider the fast subsystem obtained
by settingα = 0, that is,B′ = 0 and B acts as a parameter in (6.1). The bifurcation
diagram is shown in projection onto the(A, B)-plane in Figure 26(a), which is invariant
becausek6 = 0; see Table (6.1). There are two branches of equilibria that intersect at a
transcritical bifurcationT for B = k4/k1 ≈ 71.426; solid lines indicate stable and dashed
lines unstable equilibria. The equilibria that are colored black in Figure 26(a) are physically
relevant because they have non-negative values ofX andY ; for grey equilibria, on the other
hand,X or Y is negative. One branch is the black horizontal line atA = 8; it lies in the
(A,B)-plane (whereX = Y = 0), which is invariant sincek6 = 0. Equilibria along this
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FIG. 26. The stable MMO periodic orbitΓ of the Olsen model(6.1)with parameters as in Table 6.1. Panel (a)
showsΓ (blue) projected onto the(A, B)-plane and superimposed on the bifurcation diagram of(6.1)with α = 0;
solid (dashed) black and grey curves are stable (unstable) equilibria, where the grey color indicates thatX or Y
are negative, andSN , H and T are saddle-node, Hopf and transcritical bifurcations, respectively. The family
bΓ of periodic orbits that emanatesH is represented by its maxima and minima inA (green curve); the lineΣ⊥
(cyan) indicates where the(A, B)-plane changes from attracting to repelling. Panel (b) shows the time series of the
variableA alongΓ. The inset panel shows a blow-up of the region where SAOs undergo a slow decay.

branch are stable forB < k4/k1. A second branch intersects the horizontal branch and
the (A, B)-plane at the pointT ; only the black part of this second branch with positiveX
andY is physically relevant; it consists nearT of saddles with one unstable and two stable
real eigenvalues. Two further bifurcations along this physically relevant branch change the
stability of the equilibria; there is a saddle-node bifurcationSN at B = BSN ≈ 35.144
and a subcritical Hopf bifurcationH at B = BH ≈ 57.949. The emanating branch of
saddle periodic orbits (green) is labeledΓ̂, for which only minimal and maximal values of
A are shown. The hyperplaneΣ⊥ = {(A,B, X, Y ) |B = k4/k1} marks where the linear
contraction normal to the(A,B)-plane is zero; note thatT ∈ Σ⊥. Overlaid on this bifurcation
diagram is the MMO periodic orbitΓ of (6.1) (with α = 1) and we can now see howΓ is
composed of a segment of SAOs, generated by passage through a dynamic Hopf bifurcation,
and a global return: starting from the minimum ofΓ, the trajectory spirals in and out of a
vortex structure due to the presence of the family of equilibria of the fast subsystem with a
pair of complex conjugate eigenvalues that cross the imaginary axis. The presence of the Hopf
bifurcation in the fast subsystem explains the observed slow decay and increase in amplitude
of the SAOs of the attractorΓ of the full system. The reinjection back to a neighborhood
of the attracting branch is mediated by an increase inA, which triggers a slow increase in
B, as the trajectory closely follows the invariant(A, B)-plane toward the curve of stable
equilibria with A = 8. As soon asB > k4/k1, that is, the trajectory crossesΣ⊥, the
(A,B)-plane is unstable and the trajectory begins to move away from it. Finally, the sharp
decay inA appears to be a fast segment that brings the trajectory back to the entrance of the
dynamic Hopf bifurcation; compare also with the time series of theA-variable alongΓ in
Figure 26(b). The rapid decrease in amplitude of the SAOs is an indication thatΓ is in an
intermediate regime between the tourbillion and delayed Hopf bifurcations, but we label it as
a tourbillion.

6.2. Slow manifolds of the Olsen model.The SAOs ofΓ in Figure 26 terminate ab-
ruptly via a mechanism that can be visualized by computing slow manifolds. The shape of
these manifolds and the geometry of their interactions in the fast subsystem allows us to
unravel the organisation of MMOs in the Olsen model (6.1). Consider the curve of saddle
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FIG. 27. The repelling slow manifoldSr
B (blue) of the fast subsystem of the Olsen model(6.1) (α = 0),

whereX was eliminated via the QSSA(6.2). The manifoldSr
B was computed as the family of one-dimensional

stable manifoldsW s
B (one side only) of saddle equilibria (dashed black curve) for53 ≤ B ≤ 63. The branch

of equilibria (dashed/solid black curve) in the vicinity of the Hopf bifurcation point (dot) is also shown, along with
several unstable periodic orbits (green curves) born at this Hopf bifurcation; the periodic orbits are almost the same
as those in Figure 26 for the fast subsystem. Panel (b) showsW s

60 and the corresponding unstable periodic orbitcΓ60

for B = 60 in the(A, Y )-plane. Note that the viewpoint in both panels was chosen such thatA increases toward
the left; this is also the case in subsequent three-dimensional figures.

equilibria forB < k4/k1 in Figure 26(a) between the pointsSN andT . Each equilibrium
has one positive and two negative eigenvalues and the family of associated two-dimensional
stable manifolds acts as a limiting (three-dimensional) repelling slow manifold that organizes
the termination of the SAOs. Since this termination still takes place extremely close to the
invariant(A,B)-plane, we may assume thatX is a fast variable in this region. Therefore, we
may reduce the dimension by way of a quasi steady-state assumption (QSSA) [72], where we
assume thatX has reached its steady-state value

X =
k1B − k4 +

√
(k1B − k4)2 + 8k2(3k3ABY + k6)

4k2
. (6.2)

Using the QSSA, we approximate the fast subsystem (6.1) withα = 0 as aB-dependent
family of two-dimensional vector fields in the(A, Y )-plane, and the repelling slow manifold
is now approximated by a familySr

B of one-dimensional stable manifolds. Note that the
QSSA (6.2) preserves the equilibria of the fast subsystem and their stability properties change
only in the sense that essentially one contracting direction (forB < k4/k1) is removed. The
equilibria on the branch bounded bySN and T are still saddles, but now with only one
stable eigenvalue. The equilibria on the branch on the other side ofSN are repelling for the
planar system ifB lies in betweenBSN andBH , and attracting pastBH . We computedSr

B

with AUTO [50] by defining a suitable two-point boundary value problem; see Section 8.2.
Figure 27 illustrates howSr

B rolls up (in backward time) around the lower equilibrium branch
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FIG. 28. The attracting slow manifoldSa
B (red) of the full Olsen model(6.1) (α = 1), computed from near the

equilibria for A = 8 andB > k4/k1 up to the sectionΣ53 = {B = 53}. The black solid/dashed curves are the
physically relevant equilibria of the fast subsystem (α = 0).

for BSN ≤ B ≤ BH and around the family of unstable periodic orbits forB ≥ BH until the
homoclinic bifurcation forB ≈ 66.480 < k4/k1; to emphasize theB-dependent nature, we
show this planar dynamics for the fixed valueB = 60 in panel (b).

The repelling slow manifoldSr
B is only an approximation and it is not an invariant ob-

ject for the full system (6.1). However, it provides an indication of how an MMO trajectory
is trapped by an actual repelling slow manifold as it passes through the tourbillion and in-
dicates how the trajectory flows toward the curve of saddle equilibria. By combining this
approximation of a repelling slow manifold with an approximationSa

B of the attracting slow
manifold that guides trajectories back to the entrance of the tourbillion, we can visualize the
mechanism that organizes the SAOs.

To find Sa
B , we consider the curveL of saddle equilibria withA = 8 andB > k4/k1

(pastT ); see Figure 26(a). These equilibria have one-dimensional unstable manifolds in
(A,X, Y )-space, that is, in the full fast subsystem without the QSSA (6.2). TheB-dependent
family Wu(L) of unstable manifolds is a two-dimensional surface that makes a large excur-
sion before spiraling toward the attracting equilibrium branch that lies just above the invariant
(A,B)-plane. We define the attracting slow manifoldSa

B in this setting as the equivalent of
Wu(L) whenB is not fixed but allowed to vary. In particular, with this definitionSa

B enters
a neighborhood ofH and interacts with the repelling slow manifoldSr

B that only exists for
B < k4/k1. We compute the two-dimensional manifoldSa

B with AUTO [50] by using a
boundary value problem setup as in Section 8; specifically, we require that one end point of
the computed orbit segments lies along a lineLa very close to the curveL of equilibria and
in the linear approximation toWu(L); see [42] for more details on how this computation can
be performed. Figure 28 illustrates howSa

B provides a global return mechanism from near
La via a large excursion and then guides trajectories through the tourbillion.
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FIG. 29. (a) Approximations of the attracting and repelling slow manifolds of the Olsen model(6.1). Panel (a)
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B (red) projected into(A, B, Y )-space between the sectionsΣ53 andΣ63 (green

planes). Also shown are three orbitsη1 in orange,η2 in magenta andη3 in cyan; they lie in the intersection ofSa
B

andSr
B . Intersections ofSa

B andSr
B with Σ53 are shown in panel (b); the intersections ofη1, η2 andη3 with Σ53

are labelled.

Figure 29 illustrates how the interaction ofSa
B andSr

B determines the behavior in the
tourbillion regime. The two surfaces are shown in(B, A, Y )-space in panel (a). Recall that
Sa

B is a two-dimensional surface in(B, A,X, Y )-space, and shown is its projection. The man-
ifold Sr

B , on the other hand, was computed by assuming the QSSA (6.2), which is due to an
additional strongly attracting direction. Hence,Sr

B is a two-dimensional surface in(B, A, Y )-
space that corresponds to a three-dimensional surface in(B,A, X, Y )-space. Therefore, the
intersections ofSa

B andSr
B with the planeΣ53 = {B = 53} are isolated points, and they are

shown in Figure 29(b); note thatSr
B ∩Σ53 = W s

53, while the computation ofSa
B ∩Σ53 is more

involved. The intersection points of these two curves define trajectories that resemble canard
orbits near a folded node, because they spiral in the tourbillion region, making an increasing
number of turns. The first three intersection points are labeled in Figure 29(b) and their cor-
responding trajectoriesη1, η2 andη3 are shown in Figure 29(a). These trajectoriesη1, η2 and
η3 are contained inSa

B , but only their intersection points withΣ53 lie on Sr
B . Indeed,Sr

B is
not an actual invariant manfiold of (6.1) and only serves as an approximation of the repelling
slow manifold. Nevertheless,Sa

B andSr
B give a qualitative illustration of the nature of SAOs

generated by slow passage through the tourbillion. In particular, the intersection curves ofSa
B

andSr
B with Σ53 provide an approximate location of the sectors of oscillations in this region

of phase space.
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7. The Showalter–Noyes–Bar-Eli model of MMOs in the BZ Reaction.The Showalter–
Noyes–Bar-Eli (SNB) model [205] is one of many kinetic models that have been proposed
for the Belousov-Zhabotinskii (BZ) reaction. It is a seven-dimensional vector fields derived
from a system of reactions

A + Y À X + P

X + Y À 2P

A + X À 2W

C + W À X + Z

2X À A + P

Z → gY + C

that satisfy the law of mass-action, resulting in the equations




A′ = k0(A0 −A)− k1AY + k−1PX − k3AX + k−3W
2 + k5X

2 − k−5AP,
C ′ = k0(C0 − C)− k4CW + k−4XZ + k6Z,
P ′ = −k0P + k1AY + 2k2XY − 2k−2P

2 + k5X
2 − k−5AP − k−1PX,

W ′ = −k0W + 2k3AX − 2k−3W
2 − k4CW + k−4XZ,

X ′ = −k0X + k1AY − k−1PX − k2XY + k−2P
2 − k3AX + k−3W

2

+k4CW − k−4XZ − 2k5X
2 + 2k−5AP,

Y ′ = k0(Y0 − Y )− k1AY + k−1PX − k2XY + k−2P
2 + gk6Z,

Z ′ = −k0Z + k4CW − k−4XZ − k6Z,
(7.1)

where we use the same letter to identify a chemical species and its concentration. Note that
C ′ + Z ′ = k0(C0 − C − Z), so the hyperplaneC + Z = C0 is invariant and attracting. We
reduce (7.1) to a six-dimensional vector field on this hyperplane by settingC = C0 − Z and
eliminating the equation forC ′. The model is “realistic” in the sense that each variable is
associated with a definite chemical species. The reaction rates are based upon experimental
measurements. As is typical with chemical reactions, the concentrations of intermediate spe-
cies differ from each other by many orders of magnitude. Nevertheless, some intermediate
species that have very low concentrations are still dynamically important. The variableY
represents concentration of bromide which is often measured in experiments to monitor the
state of the system. The variableA in the model represents the concentration of bromate. This
chemical has much larger concentrations than the other species, but the chemically relevant
quantity is its variation, which is of comparable order to the variations of other concentra-
tions. See Showalter et al. [205] for more details about the chemistry. In previous studies of
this model, Barkley [16] was unable to clearly identify a dynamical explanation of the MMOs
it exhibits.

We study this system for a single set of parameters where Showalter, Noyes and Bar-Eli
observed a mixed mode oscillation, specifically

k1 = 0.084 (Ms)−1
, k−1 = 1× 104 (Ms)−1

,

k2 = 4× 108 (Ms)−1
, k−2 = 5× 10−5 (Ms)−1

,

k3 = 2× 103 (Ms)−1
, k−3 = 2× 107 (Ms)−1

k4 = 1.3× 105 (Ms)−1
, k−4 = 2.4× 107 (Ms)−1

,

k5 = 4.0× 107 (Ms)−1
, k−5 = 4.0× 10−11 (Ms)−1

,

k6 = 0.65 (Ms)−1
, k0 = 7.97× 10−3 s−1

A0 = 0.14 M, C0 = 1.25× 10−4 M
Y0 = 1.51× 10−6 M g = 0.462,

(7.2)
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FIG. 30. Time series of an MMO periodic orbit for(7.1), with parameters given in 7.2. The time series of
each variable is scaled to the interval [0,1] and the trajectory is plotted over one period. Panel (a) shows the slow
variablesA (black) andP (red), and panel (b) the fast variablesW (blue),X (orange),Y (magenta), andZ (grey).

Note that the system (7.1) and the parameters in (7.2) have dimensional units; throughout,
concentrations are measured in molar (M) and time in seconds (s).

Figure 30 shows time series of the MMO periodic orbit of (7.1) with parameters given
by (7.2), plotted over one periodT ≈ 209 s. In the time series, each variable is scaled by
an affine transformation so that it varies on the interval[0, 1]. To relate back to the dynamics
of (7.2) the minimum and maximum values of each variable prior to rescaling are listed in
Table 7.1. Figure 30 displays the characteristics of an MMO. There are small oscillations
that occur while the relative concentration ofY is small and the relative concentration ofZ
is large. Note from Table 7.1 that these concentrations are varying by over two orders of
magnitude. The periodic orbit makes two circuits and has signature1415.

A P W X Y Z

black red blue orange magenta grey
1.39856× 10−1 1.83× 10−4 1.45× 10−9 4.2× 10−11 2.39× 10−8 3.89× 10−8

1.39907× 10−1 2.80× 10−4 1.38× 10−6 1.5× 10−7 2.28× 10−6 6.41× 10−6

TABLE 7.1
Minimum and maximum ranges of variation of each coordinate in Figure 30(a).

There is no explicit slow-fast structure in the equations (7.1). We infer that(A,P ) vary
slowly relative to(W,X, Y, Z) in an ad-hoc manner from Figure 30 by making two obser-
vations. First, the variables(A,P ) show a monotone decrease and increase during the times
that the variables(W,X, Y, Z) undergo small oscillations. Second,(A,P ) do not undergo
rapid changes at the beginning or end of the small oscillations as(W,X, Y, Z) do. There-
fore, to investigate the mechanisms producing the small amplitude oscillations in this MMO,
we identify the system as a slow-fast system with slow variables(A, P ) and fast variables
(W,X, Y, Z) as far as the MMO dynamics is concerned. Figure 31(a) projects the MMO
periodic orbitΓ onto the(P, Y, Z)-plane. Notice the region of SAOs, which is visited twice.
Panel (b) showsΓ projected onto the(A,P )-plane of slow variables. We observe from this
projection thatΓ lies close to the hyperplane2A + P = 2A0 (grey line), which means that
the change ofA andP along the MMO periodic orbit is of the same order.
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FIG. 31. (a) A three dimensional plot of the trajectory onto the space spanned by the coordinates(P, Y, Z). A
curve along the critical manifold is plotted as a grey line, and the black dot marks the location of a Hopf bifurcation
in the fast subsystem. (b) The MMO is projected onto the coordinatesA andP . The grey line is defined by2A+P =
2A0 and the ranges ofA andP are [0.13985, 0.13991] and[0.00018, 0.0003].
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FIG. 32. Panel (a) shows the curve of Hopf bifurcations (blue) and the line defined by2A + P = 2A0 (grey)
in the (A, P )-plane. Panel (b) shows the SAOs projected onto the three-dimensional space spanned by the center
manifold of the Hopf bifurcation and the direction of the line{2A + P = 2A0} in the (A, P ) plane. The MMO
periodic orbitΓ visits this region twice and each time spirals around the center manifold of the Hopf bifurcation
(grey); the Hopf bifurcation point of the layer system itself is the black dot.

Figure 31(a) suggests that the SAOs of the MMO periodic orbitΓ are due to a tourbillion.
To ascertain this, we compute the critical manifold near the vicinity of the SAOs with con-
tinuation methods using the program Matcont [44]. Figure 32(a) shows the the curve of Hopf
bifurcations in the fast subsystem in the(A,P )- plane of the slow variables together with the
curve2A + P = 2A0. The small portion of the Hopf curve plotted in Figure 32(a) is almost
horizontal, so the two curves cross transversally. Matcont also calculates the first Lyapunov
coefficient of the Hopf bifurcations along this part of the branch, showing that they are all
subcritical. To demonstrate further that the tourbillion associated with the Hopf bifurcation
is indeed the basis for SAOs, we projectΓ onto the three-dimensional space spanned by the
two dimensional center manifold of the Hopf bifurcation in the space of fast variables and the
direction defined by2A + P = 2A0. The projection of the center manifold is plotted as a
grey curve and the Hopf point of the layer equation is the black dot. The two parts ofΓ that
correspond to SAOs surround the center manifold and have minimal amplitudes close to the
Hopf point. This is clear evidence that the MMO of (7.1) has a tourbillion with SAOs that
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are generated by the passage through a dynamic Hopf bifurcation, similar to the one observed
for the Olsen model in Section 6. This example illustrates how the methods described in this
paper can be applied effectively to a system of higher dimension than just three or four.

8. Numerical methods for slow-fast systems.This section discusses numerical meth-
ods that we used to compute the two-dimensional slow manifolds shown in many of the
figures, as well as stable and unstable manifolds of equilibrium points. The slow manifold
computations choose an end point of each orbit segment on the critical manifold away from
a fold; this approximation yields errors that areO(ε) but decay quickly as one moves away
from the end point. For stable or unstable manifolds of equilibria, orbit segments are chosen
to lie in the linear eigenspace associated with the stable or unstable eigenvalues, respectively.
The computational error associated with this approximation also decays quickly as one moves
away from the endpoint; see [41, 130] for analysis of these approximation errors .

A simple and effective method for computing invariant manifolds as families of orbit
segments is to use initial value solvers as the basic algorithm with initial conditions chosen
on a mesh of points transverse to the flow in the invariant manifold; we call this the “sweep-
ing” method. Despite its simplicity, this sweeping method fails to produce satisfactory results
in some cases. In particular, strong convergence or divergence of trajectories toward one an-
other makes the choice of the initial mesh problematic and can produce very non-uniform
“coverage” of the desired manifold; see [59, 60]. In multiple-time-scale systems, the fast ex-
ponential instability of Fenichel manifolds that are not attracting makes initial value solvers
incapable of tracking these manifolds by forward integration. These issues prompt the use of
boundary value methods combined with continuation as an alternate strategy for computing
invariant manifolds [131, 132] . We have used both strategies in this paper. This section
presents more details of the techniques used to compute attracting and repelling slow mani-
folds of systems with one fast and two slow variables, as well as the continuation of canard
orbits when a parameter is varied.

8.1. Sweeping invariant manifolds.The Fenichel manifolds of systems with a single
fast variable are either attracting or repelling. As a result, forward trajectories with initial con-
ditions on the critical manifold will converge quickly to an attracting Fenichel manifold and
backward trajectories with initial conditions on the critical manifold will converge quickly
to a repelling Fenichel manifold. Thus, one way to compute two-dimensional attracting and
repelling Fenichel manifolds of a three-dimensional flow is to apply an initial value solver in
the appropriate time direction to a mesh of initial conditions along a curve of the critical man-
ifold transverse to the slow flow. We used this sweeping method to computeSr

ε in Figure 11;
see also [162] for an early use of this method to compute two-dimensional invariant mani-
folds and Wechselberger [233] and Guckenheimer and Haiduc [86] for an example involving
folded nodes.

When incorporated into a continuation framework, the sweeping method can also be used
if the critical manifold is not known in closed form and the mesh of initial conditions can-
not be selected beforehand. Continuation methods [49] provide well-established algorithms
that augment equation solvers like Newton’s method with strategies for choosing new start-
ing points when solving under-determined systems of equations. More precisely, suppose
F : Rm+n → Rm is a smooth function given bym equations ofm + n variables. The impli-
cit function theorem states that the zeros ofF form a smoothn-dimensional manifoldM near
points where the matrixDF of partial derivatives has full rankm. Moreover, the theorem
gives a formula for the tangent space ofM . Most continuation methods treat the casen = 1
where the set of solutions is a curve; see [101] for the casen > 1. In general, the methods
are based on a predictor-corrector procedure: given a point onM , tangent (or higher-order)
information is used to choose a new seed for the solver to find a new point onM . The sweep-
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ing method described above selects the continuation step size based on equal increments of
a specific coordinate or direction, but more sophisticated step size adaptations can be used
as well. For example,pseudo-arclengthcontinuation as implemented in AUTO [50] chooses
points based on their distances from each other inRm+n.

We also used a sweeping method to compute the global unstable manifoldWu(p) in
Figure 11. The mesh of initial conditions was taken to lie along a ray in the tangent space of
Wu(p), with endpoints of the mesh at successive intersections of a trajectory of the linear-
ized system with this ray. The sweeping method works well here, because the selected orbit
segments provide adequate “coverage” ofWu(p).

8.2. Continuation of orbit segments with boundary value solvers.The core algorithms
of AUTO [50] are boundary value solvers and continuation methods. The sweeping method
described in the previous section can also be implemented in AUTO [50], so that the initial
value problems are solved using a collocation method; see [49] for details. The techniques de-
scribed in this section impose boundary conditions on both end points of the orbit segments,
which makes the method more versatile and suitable in a wider context; see also [131]. We
describe here how to formulate two-point boundary value problems (BVP) in order to com-
pute slow manifolds and associated canard orbits.

We consider two-point boundary value problems of the form





u̇ = Tg(u, λ),
u(0) ∈ L,
u(1) ∈ Σ,

(8.1)

whereg : Rn × Rp → Rn is sufficiently smooth,T ∈ R, λ ∈ Rp are parameters andL and
Σ are submanifolds ofRn. The parameterT rescales time so that the orbit segments always
correspond to trajectories in the time interval[0, 1]. Hence, the boundary conditions at the
two end points always apply tou(0) andu(1). In order to have a well-posed problem with
isolated solutions, the number of boundary conditions should equal the number of equations
(n, becausė(u) ∈ Rn) plus the number of free parameters (at mostp + 1 for the parameter
λ and the total integration timeT ). We are interested in one-parameter families of solutions
of (8.1), which means that we allow one fewer boundary condition (or one additional free
parameter). Note thatT is typically unknown and we may viewT as the extra free parameter.

Let us first consider the computation of two-dimensional attracting and repelling slow
manifoldsSa

ε andSr
ε . To simplify the explanation, we assume that we have a three-dimensional

slow-fast system with two slow variables and a folded node. In this context, the parameter
λ remains fixed, and we obtain a one-parameter family of orbit segments (with unkown total
integration timesT ) by imposing a total of three boundary conditions. This means that the
dimensions ofL andΣ in (8.1) sum up ton = 3. Our approach is to chooseL as a curve
(or straight line) on the critical manifold, which requires two boundary conditions, andΣ as
a surface (or plane), which requires one boundary condition, such that the associated one-
parameter family of orbit segments covers the desired portion of the slow manifold. For
example, in order forSa

ε to come into the folded node region, we letL be a curve on the
attracting sheet of the critical manifold transverse to the slow flow andΣ be a surface ortho-
gonal to the fold curveF at the folded node. The same approach works forSr

ε , where we
chooseL on the repelling sheet of the critical manifold; note thatT < 0 for such a family
of orbit segments. We remark that these choices can also be used with the sweeping method
and an initial value solver that detects a “stopping condition” defined by the level set of a
function. With the boundary value solvers, we can exchange the roles ofL andΣ, which
is more appropriate for finding canard orbits; see Section 8.3. The slow manifolds can be
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extended by choosing cross-sectionsΣ orthogonal toF at points that lie beyond the folded
node. Figures 6, 20 and 29 give examples of such visualizations; see also [40, 41, 43].

As with all continuation, an important issue is to find a first solution. When continuing
solutions of a boundary value problem, explicit solutions may be known from which such a
first solution may be constructed; see [41] for an example. However, in general no explicit
solution is known and a first solution must be found in a different way. We use a homotopy
method to generate an initial orbit segment; the main idea is to continue intermediate orbit
segments via two auxiliary BVPs — the first to obtain an orbit segment from a point on the
fold curveF to the section, and the second to move the end point onF along the critical
manifold to a suitable distance fromF ; see [40] for details.

We now illustrate this method with the Koper model (4.1), which was also used for the
case study in Section 4. We use the parameters(ε1, ε2, λ, k) = (0.1, 1, 7,−10); note that
λ > 0 as in [122], which is symmetrically related to the case withλ = −7 considered in
Section 4. As shown in Section 4, there is a folded node in this model, which organizes the
SAOs in some of the observed MMOs; in original coordinates it is at

pfn =
(
−1,

2 + λ

k
,
2λ + 4 + k

k

)
= (−1,−0.9,−0.8). (8.2)

We computeSa
ε1

andSr
ε1

as solutions to the BVPs given by (8.1), whereg is defined as the
right-hand side of (4.1). As boundary conditions, we use the same sectionΣ for bothSa

ε1
and

Sr
ε1

with respective linesL = La andL = Lr as follows

Σfn := {(x, y, z) ∈ R3 | z = −0.8}, (8.3)

La := S ∩ {x = −1.5}, (8.4)

Lr := S ∩ {x = −0.2}. (8.5)

Figure 33 shows the result of the computations. We find a first orbit segment onSa
ε1

using
two homotopy steps; this is illustrated in Figure 33(a). Starting from the trivial solution
u = {pfn | 0 ≤ t ≤ 1}, with total integration timeT = 0, we continue the family of orbit
segments that solves (4.1) subject tou(1) ∈ Σfn andu(0) ∈ F . We stopped the computation,
detected by a user-defined function inAUTO, as soon as

u(0) ∈ Σ̃a := {(x, y, z) ∈ R3 | z = −0.76}.
The orbit segment with its end point onF in Figure 33(a) is this last computed solution of
the family. The second step of the homotopy movesu(0) ∈ S away fromF (approximately)
parallel toΣ, that is, we next continue the family of orbit segments that solves (4.1) subject
to u(1) ∈ Σfn andu(0) ∈ L̃a = S ∩ Σ̃a. The continuation stops whenLa is reached, which
is again detected by a user-defined function inAUTO. A selection of orbit segments in this
family are shown in Figure 33(a) (red curves); only the last orbit segmentua (dark red) lies on
Sa

ε1
to good approximation. A similar computation was done to obtain a first orbit segment

on Sr
ε1

, where we use the intermediate sectionΣ̃r := {z = −0.87}; this is illustrated in
Figure 33(b), where the orbit segmentur (cyan) serves as a first solution onSr

ε1
.

Once the first orbit segmentsua andur have been found we start the continuation of (8.1)
with (8.3) and (8.4) for the attracting slow manifoldSa

ε1
and with (8.3) and (8.5) for the

repelling slow manifoldSr
ε1

. The result is presented in Figure 33(c), and the intersection
curves ofSa

ε1
andSr

ε1
with Σfn are shown in Figure 33(d). The transverse intersection points

of Sa
ε1
∩ Σfn andSr

ε1
∩ Σfn in panel (d) correspond to secondary canard orbits; the three-

dimensional view in panel (c) shows three of these, labeledξ1, ξ2 andξ3. Precisely for the
purpose of locating and continuing canard orbits it is necessary to choose the common cross-
sectionΣfn for the calculations ofSa

ε1
andSr

ε1
; see also the next section.
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FIG. 33. Computation of the slow manifoldsSa
ε1

and Sr
ε1

of the Koper model(4.1) with (ε1, ε2, λ, k) =
(0.1, 1, 7,−10). Panels (a) and (b) show the homotopy steps to construct first orbit segmentsua (dark red) onSa

ε1
(red) andur (cyan) onSr

ε1
(blue) that connect the sectionΣfn with curvesLa andLr on the critical manifoldS

(grey), respectively. The red and blue families are generated during the second homotopy step, which starts from
solutions that have one of their end points on the fold curveF of S. Panel (c) showsSa

ε1
andSr

ε1
together with

three secondary canardsξ1, ξ2 andξ3. Panel (d) shows the intersection curves ofSa
ε1

andSr
ε in Σfn that are used

to detect canard orbits.

8.3. Finding and following canard orbits. Maximal canards near a folded node are
transverse intersection curves of the two-dimensional attracting and repelling slow manifolds
Sa

ε andSr
ε . We briefly discuss here how to detect the canard orbits and subsequently continue

them in a system parameter; see also [40, 41, 43]. To represent a maximal canard we must
computeSa

ε andSr
ε using a common cross-sectionΣ of the fold curve at or near the folded

node. The common cross-section allows us to obtain a representation of the canard orbit as
the concatenationuc of an orbit segmentua ⊂ Sa

ε with an orbit segmentur ⊂ Sr
ε , where

ua andur are chosen such thatua ∩ Σ = ur ∩ Σ. The concatenated orbituc located with
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FIG. 34. Continuation of secondary canards of the Koper model(4.1)with (ε2, λ, k) = (1, 7,−10) starting
from ε1 = 0.1. Panel (a) shows the canard orbitξ4 represented by the concatenationuc of two orbit segmentsua

andur that match up inΣfn. Panel (b) shows the continuation of the canard orbitsξ1–ξ7 in ε1; plotted as total
integration timeT versusε1. Panel (c) shows a two-dimensional “waterfall diagram” of the time profiles of the
fast variablex (subject to an offsetδi) of computed orbit segments along the branchξ4. The bold black curve in
panel (c) is the canard orbitξ4 at the fold point of the (boldfaced) branch in panel (b).

this method can be continued in a system parameter without the need to recompute the slow
manifolds at each step. Recall that AUTO always scales boundary value problems to the time
interval [0, 1], so we rescale time onuc appropriately and setT = T a + T r in (8.1). We can
then start the continuation (in a system parameter) subject to the boundary conditions

uc(0) ∈ La, (8.6)

uc(1) ∈ Lr, (8.7)

which determineuc as an isolated solution. In fact, such a continuation typically starts already
provided thatua ∩ Σ ≈ ur ∩ Σ; any small gap inΣ is forced to close by the first Newton
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step. These two boundary conditions (8.6) and (8.7) force the orbit segmentuc to stay very
close to the attracting sheet of the critical manifoldS until near the fold curveF , and then
stay close to the repelling sheet ofS up toLr.

Figure 34 illustrates canard continuation with the Koper model (4.1), where we used
ε1 as the second free parameter (together withT ) and kept(ε2, λ, k) = (1, 7,−10) fixed.
Figure 34(a) shows the two orbit segmentsua andur with (almost) equal end points in the
sectionΣ = Σfn; they have been detected as a good approximation of the maximal secondary
canard orbitξ4, which is then represented by the concatenated orbituc. We continuedξ4,
along with six other maximal secondary canards, for increasing and decreasingε1; see also
Figure 33. Figure 34(b) shows these seven branches, labeledξ1–ξ7; here, the vertical axis
shows the total integration timeT because it clearly distinguishes the branches. Whenξ1–
ξ7 are continued in the direction of increasingε1, a fold in ε1 is detected for each branch;
we have already seen this in Section 5 and it has also been observed in other systems [43].
Figure 34(c) is a “waterfall diagram” that shows how the maximal secondary canard orbitξ4

evolves along the branch asε1 is varied; specifically, the time profile of the fast variablex of
consecutively computed orbit segments along the branchξ4 are plotted with a suitable off-set
δi. The orbit segment that corresponds to the fold ofξ4 is highlighted in bold black. Observe
that the orbit segments to the left of the fold have four SAOs, whereas past the fold there are
only three SAOs followed by a fast segment. Hence the canard orbits past the fold are no
longer maximal canards; see also Section 5.

9. Discussion. We described several mechanisms in slow-fast systems that produce
mixed-mode oscillations, namely the twisting of slow invariant manifolds near a folded node,
oscillations that follow the two-dimensional unstable manifold of a saddle-focus equilibrium
near a singular Hopf bifurcation, and the tourbillion mechanism of a dynamic Hopf bifurc-
ation. Geometric singular perturbation theory provides tools to identify the geometry asso-
ciated with each mechanism, to quantify the MMO signatures, and to describe associated
bifurcations. Analysis of the folded node case is more complete than the other cases. Re-
cent work on singular Hopf bifurcation [85] and the transition from singular Hopf to folded
nodes [143] provides substantial detail on the second case, but much remains to be discovered
about the unfolding of a singular Hopf bifurcation that is relevant to MMOs. Historically, the
dynamic Hopf bifurcation was discovered first, and detailed analysis exists for the case of a
delayed Hopf bifurcation of the layer equations [168]. Together, these mechanisms constitute
a partial framework for classifying MMOs in multiple-time-scale systems that can be further
extended. Perhaps the most surprising aspect of the theory we have described is that oscilla-
tions can appear from the interaction of fast and slow time scales even when neither of these
time scales individually displays oscillations.

We have used four case studies to illustrate theoretical concepts and they serve as a test-
bed for the development of numerical methods. The MMOs in the Koper model and the
three-dimensional reduction of the Hodgkin–Huxley equations have SAOs that occur on in-
termediate time scales due to folded nodes and singular Hopf bifurcations. In the folded-node
mechanism, three parameters play key roles in determining the geometry of the small oscilla-
tions: the ratioε of time scales, the eigenvalue ratioµ of the folded node in the desingularized
reduced system, and the distanceδ of global return trajectories from certain invariant man-
ifolds. Intersections of invariant manifolds are prerequisite to global returns that produce
MMOs in these examples, and tangencies between these manifolds constitutes a new type of
bifurcation that is found on the boundaries of parameter regions yielding MMOs. We found
fast oscillations of the layer equations in the Olsen and Showalter–Noyes–Bar-Eli models of
chemical reactions. Both models exhibit MMOs due to the dynamic Hopf mechanism. These
two case studies also illustrate how the theory applies in higher dimensions and how numer-
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System / Reaction References
Belousov-Zhabotinskii (BZ) reaction

- Virginia [83, 103, 104, 105, 202]
- Texas [156, 157, 158, 194, 195]
- Bordeaux [8, 9, 183, 193, 228]
- Other groups [107, 155, 184, 185, 206]

Briggs-Rauscher (BR) reaction [28, 73, 171, 231]
peroxidase-oxidase (PO) reaction [76, 97, 98, 99, 100, 106, 173, 207]
HPTCu reaction [15, 137, 175, 176, 227]
Bray-Liebhafsky (BL) reaction [73, 149, 230]
copper and phosphoric acid [6, 200]
indium/thiocyanate (IT) reaction [125, 126]
BSFA-system [128]
p-CuInSe2/H2O2-system [167, 182]
spin-wave experiment [5]
rhythm neural network (PreB̈otC) [39]
stellate cells [45, 46, 61]
pituitary cells [225, 229]
combustion oscillations [82]
dusty plasmas [160]
semiconductor lasers [7, 81, 226]
CO oxidation [57, 58, 136]

TABLE 9.1
References for experimental investigations of MMOs.

ical tools can be extended to investigate and identify the mechanisms for generating MMOs
in higher-dimensional systems.

One of our goals for this paper is to facilitate fitting dynamical models to data. In the
case of MMOs, this task has been less successful than with many other nonlinear dynamical
phenomena. On the one hand, MMOs are a complex phenomenon, and on the other hand,
numerical studies of models have yielded puzzling and sometimes paradoxical results. The
theory that has been developed thus far deals best with circumstances where the SAOs have
amplitudes that are far too small to be observed even in numerical simulations, but model
studies frequently show MMOs with SAOs that are readily visible. Thus, numerical meth-
ods that identify the geometric objects highlighted by the theory are essential for bringing
theory, models and empirical data together. We have reviewed recent advances in computing
two-dimensional invariant manifolds and their intersections that are especially important in
three-dimensional models. Extension of these methods to higher dimensions is one of the
challenges for further advances in this subject.

We conclude this survey with a brief review of the MMO literature, and a short discussion
of other mechanisms for MMOs in ODEs and beyond.

9.1. MMO literature review. This section provides an overview, in the form of three
tables, of references where examples of MMOs have been studied experimentally or in model
systems. We do not claim that this overview is complete; rather, these tables are intended as
an entry point into the extensive literature on the subject. Table 9.1 lists experimental work on
MMOs. The majority of these experiments have been carried out for chemical reactions. As
suggested in [8], we subdivided the large number of references on the Belousov-Zhabotinskii
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Mathematical Model Dimension References
Belousov-Zhabotinskii (BZ) reaction

- Field–Koros–Noyes (FKN) 11 [70]
- FKN-extended (GTF-model) 26 [96]
- Showalter–Noyes–Bar-Eli (SNB) 7 [16, 36, 154, 188, 205]
- (Minimal) Oregonator 3 [71, 179, 203, 218, 220]
- Model K (“Kyoto”) 3 [216, 221]
- IUator (“Indiana University”) 4 [201, 221]
- Geiseler–F̈ollner oregonator 3 [77, 221]
- FKN-modified 7 [186]
- Zhabotinskii-Korzuhkin 3 [240]

BR-reaction
- De Kepper, Epstein; Furrow, Noyes 11 [117, 170, 171, 219, 231]
- Kim, Lee, Shin 8 [120, 121]
- Vukojević, Sørensen, Hynne 13 [231]

PO-reaction
- Olsen / DOP models 4 [4, 37, 42, 150, 152, 153, 173, 208]
- BFSO model, Urbanalator 10 [29, 30, 99, 151, 174, 198]
- Yokota-Yamazaki (YY) model 8 [65, 199, 238]
- FAB model 7 [64, 199]
- Model A, Model C 9, 10 [2, 3]
- Model C-HSR 12 [106]

Plenge model (hydrogen oxidation) 4 [11]
IT-reaction 3 [123, 124, 125, 127]
BSFA-system 4 [128]
p-CuInSe2/H2O2-system 2, 4 [167, 182]
self-replicating dimer 3 [178, 181]
autocatalytic SU3 unit 3 [217]
Hodgkin–Huxley (HH) 4 [52, 196, 197]
self-coupled HH 3 [53]
CO oxidation 3 [58, 136]
self-coupled FitzHugh-Nagumo (FHN) 3 [40, 233]
FHN, traveling frame 3 [89, 91]
combustion oscillations 3 [75, 82]
stellate cells

- Acker, Kopell, White (AKW) 7 [1, 191, 234]
- reduction of AKW 3 [109, 192, 234]

pituitary cells 3, 4 [169, 209, 213, 229]
dopamine neurons 4 [139, 159]
autocatalator 3 [92, 161, 162, 180]
LP neuron 14 [87]
Erisir model 5 [62, 63]
semiconductor lasers 3 [7, 51, 133, 135, 177]

TABLE 9.2
References for realistic mathematical models that exhibit MMOs.

(BZ) reaction into research groups. Table 9.2 lists references to mathematical models that
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Abstract Model Dimension References
Boissonade and De Kepper; Koper 2, 3 [26, 116, 122]
Boissonade and De Kepper; Strizhak 2, 3 [26, 80, 119]
Kawczynski and Strizhak 3 [113, 114, 184, 185]
folded node toy model 3 [31]
3-scale: Krupa, Popovic, Kopell 3 [138, 139]
Hopf-hysteresis normal form 3 [16, 186]
two coupled oscillators 4 [210]
Rössler; Gaspard and Nicolis 3 [16, 74]
Barkley 4 [16]

TABLE 9.3
References for abstract models exhibiting MMOs.

were derived or proposed for a particular application that features MMOs; several papers
from Table 9.1 also contain a theoretical model and are, hence, listed again in Table 9.2.
Finally, Table 9.3 lists several abstract models that are designed to be among the simplest
systems that yield MMOs with specified characteristics; the first five rows of the table repres-
ent frameworks of folded nodes, folded saddle-nodes and singular Hopf bifurcation that are
presented in this paper.

Chemical reactions feature strongly in Tables 9.1–9.3. There have been substantial ef-
forts to develop models, from the law of mass-action, that reproduce experimental observa-
tions. We remark that detailed models that attempt to capture the full chemistry of a reaction
are typically very stiff and contain large numbers of parameters; as a result, it is often diffi-
cult to fit the models to experimental data. We hope that the theory and numerical methods
reviewed in this paper lead to better fits of models to data. Note that recent interest in MMOs
in neuroscience is also reflected in the three tables.

9.2. Other MMO mechanisms in ODEs. Historically, MMOs have also been studied
in the context of bifurcations of systems with a single time scale. More specifically, homo-
clinic or heteroclinic cycles involving one or several invariant objects provide a mechanism
for MMOs that does not require an explicit slow-fast structure. The best-known case is that
of a homoclinic orbit to a saddle-focus inR3. A theorem by Shil′nikov [88, 147, 204] proves
that (depending on a condition on the eigenvalues of the saddle-focus) there exist one or
an infinite number of periodic orbits in a tubular neighborhood of the homoclinic orbit; see
also [79]. Each such periodic orbit near this global bifurcation involves one or several large
excursions along the homoclinic orbit, as well as small oscillations when the trajectory spir-
als away from, or back toward the saddle-focus. This type of oscillations near Shil′nikov
bifurcations can be found readily in laser systems: one or several large pulses of the laser
power are followed by small damped oscillations near the saddle-focus; see, for example,
[7, 51, 81, 133, 135, 177, 226, 236]. The small oscillations are at a characteristic frequency
and are due to a periodic exchange of energy between the optical field and the carrier reservoir
(electron-hole pairs in the case of a semiconductor laser). Similarly, more complicated het-
eroclinic cycles may give rise to large excursions followed by small oscillations. A concrete
example is a heteroclinic cycle between a saddle equilibrium and a saddle periodic orbit, as
can be found, for example, near a saddle-node Hopf bifurcation with global reinjection. Near
this global bifurcation one can find large attracting periodic orbits that visit a neighborhood of
the equilibrium and also have an arbitrary number of smaller loops around the saddle-periodic
orbit; see [129, 134].

While such global bifurcations are generic and require no special properties of the sys-
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FIG. 35. An MMO periodic orbitΓ in the Gaspard-Nicolis-R̈ossler model [74]. Panel (a) showsΓ relative to
the S-shaped critical manifold; this illustrates that the SAOs are taking place entirely on the slow manifold. Panel (b)
shows the time series of thex-coordinate ofΓ.

tem, they often appear in slow-fast systems and proving their existence is greatly simplified
in this context [163, 211]. A notable example was introduced by Rössler [189, 190] and later
illustrated by a model due to Gaspard and Nicolis [74]. Figure 35(a) shows the geometry of
this model; it has a classical S-shaped critical manifoldS with two fold lines and there exists
a stable MMO periodic orbitΓ that contains two fast segments. Figure 35(b) shows the cor-
responding time series of one of the coordinates ofΓ and illustrates thatΓ has signature12.
The LAOs ofΓ are formed by the usual relaxation-oscillation mechanism. The phase portrait
in Figure 35(a) is near (the simple case of) a Shil′nikov bifurcation; the SAOs occur because,
after one fast transition,Γ is in the vicinity of a saddle-focus equilibrium, which is an un-
stable focus of the slow flow. Note that the time series also show that the SAOs happen on the
slow time scale. Barkley [16] observed that this mechanism does not account for MMOs in
the BZ reaction because there the SAOs also have a fast component. Morever, this particular
mechanism does not seem to occur in other models as commonly as the slow-fast mechanisms
presented in Section 3. Intuitively this is expected since the global-return mechanism has to
be special (namely, near a Shil′nikov bifurcation) to provide returns to a small neighborhood
of a slow-flow focus. Nevertheless, the Rössler mechanism is of interest historically as one
of the first proposed geometric mechanisms for MMOs. It is also another nice example that
illustrates the geometric approach of exploiting the slow-fast nature of a system to understand
MMOs.

Subcritical Hopf bifurcation in a system with a single time scale has also been observed
to give rise to MMOs. The appearance of these MMOs resembles those associated with
Shil′nikov bifurcation. Guckenheimer and Willms [93] analyze this phenomenon, which we
briefly sketch here. Consider a three-dimensional system in which an equilibriumq makes
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the transition from a sink to a saddle-focus via a subcritical Hopf bifurcation. Whenq is a
saddle-focus, it has a real eigenvalue of magnitudeO(1) and a pair of complex eigenvalues
whose real parts are small and positive. Trajectories that come close to the stable manifold of
q will flow close toq and then slowly spiral away with oscillations of increasing magnitude,
similar to those observed near a singular Hopf bifurcation; see Figure 21. MMOs will occur
if these spiraling trajectories make a global return to the vicinity ofq. Global returns for
portions of the unstable manifold ofq are robust and may exist already at the Hopf bifurc-
ation where the center manifold ofq is weakly unstable. In this case, the returns are likely
to come close enough toq that they will give rise to long epochs of small, slowly growing
oscillations. See Guckenheimer and Willms [93] for a three-dimensional example and Guck-
enheimer et al. [87] for a high-dimensional example occurring in a neural model. We remark
that, although this mechanism for creating MMOs applies to a single-time system, the Hopf
bifurcation naturally introduces a slow time scale in the system associated with the real parts
of the unstable complex eigenvalues.

The MMOs that we have discussed in this survey have SAOs generated by a local mech-
anism near a special point of the limiting system. However, SAOs and associated MMOs may
also arise in other ways in slow-fast systems. An example of this are MMOs with two well-
defined separate oscillations that occur when the layer equations have two families of periodic
orbits, one large and one small, and fast jumps between them. This scenario is analogous to
the phenomenon of bursting, which is common in neural systems. In bursting, oscillations
alternate with quiescent epochs (associated with a slow drift along a stable equilibrium of the
layer equations) instead of there being oscillations of different amplitudes. Since the sem-
inal work of Rinzel [187], bursting has been viewed as a multiple-time-scale phenomenon.
In this context, bursts occur when the layer equations of a model have both equilibria and
limit-cycle attractors and the full system makes fast jumps between these in both directions.
Izhikevich [108] compiled an extensive classification of bursting patterns based upon the bi-
furcations of the layer equations that initiate and terminate the oscillations in a burst. A
similar table could be constructed for MMOs, but it would be even larger. Golubitsky, Josiç
and Kaper [78] use a different classification of bursting patterns based on singularity theory,
which is more in the spirit of this survey. Section 6 gives a brief taste of the analysis of global
mechanisms for transitions between large and small oscillations in MMOs.

9.3. MMOs beyond ODEs. This survey only considers MMOs that arise in slow-fast
ODEs, but they have also been found in dynamical systems that are described by stochastic
differential equations (SDEs), delay differential equations (DDEs) and partial differential
equations (PDEs). The analysis of MMOs in these more involved settings is much less de-
veloped than that for ODEs. To give a flavor, we now describe briefly a few recent examples
in which a slow-fast structure is an important aspect of the MMOs that have been identified.

9.3.1. Stochastic MMOs.Muratov and Vanden-Eijnden [165] study the Van der Pol
oscillator with small (additive) noise; they useλ as the bifurcation parameter and consider
the case0 < ε ¿ 1. Their analysis shows an intricate interplay between the noise and the
singular perturbation parameterε, and how this depends onλ. For example, it can be shown
that even if the deterministic limit without noise has just a stable fixed point for suitable
λ, the stochastic differential equation (SDE) can exhibit relaxation-type oscillations; also
MMOs that are composed of “small canard orbits” and relaxation LAOs can occur. Borowski
and Kuske [145] consider a similar stochastic slow-fast equation of FitzHugh–Nagumo type
and find MMOs due to noise as well; see also [146]. Closely related is the work by Berglund
and Gentz [24, 25] who study spike generation in slow-fast neural models with noise in the
framework of SDEs. The common ingredient in these examples is excitability: while small
noise only leads to small irregular oscillations, a sufficiently large noise perturbation can kick
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the system beyond a threshold that results in a large excursion. There is a noise level when
the system is most coherent or regular and, hence, shows well-defined but irregular MMOs.
Excitability as a mechanism to generate large pulses as the result of external and/or internal
noise has also been observed and studied in several laser systems [54, 133].

Another possible mechanism for noise-induced MMOs was investigated by Yu et al. [239],
who consider a system of coupled-oscillator SDEs. If the deterministic limit is at least bistable
then noise can provide a mechanism for sample paths to alternate between the basins of at-
traction of deterministically stable invariant sets. The simplest way to visualize this idea is to
consider two stable limit cycles for an ODE, one with a small and the other with a large amp-
litude. If the basins of attraction are suitably located, noise can induce repeated transitions
between tubular neighborhoods of each cycle. Hence, a typical sample path will then be an
irregular MMO.

9.3.2. MMOs in delay differential equations. One can ask the question what happens
when one adds delay terms to a slow-fast system. Sriram and Gopinathan [206] consider
the Belousov-Zhabotinskii reaction with delay in an experiment. They compare the results
with a version of the classical three-dimensional Oregonator model [71, 203] with delay and
claim that the delay induces MMOs [206]. This prompts the question whether DDEs have
slow-fast phenomena, such as canards, similar to their ODE counterparts. In principle, this
should be expected at least for the case of a finite number of fixed delays, for which the
DDE does not feature a continuous spectrum [94]. Indeed a positive answer was recently
obtained by Campbell, Stone and Erneux [32] for a two-dimensional DDE model of high-
speed machining. In their system a small delay induces perturbation from a degenerate Hopf
bifurcation, which results in a canard explosion as discussed in Section 2.2; see also [34] for
details of the underlying theory for slow-fast DDEs with small delay.

9.3.3. MMOs in partial differential equations. Given a time-dependent PDE on a do-
main inRn, one can look for MMOs in space, time or a mixture of space and time. Nagumo’s
equation [166], which models the evolution of an activatorv(x, t) and a slow inhibitoru(x, t),
is an example that has been studied extensively as an idealized model for propagation of ac-
tion potentials. Traveling-wave profiles are found via the ansatzv(x, t) = v(x + σt) = v(τ)
andw(x, t) = w(x + σt) = w(τ) as homoclinic solutions of a three-dimensional ODE with
two fast variables and one slow variable [90]; hereσ is the wave speed. It has been shown
that MMOs exist as solutions of this reduced ODE [91]. More generally, work on evolution
equations given by PDEs suggests that oscillatory patterns with alternating amplitudes [35]
and slow-fast structures [17] exist in many common models. Hence, the study of this type of
MMOs for PDEs will benefit from multiple-time-scale methods.
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