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MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES

MATHIEU DESROCHES JOHN GUCKENHEIMER BERND KRAUSKOPF CHRISTIAN KUEHN}
HINKE M. OSINGA! MARTIN WECHSELBERGER

Abstract. Mixed-mode oscillations (MMOs) are trajectories of a dynamical system in which there is an altern-
ation between oscillations of distinct large and small amplitudes. MMOs have been observed and studied for over
thirty years in chemical, physical and biological systems. Few attempts have been made thus far to classify different
patterns of MMOs, in contrast to the classification of the related phenomena of bursting oscillations. This paper
gives a survey of different types of MMOs, concentrating its analysis on MMOs whose small-amplitude oscillations
are produced by a local, multiple-time-scale “mechanism.” Recent work gives substantially improved insight into
the mathematical properties of these mechanisms. In this survey, we unify diverse observations about MMOs and
establish a systematic framework for studying their properties. Numerical methods for computing different types of
invariant manifolds and their intersections are an important aspect of the analysis described in this paper.

1. Introduction. Oscillations with clearly separated amplitudes have been observed in
several application areas, notably in chemical reaction dynamics. Figure 1 reproduces Fig-
ure 12 in Hudson, Hart and Marinko [103]. It shows a time series of complex chemical
oscillations of the Belousov-Zhabotinsky (BZ) reaction [18, 237] in a stirred tank reactor.
The series appears to be periodic, and there is evident structure of the oscillations within
each period. In particular, pairs of small-amplitude oscillations (SAOs) alternate with pairs
of large-amplitude oscillations (LAOs). The result is an example ofixed-mode oscilla-
tion, or MMO, displaying cycles of (at least) two distinct amplitudes. There is no accepted
criterion for this distinction between amplitudes, but the separation between large and small
is clear in the case of Figure 1. The pattern of consecutive large and small oscillations in
an MMO is an aspect that draws immediate attention. Customarily, the nofatidi? - - - .
is used to label series that begin with large amplitude oscillations, followed by small-
amplitude oscillations» large-amplitude oscillations,; small-amplitude oscillations, and
so on. We will callL7* L3? - - - the MMO signature it may be periodic or aperiodic. Sig-
natures of periodic orbits are abbreviated by giving the signature of one period. Thus, the
time series in Figure 1, which appears to be periodic, has sign2turéds Hudson, Hart
and Marinko varied the flow rate through their reactor, MMOs with varied signatures were
observed, as well as simple oscillations with only large or only small amplitudes. Similar
results to those presented in their paper have been found in other experimental and model
chemical systems. Additionally, MMOs have been observed in laser systems and in neurons.
We present an overview with references to experimental studies of MMOs in these and other
areas in Table 9.1 of the last section of this survey.

Dynamical systems theory studies qualitative properties of solutions of differential equa-
tions. The theory investigates bifurcations of equilibria and periodic orbits, describing how
these limit sets depend upon system parameters. Mixed-mode oscillations may be periodic or-
bits, but we then ask questions that go beyond those typically examined by standard/classical
dynamical systems theory. Specifically, we seek to dissect the MMOs into their epochs of
small- and large-amplitude oscillations, identify each of these epochs with geometric objects
in the state space of the system, and determine how transitions are made between these. When
the transitions between epochs are much faster than the oscillations within the epochs, we are
led to seek models for MMOs with multiple time scales.
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FiG. 1. Bromide ion electrode potential in the Belousov-Zhabotinsky reaction; reproduced from Hudson, Hart
and Marinko, J. Chem. Phys. 71(4): 1601-1606, 1979.

Early studies of MMOs in model systems typically limited their investigations to cata-
loging the patterns of MMO signatures found as a parameter is varied. Barkley [16] is an
exception: he assessed the capability of multiple-time-scale models for MMOs to produce the
behavior observed by Hudson, Hart and Marinko [103]. He compared the MMOs from these
experiments and from a seven-dimensional model for the BZ reaction proposed by Showalter,
Noyes and Bar-Eli [205] with three-dimensional multiple-time-scale models. The MMOs that
Barkley studied in some respects resembled homoclinic orbits to a saddle-focus equilibrium.
In particular, small-amplitude oscillations of growing amplitude were produced by trajector-
ies that spiraled away from the equilibrium along its unstable manifold. This type of homo-
clinic orbit was studied by L. Shilnikov[204], but Barkley noted that the MMOs appeared
to persist over open regions of system parameters rather than to occur along a codimension-
one submanifold of parameter space as is the case with homoclinic orbits in generic systems.
Moreover, large parts of the state space of model systems appeared to converge to a tiny re-
gion at the beginning of the small-amplitude growing oscillations. Barkley was unable to
produce a three-dimensional model with these characteristics, but such models were sub-
sequently found. This paper discusses two of these models, emphasizing the one proposed
and studied by Koper [122]. Koper's model is similar to a normal form for singular Hopf
bifurcation [85], a codimension-one bifurcation that arises in the context of systems with two
slow variables and one fast variable. Our central focus is upon MMOs whose SAOs are a
byproduct of local phenomena occurring in generic multiple-time-scale systems. Analog-
ous to the role of normal forms in bifurcation theory, understanding the multiple-time-scale
dynamics of MMOs in their simplest manifestations leads to insights into the properties of
MMOs in more complex systems.

The geometry of multiple-time-scale dynamical systems is intricate. Section 2 provides a
short review. Beginning with the work of the “Strasbourg” school [48] and Takens’ work [214]
on “constrained vector fields” in the 1970’s, geometric methods have been used to study gen-
eric multiple-time-scale systems with two slow variables and one fast varigblded sin-
gularitiesare a prominent phenomenon in this work. As described in Section 2, they lie on
a fold of thecritical manifold, where an attracting and a repelling sheet meet. Folded sin-
gularities yield equilibria of alesingularized reduced vector fielldat is constructed in the
singular limit of the time scale parameter. More recently, Dumortier and Roussarie [55], and
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Szmolyan and Wechselberger [212] introduced singular blow-up techniques for the analyt-
ical study of the dynamics near folded singularities. These methods give information about
canard orbitsthat connect attracting and repellispw manifolds

Canard orbits organize the number of small-amplitude oscillations for MMOs associated
with folded nodes. The unfoldings of folded nodes [86, 233], folded saddle-nodes [84, 143]
and singular Hopf bifurcations [85] give insight into the characteristics of MMOs and how
they are formed as system parameters vary. Passage of trajectories through the region of a
folded node is one mechanism for generating MMOs that we discuss at length in Section 3.1
and illustrate with examples in Sections 4 andJngular Hopf bifurcatiorand the closely
relatedfolded saddle-node bifurcation of typettigether constitute a second mechanism that
produces SAOs and MMOs in a robust manner within systems having two slow variables and
one fast variable. These bifurcations occur when a (true) equilibrium of the slow-fast system
crosses a fold curve of a critical manifold. Singular Hopf bifurcation is discussed in Sec-
tion 3.2 and also illustrated in Sections 4 and 5. We discuss a third mechanism for producing
small-amplitude oscillations in slow-fast systems that is organized g bifurcation in
the layer equationand requires two fast variables. We call this mechanisiyreamic Hopf
bifurcationand distinguish trajectories that pass by a dynamic Hopf bifurcation wdtiay
and trajectories with tourbillion [232] whose small-amplitude oscillations have larger mag-
nitude than those of a delayed Hopf bifurcation. Dynamic Hopf bifurcation is discussed in
Section 3.4 and illustrated in Sections 6 and 7.

Complementary to theoretical advances in the analysis of slow-fast systems, numerical
methods have been developed to compute and visualize geometric structures that shape the
dynamics of these systems. Slow manifolds and canard orbits can now be computed in con-
crete systems; see Guckenheimer [85, 89] and Desroches, Krauskopf and Osinga [40, 41, 42,
43]. The combination of new theory and new numerics has produced new understanding of
MMOs in many examples that have been previously studied. This paper reviews and synthes-
izes these advances. It is organized as follows. Section 2 gives background about relevant
parts of geometric singular perturbation theory. Multiple-time-scale mechanisms that produce
SAOs in MMOs are then discussed and illustrated in Section 3. The four subsequent sections
provide case studies that illustrate and highlight recent theoretical advances and computa-
tional techniques. More details on the computational methods used in this paper can be found
in Section 8. The final Section 9 includes a brief survey of the MMO literature and discusses
other mechanisms that are not associated with a split between slow and fast variables.

2. Geometric singular perturbation theory of slow-fast systemsWe consider here a
slow-fast vector field that takes the form

ex = e = T,Y, N\, E),
. g; B f(x,y ) 2.1)
y = ar = g(l’, Y, )‘7 6)7
where(z,y) € R™ x R™ are state space variables, € R? are system parameters, and
¢ is a small parametedl < ¢ < 1 representing the ratio of time scales. The functions
f R xR*"xRP xR — R™andg : R™ x R® x RP x R — R"™ are assumed to
be sufficiently smooth, typicallg’>°. The variables: are fast and the variablgsare slow.

System (2.1) can be rescaled to

¥ = % = f(xvya)HE)v
{ ) & (2.2)

y = F = eg(x,y,\e),

by switching from the slow time scaleto the fast time scale= 7/¢.
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Several viewpoints have been adopted to study slow-fast systems, starting with asymp-
totic analysis [56, 164] using techniques such as matched asymptotic expansions [118, 148].
Geometric Singular Perturbation Theory (GSPT) takes a geometric point of view and fo-
cuses upon invariant manifolds, normal forms for singularities and analysis of their unfold-
ings [10, 69, 110, 111, 215]. Fenichel's seminal work [69] on invariant manifolds was an
initial foundation of GSPT and it is also called Fenichel theory. A third viewpoint was ad-
opted by a group of French mathematicians in Strasbourg. Using nonstandard analysis, they
made many important discoveries [19, 20, 22, 23, 47, 48] about slow-fast systems. This paper
adopts the GSPT viewpoint. We only focus on the results of GSPT that are necessary to study
MMOs. There are other important techniques that are part of GSPT, such as the Exchange
Lemma [110, 112], the blow-up method [55, 142, 233] and slow-fast normal form theory [10]
that are not described in this paper.

2.1. The critical manifold and the slow flow. Solutions of a slow-fast system fre-
guently exhibit slow and fast epochs characterized by the speed at which the solution ad-
vances. Ag — 0, the trajectories of (2.1) converge during fast epochs to solutions ¢dishe
subsysteror layer equations

':l:/ = .f(x7 y7 A? 0)7
{ Lo (2.3)
During slow epochs, on the other hand, trajectories of (2.2) converge to solutions of
0 = f(xa Y, >‘a O)»
. 2.4
{ g = g(z,y,\0), (2:4)

which is a differential-algebraic equation (DAE) called gtew flowor reduced systenOne

goal of GSPT is to use the fast and slow subsystems, (2.3) and (2.4), to understand the dy-
namics of the full system (2.1) or (2.2) fer> 0. The algebraic equation in (2.4) defines the
critical manifold

S:={(z,y) e R xR" | f(x,y,\,0) =0}

We remark thatS may have singularities [141], but we assume here that this does not hap-
pen so thatS is a smooth manifold. The points &f are equilibrium points for the layer
equations (2.3).

Fenichel theory [69] guarantees persistencé @r a subsel/ C S) as a slow manifold
of (2.1) or (2.2) fore > 0 small enough ifS (or M) is normally hyperbolic The notion of
normal hyperbolicity is defined for invariant manifolds more generally, effectively stating
that the attraction to and/or repulsion from the manifold is stronger than the dynamics on the
manifold itself; see [66, 67, 68, 95] for the exact definition. Normal hyperbolicity is often
difficult to verify when there is only a single time scale. However, in our slow-fast setting,
S consists entirely of equilibria and the requirement of normal hyperbolicitg/ofC S
is satisfied as soon as alle M are hyperbolic equilibria of the layer equations, that is, the
Jacobian D, f)(p, A, 0) has no eigenvalues with zero real part. We call a normally hyperbolic
subsetM C S attracting if all eigenvalues of( D, f)(p, A,0) have negative real parts for
p € M; similarly M is calledrepellingif all eigenvalues have positive real parts. Mf is
normally hyperbolic and neither attracting nor repelling we say it isaofdle type

Hyperbolicity of the layer equations fails at points Snwhere its projection onto the
space of slow variables is singular. Generically, such points are folds in the sense of singu-
larity theory [10]. At a fold point.., we havef(p., \,0) = 0 and(D, f)(p«, A, 0) has rank
m — 1 with left and right null vectorsy andv, such thato - [(D2,, f)(p«, A, 0) (v,v)] # 0 and
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w - [(Dy f)(p«, A, 0)] # 0. The set of fold points forms a submanifold of codimension one in
the n-dimensional critical manifold. In particular, whenn = 1 andn = 2, the fold points
form smooth curves that separate attracting and repelling sheets of the two-dimensional crit-
ical manifold S. In this paper we do not consider more degenerate singular points of the
projection ofS onto the space of slow variables.

Away from fold points the implicit function theorem implies théts locally the graph
of a functionh(y) = x. Then the reduced system (2.4) can be expressed as

y=g(h(y),y,A,0). (2.5)
We can also keep the DAE structure and write (2.4) as the restrictiSrofdhe vector field
{ io= (D) (Duf) g (2.6)

y = 9

on R™ x R™ by observing thaff = 0 andy = g imply ¢ = — (Dxf)’1 (Dyf) g. The
vector field (2.6) blows up whelfi is singular. It can belesingularizedy scaling time by
—det (D, f), at the expense of changing the direction of the flow in the region where this
determinant is positive. This desingularized system plays a prominent role in much of our
analysis. IfS is normally hyperbolic, not onlys, but also the slow flow or$' persists for
e > 0; this is made precise in the following fundamental theorem.
THEOREM 2.1 (Fenichel's Theorem [69] SupposeM = M, is a compact normally
hyperbolic submanifold (possibly with boundary) of the critical manif®lof (2.2) and that
f,9 € C",r < 00. Then fore > 0 sufficiently small the following holds:
(F1) There exists a locally invariant manifold, diffeomorphic tal{,. Local invariance
means thafl/. can have boundaries through which trajectories enter or leave.
(F2) M. has a Hausdorff distance 6¥(¢) from M.
(F3) The flow on)M. converges to the slow flow as— 0.
(F4) M. is C"-smooth.
(F5) M. is normally hyperbolic and has the same stability properties with respect to the
fast variables ad\/, (attracting, repelling or saddle type).
(F6) M. is usually not unique. In regions that remain at a fixed distance from the bound-
ary of M., all manifolds satisfying (F1)—(F5) lie at a Hausdorff distar@é:—*/¢)
from each other for som& > 0 with K = O(1).
The normally hyperbolic manifold/, has associated local stable and unstable manifolds

Wloc MO U Wloc and VVloc MO U I/Vloc
pEMy pEMy

whereWy (p) and W _(p) are the local stable and unstable manifoldgpais a hyperbolic
equilibrium of the layer equations, respectively. These manifolds also persist for0
sufficiently small: there exist local stable and unstable maniféligfg (A4, ) and Wy (M.),
respectively, for which conclusions (F1)—(F6) hold if we repld¢e and Mo by Wi (M)
andW? (My) (or similarly by W} (M.) and W} (My)).

We call M. a Fenichel manifold Fenichel manifolds are a subclassstdw manifolds
invariant manifolds on which the vector field has speed that tend®tothe fast time scale
ase — 0. We use the convention that objects in the singular limit have subsgriphereas
the associated perturbed objects have subseripts

2.1.1. The critical manifold and the slow flow in the Van der Pol equation.Let us
illustrate these general concepts of GSPT with an example. One of the simplest systems in
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FiG. 2. Phase portraits of the Van der Pol equati¢®7) for A = 0 (a) and forA = 1 (b). Shown are
the critical manifoldS' (grey solid curve) and thg-nulicline (dashed line); double arrows indicate the direction
of the fast flow and single arrows that of the slow flow. Panel (a) shows a candidate for a relaxation oscillation
(black) surrounding an unstable equilibrium. Panel (b) is the moment of the singular Hopf bifurcation with a folded
singularity at the local minimump..

which the concepts are manifest, and historically perhaps also the first, is the Van der Pol
equation [222, 223, 224] with constant forciAge= R given by

{gi = y-32’+o, 2.7)

y = A—uzx
This slow-fast system has only one fast and one slow variable, but it already exhibits com-
plicated dynamics that were truly surprising when they were first discovered [48]. By setting

e = 01in (2.7), we obtain the reduced system with an algebraic equation that defines the
critical manifold of (2.7) as the cubic curve

S={(z,y) eR* |y =12® -z =:c(a)}. (2.8)

It is normally hyperbolic away from the local maximum and minimpm = (+1, ﬂFg) of
the cubic, whereS' has a fold with respect to the fast variableAt p. normal hyperbolicity
fails, sincea%f(x,y, A\,0) = 1 — 22 is zero atp,.. Hence,p,. are the fold points and they
naturally decompose the critical manifold into three branches,

§=8""Uf{p-tuS U{pstusmT,

whereS*~ := Sn{z < -1}, S*" :=Sn{z >1}andS" = SN{-1 <z < 1}. From
the sign of%f(x, y, A, 0) we conclude that the two branch8%~ and.S** are attracting,
and the brancl$” is repelling. The critical manifold' is shown as the grey cubic curve in
Figure 2; note that' and its attracting/repelling nature does not depend,@o it is the same
both in panel (a), wherg = 0, and panel (b), wherg = 1. The dynamics of any point not on
S is entirely controlled by the direction of the fast variablewhich is indicated in Figure 2
by the horizontal double arrows; observe that the middle branéhi@fepelling and the two
unbounded branches are attracting.

To obtain the slow flow (2.5) o' in the Van der Pol equation (2.7) it is not actually
necessary to solve the cubic equatipn= c(z) for z on S»~, S™ and S»*. It is more
convenient to write the slow (reduced) flow in terms of the fast variabl&o this end, we
differentiatef (z,y, A, 0) = y — ¢(z) = 0 with respect tor and obtain

y=da®—i=i(x*—1).
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Combining this result with the equation fgwe get:

A—zx

2 ; .
-z =X— or = —".
(x )& x T= 5

(2.9)
The direction of the slow flow 0§ is indicated in Figure 2 by the arrows on the grey curve;
panel (a) is forA = 0 and panel (b) foi = 1. The slow flow does depend on because the
direction of the flow is partly determined by the location of the equilibriuma at A on S.
The slow flow is well defined o8%~, S™ andS%™, but not atz = +1 (as long as\ # +1).
We can desingularize the slow flow near= +1 by rescaling time with the factdn: — 1).
This gives the equation = \ — x of thedesingularized flowNote that this time rescaling
reverses the direction of time on the repelling braf€hso care must be taken when relating
the phase portrait of the desingularized system to the phase portrait of the slow flow.

Let us now focus specifically on the case for= 0, shown in Figure 2(a), because it is
representative for the rang®| < 1. They-nulicline of (2.7) is shown as the dashed black
vertical line (ther-nullcline is.S) and the origin is the only equilibrium, which is a source for
this value of\. The closed curve is a singular orbit composed of two fast trajectories starting
at the two fold pointg4. concatenated with segments$f Such continuous concatenations
of trajectories of the layer equations and the slow flow are caliedidate$20]. The singular
orbit follows the slow flow onS to a fold point, then ijumps that is, it makes a transition
to a fast trajectory segment that flows to another branc$. dfhe same mechanism returns
the singular orbit to the initial branch &f. It can be shown [142, 164] that the singular orbit
perturbs fors > 0 to a periodic orbit of the Van der Pol equation that li2&) close to this
candidate. Van der Pol introduced the taetaxation oscillationto describe periodic orbits
that alternate between epochs of slow and fast motion.

2.2. Singular Hopf bifurcation and canard explosion. The dynamics of slow-fast sys-
tems in the vicinity of points on the critical manifold where normal hyperbolicity is lost can
be surprisingly complicated and nothing like what we know from systems with a single time
scale. This section addresses the phenomenon knowrtasaad explosionwhich occurs
in planar slow-fast systems aftersangular Hopf bifurcation We discuss this first for the
example of the Van der Pol equation (2.7).

2.2.1. Canard explosion in the Van der Pol equation As mentioned above, the phase
portrait in Figure 2(a) is representative for a range\afalues. However, the phase portrait
for A = 1, shown in Figure 2(b), is degenerate. Linear stability analysis shows that for
e > 0 the unique equilibrium pointz,y) = (A, 1A* — X) is a source fotA| < 1, but a
sink for [A\| > 1. Supercritical Hopf bifurcations occur &ty = +1. The analysis of how
the observed stable dynamics of the Van der Pol equation (2.7) changesfnith a stable
focus to relaxation oscillations whert> 0 is small was a major development in the theory of
slow-fast systems. Figure 3(a) shows the result of a numerical continuation in the parameter
A of the periodic orbit for= = 0.05 that emerges from the Hopf bifurcation. Close to the
Hopf bifurcation at\; = 1.0 the periodic orbit is small (cyan curve), as is to be expected.
However, as\ decreases, the periodic orbit grows very rapidly, where it follows the repelling
slow manifoldS? for a long time. In fact, the values offor all orange orbits in Figure 3(a)
are\ ~ 0.993491, that is, they agree to six decimal places. Note that we show the growing
orbits only up to a characteristic intermediate size: the largest periodic orbit in Figure 3(a) just
encompasses the fold pojnt. Upon further continuation in this periodic orbit continues to
grow rapidly until it reaches the shape of a relaxation oscillation; compare with Figure 2(a).

The Hopf bifurcation at g = 1 occurs when the equilibrium moves over the fold point
p+. Itis called a singular Hopf bifurcation. The eigenvalues at the Hopf bifurcation have

7



@ ' ' ' (b)

-1 . . . .
-2 -1 0 1 =z 2

FiG. 3. Numerical continuation of periodic orbits in the Van der Pol's equaii@r7) for ¢ = 0.05. Panel (a)
shows a selection of periodic orbits: the cyan orbit is a typical small limit cycle near the Hopf bifurcatios-at 17,
whereas all the orange orbits occur in a very small parameter interval at 0.993491. Panels (b) and (c) are
sketched bifurcation diagrams corresponding to supercritical and subcritical singular Hopf bifurcations;4here
denotes the amplitude of the limit cycle.

magnitudeO(s~1/2), so that the periodic orbit is born at the Hopf bifurcation with an inter-
mediate period between the f&t=—') and slowO(1) time scales. The size of this periodic
orbit grows rapidly from diamete® (c!/?) to diameteiO(1) in an interval of parameter val-

uesA of lengthO(exp(—K/¢)) (for someK > 0 fixed) thatisO(e) close to\y. Figures 3(b)

and (c) are sketches of possible bifurcation diagrams fior the singular Hopf bifurcation

in a supercritical case (which one finds in the Van der Pol system) and in a subcritical case,
respectively; the vertical axis represents the maximal amplitude of the periodic orbits. The
two bifurcation diagrams are sketches that highlight the features described above. There is a
very small interval of\ where the amplitude of the oscillation grows in a square-root fashion,
as is to be expected near a Hopf bifurcation. However, the amplitude then grows extremely
rapidly until it reaches a plateau that corresponds to relaxation oscillations.

The rapid growth in amplitude of the periodic orbit near the Hopf bifurcation is called a
canard explosionThe name canard derives originally from the fact that some periodic orbits
during the canard explosion look a bit like a duck [48]. In fact, the largest periodic orbit in
Figure 3(a) is an example of such a “duck-shaped” orbit. More generally, and irrespective of
its actual shape, one now refers to a trajectory eareard orbitif it follows a repelling slow
manifold for a time ofO(1) on the slow time scale. A canard orbit is calleshaximal canard
if it joins attracting and repelling slow manifolds. Since the slow manifolds are not unique,
this definition depends upon the selection of specific attracting and repelling slow manifolds;
compare (F6) of Theorem 2.1. Other choices yield trajectories that are exponentially close to
one another. In the Van der Pol equation (2.7) the canard explosion @2@ur&’/s)-close in
parameter space to the point where the manif6ti$ andS? intersect in a maximal canard.

It is associated with the parameter value= 1 where the equilibrium lies at the fold point
p+ of the critical manifoldS; see Figure 2(b).

2.3. Singular Hopf bifurcation and canard explosion in generic planar systemsin
the Van der Pol equation (2.7) the singular Hopf bifurcation takes plake-afl where the
equilibrium lies at a fold point. In a generic family of slow-fast planar systems a singular
Hopf bifurcation does not happen exactly at a fold point, but at a dist@dcgin both phase
space and parameter space from the coincidence of the equilibrium and fold point. One can
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obtain a generic family by modifying the slow equation of the Van der Pol equation (2.7) to
y=A—x+ay.

In this modified system the equilibrium and fold point still coincidezat 1, but the Hopf
bifurcation occurs for: = /1 + ¢ a. A detailed dynamical analysis of canard explosion and
the associated singular Hopf bifurcation using geometric or asymptotic methods exists for
planar slow-fast systems [12, 13, 55, 56, 140, 142]; we summarize these results as follows.
THEOREM 2.2 (Canard Explosion iiR? [142]). Suppose a planar slow-fast system has
a generic fold poinp, = (z,,y,) € S, that s,
A0)=0 9 A0)=0 4 A0 0 9 A0 0
f(p*7 ?)_ 9 %f(p*ﬂ ,)_ 9 @f(p*va)# ) %f(p*7 7)7é .
(2.10)

Assume the critical manifold is locally attracting for< z,, and repelling forz > x, and
there exists a folded singularity for= 0 at p,., namely,

0 0
*y Uy =Y, a_ *y Uy 9 AN sy Uy . 211
9(p+,0,0) =0, =-g(ps,0,0) #0,  =+g(p.,0,0) #0 (2.11)
Then a singular Hopf bifurcation and a canard explosion occur at
A = Hie+0(e*?)  and (2.12)
e = (H) + K1) e+ O(3/?). (2.13)

The coefficient&/; and K; can be calculated explicitly from normal form transformations [142]
or by considering the first Lyapunov coefficient of the Hopf bifurcation [144].

In the singular limit we havey = A.. For anye > 0 sufficiently small, the linearized
system [88, 147] at the Hopf bifurcation point has a paisiafyular eigenvaluef27]

a(Xe) = a(Xe) +if(Ae),
with a(Agr;e) = 0, Za(Ag;e) # 0and

lir%ﬁ()\H;g) = oo, onthe slowtime scale, and
E—

lin%ﬁ()\H;e) = 0, onthe fasttime scale

E—

2.4. Folded singularities in systems with one fast and two slow variables\ canard
explosion for a planar system happens in an exponentially small parameter interval. However,
as soon as there is more than one slow variable, canard orbits can exigt faranges of a
parameter. To illustrate this, we consider (2.1) for the special gcase 1 andn = 2, and
write it as

Ex = f(x7y7>\a€)a
yl = 91($7y7)\,5)a (214)
2 = g2(x,y,\€).

We assume that the critical manifofi= {f = 0} of (2.14) has an attracting shegt and a
repelling sheef™ that meet at a fold curvé’ as is shown in Figure 4. We also assume that
the fold pointsp, € F on S are generic in the sense of singularity theory, that is,

f(p*,)\,o) = 0, ﬂ(p*,)vo) = 0,

ox
0% f

W(p*,A,O) £ 0, Dy f(p«,A,0) has full rank one
X
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FIG. 4. The critical manifoldS with attracting sheet“ (red) and repelling shees” (blue) that meet at a fold
curve F' (grey). The fast flow transverse fois indicated by double (large) arrows and the slow flow$mnear a
folded node by single (small) arrows; see also Figure 5(b).

The slow flow is not defined on the fold curve before desingularization. At most fold points,
trajectories approach or depart from both the attracting and repelling shegtsrogeneric
systems, there may be isolated points, caftdded singularitieswhere the trajectories of
the slow flow switch from incoming to outgoing. Figure 4 shows an example of the slow flow
on S and the thick dot orF’ is the folded singularity at whicli’ changes from attracting to
repelling (with respect to the slow flow).

Folded singularities are equilibrium points of the desingularized slow flow. As described
above, the desingularized slow flow can be expressed as

&= (%f) a o+ (%f) g2,
o= (2F) g1, (2.15)

Y2 = (2 £) 9o,

restricted taS. A fold pointp, € F'is a folded singularity if

of of
A 0) =—(ps, A, 0 o A 0) =—(pse, A, 0) = 0.
91(p«; A, 0) o (Ps; A, 0) + g2(p+, A, 0) 9 (P, A, 0)
There are different possibilities for the stability of in (2.15). Leto; ando, denote the
eigenvalues of the Jacobian matrix restrictecbtand evaluated at a folded singularity.
We callp, a

folded saddle, if o102 <0, o012 €R,
folded node, if o102 >0, o012€R,
folded focus, if o102 >0, Im(oy2)#0.

Figure 5 shows phase portraits of the (linearized) slow flow, in panels (a) and (b), and the
associated desingularized slow flow, in panels (c) and (d), respectively. Panels (a) and (c) are
for the case of a folded saddle and panels (b) and (d) of a folded node. For the case of a folded
node one generically has an inequality of the fdem| > |o2|, and we writelos| > |0y,
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FIG. 5. Phase portraits of the locally linearized slow flow near a folded saddle (a) and a folded node (b); the
singular canards defined by the eigendirections are shown as thick lines. The corresponding desingularized slow
flow is shown in panels (c) and (d), respectively.

replacing the numeric labels withandw to emphasize the strong and weak eigendirections.
Note that the phase portraits for the slow flow in Figure 5(a) and (b) are obtained by reversing
the direction of the flow ors” Where%f > 0, that is, by reversing the arrows abaken
the phase portraits of the desingularized slow flow in panels (c) and (d). It is an important
observation that the trajectories of the slow flow that lie along the eigendirections of the folded
saddle or node connect the two sheets of the critical manifold through the folded singularity
in finite (slow) time; such a trajectory is calledsingular canard We remark that there
are no singular canards for the case of a folded focus, which is why it is not shown here.
Notice further for the case of the folded node in Figure 5(b) that the strong singular canard
%s and the fold curve bound a full (shaded) sector of trajectories that crossSftamsS™ by
passing through the folded node. The linearized system in Figure 5(b) should be compared
with Figure 4, which shows a nonlinear slow flow near a folded node and, hence, also has a
full sector of trajectories that pass through the folded singularity.

Singular canards act as candidates of maximal canards of the full systenfor This
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is described in the next theorem [19, 23, 31, 212, 233].
THEOREM 2.3 (Canards irR3). For the slow-fast systeii2.14)with ¢ > 0 sufficiently
small the following holds:
(C1) There are no maximal canards generated by a folded focus.
(C2) For a folded saddle the two singular canargis, perturb to maximal canards; .

(C3.1) For a folded node ley. := o,,/0s < 1. The singular canardy, (“the strong
canard”) always perturbs to a maximal canard. If x~' ¢ N then the singular
canard?,, (“the weak canard”) also perturbs to a maximal canatg,. We call~,
and~,, primary canards.

(C3.2) For a folded node suppode > 0 is an integer such thatk +1 < p~ ! < 2k + 3
andp~! # 2(k + 1). Then, in addition toy, ,,, there arek other maximal canards,
which we call secondary canards.

(C3.3) The primary weak canard of a folded node undergoes a transcritical bifurcation for
oddx~! € N and a pitchfork bifurcation for even—! € N.

3. Slow-fast mechanisms for MMOs.In this section we present key theoretical results

of how MMOs arise in slow-fast systems with SAOs occurring in a localized region of the
phase space. The LAOs, on the other hand, are associated with large excursions away from
the localized region of SAOs. More specifically, we discuss four local mechanisms that give
rise to such SAOs:

e passage near a folded node, discussed in Section 3.1;

e singular Hopf bifurcation, discussed in Section 3.2;

e three-time-scale problems with a singular Hopf bifurcation, discussed in Section 3.3;

e tourbillion, discussed in Section 3.4.
Each of these local mechanisms has its distinctive characteristics and can give rise to MMOs
when combined with global return mechanisrthat takes the trajectory back to the region
with SAOs. Such global return mechanisms arise naturally in models from applications and
a classic example is an S-shaped slow manifold; see Section 3.2 and the examples in Sec-
tions 4—6. We do not discuss global returns in detail, but rather concentrate on the nature of
the local mechanisms. From the analysis of normal forms we estimate quantities that can be
measured in examples of MMOs produced from both numerical simulations and experimental
data. Specifically, we consider the number of SAOs and the changes in their amplitudes from
cycle to cycle. We also consider in model systems the geometry of nearby slow manifolds
that are associated with the approach to and departure from the SAO regions.

3.1. MMOs due to a folded node.Folded nodes are only defined for the singular
limit (2.4) of system (2.1) on the slow time scale. However, they are directly relevant to
MMOs because for > 0 small enough, trajectories of (2.1) that flow through a region where
the reduced system has a folded node, undergo small oscillations. Benoit [19, 20] first re-
cognized these oscillations. Wechselberger and collaborators [31, 212, 233] gave a detailed
analysis of folded nodes while Guckenheimer and Haiduc [86] and Guckenheimer [84] com-
puted intersections of slow manifolds near a folded node and maps along trajectories passing
through these regions. From Theorem 2.3 we know that the eigenvalué ratip < 1 at
the folded node is a crucial quantity that determines the dynamics in a neighborhood of the
folded node. In particulay, controls the maximal number of oscillations. The studies men-
tioned above use normal forms to describe the dynamics of oscillations near a folded node.
Two equivalent versions of these normal forms are

2

exr = y—a*
y = z-—ux, 3.1)
z = —u,

12



and

ei = y-—a?,
y o= —(utDa—z (3.2)
z = %u.

Note thaty is the eigenvalue ratio of system (3.2) and that 0 andu # 0 imply that no
equilibria exist in (3.1) and (3.2). If we repla¢e, y, z) in system (3.1) byu, v, w) and call
the time variabler;, then we obtain system (3.2) via the coordinate change

r=0+p"%u, y=Q0+pv, z=—-(1+p3%w,
and the rescaling of time = 7, /\/1 + u, which gives

I or _ —1+v1-8v
2(1+ 11)2 L Y,
Therefore, in system (3.1) the number of secondary canards changes with the parameter

Whenv is small, . =~ 2v. If the “standard” scaling [212} = ¢'/%2Z,y = €3, 2 = e'/? 3,
andt = £'/2 ¢, is applied to system (3.1), we obtain

¥ o= gz
y' Z -7, (3.3)

Zl

Hence, the phase portraits of system (3.1) for different valuesid topologically equivalent

via linear maps. The normal form (3.3) describes the dynamics in the neighborhood of a

folded node, which is at the origin here. Trajectories that come fyom oo with x > 0

and pass through the folded-node region make a number of oscillations in the process, before

going off toy = oo with 2 < 0. There are no returns to the folded-node region in this system.
Let us first focus on the number of small oscillations2Af+ 1 < p~! < 2k + 3, for

somek € N, andu~! # 2(k + 1) then the primary strong canasg twists once and the

i-th secondary canarg, 1 < i < k, twists2: + 1 times around the primary weak canayd

in anO(1) neighborhood of the folded node singularity in system (3.3), which corresponds

to anO(+/¢) neighborhood in systems (3.1) and (3.2) [212, 233]. (A twist corresponds to

a half rotation.) We illustrate this in Figure 6 for system (3.3) with= 0.025. Note that

v = 0.025 corresponds tq: ~ 0.0557. Hence,2k +1 < p~! ~ 17.953 < 2k + 3

for k = 8, so Theorem 2.3 states that there exist eight secondary cafjaids< i < 8,

along with the strong and weak canargs,,. Figure 6 shows the attracting slow manifold

S¢ and the repelling slow manifold? of (3.3) in a three-dimensional region bounded by

the planes{z = +a}, denoted:, andX_,, with « = 0.14; see Section 8 for details on

how these computations were done. Even though the rescaled normal form (3.3) does not

depend oz anymore, we still indicate thedependence of the slow manifolds to distinguish

them from the attracting and repelling sheets of the critical manifold; furtherrGérandS”

can be thought of as the slow manifolds of (3.1) or (3.2). Both manifolds are extensions of

Fenichel manifolds and illustrate how the slow manifolds intersect near the fold curve of the

critical manifold; the fold curve is the-axis. The intersection curves are the canard orbits;

highlighted are the primary strong canayd(black) and the first three secondary canards

(orange) 2 (magenta) ands; (cyan). The inset shows the intersection curvesoand S

with the planeXs, := {z = 0} that contains the folded node at the origin; the intersection

points of the highlighted canard orbits are also indicated. Due to the symmetry of the normal
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FIG. 6. Invariant slow manifolds o{3.3) with » = 0.025 in a neighborhood of the folded node. Both the
attracting slow manifolds¢ (red) and the repelling slow manifolflZ (blue) are extensions of Fenichel manifolds.
The primary strong canargs (black curve) and three secondary canaéds(orange),£2 (magenta) ands (cyan)
are the first four intersection curves 6f¢ and ST; the inset shows how these objects intersect a cross-section
orthogonal to the fold curvgéz = 0,y = 0}.

form (3.3), the two slow manifold$¢ andS] are each other’'s image under rotationby
about they-axis in Figure 6(a).

A trajectory entering the fold region becomes trapped in a region bounded by strips
of S¢ and ST and two of their intersection curves. The intersection curves are maximal
canards, and the trajectory is forced to follow the oscillations of these two bounding canard
orbits. Figure 6 does not show very clearly how many canards there are, nor does it indicate
the precise number of oscillations. We calculate the flow map of (3.3) with 0.025 to
illustrate this better. Due to the strong contraction alétigthe flow map through the fold
region is strongly contracting in one direction for trajectories that do not extend &lbng
Hence, the flow map will be almost one dimensional and can be approximated by following
trajectories starting on the critical manifold far away from the fold curve. Figure 7(a) shows
the result of integrating00 equally-spaced initial values on the line segment= 20, y =
2% = 400, —3.25 < z < —0.75} until they reach the plang = —10; plotted are the
z-coordinates of the final values versus the initial values. One can see ten segments in this
flow map that are separated by discontinuities. These discontinuities mark sectors on the
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FIG. 7. Numerical study of the number of rotational sectors for syste/d) with v = 0.025. Panel (a)
illustrates the flow map through the folded node by plotting #kmordinatesz .+ Of the first return to a cross-
sectionz = —10 of 500 trajectories with equally-spaced initial valués, v, z) = (20, 400, ziy, ), where—3.25 <
zin < —0.75. Panels (b1)—(b4) show four trajectories projected onto(they)-plane that correspond to the points
labeled in panel (c), where;, = —1.25 in panel (b1),z;, = —1.5 in panel (b2),z;, = —2 in panel (b3), and
zin = —2.25 in panel (b4).

line segment{z = 20, y = x? = 400, —3.25 < z < —0.75} that correspond to an
increasing number of SAOs; in fact, each segment corresponds to a two-dimensional sector
1;,0 < i <9, onthe attracting shegt of the slow manifold. The outer sectfy on the right

in Figure 7(a) is bounded on the left by the primary strong cangrdector!; is bounded

by v, and the first maximal secondary cangxd sectorsl;, i = 2,...,8, are bounded by
maximal secondary canard orbgs_; and¢;; and the last (left outer) sectds is bounded

on the right by¢g. On one side of the primary strong canardand each maximal secondary
canard;, 1 < i < 8, trajectories follow the repelling slow manifolsf’ and then jump with
decreasing values of On the other side of, and¢;, trajectories jump back to the attracting

slow manifold and make one more oscillation through the folded node region before flowing

towardz = —oo. The four panels (b1)—(b4) in Figure 7 show portions of four trajectories
projected onto théx, y)-plane; their initial values arér, y, z) = (20,400, z;,) With z;, as
marked in panel (@), that ig,;, = —1.25, z;, = —1.5, 2y = —2 andzy, = —2.25 for

(b1)—(b4), respectively. The trajectory in panel (b1) was chosen from the dectmunded
by &1 andé&s; this trajectory makes two oscillations. The trajectory in panel (b2) comes from
I5 and, indeed, it makes five oscillations. The other two trajectories, in panel (b3) and (b4),
make seven and nine oscillations, respectively, but some of these oscillations are too small to
be visible.

The actual widths of the rotational sectors in Figure 7 are very similar due te-the
dependent rescaling used to obtain (3.3). When the equations depenasan (3.1) and
(3.2), however, the widths of the sectors dependonn fact, every sector is very small
except for the sector corresponding to maximal rotation, which is boundggddnyd the fold
curve. For an asymptotic analysis of the widths of the rotational sectors that organize the
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FIG. 8. Schematic diagram of the candidate periodic otbitthat gives rise to MMOs with SAOs produced by
a folded node singularity. The candiddfe approaches the folded node along the attracting skiefred) of the
critical manifold (red) in the sector of maximal rotation associated with the weak singular capardhe distance
to the strong singular canard; is labeleds. When the trajectory reaches the folded node (filled circle) it jumps
along a layer and proceeds to make a global return.

oscillations, system (3.2) is more convenient, because the eigenvalues of the desingularized
slow flow are—p and—1. Brgns, Krupa and Wechselberger [31] found the following.

THEOREM 3.1. Consider systen2.14) and assume it has a folded node singularity.
At an O(1)-distance from the fold curve, all secondary canards are in(ya(!~+)/2)-
neighborhood of the primary strong canard. Hence, the widths of the rotational sdgtors
1 <i < k,isO(e'="/?) and the width of sectof,, 1 is O(1).

Note that, ag: — 0 (the folded saddle-node limit), the number of rotational sectors
increases indefinitely, and the upper bounds on their widths decre@e'c).

3.1.1. Folded node with a global return mechanismA global return mechanism may
reinject trajectories to the folded node funnel to create an MMO. Assuming that the return
happensO(1) away from the fold curve, Theorem 3.1 predicts the number of SAOs that
follow. We create a candidate trajectory by following the fast flow starting at the folded
node until it returns to the folded node region; this is sketched in Figure 8. The global
return mechanism produces one LAO. lbetlenote the distance of the global return point
of a trajectory from the singular strong candrdmeasured on a cross-section at a distance
O(1) away from the fold; we use the convention that 0 indicates a return into the funnel
region. Provided is large enough, so that the global return point lands in the ségtgrof
maximal rotation, one can show the existence efableMMO with signaturel*+!, where
k is determined by: [31]. We summarize this existence result (in a more general setting) in
the following theorem.

THEOREM 3.2 (Genericl**! MMOs). Consider systert2.14)with the following as-
sumptions:

(A0) Assume thad < ¢ < 1 is sufficiently smalle'/? <« p andk € N is such that
2k +1 < p~t <2k +3.
(A1) The critical manifoldsS is (locally) a folded surface.
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(A2) The corresponding reduced problem possesses a folded node singularity.

(A3) There exists a candidate periodic orbit (as constructed in Figure 8) which consists of
a segment o%* (red) within the singular funnel (bounded Byand 4, such that it
containsy,,) with the folded node singularity as an endpoint, fast fibers of the layer
problem and a global return segment.

(A4) A transversality hypothesis is satisfied that is not stated here because it is cumber-
some to formulate precisely in a general setting; see e.g., [31] for the case of a
cubic-shaped critical manifold.

Then there exists a stable MMO with signatufe.

Theorem 3.2 not only requires sufficiently smélk ¢ < 1 but alsou > '/2 (while
0 < u < 1). However,e is usually of the orde©(10~2) in applications, so that must be
close to 1 in order for the theorem to apply. Therefore, such maximal MMO signatures are
seldom seen in applications. Furthermore, the SAOs for an MMO with sign#titetend
to be too small to be readily visible.

Figure 7 illustrates that the amplitudes of the SAOs are much larger for trajectories that
approach the folded node close to the strong canard and lie in one of the sgototls
i < k rather than/, ;. We know from Theorem 3.1 that the maximal width of a sector
with i < k is bounded from above b@(s(*=#)/2) with 1 < 1/3. Wheng is O(e(1=1)/2)
one can, indeed, find MMOs with < k£ SAOs that are stable. Geometrically, different
stable MMOs are selected as one moves the flow map in Figure 7(a) up or down; since the
rotational secto¥,,, for generak-dependent systems has much larger width than the other
sectors, one should expect that the transitions thrdugtith i« < k& happen rather quickly
during a parameter-induced variationjofWe have the following result [31].

THEOREM 3.3. Suppose syste(@.14)satisfies assumptions (A0)—(A3) of Theorem 3.2
and additionally:

(A5) For § = 0, the global return point is on the singular strong canayd and asé
passes through zero the return point cros3gwith nonzero speed.

Suppose now that = O(¢('=#)/2) > 0. Then, for sufficiently small < ¢ < 1 and

k € Nsuchthat2k +1 < p~! < 2k + 3 the following holds. For each, 1 < i <
k, there exist subsectos C I; with corresponding distance interva(s; , 5j) of widths
O(1=#/2), which have the property that & € (5;, 6;") then there exists a stable MMO
with signaturel ®.

Theorem 3.3 says that we should observe a succession of $talMOs with increas-
ingly more SAOs as increases (assuming thatemains fixed in such a parameter variation).

In the transition from a to a1**! MMO signature, that is, in the regions in between intervals
(6;, ;") and (6, ,, 6;, 1) we expect to find more complicated signatures, which are usually
amix of 1* and1**t. As with Theorem 3.2, the amplitudes of most SAOs will be tiny i$
small, except for those MMOs that have only a few SAOs after each LAO.

If u = O('/?), that is, assumption (A0) does not hold, then we may still expect stable
MMO signatures of typé**!, as soon as the global returns falls inside the funnel region and
§ = O(1) [143]; note that: = O(1/£'/?) and the amplitudes of the SAOs for such an MMO
will again be tiny. Ifu = O(¢'/?) andé = O(¢'/?) as well, the mixed MMO signatures
with larger-amplitude SAOs are more likely to occur. For example, Figure 20 in Section 4
displays an MMO of type 212 in the Koper model. Here, global returns come very close to
the secondary maximal canafg first slightly to the left (hence, into the rotational secigr
with two SAOs) and then slightly to the right (hence, into the rotational sdgtaiith three
SAQOs), creating this MMO signature.

The theory described so far does not capture all of the possible dynamics near a folded
node. If higher-order terms are included in the normal forms (3.1)-(3.2), then equilibria may
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appear in arO(s'/2) neighborhood of the folded node as sooruas O(s'/?) or smaller.
This observation motivates our study of the singular Hopf bifurcation in three dimensions.

3.2. MMOs due to a singular Hopf bifurcation. Equilibria of a slow-fast system (2.1)
always satisfyf (z,y, A, €) = 0; generically, they are located in regions where the associated
critical manifold S is normally hyperbolic. However, in generic one-parameter families of
slow-fast systems, the equilibrium may cross a foldbofin generic families with two slow
variables, the fold point (including the specific parameter value) at which the equilibrium
crosses the fold curve of the critical manifold has been calléaded saddle-node of type
Il [161]. Folded nodes and saddles of the reduced system are not projections of equilibria of
the full slow-fast system, but the folded saddle-nodes of type Il are. When, the system
has a singular Hopf bifurcation, which occurs generically at a distéheg in parameter
space from the folded saddle-node of type Il [85].

In order to obtain a normal form for the singular Hopf bifurcation, we follow [85] and
add higher-order terms to the normal form (3.1) of the folded node, to obtain

et = y—a?

2 = —v—arx—by—-cz.

As with (3.1), we apply the standard scaling [212}= ¢'/2 %, y = €3, z = /% z, and
t = /2 ¢; system (3.4) then becomes

¥ = y-—1%
y = z-7, (3.5)

7 = _—py— 61/2 >
This scaled vector field provides &@(<'/?)-zoom of the neighborhood of the folded sin-
gularity where SAOs are expected to occur. The scaling remofesn the first equations
while the coefficients, b andc of the third equation becomedependenty remains fixed.
Note that the coefficient af tends ta) faster than those af, z ase — 0. This feature makes
the definition of normal forms for slow-fast systems somewhat problematic: scalings of the
state-space variables and the singular perturbation parasmeteract with each other. These
e-dependent scalings play an important role in “blow-up” analysis of fold points and folded
singularities.

In contrast to the normal form (3.1) of a folded node, system (3.5) possesses equilibria
for all values ofv. If v = O(1) then these equilibria are far from the origin, with coordinates
that areO(s~'/2) or larger. Since we want to study the dynamics near a folded singularity,
thee-dependent terms in (3.5) play little role in this parameter regime and the system can be
regarded as an inconsequential perturbation of the folded node normal form (3.3) and Theor-
ems 3.2 and 3.3 apply. On the other hand; i£ O(<'/2?) or smaller then one equilibrium
lies within anO(1)-size domain of the phase space. This equilibrium is determined by the
coefficientsz andc (to leading order) and plays an important role in the local dynamics near a
folded singularity [85, 143]. In particular, the equilibrium undergoes a singular Hopf bifurca-
tion for v = O(¢) [85]. Thus, for parameter values= O(='/?) or smaller, the higher-order
terms in the third equation of (3.5) are crucial.

So what is the most appropriate normal form of a system that undergoes a singular Hopf
bifurcation? Several groups have derived system (3.4), but drop thebi{ebmcause it has
higher order ire after the scaling. However, this term appears in the formula for the lowest-
order term inc of the first Lyapunov coefficient of the Hopf bifurcation of (3.4) and, hence,
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FIG. 9. Phase portrait of an MMO periodic orbil' (black curve) for systen(B.6) with (v, a,b,c,e) =
(0.0072168, —0.3872, —0.3251,1.17,0.01). The critical manifoldS (grey) is the S-shaped surface with folds at
r=0andz = — % The orbitI" is composed of two slow segments near the two attracting shegtaraf two fast
segments, with SAOs in the region near the equilibriuom the repelling sheet” of S just past the fold at = 0.
Panel (a) shows a three-dimensional view and panel (b) the projection on{a:thy¢-plane.

must be retained if we hope to determine a complete unfolding of the singular Hopf bifurca-
tion [85].

The MMOs that occur close to the singular Hopf bifurcation have a somewhat dif-
ferent character than those generated via the folded node mechanism. Guckenheimer and
Willms [93] observed that a subcritical (ordinary) Hopf bifurcation may result in large regions
of the parameter space being funneled into a small neighborhood of a saddle equilibrium with
unstable complex eigenvalues. After trajectories come close to the equilibrium, SAOs grow
in magnitude as the trajectory spirals away from the equilibrium. Similar MMOs may pass
near a singular Hopf bifurcation. Then the equilibrium is a saddle-focus and trajectories on
the attracting Fenichel manifold are funneled into a region close to the one-dimensional stable
manifold of the equilibrium. SAOs occur as the trajectory spirals away from the equilibrium.
We review here our incomplete understanding of singular Hopf bifurcations and the MMOs
passing nearby.

The normal form (3.4) does not yield MMOs because there is no global return mech-
anism; trajectories that leave the vicinity of the equilibrium point and the fold curve flow to
infinity in finite time. This property can be changed by adding a cubic term to the normal
form that makes the critical manifold S-shaped, similar to the Van der Pol equation:

ex = y—a?-—a’,
y = z-—ux, (3.6)
zZ = —v—ax—by—cz.

This version of the normal form for singular Hopf bifurcation with global reinjection has been
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Fic. 10 A chaotic MMO trajectory of system (3.6) with (v,a,b,c,e) =
(0.004564, —0.2317,0.2053,1.17,0.01). Panel (a) shows the time series of thecoordinate of the tra-
jectory from¢ = 100 to ¢ = 200, and panel (b) the projection of the trajectory onto the y)-plane.

derived repeatedly as a “reduced” model for MMOs [122, 138]. An example of the overall
structure of MMOs in system (3.6) with smallis shown in Figure 9 fo(v,a,b,c,e) =
(0.0072168, —0.3872, —0.3251, 1.17,0.01); note thatr = O(e). The S-shaped critical man-
ifold S is the grey surface in Figure 9(a); a top view is shown in panel (b). The masifoés

two fold curves, one at = 0 and one atr = f%, that decompos# into one repelling and

two attracting sheets. For our choice of parameters there exists a saddle-focus equilibrium
on the repelling sheet that is close to the origin (which is the folded node singularity). The
equilibriump has a pair of unstable complex conjugate eigenvalues. A stable MMO periodic
orbit I', shown as the black curve in Figure 9, interacts witlis follows. Starting just past

the fold atz = 0, that is, in the region near the origin with< 0, the orbitI" spirals away

from p along its two-dimensional unstable manifold and repeatedly intersects the repelling
sheetS™ of S. As soon ad" intersects the repelling slow manifold (not shown), it jumps to
the attracting sheet of with =z < —%. The orbitI" then follows this sheet to the fold at

T = —%, after which it jumps to the attracting sheet$fvith > 0. ThenT returns to the
neighborhood op and the periodic motion repeats.

The MMO periodic orbifl” displayed in Figure 9 is only one of many types of complex
dynamics present in system (3.6). One aspect of the complex dynamics in system (3.6) is
the fate of the periodic orbits created in the Hopf bifurcation. There are parameter regimes
for (3.6) with stable periodic orbits of small amplitude created by a supercritical Hopf bi-
furcation. Subsequent bifurcations of these periodic orbits may be period-doubling or torus
bifurcations [85]. Period-doubling cascades can give rise to small-amplitude chaotic invariant
sets that may be associated with chaotic MMOs. For example, Figure 10 plots a chaotic MMO
trajectory for (3.6) with(v, a, b, ¢,e) = (0.004564, —0.2317,0.2053,1.17,0.01) that arises
from such a period-doubling cascade of the periodic orbit emerging from the singular Hopf
bifurcation. It appears that it is chaotic because of the nonperiodicity of its time series, shown
for the z-coordinate in Figure 10(a). A two-dimensional projection onto (thgy)-plane
is shown in panel (b). Note that this trajectory does not come close to either the equilibrium
pointp or the folded singularity at the origin. Asdecreases from the value used in Figure 10
(wherev is already of orde®(¢)), the large-amplitude epochs of the trajectories become less
frequent and soon disappear, resulting in a small-amplitude chaotic attractor. Section 4 dis-
cusses a rescaled subfamily of (3.6), giving further examples of complex dynamics and some
analysis of the organization of MMOs associated with this system.

We would like to characterize the parameter regimes with MMOs for which the SAOs
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-0.01 0.03

FIG. 11 Tangency between the unstable manifidld (p) of the equilibrium and the repelling slow manifold
Sr of (3.6) with (v,a,b,c,e) = (0.007057,0.008870, —0.5045,1.17,0.01). Panel (a) shows trajectories of
W(p) (red) andS? (blue) that are terminated on the green cross-secHotlefined byy = 0.3. The intersections
W (p) N X (with points on computed trajectories marked '0’) afifl N X (with points on computed trajectories
marked 'x’) are shown in panel (b).

are solely or partially due to spiraling along the unstable manifgit(p) of a saddle-focus

p. Analysis of this issue appears to be significantly more complicated than that for folded
nodes and has barely begun. We offer a few insights in locating these parameter regimes.
First, we think ofv in the normal form (3.6) of the singular Hopf bifurcation as the “primary”
bifurcation parameter and seek ranges- aithere MMOs are found. If the Hopf bifurca-

tion atry = vy is supercritical then, for parameters close enough to the Hopf bifurcation,
the limit set of WW*(p) is just the bifurcating stable periodic orbit. The onset of MMOs is
observed to occur at a distance= O(e) from the Hopf bifurcation due to a new type

of bifurcation [85]. This bifurcation occurs at parameters whelis a saddle-focus and
W*(p) is tangent to the two-dimensional repelling Fenichel manifsfd At first glance

one might think that two unstable objects in a dynamical system cannot intersect. However,
recall thatWW*(p) consists of trajectories that approgglast — —oo while ST consists

of forward trajectories that remain slow for &@i(1) time on the slow time scale. Con-
sequently, it is possible for a single trajectory to satisfy the criteria to belong to both of these
objects. Figure 11 illustrates an example of a tangency bet¥Wé&gp) andS? for (3.6) with
(v,a,b,c,e) = (0.007057,0.008870, —0.5045,1.17,0.01) (note thatr = O(e) and, hence,

very close tavg ~ —8.587 x 10~°). Shown are a collection of trajectories &n“(p) (red)

that start close tp and end in the cross-sectiah:= {y = 0.3}, together with a collection

of trajectories onS? that start on the repelling sheet of the critical manifold and also end in
3}; see Section 8.1 for details of the method used to compute these manifolds. Figure 11(b)
shows the tangency of the two intersection curvedldf(p) and S? with 3. The manifold

S! is a surface that separates trajectories that make large-amplitude excursions from ones that
remain in the vicinity ofp. For values of, such thatV*(p) andS? do not intersect, the limit

set of W*(p) remains small. By varying such that we move further away from;, the
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MMOs arise as soon d&*(p) andS? begin to intersect; see also Section 4.
The number of SAOs that an MMO periodic orbitmakes alondgV*(p) is determined
by how closel” comes tgp and by the ratio of real to imaginary parts of the complex eigen-
values ofp. The only way to approach is along its stable manifol#’¢(p), so an MMO
like that displayed in Figure 9 must come very closdi#6(p). The minimum distance
between an MMO anlV*(p) is analogous to the distanéef a trajectory from the primary
strong canard in the case of folded nodes. Unlike the case of a folded node, the maximal
amplitude of the SAOs observed né&i (p) is largely independent ef. What does change
asd — 0 is that the epoch of SAOs increases in length and begins with oscillations that are
too small to be detectable. There has been little investigation of how the parameters of the
normal form (3.6) influencé, but Figure 8 in Guckenheimer [85] illustrates tladepends
upon the parameterin a complex manner. There are parameter regions where the global
returns of MMO trajectories are funneled closeltd’(p). Since MMOs are not found im-
mediately adjacent to supercritical Hopf bifurcations, the ratio of real to imaginary parts of
the complex eigenvalues remains bounded away fiamn MMO trajectories. This prevents
the appearance of extraordinarily long transients with oscillations that grow arbitrarily slowly
like those found near a subcritical Hopf bifurcation; see Section 5 and also [87, Figure 5].
The singular-Hopf and folded-node mechanisms for creating SAOs are not mutually ex-
clusive and can be present in a single MMO in the transition regimesithO(c'/?). The
specific behavior that one finds depends in part on whether the equilipngar the singular
Hopf bifurcation is a saddle-focus with a pair of complex eigenvalues or a saddle with two
real eigenvalues. The MMO displayed in Figure 21 contains some SAOs that lie inside the
rotational sectors between the attracting and repelling slow manifolds and some SAOs that
follow the unstable manifold of the saddle-focus equilibrium. On the other hand, we note
that SAOs cannot be associated with a saddle equilibrium that has only real eigenvalues; this
occurs in a parameter region with > (a + ¢)e'/? (to leading order), bur = O('/?).
In this case, SAOs are solely associated with the folded node-type mechanism described for
v = 0O(1) (thatis,u = O(1)). Krupa and Wechselberger [143] analyzed the transition regime
v = O(£'/?) and showed that the folded node theory can be extended into this parameter re-
gime provided the global return mechanism projects into the funnel region.

3.3. MMOs in three-time-scale systemsWhen the coefficients, a, b andc in the
normal forms (3.4) and (3.6) of the singular Hopf bifurcation are of order) or smaller,
thenz evolves slowly relative tgy and the system actually has three time scales: fast, slow
and super slow. Krupa et al. [138] studied this regime with geometric methods and asymptotic
expansions for the cage= ¢ = 0. They observed MMOs for which the amplitudes of the
SAOs remain relatively large. Their analysis is based upon rescaling the system such that it
has two fast variables and one slow variable. To make the three-time-scale structure explicit,
we setv = e, a = ed, b = eb andc = e¢. Rescaling the singular-Hopf normal form (3.6) of
Section 3.2 byt =&'/2 2,y = e, z = /2 z, andt = /2 { yields

T y—x2—51/2x3,
y = z—u, (3.7)
3 = e(-v—ePax—cby—c'/?éz),

which is still a singularly perturbed system, but now with two fast variabtemdy, and a
slow variablez. An equilibrium lies within anO(1)-size domain around the origin if =
O(c'/?) or smaller, i.e.y = O(¢*/?) or smaller. This equilibrium plays an important role in
the dynamics if it is of saddle-focus type. In particular, it undergoes a Hopf bifurcation for
= 0(¢g),i.e.,v=0(e?).
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FIG. 12. Phase portraits of systei.8) for three different values of. Shown are several trajectories (blue)
and one trajectory (red) that approximates a separatrix. For eadhere is a single equilibrium pointat (z,y) =
(z,22%). Panels (a)—(c) are for = 2, z = 0.25 andz = 0, for whichp is a stable node, a stable focus and a
center surrounded by a continuous family of periodic orbits, respectively. The boundary of this family is the maximal
canard.

The two-dimensional layer problem of (3.7)

2

T = y-—x°
Y = z-—uw, (3.8)
z = 0,

in which z acts as a parameter, is exactly the same system obtained in the analysis of the
planar canard problem, where the paramatirreplaced by:; compare with system (2.7).

Note that (3.8) has a unique equilibriynfor each value of, given by(z,y) = (z, 22).

Figure 12 shows phase portraits of (3.8) in they)-plane for three different values of
namelyz = 2, z = 0.25 andz = 0 in panels (a), (b) and (c), respectively. For> 0,

the equilibriump is an attracting fixed point in ther, y)-plane; it is a node for > 1 and

a focus for0 < z < 1; note that this information also determines the type of equilibrium
of (3.7) obtained forr = O(¢'/?) to leading order — the same argument can also be used
to determine the basin boundary of the saddle-focus equilibrium in Section 3.2. The basin
boundary ofp is an unbounded trajectory that is shown in red in panels (a) and (b). When
z = 0, the vector field (3.8) has a time-reversing symmetry that induces the existence of
a family of periodic orbits. Indeed, the functidii(z,y) = exp(—2y) (y — 2® + 1) is an
integral of the motion and the level cur¥é = 0 is a parabola that separates periodic orbits
surroundingp (the origin) from unbounded orbits that lie below the parabola and become
unbounded with: — +oo in finite time.

System (3.7) can be viewed as a perturbation of (3.8) wiremains small and is slowly
varying compared t@ andy. In this case, changes i can be used to monitor the SAOs of
trajectories. We focus on the case= ¢ = 0 studied in [138]. To find parameters for which
system (3.6) has MMOs, we fix = —0.005 ande = 0.01 and varyr so thatz increases
wheny is large but decreases when the system has SAOs. More precisely, we want the
average value of to increase during epochs of SAOs and decrease during epochs of LAOs.
The changes in should be of sufficient magnitude to drive the trajectory across the slow
manifolds and trigger a transition between these epochs. Figure 13(a) displays a periodic
MMO with signature1 found atv = 0.00015 (which is of orderO(s?)). The projection
in panel (a2) of the orbit onto thez, y)-plane shows that decreases approximately from
—0.003713 to —0.004143 while the trajectory makes four SAOs, andncreases during a
single LAO. Note thatt = 0 on the planey = 0.03. System (3.6) also possesses two
equilibria with z-coordinates given by-+/—v/(be), which equalst+/3 in this case. Since
the MMO signature shown in Figure 13(a2) is confined to the area near the origin (in the
z-direction), these two equilibria have no influence on the dynamics.

As v increases, the value aof for which 2 = 0 increases, and trajectories have a
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FiG. 13 Stable periodic MMOs of systef8.6) with (a, b, ¢,e) = (0, —0.005,0,0.01). Row (a) shows the
periodic MMO with signature for » = 0.00015 as a time series of in panel (al) and in projection onto the
(z,y)-plane in panel (a2); similar projections are shown in row (b) fore= 0.00032, where the periodic MMO has
signature9?!.

propensity to pass more quickly through the region of SAOs. Figure 13(b) shows a peri-
odic MMO with signature9! obtained forr = 0.00032. This value ofv lies close to the
upper end of the range in which MMOs seem to exist for the chosen valuesiot, ) =
(0,—0.005,0,0.01). As the projection in panel (b2) illustrates, the average value iof
creases|¢| decreases) during each LAO, but it takes nine LAOs before it crosses the threshold
into the region of SAOs. On the other hand, a single SAO takes the trajectory back to the re-
gion of LAOs.

For intermediate values of € (0.00015,0.00032), the system displays aperiodic MMOs
as well as periodic MMOs with a variety of signatures. These signatures can be analyzed via
an approximately one-dimensional return map to a cross-section=a0. Returns to this
cross-section withe decreasing appear to lie along a thin strip; this is illustrated in Fig-
ure 14(a) forr = 0.0003, for which the system appears to have aperiodic MMOs. The thin
strip in Figure 14(a) is approximately given by the lipe= 0.1153 2z —0.004626 (andz = 0).
If we take600 initial conditions on this line withr € [—0.0043, —0.004] then their next return
to the cross-section fall onto two segments that are close to the initial line and within the seg-
mentz € [—0.0043, —0.004]. Figure 14(b) graphs these returns, showing:tte@ordinates
z out Of returns of thes00 initial conditions versus their inital-coordinates ;,,; the diagonal
Zout = zin IS also pictured. This figure suggests that the return map near the line segment
can be approximated by a rank-one map with two segments of slopes close to one, separated
by a steep segment for initial valueg, ~ —0.004055. The return map increaseson the
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FIG. 14. Return map of syste(B.6) with (v, a, b, ¢,e) = (0.0003, 0, —0.005, 0, 0.01) to the section: = 0.
Panel (a) shows that the return is almost one dimensional along a line that is approximately given @y 153 z —
0.004626. Thez-coordinates of the returns for initial conditions along this line witke [—0.0043, —0.004] are
plotted versus their initiak-values in panel (b).

left “branch” of this map and decreasesn the right branch. This is the behavior described
above since larger values ofcorrespond to SAOs, the smaller values to LAOs. Trajectories
that do not hit the steep section of the map go back and forth repeatedly between the two
branches. A varies, the “shape” of the return map remains qualitatively the same: the two
branches still have slopes close to one, but their off-set from the diagonal varies. Approx-
imately forv < 0.00013, the image of the right branch, representing SAOs, maps to itself,
while for v > 0.00034, the image of the left branch maps to itself, and the system only has a
large periodic relaxation oscillation with no SAOs. In the range athere MMOs do exist,
kneading theoryor one-dimensional maps [38] can be applied to the numerically generated
return maps to predict the signatures of the MMOs.

Further insight into the steep segment of the return map at z;, ~ —0.004055
comes from computing intersections of the attracting and repelling slow manifolds. We com-
puted forward trajectories from initial conditions on the attracting sheet (witk —%
and backward trajectories from initial conditions on the repelling sheet of the critical man-
ifold to their intersection with the cross-sectigm = 0}. Since the trajectories quickly
converge to the attracting and repelling slow manifolds, their intersections{wits 0}
give a good approximation of the intersection curves of the slow manifolds{wits 0}.
These two intersection curves have one point in common, which is approxintately =
(—0.0050941, —0.0040564). Hence, this point lies in the region that gives rise to the steep
segment shown in Figure 14(b). By definition, the intersection of the attracting and repelling
slow manifolds is a maximal canard. Initial conditions on the cross-se¢tios 0} to one
side of the repelling manifold result in SAOs while trajectories on the other side result in fast
jumps to the other sheet of the attracting slow manifold (witk 0). Thus, we have con-
firmed numerically that canard orbits separate the two branches of the return map displayed
in Figure 14(b); compare also with Figure 7(a), which illustrates that the one-dimensional
return map calculated near a folded node has several steep sections that correspond to the
primary strong canard and the maximal secondary canards of the problem.

3.4. MMOs due to dynamic Hopf bifurcation and tourbillion. Recall from Sec-
tion 3.3 that the abrupt transitions between SAOs and LAOs in system (3.7) are a consequence
of the three-time-scale structure, which allows us to view the system as having two fast vari-
ables and only one slow variable. Such a system with two or more fast variables may have
a Hopf bifurcation in the layer equations. We now consider this situation, and assume that a
pair of complex eigenvalues of the layer equations cross the imaginary axis as one follows a
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trajectory of the reduced system. Whegt 0 one observes a slow motion or drift of traject-
ories through the region near the Hopf bifurcation in the layer equations. Due to the complex
eigenvalues in the fast directions, trajectories spiral around the slow manifold, which gives
rise to oscillations. The amplitude of such an oscillation initially decreases (while the real
part of the complex eigenvalues is negative) and then increase again (after the real part be-
comes positive). We refer to this situation adysmamic Hopf bifurcationOur primary goal

is to determine when MMOs have SAOs that are associated with a dynamic Hopf bifurcation.
Note that, unlike in systems with a single fast variable, this type of SAO is neither associated
with a folded singularity of the critical manifold nor with a (singular) Hopf bifurcation of the
system fore # 0.

A well-known example of a dynamic Hopf bifurcation is the phenomenon of delayed
Hopf bifurcation. For simplicity, we discuss it here for a system with one slow and two fast
variables, the lowest dimensions possible. Consider a segimentthe one-dimensional
critical manifold S along which the layer equations undergo a Hopf bifurcation. That means
that the linearization of the layer equations aldngas a pair of complex eigenvaluest i
that cross the imaginary axis transversally. In the case of a supercritical Hopf bifurcation, a
one-parameter family of attracting periodic orbits of the layer equations, parameterized by the
slow variable, emanates from the poity € L wherea = 0. If a trajectoryu(t) of the full
system comes close fonear a point_,, € L that lies at a distanc&= |L,, — Ly| = O(1)
from Ly, thenu(t) will come exponentially close td on the slow time scale. The layer
equations undergo a Hopf bifurcation, but, in analytic systerys, remains close td. for
anO(1)-distanceafter the Hopf bifurcation has occurred [168]. Thdslayhappens because
it takes anO(1) time for u(t) to be repelled away froni. In particular,«(t) does not
immediately follow the periodic orbits of the layer equations emanating fignirhe slow-
fast analysis identifies a definite “jump” point (callecbaffer poin) at whichu(t) leaves
L and approaches the periodic orbits, if it has not done so earlier. There are SAOs along
L in a delayed Hopf bifurcation, but they are exponentially small ngaiand the jump
from L to the periodic orbits may occur within a single period of the SAOs. Thus, SAOs
near a delayed Hopf bifurcation are typically so small that they are unobservable in practical
examples. This situation is reminiscent of MMOs associated with folded nodes)with
O(1). More specifically, Theorem 3.2 predicts maximét* MMO signatures but, due to
strong contraction toward the primary weak canaydon S, ., only the final rotation is
actually observed; see Figure 7(b4).

In a number of examples, such as those in Sections 6 and 7, one actually observes MMOs
with SAOs near a dynamic Hopf bifurcation whose amplitudes remain observably large. We
adopt the terntourbillion from Wallet [232] to describe the trajectories passing through a
dynamic Hopf bifurcation with oscillations whose amplitude remains above an observable
threshold. We discuss the tourbillion and how it gives rise to MMOs also in systems with one
slow and two fast variables. Consider the model system

T = —-y+zx,
y = xz+zy, 39
z = g,

that is obtained by linearization of the layer equations for a dynamic Hopf bifurcation. This
equation is separable in polar coordinates, yielding ¢ r for trajectories that have initial
conditions in the plangz = 0}. Hence, the general solutionigt) = r(0) exp(st2/2),
which means that the amplitude of a solution decreases far 0 and then increases for

z > 0. We conclude thaf% = exp(3) and that the oscillations have almost constant
amplitude over a time interval df/ /. If the r coordinate of a trajectory decreaseste 1
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Fic. 15, Time series of ther-coordinate of a trajectory of(3.10) with initial point (z,y,z) =
(—1,0.8,—0.12). Panels (a)—(c) are foh = 0.1 and fore = 0.006, ¢ = 0.012 ande = 0.02, respectively.

at a value of: that isO(+/2), then the minimum amplitude of the oscillations associated with
the dynamic Hopf bifurcation will still be observable. The amplitudes of these oscillations
and the coupling of with the distance of approach to the dynamic Hopf point characterize the
tourbillion regime and distinguishes it from a delayed Hopf bifurcation. In a delayed Hopf
bifurcation, a trajectory approaches the slow manifold at dist&hdg from the dynamic

Hopf point, while in a tourbillion, the approach to the slow manifold occurs withir/z)

of the layer containing the dynamic Hopf point. Wheis fixed in a system, the distinction
between a delayed Hopf point and a tourbillion becomes blurred, but the distinction is clear
in many examples.

The system (3.9) describes SAOs with distinctly nonzero amplitudes locally near the
point where the dynamic Hopf bifurcation occurs in the layer not account for characteristic
abrupt transitions at the beginning and end of an SAO epoch within an MMO, such as those in
Sections 6 and 7, because these transitions depend upon mechanisms that are not part of the
local analysis of system (3.9) . There is as yet no comprehensive study of possible geometric
mechanisms that determine the sudden start and the end of a section of SAOs arising from
a tourbillion. This paper largely avoids this issue and concentrates on local mechanisms for
generating the SAOs of MMOs. Nevertheless, the following example illustrates one mech-
anism for an abrupt jump away from SAOs of a tourbillion. Consider a “dynamic” section
through the unfolding of the codimension-two Bogdanov-Takens bifurcation [88], defined as

ro=y,
Y = A+zy—z®—=zv, (3.10)
z = e

As before, we regard as a slowly varying parameter. Far> 0 ande = 0, the system has

two straight lines of equilibria defined by= ++/X andy = 0. A supercritical Hopf bifurc-

ation occurs along the line of equilibria with > 0. The family of periodic orbits born at

this bifurcation terminates at a homoclinic orbit. Moreover, there is always a bounded region
of the (z, y)-plane in which oscillations around the equilibrium occur; this is the tourbillion
region. The line of (saddle) equilibria with< 0 of the layer equations perturbs to a Fenichel
manifold of saddle type and its stable and unstable manifolds guide the entrance and exit to
the tourbillion in this example. As we have seen, the number of oscillations and their min-
imum amplitude is determined both by the magnitude of the initial condition ard Dhis

is illustrated in Figure 15 with trajectories of system (3.10) fox 0.1 and different values

of e — all starting from the initial conditiofz, y, z) = (—1,0.8, —0.12) that lies outside the
tourbillion region. Note that: andy areO(1) quantities, and so the condition for a tourbil-
lion is that|z| is of order,/z. In Figure 15(a) foe = 0.006 we do not find a tourbillion but
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observe oscillations that decay rapidly, are very small for a while and then grow rapidly again
before the trajectory jumps away. In panel (b) foe= 0.012, on the other hand, the oscil-
lations decay and then grow more gradually and they remain of observable size throughout.
We conclude that is now just about large enough to speak of a tourbillion region, passage
through which results in seven SAOs before the jump occurs. For even larger vatudeof
same initial condition results in oscillations that maintain an almost constant amplitiude; see
Figure 15(c) forr = 0.02. Observe that, owing to the faster drift through the region near the
Hopf bifurcation in the layer system, we now find only four SAOs before the trajectory jumps
away.

It is interesting to compare the SAOs associated with a tourbillion with those occurring
near a folded node or near a singular Hopf bifurcation. One difference is that the period of the
oscillations isO(e) (slow time) for the tourbillion, while it iD( /<) for the other two cases.

In each of the cases, the data that determines the number of SAOs is slightly different. For
the folded node, the eigenvalue ratierdetermines the number of rotational sectors, and the
distance of the global return to the weak canard relative to the singular perturbation parameter
determines which rotational sector a trajectory enters. For the singular Hopf bifurcation, the
distance of the global return to the stable manifold of the saddle-focus equilibrium sets the
minimum amplitude and duration of the SAOs. For a tourbillion, the number of SAOs is
governed by the singular perturbation parameter and the distance of the global return to the
delayed Hopf bifurcation point. Moreover, the termination of the SAOs for a tourbillion
depends upon either a global mechanism or an arbitrary threshold for the amplitude of SAOs.
In contrast, the oscillations of a folded node end “on their own,” while the intersections of
the unstable manifold of the equilibrium and the repelling slow manifold typically limit the
amplitude of SAOs near a singular Hopf bifurcation.

3.5. Summary of local mechanisms for SAOsWe now summarize the main results
of this review section on the local mechanisms that give rise to MMOs. For systems with a
single fast variable, the local mechanisms responsible for SAOs must involve a mixture of the
two time scales. We distinguish three regions near folded nodes and folded saddle-nodes that
yield MMOs:

1. Folded Nodes:If the parameters satisfy suitable order conditioms= O(1)) so
that no equilibrium of the full system is near the folded node then the theory of
Section 3.1 applies and SAOs are due totthisting of slow manifolds

2. Singular Hopf:As is shown in the Section 3.2, the dynamics near a singular Hopf bi-
furcation ¢ = O(e)) tends to be quite complicated. SAOs occur when the trajectory
follows theunstable manifold of a saddle-focus

3. Transition RegimeThe folded-node and singular-Hopf regimes are separated by a
transition regime with intermediate valuesiof= O(4/2). Extensions of the folded
node theory have been developed in [143]; note that the paraméntejl43] not
only represents the eigenvalue ratio but also describes the distance of the equilibrium
to the folded node in a blown-up system. In this transition regime, it is possible for
the SAOs to pass through the rotational sectors of the folded asaeell asspiral
along the unstable manifold of the saddle-focus equilibrium.

In systems with at least two fast variables the tourbillion provides a different local mech-
anism that generates SAOs. Here, the layer equations have complex eigenvalues and the
SAOs are aligned with the fast directions of the system. Little systematic study of the tour-
billion as a mechanism that generates MMOs has been carried out, and the theory remains
fragmentary.

Finally, three-dimensional systems with three time scales can exhibit all of the mech-
anisms discussed in this section. Namely a three-time-scale system may be considered as
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having two slow variables, in which case the folded-node and singular-Hopf mechanisms
may be found, or, alternatively, as having two fast variables, which allows for the possibility
of a tourbillion.
The following sections are case studies that illustrate these different local mechanisms
for MMOs:
e TheKoper modein Section 4 is a three-dimensional slow-fast system with a folded
node and a supercritical singular Hopf bifurcation.
e The three-dimensionaéduced Hodgkin—Huxley modil Section 5 also features a
folded node, but has a subcritical singular Hopf bifurcation.
e The four-dimensionaDIsen model of the peroxidase-oxidase reactioSection 6
displays MMOs associated with a tourbillion.
e The Showalter—Noyes—Bar-Eli modei Section 7 is a seven-dimensional system
that exhibits MMOs. The global mechanism that organizes these MMOs is un-
known, but we show here that their SAOs are due to a tourbillion.

4. MMOs in the Koper model of chemical reactors. Our first case study is a system
introduced by Koper [122]. We use it to illustrate how MMOs arise near a folded node and
near a (supercritical) singular Hopf bifurcation in a specific model equation. The equations
of the Koper model are

e12 = ky—a®+3x— )\,
y = x—2y+ 2z, (4.2)
i o= e(y—2),

where) andk are parameters. Koper studied this three-dimensional idealized model of chem-
ical reactions with MMOs. While this example is well known, we revisit its analysis and
enhance it by using the recently developed theory outlined in the previous sections. When
¢ ande, are both small, system (4.1) has three time scales; whensgriysmall, it is a
slow-fast system with two slow variablgsand =z and one fast variable. We note that a
two-dimensional variant of (4.1) was first studied by Boissonade and De Kepper [26] in their
efforts to understand bistability and oscillations of chemical systems. The first analysis of
MMOs in the three-dimensional extended model was carried out by Koper who explained the
MMOs by invoking the presence of a Shikov homoclinic bifurcation.

As mentioned in Section 3.2, the Koper model (4.1) is a rescaled subfamily of the cubic
normal form (3.6) for the singular Hopf bifurcation. To see this, replacey, z) in sys-
tem (4.1) by(u, v,w) and consider the affine coordinate change

u—1 _kv—)\+2 _2v—w-—1

3 0 Y 27 3

xr =

Now also scale time by the factq;’i, where we assume that< 0. Then (4.1) becomes (3.6)
with e = —ke1/81,a = 18/k, b = 81e3/k?, c = —9(eg + 2)/k andv = (3ea A — 69 —
3 kea/k?. Note that the coefficients of the normal form satisfy

2b—ac+a® =0,

which means that the Koper model (4.1) is only equivalent to a subfamily of the singular-Hopf
normal form (3.6). However, (4.1) still has a folded node and a singular Hopf bifurcation in
certain parameter regimes.

Let us first analyze the parameter regimes where SAOs are organized by a folded node.
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To this end, we work both with system (4.1) and the equivalent system

g = y—xg—i—Sx,
y = kx—2(y+A\)+z (4.2)
2 = ea(Aty—2),

which we refer to as the symmetric Koper model, because it has the symmetry
(x,y,z,)\,k,T) - (*(ﬂ, Y, 72’,*)\,]43,7'). (43)

System (4.2) is obtained by replacifig, y, ) in system (4.1) by(u, v, w) and applying the
coordinate change = u, y = kv — A andz = kw. We focus our analysis on the case

€2 = 1 and consider (4.2) as a system with two slow variables. Observe that the critical
manifold of (4.2),

S={(z,y,2) eR’ |y =2® - 3z =1 c(a)},

no longer depends ok and A. This cubic-shaped critical manifoll has two fold curves
Fy = {(x,y,2) € R® | z = £1,y = F2}, which gives the decomposition

S=8""UF_US " UF, US*T,

whereS*»~ = Sn{r < -1}, 5" = SN{-1 <z < 1} andS»t = SN {1l < x}
are normally hyperbolic. Note tha®* are attracting and” is repelling. To derive the
desingularized slow flow of we consider the algebraic equati®r- y — ¢(z), obtained by
settinge; = 0 in (4.2), and differentiate implicitly with respect to Then the time rescaling
7 7(322 — 3) gives

{ t = kx—2(clx)+ ) +z,

o= (322 3) (A +clz) — ). (4-4)

The desingularization reverses the direction of time on the repellingSpaof S. We find
folded singularities as equilibria of (4.4) that lie on the fold lirfés. The only equilibrium
on Fy is (z,z) = (1, 2\ — 4 — k), with y = —2, and the only one od_ is (z,z) =

(=1, 2\ + 4 + k), with y = 2. The associated Jacobian matrices are

Ai:(6@+i$M é)' (4.5)

By classifying the folded singularities according to their type and stability, we obtain a
“singular” bifurcation diagram; we then use results from Section 3 to identify possible MMO
regions. Figure 16 shows this singular bifurcation diagrattkin\)-space, where we use the
notatione’ to indicate the type and stabilityh of the folded singularities; is f, n or s for
focus, node or saddle, ardis a, r or sa for attractor, repellor or saddle, respectively. The
different parameter regions are divided by three types of curves. Folded saddle-nodes of type
Il occur whendet(A1) = 0 < A = +(k+2). The eigenvalues change from real to complex
conjugate along the parabolic curveAr )? — 4 det(A+) = k2 + 24 (k F \) + 48 = 0.

The vertical line ttAL) = k£ = 0 is the locus where the real part of a complex eigenvalue
changes sign. The enlargement in panel (b) resolves the regiofinear= (-2, 0).

MMOs are likely to exist in the regions where system (4.2) has a folded node, provided
the global return mechanism brings orbits back into the associated funnel region. Recall from
Section 3.1 the construction of a candidate periodic drpthat consists of a segment 6t
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FIG. 16. The “singular” bifurcation diagram in the(k, X)-plane of the desingularized slow fl¢4.4). Shown
are the folded saddle-node of type Il (straight lines), the transition from a folded node to a folded focus (parabolas),
and the curve indicating where the candidate trajectory from the folded node returns with) (dashed curve,
obtained numerically), which is not shown in panel (b). Panel (a) gives a global view and panel (b) is an enlargement
of the region near the right intersection point of the two parabolic curves. The types of folded equilibria in each
parameter region are indicated as follows: = folded focus,n = folded node ands = folded saddle. The
subscripts indicate whether the equilibrium lies 8 or F_. The superscripts, r and sa stand for attractor,
repellor and saddle, respectively.
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FiG. 17. The candidate periodic orbit. of the folded node of (4.2)with (e1,e2, A, k) = (0,1, =7, —10)
returns at a distancé from the strong singular canarls. Panel (al) shows all df. and panel (a2) an enlargement
nearn? to illustrate the definition 0. Panel (b) shows as a function of\, with all other parameters fixed. The
distancesd only has meaning fof > 0 and for values o\ larger than its value at the folded saddle-node of type I
atA = —8.
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FiG. 18. Bifurcation diagram for equilibria of the full syste(d.2) withe; = 0.01. Shown are saddle-node
bifurcations (green, labeled SN) and Hopf bifurcations (blue, labeled H). The saddle-node bifurcation curve has
a cusp point (labeled C) and meets the Hopf bifurcation curve in two Bogdanov-Takens points (labeled BT). The
dashed curves are folded saddle-nodes of type Il (red, labeled FSN II) that occur in the singulé iit

ending at the folded node, followed by a fast fiber of the layer problem and a global return
mechanism. Figure 17(al) illustrates this construction for a candidate periodic orbit passing
throughn¢ , where we used = —10 and\ = —7; this is a computational example of the
sketch shown in Figure 8. Startingsét , the candidaté’. jumps toS*~, which is followed

by a slow segment untll'. reaches”_. After another jump’, returns inside the singular
funnel, as shown in Figure 17(a2), and we measure the distancehe strong singular
canardy,. This distancé depends on the parameters, for examplegries as a function of
Awith & = —10 fixed in Figure 17(b). Note that < 0 means thal’. no longer returns to the
singular funnel; as long as > 0 the candidatd’. gives rise to periodic MMOs as, > 0.
Hence, the curve in thgk, A)-plane along whicld = 0 marks the start of the MMO regime.
Figure 16(a) shows the locus &= 0 as a dashed curve; its symmetrical image corresponds
to candidate periodic orbits far* . The two (symmetric) parameter regions bounded by the
lines of folded saddle-nodes of type Il, whet$€ changes ta% , and the curves whee= 0

are the regimes where MMOs are predicted to exist; note that the ctiree8 run all the

way up to the folded saddle-nodes of type Il, which is not shown in Figure 16(b).

Koper identified a parameter region of “complex and mixed-mode oscillations” fo6
by using continuation methods; see Figure 1 on page 75 of [122]. We can interpret his results
as perturbations of the MMO regimes we identified in the singular bifurcation diagram in
Figure 16(a). To this end we consider bifurcations of equilibria of (4.2)fas 0; this
analysis was already carried out by Koper [122] for (4.1). The bifurcation diagram in the
(k, A)-plane is shown in Figure 18 fe; = 0.01, with the saddle-node curves (green) labeled
SN the Hopf curves (blue) labeled. Included are the curves of folded saddle-nodes of
type Il (dashed red) labeledSN II; the curvesFSN Il already predict the “cross-shaped”
bifurcation diagram for the full system with > 0 sufficiently small [26]. The cross-shaped
bifurcation structure persists over a wide rangesaf We find the saddle-node and Hopf
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curves as follows. The Jacobian matiof (4.2) on the fast time scale has the characteristic
polynomialo® + ¢ 02 + ¢;1 0 + ¢ Wwith coefficients

co=3E1+2*-1), c1=e1(e1+922—k—9), co=¢e3(32>—-3—k),

wherex corresponds to an equilibirum, thatis, — (k +3) z + A = 0. Hence, a saddle-node
bifurcation occurs for

3/2
C():—det(A):0<:>>\::|:2 <1+3> R
which has a cusp point & = —3 and does not depend en; the cusp point is labele@ in
Figure 18. The Hopf bifurcation is defined by — ¢ c; = 0, providede; > 0. To first order
ineq, we find

1
A=+ (2+k_3kzal+0(g§)),

which lies O(e;) close to the curves of folded saddle-nodes of type Il, as expected; The
saddle-node and Hopf bifurcation curves coincide at two Bogdanov-Takens points (labeled
BT) defined byk = f% €1. The MMO regime fore; > 0 lies in the region withk < 0 and it

has a lower bound with respect calong a curve that is close td. We discuss this in more
detail for fixedk = —10. Note that from now on we use the original equations (4.1), but this
does not alter the bifurcation diagrams of tlie\)-plane in Figures 16 and 18.

Koper [122] computed a numerical bifurcation diagram for fiked —10 ande; = 0.1
with A > 0 as the free parameter; he found isolated closed curves of MMO periodic orbits.
We computed more detailed bifurcation diagrams, using the same system (4.1) as Koper,
where we concentrate on the (symmetrically related) region 0 and usedt; = 0.01 as
well ase; = 0.1. The result is shown in Figure 19, where row (a) is for= 0.1 and
row (b) fore; = 0.01. The vertical axis in panels (al) and (b1l) is the pefioaf the periodic
orbits, while in panels (a2) and (b2) it is the maximum absolute value oftb@ordinate.

A family of stable periodic orbits emanates from the Hopf bifurcatihrout it quickly loses
stability in a period-doubling bifurcatioRD. We abuse notation and label this famil{;

the period-doubled family is labele?f and note that it appears as a disconnected curve in
the (\, T)-projection because the period doubled. THeorbit becomes stable again in a
second period-doubling bifurcation, which is quickly followed by a fold (not labeled) that
renders it unstable, until a second f@d, after which relaxation oscillations are persistent.
The MMOs reside on isolas that exist for the range\ @bughly in between the two period-
doubling bifurcations. We used alternatingly light- and dark-blue colors to highlight these
families; we found MMOs with signaturels’ with s ranging from 3 to 14 as indicated in
Figure 19.

The MMOs on the isolas in Figure 19 are generated by the folded hode mechanism; we
refer to Section 5 for a more detailed discussion of MMOs on such isolas. Here, we focus on
the fact that MMOs with more complicated signatures can be found as soon as the candidate
periodic orbit returns close to a maximal canard. Figure 20 shows the stable MMO that exists
for A\ = —7; here, we used; = 0.1. Panel (a) shows a time series of theoordinate,
which identifies the signature of this MMO d$13; a projection onto théz, 3)-plane is
shown in panel (b). We computed the attracting and repelling slow manififidand S? ,
respectively. They are shown in Figure 20(c) along with three maximal secondary canard
orbits &, &3 and&, that are also drawn in panel (b). The figure shows how both LAOs are
funneled into the folded node region, practically 8f) and very close tg,. Figure 20(b)
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FiG. 19. Bifurcation diagram in\ for the Koper mode{4.1) with (e2, k) = (1, —10). Panels (al) and (a2)
are fore; = 0.01 and panels (b1) and (b2) far; = 0.1 as used by Koper. Panels (al) and (b1) plot the period
T and panels (a2) and (b2) maxima fof| versusX. A branch of periodic orbits (an “MMO” with signaturé?)
emanates from the Hopf bifurcation H and coexists with isolas of MMOs with different signatures.

illustrates that they are actually separatedddy on either “side” of¢,, which means that

the number of SAOs that follow for one of the LAOs is two, while for the other it is three,

as dictated bys. Referring to Figure 7(a), a one-dimensional approximation of the return
map will have branches corresponding to trajectories that make increasingly larger numbers
of SAOs as they pass through the folded node, and the trajectory shown in Figure 20(c) has
returns that alternate between the branches corresponding to two and three SAOs.

We observe that the last of the three SAOs has a distinctly larger amplitude, which Fig-
ure 20 suggests is due to this oscillation following a canard and then executing a jump back
to SZ . However, there is also an equilibriugnearby. Fork = —10 a singular Hopf bi-
furcation occurs forh = Ay ~ —7.67. We found that the folded node in Figure 20 is at
(x,y,2) = (1, [\ = 2)/k, [2XA — 4 — Ek]/k) = (1,0.9,0.8) and the nearby equilibriunp at
(z,y,2) = (x4, 74, T4), Wherez, ~ 0.897 is a root ofz® — (k + 3) z + \.
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Fic. 20. An MMO with signature1?13 (black) generated by a folded node singulartiy @f.1) for
(e1,e2,\, k) = (0.1,1,—7,—10). Panel (a) shows a time series of thecoordinate. Panel (b) is the projec-
tion onto the(z, y)-plane and includes nearby canard orbs, £3 and&4 and panel (c) shows this in phase space
together with the attracting and repelling slow manifol§l§ (red) andSZ, (blue), respectively.
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FiG. 21. An MMO near a singular Hopf bifurcation fof@.1) with (¢1,e2, A\, k) = (0.1,1, —7.52, —10).
Panel (a) shows the time series of thecoordinate. The bifurcation diagram in panel (b) illustrates how close
the parameters are to a tangency bifurcation betw&Egft(¢) and ST (dashed cyan); the Hopf H (solid blue),
folded saddle-node of type Il FSN Il (dashed red), and= 0 (dashed black) curves are shown as well; see
also Figure 16. The slow manifoldS? and SZ shogé in panel (c) guide the MMO toward the equilibrium
g ~ (0.951,0.951,0.951), after whichI¥*(q) organizes the SAOs. The high compression and twistinf of

nearW™(q) is highlighted in panel (d).
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FIG. 22. A periodic MMO of(4.1)for (e1,e2, A\, k) = (0.01,1,—0.063, —2.1) that exhibits SAOs near the
maximum as well as the minimum of the LAO.

We find pronounced SAOs generated by a singular Hopf bifurcation if we deckezeser
to the value) g ; note that we have to stay above the value ér which there is a tangency
between the unstable manifold™ (q) of ¢ and the repelling slow manifold? ; see also
Section 3.2. Figure 21 shows the MMO of (4.1) for= —7.52. The time series of the-
coordinate shows SAOs that are quite different from the SAOs in Figure 20(a). Figure 21(b)
shows an enlarged bifurcation diagram in ttke\)-plane with the parameter location of the
two MMOs for Figures 20 and 21 indicated by two black doté at —10. The Hopf curve
(solid blue) and the curve of folded saddle-nodes of type Il (dashed red) are ldbeled
FSN I, respectively. The MMO region is bounded by the cufve: 0 (dashed black) and
the tangency betwedi* (¢) andS?, (dashed cyan); in between the Hopf and this tangency
bifurcation the periodic orbits have small amplitudes and the transition to MMOs occurs
O(e) away from the Hopf curve. The dot corresponding to Figure 21 lies very close to the
tangency curve, while the dot corresponding to Figure 20 lies well inside the MMO region.
Figure 21(c) shows geometrically how the SAOs are organized. The red and blue surfaces are
the attracting and repelling slow manifold$, and S, respectively. During the epoch of
SAOs, the MMO periodic obit lies almost dif  and it cannot pass throudif , which twists
very tightly and forces a decrease in the amplitudes of the SAOs; this first part of the SAOs
is still reminiscent of the passage through a folded node, which lig€s & — 2]/k, [2)\ —
4 — k]/k) = (1,0.952,0.904), and their amplitudes decrease with SinceS!, spirals
around the one-dimensional stable manifoldyofthe MMO periodic orbit comes very close
t0 ¢ = (24,24, 24), With z, ~ 0.951. The SAOs that follow are organized by *(¢) and
their amplitudes are increasing to relatively large values before the LAO.

In summary, if we fixk in Figure 21(b) and increase we observe the following typical
sequence of events near a singular Hopf bifurcation of an equilibgiuffor small enough
A there are no MMOs and the attractor is an equilibrium. This equilibrium crosses a fold
of the critical manifold afFFSN I, but it remains stable until a supercritical (singular) Hopf
bifurcation at distanc@(e;) away gives rise to small oscillations. The transition to MMOs
occurs after a tangency betwe#n“(q) and SZ ; for A-values just past this tangency the
MMOs have many SAOs that all lie nelir*(q). As X increases further, the MMOs exhibit
SAOs organized by the folded node. Finally, a crossing of the cue¢e) corresponds to a
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transition to relaxation oscillations.

To end this case study, we report the existence of a different type of MMO not found
by Koper; it is shown in Figure 22. The MMO has SAOs both near the maximum and the
minimum of the LAO. Hence, this MMO passes near folded node®n both fold curves.

The parameter region where this occurs is quite small, so that it is difficult to locate such an
MMO using simulation; it is the region in Figure 16 ndar= —2 that can only be seen in

the enlargement in panel (b). We found the MMO by selecting parameters—2.1 and

A = —0.063 in this region and choosg = 0.01 rather small; a more detailed study of the
range of parameters for which such MMOs with two SAO epochs remains future work.

5. MMOs in a reduced Hodgkin—Huxley system.As the next case study we consider
a three-dimensional reduced version of the famous Hodgkin—Huxley equations [102] that
describe the generation of action potentials in the squid giant axon; see [115, 196] for the
derivation and also [43], where the same example was used. The reduced model only de-
scribes the dynamics for voltag®’), the activation of the potassium channei$ &nd the
inactivation of the sodium channelg)( the activation of the sodium channela)is very
fast and it reaches its equilibrum state= m.. (V') (almost) instantaneously which can be
justified mathematically by a center-manifold reduction [196]. The evolution of the gates
andh is considered slow while the evolution of the voltagds considered fast. To justify
this time-scale separation, we nondimensionalize the Hodgkin—Huxley equations by introdu-
cing a dimensionless voltage variahle= V/k, and a dimensionless time= t/k; where
k, = 100 mV is a reference voltage scale akhd= 1 ms is a fast reference time scale; this
gives
ev = f(v,hyn) == IT—m3 (v)h(v— Ena)

oo

—grn* (v —Ex) — g1 (v—EL),

o= ah) = ’j;(hwtij’()v)‘ ) (65.1)
ki (noo(v) = )

n = gg(’l], n) = - W’

with dimensionless parametet, = E./k,, g = gz/9na, With z € {m, n, h}, [ =
I1/(kygna) ande = C/(kigna) =: Tv/ke. The original Hodgkin—Huxley parameter values
are given in Table 5.1. Thus,= ﬁlo ~ 0.01 < 1 and system (5.1) represents a singularly
perturbed system with as a fast variable ang, ) as slow variables. The functions, (v)
andt,(v), with z € {m, n, h}, describe the (dimensionless) steady-state values and time
constants of the gating variables, respectively; they are given by

=)= e 0=
with
am(V) = T T Bm(v) = dexp(=(hw +65)/18),
ap(v) = 0.07exp(—(ky,v +65)/20), Brlv) = 1+exp(7(kiv+35)/10),
(V) = [t Bo(v) = 0.125exp(—(kyv + 65)/80).

The orginal Hodgkin—Huxley equations with scaling parametgrs= 7, = 7,,, = 1
shows no MMOs [102], but it;, > 7, > 1 Or 7, > 7, > 1 are beyond certain threshold
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gna | 9k | 9 | Exa| Bk | EL || W | C

120.0 [ 36.0 [ 0.3 [ 50.0 | =77.0 | —=54.4 [ 1.0 | 1.0 | 1.0
TABLE 5.1
Original parameter values of the Hodgkin—Huxley equati(®4).

values then MMOs are observed [43, 196, 197]. Here, we focus on a specific case with
7 = 6.0, 7, = 1.0andC = 1.2 (so thate = 0.01). We use the applied curreit(in units
of A /cm?) of the original Hodgkin—Huxley equations, that is, the rescdl@u(5.1), as the
only free parameter. Furthermore, in order to facilitate comparison with other studies, we
represent output in terms of the non-rescaled volidage 100 v, which is in units of mV.

From a mathematical point of view, the MMOs are generated due to the presence of a
(subcritical) singular Hopf bifurcation dt= Iy ~ 8.359 and a folded node in the singular
limit e = 0. The critical manifold of (5.1) is defined by,

I —mo(v)®h(v— Exa) — g1 (v— E))
gk (v — E) ’

which is a cubic-shaped surfae= S*~UF_US"UF, US%™ for physiologically relevant
values ofl. The outer sheet§»* are stable, the middle she$t is unstable, and’,. denote
fold curves [196]. The desingularized reduced system on this manifold is given by

{@ = (ZFhHa + (&) o
h = —(%f) g1-

A phase-plane analysis of the desingularized reduced flow in the physiologically relevant
range shows that there exists a folded node singularity’orior I > Irpgn ~ 4.83. Fur-
thermore, it can be shown that the global-return mechanism projects into the funnel region
for I < I, =~ 15.6; see [196, 197]. Hence, the folded node theory predicts the existence of
stable MMOs for a range df-values that converges g-sy < I < I,. in the singular limit
ase — 0.

Figure 23(a) shows the folded node singularity for= 12, where it lies approximately
at (v, h,n) = (—0.593,0.298,0.407), in projection onto thén, V')-plane. The two black
curves are the strong singular cangtdand the primary weak canarg, that pass through
the folded node. The other two curves are maximal secondary cafipetsl £ that were
found as intersections of extended slow manifolds computed near the folded node; see also
Section 8 and [43, Figure 6]. Their projections onto thel )-plane, which illustrate the
oscillating nature of5 and&g, are shown in Figure 23(b). Notice that the final oscillations
of the primary weak canarg,, in Figure 23(a) show the distinct characteristics of saddle-
focus-induced SAOs. Indeed, a saddle-focus equilibrium (—0.589,0.379, 0.414) exists
relatively close to the folded node, due to the singular Hopf bifurcatiohyat~ 8.359.
Decreasing from I = 12 toward] = Iy causeg to move closer to the folded node and the
mix of folded node induced SAOs and saddle-focus induced SAOs will be more pronounced;
compare with Figure 21(c).

The equilibriumg for I = 12 persists whei is varied. A partial bifurcation diagram is
shown in Figure 24(a), where we plot the maximumlofersus/. Similar to the analysis
in [43], a unique equilibrium exists for all and it is stable fod < Iy and, approximately,
I > 270.772. The (singular) Hopf bifurcation (labeleH) at Iy gives rise to a family of
saddle-type periodic orbits. This family of periodic orbits undergoes three fold bifurcations
(SL) at] ~ 6.839, I ~ 27.417 andI = Igs; ~ 14.860, after which both non-trivial Floquet
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FiG. 23, Maximal secondary canard orbitg; and &g of the three-dimensional reduced Hodgkin—Huxley
equations(5.1) with 7, = 6.0, 7, = 1.0, C = 1.2 andI = 12. Panel (a) shows the two canard orbits in
projection onto thgn, V')-plane; also shown are the strong singular cangrdand the weak primary canargl,, .

The projection o5 and & onto the(h, V)-plane in panel (b) shows that they make five and six oscillations,
respectively.
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FIG. 24. MMO periodic orbits of the three-dimensional reduced Hodgkin—Huxley equaftohpwith 7, =
6.0, 7, = 1.0 andC = 1.2. Panel (a) shows a bifurcation diagram where the maxiiaValue is plotted
versus the applied currert Isolas of MMO periodic orbits exist over a range bbounded by a period-doubling
bifurcation PD and a saddle-node of limit cycle bifurcati®L. The isolas are colored in alternating light and
dark blue. Panel (b) shows an enlargement near the Hopf bifurcation. All isolas shown have a fold bifurcation for
Is1, ~ 8.087. The periodic orbifl" shown in panel (c) is the stable MMO fér= 12; panel (d) showg™ when it
has a maximal/-value of—20 mV.
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multipliers are less than 1 in modulus and the associated stable periodic orbits correspond to
tonic spiking. Figure 24(a) shows that the fifst is quickly followed by a period-doubling
bifurcation (PD) atI ~ 7.651, where one of the Floquet multipliers, which are both unstable
after this firstS L, passes through 1. Hence, the periodic orbits aftérD are non-orientable

and of saddle type. Note that a secdhd (not shown in Figure 24(a)) must take place before

the secondb L.

MMOs exist as isolated families of periodic orbits for a rangd dFigure 24(a) shows
eleven of these isolas colored in alternating light and dark blue. All periodic orbits on a
single isola have the same number of oscillations. Each isola contains a short plateau with
large maximal/ nearV' = 40 mV where the associated MMOs are stable and have signatures
1%. For our specific choice = 0.01, we found that the stable MMO interval appears to be
bounded byl ; on the left and byls;, on the right, that is8.359 < I < 14.860. Recall that
the theory based on the singular limitas- 0 predicts the existence of stable MMO periodic
orbits with signature$® for 4.83 =~ Irsy < I < I = 15.6; the match is surprisingly good,
even thougtz is relatively large. Ad | Iy, the numbes in the stablel® MMO signatures
approaches infinity, since a homoclinic orbit through the Hopf singularity is formed; see
also [43]. Furthermore, there exist stable MMO signatures with more complicated signatures
151152 ...; see [197]. The MMO periodic orbits go through several bifurcations along the
isolas (mostly period-doubling and/or saddle-node of limit cycle bifurcations); compare also
Figure 19 for the Koper model in Section 4. The maxiiaValue indicates the amplitude of
the largest of the oscillations of the respective MMO periodic orbit. Note the folded structure
of the isolas forV’ = Vp, =~ —20 mV which is approximately the repolarization threshold
value for action potentials. This value also corresponds t&'thvalue of the upper fold curve
F,, at which a trajectory jumps back. For MMOs on a plateau, the LAOs correspond to a full
action potential, while the SAOs that follow are subthreshold oscillations.

Figure 24(b) shows an enlargement of how the isolas of MMO periodic orbits accumulate
near the Hopf bifurcation, which is the region where theory predicts a signaturhat
is, an MMO with one large excursions ardSAOs. This is organised by how the global-
return mechanism projects onto the critical manifslds/ varies. If the return projects onto
a secondary canard then part of the periodic orbit follows the secondary canards onto the
unstable branch,. . of the slow manifold. However, only canard periodic orbits that reach the
region of the upper fold curv€’, are maximal secondary canards. Hence, the corresponding
family of secondary canards can be split into two groups: we call the secondary canards with
maximumV < Vg, jump-backcanards and those with maximum > Vg, jump-away
canards. This is an important distinction in this application, because the jump-away canards
will create action potentials, the jump-back canards will not.

We illustrate the canards along one of the isolas in Figures 24(a) and (b). The stable
MMO periodic orbitI" that exists on the plateau fdr = 12 is shown in Figure 24(c); its
signature ist® and it lies on the isola that corresponds to periodic orbits with a total of seven
oscillations. Note that the large excursionlois above threshold. The six SAOsbfare due
to the fact that the global return lands on the rotational sector bounded by the maximal sec-
ondary canardg; and&g for I = 12 (not shown); compare Figures 23(b). When the periodic
orbit I" is continued in the direction of increasidgthe maximalV/ -value decreases and the
LAO changes from an action potential to a sub-threshold oscillation. Figure 24(d) $hows
(which is now unstable) when its maximilvalue is approximately-20 mV. Observe that
T" still has a total of seven oscillations, but now two of them have a fast segment. These fast
segments are jump-back canards. More precisely, the periodidarbitsists of a segment of
a jump-back canard of thig canard family that connects to a segment of a jump-back canard
of the strong canard family, which in turn connects to the former segment, hence, closing the
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FiG. 25. Continuation of a family of periodic orbits that consist of ten oscillations. The continuation starts and
ends at/ = 12 with a fold at/ =~ 8.087. Panel (a) shows a three-dimensional “waterfall diagram” visualization
of the time series of for 90 computed periodic orbits along this part of the isola; the boldface periodic orbit lies
at the fold point. The orbits in blue correspond to the part of isola in between the fold point adevéiiae that
corresponds to the Hopf bifurcation, that i5; ~ 8.359. Panel (b) shows the maxim&l-value along the branch
in the (I, V')-plane, where the arrows indicate the direction of the continuation. Panel (c) shows the periodic orbit
at the fold together with a coexisting small periodic orbit in projection onto(thev)-plane.

loop. One could classify in Figure 24(d) as an MMO with signatu®®, because only five

of its oscillations have really small amplitude due to the passage near the folded node, while
there are two clearly distinguishable larger oscillations with fast segments due to jump-back
canards. However, none of these larger canard oscillatiodsare full action potentials,
meaning that all oscillations are classified as SAOs in this application context.

Figure 25 illustrates the characteristics of the periodic orbits along the lower parts of
the isolas in Figure 24(a), where they are very close to the branch of saddle periodic orbits
bifurcating from the Hopf bifurcation. More specifically, Figure 25(a) shows a “waterfall
diagram” representation of the time series of 90 periodic orbits along the lower part, for
1 < 12, of the isola along which one finds a total of ten oscillations. This part of the branch is
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TABLE 6.1
Parameter values used in the four-dimensional Olsen m@&dig)

[ k1 [ k2 | ks [ka| ks [ ke | kv [ kv | ks
[0.28 [ 250 [ 0.035 [ 20 | 535 | 0 | 0.8 | 0.1 [ 0.825

|2

shown in Figure 25(b). The fold point for this isola islat Iy, ~ 8.087, and the associated
periodic orbit is drawn in boldface in Figure 25(a). The periodic orbits on the part of the
branch forlg;, < I < Iy are highlighted in blue. The periodic orbits along this part of the
isola are quite different from the MMOSs one finds near the plateaux of the isolas; Namely,
they consist of a mix of SAOs and jump-back canards, ten in total. Figure 25(c) shows the
projection of the periodic orbit at the fold onto the, V')-plane; also shown is the coexisting
small periodic orbit that lies on the branch emanating from the Hopf bifurcation. This figure
suggests that the periodic orbit at the fold is approaching a homoclinic cycle of the small
periodic orbit.

6. MMOs in Olsen’s four-dimensional model of the PO reaction.Many applications
do not lead to models that have a clear split into slow and fast time scales. Often some
assumptions to that extent can be made, but most variables will be slow in certain regions
of phase space and fast in others. The following case study illustrates how the geometrical
ideas from slow-fast systems can be used in such a context. We study a four-dimensional
model of the peroxidase-oxidase (PO) biochemical reaction that was introduced by Olsen
and collaborators [37, 172]; see also [42], where this same example was used. The Olsen
model describes dynamics of the concentrations of two subst@tesnd N AD H) and two
free radicals, denoted, B, X andY, respectively; it is given by the differential equations

A —k3ABY 4 ky — k_7A,

B’ Ot(—kgABY — leX + k’g),

X' = kiBX —2ko X2+ 3ksABY — ko X + kg,
Y’ —ksABY + 2k X? — k5Y.

(6.1)

Note thatw is an artificial time-scale parameter that we introduced for the purpose of this
case studyp = 1in [37, 172]. The other parameters are reaction rates and we chose their
values as given in Table 6.1, such that the periodic orbits that exist for these parameter values
are representative for the Olsen model (6.1). We focus our study on a stable MMO periodic
orbit, denoted™; its time series of the variablé is shown in Figure 26(b). We observe that

I" has signaturé®, and we estimate thatis aboutl5. Below, we show that the SAOs of

this example occur during passage through a dynamic Hopf bifurcation, and we analyze the
global return mechanism of this trajectory.

6.1. Bifurcations of the fast subsystem.There is no clear split between the different
time scales in the Olsen model (6.1), but it is known tBa¢volves on a slower time scale
than the other variables [153]. Hence, it makes sense to consider the fast subsystem obtained
by settinga. = 0, that is, B’ = 0 and B acts as a parameter in (6.1). The bifurcation
diagram is shown in projection onto ti{el, B)-plane in Figure 26(a), which is invariant
becauséis = 0; see Table (6.1). There are two branches of equilibria that intersect at a
transcritical bifurcatiorl” for B = k4/k; =~ 71.426; solid lines indicate stable and dashed
lines unstable equilibria. The equilibria that are colored black in Figure 26(a) are physically
relevant because they have non-negative values ahdY’; for grey equilibria, on the other
hand, X or Y is negative. One branch is the black horizontal linelat 8; it lies in the
(A, B)-plane (whereX = Y = 0), which is invariant sincé&s = 0. Equilibria along this
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FIG. 26. The stable MMO periodic orbit' of the Olsen modéb.1)with parameters as in Table 6.1. Panel (a)
showsI" (blue) projected onto théA, B)-plane and superimposed on the bifurcation diagrangéi) with o = 0;
solid (dashed) black and grey curves are stable (unstable) equilibria, where the grey color indicatés that
are negative, andS N, H and T' are saddle-node, Hopf and transcritical bifurcations, respectively. The family
T of periodic orbits that emanateH is represented by its maxima and minimaAn(green curve); the line&c -
(cyan) indicates where thigd, B)-plane changes from attracting to repelling. Panel (b) shows the time series of the
variable A alongI'. The inset panel shows a blow-up of the region where SAOs undergo a slow decay.

branch are stable foB < k4/k1. A second branch intersects the horizontal branch and
the (A, B)-plane at the poinf’; only the black part of this second branch with positi¥e

andY is physically relevant; it consists ne@rof saddles with one unstable and two stable
real eigenvalues. Two further bifurcations along this physically relevant branch change the
stability of the equilibria; there is a saddle-node bifurcatidN at B = Bgy ~ 35.144

and a subcritical Hopf bifurcatiod/ at B = By ~ 57.949. The emanating branch of
saddle periodic orbits (green) is labelEdfor which only minimal and maximal values of

A are shown. The hyperplang- = {(A, B, X,Y)| B = k4/k;} marks where the linear
contraction normal to the4, B)-plane is zero; note thdt € ©-. Overlaid on this bifurcation
diagram is the MMO periodic orbif' of (6.1) (witha = 1) and we can now see holvis
composed of a segment of SAOs, generated by passage through a dynamic Hopf bifurcation,
and a global return: starting from the minimumIof the trajectory spirals in and out of a
vortex structure due to the presence of the family of equilibria of the fast subsystem with a
pair of complex conjugate eigenvalues that cross the imaginary axis. The presence of the Hopf
bifurcation in the fast subsystem explains the observed slow decay and increase in amplitude
of the SAOs of the attractdr of the full system. The reinjection back to a neighborhood

of the attracting branch is mediated by an increasd invhich triggers a slow increase in

B, as the trajectory closely follows the invariaf, B)-plane toward the curve of stable
equilibria with A = 8. As soon asB > k,/k, that is, the trajectory crosseés', the

(A, B)-plane is unstable and the trajectory begins to move away from it. Finally, the sharp
decay inA appears to be a fast segment that brings the trajectory back to the entrance of the
dynamic Hopf bifurcation; compare also with the time series of Areariable alongl’ in

Figure 26(b). The rapid decrease in amplitude of the SAOs is an indicatiof' tisah an
intermediate regime between the tourbillion and delayed Hopf bifurcations, but we label it as
a tourbillion.

6.2. Slow manifolds of the Olsen model.The SAOs ofl" in Figure 26 terminate ab-
ruptly via a mechanism that can be visualized by computing slow manifolds. The shape of
these manifolds and the geometry of their interactions in the fast subsystem allows us to
unravel the organisation of MMOs in the Olsen model (6.1). Consider the curve of saddle
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FiG. 27. The repelling slow manifoldy; (blue) of the fast subsystem of the Olsen md@el) (o = 0),
where X was eliminated via the QSSA.2). The manifoldSg was computed as the family of one-dimensional
stable manifoldd¥' 3 (one side only) of saddle equilibria (dashed black curve)d@r< B < 63. The branch
of equilibria (dashed/solid black curve) in the vicinity of the Hopf bifurcation point (dot) is also shown, along with
several unstable periodic orbits (green curves) born at this Hopf bifurcation; the periodic orbits are almost the same
as those in Figure 26 for the fast subsystem. Panel (b) sfhiysand the corresponding unstable periodic orfigh
for B = 60 in the (A, Y')-plane. Note that the viewpoint in both panels was chosen suchttlatreases toward
the left; this is also the case in subsequent three-dimensional figures.

equilibria for B < k4/k; in Figure 26(a) between the pointsV and7'. Each equilibrium

has one positive and two negative eigenvalues and the family of associated two-dimensional
stable manifolds acts as a limiting (three-dimensional) repelling slow manifold that organizes
the termination of the SAOs. Since this termination still takes place extremely close to the
invariant(A, B)-plane, we may assume th&tis a fast variable in this region. Therefore, we
may reduce the dimension by way of a quasi steady-state assumption (QSSA) [72], where we
assume thak has reached its steady-state value

k1B — ky + /(k1B — k)2 + 8k2(3ks ABY + k)
- ks

Using the QSSA, we approximate the fast subsystem (6.1) avith 0 as aB-dependent
family of two-dimensional vector fields in thed, Y)-plane, and the repelling slow manifold

is now approximated by a familgy of one-dimensional stable manifolds. Note that the
QSSA (6.2) preserves the equilibria of the fast subsystem and their stability properties change
only in the sense that essentially one contracting direction®fer k,/k;) is removed. The
equilibria on the branch bounded IV andT are still saddles, but now with only one
stable eigenvalue. The equilibria on the branch on the other sidé/odre repelling for the
planar system i3 lies in betweenBsy and By, and attracting pasBz. We computedsy

with AUTO [50] by defining a suitable two-point boundary value problem; see Section 8.2.
Figure 27 illustrates how rolls up (in backward time) around the lower equilibrium branch
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FiG. 28. The attracting slow manifold5 (red) of the full Olsen modé€b.1) (o = 1), computed from near the
equilibria for A = 8 and B > k4 /k; up to the sectiois3 = {B = 53}. The black solid/dashed curves are the
physically relevant equilibria of the fast subsystem- 0).

for Bsy < B < By and around the family of unstable periodic orbits #¢> By until the
homoclinic bifurcation forB ~ 66.480 < k4/k;; to emphasize th&-dependent nature, we
show this planar dynamics for the fixed valBe= 60 in panel (b).

The repelling slow manifoldy; is only an approximation and it is not an invariant ob-
ject for the full system (6.1). However, it provides an indication of how an MMO trajectory
is trapped by an actual repelling slow manifold as it passes through the tourbillion and in-
dicates how the trajectory flows toward the curve of saddle equilibria. By combining this
approximation of a repelling slow manifold with an approximatifhof the attracting slow
manifold that guides trajectories back to the entrance of the tourbillion, we can visualize the
mechanism that organizes the SAOs.

To find S%, we consider the curvé of saddle equilibria withA = 8 and B > k4/k;
(pastT); see Figure 26(a). These equilibria have one-dimensional unstable manifolds in
(A, X,Y)-space, that is, in the full fast subsystem without the QSSA (6.2).B-dependent
family W* (L) of unstable manifolds is a two-dimensional surface that makes a large excur-
sion before spiraling toward the attracting equilibrium branch that lies just above the invariant
(A, B)-plane. We define the attracting slow manifdifl in this setting as the equivalent of
W*(L) whenB is not fixed but allowed to vary. In particular, with this definitiSfi enters
a neighborhood off and interacts with the repelling slow manifol§ that only exists for
B < ky4/k1. We compute the two-dimensional manifoli§ with AuTo [50] by using a
boundary value problem setup as in Section 8; specifically, we require that one end point of
the computed orbit segments lies along a llifevery close to the curvé of equilibria and
in the linear approximation té/*(L); see [42] for more details on how this computation can
be performed. Figure 28 illustrates hayg provides a global return mechanism from near
L, via a large excursion and then guides trajectories through the tourbillion.
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FiG. 29. (a) Approximations of the attracting and repelling slow manifolds of the Olsen ni@dgl Panel (a)
shows the surfaces? (blue) andSy; (red) projected intq A, B, Y')-space between the sectidfigz andXe3 (green
planes). Also shown are three orbijs in orange,n2 in magenta ands in cyan; they lie in the intersection &g
and Sj. Intersections obj and Sg; with 53 are shown in panel (b); the intersectionsigf, 72 andns with 253
are labelled.

Figure 29 illustrates how the interaction 8§ and S; determines the behavior in the
tourbillion regime. The two surfaces are shown(B, A, Y)-space in panel (a). Recall that
S is atwo-dimensional surface (B, A, X, Y)-space, and shown is its projection. The man-
ifold S5, on the other hand, was computed by assuming the QSSA (6.2), which is due to an
additional strongly attracting direction. Hends, is a two-dimensional surface {8, A,Y')-
space that corresponds to a three-dimensional surfa@®,id, X, Y')-space. Therefore, the
intersections oS3 andSj; with the planeXs; = { B = 53} are isolated points, and they are
shown in Figure 29(b); note th&f; N X553 = 1153, while the computation a§5 N X553 is more
involved. The intersection points of these two curves define trajectories that resemble canard
orbits near a folded node, because they spiral in the tourbillion region, making an increasing
number of turns. The first three intersection points are labeled in Figure 29(b) and their cor-
responding trajectorieg , . andns are shown in Figure 29(a). These trajectorjes). and
n3 are contained irb3, but only their intersection points withss lie on Sg. Indeed,Sg is
not an actual invariant manfiold of (6.1) and only serves as an approximation of the repelling
slow manifold. Nevertheless;; and.S; give a qualitative illustration of the nature of SAOs
generated by slow passage through the tourbillion. In particular, the intersection cufes of
andSg with X535 provide an approximate location of the sectors of oscillations in this region
of phase space.
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7. The Showalter—Noyes—Bar-Eli model of MMOs in the BZ Reaction.The Showalter—
Noyes—Bar-Eli (SNB) model [205] is one of many kinetic models that have been proposed
for the Belousov-Zhabotinskii (BZ) reaction. It is a seven-dimensional vector fields derived
from a system of reactions

A+Y=2X+P
X+Y =2P
A+ X =2W
C+WaX+2Z
2X =2 A+ P
Z —gY +C

that satisfy the law of mass-action, resulting in the equations

A" = ko(Ag— A) — ki AY + k_1PX — ks AX + k_sW?2 + ks X2 — k_5 AP,

C' = kQ(CQ — O) — ks CW + k_4 XZ + ke Z,

P = —koP+kAY + 2k XY — 2k _oP? + ks X2 — k_sAP — k_, PX,

W' = —koW +2k3sAX — 2k _3W? — kyOW + k_4XZ,

X' = —koX +kAY —k_ 1 PX — ko XY +k_oP? — k3AX + k_3W?
+hsCW — k_4 X Z — 2k X2 + 2k_s AP,

Y/ = ko(}/o —Y) —klAY—Fk_lPX—kQXY+k_2P2—|—gk’6Z,

7' = —koZ 4+ kaCW —k_4XZ — k¢Z,

(7.1)

where we use the same letter to identify a chemical species and its concentration. Note that
C'+ 7' =ko(Cy — C — Z), so the hyperplan€ + Z = Cj is invariant and attracting. We
reduce (7.1) to a six-dimensional vector field on this hyperplane by settingCy — Z and
eliminating the equation fo€”’. The model is “realistic” in the sense that each variable is
associated with a definite chemical species. The reaction rates are based upon experimental
measurements. As is typical with chemical reactions, the concentrations of intermediate spe-
cies differ from each other by many orders of magnitude. Nevertheless, some intermediate
species that have very low concentrations are still dynamically important. The vatiable
represents concentration of bromide which is often measured in experiments to monitor the
state of the system. The variabldn the model represents the concentration of bromate. This
chemical has much larger concentrations than the other species, but the chemically relevant
guantity is its variation, which is of comparable order to the variations of other concentra-
tions. See Showalter et al. [205] for more details about the chemistry. In previous studies of
this model, Barkley [16] was unable to clearly identify a dynamical explanation of the MMOs
it exhibits.

We study this system for a single set of parameters where Showalter, Noyes and Bar-Eli
observed a mixed mode oscillation, specifically

ki = 0.084 (Ms)™",  k_y 1 x 10 (Ms) ™,

ky = 4x108 (Ms)™", k_p = 5x107° (Ms) ™,

ks = 2x103 Ms)™',  k_s = 2x107 (Ms) ™

ky, = 1.3x10° (Ms)™,  k_y = 24x107 (Ms) ™, (7.2)
ks = 4.0x107 (Ms)™", k- = 4.0x107'" (Ms) ', '
ke = 0.65 (Ms) ™" ko = 7.97x1073 s

Ay = 0.14 M, Cy = 125x107% M

Yo = 151x10°6 M g = 0.462,
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FiGg. 30. Time series of an MMO periodic orbit fdi7.1), with parameters given in 7.2. The time series of
each variable is scaled to the interval [0,1] and the trajectory is plotted over one period. Panel (a) shows the slow
variablesA (black) andP (red), and panel (b) the fast variablé®™ (blue), X (orange),Y (magenta), and (grey).

Note that the system (7.1) and the parameters in (7.2) have dimensional units; throughout,
concentrations are measured in molar (M) and time in seconds (s).

Figure 30 shows time series of the MMO periodic orbit of (7.1) with parameters given
by (7.2), plotted over one perid ~ 209s. In the time series, each variable is scaled by
an affine transformation so that it varies on the intef9al]. To relate back to the dynamics
of (7.2) the minimum and maximum values of each variable prior to rescaling are listed in
Table 7.1. Figure 30 displays the characteristics of an MMO. There are small oscillations
that occur while the relative concentration¥fis small and the relative concentration of
is large. Note from Table 7.1 that these concentrations are varying by over two orders of
magnitude. The periodic orbit makes two circuits and has signature

[ A . | w | x | vy [ z |
black red blue orange magenta grey
1.39856 x 1071 [ 1.83x 10°% [ 145 x 1079 [ 42x 1077 | 239 x 10°° | 3.89 x 10~8

1.39907 x 10~ | 2.80 x 107% [ 1.38 x 107% | 1.5x 107 [ 2.28 x 107° | 6.41 x 10~©
TABLE 7.1
Minimum and maximum ranges of variation of each coordinate in Figure 30(a).

There is no explicit slow-fast structure in the equations (7.1). We infer(thaP) vary
slowly relative to(W, X, Y, Z) in an ad-hoc manner from Figure 30 by making two obser-
vations. First, the variablgsd, P) show a monotone decrease and increase during the times
that the variablesW, X, Y, Z) undergo small oscillations. Second, P) do not undergo
rapid changes at the beginning or end of the small oscillatiori31as(, Y, Z) do. There-
fore, to investigate the mechanisms producing the small amplitude oscillations in this MMO,
we identify the system as a slow-fast system with slow variables?) and fast variables
(W, X,Y, Z) as far as the MMO dynamics is concerned. Figure 31(a) projects the MMO
periodic orbitl" onto the( P, Y, Z)-plane. Notice the region of SAOs, which is visited twice.
Panel (b) show§ projected onto th¢ A, P)-plane of slow variables. We observe from this
projection thafl” lies close to the hyperplar®d + P = 24, (grey line), which means that
the change ofi and P along the MMO periodic orbit is of the same order.
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FiG. 31 (a) A three dimensional plot of the trajectory onto the space spanned by the coordifaiés”). A
curve along the critical manifold is plotted as a grey line, and the black dot marks the location of a Hopf bifurcation
in the fast subsystem. (b) The MMO is projected onto the coordinatesl P. The grey line is defined QA+ P =
2Ap and the ranges aft and P are [0.13985, 0.13991] and [0.00018, 0.0003].
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FiG. 32 Panel (a) shows the curve of Hopf bifurcations (blue) and the line defin@diby P = 2A( (grey)
in the (A, P)-plane. Panel (b) shows the SAOs projected onto the three-dimensional space spanned by the center
manifold of the Hopf bifurcation and the direction of the lif2A + P = 2A¢} in the (A, P) plane. The MMO
periodic orbitT" visits this region twice and each time spirals around the center manifold of the Hopf bifurcation
(grey); the Hopf bifurcation point of the layer system itself is the black dot.

Figure 31(a) suggests that the SAOs of the MMO periodic @thite due to a tourbillion.
To ascertain this, we compute the critical manifold near the vicinity of the SAOs with con-
tinuation methods using the program Matcont [44]. Figure 32(a) shows the the curve of Hopf
bifurcations in the fast subsystem in thé, P)- plane of the slow variables together with the
curve2A + P = 2A,. The small portion of the Hopf curve plotted in Figure 32(a) is almost
horizontal, so the two curves cross transversally. Matcont also calculates the first Lyapunov
coefficient of the Hopf bifurcations along this part of the branch, showing that they are all
subcritical. To demonstrate further that the tourbillion associated with the Hopf bifurcation
is indeed the basis for SAOs, we projétbnto the three-dimensional space spanned by the
two dimensional center manifold of the Hopf bifurcation in the space of fast variables and the
direction defined by A + P = 2A4,. The projection of the center manifold is plotted as a
grey curve and the Hopf point of the layer equation is the black dot. The two pdrtthait
correspond to SAOs surround the center manifold and have minimal amplitudes close to the
Hopf point. This is clear evidence that the MMO of (7.1) has a tourbillion with SAOs that
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are generated by the passage through a dynamic Hopf bifurcation, similar to the one observed
for the Olsen model in Section 6. This example illustrates how the methods described in this
paper can be applied effectively to a system of higher dimension than just three or four.

8. Numerical methods for slow-fast systemsThis section discusses numerical meth-
ods that we used to compute the two-dimensional slow manifolds shown in many of the
figures, as well as stable and unstable manifolds of equilibrium points. The slow manifold
computations choose an end point of each orbit segment on the critical manifold away from
a fold; this approximation yields errors that &c) but decay quickly as one moves away
from the end point. For stable or unstable manifolds of equilibria, orbit segments are chosen
to lie in the linear eigenspace associated with the stable or unstable eigenvalues, respectively.
The computational error associated with this approximation also decays quickly as one moves
away from the endpoint; see [41, 130] for analysis of these approximation errors .

A simple and effective method for computing invariant manifolds as families of orbit
segments is to use initial value solvers as the basic algorithm with initial conditions chosen
on a mesh of points transverse to the flow in the invariant manifold; we call this the “sweep-
ing” method. Despite its simplicity, this sweeping method fails to produce satisfactory results
in some cases. In particular, strong convergence or divergence of trajectories toward one an-
other makes the choice of the initial mesh problematic and can produce very non-uniform
“coverage” of the desired manifold; see [59, 60]. In multiple-time-scale systems, the fast ex-
ponential instability of Fenichel manifolds that are not attracting makes initial value solvers
incapable of tracking these manifolds by forward integration. These issues prompt the use of
boundary value methods combined with continuation as an alternate strategy for computing
invariant manifolds [131, 132] . We have used both strategies in this paper. This section
presents more details of the techniques used to compute attracting and repelling slow mani-
folds of systems with one fast and two slow variables, as well as the continuation of canard
orbits when a parameter is varied.

8.1. Sweeping invariant manifolds. The Fenichel manifolds of systems with a single
fast variable are either attracting or repelling. As a result, forward trajectories with initial con-
ditions on the critical manifold will converge quickly to an attracting Fenichel manifold and
backward trajectories with initial conditions on the critical manifold will converge quickly
to a repelling Fenichel manifold. Thus, one way to compute two-dimensional attracting and
repelling Fenichel manifolds of a three-dimensional flow is to apply an initial value solver in
the appropriate time direction to a mesh of initial conditions along a curve of the critical man-
ifold transverse to the slow flow. We used this sweeping method to comuteFigure 11;
see also [162] for an early use of this method to compute two-dimensional invariant mani-
folds and Wechselberger [233] and Guckenheimer and Haiduc [86] for an example involving
folded nodes.

When incorporated into a continuation framework, the sweeping method can also be used
if the critical manifold is not known in closed form and the mesh of initial conditions can-
not be selected beforehand. Continuation methods [49] provide well-established algorithms
that augment equation solvers like Newton’s method with strategies for choosing new start-
ing points when solving under-determined systems of equations. More precisely, suppose
F : R™t" — R™ is a smooth function given by: equations ofn + n variables. The impli-
cit function theorem states that the zerogdbrm a smootm-dimensional manifold/ near
points where the matriO F' of partial derivatives has full rank.. Moreover, the theorem
gives a formula for the tangent spaceMt Most continuation methods treat the case: 1
where the set of solutions is a curve; see [101] for the @asel. In general, the methods
are based on a predictor-corrector procedure: given a poit ptangent (or higher-order)
information is used to choose a new seed for the solver to find a new pokit drhe sweep-
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ing method described above selects the continuation step size based on equal increments of
a specific coordinate or direction, but more sophisticated step size adaptations can be used
as well. For examplgyseudo-arclengticontinuation as implemented in AUTO [50] chooses
points based on their distances from each oth@&"ir™.

We also used a sweeping method to compute the global unstable maifo(g) in
Figure 11. The mesh of initial conditions was taken to lie along a ray in the tangent space of
W*(p), with endpoints of the mesh at successive intersections of a trajectory of the linear-
ized system with this ray. The sweeping method works well here, because the selected orbit
segments provide adequate “coverageViot (p).

8.2. Continuation of orbit segments with boundary value solvers.The core algorithms
of AUTO [50] are boundary value solvers and continuation methods. The sweeping method
described in the previous section can also be implemented in AUTO [50], so that the initial
value problems are solved using a collocation method; see [49] for details. The techniques de-
scribed in this section impose boundary conditions on both end points of the orbit segments,
which makes the method more versatile and suitable in a wider context; see also [131]. We
describe here how to formulate two-point boundary value problems (BVP) in order to com-
pute slow manifolds and associated canard orbits.

We consider two-point boundary value problems of the form

u = Tg(u,\),
u©0) € L, (8.1)
u(l) € %,

whereg : R” x RP — R" is sufficiently smooth]" € R, A € R? are parameters andand

3 are submanifolds dR™. The parametef rescales time so that the orbit segments always
correspond to trajectories in the time inter{@l1]. Hence, the boundary conditions at the
two end points always apply t@(0) andu(1). In order to have a well-posed problem with
isolated solutions, the number of boundary conditions should equal the number of equations
(n, becauséu) € R™) plus the number of free parameters (at most 1 for the parameter

A and the total integration tim&). We are interested in one-parameter families of solutions

of (8.1), which means that we allow one fewer boundary condition (or one additional free
parameter). Note thdt is typically unknown and we may vieW as the extra free parameter.

Let us first consider the computation of two-dimensional attracting and repelling slow
manifoldsS? andS?. To simplify the explanation, we assume that we have a three-dimensional
slow-fast system with two slow variables and a folded node. In this context, the parameter
) remains fixed, and we obtain a one-parameter family of orbit segments (with unkown total
integration timesl") by imposing a total of three boundary conditions. This means that the
dimensions ofL and¥ in (8.1) sum up to» = 3. Our approach is to choodeas a curve
(or straight line) on the critical manifold, which requires two boundary conditionsYaasl
a surface (or plane), which requires one boundary condition, such that the associated one-
parameter family of orbit segments covers the desired portion of the slow manifold. For
example, in order foS¢ to come into the folded node region, we letbe a curve on the
attracting sheet of the critical manifold transverse to the slow flowabé a surface ortho-
gonal to the fold curvd’ at the folded node. The same approach worksSfarwhere we
chooseL on the repelling sheet of the critical manifold; note tiiatc 0 for such a family
of orbit segments. We remark that these choices can also be used with the sweeping method
and an initial value solver that detects a “stopping condition” defined by the level set of a
function. With the boundary value solvers, we can exchange the rolésaofd 33, which
is more appropriate for finding canard orbits; see Section 8.3. The slow manifolds can be
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extended by choosing cross-sectiahgrthogonal toF’ at points that lie beyond the folded
node. Figures 6, 20 and 29 give examples of such visualizations; see also [40, 41, 43].

As with all continuation, an important issue is to find a first solution. When continuing
solutions of a boundary value problem, explicit solutions may be known from which such a
first solution may be constructed; see [41] for an example. However, in general no explicit
solution is known and a first solution must be found in a different way. We use a homotopy
method to generate an initial orbit segment; the main idea is to continue intermediate orbit
segments via two auxiliary BVPs — the first to obtain an orbit segment from a point on the
fold curve F' to the section, and the second to move the end poink’aiong the critical
manifold to a suitable distance frof} see [40] for details.

We now illustrate this method with the Koper model (4.1), which was also used for the
case study in Section 4. We use the paramdterss, A\, k) = (0.1,1,7,—10); note that
A > 0 as in [122], which is symmetrically related to the case wita= —7 considered in
Section 4. As shown in Section 4, there is a folded node in this model, which organizes the
SAOs in some of the observed MMOs; in original coordinates it is at

24X 22 +4+k
Pt = _]-v

k- k
We computeS?, andS?, as solutions to the BVPs given by (8.1), wheres defined as the

right-hand side of (4.1). As boundary conditions, we use the same sétfamrboth 5S¢ and
SZ, with respective lined, = L® andL = L" as follows

> =(-1,-0.9,-0.8). (8.2)

Y o= {(z,y,2) € R® | 2 = —0.8}, (8.3)
L*:=Sn{x=-1.5}, (8.4)
L":=Sn{z=-02}. (8.5)

Figure 33 shows the result of the computations. We find a first orbit segmesft amsing

two homotopy steps; this is illustrated in Figure 33(a). Starting from the trivial solution
u = {psm | 0 <t < 1}, with total integration time&” = 0, we continue the family of orbit
segments that solves (4.1) subjectifd) € ¢, andu(0) € F. We stopped the computation,
detected by a user-defined functiorA TO, as soon as

u(0) € 2% := {(z,y,2) € R® | z = —0.76}.

The orbit segment with its end point dnin Figure 33(a) is this last computed solution of
the family. The second step of the homotopy moués) € S away fromF (approximately)
parallel toX, that is, we next continue the family of orbit segments that solves (4.1) subject
tou(l) € Eg, andu(0) € L* = S N X The continuation stops whelf is reached, which

is again detected by a user-defined functiolinto. A selection of orbit segments in this
family are shown in Figure 33(a) (red curves); only the last orbit segure(dark red) lies on

S¢2 to good approximation. A similar computation was done to obtain a first orbit segment

on SZ , where we use the intermediate sectioh := {z = —0.87}; this is illustrated in
Figure 33(b), where the orbit segmarit (cyan) serves as a first solution 8 .

Once the first orbit segment§ andu” have been found we start the continuation of (8.1)
with (8.3) and (8.4) for the attracting slow manifokf and with (8.3) and (8.5) for the
repelling slow manifoldSZ . The result is presented in Figure 33(c), and the intersection
curves ofS¢ andS?, with X, are shown in Figure 33(d). The transverse intersection points
of S¢ N Xg andSZ, N X, in panel (d) correspond to secondary canard orbits; the three-
dimensional view in panel (c) shows three of these, lab&led, and&s. Precisely for the
purpose of locating and continuing canard orbits it is necessary to choose the common cross-
sectionXy, for the calculations of¢ andS? ; see also the next section.
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Fic. 33 Computation of the slow manifolds?, and S, of the Koper mode{4.1) with (1,2, A, k) =
(0.1,1,7,-10). Panels (a) and (b) show the homotopy steps to construct first orbit segafedark red) onSg,
(red) andu” (cyan) onS?, (blue) that connect the sectidiy, with curvesL® and L™ on the critical manifoldS
(grey), respectively. The red and blue families are generated during the second homotopy step, which starts from
solutions that have one of their end points on the fold curvef S. Panel (c) showsS¢, and S, together with
three secondary canards, £2 and¢{s. Panel (d) shows the intersection curvesSg{ and S? in X¢, that are used
to detect canard orbits.

8.3. Finding and following canard orbits. Maximal canards near a folded node are
transverse intersection curves of the two-dimensional attracting and repelling slow manifolds
S¢ andS?. We briefly discuss here how to detect the canard orbits and subsequently continue
them in a system parameter; see also [40, 41, 43]. To represent a maximal canard we must
computeS¢ andS? using a common cross-sectiahof the fold curve at or near the folded
node. The common cross-section allows us to obtain a representation of the canard orbit as
the concatenation® of an orbit segmena® C S¢ with an orbit segmena”™ C ST, where
u® andu” are chosen such that' N ¥ = u” N X. The concatenated orhii® located with
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FiG. 34. Continuation of secondary canards of the Koper mddel) with (e2, A\, k) = (1,7, —10) starting
frome; = 0.1. Panel (a) shows the canard orlgj represented by the concatenatiafi of two orbit segmenta®
andu” that match up inJg,. Panel (b) shows the continuation of the canard orlgits€7 in 1; plotted as total
integration time7" versuse;. Panel (c) shows a two-dimensional “waterfall diagram” of the time profiles of the
fast variablex (subject to an offsed;) of computed orbit segments along the braggh The bold black curve in
panel (c) is the canard orb#, at the fold point of the (boldfaced) branch in panel (b).

this method can be continued in a system parameter without the need to recompute the slow
manifolds at each step. Recall that AUTO always scales boundary value problems to the time
interval [0, 1], so we rescale time oa°® appropriately and s&t = T* + T" in (8.1). We can
then start the continuation (in a system parameter) subject to the boundary conditions

u’(0) € L°, (8.6)
u’(l) e L', (8.7)

which determinax© as an isolated solution. In fact, such a continuation typically starts already
provided thatu® N ¥ ~ u” N X; any small gap irx is forced to close by the first Newton
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step. These two boundary conditions (8.6) and (8.7) force the orbit segrhémistay very
close to the attracting sheet of the critical maniféldintil near the fold curve”, and then
stay close to the repelling sheet®$tp to L".

Figure 34 illustrates canard continuation with the Koper model (4.1), where we used
e1 as the second free parameter (together Wijrand kept(ez, A, k) = (1,7, —10) fixed.
Figure 34(a) shows the two orbit segmenfsandu” with (almost) equal end points in the
sectiony: = X,; they have been detected as a good approximation of the maximal secondary
canard orbitt,, which is then represented by the concatenated arbitWe continued:,,
along with six other maximal secondary canards, for increasing and decreasseg also
Figure 33. Figure 34(b) shows these seven branches, labgléd here, the vertical axis
shows the total integration timE because it clearly distinguishes the branches. When
&7 are continued in the direction of increasing a fold ine; is detected for each branch;
we have already seen this in Section 5 and it has also been observed in other systems [43].
Figure 34(c) is a “waterfall diagram” that shows how the maximal secondary canard.orbit
evolves along the branch asis varied; specifically, the time profile of the fast variablef
consecutively computed orbit segments along the brapelne plotted with a suitable off-set
d;. The orbit segment that corresponds to the fold,a6 highlighted in bold black. Observe
that the orbit segments to the left of the fold have four SAOs, whereas past the fold there are
only three SAOs followed by a fast segment. Hence the canard orbits past the fold are no
longer maximal canards; see also Section 5.

9. Discussion. We described several mechanisms in slow-fast systems that produce
mixed-mode oscillations, namely the twisting of slow invariant manifolds near a folded node,
oscillations that follow the two-dimensional unstable manifold of a saddle-focus equilibrium
near a singular Hopf bifurcation, and the tourbillion mechanism of a dynamic Hopf bifurc-
ation. Geometric singular perturbation theory provides tools to identify the geometry asso-
ciated with each mechanism, to quantify the MMO signatures, and to describe associated
bifurcations. Analysis of the folded node case is more complete than the other cases. Re-
cent work on singular Hopf bifurcation [85] and the transition from singular Hopf to folded
nodes [143] provides substantial detail on the second case, but much remains to be discovered
about the unfolding of a singular Hopf bifurcation that is relevant to MMOs. Historically, the
dynamic Hopf bifurcation was discovered first, and detailed analysis exists for the case of a
delayed Hopf bifurcation of the layer equations [168]. Together, these mechanisms constitute
a partial framework for classifying MMOs in multiple-time-scale systems that can be further
extended. Perhaps the most surprising aspect of the theory we have described is that oscilla-
tions can appear from the interaction of fast and slow time scales even when neither of these
time scales individually displays oscillations.

We have used four case studies to illustrate theoretical concepts and they serve as a test-
bed for the development of numerical methods. The MMOs in the Koper model and the
three-dimensional reduction of the Hodgkin—Huxley equations have SAOs that occur on in-
termediate time scales due to folded nodes and singular Hopf bifurcations. In the folded-node
mechanism, three parameters play key roles in determining the geometry of the small oscilla-
tions: the ratie of time scales, the eigenvalue ratiof the folded node in the desingularized
reduced system, and the distardcef global return trajectories from certain invariant man-
ifolds. Intersections of invariant manifolds are prerequisite to global returns that produce
MMOs in these examples, and tangencies between these manifolds constitutes a new type of
bifurcation that is found on the boundaries of parameter regions yielding MMOs. We found
fast oscillations of the layer equations in the Olsen and Showalter—Noyes—Bar-Eli models of
chemical reactions. Both models exhibit MMOs due to the dynamic Hopf mechanism. These
two case studies also illustrate how the theory applies in higher dimensions and how numer-
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System / Reaction References
Belousov-Zhabotinskii (BZ) reaction
- Virginia [83, 103, 104, 105, 202]
- Texas [156, 157, 158, 194, 195]
- Bordeaux [8, 9, 183, 193, 228]
- Other groups | [107, 155, 184, 185, 206]
Briggs-Rauscher (BR) reaction [28, 73,171, 231]
peroxidase-oxidase (PO) reaction | [76, 97, 98, 99, 100, 106, 173, 207]
HPTCu reaction [15, 137, 175, 176, 227]
Bray-Liebhafsky (BL) reaction [73, 149, 230]
copper and phosphoric acid [6, 200]
indium/thiocyanate (IT) reaction [125, 126]
BSFA-system [128]
p-CulnSg/H;O3-system [167, 182]
spin-wave experiment [5]
rhythm neural network (PreBC) [39]
stellate cells [45, 46, 61]
pituitary cells [225, 229]
combustion oscillations [82]
dusty plasmas [160]
semiconductor lasers [7, 81, 226]
CO oxidation [57, 58, 136]
TABLE 9.1

References for experimental investigations of MMOs.

ical tools can be extended to investigate and identify the mechanisms for generating MMOs
in higher-dimensional systems.

One of our goals for this paper is to facilitate fitting dynamical models to data. In the
case of MMOs, this task has been less successful than with many other nonlinear dynamical
phenomena. On the one hand, MMOs are a complex phenomenon, and on the other hand,
numerical studies of models have yielded puzzling and sometimes paradoxical results. The
theory that has been developed thus far deals best with circumstances where the SAOs have
amplitudes that are far too small to be observed even in numerical simulations, but model
studies frequently show MMOs with SAOs that are readily visible. Thus, numerical meth-
ods that identify the geometric objects highlighted by the theory are essential for bringing
theory, models and empirical data together. We have reviewed recent advances in computing
two-dimensional invariant manifolds and their intersections that are especially important in
three-dimensional models. Extension of these methods to higher dimensions is one of the
challenges for further advances in this subject.

We conclude this survey with a brief review of the MMO literature, and a short discussion
of other mechanisms for MMOs in ODEs and beyond.

9.1. MMO literature review. This section provides an overview, in the form of three
tables, of references where examples of MMOs have been studied experimentally or in model
systems. We do not claim that this overview is complete; rather, these tables are intended as
an entry point into the extensive literature on the subject. Table 9.1 lists experimental work on
MMOs. The majority of these experiments have been carried out for chemical reactions. As
suggested in [8], we subdivided the large number of references on the Belousov-Zhabotinskii
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| Mathematical Model | Dimension | References
Belousov-Zhabotinskii (BZ) reaction
- Field—Koros—Noyes (FKN) 11 [70]
- FKN-extended (GTF-model) 26 [96]
- Showalter—Noyes—Bar-Eli (SNB) 7 [16, 36, 154, 188, 205]

3]

- (Minimal) Oregonator 3 [71, 179, 203, 218, 220]
- Model K (“Kyoto”) 3 [216, 221]
- lUator (“Indiana University”) 4 [201, 221]
- Geiseler—Bllner oregonator 3 [77,221]
- FKN-modified 7 [186]
- Zhabotinskii-Korzuhkin 3 [240]
BR-reaction
- De Kepper, Epstein; Furrow, Noygs 11 [117,170, 171, 219, 231]
- Kim, Lee, Shin 8 [120, 121]
- Vukojevit, Sgrensen, Hynne 13 [231]
PO-reaction
- Olsen / DOP models 4 [4,37,42,150, 152, 153, 173, 204
- BFSO model, Urbanalator 10 [29, 30, 99, 151, 174, 198]
- Yokota-Yamazaki (YY) model 8 [65, 199, 238]
- FAB model 7 [64, 199]
- Model A, Model C 9,10 [2, 3]
- Model C-HSR 12 [106]
Plenge model (hydrogen oxidation) 4 [11]
IT-reaction 3 [123, 124, 125, 127]
BSFA-system 4 [128]
p-CulnSg/H,0,-system 2,4 [167, 182]
self-replicating dimer 3 [178, 181]
autocatalytic SU3 unit 3 [217]
Hodgkin—Huxley (HH) 4 [52, 196, 197]
self-coupled HH 3 [53]
CO oxidation 3 [58, 136]
self-coupled FitzHugh-Nagumo (FHN) 3 [40, 233]
FHN, traveling frame 3 [89, 91]
combustion oscillations 3 [75, 82]
stellate cells
- Acker, Kopell, White (AKW) 7 [1, 191, 234]
- reduction of AKW 3 [109, 192, 234]
pituitary cells 3,4 [169, 209, 213, 229]
dopamine neurons 4 [139, 159]
autocatalator 3 [92, 161, 162, 180]
LP neuron 14 [87]
Erisir model 5 [62, 63]
semiconductor lasers 3 [7,51, 133, 135, 177]

TABLE 9.2
References for realistic mathematical models that exhibit MMOs.

(BZ) reaction into research groups. Table 9.2 lists references to mathematical models that

58



Abstract Model Dimension | References
Boissonade and De Kepper; Koper| 2,3 [26, 116, 122]
Boissonade and De Kepper; Strizhak 2, 3 [26, 80, 119]
Kawczynski and Strizhak 3 [113, 114, 184, 185]
folded node toy model 3 [31]
3-scale: Krupa, Popovic, Kopell 3 [138, 139]
Hopf-hysteresis normal form 3 [16, 186]
4
3
4

two coupled oscillators [210]
Rossler; Gaspard and Nicolis [16, 74]
Barkley [16]

TABLE 9.3
References for abstract models exhibiting MMOs.

were derived or proposed for a particular application that features MMOs; several papers
from Table 9.1 also contain a theoretical model and are, hence, listed again in Table 9.2.
Finally, Table 9.3 lists several abstract models that are designed to be among the simplest
systems that yield MMOs with specified characteristics; the first five rows of the table repres-
ent frameworks of folded nodes, folded saddle-nodes and singular Hopf bifurcation that are
presented in this paper.

Chemical reactions feature strongly in Tables 9.1-9.3. There have been substantial ef-
forts to develop models, from the law of mass-action, that reproduce experimental observa-
tions. We remark that detailed models that attempt to capture the full chemistry of a reaction
are typically very stiff and contain large numbers of parameters; as a result, it is often diffi-
cult to fit the models to experimental data. We hope that the theory and numerical methods
reviewed in this paper lead to better fits of models to data. Note that recent interest in MMOs
in neuroscience is also reflected in the three tables.

9.2. Other MMO mechanisms in ODEs. Historically, MMOs have also been studied
in the context of bifurcations of systems with a single time scale. More specifically, homo-
clinic or heteroclinic cycles involving one or several invariant objects provide a mechanism
for MMOs that does not require an explicit slow-fast structure. The best-known case is that
of a homoclinic orbit to a saddle-focusR?. A theorem by Shihikov [88, 147, 204] proves
that (depending on a condition on the eigenvalues of the saddle-focus) there exist one or
an infinite number of periodic orbits in a tubular neighborhood of the homoclinic orbit; see
also [79]. Each such periodic orbit near this global bifurcation involves one or several large
excursions along the homoclinic orbit, as well as small oscillations when the trajectory spir-
als away from, or back toward the saddle-focus. This type of oscillations nearik@vil
bifurcations can be found readily in laser systems: one or several large pulses of the laser
power are followed by small damped oscillations near the saddle-focus; see, for example,
[7, 51, 81, 133, 135, 177, 226, 236]. The small oscillations are at a characteristic frequency
and are due to a periodic exchange of energy between the optical field and the carrier reservoir
(electron-hole pairs in the case of a semiconductor laser). Similarly, more complicated het-
eroclinic cycles may give rise to large excursions followed by small oscillations. A concrete
example is a heteroclinic cycle between a saddle equilibrium and a saddle periodic orbit, as
can be found, for example, near a saddle-node Hopf bifurcation with global reinjection. Near
this global bifurcation one can find large attracting periodic orbits that visit a neighborhood of
the equilibrium and also have an arbitrary number of smaller loops around the saddle-periodic
orbit; see [129, 134].

While such global bifurcations are generic and require no special properties of the sys-
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FIG. 35. An MMO periodic orbitl" in the Gaspard-Nicolis-Bssler model [74]. Panel (a) showsrelative to
the S-shaped critical manifold; this illustrates that the SAOs are taking place entirely on the slow manifold. Panel (b)
shows the time series of thecoordinate of".

tem, they often appear in slow-fast systems and proving their existence is greatly simplified
in this context [163, 211]. A notable example was introduced bgdRer [189, 190] and later
illustrated by a model due to Gaspard and Nicolis [74]. Figure 35(a) shows the geometry of
this model; it has a classical S-shaped critical manifoldith two fold lines and there exists

a stable MMO periodic orbil’ that contains two fast segments. Figure 35(b) shows the cor-
responding time series of one of the coordinatek ahd illustrates thaf has signature?.

The LAOs ofI" are formed by the usual relaxation-oscillation mechanism. The phase portrait
in Figure 35(a) is near (the simple case of) a Bikibv bifurcation; the SAOs occur because,

after one fast transitior, is in the vicinity of a saddle-focus equilibrium, which is an un-
stable focus of the slow flow. Note that the time series also show that the SAOs happen on the
slow time scale. Barkley [16] observed that this mechanism does not account for MMOSs in
the BZ reaction because there the SAOs also have a fast component. Morever, this particular
mechanism does not seem to occur in other models as commonly as the slow-fast mechanisms
presented in Section 3. Intuitively this is expected since the global-return mechanism has to
be special (hamely, near a Shikov bifurcation) to provide returns to a small neighborhood

of a slow-flow focus. Nevertheless, thé$sler mechanism is of interest historically as one

of the first proposed geometric mechanisms for MMOs. It is also another nice example that
illustrates the geometric approach of exploiting the slow-fast nature of a system to understand
MMOs.

Subcritical Hopf bifurcation in a system with a single time scale has also been observed
to give rise to MMOs. The appearance of these MMOs resembles those associated with
Shilnikov bifurcation. Guckenheimer and Willms [93] analyze this phenomenon, which we
briefly sketch here. Consider a three-dimensional system in which an equiliprinakes
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the transition from a sink to a saddle-focus via a subcritical Hopf bifurcation. Whera
saddle-focus, it has a real eigenvalue of magnitide) and a pair of complex eigenvalues
whose real parts are small and positive. Trajectories that come close to the stable manifold of
q will flow close toq and then slowly spiral away with oscillations of increasing magnitude,
similar to those observed near a singular Hopf bifurcation; see Figure 21. MMOs will occur
if these spiraling trajectories make a global return to the vicinity.ofGlobal returns for
portions of the unstable manifold gfare robust and may exist already at the Hopf bifurc-
ation where the center manifold gfis weakly unstable. In this case, the returns are likely

to come close enough tpthat they will give rise to long epochs of small, slowly growing
oscillations. See Guckenheimer and Willms [93] for a three-dimensional example and Guck-
enheimer et al. [87] for a high-dimensional example occurring in a neural model. We remark
that, although this mechanism for creating MMOs applies to a single-time system, the Hopf
bifurcation naturally introduces a slow time scale in the system associated with the real parts
of the unstable complex eigenvalues.

The MMOs that we have discussed in this survey have SAOs generated by a local mech-
anism near a special point of the limiting system. However, SAOs and associated MMOs may
also arise in other ways in slow-fast systems. An example of this are MMOs with two well-
defined separate oscillations that occur when the layer equations have two families of periodic
orbits, one large and one small, and fast jumps between them. This scenario is analogous to
the phenomenon of bursting, which is common in neural systems. In bursting, oscillations
alternate with quiescent epochs (associated with a slow drift along a stable equilibrium of the
layer equations) instead of there being oscillations of different amplitudes. Since the sem-
inal work of Rinzel [187], bursting has been viewed as a multiple-time-scale phenomenon.
In this context, bursts occur when the layer equations of a model have both equilibria and
limit-cycle attractors and the full system makes fast jumps between these in both directions.
Izhikevich [108] compiled an extensive classification of bursting patterns based upon the bi-
furcations of the layer equations that initiate and terminate the oscillations in a burst. A
similar table could be constructed for MMOs, but it would be even larger. Golubitsky, Josi¢
and Kaper [78] use a different classification of bursting patterns based on singularity theory,
which is more in the spirit of this survey. Section 6 gives a brief taste of the analysis of global
mechanisms for transitions between large and small oscillations in MMOs.

9.3. MMOs beyond ODEs. This survey only considers MMOs that arise in slow-fast
ODEs, but they have also been found in dynamical systems that are described by stochastic
differential equations (SDEs), delay differential equations (DDEs) and partial differential
equations (PDEs). The analysis of MMOs in these more involved settings is much less de-
veloped than that for ODEs. To give a flavor, we now describe briefly a few recent examples
in which a slow-fast structure is an important aspect of the MMOs that have been identified.

9.3.1. Stochastic MMOs. Muratov and Vanden-Eijnden [165] study the Van der Pol
oscillator with small (additive) noise; they useas the bifurcation parameter and consider
the casd) < ¢ < 1. Their analysis shows an intricate interplay between the noise and the
singular perturbation parameterand how this depends on For example, it can be shown
that even if the deterministic limit without noise has just a stable fixed point for suitable
A, the stochastic differential equation (SDE) can exhibit relaxation-type oscillations; also
MMOs that are composed of “small canard orbits” and relaxation LAOs can occur. Borowski
and Kuske [145] consider a similar stochastic slow-fast equation of FitzHugh—Nagumo type
and find MMOs due to noise as well; see also [146]. Closely related is the work by Berglund
and Gentz [24, 25] who study spike generation in slow-fast neural models with noise in the
framework of SDEs. The common ingredient in these examples is excitability: while small
noise only leads to small irregular oscillations, a sufficiently large noise perturbation can kick
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the system beyond a threshold that results in a large excursion. There is a noise level when
the system is most coherent or regular and, hence, shows well-defined but irregular MMOs.
Excitability as a mechanism to generate large pulses as the result of external and/or internal
noise has also been observed and studied in several laser systems [54, 133].

Another possible mechanism for noise-induced MMOs was investigated by Yu et al. [239],
who consider a system of coupled-oscillator SDEs. If the deterministic limit is at least bistable
then noise can provide a mechanism for sample paths to alternate between the basins of at-
traction of deterministically stable invariant sets. The simplest way to visualize this idea is to
consider two stable limit cycles for an ODE, one with a small and the other with a large amp-
litude. If the basins of attraction are suitably located, noise can induce repeated transitions
between tubular neighborhoods of each cycle. Hence, a typical sample path will then be an
irregular MMO.

9.3.2. MMOs in delay differential equations. One can ask the question what happens
when one adds delay terms to a slow-fast system. Sriram and Gopinathan [206] consider
the Belousov-Zhabotinskii reaction with delay in an experiment. They compare the results
with a version of the classical three-dimensional Oregonator model [71, 203] with delay and
claim that the delay induces MMOs [206]. This prompts the question whether DDEs have
slow-fast phenomena, such as canards, similar to their ODE counterparts. In principle, this
should be expected at least for the case of a finite number of fixed delays, for which the
DDE does not feature a continuous spectrum [94]. Indeed a positive answer was recently
obtained by Campbell, Stone and Erneux [32] for a two-dimensional DDE model of high-
speed machining. In their system a small delay induces perturbation from a degenerate Hopf
bifurcation, which results in a canard explosion as discussed in Section 2.2; see also [34] for
details of the underlying theory for slow-fast DDEs with small delay.

9.3.3. MMOs in partial differential equations. Given a time-dependent PDE on a do-
main inR™, one can look for MMOs in space, time or a mixture of space and time. Nagumao’s
equation [166], which models the evolution of an activatar, t) and a slow inhibitor(x, t),
is an example that has been studied extensively as an idealized model for propagation of ac-
tion potentials. Traveling-wave profiles are found via the ans@tzt) = v(x + ot) = v(7)
andw(z,t) = w(z + ot) = w(7) as homoclinic solutions of a three-dimensional ODE with
two fast variables and one slow variable [90]; heres the wave speed. It has been shown
that MMOs exist as solutions of this reduced ODE [91]. More generally, work on evolution
equations given by PDEs suggests that oscillatory patterns with alternating amplitudes [35]
and slow-fast structures [17] exist in many common models. Hence, the study of this type of
MMOs for PDEs will benefit from multiple-time-scale methods.
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