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ZUSAMMENFASSUNG

Die vorliegende Arbeit ist der kollektiven Dynamik identischer anreg-
barer Elemente gewidmet. Ein klassisches Beispiel fiir ein anregbares
Element ist das Neuron: Nur ein ausreichend starker Stimulus veran-
lasst es zu einer Reaktion in Form eines Nervenimpulses bevor es zu
seinem Ruhezustand zuriickfindet; andernfalls verbleibt es im Ruhezu-
stand. Anregbare Elemente der Klasse 1 kdnnen im Rahmen der nichtli-
nearen Dynamik als Systeme nahe einer Sattel-Knoten-Bifurkation auf
einem invarianten Kreis beschrieben werden. Der Prototyp eines sol-
chen Systems ist der Aktive Rotator. Der Fokus unserer Arbeit liegt
auf dem Studium Aktiver Rotatoren.

In Teil eins der Arbeit motivieren wir zunéchst das klassische Modell
abstoflend gekoppelter Aktiver Rotatoren nach Shinomoto und Kura-
moto und verallgemeinern es indem wir hohere Fourier-Moden in der
internen Dynamik der einzelnen Rotatoren beriicksichtigen. Wir fiih-
ren auferdem das mathematische Riistzeug auf dem unsere Arbeit be-
ruht ein. Dazu gehdren insbesondere die Theorie normal-hyperbolischer
invarianter Mannigfaltigkeiten, die Averaging-Methode und Watanabe-
Strogatz-Integrabilitit die es ermoglicht, Systeme identischer Winkel-
variablen durch Mébius-Transformationen zu beschreiben.

In Teil zwei untersuchen wir zunéchst die Existenz und Stabilitat
periodischer Zwei-Cluster-Losungen fiir verallgemeinerte Aktive Rota-
toren und beweisen anschliefend die Existenz eines Kontinuums peri-
odischer Losungen fiir eine Klasse von Watanabe-Strogatz-integrablen
Systemen zu denen insbesondere auch das klassische Aktive-Rotatoren-
Modell gehort und zeigen dass (i) dieses Kontinuum eine normal-anzie-
hende invariante Mannigfaltigkeit bildet und (ii) eine der periodischen
Losungen des Kontinuums ein Splay State ist. Darauf aufbauend entwi-
ckeln wir eine Storungstheorie fiir solche Systeme die auf der Averaging-
Methode beruht. Mit Hilfe dieser Methode kénnen wir Riickschliisse auf
die asymptotische Dynamik des verallgemeinerten Aktive-Rotatoren-
Modells auf Grundlage der entarteten Dynamik des klassischen Modells
ziehen. Als Hauptergebnis stellen wir fest dass sowohl periodische Zwei-
Cluster-Losungen als auch Splay States robuste und potentiell stabile
Losungen fiir Systeme identischer Aktiver Rotatoren sind. Wir unter-
suchen auflerdem einen “Stabilitatstransfer” zwischen diesen Lésungen
durch sogenannte Broken-Symmetry States.

In Teil drei widmen wir uns Ensembles hoherdimensionaler Klasse-I-
anregbarer Elemente in Gestalt von Morris-Lecar-Neuronen. Wir stel-
len insbesondere fest, dass die asymptotische Dynamik solcher Systeme
mit der der Aktiven Rotatoren vergleichbar ist. Dies legt nahe, dass un-
sere Ergebnisse aus Teil zwei ein qualitatives Bild fiir die Beschreibung
komplizierterer und realistischerer Neuronenmodelle liefern.






ABSTRACT

This thesis is dedicated to the study of the collective dynamics of ex-
citable elements. A classic example for an excitable element is the neu-
ron: Only if it receives a sufficiently strong stimulus will it respond
with an outgoing nerve impulse before returning to its state of rest;
otherwise, it stays at rest. Class I excitable elements can be described
within the theory of nonlinear dynamics as systems which are close to a
saddle-node bifurcation on an invariant circle. The prototype for such
a system is the so-called Active Rotator. Our work focuses on the study
of Active Rotators.

In part one of this thesis, we motivate the classic model of repulsively
coupled Active Rotators by Shinomoto and Kuramoto and generalize
it by considering higher order Fourier modes in the on-site dynamics
of the Rotators. We also introduce the arsenal of mathematical meth-
ods which our work relies on, namely the theory of normally attracting
invariant manifolds, the method of averaging, and Watanabe-Strogatz
integrability which allows to describe systems of identical angular vari-
ables in terms of Md&bius transformations.

In part two, we investigate the existence and stability of periodic
two-cluster states for generalized Active Rotators and afterwards prove
the existence of a continuum of periodic orbits for a class of Watanabe-
Strogatz integrable systems which includes, in particular, the classic
Active Rotator model. We show (i) that this continuum constitutes a
normally attracting invariant manifold and (ii) that one of its periodic
solutions is a splay state. From this, we develop a perturbation theory
for such systems, which builds on the method of averaging. By virtue
of this method, we can deduce the asymptotic dynamics of the gener-
alized Active Rotator model by means of the degenerate dynamics of
the classic model. As a main result, we find that periodic two-cluster
states as well as splay states are robust and potentially stable periodic
solutions for systems of identical Active Rotators. We also investigate
a “transfer of stability” between these solutions by means of so-called
broken-symmetry states.

In part three, we study ensembles of higher dimensional class I ex-
citable elements in form of Morris-Lecar neurons. We find that in par-
ticular, the asymptotic dynamics of such systems are similar to those of
Active Rotators, which suggests that our results from part two yield a
suitable qualitative description of more complicated and realistic neural
models.
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T've put in so many enigmas and puzzles that it will keep the
professors busy for centuries arguing over what I meant, and that’s
the only way of insuring one’s immortality.

— James Joyce
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We look at the world through windows on which have been drawn grids
(concepts). Different philosophies use different grids. A culture is a group of
people with rather similar grids. Through a window we view chaos, and
relate it to the points on our grid, and thereby understand it. The ORDER
is in the GRID. That is the Aneristic Principle.

— Principia Discordia

ACKNOWLEDGMENTS

It is a commonplace that pursuing a PhD is as much an intellectually
challenging and satisfying endeavor as it is arduous labor. It can keep
you up all night because you finally found the solution for that one
problem you were desperately trying to solve and are too excited to
implement that solution the next day to fall asleep. It can also rob you
of your sleep because no matter how hard you try, this very problem
eludes all your efforts to solve it even though it seems so simple (or you
wake up at night and just realize that what you thought would work
turns out to be plain wrong). I had my fair share of all of these moments.
It is therefore all the more important to have yourself surrounded with
people that inspire (and sometimes press) you to keep working and who
share their experience and knowledge with you.

I would therefore like to first and foremost thank my supervisor PD
Dr. Michael A. Zaks for giving me the opportunity to work with him,
his support and guidance through the last four and a half years, and
his patience with me when I was not necessarily working on what I
was supposed to. I am in great debt to him for allowing me to pursue
my scientific ideas even when they seemed sketchy and crude at first. I
would also like to thank Professor Tiago Pereira for welcoming me at
USP in Sao Carlos and for his help to make those crude ideas rigorous.
My stay in Brazil was a most fruitful and exciting experience, even if it
lasted not as long as I hoped for, for circumstances that nobody could
foresee. I would especially like to express my gratitude to both of them
for the countless hours of discussions and explanations of concepts and
ideas that would have otherwise completely eluded me.

Pursuing a PhD goes hand in hand with meeting new people and
often making new friends. I therefore want to seize the opportunity to
mention my friends and (former) colleagues in the IRTG and the HU:
Adrian Pacheco-Pozo, Andreas Koher, Chris Gong, Fabian Baumann,
Florian Stelzer, Frederik Wolf, Jorg Notel, Lukas Ramlow, Nico Wun-
derling, Nicolai Friedhoff, Patrick Péschke, Rico Berner, Sebastian Mil-
ster, Sebastian Vellmer, Sten Ridiger, and Tommaso Rosati, to name a
few. I think I also speak for all participants when I say that especially
the Portuguese classes with Carlos Alberto Afonso were great fun for
all of us. I would also like to thank David Hansmann for the admin-
istration of the IRTG 1740 and his help with organizational issues, as
well as for our common lunch and coffee breaks.

ix



During my way too short stay in Brazil, I fell in love with the country
and with the city of Sdo Carlos and this was all due to the wonderful
friends, I made there. I want to especially thank Zheng Bian and Ed-
milson Roque Santos not only for sharing their superior knowledge and
experience with me but also for the great time we had together. I am
in great debt to them alone for the hours and hours of discussing my
numerous mathematical problems and giving me advice on how to solve
them.

My time in Brazil would not have been such a wonderful experience,
if I hadn’t met so many great people who generously welcomed me
there. For this, I would like to thank Zheng and Edmilson as well as
Asrat Belachew Mekonnen, Douglas Finamore, Fernando Cordeiro de
Queiroz, Hans Muller Junho de Mendonca, Matheus Palmero Silva,
Richard Javier Cubas Becerra, Thomas Kaue Dal Maso Peron, and
Zeray Hagos Gebrezabher. A special thanks goes to Vander Luis de
Souza Freitas and Edson Santos without whom I would probably still
be stuck either at Guarulhos airport or the Tieté bus terminal and to
Stefan Ruschel who, when I told him about my mathematical struggles,
encouraged me to go to Sdo Carlos in the first place because he knew
that Tiago was just the right person to help me.

I also want to take this opportunity to thank Andreas, Edmilson,
Frederik, Lukas, Rico, Thomas, and Zheng for proofreading this thesis
as well as their many valuable comments and brazenly blame them for
any typos that made it through.

Zum Schluss mochte ich meiner gesamten Familie und Ana Carolina
de Carvalho Belmani fiir ihre Liebe und Unterstiitzung danken und da-
fiir dass sie immer geduldig ein ,Wenn sie fertig ist.“ als Antwort auf
die Frage wann ich meine Doktorarbeit endlich einreiche akzeptiert ha-
ben. Ohne euch hétte ich es nicht bis hierher geschafft und eines Tages
werde ich euch auch erkldren worum es bei meiner Arbeit eigentlich

ging.

This work has been financially supported by the IRTG 1740/ TRP
2011/50151-0, funded by the DFG/FAPESP.



CONTENTS

—

11

INTRODUCTION 1
FOUNDATIONS 9
COUPLED ACTIVE ROTATORS 11

2.1 Class I Excitability and Active Rotators 11

2.2 Coupled Identical Active Rotators 19

2.3 The Models 22

MANIFOLDS, SYMMETRIES, AND AVERAGING 25
3.1 Fixed Points, Floquet Theory, and Poincaré Maps 25

3.1.1 Numerical Computation of Floquet Multipliers 28

3.1.2 Splitting Floquet Multipliers for Periodic M-Cluster
States 29
3.2 Normally Attracting Invariant Manifolds 33
3.3 Spatio-Temporal Symmetries 36
3.4 Averaging Theory 39
WATANABE-STROGATZ INTEGRABILITY 41
4.1 Watanabe-Strogatz Variables 41
4.2 Integrability o1
4.3 General Dynamics in Watanabe-Strogatz Variables 53

ENSEMBLES OF ACTIVE ROTATORS 55
TWO-CLUSTER STATES 57
5.1 General Remarks 58
5.2 A Reduced Description 58
5.3 Fixed Point Bifurcations in T), 61
5.3.1 Destabilization of AS® 62
5.3.2 Criterion of Criticality for the Pitchfork Bifurca-
tion of AS® 64
5.4 Limit Cycle Bifurcations in T), 69
5.4.1 The Double-Heteroclinic Bifurcation 71
5.4.2 The Double-SNIC 73
5.5 Limit Cycle Stability 76
5.5.1 Symmetric Two-Cluster States 79
5.5.2 Asymmetric Two-Cluster States 81
5.6 Conclusion 83
INTEGRABLE DYNAMICS AND THE NORMALLY ATTRACT-
ING CONTINUUM OF PERIODIC ORBITS 85
6.1 General Remarks 85
6.2 The Classic Model in Watanabe-Strogatz Variables 87
6.3 A Class of Watanabe-Strogatz Integrable Systems 88
6.3.1 The Level Set of Uniform Distributions 90
6.3.2 The Continuum of Periodic Orbits 96
6.3.3 Existence of the Splay State 101
6.4 Application: Ensembles of Active Rotators 103

Xi



xii

CONTENTS

IIT

v

6.4.1 Addendum: The Case |w|>1 107
6.5 Conclusion 107
GENERAL DYNAMICS AND THE AVERAGING PRINCI-
PLE 111
7.1 General Remarks 111
7.2 The Averaging Principle for Watanabe-Strogatz Theory
7.3 Implications 120
7.3.1 Switch in Stability 120
7.3.2 Persistence and Stability of Splay States 121
7.3.3 Controlling Periodic Orbits 128
7.4 Application: Ensembles of Active Rotators 130
7.4.1 A Case Study for N =4 Units 130
7.4.2 Transfer of Stability for NV =4 Units 140
7.4.3 Persistence and Stability of Splay States for N >
4 Units 145
7.4.4 Constructing a Robust Periodic Orbit for N = 10
Units 148
7.5 Conclusion 150

ENSEMBLES OF MORRIS-LECAR NEURONS 157

COUPLED MORRIS-LECAR NEURONS 159

8.1 The Model 159

8.2 Limit Cycle Bifurcations 164
8.2.1 The Transcritical Homoclinic Bifurcation 164
8.2.2 Double-Heteroclinic Bifurcations 166

8.3 Transfer of Stability 169

8.4 Conclusion 171

CONCLUSION 173
CONCLUSION 175

APPENDIX 185

THE MOBIUS GROUP 187

THE TRANSCRITICAL HOMOCLINIC BIFURCATION OF
A 189

CHANGE OF PITCHFORK CRITICALITY 193
AVERAGING FOR THE TRUNCATED SYSTEM 195

BIBLIOGRAPHY 199

114



LIST OF FIGURES

Figure 1
Figure 2

Figure 3

Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Figure 13

Figure 14

Figure 15
Figure 16
Figure 17
Figure 18

Figure 19
Figure 20

Figure 21

Figure 22

Subthreshold perturbation and spike for a Morris-
Lecar neuron 12

Current-frequency relation for class I and II ex-
citable neurons 14

Saddle-Node Bifurcation on an Invariant Circle
(SNIC) for a Morris-Lecar neuron and an Active
Rotator 15

Existence of periodic two-cluster states for the
system (2.6) 60

The two simplest symmetric two-cluster bifur-
cation scenarios 63

Possible intersections of two parabolas 65
Example phase plot in T/, 70
Double-heteroclinic bifurcation scenario for sym-

metric two-cluster states 71
Double-heteroclinic bifurcation scenario for asym-
metric two-cluster states 72

Double-SNIC scenario for symmetric two-cluster
states 74

Double-SNIC scenario for asymmetric two-cluster
states 75

Stability diagram for periodic two-cluster states
for the system (2.6) with w = 0.6 79
Stability diagram for periodic two-cluster states
for the system (2.6) with w = 0.8 80
Stability diagram for periodic two-cluster states
for the system (2.6) for a generic perturbation
with w = 0.6 81

Nested stability regions for asymmetric periodic
two-cluster states 82

Periodic orbits for the classic Active Rotator
model (2.5) 87

Schematic depiction of the manifold Mg and its
periodic orbits 101

Schematic depiction of the dynamics on the man-
ifolds M and M, 119

ﬁ‘h for three different choices of h 130

Splay state for the classic and the generalized
Active Rotator model 131

Broken-symmetry state for four classic Active
Rotators 132

Broken-symmetry states for different values of
A 133

xiii



Figure 23 Coinciding copies of M 134

Figure 24 Stability diagram for the splay state for the sys-
tem (2.6) with N =4 and w=10.8 135

Figure 25 Stability diagram for the splay state for the sys-
tem (2.6) with N =4 and w=10.6 136

Figure 26 ﬁ‘h with additional zeros, indicating the pres-
ence of broken-symmetry states 137

Figure 27 Broken-symmetry state for the classic and the
generalized Active Rotator model 138

Figure 28 Schematic depiction of the simplest possible lo-

cal stability transfer scenarios between the splay
state and the periodic two-cluster states 139

Figure 29 A saddle-node bifurcation of broken-symmetry
states in F';, 140
Figure 30 Existence and stability of the splay state, pe-

riodic two-cluster states, and broken-symmetry
states for four generalized Active Rotators with

e=0.05 141

Figure 31 Angular coordinates ¢;(¢) along the heteroclinic
cycle between Z! and 22 143

Figure 32 Existence and stability of the splay state, pe-

riodic two-cluster states, and broken-symmetry
states for four generalized Active Rotators with

e=0.001 145

Figure 33 Stability diagram for the splay state for five to
eight generalized Active Rotators 146

Figure 34 Broken-symmetry states for six and eight gen-
eralized Active Rotators 147

Figure 35 (Normalized) time series for a controlled peri-

odic orbit of ten generalized Active Rotators for
different values of ¢ 149

Figure 36 Phase plot for a single Morris-Lecar neuron 163

Figure 37 Splay state for five Morris-Lecar neurons 166

Figure 38 Symmetric two-cluster bifurcation scenarios for
ensembles of Morris-Lecar neurons 167

Figure 39 Bifurcation diagram around the codimension 2
point 168

Figure 40 Existence and stability of the splay state, pe-

riodic two-cluster states, and broken-symmetry
states for four Morris-Lecar neurons. 169

Figure 41 Broken-symmetry state of four Morris-Lecar neu-
rons 171

Xiv



LIST OF SYMBOLS

¢, ¢, 0,0
x, P, 0, ...
N

Sl

N
Tordered
Tp

D,

D

oD

Lx(A)

O(A)

Vs(X)

b (z,t), (x)
DF(z), Dy F
D, F (x)

Tj

id
id,,

Scalar angular variables

Vector variables

Ensemble size

Circle R/27Z

N-dimensional torus S' x - - x St
Ordered N-dimensional torus
Two-cluster subspace

Complex disk of radius r
Complex unit disk D¢

Complex unit circle

Normally attracting invariant manifold
Perturbed manifold

Closure of the set A

Mobius group parameters

Mobius transformation

Mobius group

Kuramoto order parameter
Cross-ratios of the vector 6
Cross-ratio coordinates

Cross-ratio coordinates for the leaf of uni-
form distributions

Level set of the cross-ratio function A for
regular value A

Point-of-reference in the level set £x(A)
d-neighborhood of the cross-ratios A
Flow of an ODE

Derivative of the function F' at x

Partial derivative of F' with respect to the
variable x; at @

Identity map

n-by-n identity matrix

XV



xXvi

ACRONYMS

Rez
Im ~

z

AS, AY
¥ =
w

K

€

u
fr9

Real part of z € C

Imaginary part of z € C

Complex conjugate of z € C
Synchronous fixed points

Two-cluster fixed points

Control parameter for an Active Rotator
Coupling strength

Perturbation parameter

Floquet multiplier

Common fields in Watanabe-Strogatz inte-
grable systems

Periodic solution with cross-ratios A for a
Watanabe-Strogatz integrable system

Period of ¢ (t)
Periodic orbit of ¢y (t)

Time-average of the vector field F over Cy

LIST OF ACRONYMS

ODE Ordinary Differential Equation

AR Active Rotator

NHIM Normally Hyperbolic Invariant Manifold

NAIM Normally Attracting Invariant Manifold

WS  Watanabe-Strogatz

SNIC Saddle-Node Bifurcation on an Invariant Circle

THB Transcritical Homoclinic Bifurcation

QIF  Quadratic Integrate-And-Fire



Id fieri potest, ut fallar.






INTRODUCTION

The world around us is the result of the interactions between its con-
stituents. Its abundance with the most intricate and complex struc-
tures is so overwhelming that for the largest part of human history, it
was inconceivable that the natural world could be anything less than
the creation of supernatural, omnipotent beings. It is one of the great
achievements of mankind to realize that even the most complicated
collective dynamics need not be orchestrated or constructed by some
higher power but can emerge from simple rules describing how one part
influences the other, from flocks of birds to the human brain. The natu-
ral world is in this respect in stark contrast to the world of human-made
objects, which are top to bottom constructions while natural phenom-
ena typically self-organize from bottom to top. The armamentarium for
the mathematical analysis of dynamical systems comes from the theory
of nonlinear dynamics.

Despite what it might occasionally seem, things do not just hap-
pen at random and to either predict what some physical system will
look like in the future or to decipher what it looked like in the past,
given all available information in the present, is the trade of physics.
Granted that most processes in nature occur continuously in time and
depending on how different properties or observables of said systems
influence their evolution (i.e., how the present or past values of the
observables determine their rate of change), this naturally leads to a
description in terms of differential equations of some kind. In particular
and broadly speaking, if the rate of change for the state of a system at
some given time only depends on its current state itself, its evolution
may be described by an Ordinary Differential Equation (ODE). The
theory of ODEs is part of the theory of dynamical systems whose appli-
cations range from physics [Hol90; Sug+94] over engineering [Str+05;
Roh+12] and biology [Win01; Izh10] to social science [HK02; Lor07]
and economy [Hsi91; And18], to name just a few.

Collective periodic dynamics of ensembles of simple subsystems play
a fundamental role in a vast number of complex phenomena [PRKO03].
For example, it is commonly believed today that the brain’s function-
ality is an emergent phenomenon, i.e., information processing does
not happen in the single cells of the nervous system (neurons) but
through the interaction of many neurons [Sin93; Fril5]. Likewise, there
is an ongoing debate whether, and if, how pathological phenomena
like epilepsy, Parkinson’s disease, and Alzheimers are related to, e.g.,

Nec deus intersit, nisi
dignus vindice nodus.

Oscillators and
synchronization.
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excessive amounts of synchrony in the firing of many neurons [US06;
Jir+13; BLL21]. A heart, pumping blood, functions because its cells
contract or relax in a precisely coordinated manner [MMJ86]. In the
social sciences, there exist attempts to model consensus formation in
large social groups by minimal models of simple oscillating units/ele-
ments,! representing individual people, where consensus is reached if
the majority of units oscillate in phase [PLR06; HS11]. These exam-
ples have in common that they feature some type of synchronization
between the individual elements under appropriate circumstances. If
the circumstances are right, a significant proportion of an ensemble of
units will show a large-scale coordinated behavior. One may character-
ize synchronization as emerging large-scale or global dynamics through
interactions of individual units on a local scale. Maybe one of the most
visually impressive examples of synchronization occurs in swarms of
fireflies [Buc38; Buc88]. In some firefly species, the males periodically
produce flashes of light in order to attract females. If a swarm of males
produces such flashes in an uncoordinated manner, the swarm will ap-
pear to nearby females as one flickering mass and may likely be ignored
as ambient light. Instead, the males react to their neighbors and tend
to “fire” in unison with their competitors. While this is of course not a
conscious decision, the result is nevertheless impressive. After a short
while, almost all males will fire in unison which has a much greater po-
tential to spark the interest of any females nearby. Summarizing, one
may say that the coupling between individual units plays a role that is
just as important for generating large-scale behavior as the individual
dynamics of the single unit. In particular, even if the single units are
at rest on their own, depending on the nature of the coupling, the en-
semble may very well show highly complex dynamics, often involving
collective periodic behavior [TZ14; KF19].

One particularly prolific field of research within the theory of oscil-
latory elements and synchronization is that of neuroscience, i.e., the
study of how cells of the nervous system function and interact and how
this gives rise to phenomena like memory, intelligence, and ultimately,
consciousness [DA05; CS99; Tra09]. One of the main concepts from
neuroscience, which inspired this work, is the excitability of neurons.
Simply put, a neuron being excitable means that, while staying typi-
cally at rest when isolated, it will produce a (possibly periodic) output
in terms of nerve impulses, also called action potentials or spikes, if it is
sufficiently and appropriately stimulated by, e. g., incoming spikes from
other neurons. Their excitability makes neurons the building blocks of
the nervous system, somewhat akin to logic gates, built from transis-
tors, being the building blocks of modern computers. As it turns out,
the neurobiological concept of excitability translates directly to single
neurons being able to be modeled as dynamical systems which are close
to some limit cycle bifurcation. For this reason, the study of the collec-
tive dynamics of excitable elements can yield insights, for example, on

Throughout this monograph, we use the words “unit” and “element” interchange-
ably.
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how the functionality of nervous systems emerges from the interplay
between neurons. In turn, this study revealed and inspired a wealth
of mathematical structures and concepts which are very much worth
studying in their own right.

Whether and how individual elements that are at rest on their own,
can show nontrivial ensemble dynamics via appropriate coupling has
been subject to ongoing research for a considerable time. As one of
maybe the earliest examples, Smale investigated in 1976 the interac-
tion of two “dead” cells that become “alive” via diffusive coupling be-
tween their respective enzyme concentrations [Sma76]. Here, a cell be-
ing “dead” is understood to be at rest while being “alive” means its
enzyme concentrations vary periodically. As Smale points out, the un-
derlying model goes back even further to Turing’s seminal paper [Tur53|
on reaction-diffusion systems in biology, originally published in 1953.

The bread and butter of physical modeling is to find the right level
of abstraction to describe a given real-world phenomenon. If the model
is simplified too much, its dynamics will not mimic the sought behavior
or, even worse, its dynamics will be trivial. On the other hand, abstrac-
tion is necessary in order to get a firm enough grip of the system’s key
properties that can be quantified and subsequently described by some
equation. From a practical point of view, a simple model is preferable
to a complicated one and a model that can be described by simple
equations is often preferable to one whose equations are complicated.
This is all the more true for ODEs because they are notoriously hard to
solve. When it comes to periodic behavior, it is often possible to derive
a simple description where the state of each unit is described by a sin-
gle periodic real variable. This “phase description” has turned out to
be very powerful even (or maybe especially), but by far not exclusively,
in the field of neuroscience, where the actual electro-chemical mecha-
nisms inside each cell may often be neglected in favor of a description
in terms of a single abstract phase-like variable [Vel06; Gal09; DB14;
Son+14; ACN16; Cha+17]. Often, one considers the case where single
units are spiking by themselves, i. e., they show periodic behavior, even
if isolated. The seminal Kuramoto model [Kur75; Ace+05] and its many
variations [SK86a; SK86b; YS99; Str00; KB02; MP04; HK15] deal with
cases like this and yield a variety of different dynamics, depending on
the specific setup, from the spontaneous onset of (partial) synchroniza-
tion through coupling [Kur84; Str00; Ace+05; WYD21] over chaotic
behavior [MPTO05], phase-locked solutions [Ros+21], explosive synchro-
nization [VZP15], and clustered states [BSY19] to so-called Chimera
states [AS04; Olm15; LK21]. Remarkably enough, all of these com-
pletely different types of dynamics can be observed in some variation
of the Kuramoto model despite its (at least in its original guise) rather
simple form. For ensembles of excitable elements, the Active Rotator
model by Shinomoto and Kuramoto [SK86b] plays a similar role and
captures the essence of interacting (class I) excitable elements. It can be
characterized as a classic planar Heisenberg model with all-to-all cou-
pling (originally involving noise) under the assumption of an additional
constant driving force. As already noted, this model is distinguished by,

Keep it simple, stupid.
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e. g., the Kuramoto model by the fact that its elements are not necessar-
ily oscillating in a self-sustained manner but can stay at rest if uncou-
pled which, as it turns out, can make its analysis more complicated in
some respect. Nevertheless, it is equally able to produce rich dynamics,
including synchronized periodic motion, pulse and spiral propagation,
pattern formation, or collective bursting, depending on the respective
setup [SSK88; Gia+12; TZ14; ZT16; KSN16; DGP17; Fra+21]. What
makes the model by Shinomoto and Kuramoto especially interesting is
that it can feature what is known today as Watanabe-Strogatz integra-
bility.

The beginnings of Watanabe-Strogatz integrability (or theory) date
back about 30 years when several groups of researchers noted the ex-
istence of so-called splay states in systems describing arrays of over-
damped superconducting Josephson junctions [Jos62], coupled to a
common load [AGM91; TS92; NW92]. To their surprise, these solu-
tions possessed a high degree of neutral stability for a wide range of
system parameters. Following several works which tried to explain these
remarkable observations via averaging theory [SSW92] or by consider-
ing the thermodynamic limit [Gol4-92; SM93], Watanabe and Strogatz
showed rigorously in their seminal works [WS93; WS94] how these find-
ings can be understood by considering a set of just three coupled differ-
ential equations whose dynamics fully encode the dynamics of the whole
array, regardless of the number of junctions. They already noted that
their results could be generalized to a wider class of dynamical systems,
consisting of identical angular? variables, coupled to common fields via
their respective zeroth and first Fourier modes. While their original
work was, as others put it in [EM14], an “algebraic tour-de-force” con-
struction of special constants of motion, later on, a more geometric view
became popular, which illuminated the degenerate dynamics of such
systems by means of complex projective geometry. Watanabe-Strogatz
integrability has since been an active field of research which involves
techniques and concepts from Lie theory [MMS09], invariant manifold
theory [MS09], averaging theory [Eld+21], and equivariance of ODEs
[Mir94], most of which are also employed in this work.

Watanabe-Strogatz theory is not the only systematic framework for
studying synchronization effects in oscillatory systems. Notably, the
Ott-Antonsen ansatz [OA08; OA09] equally yields a low-dimensional
description of, in its case, infinite ensembles of angular variables. Both
theories have distinct realms: While Watanabe-Strogatz theory holds
for finite ensembles of identical® angular variables, the Ott-Antonsen
ansatz applies to heterogeneous ensembles in the thermodynamic limit
of infinitely many units. Nevertheless, both frameworks are closely re-
lated to each other [PR15]. Not the least for the richness of the involved
mathematical structures and techniques, these two frameworks are of
continuing high interest.

Often, people also speak of phase or phase-like variables even when these quantities
are generally not growing linearly in time.

In the sense of identical coupling to some common fields in which case one also
speaks of “identically driven” units.
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As of now, there exist no general perturbation theories for Watanabe-
Strogatz or Ott-Antonsen theory, although there exist, e. g., results for
finite ensembles of weakly heterogeneous units [VRP16] or infinite en-
sembles of generally heterogeneous units [PR11] for the former case.
Recent results in this direction also employ a circular cumulant rep-
resentation for such systems under individual noise [Gol+18; Goll9;
Tyu+18; Tyu+19]. In any case, these results focus on situations where
individual units become distinguishable, i.e., nonidentical.

In contrast to the above-mentioned works, our main objective is to
investigate how periodic ensemble dynamics for general but identical
(class I) excitable elements emerge through repulsive coupling. The
idea for this comes from a recent work by Zaks and Tomov [ZT16]
who observed intricate ensemble dynamics for sufficiently strong repul-
sion between individual units. This observation lead to the question of
how generic these dynamics actually are since the model studied there
possesses the Mobius group symmetry that characterizes Watanabe-
Strogatz integrable models, a property that natural systems rarely pos-
sess. To investigate this question for the case of angular variables, we
first need to gain a deeper understanding of the consequences of in-
tegrability for the model by Shinomoto and Kuramoto. Then, we can
generalize the model to remove the degeneracy that arises from its in-
tegrability. As a result, we may see the original model as a base case
for which we can develop a perturbation theory to account for more
general types of dynamics. To go even further, we can study more
complicated models with similar properties, e. g., by considering units
that are not just one- but higher-dimensional with a similar type of
coupling. We pay particular attention to periodic ensemble dynamics
that involve (clustered) splay states, which are periodic solutions that
feature a specific type of spatio-temporal symmetry. Splay states (also
known as, e.g., (discrete) “rotating wave”, “wagon wheel”, or “ponies
on a merry-go-round” solutions) are in fact a common phenomenon in
Watanabe-Strogatz integrable systems [AGM91; AGK91; NW92; SM93;
Mir94; Dip+12; Che+17] and similar setups [Zil4+07; ZZ09; Per+10;
Ber+21] and can lead to, e.g., “attractor crowding”, which for large
ensembles can lead to hopping between distinct attractors under the
influence of even weak external noise [WH89; TW90]. The same is true
for clustered periodic states, which can be observed in models from neu-
roscience to electro-chemistry [Oku93; HMM93; KZH06; LY12; SK14;
KHK19; Kem+21; Fie+21]. In a nutshell, this thesis is mainly dedicated
to studying the effects of repulsive coupling between class I excitable
units and their description in terms of global variables, its motivation
being the excavation of the mathematical principles that underlie the
complex dynamics of such systems. It is divided into five parts.

Part I introduces the theoretical background and mathematical tech-
niques that our work relies on. In Chapter 2, we discuss the neuroscien-
tific concept of (class I) excitability, how it translates to the theory of
nonlinear dynamics, and describe the notion of the (generalized) Active
Rotator as well as sinusoidal coupling between such elements. We also
introduce the first two models that are central to our work. In Chap-

Perturbations.

Our main objective.
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ter 3, we give a brief overview over the most important mathematical
concepts that we use to study the dynamics of these models: the theory
of normally attracting invariant manifolds, discrete symmetry groups
of ODEs and the resulting spatio-temporal symmetries for periodic so-
lutions for such equations, and a theorem from averaging theory for
periodic solutions of ODEs. We feel that it is not just educational but
necessary to discuss these concepts in some depth, since they are not
necessarily part of the standard repertoire of, e.g., neuroscience. (At
least they were and to some extend still are clandestine knowledge to
the author.) We also discuss how to determine the stability of clustered
periodic solutions against perturbations that split one or several clus-
ters of the ensemble. Chapter 4 focuses on Watanabe-Strogatz theory.
We show, in particular, that the set of group parameters and conserved
quantities from Watanabe-Strogatz theory can be used as alternative
coordinates on the space of angular variables in (strict) cyclic order.
As a result, any system of coupled identical angular variables can be
written alternatively in these new coordinates, regardless of whether it
is integrable or not. This enables us to study general systems of identi-
cal angular variables within the Watanabe-Strogatz framework, which
is essential for the following part of this monograph.

Part II contains our results on the dynamics of the above-mentioned
angular models: the classic Active Rotator model and the generalized
Active Rotator model. In Chapter 5, we discuss the existence and sta-
bility of two-cluster states where we focus on periodic solutions. We
show that such solutions emerge, in the most generic way, by one of
two global bifurcation scenarios and discuss how these scenarios are
connected to the criticality of a pitchfork bifurcation of a special syn-
chronous fixed point of the system. We then show that the stability
of periodic two-cluster states depends on the ratio of cluster sizes and
how an observed change in stability for such states can be understood
through Watanabe-Strogatz theory. Chapter 6 deals with the existence
and stability of splay states and related periodic states for the classic
model. Employing the theory of normally attracting invariant mani-
folds, we show that for a broad class of Watanabe-Strogatz integrable
systems, splay states must not only exist but are also embedded in a
continuum of nonhyperbolic periodic orbits whose union forms a nor-
mally attracting invariant manifold. In particular, this result applies
to the classic Active Rotator model. The hyperbolic structure of the
manifold enables us in Chapter 7 to determine the stability of the splay
state for the generalized Active Rotator model via techniques from av-
eraging theory and gives a simple criterion to determine which orbits
of the continuum persist under a given perturbation. It also allows us
to understand a “nonlocal transfer of stability” between periodic two-
cluster states and splay states in a minimal model of just four classic
Active Rotators and allows for an unfolding of this nongeneric bifur-
cation scenario to a “local transfer of stability”. We note that similar
techniques were recently used in a related context to prove the existence
of Chimera states in oscillatory systems on star networks [Eld+21].
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Part III focuses on coupled Morris-Lecar neurons, which are, to some
degree, a higher-dimensional analog of Active Rotators. In particular,
we study how the results from Part II generalize to ensembles of gen-
eral class I excitable units. We show how for this system splay states
and periodic two-cluster emerge in similar bifurcations to the ones dis-
cussed in the second part and observe, again for the simplest nontrivial
case of four such neurons, a now local transfer of stability between the
two types of periodic solutions. This suggests that while Watanabe-
Strogatz theory can be employed to investigate bifurcations in systems
of repulsively coupled Active Rotators, the observed scenarios are not
a consequence of this integrability but generalize to general systems
of identical (class I) excitable units. However, higher-dimensional sys-
tems like coupled Morris-Lecar neurons can also give rise to potentially
stable periodic solutions which do not find their analogs in angular
dynamics. Specifically, we observe states where the ensemble splits in
two groups which display qualitatively different dynamics, so that in
an admittedly very loose sense one may speak of “Chimera-like” states.
Chimera states, in a strict sense, always involve an ensemble of identi-
cal units that splits into two groups where one group is synchronized
while the other group is in a state of decoherence [Kem+16]. For our
model, this will not be the case so that one has to be careful with
the name “Chimera” to avoid confusion. Our usage of the word is to
be understood more in the sense of [ZP17] where Chimera states are
defined as states in which an ensemble splits in a fully synchronized
macroscopic component and a “cloud” of distinct units.

Part IV constitutes the conclusion of our work while part V consists
of an appendix with background information and calculations which
would otherwise interrupt the flow of the main chapters.

A note on style: For this thesis, we employ a style that structures
the text body into definitions, lemmas, theorems, proofs, etc. which
is more commonly known from the mathematical literature while this
monograph is a thesis in physics (even though the border between math-
ematics and physics is blurry in this field of research, to say the least).
Nevertheless, we deliberately chose this style because we feel that it
helps not only to organize the writing process but also makes the con-
tent better digestible and allows to reference intermediate results more
easily. After all, the purpose of this style is not to distinguish mathe-
matics from physics but to make a complicated topic more accessible.

Morris-Lecar neurons.

“Chimera-like” states.

Style.






Part 1

FOUNDATIONS

Mathematics succeeds in dealing with tangible reality by be-
ing conceptual. We cannot cope with the full physical com-
plexity; we must idealize.

— Pélya Gyorgy [PoI77]






COUPLED ACTIVE ROTATORS

ABSTRACT

This chapter gives an overview over the theoretical background of the
(generalized) Active Rotator model, to which this thesis is mostly ded-
icated. We start by introducing the notion of excitability from neuro-
science in Section 2.1 and discuss how this physiological property of
neurons can be understood within the framework of nonlinear dynam-
ics. In particular, this leads to the introduction of the (generalized)
Active Rotator, which obeys a simple one-dimensional ordinary differ-
ential equation. In Section 2.2, we discuss systems of coupled identical
Active Rotators and the distinction between attractive and repulsive
coupling. We are then ready to introduce the first two models of this
thesis in Section 2.3, one being the deterministic Shinomoto-Kuramoto
model with classic identical Active Rotators under repulsive sinusoidal
coupling and the other one being a similar model, where we consider
ensembles of generalized Active Rotators under the same kind of cou-

pling.
2.1 CLASS I EXCITABILITY AND ACTIVE ROTATORS

WHAT IS EXCITABILITY?  On of the key physiological properties of
neurons is their excitability [JW94; AA98; KS09; Win01; Izh10]. The
transmission of information in the nervous system happens via elec-
trical signals which themselves are produced by neurons. The in- and
outside of every neuron harbor different concentrations of various kinds
of ions, e.g., Ca?t, K*, and Nat where the membrane of the cell acts
as a partially permeable physical barrier, separating its inside from
the outside. The result of this gradient of ion concentrations is a net
electric potential difference V' between the cell’s interior and exterior,
called the membrane potential or membrane voltage. The cell membrane
is partially permeable for the ions because it is equipped with ion chan-
nels and pumps, which let ions either diffuse through the membrane
with their respective concentration and electric gradients (channels) or
actively pump them from the interior to the exterior and vice versa
against these gradients (pumps). Both mechanisms are usually selec-
tive, i.e., different channels and pumps act on different types of ions.
Whether channels are open or not and the activity of the pumps and
thus the overall conductance of the membrane for ion currents are them-
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Figure 1: Subthreshold perturbation (black line) and spike (orange line) for
a class I excitable neuron. Panel (a) shows the phase plot in the membrane
voltage V and a single gating variable w for a so-called Morris-Lecar neuron.
The subthreshold perturbation converges exponentially to the resting state
(V*=,w®) (green dot) of the neuron while in a spike-generating perturbation, the
state first approaches a saddle (red dot) and then traces a large-scale contour
in phase space (the unstable manifold of the saddle), thus producing the spike.
Gray lines indicate the nullclines of the system and the blue dot marks an
unstable focus. For better visual display, we consider here perturbations that
change both, the membrane voltage and the gating variable. In Panel (b), we
show the time series for V' for both perturbations. The upstroke of the spike
is characterized by a rapid growth of V' which is followed by a downstroke in
which V' converges to V*.

selves (nonlinearly) voltage-dependent. Hence, a single Neuron can be
modeled as an electric circuit with nonlinear feedback, making it ac-
cessible to methods from the theory of nonlinear dynamics. For such a
conductance-based neuron model, the state of the neuron is character-
ized by the membrane voltage V' and the (normalized) conductances
W2+, Wi+, ete. of the membrane for each type of ion. Since the chan-
nels and pumps act as gates for the respective types of ions, the vari-
ables w, with x € {Ca2+, K*,Na™,...} are known as gating variables.
Based on how, and in particular how fast, ion channels and pumps react
to changes in V, one classifies three different types of gating variables:
excitation, recovery, and adaptation variables [Izh10]. The interplay be-
tween the membrane potential and the gating variables can often be
modeled by some ODE of the form

V=fV,w,I
w=g(V,w)
where w = (wy,...,w,) € R™ is a tuple of the n gating variables

and I € R is a transmembrane current, which in nature arises through
synaptic connections to other neurons and typically only affects the
membrane voltage. In experiments, one can mimic such a current by
inserting an electrode into the neuron and applying a (small) external
voltage. I acts as a control parameter for equation (2.1).

A single isolated neuron is typically at rest, which translates to the
existence of a stable fixed point (V*, w?®) for (2.1). Let 6(¢) denote the
Dirac delta function. Applying a pulse-like input signal I(t) = Iind(t) of
signal strength [, perturbs the neuron from its state of rest at time ¢ =
0. For the subsequent evolution of its state, one generally distinguishes



2.1 CLASS I EXCITABILITY AND ACTIVE ROTATORS

between two qualitatively different scenarios, depicted in Figure 1. In
Panel (a), we show the phase space for a so-called Morris-Lecar neuron,
which possesses a single gating variable w and is discussed in more
detail in Chapter 8, together with its essential invariant objects. The
two gray lines depict the nullclines of the system. Their intersections
mark three distinct fixed points: the stable fixed point at (V*,w®) (green
dot), a saddle (red dot), and an unstable focus (blue dot). A black and
orange dot mark two distinct initial states, each representing one of the
two perturbation scenarios, mentioned above. In Panel (b), we show
the time series V(t) for both perturbations. Note that, even though
in-vivo and in (2.1), perturbations typically only affect the membrane
voltage V', here, we depict two perturbations that also change the gating
variable w. This is for the sole reason of a better visual display and does
not alter the outcome.

If the perturbation of the state is too small (black dot), it decays ex-
ponentially and rapidly settles at (V5 w®) again (black lines in Panels
(a) and (b)). On the other hand, if the perturbation from the signal I(t)
is sufficiently strong, the perturbed state will not immediately converge
to (VS,w®) but will produce a so-called spike in its membrane potential,
depicted in orange in both panels. The spike is characterized by a short
period, during which V' grows rapidly (upstroke), followed by a period
of exponential convergence to the state of rest (downstroke), see Panel
(b). During the spike, the state of the neuron traces a large-scale con-
tour in phase space before eventually converging to (V*®,w®). We note
that the distinction between subthreshold and spike-generating pertur-
bations in our example lies in whether the perturbed state lies to the
left (subthreshold) or right (spike-generating) of the stable manifold of
the saddle in phase space.

It is precisely the ability to produce spikes that is called ezcitabil-
ity: If a neuron receives a sufficiently strong input from other neurons
(in form of a series of spikes), it can produce one or several spikes
itself. This can in turn elicit the same behavior in other neurons or
suppress their ability to produce spikes, depending on the specific type
of coupling between them. In the former case, one speaks of excitatory
coupling while the latter case is known as inhibitory coupling. Thus,
their excitability enables neurons to react to each other which in turn
is the cornerstone of information processing in neural networks.!

CLASSES OF EXCITABILITY Mainly for historical reasons, one dis-
tinguishes between three types of excitability, referred to as class I, II,
and III, respectively. This distinction goes back to Hodgkin [Hod48§],
who observed that neurons can be classified by how they react to a
stimulus. In practice, the classification is based on the fact that apply-
ing a sufficiently strong constant current? I to a neuron makes it spike

1 Of course, we are not implying that excitability is the only imaginable way how
neurons could communicate. It is simply the way, that nature has settled on and it
is otiose to discuss how information processing would work if they were not excitable.

2 In the literature, this is also known simply as a DC current.
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Figure 2: Idealized depiction for the current-frequency relation for a class I
excitable neuron in Panel (a) and class II excitable neuron in Panel (b).

periodically with some frequency f. Such periodic series of spikes are
commonly referred to as spike trains.

For class I excitable neurons, the transition between quiescence and
periodic activity is continuous, i.e., the frequency can be made arbi-
trarily small by tuning /. Below a critical value Iy, the neuron does not
produce or fire any spikes, which can be interpreted as a spike train
with frequency zero. Above the threshold, the frequency of the spike
train continuously increases. This relation between current I and spike
frequency f is schematically depicted in Panel (a) of Figure 2.

On the other hand, for class II excitable neurons, the transition
between quiescence and periodic oscillation is discontinuous. In other
words, starting with small I and slowly increasing the applied current
will result in a transition from subthreshold behavior (i.e., no spike
trains or f = 0) to periodic spiking with finite frequency f > fo > 0,
see Panel (b) in the same figure. In class III excitable neurons, a single
spike is generated for sufficiently strong input currents, whereas peri-
odic spike trains may only be achieved for extremely large currents.

It was later suggested that the class of excitability of a neuron is
connected to the corresponding dynamical system (2.1) being close to
a limit cycle bifurcation in parameter space [RE89]. Focusing on codi-
mension 1 bifurcations, it can be shown that class II excitability is re-
lated to inherently two-dimensional bifurcation scenarios such as sub-
or supercritical Hopf bifurcations while class I excitability is related
to a so-called Saddle-Node Bifurcation on an Invariant Circle (SNIC)
[Izh00], also known as Saddle-Node Homoclinic Bifurcation [Kuz13].

The top row of Figure 3 depicts the phase plots for a SNIC scenario for
a Morris-Lecar neuron. In Panel (a), saddle (red dot) and node (green
dot) are well separated and are connected by the unstable manifold of
the saddle (orange line). This robust contour is the invariant circle on
which the SNIC occurs in Panel (b) where it forms the homoclinic orbit
of a saddle-node (green-red dot). After the bifurcation, the contour
becomes a stable periodic orbit in Panel (c). The unstable manifold
from Panel (a) is exactly the hidden large-scale contour that the spike
in Figure 1 traces.
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Figure 3: SNIC for a Morris-Lecar neuron (top) and an Active Rotator (bot-
tom). Again, a red dot denotes a saddle, a green dot a stable node, and a blue
dot an unstable focus. Arrowheads indicate the direction of the flow along
respective contours. Saddle and node are connected by the two branches of
the unstable manifold (orange line) of the saddle. This contour forms an in-
variant circle in the phase space. While saddle and node are well-separated in
Panel (a), at the SNIC in Panel (b), they form a saddle-node (green-red dot)
for which the unstable manifold of the former saddle becomes a homoclinic
orbit. After the bifurcation, in Panel (c), a stable periodic orbit forms from
the former homoclinic orbit. The bottom row represents a reduction of the
dynamics of the top row along the invariant circle in terms of an angular vari-
able ¢. In Panel (a’), there exists a stable fixed point ¢° and an unstable one
@". At the SNIC in Panel (b'), these two merge to a saddle-node (green-red
dot). After the bifurcation, no fixed points are left and the system possesses a

periodic solution in Panel (¢’). For the Active Rotator model, the phase space
as a whole is the invariant circle of the SNIC.

Thus, two dynamical regimes exist for such a neuron: In the excitable
regime, it produces spikes if appropriately excited while it stays at rest
if no input is present. After the bifurcation, in the second regime, the
stable state of rest has vanished and the neuron produces a periodic
spike train even without any further input.

The fact that an invariant circle exists for a class I excitable unit hints
that a dimensional reduction is possible: Since the contour is stable with
respect to perturbations in normal direction (this leads to the periodic
orbit in Panel (c) of Figure 3 to be equally stable), any initial state
close by will converge exponentially to this contour and then follow it
to the stable node or keep rotating if no such node exists. In this case,
it is reasonable to describe the state of the system by its position on
the invariant circle, akin to the one-dimensional descriptions of higher-
dimensional oscillators by means of phase reduction techniques [Win01;
PRKO03]. In fact, extending the concept of the so-called isochron to
excitable elements yields a low-dimensional reduced description for such
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Throughout this thesis, we
define St :== R/277Z and
distinguish it in particular
from the unit circle

D :={z€C;|z| =1} in
the complex plane.

Active Rotators in disguise.
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elements [IAJ98].3 This motivates the following angular model for class
I excitable elements.

THE ADLER EQUATION AND ACTIVE ROTATORS Arguably, the

simplest incarnation of class I excitable elements comes in the form of
the Adler equation [Adl46], which reads

¢ =w—sing (2.2)

with |w| < 1. Here, we assume ¢ € R/27Z =: S!, so that we identify
all points ¢, ¢ € R for which ¢ — ¢ is an integer multiple of 27 and the
phase space of (2.2) is indeed a circle.

As for any potentially class I excitable system, we can distinguish
two regimes for the dynamics of (2.2), as depicted in the bottom row
of Figure 3. For —1 < w < 1, equation (2.2) possesses exactly one stable
fixed point ¢° = arcsin w and one unstable fixed point ¢ = 7 —arcsin w
so that no periodic solutions exist in this regime, see Panel (a’). A SNIC
occurs for the two critical values w = £1, where the invariant circle is
the phase space S' itself which forms a homoclinic orbit for the saddle-
node ¢ = 7 in Panel (b’). For |w| > 1, no fixed points exist whatsoever
and we obtain a periodic solution ¢(t) of period T' = 27/vw? — 1, as
depicted in Panel (¢’). The sign of w determines the sense of rotation
of the oscillation. Negative values lead to clockwise and positive values
to counterclockwise rotation.

The system (2.2) is commonly known as an Active Rotator, a name
that Shinomoto and Kuramoto introduced in 1986 [SK86b]. What makes
the Rotator Active is a nonzero choice of w which acts, in Shinomoto’s
and Kuramoto’s own words, as a “constant driving force” to the Rota-
tor. However, in what follows, we exclude the cases w = +1 and |w| > 1
and refer only to the case |w| < 1 as a (classic) Active Rotator since
only then, the system (2.2) is excitable.

A close connection exists between the Active Rotator model and two
other important neurophysical models, the theta neuron (also known as
theta model or Ermentrout-Kopell canonical model) and the Quadratic
Integrate-And-Fire (QIF) neuron [EK86]. These neuron models, intro-
duced by Ermentrout and Kopell in 1986, also show class I excitability
for a suitable parameter choice. The theta model reads

6 = (1 —cosf) + a(l + cosh)
with # € S! while the QIF neuron model reads
i =a+ 2>

with z € R := R U {oo}. Intuitively, the extended real line R can be
seen as the real line with a single additional “point at infinity” co so
that its “end points” +oo are identified or “glued” together. In this
picture, the QIF model can feature periodic motion for a > 0 where
the state z(t) first diverges in finite time to +00 and “returns” from

3 In the terminology of [HI12], one may speak of the canonical model for such systems.
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—oo in finite time, thus, traversing the whole space [R. All three models,
the theta neuron, the QIF neuron, and the Active Rotator model are in
fact equivalent. Theta and QIF neuron are connected via the Weierstraf3
substitution sin@ = 2z/(1 + 2?), cosf = (1 — 2%)/(1 + 22). Rescaling
t — (1 — a)t and setting ¢ = 6 + 7/2 then yields the Active Rotator
from the theta neuron with w = (1 +a)/(1 — a).

The right hand side of (2.2) for the classic Active Rotator contains
only zeroth and first order Fourier modes. In the context of general
(higher-dimensional) class I excitable elements, it thus serves as a first
order Fourier series expansion of the vector field, restricted to the in-
volved invariant circle of the system’s SNIC, whereas the Fourier ex-
pansion of the actual vector field on that contour generically involves
infinitely many modes.* We therefore generalize the notion of the Ac-
tive Rotator to account for these higher order modes in the dynamics
of a single excitable element. This leads to the following definition:

Definition 2.1 Consider the ODE ¢ = f(#,8) with ¢ € S* and § € R
and assume that f : S' x R — R is smooth and that the following three
conditions are fulfilled:

1. For 6 <0, f possesses exactly two reqular zeros ¢* and ¢%, 1. e.,

2. For § >0, f possesses no zeros in ¢.

3. At § =0, the system goes through a saddle-node bifurcation.
For § <0, we call the system an Active Rotator (AR).
Remarks 2.2

1. The function f can also be interpreted as 2mw-periodic in ¢ € R.

2. Dyf (¢°,6) and Dyf (¢*,6) always have opposite signs since f is,
in particular, continuously differentiable.

3. @° denotes the stable fired point of the system while % denotes
its unstable fized point.

Since f is smooth and defined on S! x R, we can expand it in terms
of a Fourier series in ¢:

f(o,0) = Z an(0) cosng + b, (0) sinng (2.3)
n=0

where the real parameters a,, and b,, depend smoothly on §. In what
follows, we always make the following assumption:

As a matter of fact and assuming that the invariant contour is in indeed a normally
attracting invariant manifold, see Chapter 3, this expansion does not only describe
the dynamics on the contour but also serves as a local model for the dynamics in
a neighborhood of the contour [HI12]. We will come back to this and in particular
discuss the concept of local models in Chapter 6.
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COUPLED ACTIVE ROTATORS

Assumption 2.3 The first four Fourier coefficients in (2.3) are fized
to

ag=w, bp=0,a; =0, and by = —1
for some w € R.

Note that for any Fourier expansion (2.3), this can always be achieved
by an appropriate rescaling of time ¢ and shift of angle ¢ as long as
a1 # 0 or by # 0:

If by = 0 and therefore a; # 0, we simply rescale t — t' = ayt
and shift ¢ — ¢’ = ¢ — T so that in these new coordinates and with
¢n = (an —iby)/2 and ¢, = (ay, + iby)/2, we have

digé’ 1 dgb
dt’ ~ ap dt
_ n zn ¢' n —zn((]ﬁ' %)
ar +cos< )+Z +a1

Y] )
=w—sing + E e 4 & oind

n=2
with
agn Cp ;nm
w=—and ¢, = "e"2 .
ai ay

On the other hand, for b; # 0, we can rescale t — t' = At and shift

¢+ ¢ = ¢+ B with A =signby\/a? + b3 and B = 7 + arctan bl such
that, in these new coordinates,

d¢'  1d¢
dv Adt
bt .,
A+A cos (¢' — B) + Asm(¢—B)+

4 Z En in(¢/—B) irlzefm(qauB)

. ’ /' ind! Y
=w—sing + E c e 4 & emin?

n=2
with
a C .
wzzandcgzzne inB

where we used the fact that

asign b bsign b e a
WCOS¢+WCOS¢_SIH gf)—i—arctang .

We may thus always write

qb':w—sind)—kh(gﬁ)
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with

h(p) = i Gy Sinne + by, cosng.

n=2

In the case of h(¢) = 0, we reobtain the classic definition of Shinomoto
and Kuramoto. We will later see how the choice of h determines the
stability of splay states and periodic two-cluster states for a specific
class of ensembles of Active Rotators.

2.2 COUPLED IDENTICAL ACTIVE ROTATORS

While the dynamics of a single Active Rotator is rather simple, complex
dynamics can be observed for ensembles of Active Rotators. Since 1986,
dynamics for ensembles of Active Rotators were and still are subject
of a prolific field of research and have been studied in a wide variety
of scenarios, including Active Rotators with noise [Zak+03; Tes+07;
DGP17], in heterogeneous ensembles [Son+14; KF19], with nontrivial
network structure [Son+13; KSN16], or various types of coupling [TZ14;
ZT16; Bac+18] to name a few. In most of these cases, the individual
Active Rotators obey the Adler equation. Noteworthy, even a single
Active Rotator can exhibit complex dynamics, e. g., if one promotes the
parameter w to an adaptive variable under the influence of Gaussian
white noise [Fra+20].

In this work, the focus lies on systems of N identical units j €
{1,..., N} where the angular velocity q5j of unit j is a function of
its “internal” or “on-site” dynamics f(¢;) and its interaction with all
other units of the ensemble. We assume that

N
b; = f(d5) + > g(dx — b5) (2.4)
k#j

holds with smooth functions f and g. Here, g(¢; — ¢;) determines the
influence of unit k& on unit j. When we speak of identical units, we
mean that the functions f and g do not depend on the index j, e. g., by
site-dependent Fourier coefficients. Note that we assume here that the
coupling between units is (i) pairwise, (ii) all-to-all, and (iii) depends
solely on the mutual angular difference of two units. In the case of phase
oscillators, i.e., units that already oscillate on their own, assumption
(iii) follows naturally from (i) for the time-average approximation of
general pairwise coupling functions G(¢g, ¢;) [SVMO7; Kur84; PRKO03].
Even though this averaging argument cannot be readily applied to en-
sembles of Active Rotators since it relies on the fact that each unit by
itself already features some periodic motion, we adopt assumption (iii)
within this thesis.

The phase space for systems of type (2.4) is the N-dimensional torus

™ =§'x... xSt

~—_—————
N times
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However, it is sometimes convenient to geometrically interpret (2.4)
as describing an ensemble of units on the same circle. Whenever we
employ this perspective, we will refer to S! as the state space of (2.4)
in contrast to the phase space T'V.

The specific choice for g determines how unit k£ influences the dy-
namics of unit j. If one assumes that the influence of j on k is of the
same magnitude but opposite direction (in loose resemblance to New-
ton’s third law of motion), then g must be odd, i.e., g(—0) = —g(0)
must hold for all # € S'. In this case, the Fourier expansion of g can be
written entirely in terms of sinusoidal modes 6 + sinmf with m € N
so that the coupling in (2.4) vanishes for ¢; = ¢. A common choice is

g:0— % sin(6).

This type of coupling in ensembles of ARs was first investigated by
Shinomoto and Kuramoto themselves. The coefficient x determines
whether the coupling of ¢; to ¢y, is attractive or repulsive. The factor
1/N serves as a convenient scaling factor.

Informally speaking, by attractive and repulsive coupling, we mean
the following: If two units j and k are close to each other, regardless
of their positions ¢;, ¢ € S!, i.e., if their mutual distance® djx =
min(|¢; — ¢r| mod 2w, 2m — |¢p; — ¢i| mod 27) is small, then attractive
coupling tends to decrease this distance while repulsive coupling in-
creases it. Note, however, that this does not mean that, e.g., for re-
pulsively coupled units, the distance d;(t) necessarily grows over time.
In fact, dji(t) generally depends on the nonlinear on-site dynamics of
each unit. To give a more concise definition of the two types of cou-
pling, we speak of attractive coupling if ¢’(0) > 0 and of repulsive
coupling if ¢’(0) < 0. Indeed, within this notion of attractive- and
repulsiveness, the effect from coupling between two units, close by, co-
incides with the informal notion above. We note that in the literature,
attractive and repulsive coupling often serve as surrogates for more com-
plex forms of coupling like excitatory and inhibitory coupling between
neurons [Tsi+05; GJC11; TR19; LB20]. While this correspondence is
not necessarily accurate because, e. g., sufficiently strong repulsive cou-
pling between ARs yields oscillatory behavior of the otherwise quies-
cent “neurons” [ZT16] while actual inhibitory coupling leads to the
suppression of firing for one neuron if another one fires, it may serve
as a rough approximation for actual interactions between neurons. But
even (GABA-mediated) repulsive coupling has recently been observed
between circadian clock neurons in the mammalian suprachiasmatic
nucleus [Myu+15]. Equally, systems that feature both attractive and
repulsive coupling have been used in modeling sociological [MPT10],
ecological [Gir+16], and physical [DS20] phenomena, see also [MCG20].

A word is at hand, regarding some important aspects of sinusoidal
coupling. As mentioned above, the interaction between two neurons usu-
ally occurs via spike trains, i. e., one neuron produces a single spike or a

This choice for dj, means that, if we picture ¢; and ¢ as being located on the unit
circle, the distance between them is defined by the length of the shorter of the two
arcs that connect them.
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series of spikes, which can excite or inhibit the same behavior in another
neuron. Most often, neurons do not directly “sense” their neighbors’
electric fields but instead, the transmission of spike trains occurs via
chemical synapses [DAO05] in which case one speaks of the presynaptic
neuron for the one that fires spikes and the postsynaptic neuron, which
receives the spikes through the synaptic connection. Hence, the inter-
action between neurons is often modeled via so-called pulse-coupling,
where spikes from one neuron can act as instantaneous perturbations
for the state of the other. This can be modeled by, e.g., a series of
Dirac delta functions in time, neglecting the synaptic filtering [MS90;
HMMO5; 1zh99; GEO02] or via continuous pulse-like functions [Lail4;
Lail5; Lail8]. The yet simpler sinusoidal coupling as in the Shinomoto-
Kuramoto model loosely serves as a first-order Fourier approximation
for such more complicated couplings by neglecting second- and higher-
order terms in the Fourier expansion of g. We note that in the context
of synaptic coupling, this approximation is flawed because synaptic
coupling between neurons is directed whereas for sinusoidal coupling,
both neurons affect each other. However, other types of electrical con-
nections between neurons and various other types of cells exist, e.g.,
in the form of gap junctions, for which the coupling between two cells
is symmetric [DA05; DS93]. For this type of coupling, an approxima-
tion in terms of sinusoidal coupling may be to some degree appropriate.
Moreover, pure sinusoidal coupling was further used to, e.g., model
locomotion in isolated spinal cords of lampreys [CHR82] and plays a
role in laser systems [JPPO8] and radio engineering [HakO08]. It also
emerges naturally for arrays of so-called Josephson junctions with par-
allel resistor-capacitor-inductor load under the condition of negligible
capacitor load for each junction where a time-average approximation
yields the Kuramoto phase model [WS95].

An important observation that can be readily made for systems of
type (2.4) is that any two units j and k cannot overtake each other
in the state space since otherwise they must coincide at some time #’
where they couple in the same way to every other unit of the ensemble.
This implies that ¢;(t') = ¢5(t') and hence ¢;(t) = ¢(t) for all t € R
in contradiction to the assumption that they were separated for some
t <t'. Wecall aset AC {1,...,N} of units a cluster if and only if
¢j(t) = ¢x(t) for all j, k € A. The above consideration then implies that
clusters stay clusters for all time, in other words, they are preserved
under the flow of (2.4).

If the ensemble splits in M mutually distinct clusters Aq,..., Ay,
ie., if Uizy oy Ai = {1,..., N} and A4; N A; = ) for any two i # j €
{1,..., M}, we call (¢1,...,06n) an M-cluster state.

We close this section with some remarks on notation.

Convention 2.4

1. A tuple (z1,...,2,) of n elements x; is denoted by a boldface
symbol
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Vector-valued functions are equally denoted by boldfaced symbols.
Further, if a function F' acts element-wise on x, i. e., if F : x; —
F(xj) forall j =1,...,n, we write

F(x) = (F(x1),...,F(x,))
for its diagonal action and will explicitly say so.

2. For any function F : x — F(x), we denote its partial derivative
with respect to the variable x; as D, F' and the total derivative
of F at x = (z1,...,2,) as DF(x) or D, F.

2.3 THE MODELS

In thesis, we study the dynamics of class I excitable elements with repul-
sive coupling. For the most part, we focus on systems of N (generalized)
Active Rotators under repulsive, sinusoidal, all-to-all, and pairwise cou-
pling. The first model of interest is the classic Shinomoto-Kuramoto
model

N
§j = w—sing; +— 3 sin(¢y — ¢;) (2.5)
N k=1

itself. As already mentioned above, single units are Active Rotators
exactly if |w| < 1 and repulsiveness of the coupling translates to the
condition x < 0. In what follows, we refer to (2.5) as the “original” or
“unperturbed” AR-model. This model, which plays the prominent role
in Chapter 6, was studied in the same setup in [ZT16] which was the
starting point and main motivation for our investigations. We investi-
gate in Chapter 6 the implications from the highly degenerate dynamics
of this model which constitutes a rather nongeneric behavior (in the
sense that it relies on the existence of some hidden symmetry that
causes the degeneracy). Since the underlying symmetry is in general
not present for general class I excitable elements, we consider a second
model

N
éj = w — sin qu + €h(¢j) + % Z sin(qbk — gb])
k=1 (2.6)

h(p) = i an sinng + by, cosng

n=2

of general Active Rotators with repulsive sinusoidal coupling, where
eh(¢;) accounts for the higher Fourier mode contributions to the on-site
dynamics in the general case. We refer to (2.6) as the “generalized” or
“perturbed” AR-model. The parameter € serves as a control parameter
for the higher order terms. The two models coincide for ¢ = 0 while for
small nonzero €, we can treat eh(¢;) as a perturbation to the original
on-site dynamics.

Is the Active Rotator We stress that the Active Rotator model, both in its classic and

model an adequate neuron its generalized form, is only of limited use for the description of any
model
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kind of actual neurophysiological system, nor was it intended to be by
Shinomoto and Kuramoto. (Although they do not give a physical moti-
vation in [SK86b], it seems that their work was inspired by the classic
Heisenberg model in a planar setup with all-to-all distance-independent
coupling.) The reason for this lies mainly in the sinusoidal coupling
term with its limitations for the description of coupled neurons, as we
discussed above. It is rather a toy model that can give insight into
possible ensemble dynamics of general coupled excitable elements just
as the Kuramoto model can give insights into possible dynamics for
ensembles of self-sustained oscillatory units. The popularity for both
models arguably comes from the fact that they are of especially simple
form and are mathematically tractable rather than from being realistic
descriptions of real world phenomena.

Finally, we note that the dynamics of (2.5) and (2.6) is of gradient
type because they belong to the class of models of the form

. 1 N
¢; = +5 ; 9(dk — &)
with odd coupling function
= Z by, sin mo.
m=0

For systems of this type, the equations of motion read <15j =-D ¢jV (¢)
with potential

oo by,
Z/f b d¢k—izzﬁcosm (b1 — bn).
Kl m=0

Being of gradient type immediately rules out the existence of small-
scale periodic solutions 9, i.e., periodic solutions for which the angles
¢; do not traverse the full state space S! during a period [GH13]. A
direct consequence from the absence of small-scale periodic solutions is
that any kind of periodic motion cannot emerge in local bifurcations,
say, in a Hopf bifurcation. For x = 0, i.e., when (2.5) and (2.6) be-
come decoupled, there exist no periodic solutions whatsoever and it
is certainly not obvious that periodic solutions emerge once we intro-
duce coupling. If such a solution exists at all for some s # 0, it must
emerge in a global bifurcation, e. g., a SNICs or a homo- or heteroclinic
bifurcation, involving (possibly multiple) saddles.

In the next chapter, we introduce the mathematical concepts and
tools that will be used in Part II to investigate the classic and the
generalized AR-model.

Compare for example the swinging of a pendulum, which constitutes a “small-scale”
libration, with one that rotates around its pivot, which constitutes a “large-scale”
rotation [Strl8].
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MANIFOLDS, SYMMETRIES, AND AVERAGING

ABSTRACT

In this chapter, we give a brief overview over the four most important
mathematical concepts and methods, that our work relies on. We start
by discussing Floquet theory in Section 3.1 where in particular, we de-
rive a criterion on asymptotic stability of clustered periodic orbits with
respect to perturbations that split one or several clusters. We use this
concept in Chapter 5 to determine the stability of periodic two-cluster
states. In Section 3.2, we discuss the concept of Normally Attracting
Invariant Manifolds (NAIMs) for vector fields which generalizes the no-
tions of exponentially stable fixed points and limit cycles. This is used
in Chapter 6 to show that for the classic Active Rotator model (2.5),
there exists a family of periodic orbits whose union is normally attract-
ing and naturally invariant. One of the main insights from the theory
of NAIMs is that such manifolds are structurally stable, i.e., they per-
sist for sufficiently small perturbations to the vector field, which we use
in Chapter 7 to investigate the generalized AR-model. In Section 3.3,
we discuss the notion of equivariance of ODEs under the action of fi-
nite groups. The main insight from this concept is the robustness of
spatio-temporal symmetries for periodic orbits under perturbations to
the vector field that leave it equivariant under a given symmetry group.
We use this in Chapter 6 and Chapter 7 to show that one of the peri-
odic solutions of (2.5) and (2.6) is a splay state. Finally, in Section 3.4,
we state a theorem from averaging theory for periodic orbits. This the-
orem is used in Chapter 7 to understand the asymptotic dynamics of
the generalized model (2.6) by investigating the dynamics on the NAIM
of the classic model (2.5).

3.1 FIXED POINTS, FLOQUET THEORY, AND POINCARE MAPS

Within the theory of dynamical systems, invariant subsets play an im-
portant role. This is due to the fact that the dynamics on these subsets
are often simpler and may allow for a lower dimensional description
than in the full phase space. Further, under certain conditions, such
a subset can be used to describe the asymptotic dynamics of the sys-
tem, i.e., for the cases t — +o0. In what follows, we informally discuss
the most important concepts for our work. For a rigorous and detailed
overview, we refer to the literature, e. g., [KH97; Wig03; GH13; Kuz13].
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Consider a dynamical system, described by the ODE & = f(x) where
f : R™ - R” is a sufficiently smooth function. Arguably the simplest
invariant subsets of such a system are fized points and periodic orbits.
A fixed point x' is defined by the condition f(z!) = 0 and describes
a steady state of the system, i.e., a solution x(t) = « for all ¢t € R.
Concerning small deviations away from this steady state in the initial
condition, =(0) = af 4 dx for some small dz, the Hartman-Grobman
theorem [Gro59; Har60] states that the dynamics of x(t) can, under
certain conditions, be sufficiently approximated around ! by the lin-
earized equation d& = D f (') - 6z where

Df (o) = (P, (o)),

is the derivative of f at &' and f; denotes the ith component of f.
In particular, if all eigenvalues of Df(xf) have strictly negative real
parts, dx(t) — 0 and a2 is called exponentially stable. If all eigenvalues
have nonzero real parts, ! is called hyperbolic. The key observation
for hyperbolic fixed points is that they are robust under small changes
in f, meaning that they persist if one perturbs f — f + h where
h : R" — R" denotes a Cl-small function [Kuz13].

Determining the asymptotic stability of a T-periodic solution xP(t)
with orbit C for the system & = f(x), with f : R®™ — R" being suf-
ficiently smooth, is the subject of Floquet theory [Chi99; GH13]. Its
core idea is very similar to the linearization of f around a fixed point.
Again, one considers a small deviation dx from the periodic solution
so that one replaces xP(t) — xP(t) + dx(t) which yields to linear order
the nonautonomous equation

5@ = Df (zP(t)) - o (3.1)

for éx with a now T-periodic matrix Df (xP(¢)). For periodic nonau-
tonomous linear ODEs like (3.1), there exists a fundamental set of solu-
tions {y? (t)}j=1...n, i-€., a set of n linearly independent solutions y’ ()
of (3.1), with initial conditions y;(0) = e; where e; € R" is the jth
canonical basis vector of the R"™. The solutions 3’ form a comoving
frame of reference along the orbit of xP(¢) and thus serve as a time
dependent basis for any perturbation away from aP(t). Arranging the
y/(t) in a matrix

Y (t) and, by T-periodicity, Y (t 4 T') also solve (3.1) so that by unique-
ness of solutions for ODEs and linearity of (3.1), Y(t+ 1) = M¢ - Y (t)
holds for some t-independent matrix

Me =Y (t+T) Y1),

called the monodromy matriz of the periodic solution. Assuming that
Me is diagonalizable,! any initial perturbation d(tg) can uniquely be

Here, our argument is not as general as possible since we assume M¢ to be diago-
nalizable. For a general argument, see [Chi99].



3.1 FIXED POINTS, FLOQUET THEORY, AND POINCARE MAPS

expressed as a linear combination dx(to) = >, ¢;j(to)v’ of the eigen-

vectors v/ of M with corresponding eigenvalues j/, called Floquet
multipliers. The reason for this is the following: After time 7', we have

dx(to+T) = Mc - dx(to)

c;(to)Mec - v

I
NE

<.
Il
—

c;(to) v

Il
M=
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-

c(to + T)v?

I
M=

.
I
—

and thus, each coordinate c;(to) in direction of v/(to) is multiplied by
1’ after one period T which determines whether this coordinate grows
or increases over the course of a period. One of the Floquet multipliers,
say p!, corresponds to deviations that lie tangent to the periodic orbit
such that dz(tg) = c(tp)v! is parallel to P(tg). Such a deviation, to
linear order, stays some finite distance ahead or behind xP(¢) along C.
In particular, one finds c(tg + T)v' = c(tp)v' and thus ! = 1 because
the so-perturbed state, following the same periodic orbit, is T-periodic,
as well. The multiplier p! is called the trivial Floquet multiplier. One
sees that if dz(tg) can be expressed in terms of the v/ with j = 2,...,n,
|0x(tg) + mT')| converges to zero exponentially fast for m — oo if and
only if all },uj| < 1forj =2,...,n. This leads to the following definition:

Definition 3.1 A periodic orbit C of the system & = f(x) is exponen-
tially stable if and only if all of its nontrivial Floquet multipliers 1,
7=2,...,n fulfill |,uj| < 1.

If |u?| < 1, we call v/ an ezponentially stable direction, if |p/] > 1,
we call it exponentially unstable. If any nontrivial Floquet multiplier
w/ with 2 < j < n has absolute value | ,uj‘ = 1, we call v/ a neutral
direction of xP(t) and the orbit C nonhyperbolic. Otherwise, we call C
hyperbolic.

In practice, M¢ can often only be determined numerically for a given
system because of the time-dependence of (3.1). This can be done by
implementing a so-called Poincaré map. For this, one starts by defining
an (n — 1)-dimensional hypersurface ¥, called Poincaré section, that
lies transversal to C. Geometrically, this means that at, say ¢t = 0,
xP(0) = y" € ¥ while P(0) does not lie tangent to .2 There then
exists an open neighborhood U C ¥ of y°, such that for any point
y € U, used as an initial state for & = f(x), the trajectory x(t) with
x(0) = y will return to U at t ~ T'. Hence, this procedure defines a so-
called first return map or Poincaré map P : U — U with a fixed point
at y’ = xP(0) = xP(T). In general, finding periodic orbits of & = f(x)

We denote points in the (n — 1)-dimensional space X with the letter y to distinguish
them from points @ in the n-dimensional phase space R”. In a slight abuse of notation
we consider points in X also as points in R™.
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corresponds to finding fixed points of P for a suitable choice of X.
Stability of the orbit can be determined from the stability of P. In fact,
the eigenvalues of the derivative DP (yo) are exactly the n—1 nontrivial
Floquet multipliers of the monodromy matrix as they both describe
the linearized dynamics, transversal to @P(t) over one period [Wig03].
However, just as M¢, the map P, as well as its derivative DP(y), can
usually only be computed numerically. How we implemented this for
the case of angular variables ¢ € TV, is content of the next section.

3.1.1  Numerical Computation of Floquet Multipliers

A simple choice for the Poincaré section X of a system of angular vari-
ables ¢ = (¢1,...,¢n) is to define ¥ = {¢ eTN ;¢ = c} with a

suitable ¢ € [—7, +7) and then integrate the system ¢ = f(¢) with
initial condition ¢(0) € ¥ until its trajectory crosses ¥ a second time.
One has to make sure that this crossing happens only after one full
rotation of ¢ around S'. This can be achieved by assuring that ¢; at
the second intersection has the same sign as at ¢ = 0. For our purposes,
¢ = —2 was a suitable choice for the systems (2.5) and (2.6).

To approximate the entry (DP(¢?));; = D 6, Pi (") for the derivative
of the Poincaré map P at the point ¢° = ¢(0) € ¥ for the orbit of ¢(t),
we may consider two initial conditions ¢t € ¥ where gbf = gbz except
for the jth entry gb;t = (;59 =+ §¢ for some small d¢ > 0. Then

_ Pi(¢t) —Pi(¢7)
ij 200

(DP(6") +0(30%) (3.2)
can be approximated up to cubic order in d¢. Floquet multipliers can
then be determined by any matrix-diagonalization algorithm. We used
this implementation to determine the Floquet multipliers for splay
states where this method works well.? For periodic two-cluster states
however, this numerical procedure can fail if the system is close in pa-
rameter space to a limit cycle creating bifurcation, e. g., a double-SNIC,
discussed in Chapter 5. The reason for this is the following: Assume
that unit j belongs to cluster A with coordinate ¢ 4. Integrating the
perturbed states ¢*(¢) until their next intersection with ¥, the angles
qzbjc(t) = ¢;(t) £ d¢p(t) can come so close to rest of A for some time ¢/,
that they cannot be distinguished from ¢4 within floating point accu-
racy and thus numerical integration results in gzb;-—L(t) = ¢4 (t) for all
t > ' (since the dynamics of the angles now coincide within finite nu-
merical accuracy). Hence, P(¢T) yields a two-cluster state whereas in
the exact dynamics, qﬁf(T ) would be distinct from ¢ 4 (7). This distorts
the numerator in (3.2) considerably with the overall effect that we find
a numerically estimated value of 0 for one of the Floquet multipliers.
Of course, this contradicts the fact that P must be invertible at ¢°.
To solve this purely computational problem, we make use of the
fact that for clustered periodic orbits of a system of identical angular

A similar implementation was used for the case of coupled Morris-Lecar neurons,
discussed in Chapter 8.
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variables, we may directly calculate the Floquet multipliers in a semi-
analytical fashion that avoids the problem, described above. This is
what we discuss in the next section.

3.1.2  Splitting Floquet Multipliers for Periodic M -Cluster States

Deriving analytic expressions for Floquet multipliers is in general not
possible. The reason for this is that in order to derive such expressions,
one has to solve the ODE & = f(«) of the dynamical system, first. After
that, the nonautonomous ODE for the monodromy matrix would have
to be solved, which constitutes the next hurdle to overcome. However,
if the system is sufficiently well-behaved, one may compute the multi-
pliers in a semi-analytic fashion. This works as follows: (i) Implement
a Poincaré map P for the system with a suitable numerical integration
scheme for ODEs. (We used a fourth-order Runge-Kutta scheme.) (ii)
Numerically determine the fixed points of P. (We used the Newton-
Raphson algorithm.) (iii) Sample the trajectory of the found periodic
orbit in form of a time series (k At, ¢p(k At)) where At denotes the time
step between two samples and k = 1,...,T/At. These three steps can
usually be achieved without any computational problems. Finally, in
step (iv), one integrates certain quantities over the time series, which de-
pend on the eigenvalues of the derivative D f of the vector field f along
the orbit and determines the sought Floquet multipliers from them.
One can then compute the Floquet multipliers to arbitrary accuracy
by adjusting the time step At for the numerical sampling of the periodic
orbit. In what follows, we derive how to compute Floquet multipliers
with respect to what we call splitting and non-splitting perturbations
in the case of clustered periodic states for ensembles of identical angu-
lar variables, which are coupled pairwise, symmetrically, all-to-all, and
only via their mutual angular differences. Consequently, we refer to the
corresponding multipliers as splitting and non-splitting multipliers. The
exact meaning behind the terms splitting and non-splitting is discussed
in the remarks, thereafter.

Assertion 3.2 For an ensemble of N identical angular variables ¢ =
(1,...,0n) € TV, obeying the equation ¢ = F(¢p) with

N
&) = F(65) + 5 2 9(01 — &) = Fy(@) (3.3)
=1

and given a tuple of positive integers (ng < nj < ng < --- < nps) where
no =0 andnyr = N, let ¢P(t) be a T-periodic M-cluster solution, such
that

D 1 41(t) ==} (1) = da, (1)
fork e {1,..., M} and with ¢, # ¢a,, if k # k'. We say that the units
ng_1+1,...,ng belong to cluster Ay which is of size my == ng — Ng_1.

Then, the system has
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e M non-splitting Floquet multipliers p* with k € {1,...,M} of
multiplicity 1, and

e for each my > 1 an Ay-splitting Floquet multiplier % of multi-
plicity my — 1.

The multipliers are given by

u® = exp (/OT A4 (t) dt)

where \*(t) is the corresponding eigenvalue? of the derivative DF (¢P(t))
of F' evaluated at the point ¢P(t).

Before we proof the assertion, we make the following remarks to
explain what we mean when we speak of splitting and non-splitting
perturbations:

Remarks 3.3

1. A non-splitting perturbation d¢(t) of a periodic M -cluster state
@P(t) is a perturbation that leaves all clusters whole but shifts the
position of at least one of them. Hence, if the units i and j belong
to cluster Ay, we have d¢;(t) = d¢;(t), i.e., they are shifted by
the same amount in the same direction.

2. An Ag-splitting perturbation d¢(t) of a periodic M-cluster state
PP (t) is a perturbation, for which 6¢;(t) = 0 if the unit j does not
belong to cluster Ay. Additionally, Zé\le d¢;(t) = 0 holds. This
means, that an Ag-splitting perturbations splits the cluster Ay into
smaller clusters or single units while the positions of all other
clusters stay the same. The condition Z;VZI d¢;(t) = 0 intuitively
means that the perturbation does not change the “center-of-mass”

of Ag.

3. The splitting Floquet multipliers u* can have the same value but
we consider them anyway as distinct multipliers of multiplicity
my — 1, each.

4. Any perturbation d¢ can be decomposed into splitting and non-
splitting components: First, shift every cluster according to the
non-splitting components, then split each cluster according to the
splitting components. In particular, stability of ¢P(t) with respect
to splitting and non-splitting perturbations determines its stability
against any perturbation.

5. For periodic two-cluster states, we have M = 2 and the two clus-
ters A1 = A and Ay = B. Let each cluster consist of ma > 1 and
mp > 1 units. We then have two non-splitting Floquet multipliers
pb and p? of multiplicity 1, each, and two splitting Floquet multi-
pliers p? and p® of multiplicity ma —1 and mp — 1, respectively.

4 I.e., of the same splitting or non-splitting type.



3.1 FIXED POINTS, FLOQUET THEORY, AND POINCARE MAPS

Next, we proof the assertion.

Proof. Consider equation (3.3) and assume that a T-periodic M-cluster
state ¢@P(t) exists. To determine its asymptotic stability one has to first
linearize the system (3.3) around ¢P(¢) which yields

0¢ = DF (¢°(1)) - ¢ (3-4)

where the derivative DF (¢P(t)) is evaluated along the periodic orbit
and 0¢p(t) = ¢(t) — @P(t) is the deviation of a generic perturbed solu-
tion ¢(t) from ¢P(t) with ||[0¢(0)|| < 1. Solving this nonautonomous
differential equation over a period 1" determines the monodromy ma-
trix Mgp(s). For any M-cluster state ¢ € TV, the derivative DF(¢) at
¢ forms a block matrix

Bl .. BM
DF(¢)=| :
BML  pMM

where the diagonal blocks B are m;-by-m; matrices of the form

M
m; — 1 my .
| () = =g (0) = Yo Sr g (D4 — ¢a) ifm=n
By, = ki
1
N/{g’ (0) ifm#n
and the off-diagonal blocks B% with i # j are m;-by-m; matrices with
entries
g 1
Byzn = N’le(quj - ¢Az)
DF(¢) is fully diagonalizable: It has M eigenvalues A* of multiplicity 1
and for each j with m; > 1 an eigenvalue M with multiplicity m; —1

[Oku93]. The eigenvectors v*, corresponding to A* are of the form

k k k k k k k\T
V= (U] U U U U ) (3.5)
—_——— N —_———
m1 times m; times mps times

where the v¥ are mutually distinct. One can see this by inserting v* in
the eigenvalue equation (DF(¢) —\F idN) -v¥ = 0, where idy denotes
the N-by-N identity matrix and A¥ is not necessarily explicitly known.
The result is a reduced system of M homogeneous linear equations
in the A\*. But det (DF(¢) — Ak idN) = 0 implies that the coefficient

matrix of this reduced system is also singular (its corresponding eigen-
values are exactly the A¥) and thus it possesses nontrivial solutions in
the M entries vF,.

The eigenvalues A% are of the form®

M .
M= (%) kY T (0% — o™
j=1

Only the A** can be written explicitly, for the A®, there exists in general no closed
form.
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and a basis for their respective eigenspaces is given by {lek ;1 2<1< mk}
(I indexes the my, — 1 basis vectors and n below indexes the N entries
of each basis vector) with entries

+1 ifn=mni_1+1
A
(’Ul k)n =9-1 ifn=ni_1+1 (3.6)

0 else

as one easily checks. In other words, the basis vectors reflect the situa-
tion, where the first unit of cluster Ay, (with index j = nx_1+1) together
with another unit of the same cluster (with index j = ni_1 +1) are dis-
placed in opposite directions from the rest of cluster Aj. Hence, we end
up with M +>".(m —1) = ZkM(nk —ng_1) = N linearly independent
vectors which then form a basis of the N-dimensional tangential space
RN at ¢ so that DF(¢) is indeed diagonalizable. Therefore, the lin-
earized system (3.4) yields, in the basis of eigenvectors of DF (¢P(t)),
a set of N decoupled linear homogeneous nonautonomous differential
equations of the form

6ik = \F(t) 62" (3.7a)
Site = Nk () g (3.7b)

where A%(t) :== A¥(¢P(t)) denotes for every aw € {1,..., M, A1,..., An}
the respective eigenvalue of DF' (¢P(t)). We can readily write down the
solutions for (3.7) at t =T as

52°(T) = 52%(0) exp ( /0 " e dt) .

The initial condition for (3.7) specifies the perturbation type for which,
from the form of the eigenvectors v* and v**, we can distinguish two
different scenarios: (i) A perturbation that shifts the positions of the
clusters {A;} tangentially to the eigenvector v* at ¢P(0) is described
by (3.7a). These perturbations are non-splitting because they leave the
clusters whole at ¢ = 0 as can be read from (3.5). Since all units are
identical, the clusters stay intact for all ¢ which justifies the name. (ii) A
perturbation that splits cluster A while leaving the “centers-of-mass”
% 2 ica, @i for each A; unchanged is described by (3.7b). Any such

perturbation lies tangential to some linear combination of the 'viA F at

¢P(0) which thus holds true for all ¢. This, together with the form (3.6)
of the le k justifies the name splitting perturbation.

There exists a direct connection between the eigenvalues of DF (¢P(t))
and the Floquet multipliers of ¢P(t) because the solutions of (3.7) yield
a system of fundamental solutions of (3.4). Constructing the matrix

O(t) = [@ (), M (1), 6 (1), M (1), ¢ (1), M (1)

m1—1 columns mps—1 columns
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from this system and diagonalizing with help of the orthogonal basis,
spanned by the v¥ and v**, the monodromy matrix Mo (4 is given by

M¢p(t) - (IJ(t + T) . (I)il(t)

. 1 M A A A A
=d1ag(u R Y L PR | TETTY LA PR M)
—_———

m1—1 entries mps—1 entries

with the Floquet multipliers

.’L‘k T
b= (jm((rg)) = exp (/0 MR (1) dt)

Ak T
A = m = exp (/0 M (t) dt) .

Multiplicities of the Floquet multipliers are inherited from the respec-
tive multiplicities of the A%*. This completes the proof. O

In Chapter 5, we will be particularly interested in the splitting sta-
bility of periodic two-cluster states. For this, we state the following
corollary as a stability criterion for these states:

Corollary 3.4 For a given T-periodic two-cluster state ¢P(t) of the
system (3.3), let p = ma/N and (1—p) = mp/N denote the proportions
of units in cluster A and B, respectively. Then, the Flogquet multipliers
for splitting perturbations of both clusters are given by

p? = exp </0T M (t) dt>
1P = exp (/OT () dt)

with

M) = £(¢%) — kpg (0) — k(1 —p) g (&% — ¢1)
AB(t) = f1(¢%) — k(1 — p) g'(0) — kp g (¢5 — B%),

evaluated along the periodic orbit of (¢% (1), ..., % (1), B5(t), ..., %)L,

ma times mp times

With this, we end our discussion of stability for periodic orbits. Next
we discuss the notion of normally attracting invariant manifolds, which
are generalizations of exponentially stable fixed points and periodic
orbits.

3.2 NORMALLY ATTRACTING INVARIANT MANIFOLDS

Hyperbolic fixed points and exponentially (un)stable periodic orbits
for systems of the type & = f(x) share one remarkable property: they
are persistent under small perturbations of the vector field f [Chi99;
Kuz13]. However, the involved calculations and arguments to show
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this are relatively simple due to the simple geometry of points and
closed curves and cannot easily be generalized to higher-dimensional
manifolds. If one is interested in higher-dimensional invariant sets and
their stability and persistence, the considerations become much more in-
volved. A natural generalization of hyperbolic fixed points and periodic
orbits is that of the Normally Hyperbolic Invariant Manifold (NHIM),
introduced by Fenichel in 1971 [FM71; Fen74; Fen77]. In this context,
hyperbolic fixed points and periodic orbits are examples for zero- and
one-dimensional NHIMs. In particular, Fenichel showed that compact
NHIMs are generally persistent under small perturbations of the vector
field f. The converse is also true, as was shown by Mané in [Man78]:
Persistent invariant manifolds must be normally hyperbolic.

This section is structured as follows: First, we discuss the main con-
cepts of the theory of normally hyperbolic invariant manifolds, follow-
ing mainly [Wig94; HPS77; Eld13]. Hereby, we focus on the special case
of Normally Attracting Invariant Manifolds (NAIMs) which are not just
hyperbolic but also exponentially stable and therefore serve as a gen-
eralization of stable fixed points and limit cycles. For brevity, we only
give an informal definition for manifolds and their tangent and normal
bundles. For a rigorous definition, we refer to [HPS77].

For our purposes, it is sufficient to consider manifolds as subsets of
some R™. Informally speaking, an m-dimensional C*-submanifold of
the R™ is then a subset M C R" that “looks” locally around any point
x € M like the R™ where the map between the neighborhood of =
and R™ is a C*-diffeomorphism. For each point & € M, one can define
the tangent space T, M as the set of all vectors v € T,R™ = R" with
basis point at x that lie tangent to M. Subsequently, one can define
for every @ € M a normal space N, as the span of a set of vectors
vy, ...,V € TpR™ which do not lie tangent to M at x, i.e., v; ¢ T M
for all j = 1,...,k.% Following the notation in [Eld13], the tangent
bundle TM and normal bundle N are then defined as

TM={(x,v) e M xR" ;v e T, M}
N ={(x,v) e M xR"; v eN,}.

With this, we are ready to give a definition for normally attracting
invariant submanifolds. Recall that the flow ® of the ODE & = f(x)
maps every pair (z°,t) to the solution” ®(x°,¢) = x(t) of the ODE
with initial condition x(0) = x°.

Definition 3.5 (Normally attracting invariant manifold) Let k > 1
and & = f(x) with € € R and f € C* be a dynamical system with
flow ® : R® x R — R™. A given C*-submanifold M C R™ is then

6 The choice of name for this space is slightly confusing since usually, the normal space
at x is defined as the space of all vectors that lie perpendicular to M at x. However,
in the literature on NAIMs, one speaks of normal spaces and bundles, anyway, even
when their elements are not normal in the usual sense. The only condition is that
T»M and the normal space (or normal spaces) together span the full T,R", i.e.,
they are complementary to each other [Eld].

7 If that solution is defined for t.
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called a k-normally attracting invariant manifold of f if it fulfills the
following three criteria:

(i) M is invariant under the flow, i.e., ®(M,t) = M Vt € R.
(i) There exists a continuous splitting
TUWR" =TMaN

of the tangent bundle TR", restricted to M, into the tangent bun-
dle TM of M and a normal bundle N with continuous projec-

tions maq and war. Further, this splitting is invariant under the
linearized flow D®' = D@ | & DD}, where ®'(x) == ®(x, ).

(iii) There exist real numbers a and b witha < kb <0, and C > 0 such
that the following exponential growth conditions hold on TaAR™:

V<0, (@) eTM: DOy (@) -v| <Ce|y|
Yt >0, (z,v) €N : D@l (@) v || < Cet ]
Remarks 3.6

1. Condition (i) means that for every initial condition ° € M of
& = f(x), the solution x(t) stays in M for all t.

2. The continuous splitting in condition (i) means that for every
x € M, one can choose a base of Ty M and of Ny, respectively,
such that the basis vectors vary continuously with @ over M and
together always span the full R™. This may be thought of as a
generalization of the fundamental system for periodic orbits as a
comoving frame of reference from the previous section. The re-
spective projections waq and war yield the tangential and normal
components for every vector v € T,R™.

3. The invariance of the splitting under the linearized flow means
that any deviation away from a point € € M in tangential or
normal® direction to M stays tangent or normal, respectively, up
to linear order under the flow ®. In other words, the evolution of
the perturbation can be uniquely decomposed into its tangent and
normal component and these components decouple. This is akin
to the observation that perturbations that lie tangent to a periodic
orbit stay on that periodic orbit to linear order while perturbations
normal to the orbit stay mormal as one checks with help of the
fundamental system, discussed in the previous section.

4. The rate conditions (iii) generalize the concept of Floquet multi-
pliers for periodic orbits. Particularly, €™, corresponds to the tan-
gential multiplier pu* while e corresponds to the nontrivial multi-
pliers i, j = 2,...,n. The main difference is that the tangential
multipliers are not necessarily trivial anymore, i. e., perturbations
may expand or contract exponentially in tangential direction.

8 In the general sense, see the footnote on the previous page.
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5. Intuitively speaking, the rate conditions state that any deviation
from M decays exponentially faster in normal direction to M
than it expands in tangential direction. In particular, if M is a
periodic orbit, the tangential expansion rate is zero, i.e., b= 0.

As already mentioned above, NATMs have the remarkable property of
being persistent under small perturbations of the vector field f. This is
the made rigorous with the following theorem, cf. Theorem. 1 of [FM71]
or Theorem. 4.1 in [HPS77]:

Theorem 3.7 (Persistence of NAIMs) Let M C R™ be a compact k-
normally attracting invariant manifold of the system & = f(x). Then,

there exists an € > 0 such that for every vector field f with Hf — f‘ o <
¢, there exists a unique invariant C*-manifold M for f which is diffeo-

morphic to M, normally attracting, and O (Hf' — fHCl)—close to M.

In principle, there are different choices to define the C'-norm || f|| -1
of a differentiable function f : R™ — R"™ which are, in our context of
finite-dimensional spaces, all equivalent [Wer06]. Here, we use

[fllgr = sup [[f(@)] + sup sup [Df(z)- v
Tz€eR™ z€R™ ||lv||=1

where ||v]| == /3, v? is the Euclidean norm of the vector v € R™.
Hence, if || f||-1 < €, not only is f small, i.e., || f(x)|| < € for all  but
also the derivative Df is small, meaning that for every € R" and
every unit vector v € R”, the norm |Df(x) - v|| of the image D f(x) - v
of v under the linear map D f(x) is smaller than e.

A remark is at hand, regarding the scope of Theorem 3.7.

Remark 3.8 Theorem 3.7 generally holds as long as the manifold M
has no boundary OM or if the vector field on OM 1is strictly pointing
outward in which case one speaks of “overflowing invariance” [FM71].
In this thesis, we deal with manifolds that have a boundary and are
generally not overflowing invariant. However, this problem can be cir-
cumvented by modifying the vector field in a small neighborhood around
the boundary so that the new vector field is overflowing on OM and co-
incides with the original vector field outside that neighborhood. In par-
ticular, all results for the NAIM of the modified vector field also hold for
our M, sufficiently far away from OM [Eld+21].

With this, we conclude our discussion of NAIMs. In the next section,
we discuss spatio-temporal symmetries, which play an important role
in the description of so-called splay states.

3.3 SPATIO-TEMPORAL SYMMETRIES

Lie theory, named after Sophus Lie, is concerned with symmetries of
vector fields under the action of continuous transformation groups and
the resulting symmetries of solutions of ODEs [Olv00; Can02]. While
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the central objects in Lie theory, known as Lie groups, are themselves
manifolds and therefore generally of infinite order, finite transformation
groups can also give rise to certain so-called spatio-temporal symmetries
for solutions of ODEs [Gol+98; BGO01]. Following Golubitsky and Stew-
art [GS00], we briefly outline the concept of equivariance under discrete
symmetry groups. We use this in Chapter 6 and Chapter 7 to show that
for sufficiently large ensemble size N and sufficiently repulsive coupling
strength x, both the original system (2.5) and the perturbed system
(2.6) of identical ARs give rise to so-called splay states which are peri-
odic solutions with a specific type of spatio-temporal symmetry.

Note that a (finite) group (I',0) consists of a set I' = {v; ;i € I}
with some (finite) index set I (in what follows, we drop the index i for
simplicity if no ambiguity is created by this), together with a binary
operation o : I' X I' — I', such that the following three conditions hold:

(i) There exists an identity element e € I" such that eoy = yoe =1~
for all y € T.

(ii) For each v € T, there exists an inverse element, denoted y~! € T,

such that yoy 1 =~y loy=e.

(iii) For every three elements 71, 2, and ~y3 of I, the binary operation
is associative, i.e., y1 0 (72 0y3) = (71 0 ¥2) © 3.

If no ambiguity is created, we simply write I' instead of (I',0) for
the group. We say that I' is acting (from the left) on the vector space
R™ if there exists a map I' x R” 3 (v,x) — vyx € R"™ that is linear
in x, i.e., for every v € I', all ,y € R”, and all a,b € R, we have
v(ax + by) = ayx + byy. Hence, I' can be seen as a group of linear
transformations v : R® — R”, where any two transformations ~; and
~v2 map any point & € R™ to the point vi(y2x) = (71 © y2)x so that
compositions of transformations obey the group properties of I'. Note
that this notion of group action can be generalized to general manifolds.

The main concept of this section is that of equivariance of vector
fields and autonomous ODEs under finite group actions:

Definition 3.9 Let I' be a finite group, acting on R™ and consider the
ODE @& = f(x) with smooth vector field f. Then, f is equivariant under
T if for every v € I' and every ¢ € R", f(yx) = vf(x) holds. In this
case, we also call & = f(x) equivariant under T.

Intuitively speaking, if the vector field f or the corresponding ODE
is equivariant under I', the transformations v do not change the result-
ing dynamics qualitatively. The equations “look the same” under such
transformations, because d(yx)/dt = y& = v f(x) = f(yx). For exam-
ple, permuting the N identical units in (2.5) or (2.6) does not change
qualitatively the dynamics of the ensemble, it results in a mere relabel-
ing of units. In this case, we refer to I" as a (finite) symmetry group of
the equation & = f(x)

Periodic solutions of ODEs give rise to the following two subgroups
of T, cf. [GSO00]:
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Definition 3.10 Let & = f(x) be equivariant under the finite group T
and let xP(t) denote a T-periodic solution of this equation with periodic
orbit C := {xP(t) ; t € R} C R™. Then, the two subgroups

K ={yel;~vyxP(t) =xP(t) Vt}
H={yel';yC=C}

of I' are called the group of spatial symmetries and the group of spatio-
temporal symmetries’ of xP(t), respectively. Here, we write vC =
{yaP(t) ; t € R}.

The meaning behind the names for K and H is clear: each element of
K leaves every point of the periodic orbit invariant while each element
of H maps every point of the orbit to some other point on it.

For every v € H, there exists a unique 7 € [0,7") such that yzP(t) =
xP(t — 1) or equivalently vxP(t + 7) = xP(t) for every t € R. To see
this, note that we must have yaP(tg + 7) = xP (o) for some ¢y € [0,7)
by definition of H. But since both y&P (¢t + 7) and xP(t) solve & = f(x)
and coincide at t = g, uniqueness of solutions for ODEs guarantees that
they coincide for all ¢ . We say that aP(t) is equipped with a spatial
symmetry, given by K, and a spatio-temporal symmetry, given by H.

The main statements for our purposes are given in the following
theorem and corollary, due to Buono and Golubitsky [BGO1]:

Theorem 3.11 Let T be a finite group, acting on R™ and & = f(x) a
I-equivariant ODE with smooth f. Further, let x(t) be a T-periodic solu-
tion of the system with spatial symmetry group K and spatio-temporal
symmetry group H. Further, let N(K) denote the normalizer of K.
Then,

ne (t + Z;) = x(t)

for some fizred n € N(K) and fized m € N if and only if the following
four conditions are fulfilled:

(a) H/K = Zy, is cyclic, m > 2, andn € H projects onto a generator
of H/K,

(b) there exists an xy € R™ such that xg is invariant under K, i.e.,
Kzo = xo,

(c) dimFix(K) > 2, where Fix(K) .= {x € R" ; K& = x} is the sub-
space of fized points of K. If dimFix(K) = 2, then H = N(K)
and n acts on Fix(K) by rotation through i%,

(d) H fizes a connected component of Fix(K)\ Ly, where

Lg = U Fix(y) N Fix(K).

9 Actually, the group of spatio-temporal symmetries in [GS00] is defined slightly dif-

ferently but, as is shown there, the actual group of spatio-temporal symmetries and
H are isomorphic.
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The details of this theorem are not really important for us. What is
more important is that from it, the following corollary follows, which
guarantees that exponentially stable periodic orbits are not only per-
sistent under C'-small perturbations h of the vector field f but also
that their spatial and spatio-temporal symmetries persist if h is equally
equivariant under I" as f:

Corollary 3.12 Let the groups K and H satisfy conditions (a)-(d) of
Theorem 3.11. Then, exponentially stable periodic solutions with spatial
symmetry group K and spatio-temporal symmetry group H are robust
in I'-equivariant systems of ODEs on R".

3.4 AVERAGING THEORY

Averaging theory is a powerful tool for handling systems in which
timescale separations occur between fast oscillating variables and slow
varying ones [SVMO07; Chi99]. We employ averaging theory in Chapter 7
to determine the dynamics of the perturbed system (2.6) in terms of
the degenerate dynamics of the original system (2.5). This approach re-
lies on the following theorem, cf. Theorems 7.9 in [Chi99] and Theorem
6.3.2 and 6.3.3 in [SVMO7]:

Theorem 3.13 Consider any system of the form

T = GF(CL’,T,[}) + 62F2(:]3,¢,€)

. (3.9)
v =Q(x) + eG(x, 1, €)

where © € R™ and ¢ € S' and assume that there exists a ¢ > 0 such
that Q(x) > ¢ for all € R™. If the averaged system

y = eF(y)
with
R 1 2T
F(y) = o F(y,¢)dy

possesses a hyperbolic fited point y* € R™ and € > 0 is sufficiently
small, (3.9) possesses a periodic solution (xP(t),(t)) whose orbit is of

the same stability type as y* and Ha:p(t) — ny = O(e) holds for all t.
Remarks 3.14

1. The periodic orbit having the same stability type as y* means that
the dimensions of the stable and unstable manifolds of y* and the
periodic orbit of (xP(t),1(t)) coincide.

2. For e < 0, the stable and unstable manifold of the periodic orbit
switch: The dimension of the orbit’s stable manifold equals the
dimension of the unstable manifold of y* and the dimension of its
unstable manifold is equals that of the stable manifold of y.
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3. Since for small |e|, xP(t) stays close to yP, we can weaken the
condition on Q to Q(y) > ¢ > 0 for ally € V in some (possibly
small) open neighborhood V' of yF.

Theorem 3.13 states that if the dynamics of x is slow in comparison
to that of 1, we can “average out” the fast oscillations of 1(t) in the
first equation of (3.9) and still recover a good approximation for the
dynamics in x. In the context of Watanabe-Strogatz theory, we will
make use of averaging techniques to investigate the existence and sta-
bility of periodic orbits in the perturbed system (2.6) by averaging the
perturbation function h over periodic solutions of the original model
(2.5). Watanabe-Strogatz theory is the content of the next chapter.
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ABSTRACT

In this chapter, we outline the main concepts of Watanabe-Strogatz
(WS) theory on which our work relies to a large extend. We start by
discussing the group of Mobius transformations and its action on TV
in Section 4.1. M&bius transformations constitute the fundamental geo-
metric objects of WS-theory and are used to determine the dynamics for
ensembles of angular variables in terms of the group parameters of the
Mobius group. We further discuss the so-called cross-ratios, which are
generally invariant under any Moébius transformation. We then show
that the group parameters and cross-ratios can be employed as a suit-
able alternative coordinate system to the angular variables (¢1, ..., ¢N)
on the subspace of ordered tuples in TV. In Section 4.2, we recall the
fundamental theorem of WS-theory which states that for a fairly general
class of angular models, the ensemble dynamics can be fully described
by a set of just three coupled ODEs. This (partial) integrability yields
a low-dimensional description for these models and, in particular, for
the system (2.5). Finally, in Section 4.3, we discuss how the alternative
coordinate system from Section 4.1 can be used to describe the dynam-
ics of general ensembles of identical angular variables which allows to
generalize the formalism of WS-theory to such systems.

The concepts, discussed here, form the foundation in the derivation
of the results of Chapter 6 and 7 but WS-integrability also plays an im-
portant role in Chapter 5 for the understanding of stability of periodic
two-cluster states. Since WS-theory only yields nontrivial results for
ensembles that contain at least four distinct units, in this chapter, we
always assume N > 4. Some passages and in particular the propositions
and proofs in Section 4.1 are verbatim quotes from [RZP].

4.1 WATANABE-STROGATZ VARIABLES

MOBIUS TRANSFORMATIONS Watanabe and Strogatz were the

first to show that systems of IV identical angular variables (¢1,...,¢n) =:
¢, obeying
05 = F(9)e’ + g(¢) + f(¢p)e™ ™ (4.1)

with common fields f : TV — C and g : TV — R, can be described
by just three coupled ODEs such that these systems become (partially)
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Complex open unit disk D
and unit circle OD.
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integrable. However, their derivation was rather complicated and did
not make immediately clear what the underlying reason for this fact
was. Fifteen years later, Marvel, Mirollo, and Strogatz gave a simple
geometric proof of the same theorem which relies on Lie theory, applied
to the group of Mobius transformations [MMS09]. This revealed that
Mobius transformations are the fundamental geometric objects of WS-
theory.

The general Mébius group is the set of holomorphic automorphisms
of the extended complex plane C := C U {oo}, cf. [AhI79]. They are
exactly those functions p : C — C of the form

1

az+b
cz+d

p(z) =

with complex coefficients a, b, ¢, d for which ad — bc # 0 holds? and we
set p(o0) = a/c and pu(—d/c) = oco. Geometrically, Mébius transfor-
mations are those maps under which all circles and lines in the com-
plex plane are mapped onto circles and lines.?> The group operation
on this set is then naturally the composition of functions. However,
this group is yet to large for the purposes of WS-theory. In fact, what
is known in the literature on WS-integrability as the Mobius group
is the subgroup of orientation-preserving Mébius transformations that
map the open unit disk D := {z € C; |z| < 1} onto itself. By analytic
continuation, these maps can be extended to the complex unit circle
0D = {z € C; |z| = 1}. Hence, throughout this thesis, we work with
the following definition, cf. [Ols10]:

Definition 4.1 The Mdébius group G is the group of transformations
G,y 2 OD — 0D of the form
a+e¥z

_ , 4.2
14+ qei?z (4.2)

Gop(2) :

with group parameters o € D and v € S'. The group operation is the
composition of transformations. For any @ € TV, we set

e? = (ewl, . ,ei9N>

and write in a slight abuse of notation

G (¢9) = (G (). G (%))
for the diagonal action of G on TN.

G is in fact a three-dimensional Lie group and can equivalently be
defined as the group of orientation-preserving holomorphic automor-
phisms of D [SS10; Ols10]. We discuss the group properties of G in

I. e., bijective maps of C onto itself which, together with their inverses, are complex
differentiable.

For ad — bc = 0, f is actually a constant map and can therefore in particular not be
an automorphism of C.

Actually, for the extended complex plane, lines can be seen as circles through the
point at infinity oo.
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Appendix A. In particular, every G, maps O bijectively onto itself
since for every z € 0D we find
W\ (A o a—it s
|Gmp(z)|2 _ (a —|—_e' z)(a+e z)_
’ (14 ae™2)(1 + ae™™z)
ol +aey +ae Wz 4 |2
1+ aez + ae=Wz + |af?
=1

’ 2

so that G, is well-defined. The diagonal action of G induces the fol-
lowing equivalence relation on TV:

Definition 4.2 Any two points 9,0 € TV are equivalent if and only
if there exists a G, € G such that e = Gay (ew> in which case we

write 9 ~ 6. For any @ € TV, we write
0] := {9 TV ;9 ~0}
for its equivalence class.

The fact that ~ really is an equivalence relation is asserted by the
following proposition:

Proposition 4.3 The relation ~ is an equivalence relation on TN.

Proof. This follows immediately from the group properties of G: Con-
sider any three points ¥ ~ 0 ~ ¢ € TV. Then,

1. The identity map 0 +— 0 is given by G € G and thus guarantees
that 6 ~ 6 so that ~ is reflexive.

2. There exists a G € G such that e = Gay (ew). The inverse

G 1, € G then fulfills ¢ = G, (¢ and thus 6 ~ 9 so that ~

is symmetric.

3. There exists a Gg, € G with e = G,y (ew) and thus ¢ =

G0 Gy () where Gy 0 Gy € G so that © ~ ¢ and ~ is
transitive.

O]

Since all units couple in the same way to f and g in (4.1), the units
¢; can never overtake each other. (Note that this does not necessarily
mean that the ¢; are identical. They can still contribute differently
to the common fields.) In particular, we can restrict ourselves without
loss of generality to the case where all angles ¢ = (¢1,...,¢nN) are in
(strict) cyclic order. This gives rise to the following definition:

Definition 4.4 For fixed N, the set Té\;dered C TN of angles in cyclic
order is defined as

’]Tc])\lfrdered = {HGTN§91<"'<0N<91+27T}.

Of course, on Té\;dered we still find that G induces an equivalence

relation ~ with respective equivalence classes (0] for every 8 € TY ..
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CROSS-RATIOS For any four mutually distinct? 21, 29,25,24 € C,
the so-called cross-ratio (z1, z2, 23, 24) is defined as

(21 — 22) (23 — 24)
(21— 24) (23 — 22)

(21, 22, 23, 24) =

It is a well-known fact that Mobius transformations preserve cross-
ratios which is ultimately a consequence of the fact that Mobius trans-
formations map circles to circles [Ahl79]. It is equally known that
(21, 22, 23, 24) is real-valued if all four points z; lie on OD. This leads
to the following proposition which will be used to parameterize the
partition of TY, . in equivalence classes:

Proposition 4.5 For any G, € G and 0 € ngered, let 9 € ’]I‘é\idered
be defined by €V = Gay (eie). Further, let Apgr.s : th)\;dered — R be
defined as
AP#],T,S(O) = (elgp, eles Y ei0q7 eZGT‘)
(ez‘op . eies) (equ . ez‘er)
B (ezep _ eier) (ez‘eq _ eiOS)
_sin bp—0s ;9‘9 sin 9‘159’“
T . 0p—0r . 0,—0s°
sin 5= sin =5
Then,
Anq,r,sw) = Ap,qms(o)
for any cross-ratio Ap qr,s-
Proof. For a proof, we refer to [Ahl79]. O

In principle, for any @ € TV, there exist N* different cross-ratios.
However, it was shown in [MMS09] that for N > 3, one can choose
N — 3 functionally independent cross-ratios such that all other cross-
ratios can be written as some algebraic expression of these N — 3 ones.
With the following definition, we fix a convenient choice of cross-ratios
for our purposes which will be used in Chapter 6:

Definition 4.6 Let the set V .C RN73 be defined as
Vo= {Ae O, DV 31> X > --~>)\N_3>0}.

The cross-ratio function A : TN, — V is defined as

A(B) = (A1(6). .., An_5(6))
01—0k13
2

.. 02—0
gin 2 2k+3

sin sin 92593 (4.3)

Ar(0) = A1 23513(0) =

s 0103
S1n 3

withk=1,...,N — 3.

The cross-ratio is in fact well-defined also for z1 = 22 # 23 = z4. Further, it can be
extended to the case z1, 22, 23, 24 € C.
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Since each Ay depends, besides 61, 02, and 63, only on 60y 3, the
N — 3 components of A are clearly functionally independent of each
other. Next, we note some important properties of the spaces TN
and V and the cross-ratio function A:

ordered

Lemma 4.7 The following two assertions hold:

1. The set TN 4 s invariant under the action of G.

ordere

2. The cross-ratios (4.3) define a function A : TN, .4 — V.

Proof. The first assertion follows from the fact that all Moébius trans-
formations Gaw € G are orientation-preserving [Ahl79]. Thus, for ev-
ery 0 € Tordered’ i.e., for which 0; < --- < Oy < 61 4+ 27 holds, let
e = @ o (e ) Then ¥ < -+ < 9y < Y1 + 27 by preservation of

orientation and hence 9 € T, ..
The second assertion holds true by observing that®

1 sin &iz02 92 sin %2203 93

9 02— 9k+3 <0,
2

Do, 5 Ak (6) =

2 sin - 93 sin

so that all Ag are strictly monotonically decreasing in 6,3 on Tordered
In particular, we find Ag(0) > Ag;1(0) on TV, 4. Additionally, we
find that limg, .6, Ax(@) = 1 and limg, 19, 12 Ax(6) = 0 so that A
indeed maps ngered to V. O

The fact that Mobius transformations leave cross-ratios invariant
hints that the equivalence classes on ngered can be interpreted as
level sets of A. To make this assertion rigorous is the purpose of the
following lemma:

Lemma 4.8 For any two 9,0 € TY. we have

ordered’
Y ~0< A(9) =A(0)

and in particular, we have
[0] {19 € Tordered ) A(ﬂ) = A(e)}

on TN i.e., for every @ € TN the equivalence class [0] C

ordered’ ordered’
rdered 1S exactly the level set of the cross-ratio function A for the
value A(0).

Proof. (=): Since ¥ ~ 0, there exists a G, € G with e = G, 4 <ei9).
Then A(9¥) = A(0) follows from Proposition 4.5.

Due to the strict cyclic order, all arguments of the sine functions fall in the open
interval (—m, 0).
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(«<): Let A(9) = A(0) for some 9,0 € TN, ... We construct a
suitable G € G. Consider the two generaul6 Mobius transformations
(C—>(Candug C — C with

i0 i0 b
S
(z—e”l) 02 emg)
! )(

so that the function G(z) = py* o ug(2) maps e — e'* for k = 1,2, 3.
In particular, G is a bijective conformal map from 0D to dD. It is also
orientation-preserving since €1, e2 ¢ ¢ 9D and 1, "2 W3 ¢ ID
are in the same cyclic order by assumption. G is therefore an element
of G. Additionally, assumption Ag(0) = Ax () implies that

e (ewk”’) = Ak(é)) = Ak(ﬂ) = Uy (em’“”’) .

and thus G (eiek) = ¢ holds also for all k = 4,..., N. We therefore
conclude that G (ew) = ¢ which finishes the proof. O

Lemma 4.8 implies that we can parameterize the partition of Tordered
in equivalence classes [8] C T . ..q via the cross-ratios A € V such that
we may identify equivalence classes and level sets:

0] = LA(A) = {9 € TN jorea s A(W) = A}

where A = A(0). Now, each 8 € TY . is an element of the level set
Lx(A) of the function A with A = A(0). Next, we introduce a suitable
coordinate system on each level set Lx(A).

WATANABE-STROGATZ COORDINATES The ultimate goal of this
section is to establish a coordinate system on Té\;dered in terms of the
two Mobius group parameters o and v as well as the N — 3 cross-
ratios A. The group parameters themselves do not yet establish a proper
coordinate system on Lx(A). Instead, they only yield a description how
to get from any point @ € Lx(A) to any other point ¥ € Lx(A) by some
Mobius transformation while we want to uniquely determine where
exactly 0 lies on Lg(A) in terms of « and . The underlying reason

6 I.e., transformations of type u(z) = Zzzis with a,b,c,d € C and ad — bc # 0.
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for this ambiguity lies in the fact that we are still lacking a unique
“point-of-reference” for every £ (A) with respect to which every other
point in the same level set can be determined by a given « and ¥. To
introduce such a point @(A) for each L (A), is purpose of the following
definition:

Definition 4.9 The function © : V — TY defined by”

ordered’
O(A) = (B1(A),...,ONn(N))

2
OK(A) = —w+§(k:—1), ifk=1,2,3
27

. (4.4)
eN </\ka 4+ Ap_gze N —1

Or(A) == —iLog ),ifk:4,...,N,

27

—Ap—z + (1= Ap—g)en
determines the point-of-reference @(X) € LA(A) for given X € V.

We need to check whether the above made choice is suitable for our
purposes by showing that it defines for each level set Lx(A) a unique
point-of-reference. In other words, we have to check that the image of
© intersects each L£x(A) in exactly one point. If this is the case, we can
define for every point 6 € TY . its WS-coordinates («, ), A) via the
relation

olf — e (eiG(A))

so that A determines in which level set L£(A) the point @ lies while «
and 1 determine where 6 is located in £ (A) with respect to @ (). To
show that this is actually the case is done by the following lemma:

Lemma 4.10 The map © : V. — TN, .. defined by (4.4), is smooth

and a right inverse of the function A, i.e., A o ®(X) = X and thus,
O(A) € LA(A).

Proof. © is well-defined and smooth since the numerator in the second
line of (4.4) vanishes only for \, = 1/ (1+ ¢ ) ¢ R while the denom-

inator vanishes only for A\ = e%/ (—1 +e%) ¢ R. Equation (4.4)
solves A(®) = A for ©® and so is the right inverse of A by construction.
Finally, we need to show that ® indeed maps V to ngered. For this, we
assert that for every k > 4, O () is strictly monotonically decreasing
in A\;_3 and that ©3(\) > O4(A). The assertion then follows from the
fact that 1 > Ay > --- > Ay_3 > 0 and

27
I = r+ 0
lim O4(A) T+
lim OnyA) =7
s, O ()

Here and in what follows, we use the principal value Log z for the logarithm log z
but for convenience, let its imaginary part lie in the interval [—m, +) instead of
(=, +m].
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because that way, the O () are in strict order and for k > 4 lie all in
the interval (©3(A)), +m). But since N > 4, we find

—2sin &%
D), ,0k(A) = N 5 <0
1-— 2)\;6,3(1 - )\k,'g,) (1 + cos N>
€(0,1/2] _—

€[1,2)

so that Oy is indeed strictly monotonically decreasing in A\;_3 for all
k =4,..., N which finishes the proof. O

Before we come to the main result, we make the following remark
which becomes important in Chapter 6 and Chapter 7:

Remark 4.11 In what follows, particular focus lies on the point

0% = (07,....0%)

0; = —m+ QNW(] -1) (45)
of evenly spaced angles on S*. For this point, we find
A" = (A, ANos)
sin T(542) (4.6)

;= Ap(0%) =
¥ 2 cos 7 sin ”(lﬁl)

for its corresponding cross-ratios.

We are now able to state the final result of this section which as-
serts the existence of a well-defined coordinate system in terms of Ws-
variables on TCJXdered:

Proposition 4.12 The map m :D xS x V — Tfﬁdered with
i1 1O (A)
— o)) _ _; a+eve
m(a, ¥, A) = —iLog Gy y (e ) i Log 1T 6 ce®

is a smooth diffeomorphism.

Proof. In order to show that m is a smooth diffeomorphism, we need
to show that it is smooth, bijective, and that its derivative Dm has full
rank everywhere, see [Rud76].
Smoothness of m: Because it is a composition of the smooth maps
(e, 1,0) = Ggy(e?), ©, and the Log-function, m is smooth.
Injectivity of m: Suppose that for (o, ¢, A), (o/, ¢/, X) € D x St x V
the equality m(a, 1, X) = m(a/, ¢, X’) holds. We then find

—1Log Gy (eieo‘)> = —1Log Gy (eig(x))
= eiG()\) = G;ip o Ga/’d,/ (eiG()\/)) .
By Lemma 4.8, this implies

O(A) € [O(X)] = Lx(A)
S A=A0O\) = \.
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Further, ®(\) always possesses at least three distinct coordinates (e.g.
©1, O, and O3). But since any Mo6bius map is uniquely defined by the
images of three distinct points [Ols10], we have

e (ei(ﬂ()\)) = Gy (eie(,\))

= Gom/) = Ga/’wl
& (a,9) = (o/,9)

and thus (a, 1, A) = (o, ¢, N') so that m is injective.
Surjectivity of m: For any 8 € TY the cross-ratios A = A(0) €

ordered’

V are well defined. Thus, since @(A) and 6 are both elements of
LA(A) = [O(N)] = [0], there exists a G € G with G,y (eieo‘)) = e'f,
But this implies the existence of an (a,1,A) € D x S! x V which is
mapped by m to 6.

At last, we show that the derivative Dm has full rank everywhere.
Note that we have to treat ID as a real space in order to apply NAIMs-
theory later on. Since D is then two dimensional, we could for example
use DReo and Dy, as partial derivatives on . Instead, we treat o and
& as independent variables, and use the Wirtinger derivatives [RS00]
which are defined as

Da = DRea - iDIma
D& = DRea + iDIma~

Then, for each = € {a,a, ¥, \1,..., An_3}, let
D,m = (Dymy,...,Dymy)T
denote the respective column of the derivative
Dm = [Dam,Dam,Dwm,D,\lm,...,DAN&,m .
From the identity
Am(a, P, A)) = A
we note first that DgA - Dym = idy_3 or more explicitly
Dg,A1 ... Doy Dyymi ... Dyy ,mu

=idy_3

DQIAN,3 DQNAN,3 D>\1mN D)\N73mN
(4.7)

where idy_3 is the (N — 3)-dimensional identity matrix. Thus, Dyxm
has a left inverse DgA and therefore has in particular full column rank
N - 3.

Secondly, we have from the same identity

DgA - Doym = DgA - Dgm = DgA - Dym = 0 (4.8)
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so the three column vectors Dom, Dgm, and Dym stand orthogonal
to the column vectors Dy, A and are thus linearly independent of the
column vectors Dy, m. For if any (nontrivial) linear combination

y=aDym +bDgm + cDym

was in the span of the Dy, m, i.e., if we would have

N-3
Yy = Z ch)\jm

7=1
with ¢ # 0 for some k € {1,...,N — 3}, we would find

N-3
0=DgAr -y = Z c;DoAy, - D,\jm =c
j=1

where the first equality follows from (4.8) and the last from (4.7). This
contradicts the assumption that ¢ # 0.

Finally, the three vectors Do,m, Dgm, and Dym are linearly inde-
pendent. To see this, let us consider the (N — 3)-by-3 matrix A =
[Dam, Dgm,Dym| which then has rank A < 3. For any matrix, its
rank is equal to that of its largest order square submatrix with nonzero
determinant [Bos21]. Let the submatrix A consist of the first three
components of each column of A. It is of the form

i iet? e (Ja*~1)
—ortet” —1+ael? (—atei)(~1+aeiv)
7 ieiwe% (|a‘271)e“ﬂe N
N . 2mi .27 . 2mi o 2mi
A= —ateite N —ltaeive N (fa+e“/le%) <71+5{e“fle%) )
, o Ami
i ieive (Jaf*~1)ei¥e ™~
. 4mi . A4mi . 4mi . 4ri
—a+e¥e N —1+aeive ™ N (—a+elweT) (—1+&eweT)

with determinant

~ X
det A = ——
T v,

where
X=-(1- e%)3 (1+e%) (1= laf)e¥es
Vi = (a—e¥) (a—e¥e®) (a—cve ™)
Yy = (1-ae™) (1-aee®) (1-aee ).
This determinant is nonvanishing: By the triangle inequality, we have

V1| < (1+ |a)?
Ya| < (14 |a])®
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=/2V1+cosf and 1 —cosf > 0?/8

while for NV > 3 and with ‘1 + et

for all 8 € [ 2n 2”}, we have

T 303

27 |3

I X|=1—enN

14+e™| (1= aP)

2w 3 2m 2
_4\/<1—COSN) <1+005N> (1—]a\ )

1 2 3 2 ™ 3 2
1 () (-lel) = () (1-10P)
where in the third line we also used 1+4cosf > 1/2 for all § € {—%’r, 2%]
Thus we find

e | = (2) 412 s
AN/ (L af)f

so that A has full rank 3 and so has A. Hence, Dom, Dgm, and Dym
are linearly independent. Therefore, all column vectors of Dm are lin-

v

early independent.
O

For any system ¢ = f(¢) of identical angular variables, Proposi-
tion 4.12 allows for an alternative and equivalent description in terms
of the WS-variables «, 1, and A. If a solution («(t),(t), A(t)) for the
system in these variables can be found, one can recover the original dy-
namics by virtue of m. The key feature of WS-integrable systems (4.1) is
then that the governing equations in these WS-variables are particularly
simple in the sense that the cross-ratios A(t) = (A1(t),..., An—3(t)) are
constants of motion. In the next section, we discuss the fundamental
theorem of WS-theory.

4.2 INTEGRABILITY

The fundamental theorem of WS-theory, due to [WS94]| states that for
any system of the form (4.1), its flow is completely determined by a
one-parameter family of Mdbius transformations. It can be stated as
follows (here we follow the formulation and notation in [MMS09)]):

Theorem 4.13 Consider an ensemble of N > 3 mutually distinct
angular variables ¢ = (¢1,...,6n) € TV, obeying the equations

b; = () €% + g(¢p) + f(p) e ' (4.9)

for j =1,...,N where f : TN — C and g : TV — R are smooth
functions. Then, the time-evolution of ¢(t) is determined through

910 = Gy i) (ewj) (4.10)
where @ = (61, ...,0n) € TV is constant and a(t) and (t) are solutions
of

=i (f(#)a*+g(@)a+ [(4))

. - (4.11)
V= f(@)a+g(d) + f(P)a
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and the functions f and g now implicitly depend on o and 1 via the
flow relation (4.10).

Note that the first line in (4.11) actually represents two equations
since its right hand side is not holomorphic. It is to be understood as
two equations for, e.g., Rea and Im « or & and a.

Theorem 4.13 has been proven in various ways from purely algebraic
proofs [Goe95; PRO8] over geometric ones, relying on concepts from
Lie theory [MMS09], to those, using arguments from complex analysis
[EM14] or complex projective geometry [Stell]. We refer to these works
for a proof of the theorem.

A few remarks are at hand, concerning some intricacies of Theo-
rem 4.13. First, the theorem gives us some freedom of choice regarding
the initial conditions for (4.11), depending on the choice of the constant
0. Different choices can be more suitable in different settings. With the
N degrees of freedom from @ € TV and the three degrees of freedom
from the group parameters o and v, we need to impose three condi-
tions on the tuple (o, 1, 0) in addition to the N initial conditions from
¢(0) in order to uniquely determine the dynamics of ¢(¢) via the group
action (4.10). Watanabe and Strogatz themselves discussed two possi-
ble options in [WS94]. The first one, preferred by them, is to impose
Zj-vzl e% =0 and Z;-V:l 0; = 0 mod 27 on 0 so that the 6; become, in
their own words, “incoherent”. Then, a(0) and ¥ (0) can be chosen such

that ¢¢(0) = G o (0),4(0) (ei‘g) which they deemed the natural way to im-

pose the three constraints because in this picture, the flow on D x S' is
the same for all choices of 8 that lie in the same equivalence class while
different initial conditions ¢1(0), ¢2(0) € [0] with ¢1(0) # ¢2(0) of
(4.9) lead to different initial conditions (ay(0),1(0)) # (a2(0),2(0))
of (4.11). This naturally corresponds to the fact that the vector field
and therefore flow on each [] does not depend on which representative
¥ € [0] one chooses.

A second option, which was considered unnatural by Watanabe and
Strogatz, is to always impose the initial condition «(0) = ¥(0) = 0
such that 8 = ¢(0) and therefore let the vector field in (4.11) on D x S*
explicitly depend on ¢(0) such that in particular two distinct initial
conditions ¢1(0) # ¢2(0) with [¢1(0)] = [¢2(0)] yield different equa-
tions of motion in « and v even though their corresponding dynamics
in ¢ take place in the same equivalence class. This is a direct conse-
quence of the fact that the Mobius parameters a and 1 do not define
a coordinate system on a given level set by themselves but are only rel-
ative coordinates, as mentioned before.® In our work, we follow a third
option, that is somewhat similar to the natural choice of constraints

In some sense, this is similar to the distinction between affine spaces and vector
spaces. For the former, vectors do not readily determine specific points in, say, some
R™ but only differences between points so that “An affine space is nothing more than
a vector space whose origin we try to forget about [...]” [Ber09]. In this informal
view, an affine space becomes a vector space once we define a specific origin or
point-of-reference and only then do vectors uniquely determine points in R™ just
as a and 1 parameterize a given level set £x(A) only once we distinguish a single
point-of-reference © () for that level set.
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by Watanabe and Strogatz. The unique point-of-reference () from
Lemma 4.10 and Proposition 4.12 yields three constraints on 8 by fix-
ing (01,02,03) = (01(A),02(N),03(N)) = (—7, —7+27 /N, —w+47/N)
so that we may choose the initial conditions for (4.11) by imposing

$(0) = Gu(o)w(0) (¢©N) with A = A((0)).

As a second remark, we note that, while the equations (4.11) look
simple at first sight, they obfuscate some conceptual problems when
it comes to solving them in practice. Since f and g only depend im-
plicitly on « and 1 as well as on the constant 8 via (4.10), it is in
general not feasible to write them down explicitly. A closed form can
usually only be found for specific choices of 8 and thus distinguished
level sets £x(A). We will encounter this problem in Chapter 6 when
we investigate a continuum of periodic orbits. As a consequence, the
equations (4.11) are rarely useful for numerical work. While for large IV,
one only has to solve a system of three coupled ODEs instead of IV, one
usually still has to store the values for each ¢;(t) to determine f and g.
With this, any performance gain that might come with the dimensional
reduction of the problem is immediately compensated by complicated
auxiliary computations for f and g at every time step. Even worse,
while the system (4.9) is usually eligible for vectorization of numeri-
cal integration algorithms, this cannot be expected for (4.11) so that
in consequence, solving (4.11) numerically is less efficient than solving
(4.9). With this, we end our discussion of Theorem 4.13. Next, we make
use of Proposition 4.12 to restate (4.11) in terms of the full set of WS-
variables (a, 1, A) and discuss how to extend them to nonintegrable
systems.

4.3 GENERAL DYNAMICS IN WATANABE-STROGATZ VARIABLES

By Proposition 4.12, every point 8 € T(])\idered is uniquely determined
by the three Ws-variables (a, 1, A) € D x S! x V. In particular, @ lies in
the level set Lyx_a(g)(A) = [©(A(0))]. Since this holds true for every

0 c Té\idered, the level sets form a partition of ngered, i.e., we have
N
Tordered = U ‘C)\(A)
AeVv

with mutually disjoint three-dimensional submanifolds £x(A). Theo-
rem 4.13 then implies that the dynamics of ¢ for a WS-integrable sys-
tem (4.9) can be determined from the corresponding system (4.11) for
a and 1) via the Mobius action (4.10) so that ¢(t) € [¢(0)] for all ¢. In
other words, the partition of TY . through the level sets £x(A) is
invariant under the flow of (4.9) and therefore, the dynamics of (4.9)
in WS-variables (a, ¥, A) is fully determined by the system

i =i(f($)a’ +g(d)a+ [(9))

U= f(p)a+g(e)+ f(d)a (4.12)
A=0.
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Consider on the other hand a general system ¢ = F(¢) of iden-
tical angles (¢1,...,¢0n) = ¢ € TV q Which is generally not Ws-

ordere
integrable. For such a system, the corresponding equations in WS-coor-

dinates read
& =Dga - ¢ =Dga - F(¢p)
Y =Dyt - =Dyy - F(9)
A=DyA - ¢ =DyA - F(¢)
by the chain rule. From this, we see that it is always possible to separate

the components of F' that are compatible with WS-integrability from
the nonintegrable components, i.e., to write

F(¢) = FWS(d)) + Fnon—WS(d’)v

defined by the relations

DyA - Fys(¢) =0
D¢a : Fnon-WS(¢) = D(Zﬂ/} : Fnon-WS(¢) =0

for every ¢ so that

& = Dya - Fys(¢)
Y =Dy - Fys(¢)
}\ = Dd)A . Fnon—WS(¢)

from which we can conclude with (4.8) that
Fys(¢) € span (Dam ,Dym, Dwm)
Fion-ws(@) € span (D)\lm - ,D/\Nism).

In other words, Fyws(¢) denotes the components of F(¢), that lie tan-
gent to Lx(A) at the point ¢ = m(a, 1), X) while Fyon-ws(¢) denotes
the components of F'(¢) normal to it. We make use of this fact when
we investigate the generalized Active Rotator model (2.6) in Chapter 7.

With this, we end our discussion of Watanabe-Strogatz integrability.
In the next part of this thesis, we discuss the results of our work on
the systems (2.5) and (2.6). We start with the results on states that
consist of two clusters.
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TWO-CLUSTER STATES

ABSTRACT

In this chapter, we investigate the emergence and stability of periodic
two-cluster states for the case of the generalized Active Rotator model

N
<]5j = w — sin ¢; + eh(¢p;) + % Z sin(¢r — ¢;)
. k=1 (2.6)
h(¢) = Z ap, sin ng + by, cosng,

n=2

as introduced in Chapter 2. For this, we assume that the ensemble splits
in two clusters A ={1,...,ma} and B={ma+1,...,N} of mg > 1
and mp = N —m4 > 1 units each so that

pA=¢1 =" = bm,

¢B:¢mA+l:"‘:¢N

where we also include the case of full synchrony ¢4 = ¢p. If the two
clusters are of equal size, i.e., if my = mp = N/2, we call the two-
cluster state symmetric. Otherwise, we refer to it as asymmetric.

After making some general remarks in Section 5.1, we start by intro-
ducing a reduced description of the system in terms of cluster coordi-
nates ¢4 and ¢p in Section 5.2, which allows for determining the emer-
gence and stability of periodic two-cluster states against non-splitting
perturbations, independently of the ensemble size N, and is a well-
known tool for the study of clustered solutions [LY12]. In Section 5.3,
we discuss local bifurcations of fixed points in this reduced description
which play an important role in the creation of periodic two-cluster
states. In Section 5.4, we discuss the two most generic codimension 1 bi-
furcations, yielding periodic two-cluster states: the double-heteroclinic
bifurcation and the double-SNIC. Afterwards, in Section 5.5, we discuss
the stability of the emerging periodic states in dependence on the per-
turbation term eh(¢;) and how the observed behavior can be explained
within the framework of WS-theory.

The results on limit cycle bifurcation scenarios and stability of peri-
odic two-cluster states constitute the main results of this chapter and
were published in [RZ21a].
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5.1 GENERAL REMARKS

To make the discussion more definite, we consider two paradigmatic
choices for the perturbation function h in (2.6). By definition, h con-
tains only terms of second or higher order Fourier modes sinn¢ and
cosng, n > 2. We therefore consider one example that is particularly
simple in its form to make some explicit calculations more tangible, and
a second one that serves as a representative for generic perturbations,
involving infinitely many modes. For this, we choose

h(¢) = sin 2¢ (5.1a)
1 1 4 )
h(¢) = ) + 7 + (\/§ - 2) sin ¢. (5.1b)

Note that in (5.1b), the two terms 1/v/3 and (4/+v/3—2) sin ¢ solely serve
the purpose to cancel out the zeroth and first order Fourier modes of
1/(sin ¢ — 2) so that this choice only contains higher order modes.
Although all quantitative results in this chapter apply only to the
two choices for h above, we argue that they are universal for systems of
type (2.6) at least for sufficiently small |¢|. The reason for this is twofold.
Firstly, the found bifurcation scenarios are in some sense minimal: They
involve only saddles and fixed points that are either already present in
the uncoupled case x = 0 or emerge in the most generic fixed point
bifurcations that can occur for systems of type (2.6), see Section 5.3.
Secondly, the main result of Section 5.5 is that a change of stability for
symmetric periodic two-cluster states occurs at ¢ = 0 while asymmetric
periodic two-cluster states do not show such behavior. As we will show,
this is an immediate consequence of the system becoming WS-integrable
at € = 0 where in fact any symmetric periodic two-cluster state is
neutrally stable while asymmetric periodic two-cluster states are always
exponentially unstable at € = 0, regardless of the specific form of h.
As a first step in our investigation, we replace the ensemble and
cluster sizes in (2.6) by the parameter p, describing the relative size
of one of the clusters. This allows to make general statements about
existence and stability of two-cluster states, independently of N.

5.2 A REDUCED DESCRIPTION

As already established in Chapter 2, for systems of identical ARs, it
holds that (i) units cannot overtake each other in the state space S
and thus, (ii) clustered states stay clustered for all time. Introducing
the parameter p = m4 /N, this means that the two-cluster subspaces

’Ep::{¢€TN;¢1="':¢pN:¢Aa ¢pN+1:"':¢N:¢B}’

which are homeomorphic to the two-dimensional torus T2, are invariant
under the flow of (2.6). For finite N, the parameter p takes values in
{2/N,...,(N—=2)/N} but for our purposes we simply assume p € (0,1).
In particular, symmetric two-cluster states are elements of the space



5.2 A REDUCED DESCRIPTION

Ty/o. Note that different choices for m4 and mp and subsequently
of p yield different subspaces T, C TV which intersect only in the
diagonal space A = {QS eV, p=---= qﬁN} (the space of complete
synchrony). Hence, the dynamics on these spaces can be described by
the two-dimensional reduced system

pA=w—singg + eh(da) + (1 —p)ksin(pp — da)

. ] _ (5.2)
¢p =w —singp + eh(dp) + prsin(ps — é5)

since only those units interact with each other that do not belong to
the same cluster. Equation (5.2) thus describes a system of two gener-
ally nonidentical units, close to a SNIC, a setup that was investigated
rigorously by Baesens and MacKay in [BM13] for the case of the units
being sufficiently close to their respective SNICs.

The reduced system (5.2) features an important property in the sym-
metric case p = 1/2: It is equivariant under permutations of cluster A
and B. According to the argument, made in Chapter 3, this equiv-
ariance results in a spatio-temporal symmetry one for its periodic solu-
tions: after one half-period T'/2 > 0, the instantaneous cluster positions
are permuted, i.e., ¢pa(t +T/2) = ¢p(t) and vice versa for all t € R.
Therefore, with respect to Ty, any periodic state is a splay state. This
observation becomes important in Section 5.5, when we investigate the
asymptotic stability of such states.

Let ¢* and ¢" denote the stable and the unstable fixed point of
the single AR ¢ = w — sing + eh(¢). For k = 0, the system (5.2)
possesses exactly four steady states: the stable synchronous fixed point
AS = (¢° ¢%), the unstable synchronous fixed point A" = (g%, ¢"),
as well as the two saddles X! = (¢%, ¢°) and X2 = (¢°, ¢"). In a slight
abuse of notation, we identify these fixed points with the corresponding
ones of (2.6), i.e., with the synchronous fixed points

A= (¢°...,0°)
—_———
N entries

A" = (", ..., ")
—_——

N entries
in the diagonal space A and the two saddles

21:(¢u,“"¢u’¢s7.“,¢s)

m 4 entries mp entries

Y2 = (.., 850", ., BY)

m 4 entries mp entries

of the full system. Since ¢® and ¢" are hyperbolic, so are the reduced
fixed points and thus they persist for sufficiently small |x| > 0.
Coming next to the existence of periodic solutions, one may ask for
which choices of (w, ¢, k,p) such solutions exist at all. The former two
parameters determine only the on-site dynamics of each cluster so we
may fix them and determine for which choices of (k, p) the system (5.2)
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We refer to all states that
lie on the diagonal A as
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states that do mot lie in A
as asynchronous states.
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Figure 4: Existence of periodic orbits for the system (5.2) in dependence on
coupling strength x and relative proportion p of cluster A with fixed param-
eters w = 0.8 and € = 0.1. Panels (a) and (b) show numerical results for
the choices (5.1a) and (5.1b) for h, respectively. In the white shaded area, no
periodic two-cluster states exist while in the gray area, a periodic orbit with
ma = pN and mp = (1 — p)N exists for any given N. Black lines indicate
the approximate bounds (5.3) and (5.4) for the existence of periodic states.

possesses periodic states. Figure 4 depicts the regime of existence of
periodic states (gray shaded area) of the system (5.2) for perturbation
types (5.1a) and (5.1b), respectively. In the white shaded area, no pe-
riodic orbits exist. The meaning of the black lines will be explained
further below. On-site parameters are fixed at w = 0.8 and ¢ = 0.1.
From this, one can make two preliminary observations. First, in order
to yield any periodic two-cluster states, coupling needs to be sufficiently
repulsive. In this numerical experiment, we only find such orbits for
k smaller than approximately —2/3. Secondly, in order to exist, peri-
odic orbits must be sufficiently balanced in cluster size for given . In
general, we observe that the larger |s| is, i.e., the more repulsive the
interaction gets, the larger the disparity of cluster sizes can be to still
yield a periodic orbit. This observation is in accordance to our expec-
tation: If repulsion between clusters is weak and size disparity is large,
the smaller cluster has little impact on the dynamics of the larger one.
Hence, the latter converges approximately to the coordinate ¢° of the
single unit’s stable state of rest, as if isolated. Since clusters cannot
overtake each other, the small cluster cannot show any large scale pe-
riodic motion. However, small scale motions are equally forbidden as
the system is of gradient type as we showed in Chapter 2. Hence, the
system must come to rest. This argument leads to a rough estimate on
the bounds of existence for periodic two-cluster states in x and p for
le] < 1.

For this, let the on-site dynamics be given by f(¢) = w—sin ¢+eh(¢)
and p < 1/2 which implies that cluster B is the larger one. Assuming,
without loss of generality, w > 0, we may view the influence of the
smaller cluster A as a small time-dependent perturbation prg(t) to
the dynamics of B so that we write ¢p = f(¢5) + prg(t). Repulsion
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between clusters is the strongest if 4 — ¢p = £7/2 and the influence
of A on B is bounded by +pk which yields

5] = lw = sin 65 + €h(6) + prg(t)] < | = sinép + eh(¢) — bl

since pk < 0. The flow of ¢ then possesses a fixed point ¢} if the right
hand side of this equation can become zero for some ¢p. For |e| < 1,
this implies w —pr < 1 so that we conclude for the existence of periodic
two-cluster states with cluster sizes pN and (1 — p)N that

1—w

P > Pmin =~ — (5-3)

K
and pmin is a lower bound for p. By symmetry, the upper bound can be
approximated as

1—w

Pamax % 1+ ——. (5.4)

We plot these bounds as black lines in Figure 4. Comparing with the
actual domain of existence, we find that they indeed bound the regime
of existence for periodic two-cluster states. However, as true boundaries
for this regime, they are not very accurate. In order to gain a more thor-
ough understanding of this regime, we have to investigate the actual
bifurcations that lead to periodic two-cluster states. These bifurcations
are expected (i) to be global and involve the fixed points AS, A%, ¥1,
and Y2 and (ii) to take place in the subspaces T,. Thus, we first need to
investigate the possible bifurcation scenarios for the fixed points in T).
Doing so, we focus mainly on the case p = 1/2. Afterwards, we discuss
how the scenarios change qualitatively if one considers p # 1/2.

5.3 FIXED POINT BIFURCATIONS IN T,

For fixed p and sufficiently small |x|, the two-cluster subspace T, con-
tains exactly four fixed points A5, A", 3!, and ¥2. Of these, only the
two saddles are expected to play a role in any global bifurcation, leading
to periodic two-cluster states: The synchronous fixed point A" is com-
pletely unstable for £ < 0 and does not go through any bifurcation while
AS only takes part in a Transcritical Homoclinic Bifurcation (THB) at
ko which yields different periodic states, discussed in Chapter 6. How-
ever, the four fixed points do not exist independently of each other, but
can go through local bifurcations as well, which is what we discuss next.
For simplicity, we focus for now on the case p = 1/2, i.e., the case of
symmetric two-cluster states.! This is in accordance with our empirical
observations. For values of p far off 1/2, integration for randomly cho-
sen initial conditions rarely lead to stable periodic two-cluster states in
our numerical studies. The reason for this will become clear when we
discuss stability in Section 5.5.

Note that in doing so, we assume N to be even. In our numerical experiments, the
results for uneven N looked rather similar with symmetric two-cluster states being
replaced by states, consisting of two equally sized clusters and a singleton.
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When we write $* (and
later ¢, see below), it is
always assumed that

i€ {1,2}.
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5.3.1 Destabilization of A®

It was shown in [ZT16], that A® is, for sufficiently small |s|, the only
attractor of systems like (2.6) but looses stability in a THB [AKS90;
AS92] at some kg < 0, i.e., when the coupling becomes sufficiently
repulsive. For the choice (5.1a) of h, the critical value for  and the
on-site parameters w and e are interrelated by the expression?

0=—1+ 126 — 48¢* + 64€® + ki + 4e* kG —
— 32 K3 — derd 4+ 4%k + w? — 80€%w? — (5.5)

—1286*w? + 322 k3w + 64wt

This expression can be solved for kg in terms of a power series in €
which reads up to quadratic order

2
Ko = —V1—w?+2(1 —w?)e+ 2&)2H62 +0().  (5.6)

As described in [ZT16], the destabilization of A® through the THB is
a highly degenerate event. Firstly, the derivative DF(A®) of the right
hand side of (2.6) possesses an eigenvalue of multiplicity N — 1, which
becomes zero at kg. Secondly, at the THB, A® € TV coalesces with
~ 2N=1 saddles, which are asynchronous for x # xg. These saddles are
all two-cluster steady states that lie in different subspaces T, C T
so that for every T, with p # 1/2, either one of the two ¥ € T,
which already exist for k = 0 coincides with A® or one of two new
asynchronous fixed points = which may emerge in additional saddle-
node bifurcations, discussed further below.

The homoclinic bifurcation of A® at kg is transcritical only with re-
spect to the two-cluster subspaces T, with p # 1/2. There, the saddles
Y E e T, exist for all x in an open neighborhood of kg, are unstable
in T, for £ > ko, and stable in T, for £ < kg, cf. [ZT16].> However, the
symmetric ¢, =% € Ty /2 Play an exceptional role due to the equivari-
ance of (2.6) under permutations of clusters A and B for p = 1/2. In
Ty 2, the transcritical bifurcation is replaced by a pitchfork bifurcation,
as demonstrated in the next section. Thus, for the case p = 1/2, the
participating fixed points X! or =% only exist for either x > kg in case
of a subcritical pitchfork or for kK < ko for a supercritical pitchfork,
see Figure 5. Here, a solid line indicates a stable (in T, /5) fixed point
while a dashed line indicates an unstable one. The green line represents
the synchronous fixed point A® while black lines represent two-cluster
saddles. Whether the pitchfork is sub- or supercritical can have im-
plications on what global bifurcations, leading to periodic orbits, are
possible.

The expressions (5.5) and (5.6) as well as similar ones for the case of perturbation
type (5.1b) are derived in Appendix B.

Note that this does not imply that they are stable in the full phase space TV for
k < Ko. They are in fact unstable in TV since they are generally unstable against
splitting perturbations, in accordance with [ZT16].



5.3 FIXED POINT BIFURCATIONS IN T,

Figure 5: Schematic depiction of the simplest possible bifurcation scenarios,
involving A% and the saddles X%, = € Ty /2, @ € {1,2}. Solid lines represent
stable fixed points (in T;/3) while dashed lines indicate unstable ones. Panel
(a): A subcritical pitchfork occurs at xg. Global bifurcations that yield periodic
two-cluster states, involve the saddles £* and thus must occur for some Ky, >
ko (blue dots). Panel (b): A supercritical pitchfork occurs at g and yields new
stable steady states =¢ which generically vanish in simultaneous saddle-node
bifurcations with the ¥¢ for some k; < k. Periodic two-cluster states can
emerge in two possible ways. Either, they are created in a double-heteroclinic
bifurcation for some k1 < KL < ko (yellow triangles) or ket > Ko (blue

cri

dots), or in a double-SNIC at k1 (red squares). In case of a double-heteroclinic
bifurcation, multistability in T;,; can occur: If the periodic orbit emerges
at Kerig. > Ko and is stable, it is a second attractor besides AS. Basins of
attraction are separated by the unstable manifolds of the X%

In principle, there are no limitations as to what kinds of limit cycle
bifurcations can occur in Ty /o with respect to x. Depending on the form
of the perturbation term h(¢), one might encounter saddle-node limit
cycle bifurcations, giving rise to pairs of stable and unstable periodic
orbits or heteroclinic bifurcations that involve additional saddles which
themselves may emerge in independent local fixed point bifurcations.
However, if we are parsimonious with assumptions on the existence of
additional invariant sets being involved in the creation of periodic two-
cluster states, only two possible scenarios, depicted in Figure 5, are
expected.

If the pitchfork is subcritical, the two saddles ¥¢ merge with AS at
Ko, rendering it unstable, see Panel (a). In this case, since for k < ko,
the only fixed points left are A% and A", which are both unstable in
T/, and seem to not be involved in any further bifurcations, any oc-
curring periodic orbits are expected to emerge for some kg < Kerit, < 0
and must involve both saddles ¥¢ (blue dots), due to symmetry. On
the other hand, if the pitchfork is supercritical, it yields two new asyn-
chronous fixed points =%, stable in T, /2, which take over the role of A®
as attractors in that space as depicted in Panel (b). Generically, the
new steady states 2’ and the saddles X! can vanish for some x; < kg in
two simultaneous saddle-node bifurcations (again due to permutation
symmetry). In this case, two distinct scenarios, leading to periodic or-
bits, are possible. Either, these states are formed in a global bifurcation
that involve only the X%, e.g., in form of two simultaneous heteroclinic
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bifurcations (henceforth called a double-heteroclinic bifurcation). This
can, for example, happen for some kg < Keit. < 0 (blue dots in Fig-
ure 5) or for some k1 < Kl < Ko (yellow triangles), i.e., before or
after the pitchfork occurs. A second type of scenario would consist of
two simultaneous SNICs (henceforth called a double-SNIC) at x; (red
squares). Again, for K < k1 no creation of periodic orbits can take
place without assuming additional more complex bifurcation scenarios.

This means in particular that a subcritical pitchfork should always
imply a double-heteroclinic bifurcation while observing a double SNIC
implies that A® went through a supercritical pitchfork, before. We
demonstrate in what follows that the proposed scenarios indeed occur.
Before we come to this, we discuss first a criterion for the criticality of
the pitchfork bifurcation of AS.

5.3.2  Criterion of Criticality for the Pitchfork Bifurcation of A®

In this section, we show that a pitchfork bifurcation of A® occurs in
Ty, and determine whether it is sub- or supercritical. For this, we
consider a more general class of systems

ba=F(64) + 5C(65 — 6a)

, P (5.7)

¢p = F(¢p) + 5G(d4 — 05)
where F' and G are assumed to be sufficiently smooth and G(0) = 0. If
AS is a stable fixed point for k£ = 0, we have F(¢°%) = 0 and F'(¢%) < 0.
Criticality is then determined via the following proposition:

Proposition 5.1 Let AS = (¢°, ¢°) denote the synchronous fized point
of the system (5.7) of two coupled Active Rotators where ¢° denotes the
stable fized point of the single AR ¢ = F(¢). If the coupling function G
s odd and does not vanish identically and the first three derivatives of
F at ¢° and G at 0 exist, the system undergoes a pitchfork bifurcation
at kg = F'(¢%)/G'(0). Moreover, this pitchfork is supercritical if the
quantity

o 3F//(¢S>2G/(O)
(%) (F7(¢)G'(0) — 4F'(¢5)G™(0))

(5.8)

fulfills 0 < ¢ < 1. For ¢ <0 or ¢ > 1, the pitchfork is subcritical.

To prove this proposition, we first make the following simple geomet-
ric observation:

Assertion 5.2 Any two parabolas yi(x) = a1 + b12%/2 and ys(z) =
as + bax?/2 with either (a) by > by > 0, (b) 0 > by > by, or (c)
by > 0 > by intersect if and only if a1 < ag, as depicted in Panels (a),
(b), and (c) in Figure 6. On the other hand, if (d) by < 0 < by, they
intersect if and only if a1 > ag, cf. Panel (d).

Remark 5.3 The first three cases amount to the condition by > by. To
distinguish them anyway is necessary for the “graphic” proof in Figure 6.
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Figure 6: Two parabolas yi(z) = a; + b12?/2 and y2(z) = as + bez?/2 with
either by > by > 0, 0 > by > by, or by > 0 > bs intersect if and only if a1 < as,
see Panels (a), (b), and (c). On the other hand, if b < 0 < by holds, the
parabolas only intersect if a; > az, see Panel (d).

Note also that case (d) is equivalent to (c) as can be seen by switching
indices.

We now prove Proposition 5.1.

Proof. Without loss of generality, assume G’(0) > 0 which in particular
implies repulsive coupling for x < 0. Since the system (5.7) is invariant
under permutations of the clusters, so are the ¢ 4- and ¢p-nullclines. It
is convenient to make a change of coordinates to x = (¢4 — ¢5)/2 and
y = (¢a+¢p)/2 which essentially constitutes a clockwise rotation of the
system by m/4. Note that in these coordinates, A® reads A% = (0, ¢%).
Further, permutation invariance of the original system translates to a
mirror symmetry along the y-axis. We find

v =g(z,y)

with
Flay) = 3 [F(a+y) — F(y — )] — 5G(22)
g(w,y) = %[F(Hy) +F(y — )]

for which f(—z,y) = —f(z,y) and g(—=z,y) = g(x,y) hold. The z-
nullcline y,(x) and y-nullcline y, (x) are then defined by 0 = f(x, y.(z))
and 0 = g(z, yy(x)), respectively. The z-nullcline has a trivial branch
x = 0, which corresponds to the fact that the diagonal ¢4 = ¢p is in-
variant under the flow of (5.7). We can therefore factor out this branch
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by considering y, as the solution of 0 = f(x, y,(x))/x. Mirror symmetry
around the y-axis implies that the nullclines are even functions

1

Ya(®) = az + Sbe® + O(a%) (5.10a)
1

yy(z) = ay + ibny + O(z*). (5.10b)

Fixed points constitute intersections of nullclines. To determine whether
the assumed pitchfork of A® at kg is sub- or supercritical we make use of
Assertion 5.2 by determining and comparing the quadratic coefficients
b, and b, in the series expansions (5.10) and evaluating which case of
the assertion applies to the them.

We start with computing the y-nullcline. Inserting (5.10b) into 0 =

g(z,y) yields
1
0= F(ay) + 3 (b, F'(ay) + F"(ay)] 2* + O(z*)
and by collecting powers of x, we find

0= F(ay)
0 =byF'(ay) + F"(ay).

The first equation is just the fixed point equation for a single Active
Rotator and thus has solutions ¢° and ¢" where only the first one is of
interest for us. The second equation can then be solved for b,, which
yields

P8
=" F )

Since ¢° is stable and does not depend on «, the denominator is negative
and we have

sign b, = sign F"'(¢°)
day

P =0.

Next, we determine the quadratic expansion for the nontrivial branch
of the z-nullcline, defined by 0 = f(x,yz(x))/z, for which the Taylor
expansion in x reads

0= — %G(O) + [F'(ag) — KG'(0)] — KG"(0) a+

+ % (36, F" (az) + F" (az) — 46G"(0)] 22 + O(ab).

Collecting powers of x and noting that the terms of odd power of z
vanish identically since G is odd, we are left with

0= F'(az) — kG'(0)

0=3b.F"(az) + F"(a,) — 4xG"(0).



5.3 FIXED POINT BIFURCATIONS IN T,

From the first equation we read the critical coupling kg = F'(¢*)/G'(0) <
0 since at the bifurcation, we have a, = ¢°. However, in general we have
to consider a, as a function of k. Solving the equations for b, yields

. — AF"(az)G"(0) — F"(az)G'(0)
’ 31" (a,)G'(0)
To summarize, we find that
sign b, = sign by, - sign (4F'(¢*)G"'(0) — F"(¢*)G'(0))
dr )

. dag . .
sign E((ﬁs) = sign d—%(gbs) =G0 = sign by,.
Note also that the quantity ¢ in (5.8) is given by
by 3F”(¢S)2G,(0)

T belume F() (F7(09)G'(0) — 4F(65)G7(0))

We are now able to finally prove the proposition. Note first that
A?® is always unstable for k < kg and goes through some bifurcation
at k9. To determine whether it is a sub- or supercritical pitchfork, it
suffices to determine whether y,(z) and y,(x) intersect at K = ko+Jk or
Kk = Ko — Ok in the vicinity of x = 0 for sufficiently small §x > 0 because
these intersections yield the two other fixed points that coalesce with
A®in Ty /5 in the pitchfork at xg. Note that we have a, = ¢° = a,(ro)
with dag/dk(kg) # 0 so that if the nullclines intersect for rg + 0k,
they cannot intersect for kg — dx because of Assertion 5.2 and hence
the bifurcation is a subcritical pitchfork. On the other hand, if they
intersect for kg—dx, they cannot intersect for kg+dx for the same reason
and thus, the bifurcation is a supercritical pitchfork. We now have to
distinguish six cases to determine criticality, where we approximate
the nullclines up to quadratic order and compare with the cases (a)-(d)
from Assertion 5.2. For the first four cases, we have 4F'(¢%)G"(0) —
F"(¢*)G'(0) > 0:

1. by > b, > 0 implies da,/dx > 0 and ¢ > 1. Hence, comparing
with case (a) of Assertion 5.2 with y;(z) = y,(z) and ya(z) =
Yz (), the nullclines intersect only for ko+dx where a, = a; (ko) <
az (ko + 0k) and the pitchfork is subcritical.

2. by > by > 0 implies da,/dr > 0 and 0 < ¢ < 1. Hence, com-
paring with case (a) of Assertion 5.2 with yi(z) = y,(x) and
y2(x) = yy(z), the nullclines intersect only for kg — dx where
az(Ko — 0k) < az(ko) = a, and the pitchfork is supercritical.

3. 0 > by, > b, implies da,/dr < 0 and 0 < ¢ < 1. Hence, com-
paring with case (b) of Assertion 5.2 with yi(z) = y.(x) and
y2(x) = yy(z), the nullclines intersect only for kg — dx where
az(Ko — 0K) > az(ko) = a, and the pitchfork is supercritical.

4. 0 > b, > b, implies da,/drx < 0 and ¢ > 1. Hence, comparing
with case (b) of Assertion 5.2 with yi(x) = y.(z) and ya(z) =
yy(x), the nullclines intersect only for ko+dx where a, = a; (ko) <
az (ko + 0k) and the pitchfork is subcritical.
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Assuming 4F'(¢%)G"(0) — F"(¢%)G'(0) < 0 yields the remaining two
cases:

5. by > 0 > b, implies da,/dk > 0 and ¢ < 0. Hence, comparing
with case (c) of Assertion 5.2 with yi(z) = y,(z) and y2(z) =
Yz (), the nullclines intersect only for ko+dx where a, = a; (ko) <
a; (ko + 0k) and the pitchfork is subcritical.

6. by > 0 > b, implies da,/dk < 0 and ¢ < 0. Hence, comparing
with case (d) of Assertion 5.2 with yi(z) = yy(x) and ya(x) =
Yz (), the nullclines intersect only for ko+dk where ag(ko+0dk) <
ax (ko) = ay and the pitchfork is subcritical.

This completes the proof. O

In case of systems of type (5.2) with p = 1/2, the quantity ¢ in
Proposition 5.1 reads

_ 3(sin ¢° + eh'(¢%))?
 (cos ¢ — el (¢%)(3cos ¢° — delt'(¢%) — h(¢%))

which yields

_ (sing® — 4esin 2¢°)?
= Cos @3 (cos ¢* — 2€ cos 2¢%) (5-11)

for h(¢) = sin 2¢. The corresponding expression for our second pertur-
bation h(¢) = 1/(sin ¢ — 2) + 1/v/3 + (4/v/3 — 2) sin ¢ is given by

3X?

2T TV —1)(eYs + 3)
with
€ 3 2€ cos ¢°
X=(—2 4346 tang + —— %t tang
3<@m¢s—m2 V3t )an¢'*@m¢s—2ﬁ*'an¢
1 4
Y=+ — -2
1T T Gme-2? B
3 12 18
Y, = — - L —4V3+6.

(sing® —2)2  (sing® —2)3  (sing®) — 2)

A change of criticality occurs if ¢ becomes either one or zero. These
degenerate cases constitute codimension 2 bifurcations in the parameter
space, spanned by w, €, and k. For the case (5.1a), this one-dimensional
set fulfills

2
0:+ﬁyaﬁ}+pmm@4%mﬁﬂﬁﬁ—uk+
+4 [16384w8 — 22272w% 4 9390w? — 1393w? + 48} - (5.12)
—4 [256w4 — 2732 + 64} ¢

for ¢ = 1, as shown in Appendix C. The second case ¢; = 0 is of
no importance because it did not occur in our work. We refrain from
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deriving a similar expression for perturbation type (5.1b) due to its
complicated form. Note that the switch in criticality constitutes also the
curve in the parameter space along which the two-dimensional surface
of saddle-node bifurcations branches off the equally two-dimensional
surface of pitchfork bifurcations because the saddle-node bifurcation
exclusively accompanies the supercritical pitchfork.

A word is at hand, considering the case p # 1/2. Here, the permu-
tation symmetry between the clusters is removed so that pitchforks
cannot occur. Instead, the pitchforks are replaced by either (i) a tran-
scritical bifurcation of one of the saddles X! with A®, in which these
two switch stabilities, followed by a saddle-node bifurcation with the
second X! (here, we set 2 + 1 = 1) for the subcritical case. The bi-
furcation diagram looks then similar to Panel (a) in Figure 5 where
the parabola is now shifted either up or down. (ii) For the supercrit-
ical case, we find a saddle-node bifurcation in which the Z¢ are born,
followed by a transcritical bifurcation of one of them (the saddle of
the pair) with A®, where it switches stability with AS. Then, the two
saddle-node bifurcations of the X% and Z' occur, even though not nec-
essarily for the same . Graphically, this amounts to a vertical shift of
the quartic curve in Panel (b) of Figure 5 accompanied by a distortion
of the two asynchronous branches.

With these considerations, we end our discussion of the fixed point
bifurcations in T, and come to the bifurcation scenarios that yield
periodic two-cluster states.

5.4 LIMIT CYCLE BIFURCATIONS IN T,

As mentioned in the beginning of this chapter, periodic two-cluster
states must be created in global bifurcations which, in their simplest
form, only involve the four fixed points A®, A", !, and X2, and pos-
sibly the asynchronous fixed points =! and =2, if the pitchfork at g
for p = 1/2 is supercritical if we assume that there are no further fixed
points present. These bifurcations are expected to take place in the re-
spective two-cluster subspaces T, because they must also be observed
in the reduced description (5.2). In our investigations, we observed two
types of bifurcations, leading to periodic states. Either via a double-
heteroclinic bifurcation or, reminiscent to the single SNIC-element, a
double-SNIC. We discuss both bifurcations in what follows. For defi-
niteness, we consider only the perturbation type (5.1a) of the form
h(¢) = sin 2¢. The same scenarios can however be found for the generic
perturbation (5.1b) which further supports the argument that these sce-
narios are generic for systems of type (2.6).

In order to discuss the scenarios, we plot the phase diagrams together
with the necessary invariant structures, as exemplified in Figure 7. Peri-
odic boundary conditions for ¢4 and ¢p are always indicated by black
arrowheads along the boundaries of the square plot so that opposite
sides of it are identified with each other. For now, the vector field of
(5.2) is depicted as small black arrows in the square. In later diagrams,
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Figure 7: Example phase plot of the system (5.2) with h(¢) = sin2¢ and for
p = 1/2. System parameters are set to w = 0.8, ¢ = —0.2, and k = 0. Black
arrowheads at the boundary indicate the periodic boundary conditions in ¢4
and ¢p. The gray diagonal line indicates the invariant diagonal space A with
the fixed points AS (green dot) and A" (red dot). The saddles X! and X2
(black dots) are connected via their stable manifolds (blue lines) with A" and
their unstable manifolds (orange lines) with A®. Arrowheads indicate the flow
along each invariant contour.

we do not show the field any longer to not clutter the plots. At x = 0,
the system is the product of two independent clusters A and B. Thus,
the stable manifolds of the saddles (black discs) are of the form {¢"} xS!
for X1 = (¢4, ¢°) and St x {¢"} for X2 = (¢°, ¢") and connect the sad-
dles with A" (red dot). These manifolds are depicted as blue lines in
what follows. On the other hand, the unstable manifold of X! is of the
form S x {¢*} while the unstable manifold of ¥? is given by {¢*} x S!.
These manifolds connect the saddles with A® (green dot) and are de-
picted as orange lines. The flow along the manifolds is indicated by
arrowheads. Additionally, the invariant diagonal space A is depicted
with the direction of its flow as a gray line, connecting A% and A".
All of these manifolds are, as products of NHIMs, themselves NHIMs
[FM71; HPS77] and are thus persistent for sufficiently small || > 0
and are the building blocks for the sought bifurcation scenarios. Our
discussion is mainly qualitative because it is in general not possible to
determine analytic expressions for the critical coupling k¢, at which,
e. g., a double-heteroclinic bifurcation occurs. Standard numerical tech-
niques to determine such bifurcations are the orthogonal collocation
method and the shooting method [Kuzl3]. We employ a variation of
the latter one. Its main idea is simple and easy to implement for planar
systems. For a heteroclinic bifurcation at x¢it., the unstable manifold
of, say, ©.! coincides with the stable manifold of ¥2. Thus, if x deviates
by a small amount dx > 0 from Keit., the unstable manifold misses ¥.2
and instead, after a fast approach, departs from it, trailing the unstable
manifold of 2. For ket + 0k and ket — 0k, this departure happens
in opposite directions, depending on which side of the stable manifold
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Figure 8: Example of a double-heteroclinic bifurcation, leading to a symmetric
(p = 1/2) periodic two cluster state. On-site parameters are set to w = 0.8
and € = —0.2. From the left to the right, the coupling becomes more repulsive.
Starting with a moderately repulsive coupling in Panel (a) and well separated
stable and unstable manifolds of the 3¢, these manifolds approach each other
in Panel (b). Panel (c) shows the double-heteroclinic bifurcation: both saddles
are connected by a heteroclinic cycle (orange line). In Panel (d), a stable
periodic orbit (orange closed line) has formed while the synchronous fixed
point A® is also still stable. In Panel (e), the saddles have merged with A®
in a subcritical pitchfork, rendering it unstable, transversal to the diagonal
A. At this point, the symmetric periodic orbit remains the only attractor in

T1/2.

of ¥? the “shot” from X! arrives at. Hence, by narrowing down the
interval in which the flip in the direction of departure occurs, one can
determine Kepit.

We start our discussion of bifurcation scenarios with the double-
heteroclinic bifurcation.

5.4.1 The Double-Heteroclinic Bifurcation

5.4.1.1 Symmetric Two-Cluster States

We start with discussing the symmetric case p = 1/2. Fixing on-site
parameters w = 0.8 and ¢ = —0.2, in Figure 8, we show, from the
left to the right, a typical double-heteroclinic bifurcation scenario for
increasing repulsiveness in the case of a subcritical pitchfork bifurcation.
On the torus Ty /;, for moderate coupling in Panel (a), we start with
the unstable manifolds (orange lines) which connect the saddles X
with the still stable diagonal fixed point A®. On the other hand, the
stable manifolds (blue lines) of the X% connect them with the unstable
node A". As repulsion increases in Panel (b), the long branches of the
unstable manifold of ¥ and the stable manifold of X! (where we set
2+1 = 1) approach each other until they merge for the critical coupling
Kerit. in Panel (c). At this point, a heteroclinic cycle (cf. [Fie20]) forms,
connecting ! and ¥2 with each other. Its subsequent breakup in Panel
(d) results in the periodic two-cluster state (orange line). Stability of
this orbit within T, is determined through the competition between
expansion and contraction near the saddles 3, i. e., by the sum A~ (X*)+
AT (X of eigenvalues of the Jacobian of (5.2) at X at the bifurcation
[Fie20]. In general, this sum reads

A (94, 0B) + AT (04, ¢8) = ['(¢a) + ['(¢B) — Kk cos(pa — ¢B).
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Figure 9: Unfolding of the double-heteroclinic bifurcation for p = 2/5. On-site
parameters are fixed at w = 0.8 and € = —0.2. Starting with moderate coupling
strength in Panel (a), coupling becomes more repulsive from the left to the
right. Panel (b) shows a heteroclinic orbit from 32 to X! (vertical orange line).
Increasing |«| further results in the unstable manifold of ¥? forming a closed
contour with its two branches ending at A® in Panel (c). Panel (d) shows the
moment when a homoclinic orbit for 2 forms which results in the creation
of an asymmetric periodic two-cluster state after which the X% vanish in a
saddle-node bifurcation, see Panel (e).

If this quantity is positive, i.e., if [A7(Z%)] < AT(Z?), expansion domi-
nates contraction and the limit cycle is unstable. If it is negative, con-
traction dominates and the limit cycle is stable. According to numerical
results, A7 (%) + AT(XZ?) is indeed always negative at kg, so that con-
traction prevails and the periodic orbit is always stable in Ty /5.

A rigorous treatment of two interacting units sufficiently close to
a SNIC can be found in [BM13]. The double-heteroclinic bifurcation,
discussed here, corresponds to the T-point in Figure 16 of [BM13]. Note
that in Panel (d), the system is bi-stable since both the periodic orbit
and AS are stable. Their basins of attraction are separated by the stable
manifolds of the saddles X¢. This holds until the saddles finally merge
with A® in the subcritical pitchfork bifurcation. After this point, the
periodic orbit has become the only attractor of the system, as depicted
in Panel (e).

Note that one can also observe double-heteroclinic bifurcations in
case of supercritical pitchforks of A® with k1 < Kerit. < ko which look
essentially like the scenario, described above. The only difference is that
the involved unstable manifolds end in the Z* rather than AS. We come
back to this when we discuss double-SNICs in Section 5.4.2.1.

Obviously, the double-heteroclinic bifurcation is not generic in the
sense that its two simultaneous heteroclinic bifurcations of the saddles
occur simultaneously due to the permutation symmetry of (5.2) for
p = 1/2. In the next section, we discuss how the picture changes when
this degeneracy is removed by setting p # 1/2.

5.4.1.2 Asymmetric Two-Cluster States

As discussed in Section 5.2, periodic two-cluster states with large dispar-
ity in cluster sized only exist for sufficiently strong repulsive coupling.
For p close to 1/2, the bifurcation scenario looks more or less the same
as for the symmetric case.

(d) AU (e) Au.
22
NS 21 AS o
k = —0.8996 k=-0.94
ba P
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In Figure 9, we show a typical bifurcation for p = 2/5 which repre-
sents, e.g., a two-cluster state with four and six units per respective
cluster. On-site parameters are fixed at w = 0.8 and ¢ = —0.2. Again,
we start with moderate coupling in Panel (a) and increase repulsive-
ness from the left to the right. Now, the permutation symmetry of the
system is removed and we find that the saddles go first through a het-
eroclinic bifurcation in Panel (b). In this bifurcation, the heteroclinic
connection from ¥2 to X! detaches from X! and instead connects X2 in
both directions of its unstable manifold with A®, as depicted in Panel
(c). In Panel (d), this connection forms a homoclinic orbit which sub-
sequently detaches from Y2, giving rise to the periodic orbit, shown
in Panel (e). Note that in Panel (d), the saddle X! is also very close
to A®, i.e., the system is close the THB at kg. However, this is purely
incidental and is due to the choice of on-site parameters. In general,
the homoclinic bifurcation of ¥? and the THB occur independently of
each other. Between the two depicted phase plots in Panels (d) and (e),
the saddles X! and X2 vanish eventually in a saddle-node bifurcation.
This bifurcation, together with the transcritical bifurcation of ! and
A®, which is not shown here, are the residuals of the subcritical pitch-
fork for p = 1/2, due to the removal of the permutation symmetry. In
particular, ©! becomes stable at g, before merging with X2

With this, we conclude that for p # 1/2 the degeneracy of the double-
heteroclinic bifurcation is lifted which is replaced by a heteroclinic bifur-
cation, followed by a homoclinic one. Stability of the resulting periodic
orbit is, as in the previous section, a matter of whether the sum AT+~
of eigenvalues of the Jacobian of the vector field at X2 is positive or neg-
ative by a well-known theorem by Andronov and Leontovich [And+73;
Fie20]. Since numerical results suggest that it is always negative, the
periodic two-cluster state is asymptotically stable in T,

Comparing Figure 9 with Figure 8, we note that while the hetero-
clinic connection in Panel (b) of the former forms before the double-
heteroclinic bifurcation in the symmetric case, the homoclinic bifurca-
tion occurs only for significantly larger |x|. This corresponds to our
observation in Section 5.2 where we discussed how for periodic two-
cluster states with larger disparity between cluster sizes to exist, the
coupling must be more repulsive than for the symmetric case.

In the next section, we discuss the double-SNIC which can be observed
only if the pitchfork of A® at kg is supercritical.

5.4.2 The Double-SNIC

The double-heteroclinic bifurcation for p = 1/2 or its unfolding for
p # 1/2 are generic in the sense that they must occur if both clusters
are sufficiently close to their respective SNIC [BM13]. In this section,
we discuss a bifurcation which can be observed if this is not the case:
the double-SNIC. We start again with the symmetric case p = 1/2.
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Figure 10: Example for a double-SNIC for a supercritical pitchfork of A®. On-
site parameters are fixed at w = 0.6 and € = 0.2. Again, coupling strength
increases from the left to the right, starting with moderate coupling in Panel
(a). Panel (b) shows the phase plot after the supercritical pitchfork at kg.
The two new stable asynchronous fixed points =¢ take over the role of AS
as attractors of the system. After the cusped closed contour, formed by the
unstable manifolds of the 3¢, becomes smoothed out in Panel (c). Eventually,
the X% and = vanish in two simultaneous SNICs in Panel (d). The result is a
stable symmetric periodic two-cluster state in Panel (e).

5.4.2.1 Symmetric Two-Cluster States

Figure 10 shows a typical double-SNIC if the pitchfork of A® at kg
is supercritical. On-site parameters are set to w = 0.6 and ¢ = 0.2.
Starting with moderate coupling in Panel (a), we find in Panel (b)
that the two asynchronous fixed points Z! and =2, stable in Ty /2, have
formed in the pitchfork and take over the role of A% as end points of
the unstable manifolds of the ¥¢. At first, the two incoming branches
at each =% end in cusps which subsequently get smoothed out in Panel
(c). Panel (d) depicts the simultaneous SNICs where both Z¢ merge with
the Y%, From this, the periodic two-cluster state in Panel (e) is finally
formed. Its stability is inherited from the two heteroclinic connections
of the saddle-nodes in Panel (d), just as for a single SNIC. Since the
occurring saddle-nodes are stable in normal direction to the contour,
the periodic orbit is also stable in Ty /.

We stress again, that criticality of the pitchfork at kg is not a suffi-
cient condition to conclude that periodic orbits are created in a double-
SNIC. In fact, the locus of the heteroclinic bifurcation in Panel (b) of
Figure 5, can wander, depending on w and ¢, along the saddle branches
of the bifurcation diagram. When it ends at the turning point at x1
such that periodic orbits are born in double-SNICs, this constitutes an
orbit flip [Kuz13]. In this codimension 2 event, the direction from where
the unstable manifold of saddle X! approaches the stable fixed point
Zi*1 changes from one side to the other along the leading eigenvector
of DF(Z'1). For example, the orbit flip from double-heteroclinic to
double-SNIC for w = 0.6 occurs at egjp, ~ —0.0245 when the pitchfork is
still supercritical. It becomes subcritical only for € < €; &~ —0.1342, ac-
cording to the degenerate criticality condition ¢; = 1 from Section 5.3.2.
Hence, in the regime €; < € < egjp the bifurcation scenario looks as
follows: Increasing repulsiveness, we observe first a supercritical pitch-
fork in which the Z¢ emerge. Increasing — further yields a double-
heteroclinic bifurcation through which the periodic orbit is created.
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Figure 11: Removing degeneracy of the double-SNIC from the previous section
by setting p = 2/5. On-site parameters are fixed at w = 0.6 and ¢ = 0.2 with
|| increasing from the left to the right. Starting with moderate coupling in
Panel (a), a stable asynchronous fixed point =2 and a saddle Z! form. The
latter one goes through a transcritical bifurcation with A® thereby switching

stability. The result is shown in Panel (b): the unstable manifolds of the %

now end at the respective Z¢. In Panel (c), =} and X! vanish in a first SNIC,

yielding the two branches of the unstable manifold of 2 to form a closed
contour. Panel (d) depicts the second SNIC between =2 and X2, The result is
a stable asymmetric periodic two-cluster orbit, shown in Panel (e).

Increasing —k even more results in two simultaneous saddle-node bi-
furcations (This scenario corresponds to the case, depicted by yellow
triangles in Panel (b) of Figure 5). At € = egjp,, the last two bifurcations
coincide and for € > €gj,, the periodic orbit emerges in a double-SNIC.

As we will see next, the picture looks again rather similar for the
case p # 1/2 of asymmetric clusters.

5.4.2.2  Asymmetric Two-Cluster States

In Figure 11, we show numerical results for the asymmetric case p =
2/5, again fixing on-site parameters to w = 0.6 and € = 0.2. As for the
double-heteroclinic bifurcation, the difference to the symmetric double-
SNIC is two-fold. Firstly, the supercritical pitchfork is replaced by a
saddle-node bifurcation, yielding a saddle =! and a stable node =2.
The saddle Z' and AS then go through a transcritical bifurcation at
ko, where Z! an AS switch stability. The result is depicted in Panel (b):
two stable fixed points Z¢, to the left and right of AS, respectively, have
taken over its role as endpoints of the unstable manifolds of the 7.
The second difference lies in the fact that the two SNICs now happen
consecutively. First, =! vanishes together with X! in Panel (c), which
results in the unstable manifold of X2 to connect it with Z2. Then, in a
second SNIC, see Panel (d), =2 and 2 vanish, rendering the invariant
circle (orange line) a periodic two-cluster state in Panel (e). As for
the symmetric case, the periodic orbit is stable in T,. Note that again,
the contours, formed by the unstable manifolds start cusped and get
eventually smoothed out before their respective SNICs.

Note further that, as for the double-heteroclinic bifurcation, we ob-
serve that the first SNIC in Panel (c¢) occurs before the double-SNIC in
the symmetric case while the second one in Panel (d) occurs only for sig-

nificantly more repulsiveness. This again reflects the observation that
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for periodic two-cluster states with unequal sizes to form, the coupling
must be more repulsive, see Section 5.2.

This concludes our discussion of the found bifurcation scenarios,
leading to periodic two-cluster states. We argue that they constitute
the most generic bifurcations in which such states can emerge in the
sense that they do not require any additional invariant structures and
more complicated bifurcations. While the double-heteroclinic scenario
is truly generic for two clusters, sufficiently close to their respective
SNICs, the double-SNIC has, to our knowledge, not been discussed in
the context of repulsively coupled class I excitable elements. Next, we
discuss the asymptotic stability of the observed periodic orbits in the
full phase space TN.

5.5 LIMIT CYCLE STABILITY

As we established in Corollary 3.4, two types of asymptotic stability
of periodic two-cluster states can be distinguished: it can be splitting
or non-splitting. While the reduced system (5.2) offers full information
regarding the existence of periodic two-cluster solutions of (2.6) and
their asymptotic stability against perturbations that leave both clusters
whole we cannot deduce from it whether these orbits are stable against
splitting perturbations.

Both, double-heteroclinic bifurcations and double-SNICs create peri-
odic orbits with infinite period T for kK — Kerit.. A small deviation from
Kerit. still yields an orbit of large period, where the system spends the
dominating part of the period in a slow passage through the immediate
vicinity of the saddle point (in case of a double-heteroclinic bifurcation)
or the “ghosts” of the saddle-nodes (in case of a double-SNIC). Hence,
right after the bifurcation, splitting stability is inherited from the sad-
dle or saddle-node: if the saddle (or saddle-node) is stable with respect
to splitting perturbations, so is the periodic orbit. The reason for this
lies in the fact that the splitting and non-splitting eigenvalues of the
vector field Jacobian DF' and hence the respective Floquet multipliers
(3.8) depend continuously on the cluster coordinates ¢4 and ¢p of the
periodic orbit and thus, if the saddle or saddle-node is stable against
splitting perturbations, so is any state close by. Further into the domain
of existence for the periodic state, this inheritance is not necessarily the
case any more since the orbit spends less time near the saddle or the
ghost of the saddle-node.

Since the numerical evidence, presented in the previous section on
bifurcations, indicates that the periodic orbits are stable against non-
splitting perturbations, we only need to determine the two Floquet
multipliers

p? = exp (/OT M (t) dt)
1P = exp (/OT)\B(t) dt) ,
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defined in Corollary 3.4, which characterize the stability against split-
ting perturbations of clusters A and B, respectively. For the symmetric
case, u” and P coincide due to the periodic orbit being a splay state
in the reduced description, as we discussed before.

We start with the following proposition, concerning p* and p? for
general WS-integrable models. It matches a similar finding for a system
of Kuramoto-Sakaguchi oscillators under common multiplicative noise
[Gon+19].

Proposition 5.4 Let ¢(t) be a T-periodic two-cluster solution of a
WS-integrable system ¢ = F(¢) with distinct clusters A and B where
ma,mp > 2. Then the two splitting Floquet multipliers u* and p®

fulfill

pApB =1 (5.13)
Proof. Without loss of generality, we assume again that the angular
variables ¢;(t) are in cyclic order and that, since the clusters A and B
consist of at least two units each, we have 1,2 € Aand N —1,N € B,
that is, the first two units of the ensemble belong to cluster A and the

last two units belong to cluster B. Since the clusters are distinct, we
have ¢(t) # ¢p(t) Vt and thus, the cross-ratio

i1 _ gi®2 | (giPN—1 _ oidN
( ) )
elP1 — N (eldN-1 — @it
( ) )
¢>1;¢2

A Nv_in2(o) =
(5.14)

sin ¢N712_¢N

sin

sin ¢1—2¢N sin ¢N—21—¢2

is well-defined in an open neighborhood of the periodic state in TV and
is zero for the two-cluster state. Additionally, it is a constant of motion
for the WS-integrable system.

For any initial state ¢(tg) on the periodic orbit, with instantaneous

cluster coordinates ¢4 = ¢1(tg) = ¢2(to) and ¢pp = dn—1(to) = én(to),
let ¢ denote a small splitting perturbation of the form

5 = (6,-0,0,...,0,6,—6)"

with 0 < § < 1. For the perturbed state ¢(tg) + d¢, the Taylor expan-
sion of (5.14) yields

A N-1,N2 = A vo1,n2(0(to) + 09)
2sin? §
cos(¢pa — ¢p) — cos 20
242
= — +O(5%).
cos(pa —opp) — 1 (9%)
The perturbation d¢ is a linear combination d¢p = d¢p4 + dpp of the
two eigenvectors
Spa = (6,-6,0,...,0)

Spp =(0,...,0,6,—0)"

7
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of the monodromy matrix Mg with respective eigenvalues pu? and
pB, see Remarks 3.6. The flow thus transforms ¢(tg) + d¢ after one
period T to ¢(to + 1) + 6@’ = P(to) + ¢’ with

5¢/ = (/’LA67 _NA57 07 ceey 07 /'LBé, _:U’B(S)T + 0(62)
For this new state, we find

Xl,N—l,N,Q = Al,N—l,N,2(¢(t0) + 5¢/)
B 2 sin () sin(u?0)
 cos(pa — ¢B) — cos(uld + pbo)
) A B(SZ
- __FF + 0.
cos(pa — ¢pp) — 1
Being constants of motion, A y_1 2 and )\'17 N—1.N,2 ust coincide and
comparing powers of ¢ yields

+O(6h

A
ptuf =1
which proofs the assertion. O

Proposition 5.4 has two important consequences that we state in the
following two corollaries:

Corollary 5.5 For any symmetric periodic two-cluster state (p =1/2)
of a WS-integrable systems, we have p = pP = 1. In particular, this
state possesses N — 2 neutrally stable directions.

Proof. This follows from the fact that such a state is a splay in T/,
and hence, p = pf and that p?, u® > 0 because negative Floquet
multipliers would imply a change in the order of the perturbed angles
which is prohibited since units cannot overtake each other. Since both
multipliers have multiplicity N/2 — 1, the orbit has N — 2 neutrally
stable directions. O

Corollary 5.6 For any asymmetric periodic two-cluster state (p #
1/2) of a WS-integrable system, we have either p* > 1 > p® > 0 or
pB > 1> pA > 0. In particular, such a state is always exponentially
unstable and isolated in TN .

Proof. This follows from the fact that asymmetric periodic two-cluster
states are generally not splay states so that u? # p® and that both
Floquet multipliers must be positive. Thus being a limit cycle, the
periodic orbit of ¢(t) is isolated in TV meaning there exists an open
neighborhood of it within which every initial state spirals either towards
or away from it exponentially fast. O

Without loss of generality, let cluster A be the larger one for the
original AR-model (2.5). From our numerical studies, we then find u* >
1 > u®P so that A is unstable with respect to splitting perturbations
while B is stable with respect to them. Intuitively speaking, cluster B
is not strong enough to repel any stray units of A to make them return
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Figure 12: Stability diagram for symmetric periodic two-cluster states of the
generalized AR-model (2.6) with perturbation type (5.1a) and fixed w = 0.6.
A white shading indicates that no periodic two-cluster state exists. In the red
shaded region, it exists and is unstable while in the blue shaded region, it
is stable. The green line depicts the THB of A® at kg, according to (5.5). A
solid black line indicates a double-SNIC while a dashed black line indicates a
double-heteroclinic bifurcation. The inset shows a narrow region of instability,
close to the boundary of the region of existence for such periodic states.

to it. On the other hand, cluster A repels stray units of B and pushes
them back to it so that cluster B is stable.

After these general considerations for WS-integrable systems, we dis-
cuss stability of the generalized AR-model (2.6) with our paradigmatic
choices (5.1a) and (5.1b) for the perturbation function h. As before, we
start with the symmetric case p = 1/2.

5.5.1 Symmetric Two-Cluster States

The generalized AR-model

N
gZ;j =w —sin¢; + eh(¢p;) + % Z sin(¢r — ¢5) (2.6)
k=1

becomes WS-integrable at € = 0 for any choice for h. Thus, if a symmet-
ric periodic two-cluster state exists for given values of w and & if € = 0,
this orbit must be neutrally stable by virtue of Corollary 5.5. Because
neutrally stable periodic orbits are generally not robust, this implies
that a change in stability must occur at € = 0 for generic choices of h so
that the two-cluster state is either stable only for € > 0 and unstable for
€ < 0 or the other way around as long as |e| is small. This is supported
by numerical results, where we compute the splitting Floquet multi-
pliers according to Corollary 3.4 by integrating the eigenvalues of the
Jacobian DF' along the periodic orbit. Next, we discuss our numerical
findings in more detail.

We begin with Figure 12, which shows numerical results for the stabil-
ity for the perturbation type (5.1a) and fixed w = 0.6. In this stability
diagram, in the white shaded area, there exist no periodic two-cluster
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Figure 13: Stability diagram for symmetric periodic two-cluster states for (2.6)
with perturbation type (5.1a) and fixed w = 0.8. In this case, the periodic orbit
is always created in a double-heteroclinic bifurcation (dashed black line) and
thus exists already before A® becomes unstable in the THB (green line).

states whatsoever. In the red shaded area, an unstable periodic two-
cluster state exists. In the blue shaded area, the periodic state exists
and is stable. The green line indicates the THB of A® at kg, according to
(5.5). At the boundary of the regime of existence for periodic solutions,
a solid black line indicates a double-SNIC while a dashed black line in-
dicates a double-heteroclinic bifurcation. The latter bifurcation curves
were computed numerically by the shooting method and by checking
for the occurrence of simultaneous saddle-node bifurcations.

We make two important observations. Firstly, indeed a change of
stability occurs at € = 0 which confirms our expectation. Secondly, as
shown in the inset, we find that for € < 0 there exists a narrow region
of instability close to the double-heteroclinic or double-SNIC. This cor-
responds to the fact that the splitting stability of the periodic orbit
shortly after the bifurcation is inherited from the saddles ¥¢ which are
unstable against such splittings, as discussed before. Numerical results
indicate that the width of this region of instability vanishes for ¢ — 0,
also in accordance with Corollary 5.5.

Note that the intersection of the THB-line and the double-heteroclinic
line close to € & —0.09 and k &~ —0.91 is merely a projection artifact. As
already mentioned in Section 5.4.1.1, the THB and double-heteroclinic
bifurcation generally occur independently of each other and for distinct
choices of the system parameters. Note also that the diagram includes
regions of bi-stability: For € < 0 and kg < kK < Kerit., both A® and the
periodic state can be stable.

Figure 13 shows the stability diagram for the case w = 0.8. Here, the
periodic orbit is always created in double-heteroclinic bifurcations and
thus exists before the synchronous fixed point A® becomes unstable in
the THB. For this case as well, numerical evidence suggests a narrow
region of instability for ¢ < 0 and close to kcit.. However, it is too
narrow to be resolved graphically.
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—-1.2 -1.0 —-0.8 —0.6
K

Figure 14: Stability diagram for symmetric periodic two-cluster states for (2.6)
with perturbation type (5.1b) and fixed w = 0.6. As for the perturbation type
(5.1a), the periodic orbit is created either in a double-heteroclinic bifurcation
(dashed black line) or a double-SNIC (solid black line). The green line, indicat-
ing the THB at kg is computed via (B.3).

A noteworthy observation can be made for ¢ = 0. Anticipating the
results from Chapter 6, we note that numerical evidence suggests that
for k < kg, the symmetric periodic two-cluster state is embedded in a
continuum of neutrally stable periodic orbits which arises naturally for
Ws-integrable systems [WS94]. This corresponds to the fact that in this
case, we have 4 = P = 1. However, for w = 0.8, we observe that the
periodic two-cluster state exists and is neutrally stable even for some
K > Ko where we observe no such continuum of orbits, whatsoever.
Note also that while all the periodic orbits of the continuum have N —
3 neutral directions, the two-cluster state has N — 2, as mentioned
before. Thus, the central manifold of the symmetric two-cluster state
does generally not coincide with the continuum. While in the regime of
existence for k > kg the periodic two-cluster state is neutrally stable up
to linear order, the full nonlinear evolution lets splitting perturbations
converge towards AS.

Finally, in Figure 14, we present numerical results concerning the
stability of two-cluster states for the generic perturbation (5.1b). As for
the case of (5.1a), we find that (i) periodic solutions are created either
in double-heteroclinic bifurcations or double-SNICs and (ii) a change of
stability occurs at € = 0. This further supports the assertion that this
switch is in fact a generic phenomenon for such systems. The green line,
indicating the THB at kg is given by (B.3).

With these results, we end our discussion of stability for the symmet-
ric case and come to the asymmetric case of unequal clusters.

5.5.2  Asymmetric Two-Cluster States

Since Corollary 5.6 states that all asymmetric periodic two-cluster
states are exponentially unstable at e = 0, it follows that there exists
an open neighborhood of the line of € = 0 in which no stable asym-
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Figure 15: Stability regimes for asymmetric periodic two-cluster for the system
(2.6) with perturbation type (5.1a) and w = 0.8. We consider an ensemble of
N = 100 units. White shading indicates that no periodic two-cluster states
exist. Regimes of multistability are observed. Starting with periodic states
with p = 50/100 as the only stable periodic orbits in the blue area, successively
passing to the turquoise, green, and yellow regions, asymmetric orbits with
p = 51/100, p = 52/100, and p = 53/100 become stable, as well. Hence, e. g.,
in the yellow area, we find four different stable periodic two-cluster states.

metric periodic two-cluster states exist for given N. From the results
for symmetric states, depicted in Figure 12, 13, and 14, we expect that
in the respective regimes of instability for these states the asymmetric
orbits are also unstable. On the other hand, the regimes of stability for
asymmetric states should be enclosed in the stable region for symmetric
states since they are expected to exist only for stronger repulsiveness
for given € than in the symmetric case.

This is confirmed by numerical results which show a cascade of re-
gions of multistability, nested with respect to p, see Figure 15. Here, we
choose again for definiteness the perturbation type (5.1a), fix w = 0.8,
and consider an ensemble of N = 100 units. We only show the results for
negative € because for € > 0, as expected, all periodic two-cluster states
are found to be unstable. The blue shaded area corresponds to the blue
area in Figure 13. In this regime, only symmetric periodic two-cluster
states are stable. In the turquoise region, we find that additionally, the
periodic two-cluster states with p = 51/100 have become stable. In
the green area, a third periodic two-cluster state with p = 52/100 be-
comes stable and in the yellow area, we find yet a fourth such state
with p = 53/100 to become stable. We expect this nested structure to
be generic for systems of type (2.6) because if a strongly asymmetric
periodic two-cluster state is stable, it is to be expected that a state
with less disparity between cluster sizes is also stable. Note that the
regions, shown in Figure 15, are not the same as the regions of existence
for asymmetric periodic two-cluster states but only indicate the regions
of stability. These states generally exist outside of these stable regions,
too. However, in our numerical experiments, the regions of existence
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always lie inside the region of existence for symmetric periodic states,
in accordance to our observations in Section 5.4.

Note that choosing larger N makes the nesting finer. The larger NV
is, the more narrow the differently colored areas in Figure 15 become.
In particular, with growing IV, the region of exclusive stability for sym-
metric periodic two-cluster states (blue region) continuously shrinks in
size, even though it always begins beneath the line at ¢ = 0 for any N.

With this, we end our discussion of stability for periodic two-cluster
states and summarize our findings.

5.6 CONCLUSION

We have presented our findings regarding creation, existence, and sta-
bility for periodic two-cluster states, both symmetric and asymmetric,
which have been published in [RZ21a].

Starting with a reduced description of two-cluster states, we observed
two basic global bifurcation scenarios, leading to periodic two-cluster
states: the double-heteroclinic bifurcation, where periodic orbits are
born from a structurally unstable heteroclinic cycle, and the double-
SNIC, where periodic states emerge through two saddle-node bifurca-
tions on an invariant circle, rendering it a limit cycle in T,. While the
former is generic for systems of two class I excitable units, sufficiently
close to their respective SNICs, cf. [BM13], the latter has, to our best
knowledge, not been discussed before in this context. We discussed
both of these scenarios for the degenerate case of equally large clusters
and how the picture changes when the clusters differ in size. We also
discussed how double-heteroclinic bifurcation and double-SNIC are con-
nected to the criticality of the pitchfork bifurcation of the synchronous
fixed point A® at kg. Further, we argued why these two scenarios are
expected to be generic for systems of type (2.6) which was confirmed
in our numerical studies for the generic perturbation type (5.1b). In
particular, we found that the emerging periodic states are stable with
respect to perturbations that leave the clusters whole.

Regarding splitting perturbations, we showed that symmetric peri-
odic two-cluster states for general WS-integrable systems must always
be neutrally stable while asymmetric states are always exponentially
unstable with respect to splitting of one of the clusters and stable with
respect to splitting perturbations of the other cluster. While it has been
shown before that periodic two-cluster states cannot be asymptotically
stable for WS-integrable systems, see [EM14], the identity (5.13), which
generalizes a similar finding in [Gon+19], can to our knowledge not
be found in the existing literature on Watanabe-Strogatz integrability.
Equally remarkable is that, although two-cluster states themselves are
not accessible via WS-theory since it requires at least three distinct an-
gular variables to apply, their stability can be understood within this
framework. Numerical evidence further suggests that neutrally stable
symmetric periodic orbits are embedded in a continuum of periodic or-
bits, if this continuum exists. We will come back to this observation in
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Chapter 7. On the other hand, asymmetric periodic two-cluster states
cannot be part of this continuum due to their exponential instability.
In particular, for odd N, all periodic two-cluster states are isolated
and exponentially unstable at ¢ = 0 and, by continuity within an open
neighborhood of the ¢ = 0 line while for even N, a switch in stabil-
ity occurs at € = 0 for symmetric states. We also demonstrated that
both, the regions of existence and the regions of stability for periodic
two-cluster states, are nested for increasing |p — 1/2|. The larger the
disparity in size between the two clusters gets, the more repulsive the
coupling between them must be in order to yield periodic orbits. If addi-
tionally, the orbit is expected to be stable, both, the repulsive strength
of the coupling and the deviation from the WS-case must be sufficiently
large. This yields a nesting of stable regions for states of large cluster
size disparity inside the ones with smaller disparity.

With this, we end this chapter on periodic two-cluster states. In
the next chapter, we discuss the existence of splay states and of a
continuum of periodic orbits for the original AR-model (2.5) which is
equipped with a NAIM-structure in TV. Afterwards, we investigate the
close connection with respect to stability between periodic two-cluster
and splay states in Chapter 7.



INTEGRABLE DYNAMICS AND THE NORMALLY
ATTRACTING CONTINUUM OF PERIODIC ORBITS

ABSTRACT

This chapter is dedicated to the dynamics of the classic AR-model

N
$; = w —siné; + % 3 sin(gr — ¢))- (2.5)
k=1

After some general remarks in Section 6.1, concerning previous findings
on the stability of the synchronous state A®, we start by expressing the
equations of motion for the system in WS-variables in Section 6.2. Af-
terwards, we show in Section 6.3 that for a broad class of WS-integrable
systems and under certain general conditions, a continuum of periodic
orbits exists and that the union of these orbits possesses the additional
structure of a Normally Attracting Invariant Manifold (NAIM). We also
show that one of these orbits features splay state dynamics. In Sec-
tion 6.4, we apply these results to the model (2.5) and compute the
critical coupling strength k¢ for which the continuum emerges.

Since the units are assumed to be identical, we always consider them
in accordance with Chapter 4 and without loss of generality to be in
strict cyclic order on S'. The content of this chapter is based on the
results in [RZP]. We note that again some passages and in particular
the assertions with their proofs are often verbatim quotes of this work.
However, we elaborate some details and calculations in the arguments.

6.1 GENERAL REMARKS

Before we begin with the presentation of our own results, we recapit-
ulate the main findings on the AR-model (2.5) from [ZT16] that are
important for us. This serves also as a motivation for this chapter.
Recall from the previous chapter that the system (2.5) possesses a
fixed point A® = (¢°,...,¢%), which at k = 0 is exponentially stable.
For k > 0, or attractive coupling between the individual units, this fixed
point stays stable since not only the on-site component w — sin ¢; in
(2.5) tends to stabilize the unit j at ¢° but also the coupling binds any
two units stronger together. Due to these trivial asymptotic dynamics,
the authors of [ZT16] were interested in how the outcome changes if
the coupling is repulsive, i.e., when k < 0. They found that for general
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systems of identical one-dimensional repulsively!' coupled units, there
exists a critical coupling strength k¢ at which A® becomes unstable
in a Transcritical Homoclinic Bifurcation (THB)?, cf. [AKS90]. In this
bifurcation, A® coalesces with ~ 2V =1 two-cluster saddles while a multi-
tude of homoclinic orbits forms. The dynamics along any of these orbit
looks as follows: At the beginning and end, all units are located at ¢°
while along the homoclinic orbit, a single unit or a cluster of units sep-
arates from the rest of the ensemble, moves in one direction away from
it, thereby tracing the state space S!, and then returns and joins the
rest of the ensemble from the other side while the remaining units stay
relatively close to ¢° in state space. Depending on which homoclinic
orbit one follows, different units go astray from the bulk before return-
ing from the other side. In this highly degenerate bifurcation, N — 1
eigenvalues of the vector field’s Jacobian at A® vanish and a calculation
yields

ko= —V1—w?

for the critical coupling strength (recall that |w| < 1 for Active Rota-
tors).

The question naturally arises what kind of dynamics take place when
A ceases to be an attractor and the authors of [ZT16] noted from their
numerical studies that a continuum of periodic orbits is formed. We
show some exemplary (normalized) time series for some of these orbits
in Figure 16 for an ensemble of N = 10 units. They differ in their
respective conserved cross-ratios A and the timing between any two
consecutive units to spike, i.e., when they make a turn around S!, as
seen by the rapid down- and subsequent up-strokes in the plots, which
indicate spikes for the respective units. In particular, for a suitable
choice A* of the conserved cross-ratios, a splay state can be observed,
as depicted in Panel (a) of Figure 16. Splay states can be characterized
as periodic states ¢(t) for which the dynamics of every individual unit
¢;(t) can be written as

610 = ¢ (47 ) (61)

for some T-periodic continuous function ¢ : R — S! so that the time
series of all units are copies of each other, shifted by some multiple of
1/T in time. Additionally, all of the observed orbits possess two stable
directions and N — 3 neutrally stable ones. This was understood to be
the result of the system being WS-integrable which naturally leads to
degenerate dynamics, as discussed in Chapter 4. Two questions arose
from this: The first one was how generic the observed dynamics actually

Actually, their studies were more general, being interested in the case of mized
coupling where some units couple attractively and some repulsively.

In [ZT16], the authors refer to it as a transcritical heteroclinic bifurcation because
they consider ¢; € R in which case two points § € R and ¥ = 6427 are not identified
with each other but constitute distinct states in state space R. In particular, the
phase space of the system becomes RY instead of TV. Subsequently, all present
vector fields are then assumed to be 27-periodic in each 0;.
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CoSs ¢;

Figure 16: (Normalized) time series of cos¢; for four periodic orbits with
different fixed cross-ratios for a system of N = 10 Active Rotators obeying
(2.5). Different colors indicate different units. System parameters are fixed at
w = 0.8 and ¥ = —0.7 and instead over time ¢, we plot for each orbit over its
phase s = 2w t/T () where T'(A) is the solution’s period. Panel (a) depicts a
splay state while Panels (b)-(d) represent orbits in randomly chosen level sets
Lx=(A) which are generally no splay states.

are, a question that is investigated in Chapter 7 and Chapter 8. The
second question, which we intend to answer in this chapter, is about
the geometric properties of the continuum itself: whether it is equipped
with some additional structures, e. g., if it forms a NAIM in which case
results from the theory of NAIMs can be used for further analysis. Here,
we show that this is indeed the case and that this observation in fact
holds true for a large class of WS-integrable models. We also prove
that the continuum for the AR-model (2.5) emerges exactly at ko in
accordance with the numerical results from [ZT16].

6.2 THE CLASSIC MODEL IN WATANABE-STROGATZ VARIABLES

We start our investigation of the dynamics of (2.5) by writing it down
in WS-variables «, v, and A from Proposition 4.12. For this, we note
first that (2.5) can be rewritten as

. N

. 7 . . K 2 . . . .
bj=w+ = (e —e i) - TN (lPheT05 — o7 Pkel

’ ) )~ x kgl 1 ) (6.2)

=t (14 82(6))® — 2 (14 12(@))e

where ¢ = (¢1,...,¢n) and Z is the well-known Kuramoto order pa-
rameter [Kur75]:
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Definition 6.1 The Kuramoto order parameter Z : TN — D is defined
as

1<
Z(§) =5 D
j=1

where D := {z € C ; |2| < 1} denotes the closed unit disk.

The order parameter can be interpreted as a measure of synchrony
between the angles ¢; because if all angles lie close to each other on
the circle S, we have |Z| ~ 1 while for a uniform distribution of angles
we find |Z| = 0. The first case is one of high synchrony while the latter
is one of low synchrony.

Comparing the second line of (6.2) with (4.9) from Theorem 4.13,
we find for the common fields

f:%(l—Fl-iZ_)
g=w

and in particular, (2.5) is WS-integrable as was already noted in [ZT16].
Furthermore, it belongs to a whole class of WS-integrable systems, for
which both f and ¢ can be written as functions of Z and otherwise
do not depend explicitly on ¢. This leads to the idea to study general
systems of this kind which is what we do in what follows.

6.3 A CLASS OF WATANABE-STROGATZ INTEGRABLE SYSTEMS

In Chapter 4, we discussed how for WS-integrable systems like the orig-
inal AR-model (2.5) a coordinate change to the WS-variables (a1, A)
reveals that such systems possess N — 3 constants of motion, the cross-
ratios A, and that consequently, their dynamics on their respective level
set Lx(A) is fully determined by two coupled ODEs for a and . In WS-
variables (a, ¥, A), the equations of motion then read

(F(@)a? + g(@)a + f(9))

f(@)a+g(#) + f(d)a (4.12)
0

I
~.

> &L R
Il

where ¢ = m(a, 1), A) is determined via the diffeomorphism m from
Proposition 4.12. In general, the equations (4.12) are of a more compli-
cated form than the original equations

b5 = f(@)e'” + g(¢) + f(p)e ' (4.1)

so that no closed explicit form for (4.12) exists. However, if the circum-
stances are right, such an expression can be found which then allows
for a more thorough analysis. Hence, for the rest of this section, we
consider general WS-integrable systems of the form

b; = f(2)e'% + g(Z) + f(Z)e " (6.3)
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or, in WS-variables,

a=i(f(2)a*+g(Z)a+ [(2)) (6.4a)
b= f(Z)a+9(2)+ f(Z)a (6.4b)
A=0 (6.4c)

for which f and g depend on ¢ solely via the Kuramoto order parameter
7.3 To arrive at a closed form of (6.4) in terms of the WS-variables, we
therefore have to first express Z entirely in terms of «, 1, and A. Using
the Mobius transformation (4.2), we start by defining the auxiliary
function Zg : D x S x TV — D with

1 & :
Zo(0,1,6) = Z G (%)

j=1 k=0
[e's) ) 1 N
= Z a—a ew)kﬁ Z ki
k=0 j=1
n i e (—a eiw)ki g: ik +1)0;
k=0 N j=1

where in the third line we used the fact that |o| < 1 and the geometric
series formula 3252, 2% = 1/(1 — 2) for |z| < 1. Introducing the symbol

< zk0> Z ezk@

we arrive, after reindexing the second sum, at the general expression
) = a Z(_&ew)k <ezk9> + ¥ Z(_é‘ew)k <ez(k+1)0> .
=a+(1-la?) zwz - <ez‘k9>‘

This equation holds for general 8 € TV. Setting & = () with the
point-of-reference function @ from (4.4), we define Z : DxS!' xV — D
by Z (o, 9, ) = Zg(ar,), ®(A)) (note that |Z]| < 1 since the ©;(A) are
always mutually distinct) and thus

Z(a, b, A) = a+ (1 |af?) WZ - <el’k@<*>> (6.5)

Since Z is to be understood as a two-dimensional real valued function, we should
better write, e.g., f(ReZ,Im Z) or f(Z,Z) where for any z € C, Rez and Imz
denote its real and imaginary part. Instead, we simply write, e.g., f(Z) with the
understanding that f and ¢ generally depend on both Z and Z. In particular, they
need not be complex differentiable but only real differentiable.
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which is the general expression for Z on T, ., in terms of the Ws-
variables.

For generic choices of A, the expression (6.5) cannot be simplified
further and in particular, there is no closed form for the infinite sum in
it. However, there exists a specific level set £x«(A) on which this can
be achieved.

6.3.1 The Level Set of Uniform Distributions

In Chapter 2, we defined the point

0" = (65,....0%) -
" 2m 4.5

of evenly spaced angles 6; in S! which is clearly an element of Té\;dered.

As noted in Remark 4.11, its corresponding cross-ratios A* = A(6*)
read

A* :( T""? >kN—3)
sinw (4.6)

m(kt1) "

*_
AL = —
2cosﬁsm N

We call a configuration like 8* of evenly spaced angles a uniform dis-
tribution of angles. Any uniformly distributed state © can be con-
structed from 6* by shifting the whole ensemble by some fixed amount
¢ € [0,27), in other words, by applying a Mébius transformation

JRUASRINIR Go (eie )

so that ¥ also lies in Lx«(A). We therefor refer to Lx«(A) as the level
set of uniform distributions. For this level set, there exists a closed

expression for the symbols <eik@(>‘*)>:

Lemma 6.2 On the set Ly«(A), the symbols <ei®(>‘*)> are of the form

0 else.

(kOO {(—1)’“ ifk € NZ

Proof. Let k € NZ, i.e., k = NI for some integer [ and note that
0* = O(A\*). Then ¢ = e Imk T NIG—1) = o=imk — (_1)k for all j
and hence, <e“‘“9*> = %Zé\le(—l)k = (—1)*. On the other hand, let

k ¢ N7Z. We use the well known identity j.V:Bl 2= Z;V%ll for any z # 1
which yields

. 1Y . 2mi
<ezk9 > _ N Ze—mk-i-w(]—l)k
j=1

1 N-1 ;
_ —irk Z ( ik)
= —e e N
N .
Jj=0
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1 e nkN _q
TN oMk 1
I
B MR 1
=0
since e v ¥ # 1 for k ¢ NZ. O

From this lemma, we conclude that

[o.¢]
Z(o, 9, A") = a = (1= |af’) & > (@e) V!
k=1
. | . | (6.6)
_ Z GFN—14ikNY +a Z kN gik N
k=1 k=0

so that Z(a, ¥, A*) = a+0 (|a|N> and thus can be approximated by

on Ly«(A) for large ensemble sizes N. This observation has far-reaching
consequences. It was first noted in [PRO8] where it was used to investi-
gate ensembles of heterogeneous ensembles of angular variables in the
thermodynamic limit N — co by means of WS-theory. For systems of
the form (6.4), it implies that (6.4a) effectively decouples from ) and A
for N > 1 and can be studied independently. This ansatz was further
elaborated and applied in order to study, e.g., weakly inhomogeneous
ensembles of angular variables as well as explosive synchronization and
Chimera states in star graphs [VZP15; VRP16; Eld+21].

We also use this observation to determine periodic orbits of systems
of the type (6.4) by studying its closed or truncated form where Z is
replaced by a. Since the dynamics then decouples from 1 and A, the
problem is reduced to finding (stable) fixed points of (6.4a) for which
) # 0. We can then use Theorem 3.7 for NAIMs to conclude that similar
orbits must exist in the original system (6.4) and that their union in
fact forms a NAIM. However, to make this work, we must first elaborate
the implications of substituting Z by « to “close” (6.4a). In particular,
we must first show that the error that is made by replacing Z by «
can be made sufficiently small in C''-norm by choosing N sufficiently
large. The main result of this section is thus an estimate of the error
n = Z — « and its partial derivatives for large V.

Each level set £x(A) C TV, .4 is diffeomorphic to the space D x St
so that we identify

La(A) =D xS x {A}

where for any two diffeomorphic spaces X and Y, we write X = Y .* For
any smooth function F : ngered — R™, the derivative of its restriction
F|z,(a) to the level set £x(A) is then given by

DF :=DF|, (o) = (Do F,DsF,DyF).

4 In the same way, we identified T jo,eq = D x S! x V in Chapter 4.
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In the derivation of Z(«, 1, A), we made use of the geometric series so
that (6.5) diverges for |a| — 1. To account for this, from now on we
restrict the domain for o such that Z(a, ¢, A) stays bounded. Let

D, ={z€C;|z| <r}

denote the open complex disk of radius r with closure D,.. The following
lemma gives an estimate for the error = Z —a in C''-norm on Ly« (A):

Lemma 6.3 Consider D, for any 0 <r <1 and let

n:DxS'xV —=C
(Oé:wa)‘) HZ(avwv)‘)_a'

Then,
*\| N—-1
sup  [n(a, 1, %) = O™ ) (6.7)
(a,p)EDy xSt
sup Dn(a, ¥, A*)|| = O(Nr¥72). (6.8)
(om/})EﬁTXSl

Proof. We start with Equation (6.7). From (6.5) and Lemma 6.2, we
infer

may 9, X% = — (1= Jaf?) 6% 3 (@e)eN1
k=1

00 00
— _ Z akN—leszq/; +a Z @kNelkNw,
k=1

k=1
yielding
sup [n(a,p, AN = sup (1= laf) €Y (@e™)N
(a,9)€EDy xSt (o, ) €Dy xSt k=1

kEN-1

o0
<  sup (1 - \a|2) Z ’Ex et
() €D, xSt k=1

< ZrkN—l _ O(TN_l).
k=1

so that (6.7) holds. i
To prove (6.8), we first compute the entries of Dn(a, 1, A*) to leading

to leading order.

order in N. From this, we can expand HDn(a, P, A*)
For each = € {a, &, v}, we can then write in a slight abuse of notation
D,n = ReD,n +iIm D, for the respective column (Re D,n, Im D,n)”
of Dn. In particular, |[Re Dgn|, [Im Dyn| < |Dgzn| = ||Dzn|| holds.

For the first column of Dn(a, ¥, A*), we find

o0

Dan(a, ¥, X*) = ) (ae)™
k=1

o0 o0
Dan(a, ¥, X[ < > Jaf < SN
k=1 k=1
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for all (a,7) € D, x S and thus

sup  [ReDan(a, 1, A*)| = O(r")
(a7w)eﬁ7'xsl

sup  [Im Dyn(a, b, A*)| = O(rM).
(a’w)eﬁ"‘xsl

Similarly, we find for the second column

[e.e]
Dan(a, ¥, A*) = — Z(kN 1) gk =2 gikNY
k=1
o0
+a ) kNatNtekhNY
k=1

M8

[Dan(e, ), A% < D7 [(6N = 1) o + kN |of*"]

b
Il
—

NE

< [(kN 1) N2y k:Nr’“N}

B
Il
—

for all (a, 1)) € D, x S! and hence

sup  |[ReDan(a,, ") = O(NrV=2)
(a7w)€ﬁ"‘><§1

sup  |ImDan(a, 1, A*)| = O(NrV~2).
(ar,p) €Dy xSt

Finally, we have

00

DW?(OC, wa )‘*) = Z Zk?N[ — @kN_l —+ a@kN] eik]\hﬁ
k=1
[e'¢)

IDyn(a, o, A*)| < S RN |V 4 oV

>
Il
—_

kN [TkN_l + TkN+1]

(VAN
hE

e
Il
—_

for all (a,9) € D, x St so that

wp  [ReDyr(a, v, A)] = O
(ar,p) €Dy xSt

sup Tm Dyn (e, ¥, X*)| = O(NTNfl).
(a,w)eﬁTXSl

Writing

m
1Al = 05, 2 |Aij

for the induced 1-norm for any m-by-n matrix A and using the inequal-
ity [|A]| < +/n||A||; for its Euclidean norm, we arrive at

|Drta, v, 2%

<v3max . ([ReDen(o,,3%)|+ |lm Dunfa, 9, A7)
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and hence
|Dn(a, v, A7) = O(Nr¥2),
uniformly for all (o, ) € D, x S! which proves Equation (6.8). O

By substituting « for Z in (6.4), we neglect certain terms on the
right hand side of that equation, i.e., we truncate the equations and
Lemma 6.3 allows to estimate the error, introduced by this approxima-
tion on each level set Lx(A). However, it does not yet give an estimate
on the truncated terms in (6.4) which is necessary in order to apply
the Persistence Theorem 3.7 later on. This estimate is content of the
following lemma:

Lemma 6.4 Let 0 < r < 1 and let the vector field T : D xS' xV — R3
be defined by

7'(04:1/’, >‘) = (G(Z(OQwv A)) - G(CM)) : Y(OQw) (69)
where G : D — C and Y : D x S' — R3 are smooth. Then, given

€ > 0, there exist an Ny € N such that for all N > Ny, there exists a
d-neighborhood Vs(X*) of X* such that

sup [l (e, N[ + HET(Q,¢, /\)H <€
(a,) €Dy xSt
for all X € Vs(X*).
Proof. Step 1: Let F' : D — C be defined as F(Z) = G(Z) — G(«).
We start by bounding the function F' and its partial derivatives D, F

with z € {a,@,v}. Since D, is convex and F(a) = 0, we find by the
mean value theorem and with n = Z — « that

1
F(Z) = / n- DzF|z=a+t77 +n- D2F|Z:a+tn de
o (6.10)
|F(Z)| < |7I| /O |DZF|z:a+tn + ‘D5F|z:a+tn dt.
Since F is smooth and D, is compact, there exist constants My, My > 0

such that |D,F| < My and |DzF| < M, for all z € D, and in particular,
the integral above is of order O(1) and subsequently

|F(Z(a, v, X))| = O(In(e, &, X¥)]) = O™

for all (a,1) € D, x S by Lemma 6.3. On the other hand, applying
the product and chain rule to (6.10), we find

1
DxF(Z) = /0 DzDzF’z:a-&-tn Dx(a + 7577) dt-n

1
+ /0 D:D.F|.—asty D@+ ti)dt -

pa ]|

1

+ /0 D.D:F ety Dalar + ) dt -
1

+ /O DDz F ety Da(G + t7) dt - 7

1 1
+/0 DzF’a-i-t’V] dt'Dxn+/() DEF‘Z:OH-W] dt'Dzﬁ
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so that by the same argument as above, and again with Lemma 6.3, we
find with |D,(a + tn(e, ¥, A*))| = O(1) + O(NrV=2) = O(1)

1
Do F(Z(a, 90, X)) < [ /0 [‘DzDzF’ s=a+tn * [Da(a +tn)[+

+ ’DEDzF‘ z=a+in ° ‘Dx(& + tﬁ)‘ +
+ ’DzDEF‘ z=a+tn ° ‘Dx(a + “7)\ +

+ [DDzF| iy - [Da(@+ t7)] | dt +
1
+ |Dz"7’ /O |DzF| z=a+tn + |D2F’ z=a+tn dt

= O(In(e, ¥, %)) - O(1) + O(|Dan(e, ¥, A%)|) - O(1)
= O(’I“N_l) + O(NTN_Z)
= O(NT‘N_Q).

Step 2: Since Y (¢, 1) does not depend on N, we have ||[Y (o, ¥)| =
O(1) and ||D,Y (o, )|, = O(1) for all (o, 1) € Dy x St so that

7 (v, o, X || = [F(Z(a, 0, X)) - [Y (a0, 9) || = O )
and

Hf)T(a,w,)\*)

= maXHD F(Z(a, 9, X)) - Y (o, )+

(Z(a
F(Z(a, 9, X)) - DY (a, )|
max ]DxF(Z( 0, X)) Y (e, )]y +
|

+maX|F( (@, 9, X)) - DY (e, )y
=O(NrV7%) - 0(1) + O(r" ) - 0(1)
= O(NrV7?)

hold by the previous step. Hence, we find that for all (o, ) € D, x St

IN

Hf)r(a, W, )

< V3 ||Dr (a1, A7)

L= O(NrV—2),

Step 3: From step 2, we infer that there exists an Ny such that
|7 (v, 1, A)| < €/2 and HDT(O&,@Z), )\)H < €/2, uniformly on D, xS x {\*}
for all N > Njy. By smoothness of 7, it follows that for all («, v, A*) €
D, x S' x {A*}, there exist open neighborhoods W (a, ) C D x St of
(a,9) and Vi (A*) C V of A* with &' = 6’(«,1) > 0 such that this
inequality also holds on W (a,v) x Vs (A*). Covering D, x St x {A*}
with these open sets, there exists a finite subcover since D, x St x {A*}
is compact. We set § := min ¢’ over this subcover and thus find

|T(c, ¢, A)| + HDT(a,w,A)H <€

for each (a,1,A) € D, x S' x Vs which proves the assertion. O
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Lemma 6.4 essentially states that truncating the right hand side of
(6.4) introduces an error on each level set, that can be made arbitrarily
small by choosing N large enough. With this, we are ready to prove the
first main result of this chapter: The existence of a continuous family
of periodic orbits for systems of the type (6.4), whose union forms a
NAIM in T%,

ordered*

6.3.2 The Continuum of Periodic Orbits

It was already argued in [WS94] that any periodic orbit Cy for a WS-
integrable system that is hyperbolic in its level set Lx(A) D Cy gives
rise to a whole (continuous) family {Cx ; X’ € U(A)} of such orbits
since varying A within some (small) neighborhood U(A) of A equally
varies the respective vector field from level set to level set. As long
as the vector field depends smoothly on A, this change in the vector
field will be small so that by persistence of hyperbolic orbits, we find
such orbits for all X’ € U(X). In this sense, the following theorem is
not surprising. However, besides the fact that the argument for such
a families of orbits was not made rigorously, we now show that, if the
system is of type (6.4), it is equipped with even more structure: if the
orbits are exponentially stable in their respective level sets, their union
forms a NAIM.

The strategy for the proof goes as follows: As in [PR0O8| and [Eld+21],
we “close” the system (6.4) by substituting « for Z such that (6.4a)
decouples from . If the now closed equation (6.4a) allows for a unique
exponentially stable fixed point aq for which 1)(ag) # 0 holds, there
then exists a periodic solution of the full truncated system. Further,
for every € > 0 and N sufficiently large, there exists a neighborhood
of A* such that for every A in that neighborhood, the truncated terms
constitute a O(e)-small perturbation for the closed system in C'-norm
on L(A). The union of periodic orbits over that open neighborhood of
A* then forms the desired NAIM for the truncated system. Choosing N
large enough, the truncated terms can be treated as small perturbations
which guarantees that the orbits themselves and subsequently the NAIM
also exist for the full system by means of the Persistence Theorem 3.7.

Theorem 6.5 Consider the system

a=i(f(2)a?+g(Z)a+ [(2)) (6.4a)
b =f(Z)a+g(2)+ f(Z)a (6.4b)
A=0 (6.4c)

where f: D — C and g : D — R are smooth functions of the Kuramoto
order parameter Z. Further, let the closed equation

a=i(f(@)a? +g(@)a+ f(a)) (6.12)
possess a unique stable fixed point ag € D for which

flag) #0
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holds. Then, there exists an Ny € N such that for all N > Ny there
exists a d-neighborhood V s(A*) of A* such that for every X € Vgs(A*)
there exists a unique periodic orbit Cx C Lx(A) which is exponentially
stable in Lx(A). Additionally, the union

. N
M5 T U C/\ - Tordered
)\EV(S

forms a compact NAIM of dimension N — 2 with invariant boundary.

Proof. Step 1: Substituting Z by « in (6.4) yields the closed system

a=i(f(@)a? +g(@)a+ f(a)) (6.13a)
¥ = fla)a+ g(a) + fla)a (6.13b)
A=0. (6.13c)

By assumption, ag is a stable fixed point of (6.13a). If Q == f()ao +
g(ag) + flag)ag # 0, this gives rise to the periodic solution (ag, Qt, A)
for (6.13) with an exponentially stable periodic orbit Cy™"¢. From the
definition of €2, we then infer

apQ = f(ao)ad + glan)ao + f(ao) |aol* .

Adding and subtracting f(ayg), this results in

a0Q = f(ao)ad + glao)ao + F(ao) + () (Jao* — 1)
=0 by (6.13a)

so that Q = 0 implies f(ap) = 0 and conversely, f(ag) # 0 implies
Q£0.
Step 2: We prove that for any ¢ > 0, the union

M(;crunc — U C)t\runc — {OCO} % Sl % V&
AGV@

forms a smooth compact NAIM with invariant boundary for (6.13) in
D x St x V by checking conditions (i)-(iii) of Definition 3.5. Indeed,
as a product of the three smooth compact manifolds {ag}, S, and
Vs, it is itself an (N — 2)-dimensional smooth compact submanifold of
D x S' x V. Further, it is invariant by construction (as is its boundary
which consists of all C{™"¢ with A € dV;) so that condition (i) is
fulfilled.

To show that condition (ii) holds, we need to determine the contin-
uous splitting 7'y, gmnc’]l‘é\idered = TMf" o N and the decomposition

Dq)t (p) - D(P’t/\/l trunc
5
For this, consider any point p = (ag, 1, X) € M§™"¢. We can write any
vector v € T, TN as v = (vq, Uy, vx)? where v, € R?, Uy € R!, and
vx € RVN73 denote the respective tangential components with respect
to the variables «, ¥, and X. Then, TpM ¢ is spanned by those v

with v, = 0 (since {ap} is just a point) while the vectors (v, 0,0)

(p) ® D®’/(p) which keeps this splitting invariant.
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are perpendicular to T, M ™. Further, we can write D®*(p) in block
matrix form as

D! (p) = (eXp (1‘] lao) ;) (6.14)

where J|o, is the Jacobian for the right hand side of (6.12) evaluated
at o, A is a (N — 2)-by-2 matrix, and B is of the form

T
B=(! 9 )iy, (6.15)
0 idy_s

To see this, let v € TpTY 1...q denote any tangent vector at p € M e,
We find « decoupled from 1 and A, so that the linearized flow in « at
the fixed point «y is given by the linear map v, — exp(t J|a, ) - vo which
yields the two upper blocks of in (6.14).% The flow in 1 is given by
¢
vt [Ifa)al®) + gla)) + Flal)at) d

where «(t’) solves (6.4a) and the flow of v is in particular indepen-
dent of X. The flow in A is constant, and so its linearization is the
(N —3) x (N — 3) identity. From this it follows that the only nonzero
entries of the matrix A are in its top row (since the flow of ¢ and thus
its linearization generally depend on « but not on A) while B is of
the form (6.15). We conclude from (6.14) that D®!(p) possesses two
simple eigenvalues N < 1 where A* < 0 denote the eigenvalues of the
Jacobian J|,,. Further, we have an eigenvalue 1 of multiplicity N — 2.
The corresponding N — 2 eigenvectors to the latter eigenvalue span
T M since for every v = (0,vy,vx) € TpM ™, we have

0 0 0 0
U Ux Ux Ux

The span of the two eigenvectors v+ that correspond to " and e,
respectively, then uniquely defines the normal space Np at p. The only
nonzero components of v* are v, and vy, due to the fact that the matrix
A contains nonzero entries in its first row. Since they are eigenvectors
of D®!(p) with eigenvalues e’\i, the dynamics in these directions decou-
ple from the linearized tangential flow D@iwg (p) and we thus conclude

that D®!(p) indeed can be written as D®!(p) = D(pt/vtgrunc (p)®DPY (p)

which keeps the splitting of TM(;:runcRn = TM{™° & N invariant.
The splitting is continuous since all eigenvalues depend continuous
on the entries of D®!(p) and thus of p. For the projection 7 erunc :
TMétruncTé\l{dered — TM(}:I‘HHC’ we have

7-‘-,/‘\/létru“c (O[O, ¢7 Aa Vayy Unpyy U)\) = (a07 w7 Aa 07 Uy U)‘)

This is a standard result which also plays a crucial role in the proof of the Hartman-
Grobman theorem, see [Chi99].
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while the projection mar : Ty, frune ngered — N is given by the canonical
scalar product

7x (a0, ¥, A, v) = (a0, Y, A, (v-v D)o + (v-v7)v7).

From this, we see that both projections are readily continuous due to
the continuity of the basis vectors v (p).
At last, we show that condition (iii) is fulfilled. We already noted

that the eigenvalue 1 corresponds to the tangential flow D<I>5M trune While
5

0<eM <1 correspond to the contracting normal flow D®.. Hence,
for the contraction rates, we find a = max(AT, A7) < 0 as well as b = 0
and C' = 1. In particular, we have a < bm = 0 for m > 0 and thus
M s a NAIM.

Step 3: We proceed by showing that (6.4) equally possesses a contin-
uous family of periodic orbits. By closing (6.4) to get equation (6.13),
we truncated the vector field

2

r=F2Z)| o |+G2)| 1 |+F©2)|a
0 0 0
with
F(Z)=f(Z) - f(a)
G(Z)=9(Z)—g(a)

from (6.4). Identifying £x(A) =2 D x S! x {A} with the space D x S!,
we subsequently truncate

.9 . .
Tleaa) = F(2) (ZO‘ ) +G(Z) (ZO‘> + F(2) <Z> (6.16)
o 1 a
in every level set L£x(A) for any given A € V where each of the three
terms on the right hand side is of the form (6.9). Choose 1 > r >
|ap|. Since in D x S, we can identify all C{™"¢ with the stable limit
cycle {ag} x S! € D, x S!, there exists an ¢ > 0 such that for every
perturbation of the vector field that has C'-norm smaller than e in
D, x S', the orbits Cyrne persists by the Persistence Theorem 3.7. But
by Lemma 6.4, there exists an Ny € N such that for all N > Ny, there

exists a d-neighborhood V§(A*) of A* such that
(0, %, M) + [ Dr (e, 4, 0)| < e

uniformly on D, x S! x Vs and thus, the Cyrne persist, i.e., the full
system (6.4) possesses a periodic orbit Cy C D, x S! x {A} C Lx(A)
for every A € V.

We can further choose § such that the boundary of the union Mg
over these orbits is composed of orbits Cy with A € 9V and is thus
invariant. Next, we show that Mg is a smooth compact manifold.
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Step 4: Note that for A € Vj, there exists a smooth immersion
ix Cme — D, x St x {A} whose image ¢ (C{71¢) = Cy, lies e-close to
Crme and that ¢y itself depends smoothly on A because the truncated
terms (6.16) are smooth in A. Hence, the map

L;MgrunC—HDxSlXV
L (Oé(),w,A) — (L)\(a07w)7A)7

is (i) smooth, (ii) one-to-one on its image Ms, and (iii) its derivative
has full rank N — 2, in other words, ¢ is equally a smooth immersion
and My, as its image, is a compact smooth manifold [Leel2] which is
invariant and O(e)-close to M F0e,

Step 5: Finally, we show that M is also normally hyperbolic: For
any fixed A € V, let % denote the flow on the level set £x(A). Then,
the flow on ngered is of the form

and is smooth in A since the vector field on Té\idered and thus CIDt)\ is
smooth in A. The linearized flow at p = (o, 1), A) € Cx € Ms C TN g
reads

D (p) = (ﬁi’tg(p) Dg‘i&(lﬂ)) .
idy—3

Let p* < 0 denote the two nonzero contraction rates of Cx C Lx(A)

and vt = (v7, vi, 0) the corresponding eigenvectors of D®!(p) and let
1 = 0 denote the vanishing contraction rate in tangential direction

to Cx. The remaining N — 3 eigenvectors of D®!(p) are also tangent
vectors of M at p and have nonvanishing components in A-direction
since M lies transversal to each £ (A) that it intersects for sufficiently
small ¢ > 0. Since A is constant under the flow, the contraction rates
in the remaining N — 3 tangent direction are also zero. Because ®! is
smooth in A, the v* depend smoothly on p so that condition (ii) of
Definition 3.5 is readily fulfilled. For the numbers a, b, and C' from
condition (iii), we find b = 0, a = maxpem,; (uE(p)) < 0 = bm for
every m > 0 and C' = 1 so that M is a smooth m-normally attracting
invariant manifold of (6.4). O

We note that the invariant sets £x(A) yield a foliation [MMO3] of
M e in terms of the periodic orbits C{™¢. Since the perturbation
T keeps all £3(A) invariant (because 7y = 0), the NAIM M for the
original system (6.4) is equally foliated in terms of its periodic orbits Cy.
Figure 17 gives a schematic depiction of My and how its intersection
with any level set Ly(A), A € Vj, yields the periodic orbit Cy which is
exponentially stable in £)(A) as indicated by gray arrows. Additional
periodic orbits Cy» C Lx/(A) and Cy» C Lx#(A) are depicted, as well.
They lie “parallel” to Cy in the sense that they exist in disjoint level

sets which partition Té\idered'
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Figure 17: Schematic depiction of the manifold M and its periodic orbits. Its
intersection with the level set £x(A) yields the periodic orbit Cy. Gray arrows
indicate that each Cy is stable in £ (A). Different periodic orbits Cxs C Lx/(A)
and Cx» C Ly (A) lie “parallel” to Cx.

6.3.3 Ezistence of the Splay State

The manifold M; intersects in particular the level set Ly«(A), i.e.,
there exists a periodic orbit in the level set of uniform distributions.
From (6.6), we can deduce that Z and therefore the equations (6.4)
are of particularly regular form which hints that the periodic state in
Lx+(A) also features some regular dynamics. This conjecture is con-
firmed by the following proposition:

Proposition 6.6 For the manifold Mg from Theorem 6.5, the periodic
solution (a(t),(t), A*) of (6.4) with periodic orbit Cxx C Lx«(A) yields
a splay state ¢x«(t) for systems of the type (6.3).

Proof. Recall that 07 = —7+2m(j—1)/N. For the closed system (6.13),
we found the periodic solution (ag, Qt, A*) with period T' = 27 /Q. Its
phase dynamics ¢i"™¢(¢) can be recovered via the diagonal Mobius
action (4.10) which yields®

,L'¢]§runc(t) _ 0[0 + eth—i—Zg;

¢ T 1t g
iQt+i(—m+(j—1)2F)

g +e

1+ ag eiQt—&-i(—w—&-(j—l)QW“)
ap + U IR ) Fi(-mHN-DFF)
1+ ag It % ) Hi(—mH(N-1)3F)

a0 +em(t+j%)+z’9;\,
1 + ag &t %) +ib%

= N (i)

so that ¢{""(t) = @™ (t + jT/N) holds and ¢3i""(t) is in fact a
splay state, cf. (6.1). We now assert that also the periodic solution

When we write down components of ¢ax(t), we drop the index A* for better read-
ability.
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(a(t),(t), A*) for the true system (6.4) from Theorem 6.5 yields a
splay state ¢x«(t). For this to be true, the following condition must
hold:

a(t) + O a<t+j%)+eiw(t+j%)+i9?v
1+ a(t)e PO+ 1+d(t+j%) ot (t+i %7 ) +i0%

i3 () = — i (t+i%r)

which is certainly true if the solution («(t),1(t), A*) possesses the
spatio-temporal symmetry

a(t+iy) = a0
2

T (6.17)

v(t+ing) =00+ 6~ 8 = vl + iy
for all j = 1,..., N. To see that this is truly the case, we note first
that (6.4a) and (6.4b) are equivariant under any transformation that
keeps Z and « invariant. Recall that from (6.6), the Kuramoto order
parameter on Ly«(A) is given by

Z(a, 0 X) = a = (1= [af!) 3@

so that on Lx«(A), the maps (o, ) — Z(a,1, A*) and (a, ) — a are
invariant under the action of the finite group

I:= {fyj DxS!x {A*} > DxS! x{/\*};jzl,...,N}
of transformations
* 27 *
Vit (aﬂj}v}‘ )’_> <O‘7¢+]Na)‘ ) .

Hence, for the spatial symmetry group K in Theorem 3.11 for the
periodic solution (ag, Qt, A*), we find K = {yn} (i.e., K contains only
the identity element ) while for the spatio-temporal symmetry group,
we find H = N(K) = I'. Further, we have n = yy_1 and m = N in
Theorem 3.11 since with Q = 27 /T, we find

T * QT 2 *
YN-1 (Oéoa9<t+N>,>\ ) = (ao,QtJrNJr(N—l)N,A )

QT —2
= (O‘O’Q”NW’**)

= (040, Qt, )\*>

Hence, conditions (a)-(d) of that theorem are fulfilled. Since C{"™¢ C
Lx+(A) is exponentially stable in Lx=(A) and (ag,Q2¢, A*) naturally
obeys (6.17), this spatio-temporal symmetry is robust by virtue of
Corollary 3.12 and thus, (6.17) also holds for the periodic solution
(a(t),(t), A*) of the true system (6.4). Hence, ¢a=(t) is a splay state.

0



6.4 APPLICATION: ENSEMBLES OF ACTIVE ROTATORS

Proposition 6.6 constitutes the second main result of this chapter. To
summarize, we showed that systems of the form (6.4) possess, under
certain conditions, a NAIM of periodic orbits where one of these orbits
features splay state dynamics. Since the original AR-model (2.5) belongs
to this class, we can apply Theorem 6.5 and Proposition 6.6 to it and
investigate for which parameter choices it possesses such a NAIM. This
is content of the remainder of this chapter.

6.4 APPLICATION: ENSEMBLES OF ACTIVE ROTATORS

Recall that the system (2.5) can be written as
S AL ~ig;
¢j—2(1+/{Z)e I+ w 2(1+/@Z>e J

such that the functions f and ¢ in (6.3) and (6.4) are of the form
f(Z2) = % (1 + nZ) and 9(Z) = w.

In particular, (6.4) takes the form

b=~ (1+rZ)a> +iwa+ 3 (14 57)
= %(1+5Z_)a—|—w— %<1+/@Z>6¢ (6.18)
A=0.

Substituting « for Z then yields the corresponding truncated or closed
system

1 1
= —5(1+ﬁd)a2+iwa+§(l+ma) (6.19a)
1/} =w—-—Ima (6.19b)
A=0. (6.19¢)

We need to determine for which choices of the system parameters w
and r, the system fulfills the conditions in Theorem 6.5. Note that we
always assume |w| < 1 in order for the individual units to be Active
Rotators.

We commence by determining the fixed point oy for (6.19a). Writing
the equation in polar form by setting o = pe'? implies & = pe'® +ifpets
so that we can write

‘ . 1 ‘ ‘ 1 ‘
pei 4 ipe’? = =5 (14 mpe™ ) et iwope’ 4 5 (14 rpe'?)

and thus
p+ifp= — % (1 + /ipe”ﬂ) erzﬂ +wp + % (1 + /fpe’ﬂ) e
= — %eriﬁ - gp?’ + iwp + %e*iﬁ + gp
= (—;pQCOSﬁ — ng + %cosﬁ—i— ;;;) +

1 1
+1 (—2p2sinﬁ+wp—2sinﬂ>.
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The fixed point condition &(ag) = 0 then implies that both, the real
and the imaginary part of this expression, vanish such that we find

1

1
—5(p* =1 cos f— S (p* = 1)rp =0

1
—§(p2 +1)sinf+wp=0

and thus, since p = |af # 1,

cos B = —kKp
sin = 2wp (6.20)
S (1Y)

Eliminating the trigonometric terms by squaring and adding both ex-
pression, we get

4w2p2
1=r%p? 4+ —S.
(1+p2)?
Substituting « = p? yields the cubic equation

0= w%2® + (262 — 1)2” + (K% + 4w? — 2)z — 1 (6.21)

in z. We make the following claim:

Lemma 6.7 The cubic equation (6.21) has exactly one real root x €
(0,1) for w? <1 if k2 > 1—w? and no real root in (0,1) if K2 < 1—w?.

Proof. We solve (6.21) for x? and find

214
Tz (1+2)?
Next, we show that for any w? < 1, the map (0,1) 3 z + % — % €

(1—w?, 00) is a bijection from which the claim follows because bijectivity
implies conversely that for any w? < 1 and every % > 1 — w? there
exists a unique = € (0,1) that solves (6.21) and that there exists no
such z for any K2 <1—w?

Injectivity: The map is differentiable in (0,1) so that

dr 22 (1+x)3
(1+x) 2
But w? <1 < % holds because (lg; "2)3 is strictly monotonically
decreasing in (0, 1) since $- ((1;:;)3) = (:c—28)§:]é+x)2 <0Vz € (0,1) and
(Ata)® 2

thus its infimum is lim,_,q 5.z~ = 1. Hence, k%, as a function of z, is
strictly monotonically decreasing and therefore injective.
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Surjectivity: Because x2(x) is continuous and strictly monotonically
decreasing, its image is the interval (a,b) with

4 2
a:limf—Lzl—w2
=1 (1+$)2
1 4w?

b zli%zt (1+.%')2

so that the map is indeed surjective and thus bijective. O

Lemma 6.7 guarantees that there exists a unique fixed point «ag of
(6.4a) for |w| < 1 if and only if k? > 1 — w?. Using (6.20), we can write

wp?

1+ p?

ap = p(cos B+ isin B) = —kp® + 2i

and find that, as long as w # 0,

i
f(ao) = 5 (1 + /'iCk())
2
_ ! 2 2 . WKp
_2<1—ﬁp—221+ 2)
2
_ Whkp Yy 2.2
1+ p? 2(1 Kp)
#0

because k2 > 1 —w? > 0 and p > 0 hold and additionally

2p? 1—p?
= = Q#£0.

w.—w—Imao—w(l—

Note that the sign of 2 and therefore of w determines the sense of
rotation of the periodic solution (ag, €, A). This sense of rotation
switches when w changes its sign so that at w = 0, the closed contours
Cirune = L(ag, 9, A) ; ¥ € S'} and thus the manifold M ™ consist of
fixed points which possess N — 2 neutrally stable directions. The same
must then hold true for all Cy and Ms.

Next, we determine the stability of . Again, we treat o and & as
independent variables in D so that we find for the vector field in D

1 1
a=—5(1+ wav)a? 4 iwa + 5(1+ra)

: 1 1
o= —5(1 + ka)a® — iwa + 5 (1 +ra).

Determining the Jacobian J := dgggg for the right hand side of this

equation” yields

Je —(1+ ka)o +iw + 5 —5a? '
—ta? —(1+ ra)a —iw+ §

7 Here, we use again the Wirtinger derivatives, see [RS00].
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Its eigenvalues are

1—2[a? 2
Ai:w—Reai\/Z]a4—(w—Ima)2 (6.22)
and thus, at the fixed point ag = pe’” we have, again substituting
x = p? and using equations (6.20), Reag = —xz and Im ag = %_‘ﬁ—i SO

that (6.22) becomes

K K2 1—z\2
Ay = =+ —a2 —w? .
73 \/ g <1 ¥ x)
It is now easy to see that sign Re A = sign k. We have two cases: that
of A+ € R and that of AL ¢ R. The first case is given by

2 1— 2
K:EQ—w2< a:) > 0.
4 x

But in this case,

4 4 1+

because = € (0,1) and we subtract a nonnegative term. Therefore, we
conclude that indeed sign Re A+ = sign k. The second case, on the other
hand, is given by

2 2
%aﬁ—wz <1+i> < 0.
so that Re A+ = § and therefore the statement holds trivially.

The results above on the existence and stability of o assert that the
system (6.18) and thus (2.5) indeed fulfill the conditions from Theo-
rem 6.5 and Proposition 6.6 if 0 < |w| < 1 and K < —v/1 — w?. This
establishes the final main result of this chapter:

Theorem 6.8 Let ¢(t) = (¢1(t),...,on () € TN joreq 0beY

N
qgj =w —sing; + i Z sin(¢r — ¢;) (2.5)
N k=1

with parameters 0 < |w| < 1 and k < —v/1 —w?. There then exists an
Ny € N such that for all N > Ny, there exists a closed §-neighborhood
Vs =Vs(A*) CV of X*, where for every X € Vs, there exists a unique
periodic orbit Cx C Lx(A) which is exponentially stable in Lx(A). Ad-
ditionally, the union

. N
M = U Cx C Tordered
)\GV&

forms a compact normally attracting invariant manifold of dimension
N — 2. Further, the periodic solution ¢x=(t) = m(a(t),(t), X*) with
(a(t),(t), A*) solving (6.18) and orbit Cxx C My is a splay state.

Proof. This is a direct application of Theorem 6.5 and Proposition 6.6.
O



6.5 CONCLUSION

6.4.1 Addendum: The Case |w| > 1

We end this chapter with a remark on the case |w| > 1 for which
the individual units are oscillatory on their own, even when decoupled.
It is reasonable to assume that for x # 0, this oscillatory motion of
the ensemble continues. Since full synchronization of the ensembles is
permitted by Ws-integrability, so that a fully synchronized state ¢;(t) =
-+ = ¢n(t) can be an attractor of the system, see [EM14], it is not at
all obvious that we still find a continuum of orbits in this case.

However, we can again look for roots x € (0, 1) of the cubic equation
(6.21), which determined the absolute value of the fixed point ag of the
closed equation (6.4a). We make the following assertion:

Lemma 6.9 For any w € R with |w| > 1, equation (6.21) possesses
ezactly one solution = € (0,1).

Proof. For |w| > 1, the polynomial
p(z) = k223 + (2r% — 1)z + (k2 + 40? — 2z — 1

on the right hand side of (6.21) is strictly monotonically increasing in
(0,1) because its derivative reads

D.p(x) = 3k%2? + 2(26% — 1) + K2 + 4w® — 2
=3k%2” + K222 + 1) + 4w? — 27 — 2

>0
since 4w? > 4 > 2z + 2. Further, we have p(0) = —1 and p(1) =
4k? + 4w? — 4 > 0 so that p has exactly one root in (0, 1), for every
K. O

From this lemma, we can conclude that there exists a unique fixed
point ag, for any & if |w| > 1. The same analysis as for the case |w| <1
then reveals that f(ag) # 0 and that g is stable for repulsive coupling
(k < 0) and unstable for attractive coupling (x > 0). Hence, Theo-
rem 6.5 and Proposition 6.6 apply to the case of oscillatory units and
in particular, we find that the whole manifold Mg changes its stability
at Kk =0.

With this, we end our investigation of the degenerate dynamics of
the classic AR-model (2.5).

6.5 CONCLUSION

In this chapter, we presented our results concerning the existence and
stability of a continuum of periodic orbits for the classic WS-integrable
Active Rotator model (2.5). In order to do so, we considered the class of
WS-integrable models for which each unit only couples to the rest of the
ensemble via the mean field Z, also called Kuramoto order parameter.

We started by expressing Z in terms of the WS-variables «, ¥, and
A and showed that if Z is evaluated on the level set Lx«(A) of uniform
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distributions, it can be approximated by « where the resulting error
becomes negligible for large N. As a consequence, the error from ap-
proximating Z by « becomes equally negligible for all level sets with
cross-ratios within a neighborhood of A*. We proceeded by showing that
truncating the system through substituting o for Z and thus closing
the WS-equation for & introduces an error which can be made arbi-
trarily small in C'-norm for large N. In particular, this allowed us to
study the much simpler dynamics of the truncated system for which we
showed that it must, under certain conditions, possess a NAIM which
intersects Lx=(A). Since the error from the truncation can be made
arbitrarily small, this implies that the NAIM also exists for the original
system for sufficiently large V. Afterwards, we showed that the periodic
orbit in £Lx«(A) must be a splay state by means of the equivariance of
the system in that subspace. Finally, we returned to the model (2.5)
to which our general results can be readily applied. In particular, we
computed the critical coupling strength «g at which the continuum of
orbits emerges and found that it indeed coincides with the value at
which the synchronous fixed point A® of the system becomes unstable,
thus corroborating the homoclinic nature of the transcritical bifurca-
tion of AS.

Theorem 6.5 states that the continuum of orbits exists for sufficiently
large N in a neighborhood of A*. At least for the AR-model (2.5), nu-
merical evidence suggests that it already exists for NV = 4 and extends
through the entirety of the space V' of cross-ratios.

A word is at hand about several noteworthy points on the continuum
of orbits. Throughout this chapter, we assumed all units to be distinct
so that there are no clusters present. But if the continuum exists for
an ensemble of N units, this implies for an ensemble of kN units, that
there similarly exists a continuum of periodic solutions, consisting of
N clusters with £ > 1 units, each, because such an ensemble gives
rise to an N-dimensional reduced description in terms of its cluster
coordinates, which is of a similar form. In particular, M; is in general
not the only continuum in TV but instead, one encounters numerous
such continua (not to mention the copies in other part of TV that arise
from any permutation of units). If the ensemble does not split into
clusters of equal but different sizes, in the reduced description of cluster
coordinates, this makes the clusters nonidentical and thus, WS-theory
can in general not be applied to them, even though it is still applicable
to the full ensemble. We observed such asymmetric clustered states
in our numerical experiments, as well. We note also that, regarding
symmetric M-cluster (M > 2) states, our results on the stability of M
only apply to the non-splitting stability of these states. Stability against
splitting perturbations must be investigated independently because it
is not accessible to the reduced description via cluster coordinates.

In the proof of the existence of Mg, we made several assumptions for
simplicity which make Theorem 6.5 not as general as possible. Specif-
ically, we assumed that there exists a unique fixed point in (6.13a)
and that this fixed point is exponentially stable. But the idea of the
proof works similarly for the case of multiple generally hyperbolic fixed
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points. The resulting manifolds will than have the same stability type
as the respective fixed points. In particular, in Lemma 6.7, where we
determined the modulus p = |ag| of the fixed point of (6.13a), we
found that there equally exists a unique solution & of the cubic equa-
tion (6.21) for k > +v1 — w?. A stability analysis, similar to the one
for ag, reveals that the resulting fixed point &g is exponentially unsta-
ble. As a consequence, for sufficiently attractive coupling, there exists a
normally repelling NHIM My of periodic orbits. This repelling manifold
emerges in a THB of the unstable synchronous fixed point A" instead of
AS. However, due to its repulsive and therefore asymptotically unstable
nature, this manifold is generally of little interest in practice.

As already noted, a change of the sense of rotation for the orbits in
M occurs when w changes its sign. At w = 0, the manifold instead
consists of fixed points with N — 2 neutrally stable directions, each. In
this case, different initial states, even in the same level set L£x(A), will
generally converge to different steady asynchronous states. However,
a true Active Rotator will always have w # 0 because it was exactly
this nonvanishing “constant driving force” that lead Shinomoto and
Kuramoto to coin the name Active Rotator.

Finally, we showed that for |w| > 1, i. e., when the single units become
full blown oscillators on their own, the cubic equation (6.21) possesses
a unique real solution for any choice of x so that in this case, we always
encounter a continuum of periodic orbits. Remarkably, this continuum
is asymptotically stable for x > 0 and unstable for k < 0 so that
a change of stability for the whole NHIM occurs at k = 0. How this
stability-changing bifurcation of the manifold looks in detail lies beyond
the scope of this thesis but might be worth future research.

The implications from the results of this chapter are profound: Firstly,
our results imply that the existence of the continuum of periodic or-
bits together with its NAIM-structure is a robust phenomenon in Ws-
integrable systems and is not restricted to systems of the type (6.3) for
which the common fields f and g depend solely on Z. Since NAIMs are
robust under any sufficiently small perturbation, the family My still
forms a NAIM, even if f and g depend explicitly on ¢ as long as this
explicit dependence is sufficiently small which might make our results
applicable to, e.g., WS-integrable systems that are driven by an exter-
nal force [Bai+09]. Of course, what constitutes a “sufficiently” small
explicit dependence is a highly nontrivial question which to answer lies
again beyond the scope of this thesis. The second, and arguably more
important, implication is that, while the individual periodic orbits of
the continuum, being nonhyperbolic, can cease to exist if one intro-
duces perturbations that violate the conditions for WS-integrability,
their union Mg forms a robust manifold which persists even when
the perturbed system is not integrable. Since My is normally attract-
ing, the resulting dynamics will essentially take place on this manifold:
For generic initial condition, the corresponding solution moves exponen-
tially fast towards the NAIM and then slowly evolves along it, effectively
reducing the dimension of the dynamics by two. The state can then in
principle move everywhere on M; since there exists no more restric-
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tions to specific level sets. In particular, the manifold My is not just a
curiosity of the classic AR-model due to its integrability but is a gen-
eral feature of systems of generalized Active Rotators and, as a matter
of fact, also of ensembles of identical Active Rotators with nonsinu-
soidal coupling.® In the next chapter, we make use of this fact when we
develop a perturbation theory for (2.5) by means of averaging theory
which in particular allows to investigate the asymptotic dynamics of
the generalized AR-model (2.6) by looking at the dynamics on M for
(2.5).

8 Just as any other perturbation, changes in the coupling function leave Mjs robust
as long as they are small.



GENERAL DYNAMICS AND THE AVERAGING
PRINCIPLE

ABSTRACT

In this chapter, we leave the classic Active Rotator model (2.5) be-
hind and come back to the generalized model (2.6). While we studied
periodic two-cluster states for this model in Chapter 5, we now want
to investigate the asymptotic dynamics for such AR-ensembles on the
NAIM My, introduced in the previous chapter. In particular, we are
interested in what happens to the infinitely many periodic orbits that
composed My in the case of the integrable model, when we introduce
perturbations which remove this integrability by breaking the M&bius
group symmetry of (2.5). For this, we start again by considering the
broader class of WS-integrable models of type (6.3) and develop, af-
ter some general remarks in Section 7.1, in Section 7.2 a criterion to
determine robust periodic orbits in My by means of averaging theory
for a given perturbation function h. For this, we restrict ourselves to
perturbations in the on-site dynamics which in particular includes the
generalized AR-model (2.6). In Section 7.3, we draw some general con-
clusions that immediately follow from this criterion, the most important
being that splay states are generally robust solutions for such systems.
Afterwards, we conduct a “case study” on a minimal system of four gen-
eralized ARs and investigate the stability of the splay state as well as
the interplay between this state and the periodic two-cluster states. For
this we discuss what we call “broken-symmetry states”, which play a
vital role in the de-/stabilization of splays states and two-cluster states.
Finally, we discuss how the picture generalizes for larger ensemble sizes
and illustrate how any given periodic orbit of the continuum can be
controlled (i.e., made hyperbolic) by constructing an appropriate per-
turbation function.

The content of this chapter is based on the results in [RZP] and
[RZ21b].

7.1 GENERAL REMARKS
The continuum M;s = {CA ;A E Vg} of Theorem 6.5 exists due to

the hidden symmetry of the underlying equations of motion (6.3) and
the resulting degenerate dynamics are in this sense not generic. What
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is generic, however, is the manifold Ms = UAeV; Cx. The question
thus arises what happens to M as (i) a family of periodic orbits and
(ii) as an invariant manifold if the vector field is perturbed in such a
way that the system ceases to be integrable. The answer to point (ii)
is trivial: The NAIM M persists because of its normal hyperbolicity.
However, the answer to point (i) of the question is not so obvious. Our
objective is therefore to determine which, if any, of the infinitely many
nonhyperbolic periodic orbits that made up M “survive” if we make
the system nonintegrable, i.e., which orbits become hyperbolic and
thus robust and which do not. It is reasonable to assume that if any
periodic orbits survive at all, the answer to the question which orbits
become robust depends on how we perturb the system. Different types
of perturbations are sensible: We could consider the case of nonidentical
units, as was previously studied in, e. g., [PR08; VRP16]. However, if we
want to make use of our considerations from Chapter 4 and Chapter 6
and in particular of the existence of the diffeomorphism m between
angular variables and Ws-variables, we need to restrict ourselves to the
case of perturbations which leave all units identical since only in this
case, the ordered torus T(])\idered stays invariant under the flow of the
perturbed vector field. To determine robust periodic orbits and their
stability, we now develop a framework by means of averaging theory
[SVMO7].

The averaging principle has its origins in works by Laplace and La-
grange in the study of the multi-body problem in Newtonian celes-
tial mechanics [SVMO7]. The intuitive idea behind it is that for sys-
tems which feature a separation of time scales such that they possess
a short-periodic or fast component! and some slowly varying or long-
time components, one can approximate the dynamics by assuming that
the long-time components are (nearly) constant during a full period of
the short-periodic variable. The influence of the fast variable on the
slow variables can then be approximated by its average over a single
full period. The effective dynamics of the slowly varying components
under this approximation should then qualitatively resemble their evo-
lution in the true system. For example, the effects of an inner planet’s
gravitation on the movement of an outer planet (which is thus moving
slower in comparison to the former) can be approximated by “smearing
out” the inner planet over its orbit and then calculate the effect of the
now stationary distribution of mass on the outer planet. In the con-
text of WS-integrability, this is what we expect for the dynamics along
the manifold Ms for systems that are “close” to being WS-integrable:
There, the fast component is the phase dynamics in direction of the
periodic orbits Cy and the slow components are the cross-ratios, which
for small perturbations of the on-site dynamics are no longer constants
of motion but are slowly varying in time.

As in the last chapter, we start by considering general WS-integrable
systems of the form (6.3) where the global fields f and g are functions

Here, we only focus on the case of a single fast component. If one deals with mul-
tiple short-periodic components, phenomena like resonance have to be taken into
consideration.
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of the Kuramoto order parameter Z and then study the effects of small
perturbations to the right hand side of (6.3). In particular, we always
assume the existence of the NAIM M from Theorem 6.5 and restrict
our attention to the dynamics on this manifold, assuming that it is the
only NAIM of the system, since in this case, the asymptotic dynamics of
the perturbed system take place entirely on the NAIM. In this case, for
arbitrarily chosen initial conditions, the evolution of any state under
the flow of the system is composed of a short period of exponential con-
vergence towards M after which the state evolves along that manifold
so that we can restrict our attention to the dynamics on it.

Theorem 6.5 only guarantees the existence of periodic orbits Cy for
values of A in the vicinity of A*. It does not say how far the NAIM
M actually extends in phase space. However, at least for the case
of Active Rotators, numerical results indicate that this extension is
“large” in the sense that the manifold is composed of periodic orbits
with cross-ratios ranging over the entirety of V', cf. [ZT16]. In other
words, regardless of which values we choose for A, if the coupling is
sufficiently repulsive, there exists a Cy which is part of the continuum
for this model. Throughout this chapter, we drop the index § from Mg
and consider its maximal extension

M= c
AEW

where the set W C V is the largest open set of cross-ratios, for which

for every A € W, there exists a periodic orbit Cy, exponentially stable

in £x(A) and where M, as the union over all these orbits is a NAIM.
The generalized Active Rotator model

N
<;5j =w —sing; + eh(d;) + % Z sin(¢r — ¢;)
k=1

- (2.6)
h(¢) = Z ap, sin ng + b, cosng
n=2
belongs to the class of systems of the form
6j = f(2)e'% + 9(Z) + [(Z)e™" + eh(d;) (7.1a)
h(¢) = Z ap sinng + by, cos ng (7.1b)

n=2

with constant Fourier coefficients a,, and b,,. In what follows, we always
assume h to be smooth. For ¢ = 0, we get back to our general Ws-
integrable model

b; = f(2)e' + g(Z) + f(Z)e ™% (6.3)

from the previous chapter. In particular, since the coefficients a,, and
b, are constant, h represents a perturbation in the on-site dynamics of
the ¢; while, e.g., choosing a, = a,(Z), by, = b,(Z) would result in a
perturbation in the coupling term of (7.1a).
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7.2 THE AVERAGING PRINCIPLE FOR WATANABE-STROGATZ
THEORY

We start our considerations by stating an adapted version of Theo-
rem 3.13 for our purposes in the context of WS-integrability.

For the diffeomorphism m from Proposition 4.12, let n = m
Tordered — I x S! x V denote its inverse. We further write nq, Ny, and
nx = A for its respective components such that for 8 = m(«, ¥, A), we
have

-1 .

na(0) :
n¢(0) :
na(8) = A = A(8).

I
Q

I
<

Since we assume that the perturbation function A in (7.1) is the same
for all units j, we write

h(6) = (h(01),. .., h(0N))

for its diagonal action on Tordered Recall from Chapter 4 that, by
means of the chain rule, we can then deduce that for every variable

z € {a,1, A},
@ =Dgng -0 =Dny(0) -0

holds. In general, for any 6 € TV, . with n(0) = (a,9, A), we write

N
(DA 1) (6) = " h(6;) - Dy, A ()

Jj=1

for the components of h(8) that lie perpendicular to the level set £x(A)
at 6.2 The expressions (Dng - h)(0) and (Dny - h)(6) are similarly
defined.

While the perturbation term eh(¢;) in (7.1) consists of higher order
Fourier modes, it generally still has some components that lie tangent
to Lx(A) and thus contribute to the dynamics of a and 1. Equation
(7.1a) reads therefore in WS-variables

v =(f(Z2)a+9(2)+ < ) +€Dny-h)om(a, 4, ) (72)

d:i(f(Z)a +9(Z)a+ f(Z ))+6(Dna- h) om(a, ¥, A)
)o
A =¢e(DA-h)om(a,i,\)

from which we find that the perturbation term eh(¢;) in (7.1) results
in a perturbation term of order O(e) to the WS-equations (7.2). Its
contribution to the dynamics of o and v is thus negligible in comparison

Recall that, since £x(A) is the set of all 8 € TX ;...q With A(8) = X, all column
vectors Do, A () of the gradient DA(6) stand orthogonal to TeLx(A) and span the
orthogonal complement (TpLx(A))* to TeLa(A). Hence, (DA - h)(0) denotes the
component of h(0) that is perpendicular to £x(A) at the point 6.
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to the Ws-integrable terms in the equations for ¢& and v, which are

of order O(1), and can be absorbed into the Ws-integrable equations.

However, for A, it results in a slow drift of order O(e). Only this drift
term in the third equation renders the system nonintegrable by making
the level sets £ (A) noninvariant.

We are now ready to state the averaging principle for Ws-theory by
giving the desired adapted version of Theorem 3.13:

Proposition 7.1 Consider the system (7.1) with smooth h. For e =0,
let

M= c
Aew
denote the largest extension of the NAIM from Theorem 6.5 in ’]I‘C]Xdered
such that W is the largest open set for which for every A € W C V,
there exists a periodic orbit Cx C M which is exponentially stable in
Lx(A) and M is a NAIM. For every A € W, fiz a @ = O(X) € Cx and let
d(t) denote the T'(X)-periodic solution of (6.3) with initial condition
éA(0) = 0. Then, the following statements hold true:

1. The function

- 1

T\
PaN) = 733 /0 (DA - h) o ¢a (1) dt, (7.3)

T(X
1s continuously differentiable and well-defined and thus in partic-
ular independent of the choice of () € Cy.

2. There exists an eg > 0 such that for all |e| < €o, there exists a
NAIM M which is diffeomorphic and O(e)-close to M.

3. If there exists a ¢ > 0 such that 27w /T(X) > ¢ > 0 for all X € W,
then, for every hyperbolic fized point Ag € W of the averaged
system

A=eF(N), (7.4)

there exists a periodic orbit Cc x, C M. which lies O(e)-close to
Cx, C M so that, in particular, |A(F) — Xo|| = O(e) for every
DES C€7)\0 .

4. If Ao possess ng stable and n, unstable directions, then, for e > 0,
the periodic orbit Cc x, has ns+2 stable and n,, unstable directions.
For e <0, it has n, + 2 stable and ns unstable directions.

Proof. 1. Let ¢y be the periodic solution of (6.3) with period T'(A) > 0
and the initial condition ¢(0) = @ € Cx. Then, the average of DA - h
over Cy on the right hand side of (7.3) exists. For any 6’ € Cy, let
@'\ (t) denote the solution of (6.3) with ¢ (0) = 8. Then, there exists
a 7 = 7(0') such that ¢\ (t) = ¢x(t + 7). But since we average over
a full period, the integral in (7.3) is invariant under shifts in ¢ and
thus is independent of the choice of 8. Further, F, is continuously
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the theory of normally
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no chance for confusion
since we are exclusively
dealing with the extended
manifold M.
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differentiable because both A and h are smooth and ¢, and T(\)
depend smoothly on the system parameter A [Rud76].

2. Because h is smooth, so is b : TV — RY. Because TV is compact,
there exists a constant K > 0 such that ||h|/,1 = K and thus

lehllcr = O(e).

Thus, by the Persistence Theorem 3.7, there exists an ¢y > 0 such that
for all |e| < €p, there exists a NAIM M, which is diffeomorphic to M
and lies O(e)-close to it.

3. By assumption, M = S! x W, i.e., every point 8 € M is uniquely
determined by (i) its cross-ratios A = A(@), determining in which orbit
Cx C M it lies, and (ii) its position on Cy which is determined by its
phase s = S(8) € S!. The function S becomes uniquely defined, once
we define a Poincaré section > C M which lies transversal to each
orbit Cx C M, such that for every 8 € 3, we set S(0) = 0. If we
choose ¥ C M to be a smooth submanifold of M, the function S is
also smooth. This results in a chart

X : 0= (s,A) = (5(6),A(0))
with coordinates (s, A) for M in which the equations of motion on the
NAIM simply read

2T
T(XA)
A=0.

$ =

By assumption, T'(A) is bounded from above for all A € W and so there
exists a 0 < ¢ < 27/T(N).

We introduce compatible coordinates on M, and determine the equa-
tions of motion on it in terms of these coordinates. To do so, we start by
noting that, since M is not only a NAIM but also the union of periodic
orbits Cy, each stable in its respective level set Lx(A), there exists an
open neighborhood U (M) of M such that y can be extended to?

x:U—=StxV
X0 = (5(9), A(9))
which is as smooth as the vector field in (7.1a), see [Fen77|. For |e|

sufficiently small, M, lies within U(M) and in particular, every point
v € M, is uniquely determined by its coordinates

(s,A) = (5(9), A(9))

because every ¥ € M lies in exactly one isochron in the level set L£x(A)
with A = A(¥). Since M and M. are diffeomorphic and lie O(¢)-close,
there further exists a near-identity map

p:M— M,
p:0—9=0+¢cP(0,¢)

3 In the diction of [HI12], x is the asymptotic phase on U.
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which can be extend to a diffeomorphism
o:UM)— UM,

between U (M) and an open neighborhood U (M) of M.. In particular,
we have g|y( = p and further, g is a near-identity map around M, as
well, so that we find

0(0) =0+ ¢P(0,¢) (7.5)
for 8 € M. Writing (7.1a) as
9 = Fiys(9) + eh(9)
F(2)e + 9(Z) + f(Z)e ™
Fws(9) = : )
F(2)e™N +9(Z) + f(Z)e "N
we can Taylor-expand Fiyg(9)+eh(9) around @ = o~1(+9) which yields

(7.6)

Fys(9) = Fws(0 + ¢P(8,¢))
= Fws(0) + cDFys(8) - P(6,¢) + O(c)
h(¥) = h(0 +eP(0,¢))
= h(8) + eDh(0) - P(8,¢) + O(c?).
For the phase s = S(¢), we then find with (7.5), (7.6), and (7.7) by
the chain rule
$=DS(¥) -V
=DS(9) - [Fws(9) + ch(9)]
— DS(0+€P(0,0)) - [Fus(8) + (]
= [DS(0) + 0(0)] - [Fws(6) + O(e)] (7.8)
=DS(0) - Fws(0) + O(e)

2
= Tong) 00

because for the unperturbed system (6.3), we have by definition of the
phase

(7.7)

d . 2T
dtS(O) =DS(0)-6 =DS(0) - Fws(0) = m.

Further, for the cross-ratios A = A(), we have by the same argument
and because the Ws-integrable term Fyg of (7.6) keeps cross-ratios
invariant

A =DA(®) -9
= DA(®) - [Fws(9) + eh (V)]
— DA(9) - Fyys(9) +eDA(I) - h(9)
=0 (7.9)
=eDA(0 +eP(0,¢)) - h(0 + €P(0,¢))
= €¢[DA(0) + O(e)] - [h(0) + O(e)]
= eDA(0) - h(0) + O(?).
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Next, we have to close equations (7.8) and (7.9) by writing them entirely
in terms of s and A. For this, we need to express @ in terms of s and A.
We note first that because of (7.5), we have

AB) =A(9)+ O(e) = A+ O(e)
S(0) = S(9)+ O(e) = s+ O(e).
Let

00:W—>Z
Oo: A — x10,N)

denote the point in Cy C M of phase zero, i.e., S(@p(A)) = 0. In
particular, 8y is smooth since x is smooth. Denoting the flow of the
unperturbed equations (6.3), restricted to M, by ®ws|pm : M xR —
M, we can write @ entirely in terms of s and X as

6 — Dyslm <00 o A(D), S(Q)To;;(‘g))
_cpwsyM( A+ O (s+(9(e))T(>‘;TO<€))>
= Byys|m ( TQ(;‘) 4 (’)(e)>
— Dwslu ( ) +0(o)

T(A)

= o (s

where ¢x(t) = Pws|am(0o(N),t) is the solution of (6.3) with initial
condition ¢(0) = Oy(A) € Cx. Subsequently, we arrive at the closed
equations

>+0()

- 27

 T(A) + O(e)
2

= T()\) + O(e)

(
(€
)\—eDA< <

o

+ O(e)

) o) o (12 )
} { A<ST2(7’T\>>+O(6)}+cf)(62)

)()

and in particular, we can readily apply Theorem 3.13 to (7.10). This
yields the averaged system

e(DA - h)o (
(7.10)

A=eFL(N) (7.11)
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Figure 18: Schematic depiction of the dynamics on the manifolds M and M..
For the ws-integrable system (¢ = 0) on the left, the manifold is composed of
infinitely many periodic orbits along which the flow of the vector field runs in
parallel. Switching on the perturbation (e # 0) on the right yields a slow drift
term in the A-components, generally resulting in a spiraling motion along M.
Hence, only certain periodic orbits persist in the perturbed case, if any.

with

Fir(\) = ;ﬂ/ozﬂ (DA - h) o ¢ <3T2(;‘)) ds

1 T(X)
= 7 | AR ot

i.e., (7.3) where we average over the fast variable s (or ¢, respectively).
4. Let Ao denote a hyperbolic fixed point of (7.11) with ns stable
and n, unstable directions. For 0 < € < ¢y, we then find for the cor-
responding periodic orbit C¢ x, that it lies O(e)-close to Cy, and thus
in particular, ||A(¥) — Aol = O(e) for every ¥ € C. »,. Further, since
(7.10) describes the dynamics, restricted to M., the orbit C. , has n,
stable directions and n, unstable directions in M.. Because M. is nor-
mally attracting and (N — 2)-dimensional, C, , has n, + 2 stable and
n, unstable directions in T(]xdered. On the other hand, for —eg < € <0,
the fixed point A¢ has n,, stable and ng unstable directions and thus by
the same argumen, C. », has n, + 2 stable and n, unstable directions
in ngered‘ This finishes the proof. O

Proposition 7.1 serves as a tool to determine periodic orbits from the
family M which become robust under a given choice for h. In practice,
this works as follows: Fixing A, one starts by determining the periodic
solution ¢y(t) of the unperturbed system (6.3). Then, one proceeds
by numerically evaluating and integrating the expression DA - h along
the orbit of ¢y. If the integral vanishes for A and its derivative with
respect to A has no eigenvalues with zero real part, the correspond-
ing orbit Cy will generally be slightly distorted to the orbit C x due
to the perturbation eh in (7.1). On the other hand, orbits for which
the integral does not vanish do not survive the introduction of the
perturbation. Intuitively speaking, the reason for this is that while all
Cx C M lie somewhat parallel to their neighboring orbits for the WS-
integrable model (6.3), the introduction of ek in (7.1a) introduces a slow
“drift” in A-direction along M, such that a solution ¢(t) € M, with
A = A(¢(0)), instead of following the orbit Cy, is now “pushed” away
from this orbit like a cruise ship may drift from its optimal course by
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sea currents, coming from different directions. However, if Fh()\) =0,
the pushes cancel each other out on average over the length of Cy such
that ¢(t) stays periodic just like the ship reaches its home port again if
the sea currents make it drift equally often in opposite directions over
its full cruise. Since C, x becomes slightly distorted, the A-components
of ¢(t) oscillate slowly but stay close to A. By the same reasoning, any
initial state that does not lie on one of the surviving orbits receives a
net drift term in some direction over a full rotation so that its trajectory
is not a periodic orbit but slowly spirals along M, in that direction,
see Figure 18 for a schematic depiction. In this case, our proverbial
ship looses its course and will not find home if the sea currents push it
predominantly in one cardinal direction.

One might ask why we are not averaging over the periodic states
@re(t) = m(ag, Qt, A) from the truncated system (6.13) to compute
F‘h(/\) since these solutions are much simpler (we even have explicit
expressions for them) and, at least for values of A that are close to
A*, approximate the full dynamics of (6.3) well. However, as we show
in Appendix D, the averaged vector field F), in A-direction vanishes
identically for all X if we integrate in (7.3) over the orbits Cy™"¢. Un-
der these circumstances, we cannot draw any conclusions about robust
orbits from the averaging principle and Proposition 7.1 becomes sterile.

In the next section, we discuss the main implications of Proposi-
tion 7.1. In particular, we investigate what can be said about the ro-
bustness and stability of the splay state for the perturbed system (7.1).

7.3 IMPLICATIONS

Even though the explicit form of the averaged vector field ﬁ'h, defined in
(7.3), can in general not be determined because to do so would require
(i) to solve the unperturbed equations (6.3) for the periodic solution
éa(t) and then (ii) integrate the expression (DA - h)(60) over a period
of this solution, we can still draw some general conclusions for F, by
using how the cross-ratios A 4, s transform under permutations of the
units 6, 64, 6,,0s [Ricll]. Special focus is thereby put on splay states
due to their spatio-temporal symmetry.

7.3.1  Switch in Stability

We start with a rather simple observation which is a direct consequence
of point 4 of Proposition 7.1. In the averaged system (7.4), the sign of €
controls the stability of any hyperbolic fixed point Ag in the sense that
changing the sign of € makes stable directions of Ay unstable and vice
versa. Thus, the same happens to the stable and unstable directions
of the corresponding periodic orbit C.», in the true system (7.1) in
M. The two normally attracting directions, inherited from M. do not
change their stability. This means that if a surviving periodic orbit
Ceo 2o Of (7.1a) is stable for ey # 0 sufficiently small, the orbit C_, x,
is unstable (if it exists). Varying e within the interval [—eg, +€p], the
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orbit C », switches its stability at € = 0, i. e., when the system becomes
WS-integrable.

7.3.2  Persistence and Stability of Splay States

As established in Proposition 6.6, the periodic orbit Cxx € M of the
continuum gives rise to a splay state which is of the form

; T(X*)

() = ¢ <t+]N>
for some T'(A*)-periodic function ¢ and therefore possesses a spatio-
temporal symmetry. The finite group I', which is responsible for this

in the sense of Theorem 3.11 for equivariant systems, is the group of
cyclic permutations of order N:

r={c";n=1,...,N}

with

(1 2 ... N
U_<N 1 ... N—1> (7.12)

in standard two-line notation [Car37]. The action of I" on TY . is
recursively defined by

0'0 = (90(1), . e ,HO(N)) = (HN; 017 crey aN_l) € Tf)vrdcl‘od (7 13)
0'"0 e 0’(0’”719), n > 1 .

for any 6 € TY . .4- In particular, "6 is again an element of TV . 4

because a cyclic permutation of the #7 does not change their cyclic
order and obviously, the system (6.3) is equivariant under the action of
I" since all units are identical. In the same spirit as (7.13), we can then
for every periodic solution

Aa(t) = (6A(1),- - 6N (1))

of (6.3) write

oa(t) = (65" 1), 37 (1), ., 83 ()
= (&N (1), A (), X (1)) -

In particular, for the splay state solution ¢x=(t), we have

core(t) = (037 (1,057 1), ..., 63V (1)
= (¢§\V* (t)a (b%\* (t)7 RN ¢§\V*_1(t>)
_ <¢>§* (t_ T(A*)) e (t_ T(A*))) (7.14)

\ N
=)

o (1-
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so that we have n = ¢ and m = N in Theorem 3.11. Because of this
spatio-temporal symmetry, splay states play a prominent role in M
so that, although they are not hyperbolic, one might ask nevertheless
whether they are robust under perturbations which leave the units iden-
tical. A necessary condition for this is that ﬁ‘h(}\*) = 0 for any possible
choice of h. To confirm this conjecture is content of the following two
propositions where we handle the case N = 4 separately from the case
of general N because for four units, we can deduce even more informa-
tion about Fh:

Proposition 7.2 For N = 4 and any smooth h, the function F, fulfills

Fy(A) =—Fp(1-X) (7.15)
and in particular, F,(A\*) = 0 holds with \* = 1/2.
Proof. For N = 4, we have

4 1 2 3

and so write for any 8 = (0',602,03,0%) € T?

ordered

o0 = (90(1)’ (90(2)7 90(3)’ 90(4)) — (94’ (917 92’ 03) c T4

ordered*

For fixed 8 = O(\) € Cy, let

éa(t,0) = (94(1,6). 63 (1.6, 6 (£, 6), 6A(1. 0) )

denote the solution of the unperturbed system (6.3) with initial condi-
tion ¢ (0,60) = 6. As above, we set

ca(t,00) = (63(t.0), 651, 0), 63(1, 0), 63(1, 0))

for the cyclic permutation of ¢ (t,0) which again is a solution of (6.3)
since the functions f and g in it depend only on Z which in turn
is invariant under permutations of angles. The periodic orbit of this
new solution does in general not lie in the same level set Ly(A) as Cy
because permutations of the components of any 6 transform the cross-
ratios A(@). Indeed, for @ € L)(A), we have 00 € L1_x(A) because

A(08) = A1234(00)
(eiga(l) _ ei90(4)> (eigv(Z) . ei9‘7<3))
(ewo(z) _ ew”(“)) (eieau) _ ei90(3)>
(ei94 _ ei93) (ei91 _ ew?) (7.17)
- (eiel _ ei93> (ei94 _ ei@?)

=N4123(0)=1—A1234(0)
—1-A(6).
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Since o¢x(0,00) = 00 = ¢p1_x(0,080), we have

opr(t,0) = p1_x(t,00) (7.18)

by uniqueness of solutions for ODEs and it follows that the periodic
orbit of g¢y is C1_x. Note that from this we also read

T(A) =T(1 - A) (7.19)

so that the periodic orbits in £3(A) and £1_x(A) have the same period.
From (7.17), we also read

+ Dlg?,Al 2.3.4(9) - h(0%) +D,94A1 234(19) h(¥ )\

(
= DgaAs123(0) h(0*) +Dgr1Ay123(0) h(0)+
+ DyaAy123(0)- h(92)+D93A4,1,2,3( )-h(0 )

sy

= (DA4123-h)(0)

It il

and thus find, using (7.17), (7.18), and (7.19),

. 1 T(1-X)
Fy(l=X) = /O (DA - h) 0 drx(t, 08) dt

T(A)

= /0 (DA1234-h)oopa(t,0)dt
T(A)

= 7/0 (DA4123-h)o¢r(t,0)dt

)
=——— /o (DA1234-h)odr(t,0)dt
)

from which also

Fi(1/2) =0

follows. Since A* = 1/2 by (4.6) for N = 4, we find that F'j, indeed
vanishes at A* for any smooth choice of h. O

By virtue of Proposition 7.1, Fy,is continuously differentiable so that
the derivative DF,(A*) exists for smooth h. As long as this derivative
is not zero, A* is then a hyperbolic fixed point of (7.4) and thus C, x« is
a hyperbolic orbit for N = 4. By means of Corollary 3.12 and because
the considered perturbation term in (7.1) respects the equivariance of
(6.3) under the action of I', we can then conclude that the splay state
becomes a robust solution of (7.1).

Remarkably, in the proof of Proposition 7.2, we did not make use of
the fact that Cy» lies in the level set Lx«(A). This means that in fact
for any splay state in Tordered, the integral (7.3) vanishes, regardless of
whether we are dealing with a WS-integrable system or not. However, for
general systems of four coupled identical angular variables, this average

I=06
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becomes meaningless because it is not guaranteed that the dynamics
of A(t) for them is slow and thus it is by far not clear whether the
averaging principle is applicable to them in the first place.

The proof of Proposition 7.2 cannot readily be generalized to arbi-
trary N because we made explicit use of the fact that the level sets
in Tﬁrdered can be parameterized by a single cross-ratio A = A(0) =
A1,234(0) for every 0 € Térdered. We cannot expect a similar relation
to (7.15) for N > 4 from which to conclude that F, vanishes at A*.
Instead, we have to explicitly calculate F',(A*) and show that this al-
ways yields zero. It is thus instructional to review the case N = 4 and
directly compute ﬁ’h(A*) for that case. Using the fact that averages
over a full period of a periodic function are invariant under shifts in
time as well as relation (7.18) and the cross-ratio identity (7.17), this
is easily done:

T
1 T(A") .
~T(W) /o (DA1234 - h) o Pxs (t - (4 )) dt
1

T(X*)
= T()\*) /0 (DA1,2,3,4 : h) 0 0P+ (t) dt

1

T(A%)
1 T(X*)

- ]—'(A*)‘/O (—DA172’374 . h) e} d)A* (t) dt

= —F,(\%).

T(A*)
/0 (DA4’172’3 . h) (@] ¢)\* (t) dt

so that F,(A*) = 0 for N = 4. Note that again, we did not use the
fact that the splay state lies in Lx»(A). To generalize this calculation
for the case of arbitrary N > 4, we must take into consideration that
cyclic permutation of the units #7 are not compatible with our choice
(4.3) for the cross-ratio function A: Computing, e. g.,

Ap(00) = A1 23 143(00)

(ewam _ eiea(k+3)) (ei9”(2> _ ei90(3)>
- (eiga@) _ eiaa(k+3)) (eigo(w . 6190(3))
(eieN _ ei6k+2> (eiel _ 62‘02)
- (ei01 _ ei0k+2) (ezﬂN _ eze?)

= An12k+2(0),

the result is not a component of A(8). From this, we see that the N —3
cross-ratios A 23143 are not an ideal choice for handling splay states
because these functions privilege the first three coordinates 6%, 62, and
62 while we would prefer a choice of cross-ratios to parameterize the
level sets L£x(A) for which there exists a simple expression for A(c@)
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in terms of A(@). Luckily, (4.3) is not the only possible way to param-
eterize the invariant level sets £3(A). Indeed, an equivalent choice of
N — 3 functionally independent cross-ratios which is more suitable for
handling splay states is given by

A(B) = (A1 (0), “e 7AN—3(0))
(ez‘ek _ ei9k+3) (ewkﬂ _ ei0k+2) (7.20)

(ewk _ ei9k+2> (eiekﬂ _ e¢9k+3)

Ak(0) = Mg ps1k42k43(0) =

which was in fact used by the authors of [MMS09] to show that every
cross-ratio can be expressed in terms of the N — 3 functionally indepen-
dent ones above. While our previous choice (4.3) was more suitable for
the proof of the existence of M, we work from now on exclusively with
the ones, defined above. Evaluating A(c@) then reveals that

Ap1(00) = Mgyt k2, k4+3,k+4(00)
(ewg(kﬂ) . eiea(k+4)> (eiea(k+2) _ ei90(k+3))

(ez‘eo(HU _ ei9"<’“+3>) (eiea(k+2) _ eieo<k+4>)
(ez‘ek _ ei9k+3) (eiekH _ eiek“) (7.21)
(ewk _ ewk+2) (ewkH _ ewk+3>

= Ak k1 k+2,k+3(0)
= Aw(0)

so that the cross-ratios A(c8) can indeed easily be written in terms
of A(@). Let us now consider the point 6* in the level set of uniform
distributions, defined in (4.5), for which we find

00" = (0?\/70T76?V71)

. 2m . 2m . 27
_<91_N792_N1'“79N N)

which we also write as 00* = 8* — 21 /N. For our new cross-ratios, we
then have

2T

AL(O%) = A (06%) = A (67 = T ) = A (6)

because any shift 6; — 6; 4 ¢ in all components of € by some fixed
value ¢ corresponds to the M&bius map

ey eiftic — g, . (eie)

)

which in turn keeps cross-ratios invariant. This results in
* * *
A '_(17'--))‘1)

with A} given by (4.6) for £k = 1 because (4.3) and (7.20) coincide in
their first component. Of course, the averaging Proposition 7.1 is not
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affected by which cross-ratios we choose to parameterize the level sets

(i. e, equivalence classes) in T(])\idered so that in particular, we still find

a hyperbolic periodic orbit C. », for every hyperbolic fixed point Ag of
the averaged system

A=Fu(\)

where F,(A) = ((Fp)1(A), ..., (Fp)n—3(X)) is still given by (7.3) but
with the new choice (7.20) for A. With these remarks, we are ready to
prove our conjecture Fj,(A*) = 0 for general N > 4 (which took the
author an embarrassingly long time to prove):

Proposition 7.3 For any N > 4 and smooth h,
Fyp(\*) = 0.
Proof. For any fixed but arbitrarily chosen 6 € Cy«, let again

bae () = (93 (), SR (1))

denote the splay state solution of (6.3) with initial condition ¢x«(0) =
6. Next, for the cyclic permutation o, given by (7.12), we recall from
(7.14) that

soxe(t) = or- (1= 1)
and from (7.21), that

Aj11(00) = Ay(6)
and

DAk+1(00) = DAk(6)

holds for all 8 € ngered- Hence, we can for every k =1,..., N (where
weset N+1=1, N+2=2 and N +3 = 3) and any splay state?
formally® write

A 1

T(A)
(F'R)k+1(A") ::T()\*)/o (DAj41 - h) o ¢a=(t) dt

1 T(x%) T(\*
:T()\*) /0 (DAgt1-h)o prs (t - (N )) dt

= 1 oo A h d
_T(A*)/O (DAky1-h)oopr«(t)dt

1 T(A")
:T()\*)/O (DA, - h) o e (£) di

=(Fp)r(X%)

I.e., any T-periodic state ¢(t) that possesses the spatio-temporal symmetry o¢(t) =
@(t — T/N) which characterizes a splay state, cf. (7.14), regardless of whether the
orbit of ¢ lies in Lx=(A) or not. In other words, in the calculation below, we only
use the fact that ¢a=(t) is a splay state but not that Cax C L= (A).

Note that we let k range over {1,..., N} instead of {1,..., N — 3} which will be im-
portant in the next step of the argument. The integrals (F)n_2(A*), (Fn)n_1(A*),
and (F',)n(A*), although not describing any component of the vector F',(A*), are
still well-defined.
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where in the second line we again used the fact that integrals over a
full period of a function are invariant under shifts in ¢. This means that
in particular, the N — 3 components of Fh()\*) coincide. We also have
for any j € {1,...,N}

(B0 = L S
Nk:l
NTl()\* /TA (Z DA - >O¢A*(t) dt
T(A*) N
NTl()\*) / > (Dekf\k(é’)'h(ek)qt

k=1
+ Doy, Ar(0) - h(Or11)+
+ ngHAk(a) . h(9k+2)+

Dy, . ,Ar(0) - h(0 dt
+ Do Ar(0) hOkiw)|
where in the third line, we simply expanded the scalar product from
the second line. Next, we observe that for every k, the cross-ratio Ay
only depends on 0y, ..., 013 according to (7.20) and thus for every 0y,
we have exactly four terms in the sum above that contain a derivative
of some cross-ratio with respect to 0, namely

D, Ak(0) - h(6r) = Do, Ak ot 1,k+2,k43(0) - h(0r),
Dg, Ak—1(0) - h(0k) = Do, Ag—1.k k+1,5+2(0) - h(0k),
Do, A_2(6) - h(0) = Do, A2 1 111 (6) - h(8)), and
Dy, Ar—3(0) - h(0k) = Do, Ak—3x—2k—1,(0) - h(0).

We proceed by rearranging the sum accordingly. Collecting the respec-
tive terms for every 6 yields

1

A T(x) N
i) = sy fy 20 Do (Ae(0) + 4a(0)+
+ Ak—2(8) + Ax—3(0)) - h(0x) ]0:%* o

(7.22)

We claim that (7.22) vanishes because each term the sum in the inte-
grand vanishes identically. To see this, observe that for any 8 € Lx«(A),
there exists some (o, ) € D x S! with

0 o o+ eV eif”
where 0% is given by (4.5) so that inserting this in (7.22) yields
Dy, Ak(60) = Do, Ak kr1,k+2,k+3(0)

(ei9k+3 _ ei0k+2) (ei9k+2 _ ei9k+1)
= jeilk

2
(ei9k+3 _ ei9k+1) (ei9k+2 _ ei9k>
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27 (k—1) . 2k | 27 27 ‘2mk | -
jel T N W (e’T""“/’ — iV ) (eZW — eZTJF“ﬁa)
- 27 - 27 3
(ezW - 1) (1 + elﬁ> (1 - |a|2)
(ein—s _ eiek—Q) (eiek—z _ ei9k—1)
) . ) N\ 2
(esz_g _ ezek_l) (ezek_g _ ezek,)

= —Dg, Ap—35—24k-1(0)
= —ngAkfg(G)

i0),

= —te

so that the first and last term in each summand in (7.22) cancel out.
Similarly, we have

Do, Ak—1(0) = Do, A1,k it1,6+2(0)

(eiek—1 _ ei9k+2) (ei9k+1 _ ei9k+2)

(eiek—1 _ ei9k+1> (eiek _ ei9k+2)2

i(l + i N + ei%) (1 — e_i%(if_l) —i¢@> (ei%r — ei%‘”w&)
(1 — ei%ﬁ) (1 + ei%r)3 (1 - \a\Q)

(ei9k71 _ ei9k72) (ei9k+1 _ e19k72)

(eiakﬂ _ ei9k+1) (eif)k _ ei9k72)2

= —Dp Ar2k 1kksr1(0)
= —ng Akf2 (0)

= etk

S—

so that the second and third term equally cancel in each summand and
hence, the integrand and therefore the integral for all components of
F';,(A*) vanishes identically. This finishes the proof. O

Similar to Proposition 7.2, as long as the derivative DF;(A*) has no
eigenvalues with zero real part, A* is a hyperbolic fixed point of (7.11)
so that subsequently, Cc x» becomes a robust orbit and by preserved
equivariance, the splay state becomes a robust solution of the system
(7.1). That this is in practice really the case will be exemplified for the
generalized Active Rotator model, further below.

With this, we end our considerations on splay states. Next, we dis-
cuss an interesting consequence of Proposition 7.1 concerning arbitrary
orbits Cx C M, which also becomes handy, later on.

7.3.3 Controlling Periodic Orbits

According to Proposition 7.3, each smooth choice of h in (7.2) renders
the splay state robust if DF,(A*) has no eigenvalues on the imaginary
line. Further, as discussed in Chapter 5, at least for the generalized AR-
model (2.6), we know that periodic two-cluster states are also robust.
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This evokes the question whether there exist any other orbits Cy C M
that can be made robust, i.e., hyperbolic, for a suitable perturbation
function h. More precisely: fixing Ag € W such that Cy, C M exists,
does there exist a smooth function h of the form (7.1b) such that Cy,
becomes a hyperbolic orbit for (7.1a)?

To answer this question, we note first that the average (7.3) is linear
in h,i.e.,

Fa1h1+t12h2 = alﬁhl + a2131h2- (7.23)

Choose now any set of N —2 linearly independent smooth perturbation
functions hi,...,hny_o € H where

H = {h € C®(SY,R) ; h(¢) = iansinn¢+bncosn¢}

n=2

is the infinite-dimensional space of smooth functions from S! to R of
the form (7.1b). Since the N — 2 vectors F,;(Ao) € RN=3 are elements
of an (N — 3)-dimensional vector space, there exist a set of nontrivial

coefficients ¢1,...,cny_2 € R for which
N-2
Z Cijj ()\0) =0
j=1

holds. Setting

N—-2

h = Z thj,

Jj=1

we then find with (7.23) that

Fi(Xo) = FZN_Qth.(AO) =" ¢jFp;(X) = 0.

j=1 J

Again, as long as Dﬁ‘h()\o) has no eigenvalues on the imaginary line,
Ao is a hyperbolic fixed point of the averaged system (7.4) and thus
corresponds to a robust periodic orbit Cc, € M. for the perturbed
system (7.1) by virtue of Proposition 7.1. Further, Cc x, is O(€)-close to
Cx, such that ||A(0) — Ao|| = O(e) for all @ € C, ,. Summarizing and
intuitively speaking, we can therefore always construct a perturbation
h in such a way, that a given periodic orbit Cy, C M becomes a robust
orbit C, », under this perturbation.

Note that the construction procedure above generally only yields a
hyperbolic orbit but cannot guarantee that this orbit is exponentially
stable. Whether the proposed construction can be refined to make the
orbit also exponentially stable is an open question. However, it stands to
reason that constructing stable limit cycles could actually be achievable:
We know that any orbit has at least two exponentially stable directions
from the fact that C.», C M. which is a NAIM. We also have an
infinite-dimensional space of possible perturbation function at disposal
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hi(¢) = sin2¢ ha(p) = — cos2¢ generic hg
o] /\ T AT
g 0 ] ] /\ ] [~
& ] | | ~——/
Renwivast

0 1/2 1 0 1/2 1 0 1/2 1
A A A

Figure 19: Averaged perturbation F'j for hi(¢) = sin2¢, ha(¢) = — cos 24,
and the generic perturbation (7.24c) for a system of N = 4 units. System
parameters in (2.5) are fixed as w = 0.8 and x = —0.7. For all three choices
of h, splay states and two-cluster states are of opposite stability.

to choose a finite set {h;; j=1,...,N —2} of linearly independent
perturbation functions so that it seems reasonable to assume that there
is enough variety to choose from in order to achieve our goal of making
Ce,n, €xponentially stable.

We proceed by applying the general results above to our model (2.6)
of coupled generalized Active Rotators.

7.4 APPLICATION: ENSEMBLES OF ACTIVE ROTATORS

We now want to discuss the implications from the general results above
to our model (2.6) of generalized Active Rotators. We start with an in-
depth analysis of the simplest nontrivial case of just N = 4 units before
we discuss numerical results for larger ensembles.

7.4.1 A Case Study for N = 4 Units

AVERAGING We begin our discussion by computing the averaged
vector field F'j, for three different choices of perturbation functions
h for the classic AR-model (2.5) with fixed parameters w = 0.8 and
x = —0.7. Since, we are dealing with four units, we have only a single
independent cross-ratio A = Aj 2.3.4(0) which ranges between zero and
one: A € V = (0,1). We choose the three functions

hi(¢) = sin2¢ (7.24a)
ha(¢) = —cos2¢ (7.24Db)

hs(¢p) = sm¢1—2 + \}g + (jg - 2) sin ¢ (7.24c¢)
where hy and hs are the same functions that we considered in Chap-
ter 5 on periodic two-cluster states. Numerical results for the respective
averages are shown in Figure 19.

As expected from Proposition 7.2, we find for all three choices of h
that (i) the function F', indeed fulfills relation (7.15) and (i) splay
states are robust solutions for sufficiently small |e] # 0 because of
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degenerate orbit perturbed orbit

0.45 1 r 0.45

S S

Figure 20: Splay state for the ws-integrable model (2.5) (left) and the per-
turbed model (2.6) (right) with h(¢) = sin 2¢ for N = 4 units. Parameters are
fixed at w = 0.8, Kk = —0.7, and € = 0.05. For comparison, the (normalized)
time series for the degenerate orbit is also plotted in the top right panel (dot-
ted lines). The splay state is robust under small changes in €. It is stable for
€ > 0 and unstable for € < 0. The cross-ratio A(s) along the orbit oscillates
around A* with an amplitude of order O(e).

Dﬁ’h(}\*) % (0. Moreover, we can directly read from the plots that
for the choices hy and hs, splay states must be stable for positive €
and unstable otherwise while for hs, it is exactly the other way around.
In Figure 20, we plot the (normalized) times series for the splay state
solution for h;. The upper left panel shows the WS-case ¢ = 0 while the
upper right panel depicts the stable splay state for e = 0.05 (together
with the time series of the degenerate orbit as dotted lines for compar-
ison). Indeed, we find that the robust orbit C x« stays a splay state
and that its cross-ratio A(t) = A o ¢, x=(t) now oscillates around the
value A* = 1/2, (lower right panel) while for the WS-case, A(t) = A* is
a conserved quantity (lower left panel). Note that this means in partic-
ular that the perturbed orbit C. x» does not lie entirely in the level set
L« (A) anymore but intersects it instead. Note also that the amplitude
of the oscillation in A is indeed of order O(e).

Strictly speaking, A* is the only zero for all three examples in Fig-
ure 19. However, we can see from the plots that

lim F,(A) = lim F,(A) =0

in all three cases. Let us therefore formally include the two points A = 0
and A = 1 into our considerations even though for these two values, we
must have at least two of the four units coinciding according to (7.20)
so that any state @ with A(8) = 0 or 1 is not an element of T, ..
What is the nature of the dynamics for these limit cases? To answer this
question, we might look what the dynamics along the periodic orbits
Cx look like for A =~ 0 and A = 1, respectively, in the WS-case € = 0.
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0 T/2 T

Figure 21: Broken-symmetry state for N = 4 ARs for (2.5) with w = 0.8,
k = —0.7. The ensemble splits in two groups A and B such that the inter-
spike interval 71 between two units in the same group is smaller than the
inter-spike interval 7o between two consecutive units which belong to different
groups.

In general, we observe that the dynamics along any orbit Cy with
A # A* looks qualitatively like the one, depicted in Figure 21: The
ensemble splits in two groups A and B of two consecutive units each,
such that the rear units (in Figure 21 represented by a red line for
group A and a yellow line for group B) cross, e.g., the point® ¢ = 7
in the state space S! with a time-delay of 7, after the front element in
the respective groups (here, represented by a blue line for group A and
a green line for group B) while for two consecutive units, belonging
to different groups, this time-delay is 7 > 7. Intuitively speaking,
groups therefore consist of two units each, which are more “tightly
bound” together but do not yet form a proper cluster (i. e., they do not
coincide), they form an “almost-cluster”. All these states are of lower
spatio-temporal symmetry than the splay state ¢x«(t). Specifically, one
reads from Figure 21 that they obey the relation

?oa(t) = (o5 V(1) 05 D), 05 D), 65 V1))
= (63(5), 03(1), 8A (1), 63 (1))
(
2

(1) 72
(-12)

with o from (7.16). We therefore refer to them in what follows as
“broken-symmetry states” because in contrast to the splay state and
its spatio-temporal symmetry (7.14), the spatio-temporal symmetry of
the broken-symmetry states does not fully reflect the equivariance of
(2.6) under the action of the cyclic permutation group on TV, .. Note
that broken-symmetry states are also of lower symmetry than symmet-
ric two-cluster states since they are not invariant under permutations
of units belonging to the same group.

Of course, the choice of ¢ = 7 is arbitrary and works for any other point in the state
space in the same way.
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Figure 22: Broken-symmetry states for N = 4 ARs for (2.5) with w = 0.8 and
k = —0.7 for different values of A. The closer A is chosen to 0 or 1, the more
pronounced is the grouping of units. Note that for A close to zero, units 1 and
4 form one group while units 3 and 2 form another. For A close to one, units
1 and 2, and 3 and 4 form groups, respectively. The limit cases A — 0 and
A — 1, correspond to symmetric periodic two-cluster states.

Choosing A close to A* yields broken-symmetry states that are almost
indistinguishable from splays because there, the time intervals 7; and 7
are of comparable length: 71 ~ 79. However, as can be seen in Figure 22
in the top row, if we choose A =~ 0, we find that the units 1 and 4 as well
as the units 2 and 3 form tighter and tighter groups so that in the limit
case A — 0, we end up with a symmetric periodic two-cluster state
with clusters A = {1,4} and B = {2,3}, as familiar from Chapter 5.
On the other hand, for A = 1, the units 1 and 2 on one hand and 3
and 4 on the other form two respective groups until, in the limit case
A — 1, we end up with a symmetric periodic two-cluster state with
clusters A = {1,2} and B = {3,4}, see the bottom row in the same
figure. In this sense, we can treat the two points A =0 and A = 1 in
Figure 19 formally as fixed points, corresponding to two periodic two-
cluster states of different cluster compositions. Under this identification,
we can conclude that splay states and symmetric periodic two-cluster
states in the three given examples of Figure 19 are mutual exclusively
stable, i. e., if the splay state is stable, the periodic two-cluster states are
unstable and vice versa. Subsequently, a “nonlocal transfer of stability”
between these states occurs if we continuously vary e: Three periodic
orbits, although well-separated in phase space, go nevertheless through
a common stability changing bifurcation at e = 0. The reason for this
is of course the NAIM M. While it exists for a whole range of values of €
around zero, the dynamics on M are degenerate at € = 0. Depending on
the sign of €, any state ¢(t) € M, then spirals either towards or away
from the splay state orbit C. x« or the symmetric periodic two-cluster
state orbits Ccp and C 1.
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02< 01< 03< 04< 02+ 27| 02< 01< 04< O03< O2+ 2,
gaM oropM
4 4
gA Tordered 0AOB Tordered
4 V\ 4
Tordcrcd Cl 0B Tordercd
M oM
01< 02< 03< 04< 01427 | 01< 02< 04< 03< 01+ 27

Figure 23: Schematic depiction of how copies of M coincide in T along their
boundaries. Each square represents a copy of the ordered torus ’]I‘ﬁrde]red under
the action of the two permutations o4 : (61, 62,0s,04) — (62,01,03,04) and
op : (01,02,05,04) — (01,02,04,603). The resulting cyclic orders are also shown.
The four copies of M coincide in the two-cluster orbit C; with clusters A =
{1,2} and B = {3,4}.

GLOBAL STRUCTURE OF M  We want to briefly discuss the rela-
tion between the NAIM M C T2 . and its copies with different cyclic
orders. As mentioned above, M C T2 , . contains a periodic orbit Cy
for every A € (0,1) while its boundary is given by the symmetric pe-
riodic two-cluster orbits Cy and C;. Hence, we always have four copies
of M whose boundaries coincide along either Cy or C;. Each of these
copies is the result of a pairwise permutations of some consecutive units,
e.g., 04 : (01,02,03,04) — (02,01,05,04), see Figure 23 where the four
copies of the closure M coincide along the orbit C;. Hence, globally, the
family M does not form a manifold any longer but is self-intersecting.
Arguably, this corresponds to the fact that the symmetric periodic two-
cluster states have in general N — 2 instead of N — 3 neutrally stable
directions.

EXISTENCE AND STABILITY OF SPLAY STATES FOR [e¢] > 0
Let us further investigate the existence and stability of the splay state.
In particular, we are now interested in the regime of existence for splay
states for values of € that are not necessarily small, in other words,
when the system is not close to being WS-integrable. For simplicity, we
restrict our attention to the choice hi(¢) = sin2¢ from (7.24).

In Figure 24 and Figure 25, we show numerical results on the ex-
istence and stability of the splay state in dependence of k and e for
fixed w = 0.8 and w = 0.6, respectively. Analogous to the diagrams in
Chapter 5, a white shading indicates that no splay state exists. In the
blue shaded area, it exists and is stable and in the red shaded area, it is
unstable. As for the symmetric periodic two-cluster states, we observe
a switch in stability at e = 0, as we expected from the considerations
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Figure 24: Stability diagram for the splay state for N = 4 generalized ARs,
obeying (2.6) with h(¢) = sin2¢ and w = 0.8. A white shading indicates that
no splay state exists. In the red shaded region, a splay state exists and is
unstable while in the blue shaded region, it is stable. The green line depicts
the THB of A® at kg, according to (5.5). To the upper left of the orange line,
stable solitary state fixed points exist.

in Section 7.3.1 and Figure 19. We also find that the emergence of the
splay state coincides with the THB of the synchronous fixed point A®
(green line, given by (5.5), cf. Chapter 5) as long as € is smaller than
some €pax(w, k) > 0 (from the figures, we read 0.5 > €,x(0.8,x) > 0.4
and 0.4 > €pax(0.6, k) > 0.2). This result falls in line with our expecta-
tions since for € = 0, as we established in Theorem 6.8, the splay state
is one of the solutions whose orbits lie in M, which in turn emerges
in the THB at k9 = —v/1 — w?. Remarkably, for € > énax(w, ), the
splay state does not emerge in the THB of A®, any longer. The expla-
nation for this lies in the nature of the orange lines, plotted in the two
figures. These lines delimit the upper left corners of the diagrams in
which additional stable fixed points exist, that are not synchronous:
They are stable two-cluster fixed points where one cluster consists of
three units and the other cluster consists of a singleton. Such states are
known in the literature as “solitary states” [MPR14; Mik+19; TR19;
Ber+20] and play a vital role in WS-theory: It can be shown that WS-
integrable systems can only exhibit four different types of attractors,
two of which are stationary and periodic solitary states [EM14]. For our
system, these fixed points emerge in a saddle-node bifurcation along the
upper right branch of the orange line and become unstable in a trans-
critical bifurcation along the lower left branch of that line in which the
larger cluster becomes unstable against splitting perturbations. Loosely
speaking, these fixed points take over the role of A® in the emergence of
periodic solutions if A® is rendered unstable through its THB. Although
a peculiar observation in its own right, a thorough investigation of the
solitary state fixed points and their connections to the emergence of
splay states is beyond the scope of this thesis because it lies outside
the parameter regime, in which Theorem 6.8 and Proposition 7.1 can
be applied.
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0.6

Figure 25: Stability diagram for the splay state for N = 4 generalized ARs,
obeying (2.6) with h(¢) = sin 2¢ and fixed w = 0.6. The regime of existence
for stable solitary state fixed points in the top left corner is delimited by an
orange line.

We also note the change in stability of the splay state in the regime
to the left of the THB. For w = 0.8, this happens only for € < 0 where we
observe a narrow band, close to the THB in parameter space in which
the splay state is stable. The width of this band shrinks to zero for
e — 0. For w = 0.6, this is not the case and instead we see that the
splay state for € < 0 and x < k¢ is stable and only becomes unsta-
ble for stronger repulsion while for ¢ 22 0 and x < ko, it is unstable
and becomes stable for sufficiently strong repulsion. In both case, the
responsible bifurcation is a pitchfork of the splay state with two broken-
symmetry states. For € < 0, this pitchfork is subcritical (two unstable
broken-symmetry states exist to the right of the bifurcation line) while
for € > 0, it is supercritical (the broken-symmetry states are stable).
This is again in accordance with our expectations from WS-theory since
these states lie in the manifold M, and thus, one of their three Floquet
multipliers leaves the complex unit circle at € = 0. Finally, comparing
Figure 24 with Figure 13, we note that indeed, splay states and symmet-
ric periodic two-cluster states are mutually exclusively stable for € ~ 0,
i.e., if the splay state is stable, the two-cluster states are unstable and
vice versa, in accordance with the Plot in Panel (a) of Figure 19 for
the averaged vector field F;,. That this is not the case for w = 0.6 and
for K close to kg is due to the broken-symmetry states as will become
clear in the next section. Before we come to this, and as final remark,
we note that for w = 0.6, —0.8335 < k < —0.8, and ¢ = 0, the contin-
uum M exists while the symmetric periodic two-cluster orbits Cy and
C; do not, compare Figure 12 in Chapter 5. In this regime, the points
A = 0,1 cannot be identified with periodic two-cluster states anymore
since these state do not exist, yet. We will come back to this problem in
Section 7.4.2. For now, let us continue by discussing broken-symmetry
states in more detail.
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Figure 26: Averaged perturbation F, for h(¢) = (sin2¢ — (1 — ¢) cos 2¢ for
N = 4 units. System parameters are fixed at w = 0.8 and Kk = —0.7 as
in Figure 19. Our Proposition 7.1 indicates the presence of robust broken-
symmetry states for suitable choices of (.

ROBUST BROKEN-SYMMETRY STATES From Section 7.3.3, we
know that for four Active Rotators, only two linearly independent per-
turbation functions are needed, so that for a suitable linear combination
c1hi + coho of these two functions, any given periodic orbit Cy C M
can be rendered hyperbolic and therefore robust in which case we write

Cea- In what follows, let us fix w = 0.8 and x = —0.7 and consider the
perturbation function
h(¢) = (sin2¢ — (1 — () cos2¢ (7.25)

for (2.6), which is a linear combination of the two linearly independent
functions h; and hg from (7.24). The parameter ¢ € [0, 1] lets h vary
smoothly between h; and ho.

In Figure 26, we show plots for F, for three different values of ¢ for
which we find additional zeros 0 < A} < 1/2 < Ag < 1 with Ay =1—Xy
so that we expect periodic broken-symmetry states ¢, , (t) and ¢ x, (t)
in addition to the generic splay state and periodic two-cluster states.
From the slope of F n at the zeros, we further infer that the broken-
symmetry states are stable for ¢ > 0 and unstable, otherwise. This
is corroborated by numerical results: Fixing { = 0.45 in Figure 27 so
that A; ~ 0.121, we show the (normalized) time-series of the degenerate
orbit (left) and the corresponding perturbed state (right) together with
their respective cross-ratios A(t). As in Figure 20, in the top right panel,
we also show for comparison the time series for the unperturbed orbit
as dotted lines. Again, we see that (i) the perturbed orbit indeed yields
a broken-symmetry state and (ii) the cross-ratio A(t) ceases to be a
conserved quantity but oscillates around a value that is close to Aj.

Varying the value of ¢ in Figure 26, we see that the loci of the non-
trivial zeros move from the two-cluster values A = 0,1 to the splay
state value A* = 1/2 for increasing ¢. But for ¢ = 0 and ¢ = 1, there
are no nontrivial zeros present as we saw in Figure 19. Instead, A1
and Ao emerge in a supercritical pitchfork bifurcation of the periodic
two-cluster states at ¢ ~ 0.320 and vanish in a supercritical pitchfork
of the splay state at ( ~ 0.485. Hence, varying ( for otherwise fixed
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Figure 27: Broken-symmetry state for the ws-integrable model (2.5) and the
perturbed model (2.6) with h(¢) = (sin2¢ — (1 — () cos2¢ and ¢ = 0.45 for
N = 4 units. System parameters are fixed at w = 0.8, kK = —0.7, and ¢ = 0.002.
The stable broken-symmetry state is robust under small changes in e.

system parameters w, k, and € results in a “local transfer of stability”
instead of the nonlocal one that we saw for varying ¢ = 0: Changing
the bifurcation parameter { results in changes of stability for the splay
state and the two-cluster states that do not occur simultaneously but
for different values of (. If we interpret varying ¢ for fixed ¢ # 0 as
moving along a path in the two-dimensional space

Hy = span(hy, ha)

of linear combinations c1hy + cohg, this path avoids the point 0 € Ho,
which corresponds to the perturbation function

h:9p—0

for which (2.6) simply becomes the Ws-integrable model (2.5). Thus,
in a sense, varying ¢ in (7.25) can “unfold” the nonlocal bifurcation
of (2.6) at ¢ = 0.7 The result is schematically illustrated in Panel
(a) of Figure 28: Along the z-axis, we vary ¢ in (7.25) while the y-
axis shall represent the fixed point coordinate ¢%X of some suitable
Poincaré map P. Solid lines depict stable fixed points of P (i. e., periodic
orbits of (2.6)) and dashed lines depict unstable ones. Fixing ¢ > 0
and all other system parameters in (2.6) and varying ¢ in (7.25), the
symmetric periodic two-cluster states (orange lines) become unstable
in supercritical pitchforks for { = {; ~ 0.32 in which two stable broken-
symmetry states (black lines) emerge. Note that the two additional
branches of the pitchforks above the top and below the bottom two-
cluster states can be interpreted as broken-symmetry states of different
cyclic order: The two-cluster state with, e. g., clusters ¢1(t) = ¢2(t) and

7 Within the picture of following paths in Hz, varying e corresponds to following a
straight line in H> that goes through 0.
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Figure 28: Schematic depiction of the unfolding of the nonlocal stability trans-
fer to the simplest possible local transfer scenarios. In Panels (a) and (c),
the transfer occurs through broken-symmetry states (bss) which emerge in
pitchfork bifurcations. Panels (b) and (d) represent slightly more complicated
scenarios: The broken-symmetry states emerge in a saddle-node bifurcation
of periodic orbits and then vanish in consecutive pitchforks with two-cluster
states and the splay state, thus changing their respective stability.

¢3(t) = ¢4(t) and therefore A(t) = 0 gives, due to symmetry, rise to a
broken-symmetry state with ¢1(t) < ¢a(t) < ¢3(t) < ¢da(t) < ¢1(t)+2m
and one with ¢o(t) < ¢1(t) < ¢da(t) < ¢1(t) < P2(t) + 27 because both
of these solutions yield the same cross-ratio A(t) ~ 0.% Since the latter
one is not in cyclic order and thus does not exist in Té{dered, we can
discard it here. It lives in a copy of Té\;dered C TV of different cyclic
order. Now, increasing ( further, the time intervals 71 and 79 become
more and more alike and thus, the broken-symmetry states appear
more and more like a splay state until at ( = (3 ~ 0.485, the two
broken-symmetry states vanish in another supercritical pitchfork, this
time with the unstable splay state, rendering it stable. For ¢ < 0, the
stability of all involved orbits is inverted and thus, the scenario looks
like in Panel (c) where the pitchforks are now subcritical. These two
possible scenarios, which result in a now local transfer of stability, are
arguably the simplest unfoldings of the degenerate nonlocal bifurcation
at € = 0. However, more complicated versions are possible. In Panels
(b) and (d) of the same figure, we depict, as examples, scenarios that
involve the emergence of broken-symmetry states through a saddle-
node bifurcation at some (y, followed by two pitchforks of the two-
cluster states at (1 > (g and the splay state at (; > (;. Note that here,
the two pitchforks are of opposite criticality.

Such more complicated scenarios can be achieved by carefully tuning
the system parameters, see Figure 29. There, for w = 0.6 and x = —1.3,

8 This is due to the transformation laws for cross-ratios under permutations [Ric11].
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Figure 29: Averaged perturbation F',(X) for h(¢) = sin2¢ — (1 — () cos 2¢
for N = 4 units. System parameters are fixed at w = 0.6 and k = —1.3.
Proposition 7.1 dictates that additionally to the robust splay and two-cluster
states, two pairs of broken-symmetry states must emerge via two periodic
orbit saddle-node bifurcation at (o ~ 0.558 (inset). The resulting broken-
symmetry states vanish afterwards in respective pitchfork bifurcations with
the two-cluster state and the splay state for suitable values of (.

we observe two saddle-node bifurcations for the averaged dynamics at
Co ~ 0.558 in the vicinity of A = 0 and A = 1 through which a stable
and an unstable broken-symmetry fixed point/periodic orbit emerge,
respectively. For € > 0, the two unstable broken-symmetry states then
render the symmetric periodic two-cluster states unstable in a subcriti-
cal pitchfork at ¢; ~ 0.589 while the stable ones render the splay state
stable in a supercritical pitchfork at (5 ~ 0.661. Hence, this bifurca-
tion scenario corresponds to the schematic depiction in Panel (b) of
Figure 28. Changing the sign of € results in a scenario, similar to the
one, depicted in Panel (d).

In the next section, we investigate the transfer of stability between
the splay state and two-cluster states in dependence of x and (. This
also allows us to compare the predictions made by the averaging prin-
ciple with the actual dynamics of the generalized AR-model (2.6).

7.4.2  Transfer of Stability for N = 4 Units

We want to investigate the transfer of stability between splay states
and symmetric periodic two-cluster states in dependence of the cou-
pling strength x and the parameter ¢ which determines the form of
the perturbation function h via (7.25). For this, we fix the parameters
w = 0.6 and € = 0.05 and numerically determine the splay state, the
symmetric periodic two-cluster states, and any other occurring periodic
solutions that might exist together with their respective stabilities. As
established in the previous section, varying ¢ can be interpreted as fol-
lowing a path in the two-dimensional space of perturbation functions,
spanned by h; and hg of (7.24). Due to the form of h, this path avoids
the point 0, corresponding to the Ws-integrable model (2.5), so that we
can investigate the transfer of stability in a generic setting. It further
allows us to compare our predictions from the averaging principle for
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Figure 30: Existence and stability of the splay state, the symmetric periodic
two-cluster states, and the broken-symmetry states for (2.6) with h(¢) from
(7.25). System parameters are fixed at w = 0.6, ¢ = 0.05, and N = 4. Re-
gion I: No periodic orbits exist. Black dash-double-dotted line: THB of
A®. The resulting splay state is unstable in Regions II-V and stable in Re-
gion VI and VII. Black solid line: Symmetric periodic two-cluster states
emerge through double-SNIC and are stable in Region III and IV and un-
stable in Regions V and VI. Black dotted line: saddle-node bifurcations
of stable and unstable broken-symmetry states. Black dashed line between
Regions IV and V: subcritical pitchfork of two-cluster state with unstable
broken-symmetry states; between Regions III and V, the dashed line marks
a supercritical pitchfork in which stable broken-symmetry states branch off
of the two-cluster states. Black dash-dotted line: supercritical pitchfork of
the splay state and two stable broken-symmetry states. Gray lines indicate
corresponding predictions from applying Proposition 7.1.

any occurring limit cycle bifurcations with the actual dynamics for a
fixed, fairly large value of €. The results are shown in Figure 30.

Let us begin by discussing the results on the existence and stability
of the splay state and the two-cluster states for the actual dynamics
in the diagram. In Region I, no periodic orbits exist whatsoever so
that the only attractor is the synchronous fixed point AS. The black
dash-double-dotted line denotes the THB of A® through which the splay
state, together with the manifold M., emerges. It is unstable in Regions
II-V and stable in Regions VI and VII. The black solid line denotes
the double-SNIC through which the two-cluster states emerge. These
states are stable in Regions IIT and IV and unstable above the black
dashed line in the Regions V and VI. From this we see that for fixed
coupling strength x, repulsive enough such that both the splay state
and the two-cluster states exist, a local transfer of stability occurs if we
increase ¢ € [0, 1]: We always start with an unstable splay state and two
stable two-cluster state for small (, the latter of which become unstable
for some (j(k). Further increasing ¢ eventually renders the splay state
stable f