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Z U S A M M E N FA S S U N G

Die vorliegende Arbeit ist der kollektiven Dynamik identischer anreg-
barer Elemente gewidmet. Ein klassisches Beispiel für ein anregbares
Element ist das Neuron: Nur ein ausreichend starker Stimulus veran-
lasst es zu einer Reaktion in Form eines Nervenimpulses bevor es zu
seinem Ruhezustand zurückfindet; andernfalls verbleibt es im Ruhezu-
stand. Anregbare Elemente der Klasse 1 können im Rahmen der nichtli-
nearen Dynamik als Systeme nahe einer Sattel-Knoten-Bifurkation auf
einem invarianten Kreis beschrieben werden. Der Prototyp eines sol-
chen Systems ist der Aktive Rotator. Der Fokus unserer Arbeit liegt
auf dem Studium Aktiver Rotatoren.

In Teil eins der Arbeit motivieren wir zunächst das klassische Modell
abstoßend gekoppelter Aktiver Rotatoren nach Shinomoto und Kura-
moto und verallgemeinern es indem wir höhere Fourier-Moden in der
internen Dynamik der einzelnen Rotatoren berücksichtigen. Wir füh-
ren außerdem das mathematische Rüstzeug auf dem unsere Arbeit be-
ruht ein. Dazu gehören insbesondere die Theorie normal-hyperbolischer
invarianter Mannigfaltigkeiten, die Averaging-Methode und Watanabe-
Strogatz-Integrabilität die es ermöglicht, Systeme identischer Winkel-
variablen durch Möbius-Transformationen zu beschreiben.

In Teil zwei untersuchen wir zunächst die Existenz und Stabilität
periodischer Zwei-Cluster-Lösungen für verallgemeinerte Aktive Rota-
toren und beweisen anschließend die Existenz eines Kontinuums peri-
odischer Lösungen für eine Klasse von Watanabe-Strogatz-integrablen
Systemen zu denen insbesondere auch das klassische Aktive-Rotatoren-
Modell gehört und zeigen dass (i) dieses Kontinuum eine normal-anzie-
hende invariante Mannigfaltigkeit bildet und (ii) eine der periodischen
Lösungen des Kontinuums ein Splay State ist. Darauf aufbauend entwi-
ckeln wir eine Störungstheorie für solche Systeme die auf der Averaging-
Methode beruht. Mit Hilfe dieser Methode können wir Rückschlüsse auf
die asymptotische Dynamik des verallgemeinerten Aktive-Rotatoren-
Modells auf Grundlage der entarteten Dynamik des klassischen Modells
ziehen. Als Hauptergebnis stellen wir fest dass sowohl periodische Zwei-
Cluster-Lösungen als auch Splay States robuste und potentiell stabile
Lösungen für Systeme identischer Aktiver Rotatoren sind. Wir unter-
suchen außerdem einen “Stabilitätstransfer” zwischen diesen Lösungen
durch sogenannte Broken-Symmetry States.

In Teil drei widmen wir uns Ensembles höherdimensionaler Klasse-I-
anregbarer Elemente in Gestalt von Morris-Lecar-Neuronen. Wir stel-
len insbesondere fest, dass die asymptotische Dynamik solcher Systeme
mit der der Aktiven Rotatoren vergleichbar ist. Dies legt nahe, dass un-
sere Ergebnisse aus Teil zwei ein qualitatives Bild für die Beschreibung
komplizierterer und realistischerer Neuronenmodelle liefern.
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A B S T R AC T

This thesis is dedicated to the study of the collective dynamics of ex-
citable elements. A classic example for an excitable element is the neu-
ron: Only if it receives a sufficiently strong stimulus will it respond
with an outgoing nerve impulse before returning to its state of rest;
otherwise, it stays at rest. Class I excitable elements can be described
within the theory of nonlinear dynamics as systems which are close to a
saddle-node bifurcation on an invariant circle. The prototype for such
a system is the so-called Active Rotator. Our work focuses on the study
of Active Rotators.

In part one of this thesis, we motivate the classic model of repulsively
coupled Active Rotators by Shinomoto and Kuramoto and generalize
it by considering higher order Fourier modes in the on-site dynamics
of the Rotators. We also introduce the arsenal of mathematical meth-
ods which our work relies on, namely the theory of normally attracting
invariant manifolds, the method of averaging, and Watanabe-Strogatz
integrability which allows to describe systems of identical angular vari-
ables in terms of Möbius transformations.

In part two, we investigate the existence and stability of periodic
two-cluster states for generalized Active Rotators and afterwards prove
the existence of a continuum of periodic orbits for a class of Watanabe-
Strogatz integrable systems which includes, in particular, the classic
Active Rotator model. We show (i) that this continuum constitutes a
normally attracting invariant manifold and (ii) that one of its periodic
solutions is a splay state. From this, we develop a perturbation theory
for such systems, which builds on the method of averaging. By virtue
of this method, we can deduce the asymptotic dynamics of the gener-
alized Active Rotator model by means of the degenerate dynamics of
the classic model. As a main result, we find that periodic two-cluster
states as well as splay states are robust and potentially stable periodic
solutions for systems of identical Active Rotators. We also investigate
a “transfer of stability” between these solutions by means of so-called
broken-symmetry states.

In part three, we study ensembles of higher dimensional class I ex-
citable elements in form of Morris-Lecar neurons. We find that in par-
ticular, the asymptotic dynamics of such systems are similar to those of
Active Rotators, which suggests that our results from part two yield a
suitable qualitative description of more complicated and realistic neural
models.
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I’ve put in so many enigmas and puzzles that it will keep the
professors busy for centuries arguing over what I meant, and that’s

the only way of insuring one’s immortality.

— James Joyce
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We look at the world through windows on which have been drawn grids
(concepts). Different philosophies use different grids. A culture is a group of

people with rather similar grids. Through a window we view chaos, and
relate it to the points on our grid, and thereby understand it. The ORDER

is in the GRID. That is the Aneristic Principle.

— Principia Discordia
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1
I N T RO D U C T I O N

The world around us is the result of the interactions between its con- Nec deus intersit, nisi
dignus vindice nodus.stituents. Its abundance with the most intricate and complex struc-

tures is so overwhelming that for the largest part of human history, it
was inconceivable that the natural world could be anything less than
the creation of supernatural, omnipotent beings. It is one of the great
achievements of mankind to realize that even the most complicated
collective dynamics need not be orchestrated or constructed by some
higher power but can emerge from simple rules describing how one part
influences the other, from flocks of birds to the human brain. The natu-
ral world is in this respect in stark contrast to the world of human-made
objects, which are top to bottom constructions while natural phenom-
ena typically self-organize from bottom to top. The armamentarium for
the mathematical analysis of dynamical systems comes from the theory
of nonlinear dynamics.

Despite what it might occasionally seem, things do not just hap-
pen at random and to either predict what some physical system will
look like in the future or to decipher what it looked like in the past,
given all available information in the present, is the trade of physics.
Granted that most processes in nature occur continuously in time and
depending on how different properties or observables of said systems
influence their evolution (i. e., how the present or past values of the
observables determine their rate of change), this naturally leads to a
description in terms of differential equations of some kind. In particular
and broadly speaking, if the rate of change for the state of a system at
some given time only depends on its current state itself, its evolution
may be described by an Ordinary Differential Equation (ODE). The
theory of ODEs is part of the theory of dynamical systems whose appli-
cations range from physics [Hol90; Sug+94] over engineering [Str+05;
Roh+12] and biology [Win01; Izh10] to social science [HK02; Lor07]
and economy [Hsi91; And18], to name just a few.

Collective periodic dynamics of ensembles of simple subsystems play Oscillators and
synchronization.a fundamental role in a vast number of complex phenomena [PRK03].

For example, it is commonly believed today that the brain’s function-
ality is an emergent phenomenon, i. e., information processing does
not happen in the single cells of the nervous system (neurons) but
through the interaction of many neurons [Sin93; Fri15]. Likewise, there
is an ongoing debate whether, and if, how pathological phenomena
like epilepsy, Parkinson’s disease, and Alzheimers are related to, e. g.,
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2 introduction

excessive amounts of synchrony in the firing of many neurons [US06;
Jir+13; BLL21]. A heart, pumping blood, functions because its cells
contract or relax in a precisely coordinated manner [MMJ86]. In the
social sciences, there exist attempts to model consensus formation in
large social groups by minimal models of simple oscillating units/ele-
ments,1 representing individual people, where consensus is reached if
the majority of units oscillate in phase [PLR06; HS11]. These exam-
ples have in common that they feature some type of synchronization
between the individual elements under appropriate circumstances. If
the circumstances are right, a significant proportion of an ensemble of
units will show a large-scale coordinated behavior. One may character-
ize synchronization as emerging large-scale or global dynamics through
interactions of individual units on a local scale. Maybe one of the most
visually impressive examples of synchronization occurs in swarms of
fireflies [Buc38; Buc88]. In some firefly species, the males periodically
produce flashes of light in order to attract females. If a swarm of males
produces such flashes in an uncoordinated manner, the swarm will ap-
pear to nearby females as one flickering mass and may likely be ignored
as ambient light. Instead, the males react to their neighbors and tend
to “fire” in unison with their competitors. While this is of course not a
conscious decision, the result is nevertheless impressive. After a short
while, almost all males will fire in unison which has a much greater po-
tential to spark the interest of any females nearby. Summarizing, one
may say that the coupling between individual units plays a role that is
just as important for generating large-scale behavior as the individual
dynamics of the single unit. In particular, even if the single units are
at rest on their own, depending on the nature of the coupling, the en-
semble may very well show highly complex dynamics, often involving
collective periodic behavior [TZ14; KF19].

One particularly prolific field of research within the theory of oscil-Neuroscience and
excitability. latory elements and synchronization is that of neuroscience, i. e., the

study of how cells of the nervous system function and interact and how
this gives rise to phenomena like memory, intelligence, and ultimately,
consciousness [DA05; CS99; Tra09]. One of the main concepts from
neuroscience, which inspired this work, is the excitability of neurons.
Simply put, a neuron being excitable means that, while staying typi-
cally at rest when isolated, it will produce a (possibly periodic) output
in terms of nerve impulses, also called action potentials or spikes, if it is
sufficiently and appropriately stimulated by, e. g., incoming spikes from
other neurons. Their excitability makes neurons the building blocks of
the nervous system, somewhat akin to logic gates, built from transis-
tors, being the building blocks of modern computers. As it turns out,
the neurobiological concept of excitability translates directly to single
neurons being able to be modeled as dynamical systems which are close
to some limit cycle bifurcation. For this reason, the study of the collec-
tive dynamics of excitable elements can yield insights, for example, on

1 Throughout this monograph, we use the words “unit” and “element” interchange-
ably.



introduction 3

how the functionality of nervous systems emerges from the interplay
between neurons. In turn, this study revealed and inspired a wealth
of mathematical structures and concepts which are very much worth
studying in their own right.

Whether and how individual elements that are at rest on their own,
can show nontrivial ensemble dynamics via appropriate coupling has
been subject to ongoing research for a considerable time. As one of
maybe the earliest examples, Smale investigated in 1976 the interac-
tion of two “dead” cells that become “alive” via diffusive coupling be-
tween their respective enzyme concentrations [Sma76]. Here, a cell be-
ing “dead” is understood to be at rest while being “alive” means its
enzyme concentrations vary periodically. As Smale points out, the un-
derlying model goes back even further to Turing’s seminal paper [Tur53]
on reaction-diffusion systems in biology, originally published in 1953.

The bread and butter of physical modeling is to find the right level Keep it simple, stupid.
of abstraction to describe a given real-world phenomenon. If the model
is simplified too much, its dynamics will not mimic the sought behavior
or, even worse, its dynamics will be trivial. On the other hand, abstrac-
tion is necessary in order to get a firm enough grip of the system’s key
properties that can be quantified and subsequently described by some
equation. From a practical point of view, a simple model is preferable
to a complicated one and a model that can be described by simple
equations is often preferable to one whose equations are complicated.
This is all the more true for ODEs because they are notoriously hard to
solve. When it comes to periodic behavior, it is often possible to derive
a simple description where the state of each unit is described by a sin-
gle periodic real variable. This “phase description” has turned out to
be very powerful even (or maybe especially), but by far not exclusively,
in the field of neuroscience, where the actual electro-chemical mecha-
nisms inside each cell may often be neglected in favor of a description
in terms of a single abstract phase-like variable [Vel06; Gal09; DB14;
Son+14; ACN16; Cha+17]. Often, one considers the case where single
units are spiking by themselves, i. e., they show periodic behavior, even
if isolated. The seminal Kuramoto model [Kur75; Ace+05] and its many
variations [SK86a; SK86b; YS99; Str00; KB02; MP04; HK15] deal with
cases like this and yield a variety of different dynamics, depending on
the specific setup, from the spontaneous onset of (partial) synchroniza-
tion through coupling [Kur84; Str00; Ace+05; WYD21] over chaotic
behavior [MPT05], phase-locked solutions [Ros+21], explosive synchro-
nization [VZP15], and clustered states [BSY19] to so-called Chimera
states [AS04; Olm15; LK21]. Remarkably enough, all of these com-
pletely different types of dynamics can be observed in some variation
of the Kuramoto model despite its (at least in its original guise) rather
simple form. For ensembles of excitable elements, the Active Rotator
model by Shinomoto and Kuramoto [SK86b] plays a similar role and
captures the essence of interacting (class I) excitable elements. It can be
characterized as a classic planar Heisenberg model with all-to-all cou-
pling (originally involving noise) under the assumption of an additional
constant driving force. As already noted, this model is distinguished by,
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e. g., the Kuramoto model by the fact that its elements are not necessar-
ily oscillating in a self-sustained manner but can stay at rest if uncou-
pled which, as it turns out, can make its analysis more complicated in
some respect. Nevertheless, it is equally able to produce rich dynamics,
including synchronized periodic motion, pulse and spiral propagation,
pattern formation, or collective bursting, depending on the respective
setup [SSK88; Gia+12; TZ14; ZT16; KSN16; DGP17; Fra+21]. What
makes the model by Shinomoto and Kuramoto especially interesting is
that it can feature what is known today as Watanabe-Strogatz integra-
bility.

The beginnings of Watanabe-Strogatz integrability (or theory) dateWatanabe-Strogatz
integrability. back about 30 years when several groups of researchers noted the ex-

istence of so-called splay states in systems describing arrays of over-
damped superconducting Josephson junctions [Jos62], coupled to a
common load [AGM91; TS92; NW92]. To their surprise, these solu-
tions possessed a high degree of neutral stability for a wide range of
system parameters. Following several works which tried to explain these
remarkable observations via averaging theory [SSW92] or by consider-
ing the thermodynamic limit [Gol+92; SM93], Watanabe and Strogatz
showed rigorously in their seminal works [WS93; WS94] how these find-
ings can be understood by considering a set of just three coupled differ-
ential equations whose dynamics fully encode the dynamics of the whole
array, regardless of the number of junctions. They already noted that
their results could be generalized to a wider class of dynamical systems,
consisting of identical angular2 variables, coupled to common fields via
their respective zeroth and first Fourier modes. While their original
work was, as others put it in [EM14], an “algebraic tour-de-force” con-
struction of special constants of motion, later on, a more geometric view
became popular, which illuminated the degenerate dynamics of such
systems by means of complex projective geometry. Watanabe-Strogatz
integrability has since been an active field of research which involves
techniques and concepts from Lie theory [MMS09], invariant manifold
theory [MS09], averaging theory [Eld+21], and equivariance of ODEs
[Mir94], most of which are also employed in this work.

Watanabe-Strogatz theory is not the only systematic framework forThe Ott-Antonsen ansatz.
studying synchronization effects in oscillatory systems. Notably, the
Ott-Antonsen ansatz [OA08; OA09] equally yields a low-dimensional
description of, in its case, infinite ensembles of angular variables. Both
theories have distinct realms: While Watanabe-Strogatz theory holds
for finite ensembles of identical3 angular variables, the Ott-Antonsen
ansatz applies to heterogeneous ensembles in the thermodynamic limit
of infinitely many units. Nevertheless, both frameworks are closely re-
lated to each other [PR15]. Not the least for the richness of the involved
mathematical structures and techniques, these two frameworks are of
continuing high interest.

2 Often, people also speak of phase or phase-like variables even when these quantities
are generally not growing linearly in time.

3 In the sense of identical coupling to some common fields in which case one also
speaks of “identically driven” units.
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As of now, there exist no general perturbation theories for Watanabe- Perturbations.
Strogatz or Ott-Antonsen theory, although there exist, e. g., results for
finite ensembles of weakly heterogeneous units [VRP16] or infinite en-
sembles of generally heterogeneous units [PR11] for the former case.
Recent results in this direction also employ a circular cumulant rep-
resentation for such systems under individual noise [Gol+18; Gol19;
Tyu+18; Tyu+19]. In any case, these results focus on situations where
individual units become distinguishable, i. e., nonidentical.

In contrast to the above-mentioned works, our main objective is to Our main objective.
investigate how periodic ensemble dynamics for general but identical
(class I) excitable elements emerge through repulsive coupling. The
idea for this comes from a recent work by Zaks and Tomov [ZT16]
who observed intricate ensemble dynamics for sufficiently strong repul-
sion between individual units. This observation lead to the question of
how generic these dynamics actually are since the model studied there
possesses the Möbius group symmetry that characterizes Watanabe-
Strogatz integrable models, a property that natural systems rarely pos-
sess. To investigate this question for the case of angular variables, we
first need to gain a deeper understanding of the consequences of in-
tegrability for the model by Shinomoto and Kuramoto. Then, we can
generalize the model to remove the degeneracy that arises from its in-
tegrability. As a result, we may see the original model as a base case
for which we can develop a perturbation theory to account for more
general types of dynamics. To go even further, we can study more
complicated models with similar properties, e. g., by considering units
that are not just one- but higher-dimensional with a similar type of
coupling. We pay particular attention to periodic ensemble dynamics
that involve (clustered) splay states, which are periodic solutions that
feature a specific type of spatio-temporal symmetry. Splay states (also
known as, e. g., (discrete) “rotating wave”, “wagon wheel”, or “ponies
on a merry-go-round” solutions) are in fact a common phenomenon in
Watanabe-Strogatz integrable systems [AGM91; AGK91; NW92; SM93;
Mir94; Dip+12; Che+17] and similar setups [Zil+07; ZZ09; Per+10;
Ber+21] and can lead to, e. g., “attractor crowding”, which for large
ensembles can lead to hopping between distinct attractors under the
influence of even weak external noise [WH89; TW90]. The same is true
for clustered periodic states, which can be observed in models from neu-
roscience to electro-chemistry [Oku93; HMM93; KZH06; LY12; SK14;
KHK19; Kem+21; Fie+21]. In a nutshell, this thesis is mainly dedicated
to studying the effects of repulsive coupling between class I excitable
units and their description in terms of global variables, its motivation
being the excavation of the mathematical principles that underlie the
complex dynamics of such systems. It is divided into five parts.

Part I introduces the theoretical background and mathematical tech- Outline.
niques that our work relies on. In Chapter 2, we discuss the neuroscien-
tific concept of (class I) excitability, how it translates to the theory of
nonlinear dynamics, and describe the notion of the (generalized) Active
Rotator as well as sinusoidal coupling between such elements. We also
introduce the first two models that are central to our work. In Chap-
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ter 3, we give a brief overview over the most important mathematical
concepts that we use to study the dynamics of these models: the theory
of normally attracting invariant manifolds, discrete symmetry groups
of ODEs and the resulting spatio-temporal symmetries for periodic so-
lutions for such equations, and a theorem from averaging theory for
periodic solutions of ODEs. We feel that it is not just educational but
necessary to discuss these concepts in some depth, since they are not
necessarily part of the standard repertoire of, e. g., neuroscience. (At
least they were and to some extend still are clandestine knowledge to
the author.) We also discuss how to determine the stability of clustered
periodic solutions against perturbations that split one or several clus-
ters of the ensemble. Chapter 4 focuses on Watanabe-Strogatz theory.
We show, in particular, that the set of group parameters and conserved
quantities from Watanabe-Strogatz theory can be used as alternative
coordinates on the space of angular variables in (strict) cyclic order.
As a result, any system of coupled identical angular variables can be
written alternatively in these new coordinates, regardless of whether it
is integrable or not. This enables us to study general systems of identi-
cal angular variables within the Watanabe-Strogatz framework, which
is essential for the following part of this monograph.

Part II contains our results on the dynamics of the above-mentionedResults.
angular models: the classic Active Rotator model and the generalized
Active Rotator model. In Chapter 5, we discuss the existence and sta-
bility of two-cluster states where we focus on periodic solutions. We
show that such solutions emerge, in the most generic way, by one of
two global bifurcation scenarios and discuss how these scenarios are
connected to the criticality of a pitchfork bifurcation of a special syn-
chronous fixed point of the system. We then show that the stability
of periodic two-cluster states depends on the ratio of cluster sizes and
how an observed change in stability for such states can be understood
through Watanabe-Strogatz theory. Chapter 6 deals with the existence
and stability of splay states and related periodic states for the classic
model. Employing the theory of normally attracting invariant mani-
folds, we show that for a broad class of Watanabe-Strogatz integrable
systems, splay states must not only exist but are also embedded in a
continuum of nonhyperbolic periodic orbits whose union forms a nor-
mally attracting invariant manifold. In particular, this result applies
to the classic Active Rotator model. The hyperbolic structure of the
manifold enables us in Chapter 7 to determine the stability of the splay
state for the generalized Active Rotator model via techniques from av-
eraging theory and gives a simple criterion to determine which orbits
of the continuum persist under a given perturbation. It also allows us
to understand a “nonlocal transfer of stability” between periodic two-
cluster states and splay states in a minimal model of just four classic
Active Rotators and allows for an unfolding of this nongeneric bifur-
cation scenario to a “local transfer of stability”. We note that similar
techniques were recently used in a related context to prove the existence
of Chimera states in oscillatory systems on star networks [Eld+21].
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Part III focuses on coupled Morris-Lecar neurons, which are, to some Morris-Lecar neurons.
degree, a higher-dimensional analog of Active Rotators. In particular,
we study how the results from Part II generalize to ensembles of gen-
eral class I excitable units. We show how for this system splay states
and periodic two-cluster emerge in similar bifurcations to the ones dis-
cussed in the second part and observe, again for the simplest nontrivial
case of four such neurons, a now local transfer of stability between the
two types of periodic solutions. This suggests that while Watanabe-
Strogatz theory can be employed to investigate bifurcations in systems
of repulsively coupled Active Rotators, the observed scenarios are not
a consequence of this integrability but generalize to general systems
of identical (class I) excitable units. However, higher-dimensional sys-
tems like coupled Morris-Lecar neurons can also give rise to potentially
stable periodic solutions which do not find their analogs in angular
dynamics. Specifically, we observe states where the ensemble splits in
two groups which display qualitatively different dynamics, so that in
an admittedly very loose sense one may speak of “Chimera-like” states.
Chimera states, in a strict sense, always involve an ensemble of identi- “Chimera-like” states.
cal units that splits into two groups where one group is synchronized
while the other group is in a state of decoherence [Kem+16]. For our
model, this will not be the case so that one has to be careful with
the name “Chimera” to avoid confusion. Our usage of the word is to
be understood more in the sense of [ZP17] where Chimera states are
defined as states in which an ensemble splits in a fully synchronized
macroscopic component and a “cloud” of distinct units.

Part IV constitutes the conclusion of our work while part V consists
of an appendix with background information and calculations which
would otherwise interrupt the flow of the main chapters.

A note on style: For this thesis, we employ a style that structures Style.
the text body into definitions, lemmas, theorems, proofs, etc. which
is more commonly known from the mathematical literature while this
monograph is a thesis in physics (even though the border between math-
ematics and physics is blurry in this field of research, to say the least).
Nevertheless, we deliberately chose this style because we feel that it
helps not only to organize the writing process but also makes the con-
tent better digestible and allows to reference intermediate results more
easily. After all, the purpose of this style is not to distinguish mathe-
matics from physics but to make a complicated topic more accessible.





Part I

FO U N DAT I O N S

Mathematics succeeds in dealing with tangible reality by be-
ing conceptual. We cannot cope with the full physical com-
plexity; we must idealize.

— Pólya György [Pól77]





2
C O U P L E D AC T I V E RO TAT O R S

abstract

This chapter gives an overview over the theoretical background of the
(generalized) Active Rotator model, to which this thesis is mostly ded-
icated. We start by introducing the notion of excitability from neuro-
science in Section 2.1 and discuss how this physiological property of
neurons can be understood within the framework of nonlinear dynam-
ics. In particular, this leads to the introduction of the (generalized)
Active Rotator, which obeys a simple one-dimensional ordinary differ-
ential equation. In Section 2.2, we discuss systems of coupled identical
Active Rotators and the distinction between attractive and repulsive
coupling. We are then ready to introduce the first two models of this
thesis in Section 2.3, one being the deterministic Shinomoto-Kuramoto
model with classic identical Active Rotators under repulsive sinusoidal
coupling and the other one being a similar model, where we consider
ensembles of generalized Active Rotators under the same kind of cou-
pling.

2.1 class i excitability and active rotators

what is excitability? On of the key physiological properties of
neurons is their excitability [JW94; AA98; KS09; Win01; Izh10]. The
transmission of information in the nervous system happens via elec-
trical signals which themselves are produced by neurons. The in- and
outside of every neuron harbor different concentrations of various kinds
of ions, e. g., Ca2+, K+, and Na+ where the membrane of the cell acts
as a partially permeable physical barrier, separating its inside from
the outside. The result of this gradient of ion concentrations is a net
electric potential difference V between the cell’s interior and exterior,
called the membrane potential or membrane voltage. The cell membrane
is partially permeable for the ions because it is equipped with ion chan-
nels and pumps, which let ions either diffuse through the membrane
with their respective concentration and electric gradients (channels) or
actively pump them from the interior to the exterior and vice versa
against these gradients (pumps). Both mechanisms are usually selec-
tive, i. e., different channels and pumps act on different types of ions.
Whether channels are open or not and the activity of the pumps and
thus the overall conductance of the membrane for ion currents are them-
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Figure 1: Subthreshold perturbation (black line) and spike (orange line) for
a class I excitable neuron. Panel (a) shows the phase plot in the membrane
voltage V and a single gating variable w for a so-called Morris-Lecar neuron.
The subthreshold perturbation converges exponentially to the resting state
(V s, ws) (green dot) of the neuron while in a spike-generating perturbation, the
state first approaches a saddle (red dot) and then traces a large-scale contour
in phase space (the unstable manifold of the saddle), thus producing the spike.
Gray lines indicate the nullclines of the system and the blue dot marks an
unstable focus. For better visual display, we consider here perturbations that
change both, the membrane voltage and the gating variable. In Panel (b), we
show the time series for V for both perturbations. The upstroke of the spike
is characterized by a rapid growth of V which is followed by a downstroke in
which V converges to V s.

selves (nonlinearly) voltage-dependent. Hence, a single Neuron can be
modeled as an electric circuit with nonlinear feedback, making it ac-
cessible to methods from the theory of nonlinear dynamics. For such a
conductance-based neuron model, the state of the neuron is character-
ized by the membrane voltage V and the (normalized) conductances
wCa2+ , wK+ , etc. of the membrane for each type of ion. Since the chan-
nels and pumps act as gates for the respective types of ions, the vari-
ables wx with x ∈ {Ca2+,K+,Na+, . . . } are known as gating variables.
Based on how, and in particular how fast, ion channels and pumps react
to changes in V , one classifies three different types of gating variables:
excitation, recovery, and adaptation variables [Izh10]. The interplay be-
tween the membrane potential and the gating variables can often be
modeled by some ODE of the form

V̇ = f(V,w, I)
ẇ = g(V,w)

(2.1)

where w := (w1, . . . , wn) ∈ Rn is a tuple of the n gating variables
and I ∈ R is a transmembrane current, which in nature arises through
synaptic connections to other neurons and typically only affects the
membrane voltage. In experiments, one can mimic such a current by
inserting an electrode into the neuron and applying a (small) external
voltage. I acts as a control parameter for equation (2.1).

A single isolated neuron is typically at rest, which translates to the
existence of a stable fixed point (V s,ws) for (2.1). Let δ(t) denote the
Dirac delta function. Applying a pulse-like input signal I(t) = Iinδ(t) of
signal strength Iin perturbs the neuron from its state of rest at time t =
0. For the subsequent evolution of its state, one generally distinguishes
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between two qualitatively different scenarios, depicted in Figure 1. In
Panel (a), we show the phase space for a so-called Morris-Lecar neuron,
which possesses a single gating variable w and is discussed in more
detail in Chapter 8, together with its essential invariant objects. The
two gray lines depict the nullclines of the system. Their intersections
mark three distinct fixed points: the stable fixed point at (V s, ws) (green
dot), a saddle (red dot), and an unstable focus (blue dot). A black and
orange dot mark two distinct initial states, each representing one of the
two perturbation scenarios, mentioned above. In Panel (b), we show
the time series V (t) for both perturbations. Note that, even though
in-vivo and in (2.1), perturbations typically only affect the membrane
voltage V , here, we depict two perturbations that also change the gating
variable w. This is for the sole reason of a better visual display and does
not alter the outcome.

If the perturbation of the state is too small (black dot), it decays ex-
ponentially and rapidly settles at (V s, ws) again (black lines in Panels
(a) and (b)). On the other hand, if the perturbation from the signal I(t)
is sufficiently strong, the perturbed state will not immediately converge
to (V s, ws) but will produce a so-called spike in its membrane potential,
depicted in orange in both panels. The spike is characterized by a short
period, during which V grows rapidly (upstroke), followed by a period
of exponential convergence to the state of rest (downstroke), see Panel
(b). During the spike, the state of the neuron traces a large-scale con-
tour in phase space before eventually converging to (V s, ws). We note
that the distinction between subthreshold and spike-generating pertur-
bations in our example lies in whether the perturbed state lies to the
left (subthreshold) or right (spike-generating) of the stable manifold of
the saddle in phase space.

It is precisely the ability to produce spikes that is called excitabil-
ity: If a neuron receives a sufficiently strong input from other neurons
(in form of a series of spikes), it can produce one or several spikes
itself. This can in turn elicit the same behavior in other neurons or
suppress their ability to produce spikes, depending on the specific type
of coupling between them. In the former case, one speaks of excitatory
coupling while the latter case is known as inhibitory coupling. Thus,
their excitability enables neurons to react to each other which in turn
is the cornerstone of information processing in neural networks.1

classes of excitability Mainly for historical reasons, one dis-
tinguishes between three types of excitability, referred to as class I, II,
and III, respectively. This distinction goes back to Hodgkin [Hod48],
who observed that neurons can be classified by how they react to a
stimulus. In practice, the classification is based on the fact that apply-
ing a sufficiently strong constant current2 I to a neuron makes it spike

1 Of course, we are not implying that excitability is the only imaginable way how
neurons could communicate. It is simply the way, that nature has settled on and it
is otiose to discuss how information processing would work if they were not excitable.

2 In the literature, this is also known simply as a DC current.
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Figure 2: Idealized depiction for the current-frequency relation for a class I
excitable neuron in Panel (a) and class II excitable neuron in Panel (b).

periodically with some frequency f . Such periodic series of spikes are
commonly referred to as spike trains.Spike trains.

For class I excitable neurons, the transition between quiescence and
periodic activity is continuous, i. e., the frequency can be made arbi-
trarily small by tuning I. Below a critical value I0, the neuron does not
produce or fire any spikes, which can be interpreted as a spike train
with frequency zero. Above the threshold, the frequency of the spike
train continuously increases. This relation between current I and spike
frequency f is schematically depicted in Panel (a) of Figure 2.

On the other hand, for class II excitable neurons, the transition
between quiescence and periodic oscillation is discontinuous. In other
words, starting with small I and slowly increasing the applied current
will result in a transition from subthreshold behavior (i. e., no spike
trains or f = 0) to periodic spiking with finite frequency f > f0 > 0,
see Panel (b) in the same figure. In class III excitable neurons, a single
spike is generated for sufficiently strong input currents, whereas peri-
odic spike trains may only be achieved for extremely large currents.

It was later suggested that the class of excitability of a neuron is
connected to the corresponding dynamical system (2.1) being close to
a limit cycle bifurcation in parameter space [RE89]. Focusing on codi-
mension 1 bifurcations, it can be shown that class II excitability is re-
lated to inherently two-dimensional bifurcation scenarios such as sub-
or supercritical Hopf bifurcations while class I excitability is related
to a so-called Saddle-Node Bifurcation on an Invariant Circle (SNIC)
[Izh00], also known as Saddle-Node Homoclinic Bifurcation [Kuz13].

The top row of Figure 3 depicts the phase plots for a SNIC scenario for
a Morris-Lecar neuron. In Panel (a), saddle (red dot) and node (green
dot) are well separated and are connected by the unstable manifold of
the saddle (orange line). This robust contour is the invariant circle on
which the SNIC occurs in Panel (b) where it forms the homoclinic orbit
of a saddle-node (green-red dot). After the bifurcation, the contour
becomes a stable periodic orbit in Panel (c). The unstable manifold
from Panel (a) is exactly the hidden large-scale contour that the spike
in Figure 1 traces.
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Figure 3: SNIC for a Morris-Lecar neuron (top) and an Active Rotator (bot-
tom). Again, a red dot denotes a saddle, a green dot a stable node, and a blue
dot an unstable focus. Arrowheads indicate the direction of the flow along
respective contours. Saddle and node are connected by the two branches of
the unstable manifold (orange line) of the saddle. This contour forms an in-
variant circle in the phase space. While saddle and node are well-separated in
Panel (a), at the SNIC in Panel (b), they form a saddle-node (green-red dot)
for which the unstable manifold of the former saddle becomes a homoclinic
orbit. After the bifurcation, in Panel (c), a stable periodic orbit forms from
the former homoclinic orbit. The bottom row represents a reduction of the
dynamics of the top row along the invariant circle in terms of an angular vari-
able ϕ. In Panel (a′), there exists a stable fixed point ϕs and an unstable one
ϕu. At the SNIC in Panel (b′), these two merge to a saddle-node (green-red
dot). After the bifurcation, no fixed points are left and the system possesses a
periodic solution in Panel (c′). For the Active Rotator model, the phase space
as a whole is the invariant circle of the SNIC.

Thus, two dynamical regimes exist for such a neuron: In the excitable
regime, it produces spikes if appropriately excited while it stays at rest
if no input is present. After the bifurcation, in the second regime, the
stable state of rest has vanished and the neuron produces a periodic
spike train even without any further input.

The fact that an invariant circle exists for a class I excitable unit hints
that a dimensional reduction is possible: Since the contour is stable with
respect to perturbations in normal direction (this leads to the periodic
orbit in Panel (c) of Figure 3 to be equally stable), any initial state
close by will converge exponentially to this contour and then follow it
to the stable node or keep rotating if no such node exists. In this case,
it is reasonable to describe the state of the system by its position on
the invariant circle, akin to the one-dimensional descriptions of higher-
dimensional oscillators by means of phase reduction techniques [Win01;
PRK03]. In fact, extending the concept of the so-called isochron to
excitable elements yields a low-dimensional reduced description for such
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elements [IAJ98].3 This motivates the following angular model for class
I excitable elements.

the adler equation and active rotators Arguably, the
simplest incarnation of class I excitable elements comes in the form of
the Adler equation [Adl46], which reads

ϕ̇ = ω − sinϕ (2.2)

with |ω| < 1. Here, we assume ϕ ∈ R/2πZ =: S1, so that we identifyThroughout this thesis, we
define S1 := R/2πZ and

distinguish it in particular
from the unit circle

∂D := {z ∈ C ; |z| = 1} in
the complex plane.

all points ϕ, φ ∈ R for which ϕ−φ is an integer multiple of 2π and the
phase space of (2.2) is indeed a circle.

As for any potentially class I excitable system, we can distinguish
two regimes for the dynamics of (2.2), as depicted in the bottom row
of Figure 3. For −1 < ω < 1, equation (2.2) possesses exactly one stable
fixed point ϕs = arcsinω and one unstable fixed point ϕu = π−arcsinω
so that no periodic solutions exist in this regime, see Panel (a′). A SNIC
occurs for the two critical values ω = ±1, where the invariant circle is
the phase space S1 itself which forms a homoclinic orbit for the saddle-
node ϕsn = π in Panel (b′). For |ω| > 1, no fixed points exist whatsoever
and we obtain a periodic solution ϕ(t) of period T = 2π/

√
ω2 − 1, as

depicted in Panel (c′). The sign of ω determines the sense of rotation
of the oscillation. Negative values lead to clockwise and positive values
to counterclockwise rotation.

The system (2.2) is commonly known as an Active Rotator, a name
that Shinomoto and Kuramoto introduced in 1986 [SK86b]. What makes
the Rotator Active is a nonzero choice of ω which acts, in Shinomoto’s
and Kuramoto’s own words, as a “constant driving force” to the Rota-
tor. However, in what follows, we exclude the cases ω = ±1 and |ω| > 1
and refer only to the case |ω| < 1 as a (classic) Active Rotator since
only then, the system (2.2) is excitable.

A close connection exists between the Active Rotator model and twoActive Rotators in disguise.
other important neurophysical models, the theta neuron (also known as
theta model or Ermentrout-Kopell canonical model) and the Quadratic
Integrate-And-Fire (QIF) neuron [EK86]. These neuron models, intro-
duced by Ermentrout and Kopell in 1986, also show class I excitability
for a suitable parameter choice. The theta model reads

θ̇ = (1 − cos θ) + a(1 + cos θ)

with θ ∈ S1 while the QIF neuron model reads

ẋ = a+ x2

with x ∈ R̂ := R ∪ {∞}. Intuitively, the extended real line R̂ can be
seen as the real line with a single additional “point at infinity” ∞ so
that its “end points” ±∞ are identified or “glued” together. In this
picture, the QIF model can feature periodic motion for a > 0 where
the state x(t) first diverges in finite time to +∞ and “returns” from

3 In the terminology of [HI12], one may speak of the canonical model for such systems.
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−∞ in finite time, thus, traversing the whole space R̂. All three models,
the theta neuron, the QIF neuron, and the Active Rotator model are in
fact equivalent. Theta and QIF neuron are connected via the Weierstraß
substitution sin θ = 2x/(1 + x2), cos θ = (1 − x2)/(1 + x2). Rescaling
t ↦→ (1 − a)t and setting ϕ = θ + π/2 then yields the Active Rotator
from the theta neuron with ω = (1 + a)/(1 − a).

The right hand side of (2.2) for the classic Active Rotator contains Classic Active Rotators are
first order approximations
for class I excitable
elements.

only zeroth and first order Fourier modes. In the context of general
(higher-dimensional) class I excitable elements, it thus serves as a first
order Fourier series expansion of the vector field, restricted to the in-
volved invariant circle of the system’s SNIC, whereas the Fourier ex-
pansion of the actual vector field on that contour generically involves
infinitely many modes.4 We therefore generalize the notion of the Ac-
tive Rotator to account for these higher order modes in the dynamics
of a single excitable element. This leads to the following definition:

Definition 2.1 Consider the ODE ϕ̇ = f(ϕ, δ) with ϕ ∈ S1 and δ ∈ R
and assume that f : S1 ×R → R is smooth and that the following three
conditions are fulfilled:

1. For δ < 0, f possesses exactly two regular zeros ϕs and ϕu, i. e., Dϕf(ϕs, δ) denotes the
partial derivative of f with
respect to its first variable,
evaluated at (ϕs, δ).

f(ϕs, δ) = f(ϕu, δ) = 0 with Dϕf (ϕs, δ) < 0 and Dϕf (ϕu, δ) > 0.

2. For δ > 0, f possesses no zeros in ϕ.

3. At δ = 0, the system goes through a saddle-node bifurcation.

For δ < 0, we call the system an Active Rotator (AR).

Remarks 2.2

1. The function f can also be interpreted as 2π-periodic in ϕ ∈ R.

2. Dϕf (ϕs, δ) and Dϕf (ϕu, δ) always have opposite signs since f is,
in particular, continuously differentiable.

3. ϕs denotes the stable fixed point of the system while ϕu denotes
its unstable fixed point.

Since f is smooth and defined on S1 × R, we can expand it in terms
of a Fourier series in ϕ:

f(ϕ, δ) =
∞∑︂
n=0

an(δ) cosnϕ+ bn(δ) sinnϕ (2.3)

where the real parameters an and bn depend smoothly on δ. In what
follows, we always make the following assumption:

4 As a matter of fact and assuming that the invariant contour is in indeed a normally
attracting invariant manifold, see Chapter 3, this expansion does not only describe
the dynamics on the contour but also serves as a local model for the dynamics in
a neighborhood of the contour [HI12]. We will come back to this and in particular
discuss the concept of local models in Chapter 6.
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Assumption 2.3 The first four Fourier coefficients in (2.3) are fixed
to

a0 = ω, b0 = 0, a1 = 0, and b1 = −1

for some ω ∈ R.

Note that for any Fourier expansion (2.3), this can always be achieved
by an appropriate rescaling of time t and shift of angle ϕ as long as
a1 ̸= 0 or b1 ̸= 0:

If b1 = 0 and therefore a1 ̸= 0, we simply rescale t ↦→ t′ = a1t
and shift ϕ ↦→ ϕ′ = ϕ − π

2 so that in these new coordinates and with
cn = (an − ibn)/2 and c̄n = (an + ibn)/2, we haveFor every complex number

z, we denote its complex
conjugate as z̄. dϕ′

dt′ = 1
a1

dϕ
dt

= a0
a1

+ cos
(︃
ϕ′ + π

2

)︃
+

∞∑︂
n=2

cn
a1

ein(ϕ′+π
2 ) + c̄n

a1
e−in(ϕ′+π

2 )

= ω − sinϕ′ +
∞∑︂
n=2

c′
neinϕ′ + c̄′

ne−inϕ′

with

ω = a0
a1

and c′
n = cn

a1
ei
nπ
2 .

On the other hand, for b1 ̸= 0, we can rescale t ↦→ t′ = At and shift
ϕ ↦→ ϕ′ = ϕ+B with A = sign b1

√︂
a2

1 + b2
2 and B = π+ arctan a1

b1
suchsign x =

⎧⎪⎪⎨⎪⎪⎩
+1 if x > 0

−1 if x < 0

0 if x = 0 that, in these new coordinates,

dϕ′

dt′ = 1
A

dϕ
dt

= a0
A

+ a1
A

cos
(︁
ϕ′ −B

)︁
+ b1
A

sin
(︁
ϕ′ −B

)︁
+

+
∞∑︂
n=2

cn
A

ein(ϕ′−B) + c̄n
A

e−in(ϕ′−B)

= ω − sinϕ′ +
∞∑︂
n=2

c′
neinϕ′ + c̄′

ne−inϕ′

with

ω = a0
A

and c′
n = cn

A
e−inB

where we used the fact that

a sign b√
a2 + b2

cosϕ+ b sign b√
a2 + b2

cosϕ = sin
(︃
ϕ+ arctan a

b

)︃
.

We may thus always write

ϕ̇ = ω − sinϕ+ h(ϕ)
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with

h(ϕ) =
∞∑︂
n=2

an sinnϕ+ bn cosnϕ.

In the case of h(ϕ) = 0, we reobtain the classic definition of Shinomoto
and Kuramoto. We will later see how the choice of h determines the
stability of splay states and periodic two-cluster states for a specific
class of ensembles of Active Rotators.

2.2 coupled identical active rotators

While the dynamics of a single Active Rotator is rather simple, complex
dynamics can be observed for ensembles of Active Rotators. Since 1986,
dynamics for ensembles of Active Rotators were and still are subject
of a prolific field of research and have been studied in a wide variety
of scenarios, including Active Rotators with noise [Zak+03; Tes+07;
DGP17], in heterogeneous ensembles [Son+14; KF19], with nontrivial
network structure [Son+13; KSN16], or various types of coupling [TZ14;
ZT16; Bač+18] to name a few. In most of these cases, the individual
Active Rotators obey the Adler equation. Noteworthy, even a single
Active Rotator can exhibit complex dynamics, e. g., if one promotes the
parameter ω to an adaptive variable under the influence of Gaussian
white noise [Fra+20].

In this work, the focus lies on systems of N identical units j ∈ For clarity, it is beneficial
to distinguish between a
unit j and its state xj,
e. g., ϕj for the angular
model or (Vj ,wj) for more
realistic neuron models.

{1, . . . , N} where the angular velocity ϕ̇j of unit j is a function of
its “internal” or “on-site” dynamics f(ϕj) and its interaction with all
other units of the ensemble. We assume that

ϕ̇j = f(ϕj) +
N∑︂
k ̸=j

g(ϕk − ϕj) (2.4)

holds with smooth functions f and g. Here, g(ϕk − ϕj) determines the
influence of unit k on unit j. When we speak of identical units, we
mean that the functions f and g do not depend on the index j, e. g., by
site-dependent Fourier coefficients. Note that we assume here that the
coupling between units is (i) pairwise, (ii) all-to-all, and (iii) depends
solely on the mutual angular difference of two units. In the case of phase
oscillators, i. e., units that already oscillate on their own, assumption
(iii) follows naturally from (i) for the time-average approximation of
general pairwise coupling functions g̃(ϕk, ϕj) [SVM07; Kur84; PRK03].
Even though this averaging argument cannot be readily applied to en-
sembles of Active Rotators since it relies on the fact that each unit by
itself already features some periodic motion, we adopt assumption (iii)
within this thesis.

The phase space for systems of type (2.4) is the N -dimensional torus Phase space and state
space.

TN := S1 × · · · × S1⏞ ⏟⏟ ⏞
N times

.
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However, it is sometimes convenient to geometrically interpret (2.4)
as describing an ensemble of units on the same circle. Whenever we
employ this perspective, we will refer to S1 as the state space of (2.4)
in contrast to the phase space TN .

The specific choice for g determines how unit k influences the dy-
namics of unit j. If one assumes that the influence of j on k is of the
same magnitude but opposite direction (in loose resemblance to New-
ton’s third law of motion), then g must be odd, i. e., g(−θ) = −g(θ)
must hold for all θ ∈ S1. In this case, the Fourier expansion of g can be
written entirely in terms of sinusoidal modes θ ↦→ sinmθ with m ∈ N
so that the coupling in (2.4) vanishes for ϕj = ϕk. A common choice is

g : θ ↦→ κ

N
sin(θ).

This type of coupling in ensembles of ARs was first investigated by
Shinomoto and Kuramoto themselves. The coefficient κ determines
whether the coupling of ϕj to ϕk is attractive or repulsive. The factor
1/N serves as a convenient scaling factor.

Informally speaking, by attractive and repulsive coupling, we meanAttractive and repulsive
coupling. the following: If two units j and k are close to each other, regardless

of their positions ϕj , ϕk ∈ S1, i. e., if their mutual distance5 djk :=
min(|ϕj − ϕk| mod 2π, 2π − |ϕj − ϕk| mod 2π) is small, then attractive
coupling tends to decrease this distance while repulsive coupling in-
creases it. Note, however, that this does not mean that, e. g., for re-
pulsively coupled units, the distance djk(t) necessarily grows over time.
In fact, djk(t) generally depends on the nonlinear on-site dynamics of
each unit. To give a more concise definition of the two types of cou-
pling, we speak of attractive coupling if g′(0) > 0 and of repulsive
coupling if g′(0) < 0. Indeed, within this notion of attractive- and
repulsiveness, the effect from coupling between two units, close by, co-
incides with the informal notion above. We note that in the literature,
attractive and repulsive coupling often serve as surrogates for more com-
plex forms of coupling like excitatory and inhibitory coupling between
neurons [Tsi+05; GJC11; TR19; LB20]. While this correspondence is
not necessarily accurate because, e. g., sufficiently strong repulsive cou-
pling between ARs yields oscillatory behavior of the otherwise quies-
cent “neurons” [ZT16] while actual inhibitory coupling leads to the
suppression of firing for one neuron if another one fires, it may serve
as a rough approximation for actual interactions between neurons. But
even (GABA-mediated) repulsive coupling has recently been observed
between circadian clock neurons in the mammalian suprachiasmatic
nucleus [Myu+15]. Equally, systems that feature both attractive and
repulsive coupling have been used in modeling sociological [MPT10],
ecological [Gir+16], and physical [DS20] phenomena, see also [MCG20].

A word is at hand, regarding some important aspects of sinusoidalSinusoidal coupling.
coupling. As mentioned above, the interaction between two neurons usu-
ally occurs via spike trains, i. e., one neuron produces a single spike or a

5 This choice for djk means that, if we picture ϕj and ϕk as being located on the unit
circle, the distance between them is defined by the length of the shorter of the two
arcs that connect them.
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series of spikes, which can excite or inhibit the same behavior in another
neuron. Most often, neurons do not directly “sense” their neighbors’
electric fields but instead, the transmission of spike trains occurs via
chemical synapses [DA05] in which case one speaks of the presynaptic
neuron for the one that fires spikes and the postsynaptic neuron, which
receives the spikes through the synaptic connection. Hence, the inter-
action between neurons is often modeled via so-called pulse-coupling,
where spikes from one neuron can act as instantaneous perturbations
for the state of the other. This can be modeled by, e. g., a series of
Dirac delta functions in time, neglecting the synaptic filtering [MS90;
HMM95; Izh99; GE02] or via continuous pulse-like functions [Lai14;
Lai15; Lai18]. The yet simpler sinusoidal coupling as in the Shinomoto-
Kuramoto model loosely serves as a first-order Fourier approximation
for such more complicated couplings by neglecting second- and higher-
order terms in the Fourier expansion of g. We note that in the context
of synaptic coupling, this approximation is flawed because synaptic
coupling between neurons is directed whereas for sinusoidal coupling,
both neurons affect each other. However, other types of electrical con-
nections between neurons and various other types of cells exist, e. g.,
in the form of gap junctions, for which the coupling between two cells
is symmetric [DA05; DS93]. For this type of coupling, an approxima-
tion in terms of sinusoidal coupling may be to some degree appropriate.
Moreover, pure sinusoidal coupling was further used to, e. g., model
locomotion in isolated spinal cords of lampreys [CHR82] and plays a
role in laser systems [JPP08] and radio engineering [Hak08]. It also
emerges naturally for arrays of so-called Josephson junctions with par-
allel resistor-capacitor-inductor load under the condition of negligible
capacitor load for each junction where a time-average approximation
yields the Kuramoto phase model [WS95].

An important observation that can be readily made for systems of No overtaking allowed.
type (2.4) is that any two units j and k cannot overtake each other
in the state space since otherwise they must coincide at some time t′
where they couple in the same way to every other unit of the ensemble.
This implies that ϕ̇j(t′) = ϕ̇k(t′) and hence ϕj(t) = ϕk(t) for all t ∈ R
in contradiction to the assumption that they were separated for some
t < t′. We call a set A ⊆ {1, . . . , N} of units a cluster if and only if Clusters stay clusters.
ϕj(t) = ϕk(t) for all j, k ∈ A. The above consideration then implies that
clusters stay clusters for all time, in other words, they are preserved
under the flow of (2.4).

If the ensemble splits in M mutually distinct clusters A1, . . . , AM , M-cluster states.
i. e., if

⋃︁
i=1,...,M Ai = {1, . . . , N} and Ai ∩ Aj = ∅ for any two i ̸= j ∈

{1, . . . ,M}, we call (ϕ1, . . . , ϕN ) an M -cluster state.
We close this section with some remarks on notation.

Convention 2.4

1. A tuple (x1, . . . , xn) of n elements xj is denoted by a boldface
symbol

x := (x1, . . . , xn).



22 coupled active rotators

Vector-valued functions are equally denoted by boldfaced symbols.
Further, if a function F acts element-wise on x, i. e., if F : xj ↦→
F (xj) for all j = 1, . . . , n, we write

F (x) := (F (x1), . . . , F (xn))

for its diagonal action and will explicitly say so.

2. For any function F : x ↦→ F (x), we denote its partial derivative
with respect to the variable xj as DxjF and the total derivative
of F at x = (x1, . . . , xn) as DF (x) or DxF .

2.3 the models

In thesis, we study the dynamics of class I excitable elements with repul-
sive coupling. For the most part, we focus on systems of N (generalized)
Active Rotators under repulsive, sinusoidal, all-to-all, and pairwise cou-
pling. The first model of interest is the classic Shinomoto-Kuramoto
model

ϕ̇j = ω − sinϕj + κ

N

N∑︂
k=1

sin(ϕk − ϕj) (2.5)

itself. As already mentioned above, single units are Active Rotators
exactly if |ω| < 1 and repulsiveness of the coupling translates to the
condition κ < 0. In what follows, we refer to (2.5) as the “original” or
“unperturbed” AR-model. This model, which plays the prominent role
in Chapter 6, was studied in the same setup in [ZT16] which was the
starting point and main motivation for our investigations. We investi-
gate in Chapter 6 the implications from the highly degenerate dynamics
of this model which constitutes a rather nongeneric behavior (in the
sense that it relies on the existence of some hidden symmetry that
causes the degeneracy). Since the underlying symmetry is in general
not present for general class I excitable elements, we consider a second
model

ϕ̇j = ω − sinϕj + ϵh(ϕj) + κ

N

N∑︂
k=1

sin(ϕk − ϕj)

h(ϕ) =
∞∑︂
n=2

an sinnϕ+ bn cosnϕ
(2.6)

of general Active Rotators with repulsive sinusoidal coupling, where
ϵh(ϕj) accounts for the higher Fourier mode contributions to the on-site
dynamics in the general case. We refer to (2.6) as the “generalized” or
“perturbed” AR-model. The parameter ϵ serves as a control parameter
for the higher order terms. The two models coincide for ϵ = 0 while for
small nonzero ϵ, we can treat ϵh(ϕj) as a perturbation to the original
on-site dynamics.

We stress that the Active Rotator model, both in its classic andIs the Active Rotator
model an adequate neuron

model?
its generalized form, is only of limited use for the description of any



2.3 the models 23

kind of actual neurophysiological system, nor was it intended to be by
Shinomoto and Kuramoto. (Although they do not give a physical moti-
vation in [SK86b], it seems that their work was inspired by the classic
Heisenberg model in a planar setup with all-to-all distance-independent
coupling.) The reason for this lies mainly in the sinusoidal coupling
term with its limitations for the description of coupled neurons, as we
discussed above. It is rather a toy model that can give insight into
possible ensemble dynamics of general coupled excitable elements just
as the Kuramoto model can give insights into possible dynamics for
ensembles of self-sustained oscillatory units. The popularity for both
models arguably comes from the fact that they are of especially simple
form and are mathematically tractable rather than from being realistic
descriptions of real world phenomena.

Finally, we note that the dynamics of (2.5) and (2.6) is of gradient No small-scale periodic
solutions allowed.type because they belong to the class of models of the form

ϕ̇j = f(ϕj) + 1
N

N∑︂
k=1

g(ϕk − ϕj)

with odd coupling function

g(θ) =
∞∑︂
m=0

bm sinmθ.

For systems of this type, the equations of motion read ϕ̇j = −Dϕj
V (ϕ)

with potential

V (ϕ) := −
∑︂
k

∫︂
f(ϕk) dϕk − 1

2N
∑︂
k,l

∞∑︂
m=0

bm
m

cosm(ϕl − ϕk).

Being of gradient type immediately rules out the existence of small-
scale periodic solutions 6, i. e., periodic solutions for which the angles
ϕj do not traverse the full state space S1 during a period [GH13]. A
direct consequence from the absence of small-scale periodic solutions is
that any kind of periodic motion cannot emerge in local bifurcations,
say, in a Hopf bifurcation. For κ = 0, i. e., when (2.5) and (2.6) be-
come decoupled, there exist no periodic solutions whatsoever and it
is certainly not obvious that periodic solutions emerge once we intro-
duce coupling. If such a solution exists at all for some κ ̸= 0, it must
emerge in a global bifurcation, e. g., a SNICs or a homo- or heteroclinic
bifurcation, involving (possibly multiple) saddles.

In the next chapter, we introduce the mathematical concepts and
tools that will be used in Part II to investigate the classic and the
generalized AR-model.

6 Compare for example the swinging of a pendulum, which constitutes a “small-scale”
libration, with one that rotates around its pivot, which constitutes a “large-scale”
rotation [Str18].
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abstract

In this chapter, we give a brief overview over the four most important
mathematical concepts and methods, that our work relies on. We start
by discussing Floquet theory in Section 3.1 where in particular, we de-
rive a criterion on asymptotic stability of clustered periodic orbits with
respect to perturbations that split one or several clusters. We use this
concept in Chapter 5 to determine the stability of periodic two-cluster
states. In Section 3.2, we discuss the concept of Normally Attracting
Invariant Manifolds (NAIMs) for vector fields which generalizes the no-
tions of exponentially stable fixed points and limit cycles. This is used
in Chapter 6 to show that for the classic Active Rotator model (2.5),
there exists a family of periodic orbits whose union is normally attract-
ing and naturally invariant. One of the main insights from the theory
of NAIMs is that such manifolds are structurally stable, i. e., they per-
sist for sufficiently small perturbations to the vector field, which we use
in Chapter 7 to investigate the generalized AR-model. In Section 3.3,
we discuss the notion of equivariance of ODEs under the action of fi-
nite groups. The main insight from this concept is the robustness of
spatio-temporal symmetries for periodic orbits under perturbations to
the vector field that leave it equivariant under a given symmetry group.
We use this in Chapter 6 and Chapter 7 to show that one of the peri-
odic solutions of (2.5) and (2.6) is a splay state. Finally, in Section 3.4,
we state a theorem from averaging theory for periodic orbits. This the-
orem is used in Chapter 7 to understand the asymptotic dynamics of
the generalized model (2.6) by investigating the dynamics on the NAIM
of the classic model (2.5).

3.1 fixed points, floquet theory, and poincaré maps

Within the theory of dynamical systems, invariant subsets play an im-
portant role. This is due to the fact that the dynamics on these subsets
are often simpler and may allow for a lower dimensional description
than in the full phase space. Further, under certain conditions, such
a subset can be used to describe the asymptotic dynamics of the sys-
tem, i. e., for the cases t → ±∞. In what follows, we informally discuss
the most important concepts for our work. For a rigorous and detailed
overview, we refer to the literature, e. g., [KH97; Wig03; GH13; Kuz13].

25
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Consider a dynamical system, described by the ODE ẋ = f(x) where
f : Rn → Rn is a sufficiently smooth function. Arguably the simplestFor Rn, we may

interchangeably call f a
function or a vector field.

For the general case of
ODEs on manifolds, one

has to be more careful.

invariant subsets of such a system are fixed points and periodic orbits.
A fixed point xf is defined by the condition f(xf) = 0 and describes
a steady state of the system, i. e., a solution x(t) = xf for all t ∈ R.
Concerning small deviations away from this steady state in the initial
condition, x(0) = xf + δx for some small δx, the Hartman-Grobman
theorem [Gro59; Har60] states that the dynamics of x(t) can, under
certain conditions, be sufficiently approximated around xf by the lin-
earized equation δẋ = Df(xf) · δx where

Df
(︂
xf
)︂

:=
(︂
Dxjfi

(︂
xf
)︂)︂

i,j=1,...,n

is the derivative of f at xf and fi denotes the ith component of f .
In particular, if all eigenvalues of Df(xf) have strictly negative real
parts, δx(t) → 0 and xf is called exponentially stable. If all eigenvalues
have nonzero real parts, xf is called hyperbolic. The key observation
for hyperbolic fixed points is that they are robust under small changes
in f , meaning that they persist if one perturbs f ↦→ f + h where
h : Rn → Rn denotes a C1-small function [Kuz13].

Determining the asymptotic stability of a T -periodic solution xp(t)
with orbit C for the system ẋ = f(x), with f : Rn → Rn being suf-
ficiently smooth, is the subject of Floquet theory [Chi99; GH13]. Its
core idea is very similar to the linearization of f around a fixed point.
Again, one considers a small deviation δx from the periodic solution
so that one replaces xp(t) ↦→ xp(t) + δx(t) which yields to linear order
the nonautonomous equation

δẋ = Df (xp(t)) · δx (3.1)

for δx with a now T -periodic matrix Df (xp(t)). For periodic nonau-
tonomous linear ODEs like (3.1), there exists a fundamental set of solu-
tions {yj(t)}j=1,...,n, i. e., a set of n linearly independent solutions yj(t)
of (3.1), with initial conditions yj(0) = ej where ej ∈ Rn is the jth
canonical basis vector of the Rn. The solutions yj form a comoving
frame of reference along the orbit of xp(t) and thus serve as a time
dependent basis for any perturbation away from xp(t). Arranging the
yj(t) in a matrix

Y (t) :=
[︂
y1(t), . . . ,yn(t)

]︂
,

Y (t) and, by T -periodicity, Y (t+T ) also solve (3.1) so that by unique-
ness of solutions for ODEs and linearity of (3.1), Y (t+ T ) = MC · Y (t)
holds for some t-independent matrix

MC := Y (t+ T ) · Y −1(t),

called the monodromy matrix of the periodic solution. Assuming that
MC is diagonalizable,1 any initial perturbation δx(t0) can uniquely be

1 Here, our argument is not as general as possible since we assume MC to be diago-
nalizable. For a general argument, see [Chi99].
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expressed as a linear combination δx(t0) =
∑︁
j cj(t0)vj of the eigen-

vectors vj of MC with corresponding eigenvalues µj , called Floquet
multipliers. The reason for this is the following: After time T , we have

δx(t0 + T ) = MC · δx(t0)

=
n∑︂
j=1

cj(t0)MC · vj

=
n∑︂
j=1

cj(t0)µjvj

=
n∑︂
j=1

c(t0 + T )vj

and thus, each coordinate cj(t0) in direction of vj(t0) is multiplied by
µj after one period T which determines whether this coordinate grows
or increases over the course of a period. One of the Floquet multipliers,
say µ1, corresponds to deviations that lie tangent to the periodic orbit
such that δx(t0) = c(t0)v1 is parallel to ẋp(t0). Such a deviation, to
linear order, stays some finite distance ahead or behind xp(t) along C.
In particular, one finds c(t0 + T )v1 = c(t0)v1 and thus µ1 = 1 because
the so-perturbed state, following the same periodic orbit, is T -periodic,
as well. The multiplier µ1 is called the trivial Floquet multiplier. One
sees that if δx(t0) can be expressed in terms of the vj with j = 2, . . . , n,
|δx(t0) +mT )| converges to zero exponentially fast for m → ∞ if and
only if all

⃓⃓
µj
⃓⃓
< 1 for j = 2, . . . , n. This leads to the following definition:

Definition 3.1 A periodic orbit C of the system ẋ = f(x) is exponen-
tially stable if and only if all of its nontrivial Floquet multipliers µj,
j = 2, . . . , n fulfill

⃓⃓
µj
⃓⃓
< 1.

If
⃓⃓
µj
⃓⃓
< 1, we call vj an exponentially stable direction, if

⃓⃓
µj
⃓⃓
> 1,

we call it exponentially unstable. If any nontrivial Floquet multiplier
µj with 2 ≤ j ≤ n has absolute value

⃓⃓
µj
⃓⃓

= 1, we call vj a neutral
direction of xp(t) and the orbit C nonhyperbolic. Otherwise, we call C
hyperbolic.

In practice, MC can often only be determined numerically for a given
system because of the time-dependence of (3.1). This can be done by
implementing a so-called Poincaré map. For this, one starts by defining
an (n − 1)-dimensional hypersurface Σ, called Poincaré section, that
lies transversal to C. Geometrically, this means that at, say t = 0,
xp(0) =: y0 ∈ Σ while ẋp(0) does not lie tangent to Σ.2 There then
exists an open neighborhood U ⊂ Σ of y0, such that for any point
y ∈ U , used as an initial state for ẋ = f(x), the trajectory x(t) with
x(0) = y will return to U at t ≈ T . Hence, this procedure defines a so-
called first return map or Poincaré map P : U → U with a fixed point
at y0 = xp(0) = xp(T ). In general, finding periodic orbits of ẋ = f(x)

2 We denote points in the (n−1)-dimensional space Σ with the letter y to distinguish
them from points x in the n-dimensional phase space Rn. In a slight abuse of notation
we consider points in Σ also as points in Rn.



28 manifolds, symmetries, and averaging

corresponds to finding fixed points of P for a suitable choice of Σ.
Stability of the orbit can be determined from the stability of P. In fact,
the eigenvalues of the derivative DP

(︁
y0)︁ are exactly the n−1 nontrivial

Floquet multipliers of the monodromy matrix as they both describe
the linearized dynamics, transversal to xp(t) over one period [Wig03].
However, just as MC , the map P, as well as its derivative DP(y), can
usually only be computed numerically. How we implemented this for
the case of angular variables ϕ ∈ TN , is content of the next section.

3.1.1 Numerical Computation of Floquet Multipliers

A simple choice for the Poincaré section Σ of a system of angular vari-
ables ϕ = (ϕ1, . . . , ϕN ) is to define Σ :=

{︂
ϕ ∈ TN ; ϕ1 = c

}︂
with a

suitable c ∈ [−π,+π) and then integrate the system ϕ̇ = f(ϕ) with
initial condition ϕ(0) ∈ Σ until its trajectory crosses Σ a second time.
One has to make sure that this crossing happens only after one full
rotation of ϕ1 around S1. This can be achieved by assuring that ϕ̇1 at
the second intersection has the same sign as at t = 0. For our purposes,
c = −2 was a suitable choice for the systems (2.5) and (2.6).

To approximate the entry (DP(ϕ0))ij = Dϕj
Pi (ϕ0) for the derivativeHere, we have

i, j ∈ {2, . . . , N} since
ϕ1 = c is always fixed.

of the Poincaré map P at the point ϕ0 = ϕ(0) ∈ Σ for the orbit of ϕ(t),
we may consider two initial conditions ϕ± ∈ Σ where ϕ±

k = ϕ0
k except

for the jth entry ϕ±
j = ϕ0

j ± δϕ for some small δϕ > 0. Then

(︂
DP(ϕ0)

)︂
ij

= Pi(ϕ+) − Pi(ϕ−)
2 δϕ + O(δϕ3) (3.2)

can be approximated up to cubic order in δϕ. Floquet multipliers can
then be determined by any matrix-diagonalization algorithm. We used
this implementation to determine the Floquet multipliers for splay
states where this method works well.3 For periodic two-cluster states
however, this numerical procedure can fail if the system is close in pa-
rameter space to a limit cycle creating bifurcation, e. g., a double-SNIC,
discussed in Chapter 5. The reason for this is the following: Assume
that unit j belongs to cluster A with coordinate ϕA. Integrating the
perturbed states ϕ±(t) until their next intersection with Σ, the angles
ϕ±
j (t) = ϕj(t) ± δϕ(t) can come so close to rest of A for some time t′,

that they cannot be distinguished from ϕA within floating point accu-
racy and thus numerical integration results in ϕ±

j (t) = ϕ±
A(t) for all

t > t′ (since the dynamics of the angles now coincide within finite nu-
merical accuracy). Hence, P(ϕ±) yields a two-cluster state whereas in
the exact dynamics, ϕ±

j (T ) would be distinct from ϕA(T ). This distorts
the numerator in (3.2) considerably with the overall effect that we find
a numerically estimated value of 0 for one of the Floquet multipliers.
Of course, this contradicts the fact that P must be invertible at ϕ0.

To solve this purely computational problem, we make use of the
fact that for clustered periodic orbits of a system of identical angular

3 A similar implementation was used for the case of coupled Morris-Lecar neurons,
discussed in Chapter 8.
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variables, we may directly calculate the Floquet multipliers in a semi-
analytical fashion that avoids the problem, described above. This is
what we discuss in the next section.

3.1.2 Splitting Floquet Multipliers for Periodic M -Cluster States

Deriving analytic expressions for Floquet multipliers is in general not
possible. The reason for this is that in order to derive such expressions,
one has to solve the ODE ẋ = f(x) of the dynamical system, first. After
that, the nonautonomous ODE for the monodromy matrix would have
to be solved, which constitutes the next hurdle to overcome. However,
if the system is sufficiently well-behaved, one may compute the multi-
pliers in a semi-analytic fashion. This works as follows: (i) Implement
a Poincaré map P for the system with a suitable numerical integration
scheme for ODEs. (We used a fourth-order Runge-Kutta scheme.) (ii)
Numerically determine the fixed points of P. (We used the Newton-
Raphson algorithm.) (iii) Sample the trajectory of the found periodic
orbit in form of a time series (k∆t,ϕ(k∆t)) where ∆t denotes the time
step between two samples and k = 1, . . . , T/∆t. These three steps can
usually be achieved without any computational problems. Finally, in
step (iv), one integrates certain quantities over the time series, which de-
pend on the eigenvalues of the derivative Df of the vector field f along
the orbit and determines the sought Floquet multipliers from them.
One can then compute the Floquet multipliers to arbitrary accuracy
by adjusting the time step ∆t for the numerical sampling of the periodic
orbit. In what follows, we derive how to compute Floquet multipliers
with respect to what we call splitting and non-splitting perturbations Splitting and non-splitting

perturbations.in the case of clustered periodic states for ensembles of identical angu-
lar variables, which are coupled pairwise, symmetrically, all-to-all, and
only via their mutual angular differences. Consequently, we refer to the
corresponding multipliers as splitting and non-splitting multipliers. The
exact meaning behind the terms splitting and non-splitting is discussed
in the remarks, thereafter.

Assertion 3.2 For an ensemble of N identical angular variables ϕ =
(ϕ1, . . . , ϕN ) ∈ TN , obeying the equation ϕ̇ = F (ϕ) with

ϕ̇j = f(ϕj) + κ

N

N∑︂
l=1

g(ϕl − ϕj) =: Fj(ϕ) (3.3)

and given a tuple of positive integers (n0 < n1 < n2 < · · · < nM ) where
n0 = 0 and nM = N , let ϕp(t) be a T -periodic M -cluster solution, such
that

ϕp
nk−1+1(t) = · · · = ϕp

nk
(t) =: ϕAk(t)

for k ∈ {1, . . . ,M} and with ϕAk ̸= ϕAk′ if k ̸= k′. We say that the units
nk−1 + 1, . . . , nk belong to cluster Ak which is of size mk := nk − nk−1.
Then, the system has
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• M non-splitting Floquet multipliers µk with k ∈ {1, . . . ,M} of
multiplicity 1, and

• for each mk > 1 an Ak-splitting Floquet multiplier µAk of multi-
plicity mk − 1.

The multipliers are given by

µα = exp
(︄∫︂ T

0
λα(t) dt

)︄

where λα(t) is the corresponding eigenvalue4 of the derivative DF (ϕp(t))
of F evaluated at the point ϕp(t).

Before we proof the assertion, we make the following remarks to
explain what we mean when we speak of splitting and non-splitting
perturbations:

Remarks 3.3

1. A non-splitting perturbation δϕ(t) of a periodic M -cluster state
ϕp(t) is a perturbation that leaves all clusters whole but shifts the
position of at least one of them. Hence, if the units i and j belong
to cluster Ak, we have δϕi(t) = δϕj(t), i. e., they are shifted by
the same amount in the same direction.

2. An Ak-splitting perturbation δϕ(t) of a periodic M -cluster state
ϕp(t) is a perturbation, for which δϕj(t) = 0 if the unit j does not
belong to cluster Ak. Additionally, ∑︁N

j=1 δϕj(t) = 0 holds. This
means, that an Ak-splitting perturbations splits the cluster Ak into
smaller clusters or single units while the positions of all other
clusters stay the same. The condition ∑︁N

j=1 δϕj(t) = 0 intuitively
means that the perturbation does not change the “center-of-mass”
of Ak.

3. The splitting Floquet multipliers µAk can have the same value but
we consider them anyway as distinct multipliers of multiplicity
mk − 1, each.

4. Any perturbation δϕ can be decomposed into splitting and non-
splitting components: First, shift every cluster according to the
non-splitting components, then split each cluster according to the
splitting components. In particular, stability of ϕp(t) with respect
to splitting and non-splitting perturbations determines its stability
against any perturbation.

5. For periodic two-cluster states, we have M = 2 and the two clus-
ters A1 = A and A2 = B. Let each cluster consist of mA > 1 and
mB > 1 units. We then have two non-splitting Floquet multipliers
µ1 and µ2 of multiplicity 1, each, and two splitting Floquet multi-
pliers µA and µB of multiplicity mA− 1 and mB − 1, respectively.

4 I. e., of the same splitting or non-splitting type.
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Next, we proof the assertion.

Proof. Consider equation (3.3) and assume that a T -periodic M -cluster
state ϕp(t) exists. To determine its asymptotic stability one has to first
linearize the system (3.3) around ϕp(t) which yields

δϕ̇ = DF (ϕp(t)) · δϕ (3.4)

where the derivative DF (ϕp(t)) is evaluated along the periodic orbit
and δϕ(t) = ϕ(t) − ϕp(t) is the deviation of a generic perturbed solu-
tion ϕ(t) from ϕp(t) with ∥δϕ(0)∥ ≪ 1. Solving this nonautonomous By ∥·∥ we denote the

Euclidean norm in RN .differential equation over a period T determines the monodromy ma-
trix Mϕp(t). For any M -cluster state ϕ ∈ TN , the derivative DF (ϕ) at
ϕ forms a block matrix For the rest of the proof,

the indices
i, j, k ∈ {1, . . . ,M} are
used to index clusters,
while indices m and n
index matrix entries.

DF (ϕ) =

⎛⎜⎜⎝
B11 . . . B1M

... . . . ...
BM1 . . . BMM

⎞⎟⎟⎠
where the diagonal blocks Bii are mi-by-mi matrices of the form

Bii
mn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f ′(ϕAi) − mi − 1

N
κg′(0) −

M∑︂
k ̸=i

mk

N
κg′(ϕAk − ϕAi) if m = n

1
N
κg′(0) if m ̸= n

and the off-diagonal blocks Bij with i ̸= j are mi-by-mj matrices with
entries

Bij
mn = 1

N
κg′(ϕAj − ϕAi).

DF (ϕ) is fully diagonalizable: It has M eigenvalues λk of multiplicity 1
and for each j with mj > 1 an eigenvalue λAj with multiplicity mj − 1
[Oku93]. The eigenvectors vk, corresponding to λk are of the form

vk = (vk1 , . . . , vk1⏞ ⏟⏟ ⏞
m1 times

, . . . , vkj , . . . , v
k
j⏞ ⏟⏟ ⏞

mj times

, . . . , vkM , . . . , v
k
M⏞ ⏟⏟ ⏞

mM times

)T (3.5)

where the vkm are mutually distinct. One can see this by inserting vk in
the eigenvalue equation

(︂
DF (ϕ) − λk idN

)︂
·vk = 0, where idN denotes

the N -by-N identity matrix and λk is not necessarily explicitly known.
The result is a reduced system of M homogeneous linear equations
in the λk. But det

(︂
DF (ϕ) − λk idN

)︂
= 0 implies that the coefficient

matrix of this reduced system is also singular (its corresponding eigen-
values are exactly the λk) and thus it possesses nontrivial solutions in
the M entries vkm.

The eigenvalues λAk are of the form5

λAk = f ′(ϕAk) − κ
M∑︂
j=1

mj

N
g′(ϕAj − ϕAk)

5 Only the λAk can be written explicitly, for the λk, there exists in general no closed
form.
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and a basis for their respective eigenspaces is given by
{︂

vAkl ; 2 ≤ l ≤ mk

}︂
(l indexes the mk − 1 basis vectors and n below indexes the N entries
of each basis vector) with entries

(︂
vAkl

)︂
n

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+1 if n = nk−1 + 1

−1 if n = nk−1 + l

0 else

(3.6)

as one easily checks. In other words, the basis vectors reflect the situa-
tion, where the first unit of cluster Ak (with index j = nk−1+1) together
with another unit of the same cluster (with index j = nk−1 + l) are dis-
placed in opposite directions from the rest of cluster Ak. Hence, we end
up with M +

∑︁
k(mk − 1) =

∑︁M
k (nk −nk−1) = N linearly independent

vectors which then form a basis of the N -dimensional tangential space
RN at ϕ so that DF (ϕ) is indeed diagonalizable. Therefore, the lin-
earized system (3.4) yields, in the basis of eigenvectors of DF (ϕp(t)),
a set of N decoupled linear homogeneous nonautonomous differential
equations of the form

δẋk = λk(t) δxk (3.7a)
δẋAk = λAk(t) δxAk (3.7b)

where λα(t) := λα(ϕp(t)) denotes for every α ∈ {1, . . . ,M,A1, . . . , AM}
the respective eigenvalue of DF (ϕp(t)). We can readily write down the
solutions for (3.7) at t = T as

δxα(T ) = δxα(0) exp
(︄∫︂ T

0
λα(t) dt

)︄
.

The initial condition for (3.7) specifies the perturbation type for which,
from the form of the eigenvectors vk and vAk , we can distinguish two
different scenarios: (i) A perturbation that shifts the positions of the
clusters {Ak} tangentially to the eigenvector vk at ϕp(0) is described
by (3.7a). These perturbations are non-splitting because they leave the
clusters whole at t = 0 as can be read from (3.5). Since all units are
identical, the clusters stay intact for all t which justifies the name. (ii) A
perturbation that splits cluster Ak while leaving the “centers-of-mass”
1
N

∑︁
i∈Aj ϕi for each Aj unchanged is described by (3.7b). Any such

perturbation lies tangential to some linear combination of the vAkl at
ϕp(0) which thus holds true for all t. This, together with the form (3.6)
of the vAkl , justifies the name splitting perturbation.

There exists a direct connection between the eigenvalues of DF (ϕp(t))
and the Floquet multipliers of ϕp(t) because the solutions of (3.7) yield
a system of fundamental solutions of (3.4). Constructing the matrix

Φ(t) :=
[︂
ϕ1(t), . . . ,ϕM (t),ϕA1(t), . . . ,ϕA1(t)⏞ ⏟⏟ ⏞

m1−1 columns

, . . . ,ϕAM (t), . . . ,ϕAM (t)⏞ ⏟⏟ ⏞
mM−1 columns

]︂
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from this system and diagonalizing with help of the orthogonal basis,
spanned by the vk and vAk , the monodromy matrix Mϕp(t) is given by

Mϕp(t) = Φ(t+ T ) · Φ−1(t)

= diag
(︂
µ1, . . . , µM , µA1 , . . . , µA1⏞ ⏟⏟ ⏞

m1−1 entries

, . . . , µAM , . . . , µAM⏞ ⏟⏟ ⏞
mM−1 entries

)︂

with the Floquet multipliers

µk := δxk(T )
δxk(0) = exp

(︄∫︂ T

0
λk(t) dt

)︄

µAk := δxAk(T )
δxAk(0) = exp

(︄∫︂ T

0
λA(t) dt

)︄
.

Multiplicities of the Floquet multipliers are inherited from the respec-
tive multiplicities of the λα. This completes the proof.

In Chapter 5, we will be particularly interested in the splitting sta-
bility of periodic two-cluster states. For this, we state the following
corollary as a stability criterion for these states:

Corollary 3.4 For a given T -periodic two-cluster state ϕp(t) of the
system (3.3), let p = mA/N and (1−p) = mB/N denote the proportions
of units in cluster A and B, respectively. Then, the Floquet multipliers
for splitting perturbations of both clusters are given by

µA = exp
(︄∫︂ T

0
λA(t) dt

)︄

µB = exp
(︄∫︂ T

0
λB(t) dt

)︄ (3.8)

with

λA(t) = f ′(ϕp
A) − κ p g′(0) − κ(1 − p) g′(ϕp

B − ϕp
A)

λB(t) = f ′(ϕp
B) − κ(1 − p) g′(0) − κ p g′(ϕp

A − ϕp
B),

evaluated along the periodic orbit of (ϕp
A(t), . . . , ϕp

A(t)⏞ ⏟⏟ ⏞
mA times

, ϕp
B(t), . . . , ϕp

B(t)⏞ ⏟⏟ ⏞
mB times

)T .

With this, we end our discussion of stability for periodic orbits. Next
we discuss the notion of normally attracting invariant manifolds, which
are generalizations of exponentially stable fixed points and periodic
orbits.

3.2 normally attracting invariant manifolds

Hyperbolic fixed points and exponentially (un)stable periodic orbits
for systems of the type ẋ = f(x) share one remarkable property: they
are persistent under small perturbations of the vector field f [Chi99;
Kuz13]. However, the involved calculations and arguments to show
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this are relatively simple due to the simple geometry of points and
closed curves and cannot easily be generalized to higher-dimensional
manifolds. If one is interested in higher-dimensional invariant sets and
their stability and persistence, the considerations become much more in-
volved. A natural generalization of hyperbolic fixed points and periodic
orbits is that of the Normally Hyperbolic Invariant Manifold (NHIM),
introduced by Fenichel in 1971 [FM71; Fen74; Fen77]. In this context,
hyperbolic fixed points and periodic orbits are examples for zero- and
one-dimensional NHIMs. In particular, Fenichel showed that compact
NHIMs are generally persistent under small perturbations of the vector
field f . The converse is also true, as was shown by Mañé in [Mañ78]:
Persistent invariant manifolds must be normally hyperbolic.

This section is structured as follows: First, we discuss the main con-
cepts of the theory of normally hyperbolic invariant manifolds, follow-
ing mainly [Wig94; HPS77; Eld13]. Hereby, we focus on the special case
of Normally Attracting Invariant Manifolds (NAIMs) which are not just
hyperbolic but also exponentially stable and therefore serve as a gen-
eralization of stable fixed points and limit cycles. For brevity, we only
give an informal definition for manifolds and their tangent and normal
bundles. For a rigorous definition, we refer to [HPS77].

For our purposes, it is sufficient to consider manifolds as subsets of
some Rn. Informally speaking, an m-dimensional Ck-submanifold ofWith Ck, we denote the

set of k-times continuously
differentiable functions.

the Rn is then a subset M ⊂ Rn that “looks” locally around any point
x ∈ M like the Rm where the map between the neighborhood of x
and Rm is a Ck-diffeomorphism. For each point x ∈ M, one can define
the tangent space TxM as the set of all vectors v ∈ TxRn ∼= Rn with
basis point at x that lie tangent to M. Subsequently, one can define
for every x ∈ M a normal space Nx as the span of a set of vectors
v1, . . . ,vk ∈ TxRn which do not lie tangent to M at x, i. e., vj /∈ TxM
for all j = 1, . . . , k.6 Following the notation in [Eld13], the tangent
bundle TM and normal bundle N are then defined as

TM := {(x,v) ∈ M × Rn ; v ∈ TxM}
N := {(x,v) ∈ M × Rn ; v ∈ Nx} .

With this, we are ready to give a definition for normally attracting
invariant submanifolds. Recall that the flow Φ of the ODE ẋ = f(x)
maps every pair (x0, t) to the solution7 Φ(x0, t) := x(t) of the ODE
with initial condition x(0) = x0.

Definition 3.5 (Normally attracting invariant manifold) Let k ≥ 1
and ẋ = f(x) with x ∈ Rn and f ∈ Ck be a dynamical system with
flow Φ : Rn × R → Rn. A given Ck-submanifold M ⊂ Rn is then

6 The choice of name for this space is slightly confusing since usually, the normal space
at x is defined as the space of all vectors that lie perpendicular to M at x. However,
in the literature on NAIMs, one speaks of normal spaces and bundles, anyway, even
when their elements are not normal in the usual sense. The only condition is that
TxM and the normal space (or normal spaces) together span the full TxRn, i. e.,
they are complementary to each other [Eld].

7 If that solution is defined for t.
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called a k-normally attracting invariant manifold of f if it fulfills the
following three criteria:

(i) M is invariant under the flow, i. e., Φ(M, t) = M ∀t ∈ R.

(ii) There exists a continuous splitting

TMRn = TM ⊕ N

of the tangent bundle TRn, restricted to M, into the tangent bun-
dle TM of M and a normal bundle N with continuous projec-
tions πM and πN . Further, this splitting is invariant under the
linearized flow DΦt = DΦt

M ⊕ DΦt
N where Φt(x) := Φ(x, t).

(iii) There exist real numbers a and b with a < k b ≤ 0, and C > 0 such
that the following exponential growth conditions hold on TMRn:

∀t ≤ 0, (x,ν) ∈ TM :
⃦⃦⃦
DΦt

M(x) · ν
⃦⃦⃦

≤ C ebt ∥ν∥

∀t ≥ 0, (x,ν) ∈ N :
⃦⃦⃦
DΦt

N (x) · ν
⃦⃦⃦

≤ C eat ∥ν∥ .

Remarks 3.6

1. Condition (i) means that for every initial condition x0 ∈ M of
ẋ = f(x), the solution x(t) stays in M for all t.

2. The continuous splitting in condition (ii) means that for every
x ∈ M, one can choose a base of TxM and of Nx, respectively,
such that the basis vectors vary continuously with x over M and
together always span the full Rn. This may be thought of as a
generalization of the fundamental system for periodic orbits as a
comoving frame of reference from the previous section. The re-
spective projections πM and πN yield the tangential and normal
components for every vector v ∈ TxRn.

3. The invariance of the splitting under the linearized flow means
that any deviation away from a point x ∈ M in tangential or
normal8 direction to M stays tangent or normal, respectively, up
to linear order under the flow Φ. In other words, the evolution of
the perturbation can be uniquely decomposed into its tangent and
normal component and these components decouple. This is akin
to the observation that perturbations that lie tangent to a periodic
orbit stay on that periodic orbit to linear order while perturbations
normal to the orbit stay normal as one checks with help of the
fundamental system, discussed in the previous section.

4. The rate conditions (iii) generalize the concept of Floquet multi-
pliers for periodic orbits. Particularly, ebT , corresponds to the tan-
gential multiplier µ1 while eaT corresponds to the nontrivial multi-
pliers µj, j = 2, . . . , n. The main difference is that the tangential
multipliers are not necessarily trivial anymore, i. e., perturbations
may expand or contract exponentially in tangential direction.

8 In the general sense, see the footnote on the previous page.
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5. Intuitively speaking, the rate conditions state that any deviation
from M decays exponentially faster in normal direction to M
than it expands in tangential direction. In particular, if M is a
periodic orbit, the tangential expansion rate is zero, i. e., b = 0.

As already mentioned above, NAIMs have the remarkable property of
being persistent under small perturbations of the vector field f . This is
the made rigorous with the following theorem, cf. Theorem. 1 of [FM71]
or Theorem. 4.1 in [HPS77]:

Theorem 3.7 (Persistence of NAIMs) Let M ⊂ Rn be a compact k-
normally attracting invariant manifold of the system ẋ = f(x). Then,
there exists an ϵ > 0 such that for every vector field f̃ with

⃦⃦⃦
f̃ − f

⃦⃦⃦
C1

≤
ϵ, there exists a unique invariant Ck-manifold M̃ for f̃ which is diffeo-
morphic to M, normally attracting, and O

(︂⃦⃦⃦
f̃ − f

⃦⃦⃦
C1

)︂
-close to M.Throughout this work, we

use Landau’s big-O
notation for order

functions, i. e.,
f(ϵ) = O(g(ϵ)) means that

there exist constants K ≥ 0
and ϵ0 ≥ 0 such that

0 ≤ |f(ϵ)| ≤ K |g(ϵ)| for
all 0 ≤ ϵ ≤ ϵ0.

In principle, there are different choices to define the C1-norm ∥f∥C1

of a differentiable function f : Rn → Rn which are, in our context of
finite-dimensional spaces, all equivalent [Wer06]. Here, we use

∥f∥C1 := sup
x∈Rn

∥f(x)∥ + sup
x∈Rn

sup
∥v∥=1

∥Df(x) · v∥

where ∥v∥ :=
√︂∑︁n

i=1 v
2
i is the Euclidean norm of the vector v ∈ Rn.

Hence, if ∥f∥C1 ≤ ϵ, not only is f small, i. e., ∥f(x)∥ < ϵ for all x but
also the derivative Df is small, meaning that for every x ∈ Rn and
every unit vector v ∈ Rn, the norm ∥Df(x) · v∥ of the image Df(x) ·v
of v under the linear map Df(x) is smaller than ϵ.

A remark is at hand, regarding the scope of Theorem 3.7.

Remark 3.8 Theorem 3.7 generally holds as long as the manifold M
has no boundary ∂M or if the vector field on ∂M is strictly pointing
outward in which case one speaks of “overflowing invariance” [FM71].
In this thesis, we deal with manifolds that have a boundary and are
generally not overflowing invariant. However, this problem can be cir-
cumvented by modifying the vector field in a small neighborhood around
the boundary so that the new vector field is overflowing on ∂M and co-
incides with the original vector field outside that neighborhood. In par-
ticular, all results for the NAIM of the modified vector field also hold for
our M, sufficiently far away from ∂M [Eld+21].

With this, we conclude our discussion of NAIMs. In the next section,
we discuss spatio-temporal symmetries, which play an important role
in the description of so-called splay states.

3.3 spatio-temporal symmetries

Lie theory, named after Sophus Lie, is concerned with symmetries of
vector fields under the action of continuous transformation groups and
the resulting symmetries of solutions of ODEs [Olv00; Can02]. While
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the central objects in Lie theory, known as Lie groups, are themselves
manifolds and therefore generally of infinite order, finite transformation
groups can also give rise to certain so-called spatio-temporal symmetries
for solutions of ODEs [Gol+98; BG01]. Following Golubitsky and Stew-
art [GS00], we briefly outline the concept of equivariance under discrete
symmetry groups. We use this in Chapter 6 and Chapter 7 to show that
for sufficiently large ensemble size N and sufficiently repulsive coupling
strength κ, both the original system (2.5) and the perturbed system
(2.6) of identical ARs give rise to so-called splay states which are peri-
odic solutions with a specific type of spatio-temporal symmetry.

Note that a (finite) group (Γ, ◦) consists of a set Γ = {γi ; i ∈ I}
with some (finite) index set I (in what follows, we drop the index i for
simplicity if no ambiguity is created by this), together with a binary
operation ◦ : Γ × Γ → Γ, such that the following three conditions hold:

(i) There exists an identity element e ∈ Γ such that e ◦γ = γ ◦ e = γ
for all γ ∈ Γ.

(ii) For each γ ∈ Γ, there exists an inverse element, denoted γ−1 ∈ Γ,
such that γ ◦ γ−1 = γ−1 ◦ γ = e.

(iii) For every three elements γ1, γ2, and γ3 of Γ, the binary operation
is associative, i. e., γ1 ◦ (γ2 ◦ γ3) = (γ1 ◦ γ2) ◦ γ3.

If no ambiguity is created, we simply write Γ instead of (Γ, ◦) for
the group. We say that Γ is acting (from the left) on the vector space
Rn if there exists a map Γ × Rn ∋ (γ,x) ↦→ γx ∈ Rn that is linear
in x, i. e., for every γ ∈ Γ, all x,y ∈ Rn, and all a, b ∈ R, we have
γ(ax + by) = aγx + bγy. Hence, Γ can be seen as a group of linear
transformations γ : Rn → Rn, where any two transformations γ1 and
γ2 map any point x ∈ Rn to the point γ1(γ2x) = (γ1 ◦ γ2)x so that
compositions of transformations obey the group properties of Γ. Note
that this notion of group action can be generalized to general manifolds.

The main concept of this section is that of equivariance of vector
fields and autonomous ODEs under finite group actions:

Definition 3.9 Let Γ be a finite group, acting on Rn and consider the
ODE ẋ = f(x) with smooth vector field f . Then, f is equivariant under
Γ if for every γ ∈ Γ and every x ∈ Rn, f(γx) = γf(x) holds. In this
case, we also call ẋ = f(x) equivariant under Γ.

Intuitively speaking, if the vector field f or the corresponding ODE
is equivariant under Γ, the transformations γ do not change the result-
ing dynamics qualitatively. The equations “look the same” under such
transformations, because d(γx)/dt = γẋ = γf(x) = f(γx). For exam-
ple, permuting the N identical units in (2.5) or (2.6) does not change
qualitatively the dynamics of the ensemble, it results in a mere relabel-
ing of units. In this case, we refer to Γ as a (finite) symmetry group of
the equation ẋ = f(x)

Periodic solutions of ODEs give rise to the following two subgroups
of Γ, cf. [GS00]:
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Definition 3.10 Let ẋ = f(x) be equivariant under the finite group Γ
and let xp(t) denote a T -periodic solution of this equation with periodic
orbit C := {xp(t) ; t ∈ R} ⊂ Rn. Then, the two subgroups

K := {γ ∈ Γ ; γ xp(t) = xp(t) ∀t}
H := {γ ∈ Γ ; γ C = C}

of Γ are called the group of spatial symmetries and the group of spatio-
temporal symmetries9 of xp(t), respectively. Here, we write γ C :=
{γ xp(t) ; t ∈ R}.

The meaning behind the names for K and H is clear: each element of
K leaves every point of the periodic orbit invariant while each element
of H maps every point of the orbit to some other point on it.

For every γ ∈ H, there exists a unique τ ∈ [0, T ) such that γxp(t) =
xp(t − τ) or equivalently γxp(t + τ) = xp(t) for every t ∈ R. To see
this, note that we must have γxp(t0 + τ) = xp(t0) for some t0 ∈ [0, T )
by definition of H. But since both γxp(t+ τ) and xp(t) solve ẋ = f(x)
and coincide at t = t0, uniqueness of solutions for ODEs guarantees that
they coincide for all t . We say that xp(t) is equipped with a spatial
symmetry, given by K, and a spatio-temporal symmetry, given by H.

The main statements for our purposes are given in the following
theorem and corollary, due to Buono and Golubitsky [BG01]:

Theorem 3.11 Let Γ be a finite group, acting on Rn and ẋ = f(x) a
Γ-equivariant ODE with smooth f . Further, let x(t) be a T -periodic solu-
tion of the system with spatial symmetry group K and spatio-temporal
symmetry group H. Further, let N(K) denote the normalizer of K.The normalizer of a

subgroup G of the group Γ
is the subgroup N(G) :=

{γ ∈ Γ ; γG = Gγ} where
γG = Gγ means that for

every g ∈ G, we have
γ ◦ g ◦ γ−1 ∈ G [Car37].

Then,

ηx

(︃
t+ T

m

)︃
= x(t)

for some fixed η ∈ N(K) and fixed m ∈ N if and only if the following
four conditions are fulfilled:

(a) H/K ∼= Zm is cyclic, m ≥ 2, and η ∈ H projects onto a generator
of H/K,

(b) there exists an x0 ∈ Rn such that x0 is invariant under K, i.e.,
Kx0 = x0,

(c) dim Fix(K) ≥ 2, where Fix(K) := {x ∈ Rn ; Kx = x} is the sub-dim Fix(K) denotes the
dimension of the vector

space Fix(K).
space of fixed points of K. If dim Fix(K) = 2, then H = N(K)
and η acts on Fix(K) by rotation through ±2π

m ,

(d) H fixes a connected component of Fix(K)\LK , where

LK :=
⋃︂
γ /∈K

Fix(γ) ∩ Fix(K).

9 Actually, the group of spatio-temporal symmetries in [GS00] is defined slightly dif-
ferently but, as is shown there, the actual group of spatio-temporal symmetries and
H are isomorphic.
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The details of this theorem are not really important for us. What is
more important is that from it, the following corollary follows, which
guarantees that exponentially stable periodic orbits are not only per-
sistent under C1-small perturbations h of the vector field f but also
that their spatial and spatio-temporal symmetries persist if h is equally
equivariant under Γ as f :

Corollary 3.12 Let the groups K and H satisfy conditions (a)-(d) of
Theorem 3.11. Then, exponentially stable periodic solutions with spatial
symmetry group K and spatio-temporal symmetry group H are robust
in Γ-equivariant systems of ODEs on Rn.

3.4 averaging theory

Averaging theory is a powerful tool for handling systems in which
timescale separations occur between fast oscillating variables and slow
varying ones [SVM07; Chi99]. We employ averaging theory in Chapter 7
to determine the dynamics of the perturbed system (2.6) in terms of
the degenerate dynamics of the original system (2.5). This approach re-
lies on the following theorem, cf. Theorems 7.9 in [Chi99] and Theorem
6.3.2 and 6.3.3 in [SVM07]:

Theorem 3.13 Consider any system of the form

ẋ = ϵF (x, ψ) + ϵ2F2(x, ψ, ϵ)
ψ̇ = Ω(x) + ϵG(x, ψ, ϵ)

(3.9)

where x ∈ Rn and ψ ∈ S1 and assume that there exists a c > 0 such
that Ω(x) > c for all x ∈ Rn. If the averaged system

ẏ = ϵF̂ (y)

with

F̂ (y) := 1
2π

∫︂ 2π

0
F (y, ψ) dψ

possesses a hyperbolic fixed point yf ∈ Rn and ϵ > 0 is sufficiently
small, (3.9) possesses a periodic solution (xp(t), ψ(t)) whose orbit is of
the same stability type as yf and

⃦⃦⃦
xp(t) − yf

⃦⃦⃦
= O(ϵ) holds for all t.

Remarks 3.14

1. The periodic orbit having the same stability type as yf means that
the dimensions of the stable and unstable manifolds of yf and the
periodic orbit of (xp(t), ψ(t)) coincide.

2. For ϵ < 0, the stable and unstable manifold of the periodic orbit
switch: The dimension of the orbit’s stable manifold equals the
dimension of the unstable manifold of yf and the dimension of its
unstable manifold is equals that of the stable manifold of yf .
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3. Since for small |ϵ|, xp(t) stays close to yp, we can weaken the
condition on Ω to Ω(y) > c > 0 for all y ∈ V in some (possibly
small) open neighborhood V of yf .

Theorem 3.13 states that if the dynamics of x is slow in comparison
to that of ψ, we can “average out” the fast oscillations of ψ(t) in the
first equation of (3.9) and still recover a good approximation for the
dynamics in x. In the context of Watanabe-Strogatz theory, we will
make use of averaging techniques to investigate the existence and sta-
bility of periodic orbits in the perturbed system (2.6) by averaging the
perturbation function h over periodic solutions of the original model
(2.5). Watanabe-Strogatz theory is the content of the next chapter.



4
WATA N A B E - S T RO G AT Z I N T E G R A B I L I T Y

abstract

In this chapter, we outline the main concepts of Watanabe-Strogatz
(WS) theory on which our work relies to a large extend. We start by
discussing the group of Möbius transformations and its action on TN
in Section 4.1. Möbius transformations constitute the fundamental geo-
metric objects of WS-theory and are used to determine the dynamics for
ensembles of angular variables in terms of the group parameters of the
Möbius group. We further discuss the so-called cross-ratios, which are
generally invariant under any Möbius transformation. We then show
that the group parameters and cross-ratios can be employed as a suit-
able alternative coordinate system to the angular variables (ϕ1, . . . , ϕN )
on the subspace of ordered tuples in TN . In Section 4.2, we recall the
fundamental theorem of WS-theory which states that for a fairly general
class of angular models, the ensemble dynamics can be fully described
by a set of just three coupled ODEs. This (partial) integrability yields
a low-dimensional description for these models and, in particular, for
the system (2.5). Finally, in Section 4.3, we discuss how the alternative
coordinate system from Section 4.1 can be used to describe the dynam-
ics of general ensembles of identical angular variables which allows to
generalize the formalism of WS-theory to such systems.

The concepts, discussed here, form the foundation in the derivation
of the results of Chapter 6 and 7 but WS-integrability also plays an im-
portant role in Chapter 5 for the understanding of stability of periodic
two-cluster states. Since WS-theory only yields nontrivial results for
ensembles that contain at least four distinct units, in this chapter, we
always assume N ≥ 4. Some passages and in particular the propositions
and proofs in Section 4.1 are verbatim quotes from [RZP].

4.1 watanabe-strogatz variables

möbius transformations Watanabe and Strogatz were the
first to show that systems ofN identical angular variables (ϕ1, . . . , ϕN ) =:
ϕ, obeying

ϕ̇j = f(ϕ)eiϕj + g(ϕ) + f̄(ϕ)e−iϕj (4.1)

with common fields f : TN → C and g : TN → R, can be described The functions f and g
denote general functions of
ϕ and do not necessarily
act element wise.

by just three coupled ODEs such that these systems become (partially)

41
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integrable. However, their derivation was rather complicated and did
not make immediately clear what the underlying reason for this fact
was. Fifteen years later, Marvel, Mirollo, and Strogatz gave a simple
geometric proof of the same theorem which relies on Lie theory, applied
to the group of Möbius transformations [MMS09]. This revealed that
Möbius transformations are the fundamental geometric objects of WS-
theory.

The general Möbius group is the set of holomorphic automorphisms1

of the extended complex plane Ĉ := C ∪ {∞}, cf. [Ahl79]. They are
exactly those functions µ : Ĉ → Ĉ of the form

µ(z) := az + b

cz + d

with complex coefficients a, b, c, d for which ad− bc ̸= 0 holds2 and we
set µ(∞) := a/c and µ(−d/c) = ∞. Geometrically, Möbius transfor-
mations are those maps under which all circles and lines in the com-
plex plane are mapped onto circles and lines.3 The group operation
on this set is then naturally the composition of functions. However,
this group is yet to large for the purposes of WS-theory. In fact, what
is known in the literature on WS-integrability as the Möbius group
is the subgroup of orientation-preserving Möbius transformations that
map the open unit disk D := {z ∈ C ; |z| < 1} onto itself. By analyticComplex open unit disk D

and unit circle ∂D. continuation, these maps can be extended to the complex unit circle
∂D := {z ∈ C ; |z| = 1}. Hence, throughout this thesis, we work with
the following definition, cf. [Ols10]:

Definition 4.1 The Möbius group G is the group of transformations
Gα,ψ : ∂D → ∂D of the form

Gα,ψ(z) := α+ eiψz
1 + ᾱeiψz (4.2)

with group parameters α ∈ D and ψ ∈ S1. The group operation is the
composition of transformations. For any θ ∈ TN , we set

eiθ :=
(︂
eiθ1 , . . . , eiθN

)︂
and write in a slight abuse of notation

Gα,ψ
(︂
eiθ
)︂

:=
(︂
Gα,ψ

(︂
eθ1
)︂
, . . . , Gα,ψ

(︂
eiθN

)︂)︂
.

for the diagonal action of G on TN .

G is in fact a three-dimensional Lie group and can equivalently be
defined as the group of orientation-preserving holomorphic automor-
phisms of D [SS10; Ols10]. We discuss the group properties of G in

1 I. e., bijective maps of Ĉ onto itself which, together with their inverses, are complex
differentiable.

2 For ad− bc = 0, f is actually a constant map and can therefore in particular not be
an automorphism of Ĉ.

3 Actually, for the extended complex plane, lines can be seen as circles through the
point at infinity ∞.
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Appendix A. In particular, every Gα,ψ maps ∂D bijectively onto itself
since for every z ∈ ∂D we find

|Gα,ψ(z)|2 = (α+ eiψz)(ᾱ+ e−iψ z̄)
(1 + ᾱeiψz)(1 + αe−iψ z̄)

= |α|2 + ᾱeiψz + αe−iψ z̄ + |z|2

1 + ᾱeiψz + αe−iψ z̄ + |α|2

= 1

so that Gα,ψ is well-defined. The diagonal action of G induces the fol-
lowing equivalence relation on TN :

Definition 4.2 Any two points ϑ,θ ∈ TN are equivalent if and only
if there exists a Gα,ψ ∈ G such that eiϑ = Gα,ψ

(︂
eiθ
)︂

in which case we
write ϑ ∼ θ. For any θ ∈ TN , we write

[θ] :=
{︂

ϑ ∈ TN ; ϑ ∼ θ
}︂

for its equivalence class.
The fact that ∼ really is an equivalence relation is asserted by the

following proposition:

Proposition 4.3 The relation ∼ is an equivalence relation on TN .
Proof. This follows immediately from the group properties of G: Con-
sider any three points ϑ ∼ θ ∼ ϕ ∈ TN . Then,

1. The identity map θ ↦→ θ is given by G0,0 ∈ G and thus guarantees
that θ ∼ θ so that ∼ is reflexive.

2. There exists a Gα,ψ ∈ G such that eiϑ = Gα,ψ
(︂
eiθ
)︂
. The inverse

G−1
α,ψ ∈ G then fulfills eiθ = G−1

α,ψ

(︂
eiϑ
)︂

and thus θ ∼ ϑ so that ∼
is symmetric.

3. There exists a Gβ,χ ∈ G with eiθ = Gβ,χ
(︂
eiϕ
)︂

and thus eiϑ =

Gα,ψ ◦Gβ,χ
(︂
eiϕ
)︂

where Gα,ψ ◦Gβ,χ ∈ G so that ϑ ∼ ϕ and ∼ is
transitive.

Since all units couple in the same way to f and g in (4.1), the units
ϕj can never overtake each other. (Note that this does not necessarily
mean that the ϕj are identical. They can still contribute differently
to the common fields.) In particular, we can restrict ourselves without
loss of generality to the case where all angles ϕ = (ϕ1, . . . , ϕN ) are in
(strict) cyclic order. This gives rise to the following definition:

Definition 4.4 For fixed N , the set TNordered ⊂ TN of angles in cyclic Angles in cyclic order.
order is defined as

TNordered :=
{︂

θ ∈ TN ; θ1 < · · · < θN < θ1 + 2π
}︂
.

Of course, on TNordered we still find that G induces an equivalence
relation ∼ with respective equivalence classes [θ] for every θ ∈ TNordered.
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cross-ratios For any four mutually distinct4 z1, z2, z3, z4 ∈ C,
the so-called cross-ratio (z1, z2, z3, z4) is defined as

(z1, z2, z3, z4) := (z1 − z2) (z3 − z4)
(z1 − z4) (z3 − z2) .

It is a well-known fact that Möbius transformations preserve cross-
ratios which is ultimately a consequence of the fact that Möbius trans-
formations map circles to circles [Ahl79]. It is equally known that
(z1, z2, z3, z4) is real-valued if all four points zj lie on ∂D. This leads
to the following proposition which will be used to parameterize the
partition of TNordered in equivalence classes:

Proposition 4.5 For any Gα,ψ ∈ G and θ ∈ TNordered, let ϑ ∈ TNordered
be defined by eiϑ = Gα,ψ

(︂
eiθ
)︂
. Further, let Λp,q,r,s : TNordered → R be

defined as

Λp,q,r,s(θ) :=
(︂
eiθp , eiθs , eiθq , eiθr

)︂
=

(︂
eiθp − eiθs

)︂(︂
eiθq − eiθr

)︂
(︂
eiθp − eiθr

)︂(︂
eiθq − eiθs

)︂
=

sin θp−θs
2 sin θq−θr

2

sin θp−θr
2 sin θq−θs

2
.

Then,

Λp,q,r,s(ϑ) = Λp,q,r,s(θ)

for any cross-ratio Λp,q,r,s.

Proof. For a proof, we refer to [Ahl79].

In principle, for any θ ∈ TN , there exist N4 different cross-ratios.
However, it was shown in [MMS09] that for N > 3, one can choose
N − 3 functionally independent cross-ratios such that all other cross-
ratios can be written as some algebraic expression of these N − 3 ones.
With the following definition, we fix a convenient choice of cross-ratios
for our purposes which will be used in Chapter 6:

Definition 4.6 Let the set V ⊂ RN−3 be defined as

V :=
{︂

λ ∈ (0, 1)N−3 ; 1 > λ1 > · · · > λN−3 > 0
}︂
.

The cross-ratio function Λ : TNordered → V is defined asThe cross-ratio function Λ.

Λ(θ) := (Λ1(θ), . . . ,ΛN−3(θ))

Λk(θ) := Λ1,2,3,k+3(θ) =
sin θ1−θk+3

2 sin θ2−θ3
2

sin θ2−θk+3
2 sin θ1−θ3

2

(4.3)

with k = 1, . . . , N − 3.
4 The cross-ratio is in fact well-defined also for z1 = z2 ̸= z3 = z4. Further, it can be

extended to the case z1, z2, z3, z4 ∈ Ĉ.
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Since each Λk depends, besides θ1, θ2, and θ3, only on θk+3, the
N − 3 components of Λ are clearly functionally independent of each
other. Next, we note some important properties of the spaces TNordered
and V and the cross-ratio function Λ:

Lemma 4.7 The following two assertions hold:

1. The set TNordered is invariant under the action of G.

2. The cross-ratios (4.3) define a function Λ : TNordered → V .

Proof. The first assertion follows from the fact that all Möbius trans-
formations Gα,ψ ∈ G are orientation-preserving [Ahl79]. Thus, for ev-
ery θ ∈ TNordered, i. e., for which θ1 < · · · < θN < θ1 + 2π holds, let
eiϑ = Gα,ψ

(︂
eiθ
)︂
. Then ϑ1 < · · · < ϑN < ϑ1 + 2π by preservation of

orientation and hence ϑ ∈ TNordered.
The second assertion holds true by observing that5

Dθk+3Λk(θ) = 1
2

sin θ1−θ2
2 sin θ2−θ3

2

sin θ1−θ3
2 sin2 θ2−θk+3

2
< 0, k = 1, . . . , N − 3

so that all Λk are strictly monotonically decreasing in θk+3 on TNordered.
In particular, we find Λk(θ) > Λk+1(θ) on TNordered. Additionally, we
find that limθk+3↓θ3 Λk(θ) = 1 and limθk+3↑θ1+2π Λk(θ) = 0 so that Λ
indeed maps TNordered to V .

The fact that Möbius transformations leave cross-ratios invariant
hints that the equivalence classes on TNordered can be interpreted as
level sets of Λ. To make this assertion rigorous is the purpose of the
following lemma:

Lemma 4.8 For any two ϑ,θ ∈ TNordered, we have

ϑ ∼ θ ⇔ Λ(ϑ) = Λ(θ)

and in particular, we have

[θ] =
{︂

ϑ ∈ TNordered ; Λ(ϑ) = Λ(θ)
}︂

on TNordered, i. e., for every θ ∈ TNordered, the equivalence class [θ] ⊂
TNordered is exactly the level set of the cross-ratio function Λ for the
value Λ(θ).

Proof. (⇒): Since ϑ ∼ θ, there exists a Gα,ψ ∈ G with eiϑ = Gα,ψ
(︂
eiθ
)︂
.

Then Λ(ϑ) = Λ(θ) follows from Proposition 4.5.

5 Due to the strict cyclic order, all arguments of the sine functions fall in the open
interval (−π, 0).
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(⇐): Let Λ(ϑ) = Λ(θ) for some ϑ,θ ∈ TNordered. We construct a
suitable Gα,ψ ∈ G. Consider the two general6 Möbius transformations
µθ : Ĉ → Ĉ and µϑ : Ĉ → Ĉ with

µθ(z) :=

(︂
z − eiθ1

)︂(︂
eiθ2 − eiθ3

)︂
(︂
z − eiθ2

)︂(︂
eiθ1 − eiθ3

)︂
µϑ(z) :=

(︂
z − eiϑ1

)︂(︂
eiϑ2 − eiϑ3

)︂
(︂
z − eiϑ2

)︂(︂
eiϑ1 − eiϑ3

)︂ .
These maps fulfill

µθ

(︂
eiθ1

)︂
= 0 = µϑ

(︂
eiϑ1

)︂
µθ

(︂
eiθ2

)︂
= ∞ = µϑ

(︂
eiϑ2

)︂
µθ

(︂
eiθ3

)︂
= 1 = µϑ

(︂
eiϑ3

)︂
so that the function G(z) = µ−1

ϑ ◦µθ(z) maps eiθk ↦→ eiϑk for k = 1, 2, 3.
In particular, G is a bijective conformal map from ∂D to ∂D. It is also
orientation-preserving since eiθ1 , eiθ2 , eiθ3 ∈ ∂D and eiϑ1 , eiϑ2 , eiϑ3 ∈ ∂D
are in the same cyclic order by assumption. G is therefore an element
of G. Additionally, assumption Λk(θ) = Λk(ϑ) implies that

µθ

(︂
eiθk+3

)︂
= Λk(θ) = Λk(ϑ) = µϑ

(︂
eiϑk+3

)︂
.

and thus G
(︂
eiθk

)︂
= eiϑk holds also for all k = 4, . . . , N . We therefore

conclude that G
(︂
eiθ
)︂

= eiϑ which finishes the proof.

Lemma 4.8 implies that we can parameterize the partition of TNordered
in equivalence classes [θ] ⊂ TNordered via the cross-ratios λ ∈ V such that
we may identify equivalence classes and level sets:Level sets Lλ(Λ).

[θ] ≡ Lλ(Λ) :=
{︂

ϑ ∈ TNordered ; Λ(ϑ) = λ
}︂

where λ = Λ(θ). Now, each θ ∈ TNordered is an element of the level set
Lλ(Λ) of the function Λ with λ = Λ(θ). Next, we introduce a suitable
coordinate system on each level set Lλ(Λ).

watanabe-strogatz coordinates The ultimate goal of this
section is to establish a coordinate system on TNordered in terms of the
two Möbius group parameters α and ψ as well as the N − 3 cross-
ratios λ. The group parameters themselves do not yet establish a proper
coordinate system on Lλ(Λ). Instead, they only yield a description how
to get from any point θ ∈ Lλ(Λ) to any other point ϑ ∈ Lλ(Λ) by some
Möbius transformation while we want to uniquely determine where
exactly θ lies on Lθ(Λ) in terms of α and ψ. The underlying reason

6 I. e., transformations of type µ(z) := az+b
cz+d with a, b, c, d ∈ C and ad− bc ̸= 0.
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for this ambiguity lies in the fact that we are still lacking a unique
“point-of-reference” for every Lλ(Λ) with respect to which every other
point in the same level set can be determined by a given α and ψ. To
introduce such a point Θ(λ) for each Lλ(Λ), is purpose of the following
definition:

Definition 4.9 The function Θ : V → TNordered, defined by7

Θ(λ) := (Θ1(λ), . . . ,ΘN (λ))

Θk(λ) := −π + 2π
N

(k − 1), if k = 1, 2, 3

Θk(λ) := −iLog
e

2πi
N

(︂
λk−3 + λk−3 e

2πi
N − 1

)︂
−λk−3 + (1 − λk−3) e

2πi
N

, if k = 4, . . . , N,

(4.4)

determines the point-of-reference Θ(λ) ∈ Lλ(Λ) for given λ ∈ V .

We need to check whether the above made choice is suitable for our
purposes by showing that it defines for each level set Lλ(Λ) a unique
point-of-reference. In other words, we have to check that the image of
Θ intersects each Lλ(Λ) in exactly one point. If this is the case, we can
define for every point θ ∈ TNordered its WS-coordinates (α,ψ,λ) via the
relation

eiθ = Gα,ψ
(︂
eiΘ(λ)

)︂
so that λ determines in which level set Lλ(Λ) the point θ lies while α
and ψ determine where θ is located in Lλ(Λ) with respect to Θ(λ). To
show that this is actually the case is done by the following lemma:

Lemma 4.10 The map Θ : V → TNordered, defined by (4.4), is smooth
and a right inverse of the function Λ, i. e., Λ ◦ Θ(λ) = λ and thus,
Θ(λ) ∈ Lλ(Λ).

Proof. Θ is well-defined and smooth since the numerator in the second
line of (4.4) vanishes only for λk = 1/

(︂
1 + e

2πi
N

)︂
/∈ R while the denom-

inator vanishes only for λk = e
2πi
N /

(︂
−1 + e

2πi
N

)︂
/∈ R. Equation (4.4)

solves Λ(Θ) = λ for Θ and so is the right inverse of Λ by construction.
Finally, we need to show that Θ indeed maps V to TNordered. For this, we
assert that for every k ≥ 4, Θk(λ) is strictly monotonically decreasing
in λk−3 and that Θ3(λ) > Θ4(λ). The assertion then follows from the
fact that 1 > λ1 > · · · > λN−3 > 0 and

lim
λ1↑1

Θ4(λ) = −π + 2π
N

2

lim
λN−3↓0

ΘN (λ) = π

7 Here and in what follows, we use the principal value Log z for the logarithm log z
but for convenience, let its imaginary part lie in the interval [−π,+π) instead of
(−π,+π].
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because that way, the Θk(λ) are in strict order and for k ≥ 4 lie all in
the interval (Θ3(λ)),+π). But since N ≥ 4, we find

Dλk−3Θk(λ) =
−2 sin 2π

N

1 − 2λk−3(1 − λk−3)⏞ ⏟⏟ ⏞
∈(0,1/2]

(︃
1 + cos 2π

N

)︃
⏞ ⏟⏟ ⏞

∈[1,2)

< 0

so that Θk is indeed strictly monotonically decreasing in λk−3 for all
k = 4, . . . , N which finishes the proof.

Before we come to the main result, we make the following remark
which becomes important in Chapter 6 and Chapter 7:

Remark 4.11 In what follows, particular focus lies on the point

θ∗ := (θ∗
1, . . . , θ

∗
N )

θ∗
j := −π + 2π

N
(j − 1)

(4.5)

of evenly spaced angles on S1. For this point, we find

λ∗ :=
(︁
λ∗

1, . . . , λ
∗
N−3

)︁
λ∗
k := Λk(θ∗) =

sin π(k+2)
N

2 cos π
N sin π(k+1)

N

(4.6)

for its corresponding cross-ratios.

We are now able to state the final result of this section which as-
serts the existence of a well-defined coordinate system in terms of WS-
variables on TNordered:

Proposition 4.12 The map m : D × S1 × V → TNordered with

m(α,ψ,λ) := −iLogGα,ψ
(︂
eiΘ(λ)

)︂
= −iLog α+ eiψeiΘ(λ)

1 + ᾱ eiψeiΘ(λ)

is a smooth diffeomorphism.

Proof. In order to show that m is a smooth diffeomorphism, we need
to show that it is smooth, bijective, and that its derivative Dm has full
rank everywhere, see [Rud76].

Smoothness of m: Because it is a composition of the smooth maps
(α,ψ,θ) ↦→ Gα,ψ(eiθ), Θ, and the Log-function, m is smooth.

Injectivity of m: Suppose that for (α,ψ,λ), (α′, ψ′,λ′) ∈ D× S1 × V
the equality m(α,ψ,λ) = m(α′, ψ′,λ′) holds. We then find

−iLogGα,ψ
(︂
eiΘ(λ)

)︂
= −iLogGα′,ψ′

(︂
eiΘ(λ′)

)︂
⇒ eiΘ(λ) = G−1

α,ψ ◦Gα′,ψ′

(︂
eiΘ(λ′)

)︂
.

By Lemma 4.8, this implies

Θ(λ) ∈ [Θ(λ′)] = Lλ′(Λ)
⇒ λ = Λ ◦ Θ(λ) = λ′.
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Further, Θ(λ) always possesses at least three distinct coordinates (e.g.
Θ1, Θ2, and Θ3). But since any Möbius map is uniquely defined by the
images of three distinct points [Ols10], we have

Gα,ψ
(︂
eiΘ(λ)

)︂
= Gα′,ψ′

(︂
eiΘ(λ)

)︂
⇔ Gα,ψ = Gα′,ψ′

⇔ (α,ψ) = (α′, ψ′)

and thus (α,ψ,λ) = (α′, ψ′,λ′) so that m is injective.
Surjectivity of m: For any θ ∈ TNordered, the cross-ratios λ = Λ(θ) ∈

V are well defined. Thus, since Θ(λ) and θ are both elements of
Lλ(Λ) = [Θ(λ)] = [θ], there exists aGα,ψ ∈ G withGα,ψ

(︂
eiΘ(λ)

)︂
= eiθ.

But this implies the existence of an (α,ψ,λ) ∈ D × S1 × V which is
mapped by m to θ.

At last, we show that the derivative Dm has full rank everywhere.
Note that we have to treat D as a real space in order to apply NAIMs-
theory later on. Since D is then two dimensional, we could for example
use DReα and DImα as partial derivatives on D. Instead, we treat α and
ᾱ as independent variables, and use the Wirtinger derivatives [RS00]
which are defined as

Dα := DReα − iDImα

Dᾱ := DReα + iDImα.

Then, for each x ∈ {α, ᾱ, ψ, λ1, . . . , λN−3}, let

Dxm = (Dxm1, . . . ,DxmN )T

denote the respective column of the derivative

Dm =
[︂
Dαm,Dᾱm,Dψm,Dλ1m, . . . ,DλN−3m

]︂
.

From the identity

Λ(m(α,ψ,λ)) = λ

we note first that DθΛ · Dλm = idN−3 or more explicitly

⎛⎜⎜⎝
Dθ1Λ1 . . . DθNΛ1

... . . . ...
Dθ1ΛN−3 . . . DθNΛN−3

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
Dλ1m1 . . . DλN−3m1

... . . . ...
Dλ1mN . . . DλN−3mN

⎞⎟⎟⎠ = idN−3

(4.7)

where idN−3 is the (N − 3)-dimensional identity matrix. Thus, Dλm
has a left inverse DθΛ and therefore has in particular full column rank
N − 3.

Secondly, we have from the same identity

DθΛ · Dαm = DθΛ · Dᾱm = DθΛ · Dψm = 0 (4.8)
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so the three column vectors Dαm, Dᾱm, and Dψm stand orthogonal
to the column vectors DθjΛ and are thus linearly independent of the
column vectors Dλkm. For if any (nontrivial) linear combination

y = aDαm + bDᾱm + cDψm

was in the span of the Dλkm, i. e., if we would have

y =
N−3∑︂
j=1

cjDλjm

with ck ̸= 0 for some k ∈ {1, . . . , N − 3}, we would find

0 = DθΛk · y =
N−3∑︂
j=1

cjDθΛk · Dλjm = ck

where the first equality follows from (4.8) and the last from (4.7). This
contradicts the assumption that ck ̸= 0.

Finally, the three vectors Dαm, Dᾱm, and Dψm are linearly inde-
pendent. To see this, let us consider the (N − 3)-by-3 matrix A =
[Dαm,Dᾱm,Dψm] which then has rankA ≤ 3. For any matrix, its
rank is equal to that of its largest order square submatrix with nonzero
determinant [Bos21]. Let the submatrix Â consist of the first three
components of each column of A. It is of the form

Â =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
−α+eiψ

ieiψ
−1+ᾱeiψ

eiψ(|α|2−1)
(−α+eiψ)(−1+ᾱeiψ)

i

−α+eiψe
2πi
N

ieiψe
2πi
N

−1+ᾱeiψe
2πi
N

(|α|2−1)eiψe
2πi
N(︂

−α+eiψe
2πi
N

)︂(︂
−1+ᾱeiψe

2πi
N

)︂
i

−α+eiψe
4πi
N

ieiψe
4πi
N

−1+ᾱeiψe
4πi
N

(|α|2−1)eiψe
4πi
N(︂

−α+eiψe
4πi
N

)︂(︂
−1+ᾱeiψe

4πi
N

)︂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with determinant

det Â = X

Y1Y2

where

X = −
(︂
1 − e

2πi
N

)︂3 (︂
1 + e

2πi
N

)︂ (︂
1 − |α|2

)︂
e3iψe

2πi
N

Y1 =
(︂
α− eiψ

)︂ (︂
α− eiψe

2πi
N

)︂ (︂
α− eiψe

4πi
N

)︂
Y2 =

(︂
1 − ᾱeiψ

)︂ (︂
1 − ᾱeiψe

2πi
N

)︂ (︂
1 − ᾱeiψe

4πi
N

)︂
.

This determinant is nonvanishing: By the triangle inequality, we have

|Y1| ≤ (1 + |α|)3

|Y2| ≤ (1 + |α|)3
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while for N ≥ 3 and with
⃓⃓⃓
1 ± eiθ

⃓⃓⃓
=

√
2
√

1 ± cos θ and 1−cos θ ≥ θ2/8

for all θ ∈
[︂
−2π

3 ,
2π
3

]︂
, we have

|X| =
⃓⃓⃓
1 − e

2πi
N

⃓⃓⃓3 ⃓⃓⃓
1 + e

2πi
N

⃓⃓⃓ (︂
1 − |α|2

)︂
= 4

√︄(︃
1 − cos 2π

N

)︃3 (︃
1 + cos 2π

N

)︃(︂
1 − |α|2

)︂
≥ 4 1√

832

(︃2π
N

)︃3 (︂
1 − |α|2

)︂
=
(︃
π

N

)︃3 (︂
1 − |α|2

)︂
where in the third line we also used 1+cos θ ≥ 1/2 for all θ ∈

[︂
−2π

3 ,
2π
3

]︂
.

Thus we find⃓⃓⃓
det Â

⃓⃓⃓
≥
(︃
π

N

)︃3 1 − |α|2

(1 + |α|)6 > 0

so that Â has full rank 3 and so has A. Hence, Dαm, Dᾱm, and Dψm
are linearly independent. Therefore, all column vectors of Dm are lin-
early independent.

For any system ϕ̇ = f(ϕ) of identical angular variables, Proposi-
tion 4.12 allows for an alternative and equivalent description in terms
of the WS-variables α, ψ, and λ. If a solution (α(t), ψ(t),λ(t)) for the
system in these variables can be found, one can recover the original dy-
namics by virtue of m. The key feature of WS-integrable systems (4.1) is
then that the governing equations in these WS-variables are particularly
simple in the sense that the cross-ratios λ(t) = (λ1(t), . . . , λN−3(t)) are
constants of motion. In the next section, we discuss the fundamental
theorem of WS-theory.

4.2 integrability

The fundamental theorem of WS-theory, due to [WS94] states that for
any system of the form (4.1), its flow is completely determined by a
one-parameter family of Möbius transformations. It can be stated as
follows (here we follow the formulation and notation in [MMS09]):
Theorem 4.13 Consider an ensemble of N > 3 mutually distinct
angular variables ϕ = (ϕ1, . . . , ϕN ) ∈ TN , obeying the equations

ϕ̇j = f(ϕ) eiϕj + g(ϕ) + f̄(ϕ) e−iϕj (4.9)

for j = 1, . . . , N where f : TN → C and g : TN → R are smooth
functions. Then, the time-evolution of ϕ(t) is determined through

eiϕj(t) = Gα(t),ψ(t)
(︂
eiθj

)︂
(4.10)

where θ = (θ1, . . . , θN ) ∈ TN is constant and α(t) and ψ(t) are solutions
of

α̇ = i
(︂
f(ϕ)α2 + g(ϕ)α+ f̄(ϕ)

)︂
ψ̇ = f(ϕ)α+ g(ϕ) + f̄(ϕ)ᾱ

(4.11)
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and the functions f and g now implicitly depend on α and ψ via the
flow relation (4.10).

Note that the first line in (4.11) actually represents two equations
since its right hand side is not holomorphic. It is to be understood as
two equations for, e. g., Reα and Imα or α and ᾱ.

Theorem 4.13 has been proven in various ways from purely algebraic
proofs [Goe95; PR08] over geometric ones, relying on concepts from
Lie theory [MMS09], to those, using arguments from complex analysis
[EM14] or complex projective geometry [Ste11]. We refer to these works
for a proof of the theorem.

A few remarks are at hand, concerning some intricacies of Theo-Choosing initial conditions
and constraints. rem 4.13. First, the theorem gives us some freedom of choice regarding

the initial conditions for (4.11), depending on the choice of the constant
θ. Different choices can be more suitable in different settings. With the
N degrees of freedom from θ ∈ TN and the three degrees of freedom
from the group parameters α and ψ, we need to impose three condi-
tions on the tuple (α,ψ,θ) in addition to the N initial conditions from
ϕ(0) in order to uniquely determine the dynamics of ϕ(t) via the group
action (4.10). Watanabe and Strogatz themselves discussed two possi-
ble options in [WS94]. The first one, preferred by them, is to impose∑︁N
j=1 eiθj = 0 and

∑︁N
j=1 θj = 0 mod 2π on θ so that the θj become, in

their own words, “incoherent”. Then, α(0) and ψ(0) can be chosen such
that eiϕ(0) = Gα(0),ψ(0)

(︂
eiθ
)︂

which they deemed the natural way to im-
pose the three constraints because in this picture, the flow on D×S1 is
the same for all choices of θ that lie in the same equivalence class while
different initial conditions ϕ1(0),ϕ2(0) ∈ [θ] with ϕ1(0) ̸= ϕ2(0) of
(4.9) lead to different initial conditions (α1(0), ψ1(0)) ̸= (α2(0), ψ2(0))
of (4.11). This naturally corresponds to the fact that the vector field
and therefore flow on each [θ] does not depend on which representative
ϑ ∈ [θ] one chooses.

A second option, which was considered unnatural by Watanabe and
Strogatz, is to always impose the initial condition α(0) = ψ(0) = 0
such that θ = ϕ(0) and therefore let the vector field in (4.11) on D×S1

explicitly depend on ϕ(0) such that in particular two distinct initial
conditions ϕ1(0) ̸= ϕ2(0) with [ϕ1(0)] = [ϕ2(0)] yield different equa-
tions of motion in α and ψ even though their corresponding dynamics
in ϕ take place in the same equivalence class. This is a direct conse-
quence of the fact that the Möbius parameters α and ψ do not define
a coordinate system on a given level set by themselves but are only rel-
ative coordinates, as mentioned before.8 In our work, we follow a third
option, that is somewhat similar to the natural choice of constraints

8 In some sense, this is similar to the distinction between affine spaces and vector
spaces. For the former, vectors do not readily determine specific points in, say, some
Rn but only differences between points so that “An affine space is nothing more than
a vector space whose origin we try to forget about [. . . ]” [Ber09]. In this informal
view, an affine space becomes a vector space once we define a specific origin or
point-of-reference and only then do vectors uniquely determine points in Rn just
as α and ψ parameterize a given level set Lλ(Λ) only once we distinguish a single
point-of-reference Θ(λ) for that level set.
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by Watanabe and Strogatz. The unique point-of-reference Θ(λ) from
Lemma 4.10 and Proposition 4.12 yields three constraints on θ by fix-
ing (θ1, θ2, θ3) = (Θ1(λ),Θ2(λ),Θ3(λ)) = (−π,−π+2π/N,−π+4π/N)
so that we may choose the initial conditions for (4.11) by imposing
ϕ(0) = Gα(0),ψ(0)

(︂
eiΘ(λ)

)︂
with λ = Λ(ϕ(0)).

As a second remark, we note that, while the equations (4.11) look Computational aspects.
simple at first sight, they obfuscate some conceptual problems when
it comes to solving them in practice. Since f and g only depend im-
plicitly on α and ψ as well as on the constant θ via (4.10), it is in
general not feasible to write them down explicitly. A closed form can
usually only be found for specific choices of θ and thus distinguished
level sets Lλ(Λ). We will encounter this problem in Chapter 6 when
we investigate a continuum of periodic orbits. As a consequence, the
equations (4.11) are rarely useful for numerical work. While for large N ,
one only has to solve a system of three coupled ODEs instead of N , one
usually still has to store the values for each ϕj(t) to determine f and g.
With this, any performance gain that might come with the dimensional
reduction of the problem is immediately compensated by complicated
auxiliary computations for f and g at every time step. Even worse,
while the system (4.9) is usually eligible for vectorization of numeri-
cal integration algorithms, this cannot be expected for (4.11) so that
in consequence, solving (4.11) numerically is less efficient than solving
(4.9). With this, we end our discussion of Theorem 4.13. Next, we make
use of Proposition 4.12 to restate (4.11) in terms of the full set of WS-
variables (α,ψ,λ) and discuss how to extend them to nonintegrable
systems.

4.3 general dynamics in watanabe-strogatz variables

By Proposition 4.12, every point θ ∈ TNordered is uniquely determined
by the three WS-variables (α,ψ,λ) ∈ D×S1 ×V . In particular, θ lies in
the level set Lλ=Λ(θ)(Λ) = [Θ(Λ(θ))]. Since this holds true for every
θ ∈ TNordered, the level sets form a partition of TNordered, i. e., we have

TNordered =
⋃︂

λ∈V
Lλ(Λ)

with mutually disjoint three-dimensional submanifolds Lλ(Λ). Theo-
rem 4.13 then implies that the dynamics of ϕ for a WS-integrable sys-
tem (4.9) can be determined from the corresponding system (4.11) for
α and ψ via the Möbius action (4.10) so that ϕ(t) ∈ [ϕ(0)] for all t. In
other words, the partition of TNordered through the level sets Lλ(Λ) is
invariant under the flow of (4.9) and therefore, the dynamics of (4.9)
in WS-variables (α,ψ,λ) is fully determined by the system

α̇ = i
(︂
f(ϕ)α2 + g(ϕ)α+ f̄(ϕ)

)︂
ψ̇ = f(ϕ)α+ g(ϕ) + f̄(ϕ)ᾱ
λ̇ = 0.

(4.12)
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Consider on the other hand a general system ϕ̇ = F (ϕ) of iden-
tical angles (ϕ1, . . . , ϕN ) =: ϕ ∈ TNordered which is generally not WS-
integrable. For such a system, the corresponding equations in WS-coor-
dinates read

α̇ = Dϕα · ϕ̇ = Dϕα · F (ϕ)
ψ̇ = Dϕψ · ϕ̇ = Dϕψ · F (ϕ)
λ̇ = DϕΛ · ϕ̇ = DϕΛ · F (ϕ)

by the chain rule. From this, we see that it is always possible to separate
the components of F that are compatible with WS-integrability from
the nonintegrable components, i. e., to write

F (ϕ) = FWS(ϕ) + Fnon-WS(ϕ),

defined by the relations

DϕΛ · FWS(ϕ) = 0
Dϕα · Fnon-WS(ϕ) = Dϕψ · Fnon-WS(ϕ) = 0

for every ϕ so that

α̇ = Dϕα · FWS(ϕ)
ψ̇ = Dϕψ · FWS(ϕ)
λ̇ = DϕΛ · Fnon-WS(ϕ)

from which we can conclude with (4.8) that

FWS(ϕ) ∈ span
(︂
Dαm ,Dᾱm ,Dψm

)︂
Fnon-WS(ϕ) ∈ span

(︂
Dλ1m , . . . ,DλN−3m

)︂
.

In other words, FWS(ϕ) denotes the components of F (ϕ), that lie tan-
gent to Lλ(Λ) at the point ϕ = m(α,ψ,λ) while Fnon-WS(ϕ) denotes
the components of F (ϕ) normal to it. We make use of this fact when
we investigate the generalized Active Rotator model (2.6) in Chapter 7.

With this, we end our discussion of Watanabe-Strogatz integrability.
In the next part of this thesis, we discuss the results of our work on
the systems (2.5) and (2.6). We start with the results on states that
consist of two clusters.
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If you cannot solve the proposed problem, try to solve first
a simpler related problem.

— Pólya György [Pól77]
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abstract

In this chapter, we investigate the emergence and stability of periodic
two-cluster states for the case of the generalized Active Rotator model

ϕ̇j = ω − sinϕj + ϵh(ϕj) + κ

N

N∑︂
k=1

sin(ϕk − ϕj)

h(ϕ) =
∞∑︂
n=2

an sinnϕ+ bn cosnϕ,
(2.6)

as introduced in Chapter 2. For this, we assume that the ensemble splits
in two clusters A = {1, . . . ,mA} and B = {mA + 1, . . . , N} of mA > 1
and mB = N −mA > 1 units each so that

ϕA = ϕ1 = · · · = ϕmA
ϕB = ϕmA+1 = · · · = ϕN

where we also include the case of full synchrony ϕA = ϕB. If the two
clusters are of equal size, i. e., if mA = mB = N/2, we call the two-
cluster state symmetric. Otherwise, we refer to it as asymmetric.

After making some general remarks in Section 5.1, we start by intro-
ducing a reduced description of the system in terms of cluster coordi-
nates ϕA and ϕB in Section 5.2, which allows for determining the emer-
gence and stability of periodic two-cluster states against non-splitting
perturbations, independently of the ensemble size N , and is a well-
known tool for the study of clustered solutions [LY12]. In Section 5.3,
we discuss local bifurcations of fixed points in this reduced description
which play an important role in the creation of periodic two-cluster
states. In Section 5.4, we discuss the two most generic codimension 1 bi-
furcations, yielding periodic two-cluster states: the double-heteroclinic
bifurcation and the double-SNIC. Afterwards, in Section 5.5, we discuss
the stability of the emerging periodic states in dependence on the per-
turbation term ϵh(ϕj) and how the observed behavior can be explained
within the framework of WS-theory.

The results on limit cycle bifurcation scenarios and stability of peri-
odic two-cluster states constitute the main results of this chapter and
were published in [RZ21a].

57
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5.1 general remarks

To make the discussion more definite, we consider two paradigmatic
choices for the perturbation function h in (2.6). By definition, h con-
tains only terms of second or higher order Fourier modes sinnϕ and
cosnϕ, n ≥ 2. We therefore consider one example that is particularly
simple in its form to make some explicit calculations more tangible, and
a second one that serves as a representative for generic perturbations,
involving infinitely many modes. For this, we choose

h(ϕ) = sin 2ϕ (5.1a)

h(ϕ) = 1
sinϕ− 2 + 1√

3
+
(︃ 4√

3
− 2

)︃
sinϕ. (5.1b)

Note that in (5.1b), the two terms 1/
√

3 and (4/
√

3−2) sinϕ solely serve
the purpose to cancel out the zeroth and first order Fourier modes of
1/(sinϕ− 2) so that this choice only contains higher order modes.

Although all quantitative results in this chapter apply only to the
two choices for h above, we argue that they are universal for systems of
type (2.6) at least for sufficiently small |ϵ|. The reason for this is twofold.
Firstly, the found bifurcation scenarios are in some sense minimal: They
involve only saddles and fixed points that are either already present in
the uncoupled case κ = 0 or emerge in the most generic fixed point
bifurcations that can occur for systems of type (2.6), see Section 5.3.
Secondly, the main result of Section 5.5 is that a change of stability for
symmetric periodic two-cluster states occurs at ϵ = 0 while asymmetric
periodic two-cluster states do not show such behavior. As we will show,
this is an immediate consequence of the system becoming WS-integrable
at ϵ = 0 where in fact any symmetric periodic two-cluster state is
neutrally stable while asymmetric periodic two-cluster states are always
exponentially unstable at ϵ = 0, regardless of the specific form of h.

As a first step in our investigation, we replace the ensemble and
cluster sizes in (2.6) by the parameter p, describing the relative size
of one of the clusters. This allows to make general statements about
existence and stability of two-cluster states, independently of N .

5.2 a reduced description

As already established in Chapter 2, for systems of identical ARs, it
holds that (i) units cannot overtake each other in the state space S1

and thus, (ii) clustered states stay clustered for all time. Introducing
the parameter p = mA/N , this means that the two-cluster subspaces

Tp :=
{︂

ϕ ∈ TN ; ϕ1 = · · · = ϕpN = ϕA, ϕpN+1 = · · · = ϕN = ϕB
}︂
,

which are homeomorphic to the two-dimensional torus T2, are invariant
under the flow of (2.6). For finite N , the parameter p takes values in
{2/N, . . . , (N−2)/N} but for our purposes we simply assume p ∈ (0, 1).
In particular, symmetric two-cluster states are elements of the space
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T1/2. Note that different choices for mA and mB and subsequently
of p yield different subspaces Tp ⊂ TN which intersect only in the
diagonal space ∆ :=

{︂
ϕ ∈ TN ; ϕ1 = · · · = ϕN

}︂
(the space of complete

synchrony). Hence, the dynamics on these spaces can be described by
the two-dimensional reduced system

ϕ̇A = ω − sinϕA + ϵh(ϕA) + (1 − p)κ sin(ϕB − ϕA)
ϕ̇B = ω − sinϕB + ϵh(ϕB) + p κ sin(ϕA − ϕB)

(5.2)

since only those units interact with each other that do not belong to
the same cluster. Equation (5.2) thus describes a system of two gener-
ally nonidentical units, close to a SNIC, a setup that was investigated
rigorously by Baesens and MacKay in [BM13] for the case of the units
being sufficiently close to their respective SNICs.

The reduced system (5.2) features an important property in the sym-
metric case p = 1/2: It is equivariant under permutations of cluster A
and B. According to the argument, made in Chapter 3, this equiv-
ariance results in a spatio-temporal symmetry one for its periodic solu-
tions: after one half-period T/2 > 0, the instantaneous cluster positions
are permuted, i. e., ϕA(t + T/2) = ϕB(t) and vice versa for all t ∈ R.
Therefore, with respect to T1/2, any periodic state is a splay state. This
observation becomes important in Section 5.5, when we investigate the
asymptotic stability of such states.

Let ϕs and ϕu denote the stable and the unstable fixed point of
the single AR ϕ̇ = ω − sinϕ + ϵ h(ϕ). For κ = 0, the system (5.2)
possesses exactly four steady states: the stable synchronous fixed point We refer to all states that

lie on the diagonal ∆ as
synchronous and to all
states that do not lie in ∆
as asynchronous states.

∆s = (ϕs, ϕs), the unstable synchronous fixed point ∆u = (ϕu, ϕu),
as well as the two saddles Σ1 = (ϕu, ϕs) and Σ2 = (ϕs, ϕu). In a slight
abuse of notation, we identify these fixed points with the corresponding
ones of (2.6), i. e., with the synchronous fixed points

∆s =
(︁
ϕs, . . . , ϕs⏞ ⏟⏟ ⏞
N entries

)︁
∆u =

(︁
ϕu, . . . , ϕu⏞ ⏟⏟ ⏞
N entries

)︁
in the diagonal space ∆ and the two saddles

Σ1 =
(︁
ϕu, . . . , ϕu⏞ ⏟⏟ ⏞
mA entries

, ϕs, . . . , ϕs⏞ ⏟⏟ ⏞
mB entries

)︁
Σ2 =

(︁
ϕs, . . . , ϕs⏞ ⏟⏟ ⏞
mA entries

, ϕu, . . . , ϕu⏞ ⏟⏟ ⏞
mB entries

)︁
of the full system. Since ϕs and ϕu are hyperbolic, so are the reduced
fixed points and thus they persist for sufficiently small |κ| > 0.

Coming next to the existence of periodic solutions, one may ask for
which choices of (ω, ϵ, κ, p) such solutions exist at all. The former two
parameters determine only the on-site dynamics of each cluster so we
may fix them and determine for which choices of (κ, p) the system (5.2)
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Figure 4: Existence of periodic orbits for the system (5.2) in dependence on
coupling strength κ and relative proportion p of cluster A with fixed param-
eters ω = 0.8 and ϵ = 0.1. Panels (a) and (b) show numerical results for
the choices (5.1a) and (5.1b) for h, respectively. In the white shaded area, no
periodic two-cluster states exist while in the gray area, a periodic orbit with
mA = pN and mB = (1 − p)N exists for any given N . Black lines indicate
the approximate bounds (5.3) and (5.4) for the existence of periodic states.

possesses periodic states. Figure 4 depicts the regime of existence of
periodic states (gray shaded area) of the system (5.2) for perturbation
types (5.1a) and (5.1b), respectively. In the white shaded area, no pe-
riodic orbits exist. The meaning of the black lines will be explained
further below. On-site parameters are fixed at ω = 0.8 and ϵ = 0.1.
From this, one can make two preliminary observations. First, in order
to yield any periodic two-cluster states, coupling needs to be sufficiently
repulsive. In this numerical experiment, we only find such orbits for
κ smaller than approximately −2/3. Secondly, in order to exist, peri-
odic orbits must be sufficiently balanced in cluster size for given κ. In
general, we observe that the larger |κ| is, i. e., the more repulsive the
interaction gets, the larger the disparity of cluster sizes can be to still
yield a periodic orbit. This observation is in accordance to our expec-
tation: If repulsion between clusters is weak and size disparity is large,
the smaller cluster has little impact on the dynamics of the larger one.
Hence, the latter converges approximately to the coordinate ϕs of the
single unit’s stable state of rest, as if isolated. Since clusters cannot
overtake each other, the small cluster cannot show any large scale pe-
riodic motion. However, small scale motions are equally forbidden as
the system is of gradient type as we showed in Chapter 2. Hence, the
system must come to rest. This argument leads to a rough estimate on
the bounds of existence for periodic two-cluster states in κ and p for
|ϵ| ≪ 1.

For this, let the on-site dynamics be given by f(ϕ) = ω−sinϕ+ϵh(ϕ)
and p < 1/2 which implies that cluster B is the larger one. Assuming,
without loss of generality, ω > 0, we may view the influence of the
smaller cluster A as a small time-dependent perturbation pκg(t) to
the dynamics of B so that we write ϕ̇B = f(ϕB) + pκg(t). Repulsion
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between clusters is the strongest if ϕA − ϕB = ±π/2 and the influence
of A on B is bounded by ±pκ which yields⃓⃓⃓

ϕ̇B
⃓⃓⃓

= |ω − sinϕB + ϵh(ϕB) + pκg(t)| ≤ |ω − sinϕB + ϵh(ϕB) − pκ|

since pκ < 0. The flow of ϕB then possesses a fixed point ϕ∗
B if the right

hand side of this equation can become zero for some ϕB. For |ϵ| ≪ 1,
this implies ω−pκ ≲ 1 so that we conclude for the existence of periodic
two-cluster states with cluster sizes pN and (1 − p)N that

p > pmin ≈ −1 − ω

κ
(5.3)

and pmin is a lower bound for p. By symmetry, the upper bound can be
approximated as

pmax ≈ 1 + 1 − ω

κ
. (5.4)

We plot these bounds as black lines in Figure 4. Comparing with the
actual domain of existence, we find that they indeed bound the regime
of existence for periodic two-cluster states. However, as true boundaries
for this regime, they are not very accurate. In order to gain a more thor-
ough understanding of this regime, we have to investigate the actual
bifurcations that lead to periodic two-cluster states. These bifurcations
are expected (i) to be global and involve the fixed points ∆s, ∆u, Σ1,
and Σ2 and (ii) to take place in the subspaces Tp. Thus, we first need to
investigate the possible bifurcation scenarios for the fixed points in Tp.
Doing so, we focus mainly on the case p = 1/2. Afterwards, we discuss
how the scenarios change qualitatively if one considers p ̸= 1/2.

5.3 fixed point bifurcations in Tp

For fixed p and sufficiently small |κ|, the two-cluster subspace Tp con-
tains exactly four fixed points ∆s, ∆u, Σ1, and Σ2. Of these, only the
two saddles are expected to play a role in any global bifurcation, leading
to periodic two-cluster states: The synchronous fixed point ∆u is com-
pletely unstable for κ < 0 and does not go through any bifurcation while
∆s only takes part in a Transcritical Homoclinic Bifurcation (THB) at
κ0 which yields different periodic states, discussed in Chapter 6. How-
ever, the four fixed points do not exist independently of each other, but
can go through local bifurcations as well, which is what we discuss next.
For simplicity, we focus for now on the case p = 1/2, i. e., the case of
symmetric two-cluster states.1 This is in accordance with our empirical
observations. For values of p far off 1/2, integration for randomly cho-
sen initial conditions rarely lead to stable periodic two-cluster states in
our numerical studies. The reason for this will become clear when we
discuss stability in Section 5.5.

1 Note that in doing so, we assume N to be even. In our numerical experiments, the
results for uneven N looked rather similar with symmetric two-cluster states being
replaced by states, consisting of two equally sized clusters and a singleton.
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5.3.1 Destabilization of ∆s

It was shown in [ZT16], that ∆s is, for sufficiently small |κ|, the only
attractor of systems like (2.6) but looses stability in a THB [AKS90;
AS92] at some κ0 < 0, i. e., when the coupling becomes sufficiently
repulsive. For the choice (5.1a) of h, the critical value for κ and the
on-site parameters ω and ϵ are interrelated by the expression2

0 = − 1 + 12ϵ2 − 48ϵ4 + 64ϵ6 + κ2
0 + 4ϵ2κ2

0−
− 32ϵ4κ2

0 − 4ϵκ3
0 + 4ϵ2κ4

0 + ω2 − 80ϵ2ω2−
− 128ϵ4ω2 + 32ϵ2κ2

0ω
2 + 64ϵ2ω4.

(5.5)

This expression can be solved for κ0 in terms of a power series in ϵ
which reads up to quadratic order

κ0 = −
√︁

1 − ω2 + 2(1 − ω2)ϵ+ 2ω2 4ω2 − 5√
1 − ω2

ϵ2 + O(ϵ3). (5.6)

As described in [ZT16], the destabilization of ∆s through the THB is
a highly degenerate event. Firstly, the derivative DF (∆s) of the right
hand side of (2.6) possesses an eigenvalue of multiplicity N − 1, which
becomes zero at κ0. Secondly, at the THB, ∆s ∈ TN coalesces with
∼ 2N−1 saddles, which are asynchronous for κ ̸= κ0. These saddles are
all two-cluster steady states that lie in different subspaces Tp ⊂ TN
so that for every Tp with p ̸= 1/2, either one of the two Σi ∈ Tp
which already exist for κ = 0 coincides with ∆s or one of two newWhen we write Σi (and

later Ξi, see below), it is
always assumed that

i ∈ {1, 2}.

asynchronous fixed points Ξi which may emerge in additional saddle-
node bifurcations, discussed further below.

The homoclinic bifurcation of ∆s at κ0 is transcritical only with re-
spect to the two-cluster subspaces Tp with p ̸= 1/2. There, the saddles
Σi,Ξi ∈ Tp exist for all κ in an open neighborhood of κ0, are unstable
in Tp for κ > κ0, and stable in Tp for κ < κ0, cf. [ZT16].3 However, the
symmetric Σi,Ξi ∈ T1/2 play an exceptional role due to the equivari-
ance of (2.6) under permutations of clusters A and B for p = 1/2. In
T1/2, the transcritical bifurcation is replaced by a pitchfork bifurcation,
as demonstrated in the next section. Thus, for the case p = 1/2, the
participating fixed points Σi or Ξi only exist for either κ > κ0 in case
of a subcritical pitchfork or for κ < κ0 for a supercritical pitchfork,
see Figure 5. Here, a solid line indicates a stable (in T1/2) fixed point
while a dashed line indicates an unstable one. The green line represents
the synchronous fixed point ∆s while black lines represent two-cluster
saddles. Whether the pitchfork is sub- or supercritical can have im-
plications on what global bifurcations, leading to periodic orbits, are
possible.

2 The expressions (5.5) and (5.6) as well as similar ones for the case of perturbation
type (5.1b) are derived in Appendix B.

3 Note that this does not imply that they are stable in the full phase space TN for
κ < κ0. They are in fact unstable in TN since they are generally unstable against
splitting perturbations, in accordance with [ZT16].
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Figure 5: Schematic depiction of the simplest possible bifurcation scenarios,
involving ∆s and the saddles Σi,Ξi ∈ T1/2, i ∈ {1, 2}. Solid lines represent
stable fixed points (in T1/2) while dashed lines indicate unstable ones. Panel
(a): A subcritical pitchfork occurs at κ0. Global bifurcations that yield periodic
two-cluster states, involve the saddles Σi and thus must occur for some κcrit. >
κ0 (blue dots). Panel (b): A supercritical pitchfork occurs at κ0 and yields new
stable steady states Ξi which generically vanish in simultaneous saddle-node
bifurcations with the Σi for some κ1 < κ0. Periodic two-cluster states can
emerge in two possible ways. Either, they are created in a double-heteroclinic
bifurcation for some κ1 < κ′

crit. < κ0 (yellow triangles) or κcrit. ≥ κ0 (blue
dots), or in a double-SNIC at κ1 (red squares). In case of a double-heteroclinic
bifurcation, multistability in T1/2 can occur: If the periodic orbit emerges
at κcrit. > κ0 and is stable, it is a second attractor besides ∆s. Basins of
attraction are separated by the unstable manifolds of the Σi.

In principle, there are no limitations as to what kinds of limit cycle
bifurcations can occur in T1/2 with respect to κ. Depending on the form
of the perturbation term h(ϕ), one might encounter saddle-node limit
cycle bifurcations, giving rise to pairs of stable and unstable periodic
orbits or heteroclinic bifurcations that involve additional saddles which
themselves may emerge in independent local fixed point bifurcations.
However, if we are parsimonious with assumptions on the existence of
additional invariant sets being involved in the creation of periodic two-
cluster states, only two possible scenarios, depicted in Figure 5, are
expected.

If the pitchfork is subcritical, the two saddles Σi merge with ∆s at
κ0, rendering it unstable, see Panel (a). In this case, since for κ < κ0,
the only fixed points left are ∆s and ∆u, which are both unstable in
T1/2 and seem to not be involved in any further bifurcations, any oc-
curring periodic orbits are expected to emerge for some κ0 < κcrit. < 0
and must involve both saddles Σi (blue dots), due to symmetry. On
the other hand, if the pitchfork is supercritical, it yields two new asyn-
chronous fixed points Ξi, stable in T1/2, which take over the role of ∆s

as attractors in that space as depicted in Panel (b). Generically, the
new steady states Ξi and the saddles Σi can vanish for some κ1 < κ0 in
two simultaneous saddle-node bifurcations (again due to permutation
symmetry). In this case, two distinct scenarios, leading to periodic or-
bits, are possible. Either, these states are formed in a global bifurcation
that involve only the Σi, e. g., in form of two simultaneous heteroclinic
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bifurcations (henceforth called a double-heteroclinic bifurcation). This
can, for example, happen for some κ0 ≤ κcrit. < 0 (blue dots in Fig-
ure 5) or for some κ1 < κ′

crit. < κ0 (yellow triangles), i. e., before or
after the pitchfork occurs. A second type of scenario would consist of
two simultaneous SNICs (henceforth called a double-SNIC) at κ1 (red
squares). Again, for κ < κ1 no creation of periodic orbits can take
place without assuming additional more complex bifurcation scenarios.

This means in particular that a subcritical pitchfork should always
imply a double-heteroclinic bifurcation while observing a double SNIC
implies that ∆s went through a supercritical pitchfork, before. We
demonstrate in what follows that the proposed scenarios indeed occur.
Before we come to this, we discuss first a criterion for the criticality of
the pitchfork bifurcation of ∆s.

5.3.2 Criterion of Criticality for the Pitchfork Bifurcation of ∆s

In this section, we show that a pitchfork bifurcation of ∆s occurs in
T1/2 and determine whether it is sub- or supercritical. For this, we
consider a more general class of systems

ϕ̇A = F (ϕA) + κ

2G(ϕB − ϕA)

ϕ̇B = F (ϕB) + κ

2G(ϕA − ϕB)
(5.7)

where F and G are assumed to be sufficiently smooth and G(0) = 0. If
∆s is a stable fixed point for κ = 0, we have F (ϕs) = 0 and F ′(ϕs) < 0.
Criticality is then determined via the following proposition:

Proposition 5.1 Let ∆s = (ϕs, ϕs) denote the synchronous fixed point
of the system (5.7) of two coupled Active Rotators where ϕs denotes the
stable fixed point of the single AR ϕ̇ = F (ϕ). If the coupling function G
is odd and does not vanish identically and the first three derivatives of
F at ϕs and G at 0 exist, the system undergoes a pitchfork bifurcation
at κ0 = F ′(ϕs)/G′(0). Moreover, this pitchfork is supercritical if the
quantity

c := 3F ′′(ϕs)2G′(0)
F ′(ϕs) (F ′′′(ϕs)G′(0) − 4F ′(ϕs)G′′′(0)) (5.8)

fulfills 0 < c < 1. For c < 0 or c > 1, the pitchfork is subcritical.

To prove this proposition, we first make the following simple geomet-
ric observation:

Assertion 5.2 Any two parabolas y1(x) = a1 + b1x
2/2 and y2(x) =

a2 + b2x
2/2 with either (a) b1 > b2 > 0, (b) 0 > b1 > b2, or (c)

b1 > 0 > b2 intersect if and only if a1 < a2, as depicted in Panels (a),
(b), and (c) in Figure 6. On the other hand, if (d) b1 < 0 < b2, they
intersect if and only if a1 > a2, cf. Panel (d).

Remark 5.3 The first three cases amount to the condition b1 > b2. To
distinguish them anyway is necessary for the “graphic” proof in Figure 6.
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Figure 6: Two parabolas y1(x) = a1 + b1x
2/2 and y2(x) = a2 + b2x

2/2 with
either b1 > b2 > 0, 0 > b1 > b2, or b1 > 0 > b2 intersect if and only if a1 < a2,
see Panels (a), (b), and (c). On the other hand, if b1 < 0 < b2 holds, the
parabolas only intersect if a1 > a2, see Panel (d).

Note also that case (d) is equivalent to (c) as can be seen by switching
indices.

We now prove Proposition 5.1.

Proof. Without loss of generality, assume G′(0) > 0 which in particular
implies repulsive coupling for κ < 0. Since the system (5.7) is invariant
under permutations of the clusters, so are the ϕA- and ϕB-nullclines. It
is convenient to make a change of coordinates to x = (ϕA − ϕB)/2 and
y = (ϕA+ϕB)/2 which essentially constitutes a clockwise rotation of the
system by π/4. Note that in these coordinates, ∆s reads ∆s = (0, ϕs).
Further, permutation invariance of the original system translates to a
mirror symmetry along the y-axis. We find

ẋ = f(x, y)
ẏ = g(x, y)

with

f(x, y) = 1
2
[︁
F (x+ y) − F (y − x)

]︁
− κ

2G(2x)

g(x, y) = 1
2
[︁
F (x+ y) + F (y − x)

]︁
for which f(−x, y) = −f(x, y) and g(−x, y) = g(x, y) hold. The x-
nullcline yx(x) and y-nullcline yy(x) are then defined by 0 = f(x, yx(x))
and 0 = g(x, yy(x)), respectively. The x-nullcline has a trivial branch
x = 0, which corresponds to the fact that the diagonal ϕA = ϕB is in-
variant under the flow of (5.7). We can therefore factor out this branch
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by considering yx as the solution of 0 = f(x, yx(x))/x. Mirror symmetry
around the y-axis implies that the nullclines are even functions

yx(x) = ax + 1
2bxx

2 + O(x4) (5.10a)

yy(x) = ay + 1
2byx

2 + O(x4). (5.10b)

Fixed points constitute intersections of nullclines. To determine whether
the assumed pitchfork of ∆s at κ0 is sub- or supercritical we make use of
Assertion 5.2 by determining and comparing the quadratic coefficients
bx and by in the series expansions (5.10) and evaluating which case of
the assertion applies to the them.

We start with computing the y-nullcline. Inserting (5.10b) into 0 =
g(x, y) yields

0 = F (ay) + 1
2
[︁
byF

′(ay) + F ′′(ay)
]︁
x2 + O(x4)

and by collecting powers of x, we find

0 = F (ay)
0 = byF

′(ay) + F ′′(ay).

The first equation is just the fixed point equation for a single Active
Rotator and thus has solutions ϕs and ϕu where only the first one is of
interest for us. The second equation can then be solved for by, which
yields

by = −F ′′(ϕs)
F ′(ϕs)

.

Since ϕs is stable and does not depend on κ, the denominator is negative
and we have

sign by = signF ′′(ϕs)
day
dκ = 0.

Next, we determine the quadratic expansion for the nontrivial branch
of the x-nullcline, defined by 0 = f(x, yx(x))/x, for which the Taylor
expansion in x reads

0 = − κ

2xG(0) +
[︁
F ′(ax) − κG′(0)

]︁
− κG′′(0)x+

+ 1
6
[︁
3bxF ′′(ax) + F ′′′(ax) − 4κG′′′(0)

]︁
x2 + O(x4).

Collecting powers of x and noting that the terms of odd power of x
vanish identically since G is odd, we are left with

0 = F ′(ax) − κG′(0)
0 = 3bxF ′′(ax) + F ′′′(ax) − 4κG′′′(0).
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From the first equation we read the critical coupling κ0 = F ′(ϕs)/G′(0) <
0 since at the bifurcation, we have ax = ϕs. However, in general we have
to consider ax as a function of κ. Solving the equations for bx yields

bx = 4F ′(ax)G′′′(0) − F ′′′(ax)G′(0)
3F ′′(ax)G′(0) .

To summarize, we find that

sign bx = sign by · sign
(︁
4F ′(ϕs)G′′′(0) − F ′′′(ϕs)G′(0)

)︁
sign dax

dκ (ϕs) = sign dκ
dax

(ϕs) = F ′′(ϕs)
G′(0) = sign by.

Note also that the quantity c in (5.8) is given by

c := by
bx|ax=ϕs

= 3F ′′(ϕs)2G′(0)
F ′(ϕs) (F ′′′(ϕs)G′(0) − 4F ′(ϕs)G′′′(0)) .

We are now able to finally prove the proposition. Note first that
∆s is always unstable for κ < κ0 and goes through some bifurcation
at κ0. To determine whether it is a sub- or supercritical pitchfork, it
suffices to determine whether yx(x) and yy(x) intersect at κ = κ0+δκ or
κ = κ0 −δκ in the vicinity of x = 0 for sufficiently small δκ > 0 because
these intersections yield the two other fixed points that coalesce with
∆s in T1/2 in the pitchfork at κ0. Note that we have ay = ϕs = ax(κ0)
with dax/ dκ(κ0) ̸= 0 so that if the nullclines intersect for κ0 + δκ,
they cannot intersect for κ0 − δκ because of Assertion 5.2 and hence
the bifurcation is a subcritical pitchfork. On the other hand, if they
intersect for κ0−δκ, they cannot intersect for κ0+δκ for the same reason
and thus, the bifurcation is a supercritical pitchfork. We now have to
distinguish six cases to determine criticality, where we approximate
the nullclines up to quadratic order and compare with the cases (a)-(d)
from Assertion 5.2. For the first four cases, we have 4F ′(ϕs)G′′′(0) −
F ′′′(ϕs)G′(0) > 0:

1. by > bx > 0 implies dax/ dκ > 0 and c > 1. Hence, comparing
with case (a) of Assertion 5.2 with y1(x) = yy(x) and y2(x) =
yx(x), the nullclines intersect only for κ0+δκ where ay = ax(κ0) <
ax(κ0 + δκ) and the pitchfork is subcritical.

2. bx > by > 0 implies dax/ dκ > 0 and 0 < c < 1. Hence, com-
paring with case (a) of Assertion 5.2 with y1(x) = yx(x) and
y2(x) = yy(x), the nullclines intersect only for κ0 − δκ where
ax(κ0 − δκ) < ax(κ0) = ay and the pitchfork is supercritical.

3. 0 > by > bx implies dax/ dκ < 0 and 0 < c < 1. Hence, com-
paring with case (b) of Assertion 5.2 with y1(x) = yx(x) and
y2(x) = yy(x), the nullclines intersect only for κ0 − δκ where
ax(κ0 − δκ) > ax(κ0) = ay and the pitchfork is supercritical.

4. 0 > bx > by implies dax/ dκ < 0 and c > 1. Hence, comparing
with case (b) of Assertion 5.2 with y1(x) = yx(x) and y2(x) =
yy(x), the nullclines intersect only for κ0+δκ where ay = ax(κ0) <
ax(κ0 + δκ) and the pitchfork is subcritical.
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Assuming 4F ′(ϕs)G′′′(0) − F ′′′(ϕs)G′(0) < 0 yields the remaining two
cases:

5. by > 0 > bx implies dax/dκ > 0 and c < 0. Hence, comparing
with case (c) of Assertion 5.2 with y1(x) = yy(x) and y2(x) =
yx(x), the nullclines intersect only for κ0+δκ where ay = ax(κ0) <
ax(κ0 + δκ) and the pitchfork is subcritical.

6. bx > 0 > by implies dax/dκ < 0 and c < 0. Hence, comparing
with case (d) of Assertion 5.2 with y1(x) = yy(x) and y2(x) =
yx(x), the nullclines intersect only for κ0+δκ where ax(κ0+δκ) <
ax(κ0) = ay and the pitchfork is subcritical.

This completes the proof.

In case of systems of type (5.2) with p = 1/2, the quantity c in
Proposition 5.1 reads

c = 3(sinϕs + ϵh′′(ϕs))2

(cosϕs − ϵh′(ϕs)(3 cosϕs − 4ϵh′(ϕs) − ϵh′′′(ϕs))

which yields

c1 = (sinϕs − 4ϵ sin 2ϕs)2

cosϕs(cosϕs − 2ϵ cos 2ϕs) (5.11)

for h(ϕ) = sin 2ϕ. The corresponding expression for our second pertur-
bation h(ϕ) = 1/(sinϕ− 2) + 1/

√
3 + (4/

√
3 − 2) sinϕ is given by

c2 = − 3X2

(ϵY1 − 1)(ϵY2 + 3)

with

X = ϵ

3

(︃ 3
(sinϕs − 2)2 − 4

√
3 + 6

)︃
tanϕs + 2ϵ cosϕs

(sinϕs − 2)3 + tanϕs

Y1 = − 1
(sinϕs − 2)2 + 4√

3
− 2

Y2 = 3
(sinϕs − 2)2 − 12

(sinϕs − 2)3 − 18
(sinϕs) − 2)4 − 4

√
3 + 6.

A change of criticality occurs if c becomes either one or zero. These
degenerate cases constitute codimension 2 bifurcations in the parameter
space, spanned by ω, ϵ, and κ. For the case (5.1a), this one-dimensional
set fulfills

0 = + 4
[︂
1 − 2ω2

]︂2
+
[︂
1796ω6 − 1924ω4 + 545ω2 − 48

]︂
ϵ2+

+ 4
[︂
16384ω8 − 22272ω6 + 9390ω4 − 1393ω2 + 48

]︂
ϵ4−

− 4
[︂
256ω4 − 273ω2 + 64

]︂
ϵ6

(5.12)

for c1 = 1, as shown in Appendix C. The second case c1 = 0 is of
no importance because it did not occur in our work. We refrain from
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deriving a similar expression for perturbation type (5.1b) due to its
complicated form. Note that the switch in criticality constitutes also the
curve in the parameter space along which the two-dimensional surface
of saddle-node bifurcations branches off the equally two-dimensional
surface of pitchfork bifurcations because the saddle-node bifurcation
exclusively accompanies the supercritical pitchfork.

A word is at hand, considering the case p ̸= 1/2. Here, the permu-
tation symmetry between the clusters is removed so that pitchforks
cannot occur. Instead, the pitchforks are replaced by either (i) a tran-
scritical bifurcation of one of the saddles Σi with ∆s, in which these
two switch stabilities, followed by a saddle-node bifurcation with the
second Σi+1 (here, we set 2 + 1 ≡ 1) for the subcritical case. The bi-
furcation diagram looks then similar to Panel (a) in Figure 5 where
the parabola is now shifted either up or down. (ii) For the supercrit-
ical case, we find a saddle-node bifurcation in which the Ξi are born,
followed by a transcritical bifurcation of one of them (the saddle of
the pair) with ∆s, where it switches stability with ∆s. Then, the two
saddle-node bifurcations of the Σi and Ξi occur, even though not nec-
essarily for the same κ. Graphically, this amounts to a vertical shift of
the quartic curve in Panel (b) of Figure 5 accompanied by a distortion
of the two asynchronous branches.

With these considerations, we end our discussion of the fixed point
bifurcations in Tp and come to the bifurcation scenarios that yield
periodic two-cluster states.

5.4 limit cycle bifurcations in Tp

As mentioned in the beginning of this chapter, periodic two-cluster
states must be created in global bifurcations which, in their simplest
form, only involve the four fixed points ∆s, ∆u, Σ1, and Σ2, and pos-
sibly the asynchronous fixed points Ξ1 and Ξ2, if the pitchfork at κ0
for p = 1/2 is supercritical if we assume that there are no further fixed
points present. These bifurcations are expected to take place in the re-
spective two-cluster subspaces Tp because they must also be observed
in the reduced description (5.2). In our investigations, we observed two
types of bifurcations, leading to periodic states. Either via a double-
heteroclinic bifurcation or, reminiscent to the single SNIC-element, a
double-SNIC. We discuss both bifurcations in what follows. For defi-
niteness, we consider only the perturbation type (5.1a) of the form
h(ϕ) = sin 2ϕ. The same scenarios can however be found for the generic
perturbation (5.1b) which further supports the argument that these sce-
narios are generic for systems of type (2.6).

In order to discuss the scenarios, we plot the phase diagrams together
with the necessary invariant structures, as exemplified in Figure 7. Peri-
odic boundary conditions for ϕA and ϕB are always indicated by black
arrowheads along the boundaries of the square plot so that opposite
sides of it are identified with each other. For now, the vector field of
(5.2) is depicted as small black arrows in the square. In later diagrams,
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φA

φ
B

Figure 7: Example phase plot of the system (5.2) with h(ϕ) = sin 2ϕ and for
p = 1/2. System parameters are set to ω = 0.8, ϵ = −0.2, and κ = 0. Black
arrowheads at the boundary indicate the periodic boundary conditions in ϕA

and ϕB . The gray diagonal line indicates the invariant diagonal space ∆ with
the fixed points ∆s (green dot) and ∆u (red dot). The saddles Σ1 and Σ2

(black dots) are connected via their stable manifolds (blue lines) with ∆u and
their unstable manifolds (orange lines) with ∆s. Arrowheads indicate the flow
along each invariant contour.

we do not show the field any longer to not clutter the plots. At κ = 0,
the system is the product of two independent clusters A and B. Thus,
the stable manifolds of the saddles (black discs) are of the form {ϕu}×S1

for Σ1 = (ϕu, ϕs) and S1 × {ϕu} for Σ2 = (ϕs, ϕu) and connect the sad-
dles with ∆u (red dot). These manifolds are depicted as blue lines in
what follows. On the other hand, the unstable manifold of Σ1 is of the
form S1 × {ϕs} while the unstable manifold of Σ2 is given by {ϕs} × S1.
These manifolds connect the saddles with ∆s (green dot) and are de-
picted as orange lines. The flow along the manifolds is indicated by
arrowheads. Additionally, the invariant diagonal space ∆ is depicted
with the direction of its flow as a gray line, connecting ∆s and ∆u.

All of these manifolds are, as products of NHIMs, themselves NHIMs
[FM71; HPS77] and are thus persistent for sufficiently small |κ| > 0
and are the building blocks for the sought bifurcation scenarios. Our
discussion is mainly qualitative because it is in general not possible to
determine analytic expressions for the critical coupling κcrit. at which,
e. g., a double-heteroclinic bifurcation occurs. Standard numerical tech-
niques to determine such bifurcations are the orthogonal collocation
method and the shooting method [Kuz13]. We employ a variation of
the latter one. Its main idea is simple and easy to implement for planar
systems. For a heteroclinic bifurcation at κcrit., the unstable manifold
of, say, Σ1 coincides with the stable manifold of Σ2. Thus, if κ deviates
by a small amount δκ > 0 from κcrit., the unstable manifold misses Σ2

and instead, after a fast approach, departs from it, trailing the unstable
manifold of Σ2. For κcrit. + δκ and κcrit. − δκ, this departure happens
in opposite directions, depending on which side of the stable manifold
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Figure 8: Example of a double-heteroclinic bifurcation, leading to a symmetric
(p = 1/2) periodic two cluster state. On-site parameters are set to ω = 0.8
and ϵ = −0.2. From the left to the right, the coupling becomes more repulsive.
Starting with a moderately repulsive coupling in Panel (a) and well separated
stable and unstable manifolds of the Σi, these manifolds approach each other
in Panel (b). Panel (c) shows the double-heteroclinic bifurcation: both saddles
are connected by a heteroclinic cycle (orange line). In Panel (d), a stable
periodic orbit (orange closed line) has formed while the synchronous fixed
point ∆s is also still stable. In Panel (e), the saddles have merged with ∆s

in a subcritical pitchfork, rendering it unstable, transversal to the diagonal
∆. At this point, the symmetric periodic orbit remains the only attractor in
T1/2.

of Σ2 the “shot” from Σ1 arrives at. Hence, by narrowing down the
interval in which the flip in the direction of departure occurs, one can
determine κcrit.

We start our discussion of bifurcation scenarios with the double-
heteroclinic bifurcation.

5.4.1 The Double-Heteroclinic Bifurcation

5.4.1.1 Symmetric Two-Cluster States

We start with discussing the symmetric case p = 1/2. Fixing on-site
parameters ω = 0.8 and ϵ = −0.2, in Figure 8, we show, from the
left to the right, a typical double-heteroclinic bifurcation scenario for
increasing repulsiveness in the case of a subcritical pitchfork bifurcation.
On the torus T1/2, for moderate coupling in Panel (a), we start with
the unstable manifolds (orange lines) which connect the saddles Σi

with the still stable diagonal fixed point ∆s. On the other hand, the
stable manifolds (blue lines) of the Σi connect them with the unstable
node ∆u. As repulsion increases in Panel (b), the long branches of the
unstable manifold of Σi and the stable manifold of Σi+1 (where we set
2+1 ≡ 1) approach each other until they merge for the critical coupling
κcrit. in Panel (c). At this point, a heteroclinic cycle (cf. [Fie20]) forms,
connecting Σ1 and Σ2 with each other. Its subsequent breakup in Panel
(d) results in the periodic two-cluster state (orange line). Stability of
this orbit within T1/2 is determined through the competition between
expansion and contraction near the saddles Σi, i. e., by the sum λ−(Σi)+
λ+(Σi) of eigenvalues of the Jacobian of (5.2) at Σi at the bifurcation
[Fie20]. In general, this sum reads

λ−(ϕA, ϕB) + λ+(ϕA, ϕB) = f ′(ϕA) + f ′(ϕB) − κ cos(ϕA − ϕB).
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Figure 9: Unfolding of the double-heteroclinic bifurcation for p = 2/5. On-site
parameters are fixed at ω = 0.8 and ϵ = −0.2. Starting with moderate coupling
strength in Panel (a), coupling becomes more repulsive from the left to the
right. Panel (b) shows a heteroclinic orbit from Σ2 to Σ1 (vertical orange line).
Increasing |κ| further results in the unstable manifold of Σ2 forming a closed
contour with its two branches ending at ∆s in Panel (c). Panel (d) shows the
moment when a homoclinic orbit for Σ2 forms which results in the creation
of an asymmetric periodic two-cluster state after which the Σi vanish in a
saddle-node bifurcation, see Panel (e).

If this quantity is positive, i. e., if
⃓⃓
λ−(Σi)

⃓⃓
< λ+(Σi), expansion domi-

nates contraction and the limit cycle is unstable. If it is negative, con-
traction dominates and the limit cycle is stable. According to numerical
results, λ−(Σi) + λ+(Σi) is indeed always negative at κ0, so that con-
traction prevails and the periodic orbit is always stable in T1/2.

A rigorous treatment of two interacting units sufficiently close to
a SNIC can be found in [BM13]. The double-heteroclinic bifurcation,
discussed here, corresponds to the T -point in Figure 16 of [BM13]. Note
that in Panel (d), the system is bi-stable since both the periodic orbit
and ∆s are stable. Their basins of attraction are separated by the stable
manifolds of the saddles Σi. This holds until the saddles finally merge
with ∆s in the subcritical pitchfork bifurcation. After this point, the
periodic orbit has become the only attractor of the system, as depicted
in Panel (e).

Note that one can also observe double-heteroclinic bifurcations in
case of supercritical pitchforks of ∆s with κ1 < κcrit. < κ0 which look
essentially like the scenario, described above. The only difference is that
the involved unstable manifolds end in the Ξi rather than ∆s. We come
back to this when we discuss double-SNICs in Section 5.4.2.1.

Obviously, the double-heteroclinic bifurcation is not generic in the
sense that its two simultaneous heteroclinic bifurcations of the saddles
occur simultaneously due to the permutation symmetry of (5.2) for
p = 1/2. In the next section, we discuss how the picture changes when
this degeneracy is removed by setting p ̸= 1/2.

5.4.1.2 Asymmetric Two-Cluster States

As discussed in Section 5.2, periodic two-cluster states with large dispar-
ity in cluster sized only exist for sufficiently strong repulsive coupling.
For p close to 1/2, the bifurcation scenario looks more or less the same
as for the symmetric case.
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In Figure 9, we show a typical bifurcation for p = 2/5 which repre-
sents, e. g., a two-cluster state with four and six units per respective
cluster. On-site parameters are fixed at ω = 0.8 and ϵ = −0.2. Again,
we start with moderate coupling in Panel (a) and increase repulsive-
ness from the left to the right. Now, the permutation symmetry of the
system is removed and we find that the saddles go first through a het-
eroclinic bifurcation in Panel (b). In this bifurcation, the heteroclinic
connection from Σ2 to Σ1 detaches from Σ1 and instead connects Σ2 in
both directions of its unstable manifold with ∆s, as depicted in Panel
(c). In Panel (d), this connection forms a homoclinic orbit which sub-
sequently detaches from Σ2, giving rise to the periodic orbit, shown
in Panel (e). Note that in Panel (d), the saddle Σ1 is also very close
to ∆s, i. e., the system is close the THB at κ0. However, this is purely
incidental and is due to the choice of on-site parameters. In general,
the homoclinic bifurcation of Σ2 and the THB occur independently of
each other. Between the two depicted phase plots in Panels (d) and (e),
the saddles Σ1 and Σ2 vanish eventually in a saddle-node bifurcation.
This bifurcation, together with the transcritical bifurcation of Σ1 and
∆s, which is not shown here, are the residuals of the subcritical pitch-
fork for p = 1/2, due to the removal of the permutation symmetry. In
particular, Σ1 becomes stable at κ0, before merging with Σ2.

With this, we conclude that for p ̸= 1/2 the degeneracy of the double-
heteroclinic bifurcation is lifted which is replaced by a heteroclinic bifur-
cation, followed by a homoclinic one. Stability of the resulting periodic
orbit is, as in the previous section, a matter of whether the sum λ++λ−

of eigenvalues of the Jacobian of the vector field at Σ2 is positive or neg-
ative by a well-known theorem by Andronov and Leontovich [And+73;
Fie20]. Since numerical results suggest that it is always negative, the
periodic two-cluster state is asymptotically stable in Tp.

Comparing Figure 9 with Figure 8, we note that while the hetero-
clinic connection in Panel (b) of the former forms before the double-
heteroclinic bifurcation in the symmetric case, the homoclinic bifurca-
tion occurs only for significantly larger |κ|. This corresponds to our
observation in Section 5.2 where we discussed how for periodic two-
cluster states with larger disparity between cluster sizes to exist, the
coupling must be more repulsive than for the symmetric case.

In the next section, we discuss the double-SNIC which can be observed
only if the pitchfork of ∆s at κ0 is supercritical.

5.4.2 The Double-SNIC

The double-heteroclinic bifurcation for p = 1/2 or its unfolding for
p ̸= 1/2 are generic in the sense that they must occur if both clusters
are sufficiently close to their respective SNIC [BM13]. In this section,
we discuss a bifurcation which can be observed if this is not the case:
the double-SNIC. We start again with the symmetric case p = 1/2.
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Figure 10: Example for a double-SNIC for a supercritical pitchfork of ∆s. On-
site parameters are fixed at ω = 0.6 and ϵ = 0.2. Again, coupling strength
increases from the left to the right, starting with moderate coupling in Panel
(a). Panel (b) shows the phase plot after the supercritical pitchfork at κ0.
The two new stable asynchronous fixed points Ξi take over the role of ∆s

as attractors of the system. After the cusped closed contour, formed by the
unstable manifolds of the Σi, becomes smoothed out in Panel (c). Eventually,
the Σi and Ξi vanish in two simultaneous SNICs in Panel (d). The result is a
stable symmetric periodic two-cluster state in Panel (e).

5.4.2.1 Symmetric Two-Cluster States

Figure 10 shows a typical double-SNIC if the pitchfork of ∆s at κ0
is supercritical. On-site parameters are set to ω = 0.6 and ϵ = 0.2.
Starting with moderate coupling in Panel (a), we find in Panel (b)
that the two asynchronous fixed points Ξ1 and Ξ2, stable in T1/2, have
formed in the pitchfork and take over the role of ∆s as end points of
the unstable manifolds of the Σi. At first, the two incoming branches
at each Ξi end in cusps which subsequently get smoothed out in Panel
(c). Panel (d) depicts the simultaneous SNICs where both Ξi merge with
the Σi. From this, the periodic two-cluster state in Panel (e) is finally
formed. Its stability is inherited from the two heteroclinic connections
of the saddle-nodes in Panel (d), just as for a single SNIC. Since the
occurring saddle-nodes are stable in normal direction to the contour,
the periodic orbit is also stable in T1/2.

We stress again, that criticality of the pitchfork at κ0 is not a suffi-
cient condition to conclude that periodic orbits are created in a double-
SNIC. In fact, the locus of the heteroclinic bifurcation in Panel (b) of
Figure 5, can wander, depending on ω and ϵ, along the saddle branches
of the bifurcation diagram. When it ends at the turning point at κ1
such that periodic orbits are born in double-SNICs, this constitutes an
orbit flip [Kuz13]. In this codimension 2 event, the direction from where
the unstable manifold of saddle Σi approaches the stable fixed point
Ξi+1 changes from one side to the other along the leading eigenvector
of DF (Ξi+1). For example, the orbit flip from double-heteroclinic to
double-SNIC for ω = 0.6 occurs at ϵflip ≈ −0.0245 when the pitchfork is
still supercritical. It becomes subcritical only for ϵ < ϵ1 ≈ −0.1342, ac-
cording to the degenerate criticality condition c1 = 1 from Section 5.3.2.
Hence, in the regime ϵ1 < ϵ < ϵflip the bifurcation scenario looks as
follows: Increasing repulsiveness, we observe first a supercritical pitch-
fork in which the Ξi emerge. Increasing −κ further yields a double-
heteroclinic bifurcation through which the periodic orbit is created.
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Figure 11: Removing degeneracy of the double-SNIC from the previous section
by setting p = 2/5. On-site parameters are fixed at ω = 0.6 and ϵ = 0.2 with
|κ| increasing from the left to the right. Starting with moderate coupling in
Panel (a), a stable asynchronous fixed point Ξ2 and a saddle Ξ1 form. The
latter one goes through a transcritical bifurcation with ∆s thereby switching
stability. The result is shown in Panel (b): the unstable manifolds of the Σi

now end at the respective Ξi. In Panel (c), Ξ1 and Σ1 vanish in a first SNIC,
yielding the two branches of the unstable manifold of Σ2 to form a closed
contour. Panel (d) depicts the second SNIC between Ξ2 and Σ2. The result is
a stable asymmetric periodic two-cluster orbit, shown in Panel (e).

Increasing −κ even more results in two simultaneous saddle-node bi-
furcations (This scenario corresponds to the case, depicted by yellow
triangles in Panel (b) of Figure 5). At ϵ = ϵflip, the last two bifurcations
coincide and for ϵ > ϵflip, the periodic orbit emerges in a double-SNIC.

As we will see next, the picture looks again rather similar for the
case p ̸= 1/2 of asymmetric clusters.

5.4.2.2 Asymmetric Two-Cluster States

In Figure 11, we show numerical results for the asymmetric case p =
2/5, again fixing on-site parameters to ω = 0.6 and ϵ = 0.2. As for the
double-heteroclinic bifurcation, the difference to the symmetric double-
SNIC is two-fold. Firstly, the supercritical pitchfork is replaced by a
saddle-node bifurcation, yielding a saddle Ξ1 and a stable node Ξ2.
The saddle Ξ1 and ∆s then go through a transcritical bifurcation at
κ0, where Ξ1 an ∆s switch stability. The result is depicted in Panel (b):
two stable fixed points Ξi, to the left and right of ∆s, respectively, have
taken over its role as endpoints of the unstable manifolds of the Σi.
The second difference lies in the fact that the two SNICs now happen
consecutively. First, Ξ1 vanishes together with Σ1 in Panel (c), which
results in the unstable manifold of Σ2 to connect it with Ξ2. Then, in a
second SNIC, see Panel (d), Ξ2 and Σ2 vanish, rendering the invariant
circle (orange line) a periodic two-cluster state in Panel (e). As for
the symmetric case, the periodic orbit is stable in Tp. Note that again,
the contours, formed by the unstable manifolds start cusped and get
eventually smoothed out before their respective SNICs.

Note further that, as for the double-heteroclinic bifurcation, we ob-
serve that the first SNIC in Panel (c) occurs before the double-SNIC in
the symmetric case while the second one in Panel (d) occurs only for sig-
nificantly more repulsiveness. This again reflects the observation that
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for periodic two-cluster states with unequal sizes to form, the coupling
must be more repulsive, see Section 5.2.

This concludes our discussion of the found bifurcation scenarios,
leading to periodic two-cluster states. We argue that they constitute
the most generic bifurcations in which such states can emerge in the
sense that they do not require any additional invariant structures and
more complicated bifurcations. While the double-heteroclinic scenario
is truly generic for two clusters, sufficiently close to their respective
SNICs, the double-SNIC has, to our knowledge, not been discussed in
the context of repulsively coupled class I excitable elements. Next, we
discuss the asymptotic stability of the observed periodic orbits in the
full phase space TN .

5.5 limit cycle stability

As we established in Corollary 3.4, two types of asymptotic stability
of periodic two-cluster states can be distinguished: it can be splitting
or non-splitting. While the reduced system (5.2) offers full information
regarding the existence of periodic two-cluster solutions of (2.6) and
their asymptotic stability against perturbations that leave both clusters
whole we cannot deduce from it whether these orbits are stable against
splitting perturbations.

Both, double-heteroclinic bifurcations and double-SNICs create peri-
odic orbits with infinite period T for κ → κcrit.. A small deviation from
κcrit. still yields an orbit of large period, where the system spends the
dominating part of the period in a slow passage through the immediate
vicinity of the saddle point (in case of a double-heteroclinic bifurcation)
or the “ghosts” of the saddle-nodes (in case of a double-SNIC). Hence,
right after the bifurcation, splitting stability is inherited from the sad-
dle or saddle-node: if the saddle (or saddle-node) is stable with respect
to splitting perturbations, so is the periodic orbit. The reason for this
lies in the fact that the splitting and non-splitting eigenvalues of the
vector field Jacobian DF and hence the respective Floquet multipliers
(3.8) depend continuously on the cluster coordinates ϕA and ϕB of the
periodic orbit and thus, if the saddle or saddle-node is stable against
splitting perturbations, so is any state close by. Further into the domain
of existence for the periodic state, this inheritance is not necessarily the
case any more since the orbit spends less time near the saddle or the
ghost of the saddle-node.

Since the numerical evidence, presented in the previous section on
bifurcations, indicates that the periodic orbits are stable against non-
splitting perturbations, we only need to determine the two Floquet
multipliers

µA = exp
(︄∫︂ T

0
λA(t) dt

)︄

µB = exp
(︄∫︂ T

0
λB(t) dt

)︄
,

(3.8)
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defined in Corollary 3.4, which characterize the stability against split-
ting perturbations of clusters A and B, respectively. For the symmetric
case, µA and µB coincide due to the periodic orbit being a splay state
in the reduced description, as we discussed before.

We start with the following proposition, concerning µA and µB for
general WS-integrable models. It matches a similar finding for a system
of Kuramoto-Sakaguchi oscillators under common multiplicative noise
[Gon+19].

Proposition 5.4 Let ϕ(t) be a T -periodic two-cluster solution of a
WS-integrable system ϕ̇ = F (ϕ) with distinct clusters A and B where
mA,mB ≥ 2. Then the two splitting Floquet multipliers µA and µB

fulfill

µAµB = 1. (5.13)

Proof. Without loss of generality, we assume again that the angular
variables ϕj(t) are in cyclic order and that, since the clusters A and B
consist of at least two units each, we have 1, 2 ∈ A and N − 1, N ∈ B,
that is, the first two units of the ensemble belong to cluster A and the
last two units belong to cluster B. Since the clusters are distinct, we
have ϕA(t) ̸= ϕB(t) ∀t and thus, the cross-ratio

Λ1,N−1,N,2(ϕ) =

(︂
eiϕ1 − eiϕ2

)︂(︂
eiϕN−1 − eiϕN

)︂
(︂
eiϕ1 − eiϕN

)︂(︂
eiϕN−1 − eiϕ2

)︂
=

sin ϕ1−ϕ2
2 sin ϕN−1−ϕN

2

sin ϕ1−ϕN
2 sin ϕN−1−ϕ2

2

(5.14)

is well-defined in an open neighborhood of the periodic state in TN and
is zero for the two-cluster state. Additionally, it is a constant of motion
for the WS-integrable system.

For any initial state ϕ(t0) on the periodic orbit, with instantaneous
cluster coordinates ϕA = ϕ1(t0) = ϕ2(t0) and ϕB = ϕN−1(t0) = ϕN (t0),
let δϕ denote a small splitting perturbation of the form

δϕ = (δ,−δ, 0, . . . , 0, δ,−δ)T

with 0 < δ ≪ 1. For the perturbed state ϕ(t0) + δϕ, the Taylor expan-
sion of (5.14) yields

λ1,N−1,N,2 = Λ1,N−1,N,2(ϕ(t0) + δϕ)

= 2 sin2 δ

cos(ϕA − ϕB) − cos 2δ

= − 2δ2

cos(ϕA − ϕB) − 1 + O(δ4).

The perturbation δϕ is a linear combination δϕ = δϕA + δϕB of the
two eigenvectors

δϕA = (δ,−δ, 0, . . . , 0)T

δϕB = (0, . . . , 0, δ,−δ)T
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of the monodromy matrix Mϕ(t) with respective eigenvalues µA and
µB, see Remarks 3.6. The flow thus transforms ϕ(t0) + δϕ after one
period T to ϕ(t0 + T ) + δϕ′ = ϕ(t0) + δϕ′ with

δϕ′ = (µAδ,−µAδ, 0, . . . , 0, µBδ,−µBδ)T + O(δ2).

For this new state, we find

λ′
1,N−1,N,2 = Λ1,N−1,N,2(ϕ(t0) + δϕ′)

= 2 sin(µAδ) sin(µBδ)
cos(ϕA − ϕB) − cos(µAδ + µBδ) + O(δ4)

= 2µAµBδ2

cos(ϕA − ϕB) − 1 + O(δ4).

Being constants of motion, λ1,N−1,N,2 and λ′
1,N−1,N,2 must coincide and

comparing powers of δ yields

µAµB = 1

which proofs the assertion.

Proposition 5.4 has two important consequences that we state in the
following two corollaries:

Corollary 5.5 For any symmetric periodic two-cluster state (p = 1/2)
of a WS-integrable systems, we have µA = µB = 1. In particular, this
state possesses N − 2 neutrally stable directions.

Proof. This follows from the fact that such a state is a splay in T1/2
and hence, µA = µB and that µA, µB > 0 because negative Floquet
multipliers would imply a change in the order of the perturbed angles
which is prohibited since units cannot overtake each other. Since both
multipliers have multiplicity N/2 − 1, the orbit has N − 2 neutrally
stable directions.

Corollary 5.6 For any asymmetric periodic two-cluster state (p ̸=
1/2) of a WS-integrable system, we have either µA > 1 > µB > 0 or
µB > 1 > µA > 0. In particular, such a state is always exponentially
unstable and isolated in TN .

Proof. This follows from the fact that asymmetric periodic two-cluster
states are generally not splay states so that µA ̸= µB and that both
Floquet multipliers must be positive. Thus being a limit cycle, the
periodic orbit of ϕ(t) is isolated in TN meaning there exists an open
neighborhood of it within which every initial state spirals either towards
or away from it exponentially fast.

Without loss of generality, let cluster A be the larger one for the
original AR-model (2.5). From our numerical studies, we then find µA >
1 > µB so that A is unstable with respect to splitting perturbations
while B is stable with respect to them. Intuitively speaking, cluster B
is not strong enough to repel any stray units of A to make them return
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Figure 12: Stability diagram for symmetric periodic two-cluster states of the
generalized AR-model (2.6) with perturbation type (5.1a) and fixed ω = 0.6.
A white shading indicates that no periodic two-cluster state exists. In the red
shaded region, it exists and is unstable while in the blue shaded region, it
is stable. The green line depicts the THB of ∆s at κ0, according to (5.5). A
solid black line indicates a double-SNIC while a dashed black line indicates a
double-heteroclinic bifurcation. The inset shows a narrow region of instability,
close to the boundary of the region of existence for such periodic states.

to it. On the other hand, cluster A repels stray units of B and pushes
them back to it so that cluster B is stable.

After these general considerations for WS-integrable systems, we dis-
cuss stability of the generalized AR-model (2.6) with our paradigmatic
choices (5.1a) and (5.1b) for the perturbation function h. As before, we
start with the symmetric case p = 1/2.

5.5.1 Symmetric Two-Cluster States

The generalized AR-model

ϕ̇j = ω − sinϕj + ϵh(ϕj) + κ

N

N∑︂
k=1

sin(ϕk − ϕj) (2.6)

becomes WS-integrable at ϵ = 0 for any choice for h. Thus, if a symmet-
ric periodic two-cluster state exists for given values of ω and κ if ϵ = 0,
this orbit must be neutrally stable by virtue of Corollary 5.5. Because
neutrally stable periodic orbits are generally not robust, this implies
that a change in stability must occur at ϵ = 0 for generic choices of h so
that the two-cluster state is either stable only for ϵ > 0 and unstable for
ϵ < 0 or the other way around as long as |ϵ| is small. This is supported
by numerical results, where we compute the splitting Floquet multi-
pliers according to Corollary 3.4 by integrating the eigenvalues of the
Jacobian DF along the periodic orbit. Next, we discuss our numerical
findings in more detail.

We begin with Figure 12, which shows numerical results for the stabil-
ity for the perturbation type (5.1a) and fixed ω = 0.6. In this stability
diagram, in the white shaded area, there exist no periodic two-cluster
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Figure 13: Stability diagram for symmetric periodic two-cluster states for (2.6)
with perturbation type (5.1a) and fixed ω = 0.8. In this case, the periodic orbit
is always created in a double-heteroclinic bifurcation (dashed black line) and
thus exists already before ∆s becomes unstable in the THB (green line).

states whatsoever. In the red shaded area, an unstable periodic two-
cluster state exists. In the blue shaded area, the periodic state exists
and is stable. The green line indicates the THB of ∆s at κ0, according to
(5.5). At the boundary of the regime of existence for periodic solutions,
a solid black line indicates a double-SNIC while a dashed black line in-
dicates a double-heteroclinic bifurcation. The latter bifurcation curves
were computed numerically by the shooting method and by checking
for the occurrence of simultaneous saddle-node bifurcations.

We make two important observations. Firstly, indeed a change of
stability occurs at ϵ = 0 which confirms our expectation. Secondly, as
shown in the inset, we find that for ϵ < 0 there exists a narrow region
of instability close to the double-heteroclinic or double-SNIC. This cor-
responds to the fact that the splitting stability of the periodic orbit
shortly after the bifurcation is inherited from the saddles Σi which are
unstable against such splittings, as discussed before. Numerical results
indicate that the width of this region of instability vanishes for ϵ → 0,
also in accordance with Corollary 5.5.

Note that the intersection of the THB-line and the double-heteroclinic
line close to ϵ ≈ −0.09 and κ ≈ −0.91 is merely a projection artifact. As
already mentioned in Section 5.4.1.1, the THB and double-heteroclinic
bifurcation generally occur independently of each other and for distinct
choices of the system parameters. Note also that the diagram includes
regions of bi-stability: For ϵ < 0 and κ0 < κ < κcrit., both ∆s and the
periodic state can be stable.

Figure 13 shows the stability diagram for the case ω = 0.8. Here, the
periodic orbit is always created in double-heteroclinic bifurcations and
thus exists before the synchronous fixed point ∆s becomes unstable in
the THB. For this case as well, numerical evidence suggests a narrow
region of instability for ϵ < 0 and close to κcrit.. However, it is too
narrow to be resolved graphically.
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Figure 14: Stability diagram for symmetric periodic two-cluster states for (2.6)
with perturbation type (5.1b) and fixed ω = 0.6. As for the perturbation type
(5.1a), the periodic orbit is created either in a double-heteroclinic bifurcation
(dashed black line) or a double-SNIC (solid black line). The green line, indicat-
ing the THB at κ0 is computed via (B.3).

A noteworthy observation can be made for ϵ = 0. Anticipating the
results from Chapter 6, we note that numerical evidence suggests that
for κ < κ0, the symmetric periodic two-cluster state is embedded in a
continuum of neutrally stable periodic orbits which arises naturally for
WS-integrable systems [WS94]. This corresponds to the fact that in this
case, we have µA = µB = 1. However, for ω = 0.8, we observe that the
periodic two-cluster state exists and is neutrally stable even for some
κ > κ0 where we observe no such continuum of orbits, whatsoever.
Note also that while all the periodic orbits of the continuum have N −
3 neutral directions, the two-cluster state has N − 2, as mentioned
before. Thus, the central manifold of the symmetric two-cluster state
does generally not coincide with the continuum. While in the regime of
existence for κ > κ0 the periodic two-cluster state is neutrally stable up
to linear order, the full nonlinear evolution lets splitting perturbations
converge towards ∆s.

Finally, in Figure 14, we present numerical results concerning the
stability of two-cluster states for the generic perturbation (5.1b). As for
the case of (5.1a), we find that (i) periodic solutions are created either
in double-heteroclinic bifurcations or double-SNICs and (ii) a change of
stability occurs at ϵ = 0. This further supports the assertion that this
switch is in fact a generic phenomenon for such systems. The green line,
indicating the THB at κ0 is given by (B.3).

With these results, we end our discussion of stability for the symmet-
ric case and come to the asymmetric case of unequal clusters.

5.5.2 Asymmetric Two-Cluster States

Since Corollary 5.6 states that all asymmetric periodic two-cluster
states are exponentially unstable at ϵ = 0, it follows that there exists
an open neighborhood of the line of ϵ = 0 in which no stable asym-
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Figure 15: Stability regimes for asymmetric periodic two-cluster for the system
(2.6) with perturbation type (5.1a) and ω = 0.8. We consider an ensemble of
N = 100 units. White shading indicates that no periodic two-cluster states
exist. Regimes of multistability are observed. Starting with periodic states
with p = 50/100 as the only stable periodic orbits in the blue area, successively
passing to the turquoise, green, and yellow regions, asymmetric orbits with
p = 51/100, p = 52/100, and p = 53/100 become stable, as well. Hence, e. g.,
in the yellow area, we find four different stable periodic two-cluster states.

metric periodic two-cluster states exist for given N . From the results
for symmetric states, depicted in Figure 12, 13, and 14, we expect that
in the respective regimes of instability for these states the asymmetric
orbits are also unstable. On the other hand, the regimes of stability for
asymmetric states should be enclosed in the stable region for symmetric
states since they are expected to exist only for stronger repulsiveness
for given ϵ than in the symmetric case.

This is confirmed by numerical results which show a cascade of re-
gions of multistability, nested with respect to p, see Figure 15. Here, we
choose again for definiteness the perturbation type (5.1a), fix ω = 0.8,
and consider an ensemble ofN = 100 units. We only show the results for
negative ϵ because for ϵ > 0, as expected, all periodic two-cluster states
are found to be unstable. The blue shaded area corresponds to the blue
area in Figure 13. In this regime, only symmetric periodic two-cluster
states are stable. In the turquoise region, we find that additionally, the
periodic two-cluster states with p = 51/100 have become stable. In
the green area, a third periodic two-cluster state with p = 52/100 be-
comes stable and in the yellow area, we find yet a fourth such state
with p = 53/100 to become stable. We expect this nested structure to
be generic for systems of type (2.6) because if a strongly asymmetric
periodic two-cluster state is stable, it is to be expected that a state
with less disparity between cluster sizes is also stable. Note that the
regions, shown in Figure 15, are not the same as the regions of existence
for asymmetric periodic two-cluster states but only indicate the regions
of stability. These states generally exist outside of these stable regions,
too. However, in our numerical experiments, the regions of existence
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always lie inside the region of existence for symmetric periodic states,
in accordance to our observations in Section 5.4.

Note that choosing larger N makes the nesting finer. The larger N
is, the more narrow the differently colored areas in Figure 15 become.
In particular, with growing N , the region of exclusive stability for sym-
metric periodic two-cluster states (blue region) continuously shrinks in
size, even though it always begins beneath the line at ϵ = 0 for any N .

With this, we end our discussion of stability for periodic two-cluster
states and summarize our findings.

5.6 conclusion

We have presented our findings regarding creation, existence, and sta-
bility for periodic two-cluster states, both symmetric and asymmetric,
which have been published in [RZ21a].

Starting with a reduced description of two-cluster states, we observed
two basic global bifurcation scenarios, leading to periodic two-cluster
states: the double-heteroclinic bifurcation, where periodic orbits are
born from a structurally unstable heteroclinic cycle, and the double-
SNIC, where periodic states emerge through two saddle-node bifurca-
tions on an invariant circle, rendering it a limit cycle in Tp. While the
former is generic for systems of two class I excitable units, sufficiently
close to their respective SNICs, cf. [BM13], the latter has, to our best
knowledge, not been discussed before in this context. We discussed
both of these scenarios for the degenerate case of equally large clusters
and how the picture changes when the clusters differ in size. We also
discussed how double-heteroclinic bifurcation and double-SNIC are con-
nected to the criticality of the pitchfork bifurcation of the synchronous
fixed point ∆s at κ0. Further, we argued why these two scenarios are
expected to be generic for systems of type (2.6) which was confirmed
in our numerical studies for the generic perturbation type (5.1b). In
particular, we found that the emerging periodic states are stable with
respect to perturbations that leave the clusters whole.

Regarding splitting perturbations, we showed that symmetric peri-
odic two-cluster states for general WS-integrable systems must always
be neutrally stable while asymmetric states are always exponentially
unstable with respect to splitting of one of the clusters and stable with
respect to splitting perturbations of the other cluster. While it has been
shown before that periodic two-cluster states cannot be asymptotically
stable for WS-integrable systems, see [EM14], the identity (5.13), which
generalizes a similar finding in [Gon+19], can to our knowledge not
be found in the existing literature on Watanabe-Strogatz integrability.
Equally remarkable is that, although two-cluster states themselves are
not accessible via WS-theory since it requires at least three distinct an-
gular variables to apply, their stability can be understood within this
framework. Numerical evidence further suggests that neutrally stable
symmetric periodic orbits are embedded in a continuum of periodic or-
bits, if this continuum exists. We will come back to this observation in
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Chapter 7. On the other hand, asymmetric periodic two-cluster states
cannot be part of this continuum due to their exponential instability.
In particular, for odd N , all periodic two-cluster states are isolated
and exponentially unstable at ϵ = 0 and, by continuity within an open
neighborhood of the ϵ = 0 line while for even N , a switch in stabil-
ity occurs at ϵ = 0 for symmetric states. We also demonstrated that
both, the regions of existence and the regions of stability for periodic
two-cluster states, are nested for increasing |p− 1/2|. The larger the
disparity in size between the two clusters gets, the more repulsive the
coupling between them must be in order to yield periodic orbits. If addi-
tionally, the orbit is expected to be stable, both, the repulsive strength
of the coupling and the deviation from the WS-case must be sufficiently
large. This yields a nesting of stable regions for states of large cluster
size disparity inside the ones with smaller disparity.

With this, we end this chapter on periodic two-cluster states. In
the next chapter, we discuss the existence of splay states and of a
continuum of periodic orbits for the original AR-model (2.5) which is
equipped with a NAIM-structure in TN . Afterwards, we investigate the
close connection with respect to stability between periodic two-cluster
and splay states in Chapter 7.
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I N T E G R A B L E DY N A M I C S A N D T H E N O R M A L LY
AT T R AC T I N G C O N T I N U U M O F P E R I O D I C O R B I T S

abstract

This chapter is dedicated to the dynamics of the classic AR-model

ϕ̇j = ω − sinϕj + κ

N

N∑︂
k=1

sin(ϕk − ϕj). (2.5)

After some general remarks in Section 6.1, concerning previous findings
on the stability of the synchronous state ∆s, we start by expressing the
equations of motion for the system in WS-variables in Section 6.2. Af-
terwards, we show in Section 6.3 that for a broad class of WS-integrable
systems and under certain general conditions, a continuum of periodic
orbits exists and that the union of these orbits possesses the additional
structure of a Normally Attracting Invariant Manifold (NAIM). We also
show that one of these orbits features splay state dynamics. In Sec-
tion 6.4, we apply these results to the model (2.5) and compute the
critical coupling strength κ0 for which the continuum emerges.

Since the units are assumed to be identical, we always consider them
in accordance with Chapter 4 and without loss of generality to be in
strict cyclic order on S1. The content of this chapter is based on the
results in [RZP]. We note that again some passages and in particular
the assertions with their proofs are often verbatim quotes of this work.
However, we elaborate some details and calculations in the arguments.

6.1 general remarks

Before we begin with the presentation of our own results, we recapit-
ulate the main findings on the AR-model (2.5) from [ZT16] that are
important for us. This serves also as a motivation for this chapter.

Recall from the previous chapter that the system (2.5) possesses a
fixed point ∆s = (ϕs, . . . , ϕs), which at κ = 0 is exponentially stable.
For κ > 0, or attractive coupling between the individual units, this fixed
point stays stable since not only the on-site component ω − sinϕj in
(2.5) tends to stabilize the unit j at ϕs but also the coupling binds any
two units stronger together. Due to these trivial asymptotic dynamics,
the authors of [ZT16] were interested in how the outcome changes if
the coupling is repulsive, i. e., when κ < 0. They found that for general
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systems of identical one-dimensional repulsively1 coupled units, there
exists a critical coupling strength κ0 at which ∆s becomes unstable
in a Transcritical Homoclinic Bifurcation (THB)2, cf. [AKS90]. In this
bifurcation, ∆s coalesces with ∼ 2N−1 two-cluster saddles while a multi-
tude of homoclinic orbits forms. The dynamics along any of these orbit
looks as follows: At the beginning and end, all units are located at ϕs

while along the homoclinic orbit, a single unit or a cluster of units sep-
arates from the rest of the ensemble, moves in one direction away from
it, thereby tracing the state space S1, and then returns and joins the
rest of the ensemble from the other side while the remaining units stay
relatively close to ϕs in state space. Depending on which homoclinic
orbit one follows, different units go astray from the bulk before return-
ing from the other side. In this highly degenerate bifurcation, N − 1
eigenvalues of the vector field’s Jacobian at ∆s vanish and a calculation
yields

κ0 = −
√︁

1 − ω2

for the critical coupling strength (recall that |ω| < 1 for Active Rota-
tors).

The question naturally arises what kind of dynamics take place when
∆s ceases to be an attractor and the authors of [ZT16] noted from their
numerical studies that a continuum of periodic orbits is formed. We
show some exemplary (normalized) time series for some of these orbits
in Figure 16 for an ensemble of N = 10 units. They differ in their
respective conserved cross-ratios λ and the timing between any two
consecutive units to spike, i. e., when they make a turn around S1, as
seen by the rapid down- and subsequent up-strokes in the plots, which
indicate spikes for the respective units. In particular, for a suitable
choice λ∗ of the conserved cross-ratios, a splay state can be observed,
as depicted in Panel (a) of Figure 16. Splay states can be characterized
as periodic states ϕ(t) for which the dynamics of every individual unit
ϕj(t) can be written as

ϕj(t) = φ

(︃
t+ j

T

N

)︃
(6.1)

for some T -periodic continuous function φ : R → S1 so that the time
series of all units are copies of each other, shifted by some multiple of
1/T in time. Additionally, all of the observed orbits possess two stable
directions and N − 3 neutrally stable ones. This was understood to be
the result of the system being WS-integrable which naturally leads to
degenerate dynamics, as discussed in Chapter 4. Two questions arose
from this: The first one was how generic the observed dynamics actually

1 Actually, their studies were more general, being interested in the case of mixed
coupling where some units couple attractively and some repulsively.

2 In [ZT16], the authors refer to it as a transcritical heteroclinic bifurcation because
they consider ϕj ∈ R in which case two points θ ∈ R and ϑ = θ+2π are not identified
with each other but constitute distinct states in state space R. In particular, the
phase space of the system becomes RN instead of TN . Subsequently, all present
vector fields are then assumed to be 2π-periodic in each θj .
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Figure 16: (Normalized) time series of cosϕj for four periodic orbits with
different fixed cross-ratios for a system of N = 10 Active Rotators obeying
(2.5). Different colors indicate different units. System parameters are fixed at
ω = 0.8 and κ = −0.7 and instead over time t, we plot for each orbit over its
phase s = 2π t/T (λ) where T (λ) is the solution’s period. Panel (a) depicts a
splay state while Panels (b)-(d) represent orbits in randomly chosen level sets
Lλ∗(Λ) which are generally no splay states.

are, a question that is investigated in Chapter 7 and Chapter 8. The
second question, which we intend to answer in this chapter, is about
the geometric properties of the continuum itself: whether it is equipped
with some additional structures, e. g., if it forms a NAIM in which case
results from the theory of NAIMs can be used for further analysis. Here,
we show that this is indeed the case and that this observation in fact
holds true for a large class of WS-integrable models. We also prove
that the continuum for the AR-model (2.5) emerges exactly at κ0 in
accordance with the numerical results from [ZT16].

6.2 the classic model in watanabe-strogatz variables

We start our investigation of the dynamics of (2.5) by writing it down
in WS-variables α, ψ, and λ from Proposition 4.12. For this, we note
first that (2.5) can be rewritten as

ϕ̇j = ω + i

2
(︂
eiϕj − e−iϕj

)︂
− κ

N

N∑︂
k=1

i

2
(︂
eiϕke−iϕj − e−iϕkeiϕj

)︂
= ω + i

2
(︂
1 + κZ̄(ϕ)

)︂
eiϕj − i

2
(︂
1 + κZ(ϕ)

)︂
e−iϕj

(6.2)

where ϕ = (ϕ1, . . . , ϕN ) and Z is the well-known Kuramoto order pa-
rameter [Kur75]:
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Definition 6.1 The Kuramoto order parameter Z : TN → D is defined
as

Z(ϕ) := 1
N

N∑︂
j=1

eiϕj

where D := {z ∈ C ; |z| ≤ 1} denotes the closed unit disk.

The order parameter can be interpreted as a measure of synchrony
between the angles ϕj because if all angles lie close to each other on
the circle S1, we have |Z| ≈ 1 while for a uniform distribution of angles
we find |Z| = 0. The first case is one of high synchrony while the latter
is one of low synchrony.

Comparing the second line of (6.2) with (4.9) from Theorem 4.13,
we find for the common fields

f = i

2
(︂
1 + κZ̄

)︂
g = ω

and in particular, (2.5) is WS-integrable as was already noted in [ZT16].
Furthermore, it belongs to a whole class of WS-integrable systems, for
which both f and g can be written as functions of Z and otherwise
do not depend explicitly on ϕ. This leads to the idea to study general
systems of this kind which is what we do in what follows.

6.3 a class of watanabe-strogatz integrable systems

In Chapter 4, we discussed how for WS-integrable systems like the orig-
inal AR-model (2.5) a coordinate change to the WS-variables (α,ψ,λ)
reveals that such systems possess N − 3 constants of motion, the cross-
ratios λ, and that consequently, their dynamics on their respective level
set Lλ(Λ) is fully determined by two coupled ODEs for α and ψ. In WS-
variables (α,ψ,λ), the equations of motion then read

α̇ = i
(︂
f(ϕ)α2 + g(ϕ)α+ f̄(ϕ)

)︂
ψ̇ = f(ϕ)α+ g(ϕ) + f̄(ϕ)ᾱ
λ̇ = 0

(4.12)

where ϕ = m(α,ψ,λ) is determined via the diffeomorphism m from
Proposition 4.12. In general, the equations (4.12) are of a more compli-
cated form than the original equations

ϕ̇j = f(ϕ)eiϕj + g(ϕ) + f̄(ϕ)e−iϕj (4.1)

so that no closed explicit form for (4.12) exists. However, if the circum-
stances are right, such an expression can be found which then allows
for a more thorough analysis. Hence, for the rest of this section, we
consider general WS-integrable systems of the form

ϕ̇j = f(Z)eiϕj + g(Z) + f̄(Z)e−iϕj (6.3)
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or, in WS-variables,

α̇ = i
(︂
f(Z)α2 + g(Z)α+ f̄(Z)

)︂
(6.4a)

ψ̇ = f(Z)α+ g(Z) + f̄(Z)ᾱ (6.4b)
λ̇ = 0 (6.4c)

for which f and g depend on ϕ solely via the Kuramoto order parameter
Z.3 To arrive at a closed form of (6.4) in terms of the WS-variables, we
therefore have to first express Z entirely in terms of α, ψ, and λ. Using
the Möbius transformation (4.2), we start by defining the auxiliary
function Zθ : D × S1 × TN → D with

Zθ(α,ψ,θ) := 1
N

N∑︂
j=1

Gα,ψ
(︂
eiθj

)︂

= 1
N

N∑︂
j=1

α+ eiψeiθj
1 + ᾱ eiψeiθj

= 1
N

N∑︂
j=1

(α+ eiψeiθj )
∞∑︂
k=0

(−ᾱ eiψeiθj )k

=
∞∑︂
k=0

α(−ᾱ eiψ)k 1
N

N∑︂
j=1

eikθj+

+
∞∑︂
k=0

eiψ(−ᾱ eiψ)k 1
N

N∑︂
j=1

ei(k+1)θj

where in the third line we used the fact that |α| < 1 and the geometric
series formula

∑︁∞
k=0 z

k = 1/(1 − z) for |z| < 1. Introducing the symbol⟨︂
eikθ

⟩︂
:= 1

N

N∑︂
j=1

eikθj ,

we arrive, after reindexing the second sum, at the general expression

Zθ(α,ψ,θ) = α
∞∑︂
k=0

(−ᾱ eiψ)k
⟨︂
eikθ

⟩︂
+ eiψ

∞∑︂
k=0

(−ᾱ eiψ)k
⟨︂
ei(k+1)θ

⟩︂
.

= α+ (1 − |α|2) eiψ
∞∑︂
k=1

(−ᾱ eiψ)k−1
⟨︂
eikθ

⟩︂
.

This equation holds for general θ ∈ TN . Setting θ = Θ(λ) with the
point-of-reference function Θ from (4.4), we define Z : D×S1 ×V → D
by Z(α,ψ,λ) := Zθ(α,ψ,Θ(λ)) (note that |Z| < 1 since the Θj(λ) are
always mutually distinct) and thus

Z(α,ψ,λ) := α+ (1 − |α|2) eiψ
∞∑︂
k=1

(−ᾱ eiψ)k−1
⟨︂
eikΘ(λ)

⟩︂
(6.5)

3 Since Z is to be understood as a two-dimensional real valued function, we should
better write, e. g., f(ReZ, ImZ) or f(Z, Z̄) where for any z ∈ C, Re z and Im z
denote its real and imaginary part. Instead, we simply write, e. g., f(Z) with the
understanding that f and g generally depend on both Z and Z̄. In particular, they
need not be complex differentiable but only real differentiable.
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which is the general expression for Z on TNordered in terms of the WS-
variables.

For generic choices of λ, the expression (6.5) cannot be simplified
further and in particular, there is no closed form for the infinite sum in
it. However, there exists a specific level set Lλ∗(Λ) on which this can
be achieved.

6.3.1 The Level Set of Uniform Distributions

In Chapter 2, we defined the point

θ∗ := (θ∗
1, . . . , θ

∗
N )

θ∗
j := −π + 2π

N
(j − 1)

(4.5)

of evenly spaced angles θj in S1 which is clearly an element of TNordered.
As noted in Remark 4.11, its corresponding cross-ratios λ∗ = Λ(θ∗)
read

λ∗ =
(︁
λ∗

1, . . . , λ
∗
N−3

)︁
λ∗
k =

sin π(k+2)
N

2 cos π
N sin π(k+1)

N

.
(4.6)

We call a configuration like θ∗ of evenly spaced angles a uniform dis-
tribution of angles. Any uniformly distributed state ϑ can be con-
structed from θ∗ by shifting the whole ensemble by some fixed amount
c ∈ [0, 2π), in other words, by applying a Möbius transformation

eiθ∗ ↦→ eiϑ = G0,c
(︂
eiθ∗)︂

so that ϑ also lies in Lλ∗(Λ). We therefor refer to Lλ∗(Λ) as the level
set of uniform distributions. For this level set, there exists a closed
expression for the symbols

⟨︂
eikΘ(λ∗)

⟩︂
:

Lemma 6.2 On the set Lλ∗(Λ), the symbols
⟨︂
eiΘ(λ∗)

⟩︂
are of the form

⟨︂
eikΘ(λ∗)

⟩︂
=

⎧⎨⎩(−1)k if k ∈ NZ

0 else.

Proof. Let k ∈ NZ, i. e., k = Nl for some integer l and note that
θ∗ = Θ(λ∗). Then eikθ

∗
j = e−iπk+ 2πi

N
Nl(j−1) = e−iπk = (−1)k for all j

and hence,
⟨︂
eikθ∗

⟩︂
= 1

N

∑︁N
j=1(−1)k = (−1)k. On the other hand, let

k /∈ NZ. We use the well known identity
∑︁N−1
j=0 zj = zN−1

z−1 for any z ̸= 1
which yields

⟨︂
eikθ∗⟩︂ = 1

N

N∑︂
j=1

e−iπk+ 2πi
N

(j−1)k

= 1
N

e−iπk
N−1∑︂
j=0

(︂
e

2πi
N
k
)︂j
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= 1
N

e−iπk e
2πi
N
kN − 1

e
2πi
N
k − 1

= 1
N

e−iπk e2πik − 1
e

2πi
N
k − 1

= 0

since e
2πi
N
k ̸= 1 for k /∈ NZ.

From this lemma, we conclude that

Z(α,ψ,λ∗) = α−
(︂
1 − |α|2

)︂
eiψ

∞∑︂
k=1

(ᾱ eiψ)kN−1

= −
∞∑︂
k=1

ᾱkN−1eikNψ + α
∞∑︂
k=0

ᾱkNeikNψ
(6.6)

so that Z(α,ψ,λ∗) = α+O
(︂
|α|N

)︂
and thus can be approximated by α

on Lλ∗(Λ) for large ensemble sizes N . This observation has far-reaching
consequences. It was first noted in [PR08] where it was used to investi-
gate ensembles of heterogeneous ensembles of angular variables in the
thermodynamic limit N → ∞ by means of WS-theory. For systems of
the form (6.4), it implies that (6.4a) effectively decouples from ψ and λ
for N ≫ 1 and can be studied independently. This ansatz was further
elaborated and applied in order to study, e. g., weakly inhomogeneous
ensembles of angular variables as well as explosive synchronization and
Chimera states in star graphs [VZP15; VRP16; Eld+21].

We also use this observation to determine periodic orbits of systems
of the type (6.4) by studying its closed or truncated form where Z is
replaced by α. Since the dynamics then decouples from ψ and λ, the
problem is reduced to finding (stable) fixed points of (6.4a) for which
ψ̇ ̸= 0. We can then use Theorem 3.7 for NAIMs to conclude that similar
orbits must exist in the original system (6.4) and that their union in
fact forms a NAIM. However, to make this work, we must first elaborate
the implications of substituting Z by α to “close” (6.4a). In particular,
we must first show that the error that is made by replacing Z by α
can be made sufficiently small in C1-norm by choosing N sufficiently
large. The main result of this section is thus an estimate of the error
η = Z − α and its partial derivatives for large N .

Each level set Lλ(Λ) ⊂ TNordered is diffeomorphic to the space D × S1

so that we identify

Lλ(Λ) ∼= D × S1 × {λ}

where for any two diffeomorphic spaces X and Y , we write X ∼= Y .4 For
any smooth function F : TNordered → Rn, the derivative of its restriction
F |Lλ(Λ) to the level set Lλ(Λ) is then given by

D̃F := DF |Lλ(Λ) ≡ (DαF ,DᾱF ,DψF ) .

4 In the same way, we identified TNordered
∼= D × S1 × V in Chapter 4.
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In the derivation of Z(α,ψ,λ), we made use of the geometric series so
that (6.5) diverges for |α| → 1. To account for this, from now on we
restrict the domain for α such that Z(α,ψ,λ) stays bounded. Let

Dr := {z ∈ C ; |z| < r}

denote the open complex disk of radius r with closure Dr. The following
lemma gives an estimate for the error η = Z−α in C1-norm on Lλ∗(Λ):

Lemma 6.3 Consider Dr for any 0 < r < 1 and let

η : D × S1 × V → C
(α,ψ,λ) ↦→ Z(α,ψ,λ) − α.

Then,

sup
(α,ψ)∈Dr×S1

|η(α,ψ,λ∗)| = O(rN−1) (6.7)

sup
(α,ψ)∈Dr×S1

⃦⃦⃦
D̃η(α,ψ,λ∗)

⃦⃦⃦
= O(NrN−2). (6.8)

Proof. We start with Equation (6.7). From (6.5) and Lemma 6.2, we
infer

η(α,ψ,λ∗) = −
(︂
1 − |α|2

)︂
eiψ

∞∑︂
k=1

(ᾱ eiψ)kN−1

= −
∞∑︂
k=1

ᾱkN−1eikNψ + α
∞∑︂
k=1

ᾱkNeikNψ,

yielding

sup
(α,ψ)∈Dr×S1

|η(α,ψ,λ∗)| = sup
(α,ψ)∈Dr×S1

⃓⃓⃓⃓
⃓(︂1 − |α|2

)︂
eiψ

∞∑︂
k=1

(ᾱ eiψ)kN−1
⃓⃓⃓⃓
⃓

≤ sup
(α,ψ)∈Dr×S1

(︂
1 − |α|2

)︂ ∞∑︂
k=1

⃓⃓⃓
ᾱ eiψ

⃓⃓⃓kN−1

≤
∞∑︂
k=1

rkN−1 = O(rN−1).

so that (6.7) holds.
To prove (6.8), we first compute the entries of D̃η(α,ψ,λ∗) to leading

order in N . From this, we can expand
⃦⃦⃦
D̃η(α,ψ,λ∗)

⃦⃦⃦
to leading order.

For each x ∈ {α, ᾱ, ψ}, we can then write in a slight abuse of notation
Dxη = Re Dxη+ i Im Dxη for the respective column (Re Dxη, Im Dxη)T
of Dη. In particular, |Re Dxη| , |Im Dxη| ≤ |Dxη| ≡ ∥Dxη∥ holds.

For the first column of Dη(α,ψ,λ∗), we find

Dαη(α,ψ,λ∗) =
∞∑︂
k=1

(ᾱ eiψ)kN

|Dαη(α,ψ,λ∗)| ≤
∞∑︂
k=1

|α|kN ≤
∞∑︂
k=1

rkN
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for all (α,ψ) ∈ Dr × S1 and thus

sup
(α,ψ)∈Dr×S1

|Re Dαη(α,ψ,λ∗)| = O(rN )

sup
(α,ψ)∈Dr×S1

|Im Dαη(α,ψ,λ∗)| = O(rN ).

Similarly, we find for the second column

Dᾱη(α,ψ,λ∗) = −
∞∑︂
k=1

(kN − 1) ᾱkN−2 eikNψ

+ α
∞∑︂
k=1

kN ᾱkN−1 eikNψ

|Dᾱη(α,ψ,λ∗)| ≤
∞∑︂
k=1

[︂
(kN − 1) |α|kN−2 + kN |α|kN

]︂
≤

∞∑︂
k=1

[︂
(kN − 1) rkN−2 + kN rkN

]︂
for all (α,ψ) ∈ Dr × S1 and hence

sup
(α,ψ)∈Dr×S1

|Re Dᾱη(α,ψ,λ∗)| = O(NrN−2)

sup
(α,ψ)∈Dr×S1

|Im Dᾱη(α,ψ,λ∗)| = O(NrN−2).

Finally, we have

Dψη(α,ψ,λ∗) =
∞∑︂
k=1

ikN
[︁

− ᾱkN−1 + αᾱkN
]︁
eikNψ

|Dψη(α,ψ,λ∗)| ≤
∞∑︂
k=1

kN
[︁
|α|kN−1 + |α|kN+1 ]︁

≤
∞∑︂
k=1

kN
[︁
rkN−1 + rkN+1]︁

for all (α,ψ) ∈ Dr × S1 so that

sup
(α,ψ)∈Dr×S1

|Re Dψη(α,ψ,λ∗)| = O(NrN−1)

sup
(α,ψ)∈Dr×S1

|Im Dψη(α,ψ,λ∗)| = O(NrN−1).

Writing

∥A∥1 = max
1≤j≤n

m∑︂
i=1

|Aij |

for the induced 1-norm for any m-by-n matrix A and using the inequal-
ity ∥A∥ ≤

√
n ∥A∥1 for its Euclidean norm, we arrive at⃦⃦⃦

D̃η(α,ψ,λ∗)
⃦⃦⃦

≤
√

3 max
x∈{α,ᾱ,ψ}

(︂⃓⃓⃓
Re D̃xη(α,ψ,λ∗)

⃓⃓⃓
+
⃓⃓⃓
Im D̃xη(α,ψ,λ∗)

⃓⃓⃓)︂
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and hence⃦⃦⃦
D̃η(α,ψ,λ∗)

⃦⃦⃦
= O(NrN−2),

uniformly for all (α,ψ) ∈ Dr × S1 which proves Equation (6.8).

By substituting α for Z in (6.4), we neglect certain terms on the
right hand side of that equation, i. e., we truncate the equations and
Lemma 6.3 allows to estimate the error, introduced by this approxima-
tion on each level set Lλ(Λ). However, it does not yet give an estimate
on the truncated terms in (6.4) which is necessary in order to apply
the Persistence Theorem 3.7 later on. This estimate is content of the
following lemma:
Lemma 6.4 Let 0 < r < 1 and let the vector field τ : D×S1 ×V → R3

be defined by
τ (α,ψ,λ) = (G(Z(α,ψ,λ)) −G(α)) · Y (α,ψ) (6.9)

where G : D → C and Y : D × S1 → R3 are smooth. Then, given
ϵ > 0, there exist an N0 ∈ N such that for all N ≥ N0, there exists a
δ-neighborhood Vδ(λ∗) of λ∗ such that

sup
(α,ψ)∈Dr×S1

∥τ (α,ψ,λ)∥ +
⃦⃦⃦
D̃τ (α,ψ,λ)

⃦⃦⃦
< ϵ

for all λ ∈ Vδ(λ∗).
Proof. Step 1: Let F : D → C be defined as F (Z) := G(Z) − G(α).
We start by bounding the function F and its partial derivatives DxF
with x ∈ {α, ᾱ, ψ}. Since Dr is convex and F (α) = 0, we find by the
mean value theorem and with η = Z − α that

F (Z) =
∫︂ 1

0
η · DzF |z=α+tη + η̄ · Dz̄F |z=α+tη dt

|F (Z)| ≤ |η| ·
∫︂ 1

0
|DzF |z=α+tη + |Dz̄F |z=α+tη dt.

(6.10)

Since F is smooth and Dr is compact, there exist constants M1,M2 > 0
such that |DzF | < M1 and |Dz̄F | < M2 for all z ∈ Dr and in particular,
the integral above is of order O(1) and subsequently

|F (Z(α,ψ,λ∗))| = O(|η(α,ψ,λ∗)|) = O(rN−1)

for all (α,ψ) ∈ Dr × S1 by Lemma 6.3. On the other hand, applying
the product and chain rule to (6.10), we find

DxF (Z) =
∫︂ 1

0
DzDzF |z=α+tη Dx(α+ tη) dt · η

+
∫︂ 1

0
Dz̄DzF |z=α+tη Dx(ᾱ+ tη̄) dt · η

+
∫︂ 1

0
DzDz̄F |z=α+tη Dx(α+ tη) dt · η̄

+
∫︂ 1

0
Dz̄Dz̄F |z=α+tη Dx(ᾱ+ tη̄) dt · η̄

+
∫︂ 1

0
DzF |α+tη dt · Dxη +

∫︂ 1

0
Dz̄F |z=α+tη dt · Dxη̄
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so that by the same argument as above, and again with Lemma 6.3, we
find with |Dx(α+ tη(α,ψ,λ∗))| = O(1) + O(NrN−2) = O(1)

|DxF (Z(α,ψ,λ∗))| ≤ |η| ·
∫︂ 1

0

[︂
|DzDzF | z=α+tη · |Dx(α+ tη)| +

+ |Dz̄DzF | z=α+tη · |Dx(ᾱ+ tη̄)| +
+ |DzDz̄F | z=α+tη · |Dx(α+ tη)| +

+ |Dz̄Dz̄F | z=α+tη · |Dx(ᾱ+ tη̄)|
]︂

dt +

+ |Dxη| ·
∫︂ 1

0
|DzF | z=α+tη + |Dz̄F | z=α+tη dt

= O(|η(α,ψ,λ∗)|) ·O(1) + O(|Dxη(α,ψ,λ∗)|) ·O(1)
= O(rN−1) + O(NrN−2)
= O(NrN−2).

Step 2: Since Y (α,ψ) does not depend on N , we have ∥Y (α,ψ)∥ =
O(1) and ∥DxY (α,ψ)∥1 = O(1) for all (α,ψ) ∈ Dr × S1 so that

∥τ (α,ψ,λ∗)∥ = |F (Z(α,ψ,λ∗))| · ∥Y (α,ψ)∥ = O(rN−1)

and ⃦⃦⃦
D̃τ (α,ψ,λ∗)

⃦⃦⃦
1

= max
x

⃦⃦
DxF (Z(α,ψ,λ∗)) · Y (α,ψ)+

+ F (Z(α,ψ,λ∗)) · DxY (α,ψ)
⃦⃦

1
≤ max

x
|DxF (Z(α,ψ,λ∗))| · ∥Y (α,ψ)∥1 +

+ max
x

|F (Z(α,ψ,λ∗))| · ∥DxY (α,ψ)∥1

= O(NrN−2) · O(1) + O(rN−1) · O(1)
= O(NrN−2)

hold by the previous step. Hence, we find that for all (α,ψ) ∈ Dr × S1

⃦⃦⃦
D̃τ (α,ψ,λ∗)

⃦⃦⃦
≤

√
3
⃦⃦⃦
D̃τ (α,ψ,λ∗)

⃦⃦⃦
1

= O(NrN−2).

Step 3: From step 2, we infer that there exists an N0 such that
|τ (α,ψ,λ)| < ϵ/2 and

⃦⃦⃦
D̃τ (α,ψ,λ)

⃦⃦⃦
< ϵ/2, uniformly on Dr×S1×{λ∗}

for all N ≥ N0. By smoothness of τ , it follows that for all (α,ψ,λ∗) ∈
Dr × S1 × {λ∗}, there exist open neighborhoods W (α,ψ) ⊆ D × S1 of
(α,ψ) and Vδ′(λ∗) ⊆ V of λ∗ with δ′ = δ′(α,ψ) > 0 such that this
inequality also holds on W (α,ψ) × Vδ′(λ∗). Covering Dr × S1 × {λ∗}
with these open sets, there exists a finite subcover since Dr ×S1 ×{λ∗}
is compact. We set δ := min δ′ over this subcover and thus find

|τ (α,ψ,λ)| +
⃦⃦⃦
D̃τ (α,ψ,λ)

⃦⃦⃦
< ϵ

for each (α,ψ,λ) ∈ Dr × S1 × Vδ which proves the assertion.
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Lemma 6.4 essentially states that truncating the right hand side of
(6.4) introduces an error on each level set, that can be made arbitrarily
small by choosing N large enough. With this, we are ready to prove the
first main result of this chapter: The existence of a continuous family
of periodic orbits for systems of the type (6.4), whose union forms a
NAIM in TNordered.

6.3.2 The Continuum of Periodic Orbits

It was already argued in [WS94] that any periodic orbit Cλ for a WS-
integrable system that is hyperbolic in its level set Lλ(Λ) ⊃ Cλ gives
rise to a whole (continuous) family {Cλ′ ; λ′ ∈ U(λ)} of such orbits
since varying λ within some (small) neighborhood U(λ) of λ equally
varies the respective vector field from level set to level set. As long
as the vector field depends smoothly on λ, this change in the vector
field will be small so that by persistence of hyperbolic orbits, we find
such orbits for all λ′ ∈ U(λ). In this sense, the following theorem is
not surprising. However, besides the fact that the argument for such
a families of orbits was not made rigorously, we now show that, if the
system is of type (6.4), it is equipped with even more structure: if the
orbits are exponentially stable in their respective level sets, their union
forms a NAIM.

The strategy for the proof goes as follows: As in [PR08] and [Eld+21],
we “close” the system (6.4) by substituting α for Z such that (6.4a)
decouples from ψ. If the now closed equation (6.4a) allows for a unique
exponentially stable fixed point α0 for which ψ̇(α0) ̸= 0 holds, there
then exists a periodic solution of the full truncated system. Further,
for every ϵ > 0 and N sufficiently large, there exists a neighborhood
of λ∗ such that for every λ in that neighborhood, the truncated terms
constitute a O(ϵ)-small perturbation for the closed system in C1-norm
on Lλ(Λ). The union of periodic orbits over that open neighborhood of
λ∗ then forms the desired NAIM for the truncated system. Choosing N
large enough, the truncated terms can be treated as small perturbations
which guarantees that the orbits themselves and subsequently the NAIM
also exist for the full system by means of the Persistence Theorem 3.7.

Theorem 6.5 Consider the system

α̇ = i
(︂
f(Z)α2 + g(Z)α+ f̄(Z)

)︂
(6.4a)

ψ̇ = f(Z)α+ g(Z) + f̄(Z)ᾱ (6.4b)
λ̇ = 0 (6.4c)

where f : D → C and g : D → R are smooth functions of the Kuramoto
order parameter Z. Further, let the closed equation

α̇ = i
(︂
f(α)α2 + g(α)α+ f̄(α)

)︂
(6.12)

possess a unique stable fixed point α0 ∈ D for which

f(α0) ̸= 0
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holds. Then, there exists an N0 ∈ N such that for all N ≥ N0 there
exists a δ-neighborhood V δ(λ∗) of λ∗ such that for every λ ∈ V δ(λ∗)
there exists a unique periodic orbit Cλ ⊂ Lλ(Λ) which is exponentially
stable in Lλ(Λ). Additionally, the union

Mδ :=
⋃︂

λ∈V δ

Cλ ⊂ TNordered

forms a compact NAIM of dimension N − 2 with invariant boundary.

Proof. Step 1: Substituting Z by α in (6.4) yields the closed system

α̇ = i
(︂
f(α)α2 + g(α)α+ f̄(α)

)︂
(6.13a)

ψ̇ = f(α)α+ g(α) + f̄(α)ᾱ (6.13b)
λ̇ = 0. (6.13c)

By assumption, α0 is a stable fixed point of (6.13a). If Ω := f(α0)α0 +
g(α0) + f̄(α0)ᾱ0 ̸= 0, this gives rise to the periodic solution (α0,Ωt,λ)
for (6.13) with an exponentially stable periodic orbit C trunc

λ . From the
definition of Ω, we then infer

α0 Ω = f(α0)α2
0 + g(α0)α0 + f̄(α0) |α0|2 .

Adding and subtracting f̄(α0), this results in

α0 Ω = f(α0)α2
0 + g(α0)α0 + f̄(α0)⏞ ⏟⏟ ⏞

=0 by (6.13a)

+f̄(α0)
(︂
|α0|2 − 1

)︂

so that Ω = 0 implies f(α0) = 0 and conversely, f(α0) ̸= 0 implies
Ω ̸= 0.

Step 2: We prove that for any δ > 0, the union

M trunc
δ :=

⋃︂
λ∈V δ

C trunc
λ = {α0} × S1 × V δ

forms a smooth compact NAIM with invariant boundary for (6.13) in
D × S1 × V by checking conditions (i)-(iii) of Definition 3.5. Indeed,
as a product of the three smooth compact manifolds {α0}, S1, and
V δ, it is itself an (N − 2)-dimensional smooth compact submanifold of
D× S1 × V . Further, it is invariant by construction (as is its boundary
which consists of all C trunc

λ with λ ∈ ∂V δ) so that condition (i) is
fulfilled.

To show that condition (ii) holds, we need to determine the contin-
uous splitting TM trunc

δ
TNordered = TM trunc

δ ⊕ N and the decomposition
DΦt(p) = DΦt

M trunc
δ

(p) ⊕ DΦt
N (p) which keeps this splitting invariant.

For this, consider any point p = (α0, ψ,λ) ∈ M trunc
δ . We can write any

vector v ∈ TpTNordered as v = (vα, vψ, vλ)T where vα ∈ R2, vψ ∈ R1, and
vλ ∈ RN−3 denote the respective tangential components with respect
to the variables α, ψ, and λ. Then, TpM trunc

δ is spanned by those v
with vα = 0 (since {α0} is just a point) while the vectors (vα, 0, 0)
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are perpendicular to TpM trunc
δ . Further, we can write DΦt(p) in block

matrix form as

DΦt(p) =
(︄

exp (t J |α0) 0
A B

)︄
(6.14)

where J |α0 is the Jacobian for the right hand side of (6.12) evaluated
at α0, A is a (N − 2)-by-2 matrix, and B is of the form

B =
(︄

1 0T

0 idN−3

)︄
= idN−2 . (6.15)

To see this, let v ∈ TpTNordered denote any tangent vector at p ∈ M trunc
δ .

We find α decoupled from ψ and λ, so that the linearized flow in α at
the fixed point α0 is given by the linear map vα ↦→ exp(t J |α0)·vα which
yields the two upper blocks of in (6.14).5 The flow in ψ is given by

ψ ↦→ ψ +
∫︂ t

0
[f(α(t′))α(t′) + g(α(t′)) + f̄(α(t′))ᾱ(t′)] dt′

where α(t′) solves (6.4a) and the flow of ψ is in particular indepen-
dent of λ. The flow in λ is constant, and so its linearization is the
(N − 3) × (N − 3) identity. From this it follows that the only nonzero
entries of the matrix A are in its top row (since the flow of ψ and thus
its linearization generally depend on α but not on λ) while B is of
the form (6.15). We conclude from (6.14) that DΦt(p) possesses two
simple eigenvalues eλ±

< 1 where λ± < 0 denote the eigenvalues of the
Jacobian J |α0 . Further, we have an eigenvalue 1 of multiplicity N − 2.
The corresponding N − 2 eigenvectors to the latter eigenvalue span
TM trunc

δ since for every v|| = (0, vψ, vλ) ∈ TpM trunc
δ , we have⎛⎜⎜⎝

0
vψ

vλ

⎞⎟⎟⎠ ↦→ DΦt(α,ψ,λ)·

⎛⎜⎜⎝
0
vψ

vλ

⎞⎟⎟⎠ = DΦt
Mt

δ
(α,ψ,λ)·

⎛⎜⎜⎝
0
vψ

vλ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
vψ

vλ

⎞⎟⎟⎠ = v||.

The span of the two eigenvectors v± that correspond to eλ+ and eλ− ,
respectively, then uniquely defines the normal space Np at p. The only
nonzero components of v± are vα and vψ due to the fact that the matrix
A contains nonzero entries in its first row. Since they are eigenvectors
of DΦt(p) with eigenvalues eλ± , the dynamics in these directions decou-
ple from the linearized tangential flow DΦt

Mt
δ
(p) and we thus conclude

that DΦt(p) indeed can be written as DΦt(p) = DΦt
M trunc

δ
(p)⊕DΦt

N (p)
which keeps the splitting of TM trunc

δ
Rn = TM trunc

δ ⊕ N invariant.
The splitting is continuous since all eigenvalues depend continuous
on the entries of DΦt(p) and thus of p. For the projection πM trunc :
TM trunc

δ
TNordered → TM trunc

δ , we have

πM trunc
δ

(α0, ψ,λ, vα, vψ, vλ) = (α0, ψ,λ, 0, vψ, vλ)

5 This is a standard result which also plays a crucial role in the proof of the Hartman-
Grobman theorem, see [Chi99].
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while the projection πN : TM trunc
δ

TNordered → N is given by the canonical
scalar product

πN (α0, ψ,λ,v) = (α0, ψ,λ, (v · v+)v+ + (v · v−)v−).

From this, we see that both projections are readily continuous due to
the continuity of the basis vectors v±(p).

At last, we show that condition (iii) is fulfilled. We already noted
that the eigenvalue 1 corresponds to the tangential flow DΦt

M trunc
δ

while
0 < eλ±

< 1 correspond to the contracting normal flow DΦt
N . Hence,

for the contraction rates, we find a = max(λ+, λ−) < 0 as well as b = 0
and C = 1. In particular, we have a < bm = 0 for m > 0 and thus
M trunc

δ is a NAIM.
Step 3: We proceed by showing that (6.4) equally possesses a contin-

uous family of periodic orbits. By closing (6.4) to get equation (6.13),
we truncated the vector field

τ = F (Z)

⎛⎜⎜⎝
iα2

α

0

⎞⎟⎟⎠+G(Z)

⎛⎜⎜⎝
iα

1
0

⎞⎟⎟⎠+ F̄ (Z)

⎛⎜⎜⎝
i

ᾱ

0

⎞⎟⎟⎠
with

F (Z) := f(Z) − f(α)
G(Z) := g(Z) − g(α)

from (6.4). Identifying Lλ(Λ) ∼= D × S1 × {λ} with the space D × S1,
we subsequently truncate

τ |Lλ(Λ) = F (Z)
(︄
iα2

α

)︄
+G(Z)

(︄
iα

1

)︄
+ F̄ (Z)

(︄
i

ᾱ

)︄
(6.16)

in every level set Lλ(Λ) for any given λ ∈ V where each of the three
terms on the right hand side is of the form (6.9). Choose 1 > r >
|α0|. Since in D × S1, we can identify all C trunc

λ with the stable limit
cycle {α0} × S1 ⊂ Dr × S1, there exists an ϵ > 0 such that for every
perturbation of the vector field that has C1-norm smaller than ϵ in
Dr × S1, the orbits C trunc

λ persists by the Persistence Theorem 3.7. But
by Lemma 6.4, there exists an N0 ∈ N such that for all N ≥ N0, there
exists a δ-neighborhood V δ(λ∗) of λ∗ such that

|τ (α,ψ,λ)| +
⃦⃦⃦
D̃τ (α,ψ,λ)

⃦⃦⃦
< ϵ

uniformly on Dr × S1 × V δ and thus, the C trunc
λ persist, i. e., the full

system (6.4) possesses a periodic orbit Cλ ⊂ Dr × S1 × {λ} ⊂ Lλ(Λ)
for every λ ∈ V δ.

We can further choose δ such that the boundary of the union Mδ

over these orbits is composed of orbits Cλ with λ ∈ ∂V δ and is thus
invariant. Next, we show that Mδ is a smooth compact manifold.
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Step 4: Note that for λ ∈ V δ, there exists a smooth immersion
ιλ : C trunc

λ → Dr × S1 × {λ} whose image ιλ(C trunc
λ ) = Cλ lies ϵ-close to

C trunc
λ and that ιλ itself depends smoothly on λ because the truncated

terms (6.16) are smooth in λ. Hence, the map

ι : M trunc
δ → D × S1 × V

ι : (α0, ψ,λ) ↦→ (ιλ(α0, ψ),λ),

is (i) smooth, (ii) one-to-one on its image Mδ, and (iii) its derivative
has full rank N − 2, in other words, ι is equally a smooth immersion
and Mδ, as its image, is a compact smooth manifold [Lee12] which is
invariant and O(ϵ)-close to M trunc

δ .
Step 5: Finally, we show that Mδ is also normally hyperbolic: For

any fixed λ ∈ V , let Φt
λ denote the flow on the level set Lλ(Λ). Then,

the flow on TNordered is of the form

(α,ψ,λ) ↦→ (Φt
λ(α,ψ),λ)

and is smooth in λ since the vector field on TNordered and thus Φt
λ is

smooth in λ. The linearized flow at p = (α,ψ,λ) ∈ Cλ ⊂ Mδ ⊂ TNordered
reads

DΦt(p) =
(︄

D̃Φt
λ(p) DλΦt

λ(p)
0 idN−3

)︄
.

Let µ± < 0 denote the two nonzero contraction rates of Cλ ⊂ Lλ(Λ)
and v± = (v±

α , v
±
ψ ,0) the corresponding eigenvectors of DΦt(p) and let

µ0 = 0 denote the vanishing contraction rate in tangential direction
to Cλ. The remaining N − 3 eigenvectors of DΦt(p) are also tangent
vectors of Mδ at p and have nonvanishing components in λ-direction
since Mδ lies transversal to each Lλ(Λ) that it intersects for sufficiently
small ϵ > 0. Since λ is constant under the flow, the contraction rates
in the remaining N − 3 tangent direction are also zero. Because Φt is
smooth in λ, the v± depend smoothly on p so that condition (ii) of
Definition 3.5 is readily fulfilled. For the numbers a, b, and C from
condition (iii), we find b = 0, a = maxp∈Mδ

(µ±(p)) < 0 = bm for
every m > 0 and C = 1 so that Mδ is a smooth m-normally attracting
invariant manifold of (6.4).

We note that the invariant sets Lλ(Λ) yield a foliation [MM03] of
M trunc

δ in terms of the periodic orbits C trunc
λ . Since the perturbation

τ keeps all Lλ(Λ) invariant (because τλ = 0), the NAIM Mδ for the
original system (6.4) is equally foliated in terms of its periodic orbits Cλ.
Figure 17 gives a schematic depiction of Mδ and how its intersection
with any level set Lλ(Λ), λ ∈ Vδ, yields the periodic orbit Cλ which is
exponentially stable in Lλ(Λ) as indicated by gray arrows. Additional
periodic orbits Cλ′ ⊂ Lλ′(Λ) and Cλ′′ ⊂ Lλ′′(Λ) are depicted, as well.
They lie “parallel” to Cλ in the sense that they exist in disjoint level
sets which partition TNordered.
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Mδ

Lλ(Λ)

CλCλ′ Cλ′′

Figure 17: Schematic depiction of the manifold Mδ and its periodic orbits. Its
intersection with the level set Lλ(Λ) yields the periodic orbit Cλ. Gray arrows
indicate that each Cλ is stable in Lλ(Λ). Different periodic orbits Cλ′ ⊂ Lλ′(Λ)
and Cλ′′ ⊂ Lλ′′(Λ) lie “parallel” to Cλ.

6.3.3 Existence of the Splay State

The manifold Mδ intersects in particular the level set Lλ∗(Λ), i. e.,
there exists a periodic orbit in the level set of uniform distributions.
From (6.6), we can deduce that Z and therefore the equations (6.4)
are of particularly regular form which hints that the periodic state in
Lλ∗(Λ) also features some regular dynamics. This conjecture is con-
firmed by the following proposition:

Proposition 6.6 For the manifold Mδ from Theorem 6.5, the periodic
solution (α(t), ψ(t),λ∗) of (6.4) with periodic orbit Cλ∗ ⊂ Lλ∗(Λ) yields
a splay state ϕλ∗(t) for systems of the type (6.3).

Proof. Recall that θ∗
j = −π+2π(j−1)/N . For the closed system (6.13),

we found the periodic solution (α0,Ωt,λ∗) with period T = 2π/Ω. Its
phase dynamics ϕ trunc

λ∗ (t) can be recovered via the diagonal Möbius
action (4.10) which yields6

eiϕ
trunc
j (t) ≡ α0 + eiΩt+iθ

∗
j

1 + ᾱ0 eiΩt+iθ
∗
j

= α0 + eiΩt+i(−π+(j−1) 2π
N )

1 + ᾱ0 eiΩt+i(−π+(j−1) 2π
N )

= α0 + eiΩ(t+j TN )+i(−π+(N−1) 2π
N )

1 + ᾱ0 eiΩ(t+j TN )+i(−π+(N−1) 2π
N )

= α0 + eiΩ(t+j TN )+iθ∗
N

1 + ᾱ0 eiΩ(t+j TN )+iθ∗
N

≡ eiϕ trunc
N (t+j TN )

so that ϕ trunc
j (t) = ϕ trunc

N (t+ jT/N) holds and ϕ trunc
λ∗ (t) is in fact a

splay state, cf. (6.1). We now assert that also the periodic solution

6 When we write down components of ϕλ∗ (t), we drop the index λ∗ for better read-
ability.
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(α(t), ψ(t),λ∗) for the true system (6.4) from Theorem 6.5 yields a
splay state ϕλ∗(t). For this to be true, the following condition must
hold:

eiϕj(t) ≡ α(t) + eiψ(t)+iθ∗
j

1+ ᾱ(t)eiψ(t)+iθ∗
j

!=
α
(︂
t+ j TN

)︂
+ eiψ(t+j TN )+iθ∗

N

1+ ᾱ
(︂
t+ j TN

)︂
eiψ(t+j TN )+iθ∗

N

≡ eiϕN(t+j TN )

which is certainly true if the solution (α(t), ψ(t),λ∗) possesses the
spatio-temporal symmetry

α

(︃
t+ j

T

N

)︃
= α(t)

ψ

(︃
t+ j

T

N

)︃
= ψ(t) + θ∗

j − θ∗
N ≡ ψ(t) + j

2π
N

(6.17)

for all j = 1, . . . , N . To see that this is truly the case, we note first
that (6.4a) and (6.4b) are equivariant under any transformation that
keeps Z and α invariant. Recall that from (6.6), the Kuramoto order
parameter on Lλ∗(Λ) is given by

Z(α,ψ,λ∗) = α−
(︁
1 − |α|2

)︁ ∞∑︂
k=1

ᾱkN−1eikNψ

so that on Lλ∗(Λ), the maps (α,ψ) ↦→ Z(α,ψ,λ∗) and (α,ψ) ↦→ α are
invariant under the action of the finite group

Γ :=
{︂
γj : D × S1 × {λ∗} → D × S1 × {λ∗} ; j = 1, . . . , N

}︂
of transformations

γj : (α,ψ,λ∗) ↦→
(︃
α,ψ + j

2π
N
,λ∗

)︃
.

Hence, for the spatial symmetry group K in Theorem 3.11 for the
periodic solution (α0,Ωt,λ∗), we find K = {γN} (i. e., K contains only
the identity element γN ) while for the spatio-temporal symmetry group,
we find H = N(K) = Γ. Further, we have η = γN−1 and m = N in
Theorem 3.11 since with Ω = 2π/T , we find

γN−1

(︃
α0,Ω

(︃
t+ T

N

)︃
,λ∗

)︃
=
(︃
α0,Ωt+ ΩT

N
+ (N − 1)2π

N
,λ∗

)︃
=
(︃
α0,Ωt+ ΩT − 2π

N
,λ∗

)︃
= (α0,Ωt,λ∗).

Hence, conditions (a)-(d) of that theorem are fulfilled. Since C trunc
λ∗ ⊂

Lλ∗(Λ) is exponentially stable in Lλ∗(Λ) and (α0,Ω t,λ∗) naturally
obeys (6.17), this spatio-temporal symmetry is robust by virtue of
Corollary 3.12 and thus, (6.17) also holds for the periodic solution
(α(t), ψ(t),λ∗) of the true system (6.4). Hence, ϕλ∗(t) is a splay state.
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Proposition 6.6 constitutes the second main result of this chapter. To
summarize, we showed that systems of the form (6.4) possess, under
certain conditions, a NAIM of periodic orbits where one of these orbits
features splay state dynamics. Since the original AR-model (2.5) belongs
to this class, we can apply Theorem 6.5 and Proposition 6.6 to it and
investigate for which parameter choices it possesses such a NAIM. This
is content of the remainder of this chapter.

6.4 application: ensembles of active rotators

Recall that the system (2.5) can be written as

ϕ̇j = i

2
(︂
1 + κZ̄

)︂
eiϕj + ω − i

2
(︂
1 + κZ

)︂
e−iϕj

such that the functions f and g in (6.3) and (6.4) are of the form

f(Z) := i

2
(︂
1 + κZ̄

)︂
and g(Z) := ω.

In particular, (6.4) takes the form

α̇ = −1
2
(︂
1 + κZ̄

)︂
α2 + iωα+ 1

2
(︂
1 + κZ

)︂
ψ̇ = i

2
(︂
1 + κZ̄

)︂
α+ ω − i

2
(︂
1 + κZ

)︂
ᾱ

λ̇ = 0.

(6.18)

Substituting α for Z then yields the corresponding truncated or closed
system

α̇ = −1
2(1 + κᾱ)α2 + iωα+ 1

2(1 + κα) (6.19a)

ψ̇ = ω − Imα (6.19b)
λ̇ = 0. (6.19c)

We need to determine for which choices of the system parameters ω
and κ, the system fulfills the conditions in Theorem 6.5. Note that we
always assume |ω| < 1 in order for the individual units to be Active
Rotators.

We commence by determining the fixed point α0 for (6.19a). Writing
the equation in polar form by setting α = ρeiβ implies α̇ = ρ̇eiβ+iβ̇ρeiβ
so that we can write

ρ̇eiβ + iβ̇ρeiβ = −1
2
(︂
1 + κρe−iβ

)︂
ρ2e2iβ + iωρeiβ + 1

2
(︂
1 + κρeiβ

)︂
and thus

ρ̇+ iβ̇ρ = − 1
2
(︂
1 + κρe−iβ

)︂
ρ2eiβ + iωρ+ 1

2
(︂
1 + κρeiβ

)︂
e−iβ

= − 1
2ρ

2eiβ − κ

2ρ
3 + iωρ+ 1

2e−iβ + κ

2ρ

=
(︃

−1
2ρ

2 cosβ − κ

2ρ
3 + 1

2 cosβ + κ

2ρ
)︃

+

+ i

(︃
−1

2ρ
2 sin β + ωρ− 1

2 sin β
)︃
.
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The fixed point condition α̇(α0) = 0 then implies that both, the real
and the imaginary part of this expression, vanish such that we find

−1
2(ρ2 − 1) cosβ − 1

2(ρ2 − 1)κρ = 0

−1
2(ρ2 + 1) sin β + ωρ = 0

and thus, since ρ = |α| ≠ 1,

cosβ = −κρ

sin β = 2ωρ
(1 + ρ2) .

(6.20)

Eliminating the trigonometric terms by squaring and adding both ex-
pression, we get

1 = κ2ρ2 + 4ω2ρ2

(1 + ρ2)2 .

Substituting x = ρ2 yields the cubic equation

0 = κ2x3 + (2κ2 − 1)x2 + (κ2 + 4ω2 − 2)x− 1 (6.21)

in x. We make the following claim:

Lemma 6.7 The cubic equation (6.21) has exactly one real root x ∈
(0, 1) for ω2 ≤ 1 if κ2 > 1 −ω2 and no real root in (0, 1) if κ2 ≤ 1 −ω2.

Proof. We solve (6.21) for κ2 and find

κ2 = 1
x

− 4ω2

(1 + x)2 .

Next, we show that for any ω2 ≤ 1, the map (0, 1) ∋ x ↦→ 1
x − 4ω2

(1+x)2 ∈
(1−ω2,∞) is a bijection from which the claim follows because bijectivity
implies conversely that for any ω2 ≤ 1 and every κ2 > 1 − ω2 there
exists a unique x ∈ (0, 1) that solves (6.21) and that there exists no
such x for any κ2 ≤ 1 − ω2.
Injectivity: The map is differentiable in (0, 1) so that

dκ2

dx = − 1
x2 + 8ω2

(1 + x)3 < 0

⇔ (1 + x)3

8x2 > ω2.

But ω2 ≤ 1 < (1+x)3

8x2 holds because (1+x)3

8x2 is strictly monotonically
decreasing in (0, 1) since d

dx

(︂
(1+x)3

8x2

)︂
= (x−2)(1+x)2

8x3 < 0 ∀x ∈ (0, 1) and

thus its infimum is limx→1
(1+x)3

8x2 = 1. Hence, κ2, as a function of x, is
strictly monotonically decreasing and therefore injective.
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Surjectivity: Because κ2(x) is continuous and strictly monotonically
decreasing, its image is the interval (a, b) with

a = lim
x→1

1
x

− 4ω2

(1 + x)2 = 1 − ω2

b = lim
x→0

1
x

− 4ω2

(1 + x)2 = ∞

so that the map is indeed surjective and thus bijective.

Lemma 6.7 guarantees that there exists a unique fixed point α0 of
(6.4a) for |ω| < 1 if and only if κ2 > 1 − ω2. Using (6.20), we can write

α0 = ρ(cosβ + i sin β) = −κρ2 + 2i ωρ2

1 + ρ2

and find that, as long as ω ̸= 0,

f(α0) = i

2 (1 + κᾱ0)

= i

2

(︄
1 − κ2ρ2 − 2i ωκρ

2

1 + ρ2

)︄

= ωκρ2

1 + ρ2 + i

2
(︂
1 − κ2ρ2

)︂
̸= 0

because κ2 > 1 − ω2 > 0 and ρ > 0 hold and additionally

ψ̇ = ω − Imα0 = ω

(︄
1 − 2ρ2

1 + ρ2

)︄
= ω

1 − ρ2

1 + ρ2 =: Ω ̸= 0.

Note that the sign of Ω and therefore of ω determines the sense of
rotation of the periodic solution (α0,Ωt,λ). This sense of rotation
switches when ω changes its sign so that at ω = 0, the closed contours
C trunc

λ =
{︁
(α0, ψ,λ) ; ψ ∈ S1}︁ and thus the manifold M trunc

δ consist of
fixed points which possess N − 2 neutrally stable directions. The same
must then hold true for all Cλ and Mδ.

Next, we determine the stability of α0. Again, we treat α and ᾱ as
independent variables in D so that we find for the vector field in D

α̇ = −1
2(1 + κᾱ)α2 + iωα+ 1

2(1 + κα)

α̇ = −1
2(1 + κα)ᾱ2 − iωᾱ+ 1

2(1 + κᾱ).

Determining the Jacobian J := ∂(α̇,α̇)
∂(α,ᾱ) for the right hand side of this

equation7 yields

J =
(︄

−(1 + κᾱ)α+ iω + κ
2 −κ

2α
2

−κ
2 ᾱ

2 −(1 + κα)ᾱ− iω + κ
2

)︄
.

7 Here, we use again the Wirtinger derivatives, see [RS00].
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Its eigenvalues are

λ± = κ(1 − 2|α|2)
2 − Reα±

√︄
κ2

4 |α|4 − (ω − Imα)2 (6.22)

and thus, at the fixed point α0 = ρeiβ we have, again substituting
x = ρ2 and using equations (6.20), Reα0 = −κx and Imα0 = 2ωx

1+x so
that (6.22) becomes

λ± = κ

2 ±

√︄
κ2

4 x
2 − ω2

(︃1 − x

1 + x

)︃2
.

It is now easy to see that sign Re λ± = sign κ. We have two cases: that
of λ± ∈ R and that of λ± /∈ R. The first case is given by

κ2

4 x
2 − ω2

(︃1 − x

1 + x

)︃2
> 0.

But in this case,

κ2

4 >
κ2

4 x
2 − ω2

(︃1 − x

1 + x

)︃2

because x ∈ (0, 1) and we subtract a nonnegative term. Therefore, we
conclude that indeed sign Re λ± = sign κ. The second case, on the other
hand, is given by

κ2

4 x
2 − ω2

(︃1 − x

1 + x

)︃2
< 0.

so that Reλ± = κ
2 and therefore the statement holds trivially.

The results above on the existence and stability of α0 assert that the
system (6.18) and thus (2.5) indeed fulfill the conditions from Theo-
rem 6.5 and Proposition 6.6 if 0 < |ω| < 1 and κ < −

√
1 − ω2. This

establishes the final main result of this chapter:

Theorem 6.8 Let ϕ(t) = (ϕ1(t), . . . , ϕN (t)) ∈ TNordered obey

ϕ̇j = ω − sinϕj + κ

N

N∑︂
k=1

sin(ϕk − ϕj) (2.5)

with parameters 0 < |ω| < 1 and κ < −
√

1 − ω2. There then exists an
N0 ∈ N such that for all N ≥ N0, there exists a closed δ-neighborhood
V δ = V δ(λ∗) ⊂ V of λ∗, where for every λ ∈ V δ, there exists a unique
periodic orbit Cλ ⊂ Lλ(Λ) which is exponentially stable in Lλ(Λ). Ad-
ditionally, the union

Mδ :=
⋃︂

λ∈V δ

Cλ ⊂ TNordered

forms a compact normally attracting invariant manifold of dimension
N − 2. Further, the periodic solution ϕλ∗(t) := m(α(t), ψ(t),λ∗) with
(α(t), ψ(t),λ∗) solving (6.18) and orbit Cλ∗ ⊂ Mδ is a splay state.

Proof. This is a direct application of Theorem 6.5 and Proposition 6.6.



6.5 conclusion 107

6.4.1 Addendum: The Case |ω| > 1

We end this chapter with a remark on the case |ω| > 1 for which
the individual units are oscillatory on their own, even when decoupled.
It is reasonable to assume that for κ ̸= 0, this oscillatory motion of
the ensemble continues. Since full synchronization of the ensembles is
permitted by WS-integrability, so that a fully synchronized state ϕ1(t) =
· · · = ϕN (t) can be an attractor of the system, see [EM14], it is not at
all obvious that we still find a continuum of orbits in this case.

However, we can again look for roots x ∈ (0, 1) of the cubic equation
(6.21), which determined the absolute value of the fixed point α0 of the
closed equation (6.4a). We make the following assertion:

Lemma 6.9 For any ω ∈ R with |ω| > 1, equation (6.21) possesses
exactly one solution x ∈ (0, 1).

Proof. For |ω| > 1, the polynomial

p(x) = κ2x3 + (2κ2 − 1)x2 + (κ2 + 4ω2 − 2)x− 1

on the right hand side of (6.21) is strictly monotonically increasing in
(0, 1) because its derivative reads

Dxp(x) = 3κ2x2 + 2(2κ2 − 1)x+ κ2 + 4ω2 − 2
= 3κ2x2 + κ2(2x+ 1) + 4ω2 − 2x− 2
> 0

since 4ω2 > 4 > 2x + 2. Further, we have p(0) = −1 and p(1) =
4κ2 + 4ω2 − 4 > 0 so that p has exactly one root in (0, 1), for every
κ.

From this lemma, we can conclude that there exists a unique fixed
point α0, for any κ if |ω| > 1. The same analysis as for the case |ω| < 1
then reveals that f(α0) ̸= 0 and that α0 is stable for repulsive coupling
(κ < 0) and unstable for attractive coupling (κ > 0). Hence, Theo-
rem 6.5 and Proposition 6.6 apply to the case of oscillatory units and
in particular, we find that the whole manifold Mδ changes its stability
at κ = 0.

With this, we end our investigation of the degenerate dynamics of
the classic AR-model (2.5).

6.5 conclusion

In this chapter, we presented our results concerning the existence and
stability of a continuum of periodic orbits for the classic WS-integrable
Active Rotator model (2.5). In order to do so, we considered the class of
WS-integrable models for which each unit only couples to the rest of the
ensemble via the mean field Z, also called Kuramoto order parameter.

We started by expressing Z in terms of the WS-variables α, ψ, and
λ and showed that if Z is evaluated on the level set Lλ∗(Λ) of uniform
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distributions, it can be approximated by α where the resulting error
becomes negligible for large N . As a consequence, the error from ap-
proximating Z by α becomes equally negligible for all level sets with
cross-ratios within a neighborhood of λ∗. We proceeded by showing that
truncating the system through substituting α for Z and thus closing
the WS-equation for α̇ introduces an error which can be made arbi-
trarily small in C1-norm for large N . In particular, this allowed us to
study the much simpler dynamics of the truncated system for which we
showed that it must, under certain conditions, possess a NAIM which
intersects Lλ∗(Λ). Since the error from the truncation can be made
arbitrarily small, this implies that the NAIM also exists for the original
system for sufficiently large N . Afterwards, we showed that the periodic
orbit in Lλ∗(Λ) must be a splay state by means of the equivariance of
the system in that subspace. Finally, we returned to the model (2.5)
to which our general results can be readily applied. In particular, we
computed the critical coupling strength κ0 at which the continuum of
orbits emerges and found that it indeed coincides with the value at
which the synchronous fixed point ∆s of the system becomes unstable,
thus corroborating the homoclinic nature of the transcritical bifurca-
tion of ∆s.

Theorem 6.5 states that the continuum of orbits exists for sufficiently
large N in a neighborhood of λ∗. At least for the AR-model (2.5), nu-
merical evidence suggests that it already exists for N = 4 and extends
through the entirety of the space V of cross-ratios.

A word is at hand about several noteworthy points on the continuum
of orbits. Throughout this chapter, we assumed all units to be distinct
so that there are no clusters present. But if the continuum exists for
an ensemble of N units, this implies for an ensemble of kN units, that
there similarly exists a continuum of periodic solutions, consisting of
N clusters with k > 1 units, each, because such an ensemble gives
rise to an N -dimensional reduced description in terms of its cluster
coordinates, which is of a similar form. In particular, Mδ is in generalFrom now on, we speak of

Mδ in a slight abuse of
terminology both as a

NAIM as well as a
continuum of periodic

orbits.

not the only continuum in TN but instead, one encounters numerous
such continua (not to mention the copies in other part of TN that arise
from any permutation of units). If the ensemble does not split into
clusters of equal but different sizes, in the reduced description of cluster
coordinates, this makes the clusters nonidentical and thus, WS-theory
can in general not be applied to them, even though it is still applicable
to the full ensemble. We observed such asymmetric clustered states
in our numerical experiments, as well. We note also that, regarding
symmetric M -cluster (M > 2) states, our results on the stability of Mδ

only apply to the non-splitting stability of these states. Stability against
splitting perturbations must be investigated independently because it
is not accessible to the reduced description via cluster coordinates.

In the proof of the existence of Mδ, we made several assumptions for
simplicity which make Theorem 6.5 not as general as possible. Specif-
ically, we assumed that there exists a unique fixed point in (6.13a)
and that this fixed point is exponentially stable. But the idea of the
proof works similarly for the case of multiple generally hyperbolic fixed
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points. The resulting manifolds will than have the same stability type
as the respective fixed points. In particular, in Lemma 6.7, where we
determined the modulus ρ = |α0| of the fixed point of (6.13a), we
found that there equally exists a unique solution x̃ of the cubic equa-
tion (6.21) for κ > +

√
1 − ω2. A stability analysis, similar to the one

for α0, reveals that the resulting fixed point α̃0 is exponentially unsta-
ble. As a consequence, for sufficiently attractive coupling, there exists a
normally repelling NHIM M̃δ of periodic orbits. This repelling manifold
emerges in a THB of the unstable synchronous fixed point ∆u instead of
∆s. However, due to its repulsive and therefore asymptotically unstable
nature, this manifold is generally of little interest in practice.

As already noted, a change of the sense of rotation for the orbits in
Mδ occurs when ω changes its sign. At ω = 0, the manifold instead
consists of fixed points with N − 2 neutrally stable directions, each. In
this case, different initial states, even in the same level set Lλ(Λ), will
generally converge to different steady asynchronous states. However,
a true Active Rotator will always have ω ̸= 0 because it was exactly
this nonvanishing “constant driving force” that lead Shinomoto and
Kuramoto to coin the name Active Rotator.

Finally, we showed that for |ω| > 1, i. e., when the single units become
full blown oscillators on their own, the cubic equation (6.21) possesses
a unique real solution for any choice of κ so that in this case, we always
encounter a continuum of periodic orbits. Remarkably, this continuum
is asymptotically stable for κ > 0 and unstable for κ < 0 so that
a change of stability for the whole NHIM occurs at κ = 0. How this
stability-changing bifurcation of the manifold looks in detail lies beyond
the scope of this thesis but might be worth future research.

The implications from the results of this chapter are profound: Firstly,
our results imply that the existence of the continuum of periodic or-
bits together with its NAIM-structure is a robust phenomenon in WS-
integrable systems and is not restricted to systems of the type (6.3) for
which the common fields f and g depend solely on Z. Since NAIMs are
robust under any sufficiently small perturbation, the family Mδ still
forms a NAIM, even if f and g depend explicitly on ϕ as long as this
explicit dependence is sufficiently small which might make our results
applicable to, e. g., WS-integrable systems that are driven by an exter-
nal force [Bai+09]. Of course, what constitutes a “sufficiently” small
explicit dependence is a highly nontrivial question which to answer lies
again beyond the scope of this thesis. The second, and arguably more
important, implication is that, while the individual periodic orbits of
the continuum, being nonhyperbolic, can cease to exist if one intro-
duces perturbations that violate the conditions for WS-integrability,
their union Mδ forms a robust manifold which persists even when
the perturbed system is not integrable. Since Mδ is normally attract-
ing, the resulting dynamics will essentially take place on this manifold:
For generic initial condition, the corresponding solution moves exponen-
tially fast towards the NAIM and then slowly evolves along it, effectively
reducing the dimension of the dynamics by two. The state can then in
principle move everywhere on Mδ since there exists no more restric-
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tions to specific level sets. In particular, the manifold Mδ is not just a
curiosity of the classic AR-model due to its integrability but is a gen-
eral feature of systems of generalized Active Rotators and, as a matter
of fact, also of ensembles of identical Active Rotators with nonsinu-
soidal coupling.8 In the next chapter, we make use of this fact when we
develop a perturbation theory for (2.5) by means of averaging theory
which in particular allows to investigate the asymptotic dynamics of
the generalized AR-model (2.6) by looking at the dynamics on Mδ for
(2.5).

8 Just as any other perturbation, changes in the coupling function leave Mδ robust
as long as they are small.



7
G E N E R A L DY N A M I C S A N D T H E AV E R AG I N G
P R I N C I P L E

abstract

In this chapter, we leave the classic Active Rotator model (2.5) be-
hind and come back to the generalized model (2.6). While we studied
periodic two-cluster states for this model in Chapter 5, we now want
to investigate the asymptotic dynamics for such AR-ensembles on the
NAIM Mδ, introduced in the previous chapter. In particular, we are
interested in what happens to the infinitely many periodic orbits that
composed Mδ in the case of the integrable model, when we introduce We note again, that we use

the symbol Mδ to refer
both to the NAIM from
Theorem 6.5 as well as the
continuum of periodic
orbits that composed it.

perturbations which remove this integrability by breaking the Möbius
group symmetry of (2.5). For this, we start again by considering the
broader class of WS-integrable models of type (6.3) and develop, af-
ter some general remarks in Section 7.1, in Section 7.2 a criterion to
determine robust periodic orbits in Mδ by means of averaging theory
for a given perturbation function h. For this, we restrict ourselves to
perturbations in the on-site dynamics which in particular includes the
generalized AR-model (2.6). In Section 7.3, we draw some general con-
clusions that immediately follow from this criterion, the most important
being that splay states are generally robust solutions for such systems.
Afterwards, we conduct a “case study” on a minimal system of four gen-
eralized ARs and investigate the stability of the splay state as well as
the interplay between this state and the periodic two-cluster states. For
this we discuss what we call “broken-symmetry states”, which play a
vital role in the de-/stabilization of splays states and two-cluster states.
Finally, we discuss how the picture generalizes for larger ensemble sizes
and illustrate how any given periodic orbit of the continuum can be
controlled (i. e., made hyperbolic) by constructing an appropriate per-
turbation function.

The content of this chapter is based on the results in [RZP] and
[RZ21b].

7.1 general remarks

The continuum Mδ =
{︂

Cλ ; λ ∈ V δ

}︂
of Theorem 6.5 exists due to

the hidden symmetry of the underlying equations of motion (6.3) and
the resulting degenerate dynamics are in this sense not generic. What

111
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is generic, however, is the manifold Mδ =
⋃︁

λ∈V δ Cλ. The question
thus arises what happens to Mδ as (i) a family of periodic orbits and
(ii) as an invariant manifold if the vector field is perturbed in such a
way that the system ceases to be integrable. The answer to point (ii)
is trivial: The NAIM Mδ persists because of its normal hyperbolicity.
However, the answer to point (i) of the question is not so obvious. Our
objective is therefore to determine which, if any, of the infinitely many
nonhyperbolic periodic orbits that made up Mδ “survive” if we make
the system nonintegrable, i. e., which orbits become hyperbolic and
thus robust and which do not. It is reasonable to assume that if any
periodic orbits survive at all, the answer to the question which orbits
become robust depends on how we perturb the system. Different types
of perturbations are sensible: We could consider the case of nonidentical
units, as was previously studied in, e. g., [PR08; VRP16]. However, if we
want to make use of our considerations from Chapter 4 and Chapter 6
and in particular of the existence of the diffeomorphism m between
angular variables and WS-variables, we need to restrict ourselves to the
case of perturbations which leave all units identical since only in this
case, the ordered torus TNordered stays invariant under the flow of the
perturbed vector field. To determine robust periodic orbits and their
stability, we now develop a framework by means of averaging theory
[SVM07].

The averaging principle has its origins in works by Laplace and La-
grange in the study of the multi-body problem in Newtonian celes-
tial mechanics [SVM07]. The intuitive idea behind it is that for sys-
tems which feature a separation of time scales such that they possess
a short-periodic or fast component1 and some slowly varying or long-
time components, one can approximate the dynamics by assuming that
the long-time components are (nearly) constant during a full period of
the short-periodic variable. The influence of the fast variable on the
slow variables can then be approximated by its average over a single
full period. The effective dynamics of the slowly varying components
under this approximation should then qualitatively resemble their evo-
lution in the true system. For example, the effects of an inner planet’s
gravitation on the movement of an outer planet (which is thus moving
slower in comparison to the former) can be approximated by “smearing
out” the inner planet over its orbit and then calculate the effect of the
now stationary distribution of mass on the outer planet. In the con-
text of WS-integrability, this is what we expect for the dynamics along
the manifold Mδ for systems that are “close” to being WS-integrable:
There, the fast component is the phase dynamics in direction of the
periodic orbits Cλ and the slow components are the cross-ratios, which
for small perturbations of the on-site dynamics are no longer constants
of motion but are slowly varying in time.

As in the last chapter, we start by considering general WS-integrable
systems of the form (6.3) where the global fields f and g are functions

1 Here, we only focus on the case of a single fast component. If one deals with mul-
tiple short-periodic components, phenomena like resonance have to be taken into
consideration.
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of the Kuramoto order parameter Z and then study the effects of small
perturbations to the right hand side of (6.3). In particular, we always
assume the existence of the NAIM Mδ from Theorem 6.5 and restrict
our attention to the dynamics on this manifold, assuming that it is the
only NAIM of the system, since in this case, the asymptotic dynamics of
the perturbed system take place entirely on the NAIM. In this case, for
arbitrarily chosen initial conditions, the evolution of any state under
the flow of the system is composed of a short period of exponential con-
vergence towards Mδ after which the state evolves along that manifold
so that we can restrict our attention to the dynamics on it.

Theorem 6.5 only guarantees the existence of periodic orbits Cλ for Maximally extended NAIM.
values of λ in the vicinity of λ∗. It does not say how far the NAIM
Mδ actually extends in phase space. However, at least for the case
of Active Rotators, numerical results indicate that this extension is
“large” in the sense that the manifold is composed of periodic orbits
with cross-ratios ranging over the entirety of V , cf. [ZT16]. In other
words, regardless of which values we choose for λ, if the coupling is
sufficiently repulsive, there exists a Cλ which is part of the continuum
for this model. Throughout this chapter, we drop the index δ from Mδ

and consider its maximal extension

M =
⋃︂

λ∈W
Cλ

where the set W ⊂ V is the largest open set of cross-ratios, for which
for every λ ∈ W , there exists a periodic orbit Cλ, exponentially stable
in Lλ(Λ) and where M, as the union over all these orbits is a NAIM.

The generalized Active Rotator model

ϕ̇j = ω − sinϕj + ϵh(ϕj) + κ

N

N∑︂
k=1

sin(ϕk − ϕj)

h(ϕ) =
∞∑︂
n=2

an sinnϕ+ bn cosnϕ
(2.6)

belongs to the class of systems of the form

ϕ̇j = f(Z)eiϕj + g(Z) + f̄(Z)e−iϕj + ϵh(ϕj) (7.1a)

h(ϕ) =
∞∑︂
n=2

an sinnϕ+ bn cosnϕ (7.1b)

with constant Fourier coefficients an and bn. In what follows, we always
assume h to be smooth. For ϵ = 0, we get back to our general WS-
integrable model

ϕ̇j = f(Z)eiϕj + g(Z) + f̄(Z)e−iϕj (6.3)

from the previous chapter. In particular, since the coefficients an and
bn are constant, h represents a perturbation in the on-site dynamics of
the ϕj while, e. g., choosing an = an(Z), bn = bn(Z) would result in a
perturbation in the coupling term of (7.1a).
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7.2 the averaging principle for watanabe-strogatz
theory

We start our considerations by stating an adapted version of Theo-
rem 3.13 for our purposes in the context of WS-integrability.

For the diffeomorphism m from Proposition 4.12, let n = m−1 :
TNordered → D× S1 ×V denote its inverse. We further write nα, nψ, and
nλ ≡ Λ for its respective components such that for θ = m(α,ψ,λ), we
have

nα(θ) := α

nψ(θ) := ψ

nλ(θ) := λ = Λ(θ).

Since we assume that the perturbation function h in (7.1) is the same
for all units j, we write

h(θ) := (h(θ1), . . . , h(θN ))

for its diagonal action on TNordered. Recall from Chapter 4 that, by
means of the chain rule, we can then deduce that for every variable
x ∈ {α,ψ,λ},

ẋ = Dθnx · θ̇ ≡ Dnx(θ) · θ̇

holds. In general, for any θ ∈ TNordered with n(θ) = (α,ψ,λ), we write

(DΛ · h) (θ) :=
N∑︂
j=1

h(θj) · DθjΛ(θ)

for the components of h(θ) that lie perpendicular to the level set Lλ(Λ)
at θ.2 The expressions (Dnα · h)(θ) and (Dnψ · h)(θ) are similarly
defined.

While the perturbation term ϵh(ϕj) in (7.1) consists of higher order
Fourier modes, it generally still has some components that lie tangent
to Lλ(Λ) and thus contribute to the dynamics of α and ψ. Equation
(7.1a) reads therefore in WS-variables

α̇ = i
(︂
f(Z)α2 + g(Z)α+ f̄(Z)

)︂
+ ϵ (Dnα · h) ◦ m(α,ψ,λ)

ψ̇ =
(︂
f(Z)α+ g(Z) + f̄(Z)ᾱ

)︂
+ ϵ (Dnψ · h) ◦ m(α,ψ,λ)

λ̇ = ϵ (DΛ · h) ◦ m(α,ψ,λ)

(7.2)

from which we find that the perturbation term ϵh(ϕj) in (7.1) results
in a perturbation term of order O(ϵ) to the WS-equations (7.2). Its
contribution to the dynamics of α and ψ is thus negligible in comparison

2 Recall that, since Lλ(Λ) is the set of all θ ∈ TNordered with Λ(θ) = λ, all column
vectors Dθj Λ(θ) of the gradient DΛ(θ) stand orthogonal to TθLλ(Λ) and span the
orthogonal complement (TθLλ(Λ))⊥ to TθLλ(Λ). Hence, (DΛ · h)(θ) denotes the
component of h(θ) that is perpendicular to Lλ(Λ) at the point θ.
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to the WS-integrable terms in the equations for α̇ and ψ̇, which are
of order O(1), and can be absorbed into the WS-integrable equations.
However, for λ̇, it results in a slow drift of order O(ϵ). Only this drift
term in the third equation renders the system nonintegrable by making
the level sets Lλ(Λ) noninvariant.

We are now ready to state the averaging principle for WS-theory by
giving the desired adapted version of Theorem 3.13:

Proposition 7.1 Consider the system (7.1) with smooth h. For ϵ = 0,
let

M =
⋃︂

λ∈W
Cλ

denote the largest extension of the NAIM from Theorem 6.5 in TNordered
such that W is the largest open set for which for every λ ∈ W ⊂ V ,
there exists a periodic orbit Cλ ⊂ M which is exponentially stable in
Lλ(Λ) and M is a NAIM. For every λ ∈ W , fix a θ = θ(λ) ∈ Cλ and let
ϕλ(t) denote the T (λ)-periodic solution of (6.3) with initial condition
ϕλ(0) = θ. Then, the following statements hold true:

1. The function

F̂ h(λ) := 1
T (λ)

∫︂ T (λ)

0
(DΛ · h) ◦ ϕλ(t) dt, (7.3)

is continuously differentiable and well-defined and thus in partic-
ular independent of the choice of θ(λ) ∈ Cλ.

2. There exists an ϵ0 > 0 such that for all |ϵ| < ϵ0, there exists a
NAIM Mϵ which is diffeomorphic and O(ϵ)-close to M. From now on, we follow

the general convention in
the theory of normally
hyperbolic manifolds to
write Mϵ for the perturbed
manifold and M for the
original manifold. Although
this is a slight abuse of
notation with respect to
Chapter 6 where Mδ had a
different meaning, there is
no chance for confusion
since we are exclusively
dealing with the extended
manifold M.

3. If there exists a c > 0 such that 2π/T (λ) > c > 0 for all λ ∈ W ,
then, for every hyperbolic fixed point λ0 ∈ W of the averaged
system

λ̇ = ϵF̂ h(λ), (7.4)

there exists a periodic orbit Cϵ,λ0 ⊂ Mϵ which lies O(ϵ)-close to
Cλ0 ⊂ M so that, in particular, ∥Λ(ϑ) − λ0∥ = O(ϵ) for every
ϑ ∈ Cϵ,λ0.

4. If λ0 possess ns stable and nu unstable directions, then, for ϵ > 0,
the periodic orbit Cϵ,λ0 has ns+2 stable and nu unstable directions.
For ϵ < 0, it has nu + 2 stable and ns unstable directions.

Proof. 1. Let ϕλ be the periodic solution of (6.3) with period T (λ) > 0
and the initial condition ϕλ(0) = θ ∈ Cλ. Then, the average of DΛ · h
over Cλ on the right hand side of (7.3) exists. For any θ′ ∈ Cλ, let
ϕ′

λ(t) denote the solution of (6.3) with ϕ′
λ(0) = θ′. Then, there exists

a τ = τ(θ′) such that ϕ′
λ(t) = ϕλ(t + τ). But since we average over

a full period, the integral in (7.3) is invariant under shifts in t and
thus is independent of the choice of θ. Further, F̂ h is continuously
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differentiable because both Λ and h are smooth and ϕλ and T (λ)
depend smoothly on the system parameter λ [Rud76].

2. Because h is smooth, so is h : TN → RN . Because TN is compact,
there exists a constant K > 0 such that ∥h∥C1 = K and thus

∥ϵh∥C1 = O(ϵ).

Thus, by the Persistence Theorem 3.7, there exists an ϵ0 > 0 such that
for all |ϵ| < ϵ0, there exists a NAIM Mϵ which is diffeomorphic to M
and lies O(ϵ)-close to it.

3. By assumption, M ∼= S1 ×W , i. e., every point θ ∈ M is uniquely
determined by (i) its cross-ratios λ = Λ(θ), determining in which orbit
Cλ ⊂ M it lies, and (ii) its position on Cλ which is determined by its
phase s = S(θ) ∈ S1. The function S becomes uniquely defined, once
we define a Poincaré section Σ ⊂ M which lies transversal to each
orbit Cλ ⊂ M, such that for every θ ∈ Σ, we set S(θ) = 0. If we
choose Σ ⊂ M to be a smooth submanifold of M, the function S is
also smooth. This results in a chart

χ : θ ↦→ (s,λ) = (S(θ),Λ(θ))

with coordinates (s,λ) for M in which the equations of motion on the
NAIM simply read

ṡ = 2π
T (λ)

λ̇ = 0.

By assumption, T (λ) is bounded from above for all λ ∈ W and so there
exists a 0 < c < 2π/T (λ).

We introduce compatible coordinates on Mϵ and determine the equa-
tions of motion on it in terms of these coordinates. To do so, we start by
noting that, since M is not only a NAIM but also the union of periodic
orbits Cλ, each stable in its respective level set Lλ(Λ), there exists an
open neighborhood U(M) of M such that χ can be extended to3

χ : U → S1 × V

χ : ϑ ↦→ (S(ϑ),Λ(ϑ))

which is as smooth as the vector field in (7.1a), see [Fen77]. For |ϵ|
sufficiently small, Mϵ lies within U(M) and in particular, every point
ϑ ∈ Mϵ is uniquely determined by its coordinates

(s,λ) = (S(ϑ),Λ(ϑ))

because every ϑ ∈ Mϵ lies in exactly one isochron in the level set Lλ(Λ)
with λ = Λ(ϑ). Since M and Mϵ are diffeomorphic and lie O(ϵ)-close,
there further exists a near-identity map

ρ : M → Mϵ

ρ : θ ↦→ ϑ = θ + ϵP (θ, ϵ)

3 In the diction of [HI12], χ is the asymptotic phase on U .
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which can be extend to a diffeomorphism

ϱ : U(M) → U(Mϵ)

between U(M) and an open neighborhood U(Mϵ) of Mϵ. In particular,
we have ϱ|M = ρ and further, ϱ is a near-identity map around M, as
well, so that we find

ϱ(θ) = θ + ϵP (θ, ϵ) (7.5)

for θ ∈ M. Writing (7.1a) as

ϑ̇ = FWS(ϑ) + ϵh(ϑ)

FWS(ϑ) :=

⎛⎜⎜⎝
f(Z)eiϑ1 + g(Z) + f̄(Z)e−iϑ1

...
f(Z)eiϑN + g(Z) + f̄(Z)e−iϑN

⎞⎟⎟⎠ , (7.6)

we can Taylor-expand FWS(ϑ)+ϵh(ϑ) around θ = ϱ−1(ϑ) which yields

FWS(ϑ) = FWS(θ + ϵP (θ, ϵ))
= FWS(θ) + ϵDFWS(θ) · P (θ, ϵ) + O(ϵ2)

h(ϑ) = h(θ + ϵP (θ, ϵ))
= h(θ) + ϵDh(θ) · P (θ, ϵ) + O(ϵ2).

(7.7)

For the phase s = S(ϑ), we then find with (7.5), (7.6), and (7.7) by
the chain rule

ṡ = DS(ϑ) · ϑ̇

= DS(ϑ) · [FWS(ϑ) + ϵh(ϑ)]
= DS(θ + ϵP (θ, ϵ)) ·

[︁
FWS(θ) + O(ϵ)

]︁
=
[︁
DS(θ) + O(ϵ)

]︁
·
[︁
FWS(θ) + O(ϵ)

]︁
= DS(θ) · FWS(θ) + O(ϵ)

= 2π
T ◦ Λ(θ) + O(ϵ)

(7.8)

because for the unperturbed system (6.3), we have by definition of the
phase

d
dtS(θ) = DS(θ) · θ̇ = DS(θ) · FWS(θ) = 2π

T ◦ Λ(θ) .

Further, for the cross-ratios λ = Λ(ϑ), we have by the same argument
and because the WS-integrable term FWS of (7.6) keeps cross-ratios
invariant

λ̇ = DΛ(ϑ) · ϑ̇

= DΛ(ϑ) · [FWS(ϑ) + ϵh(ϑ)]
= DΛ(ϑ) · FWS(ϑ)⏞ ⏟⏟ ⏞

=0

+ϵDΛ(ϑ) · h(ϑ)

= ϵDΛ(θ + ϵP (θ, ϵ)) · h(θ + ϵP (θ, ϵ))
= ϵ

[︁
DΛ(θ) + O(ϵ)

]︁
·
[︁
h(θ) + O(ϵ)

]︁
= ϵDΛ(θ) · h(θ) + O(ϵ2).

(7.9)
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Next, we have to close equations (7.8) and (7.9) by writing them entirely
in terms of s and λ. For this, we need to express θ in terms of s and λ.
We note first that because of (7.5), we have

Λ(θ) = Λ(ϑ) + O(ϵ) = λ + O(ϵ)
S(θ) = S(ϑ) + O(ϵ) = s+ O(ϵ).

Let

θ0 : W → Σ
θ0 : λ ↦→ χ−1(0,λ)

denote the point in Cλ ⊂ M of phase zero, i. e., S(θ0(λ)) = 0. In
particular, θ0 is smooth since χ is smooth. Denoting the flow of the
unperturbed equations (6.3), restricted to M, by ΦWS|M : M × R →
M, we can write θ entirely in terms of s and λ as

θ = ΦWS|M
(︃

θ0 ◦ Λ(θ), S(θ)T ◦ Λ(θ)
2π

)︃
= ΦWS|M

(︃
θ0(λ + O(ϵ)), (s+ O(ϵ))T (λ + O(ϵ))

2π

)︃
= ΦWS|M

(︃
θ0(λ) + O(ϵ), sT (λ)

2π + O(ϵ)
)︃

= ΦWS|M
(︃

θ0(λ), sT (λ)
2π

)︃
+ O(ϵ)

= ϕλ

(︃
s
T (λ)
2π

)︃
+ O(ϵ)

where ϕλ(t) ≡ ΦWS|M(θ0(λ), t) is the solution of (6.3) with initial
condition ϕλ(0) = θ0(λ) ∈ Cλ. Subsequently, we arrive at the closed
equations

ṡ = 2π
T (λ) + O(ϵ) + O(ϵ)

= 2π
T (λ) + O(ϵ)

λ̇ = ϵDΛ
(︃

ϕλ

(︃
s
T (λ)
2π

)︃
+ O(ϵ)

)︃
· h

(︃
ϕλ

(︃
s
T (λ)
2π

)︃
+ O(ϵ)

)︃
+ O(ϵ2)

= ϵ

[︃
DΛ ◦ ϕλ

(︃
s
T (λ)
2π

)︃
+ O(ϵ)

]︃
·
[︃
h ◦ ϕλ

(︃
s
T (λ)
2π

)︃
+ O(ϵ)

]︃
+ O(ϵ2)

= ϵ (DΛ · h) ◦ ϕλ

(︃
s
T (λ)
2π

)︃
+ O(ϵ2)

(7.10)

and in particular, we can readily apply Theorem 3.13 to (7.10). This
yields the averaged system

λ̇ = ϵF̂ h(λ) (7.11)
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Cλ′ Cλ Cλ′′

M Mǫǫ = 0 ǫ 6= 0

Figure 18: Schematic depiction of the dynamics on the manifolds M and Mϵ.
For the WS-integrable system (ϵ = 0) on the left, the manifold is composed of
infinitely many periodic orbits along which the flow of the vector field runs in
parallel. Switching on the perturbation (ϵ ̸= 0) on the right yields a slow drift
term in the λ-components, generally resulting in a spiraling motion along M.
Hence, only certain periodic orbits persist in the perturbed case, if any.

with

F̂ h(λ) := 1
2π

∫︂ 2π

0
(DΛ · h) ◦ ϕλ

(︃
s
T (λ)
2π

)︃
ds

= 1
T (λ)

∫︂ T (λ)

0
(DΛ · h) ◦ ϕλ(t) dt,

i. e., (7.3) where we average over the fast variable s (or t, respectively).
4. Let λ0 denote a hyperbolic fixed point of (7.11) with ns stable

and nu unstable directions. For 0 < ϵ < ϵ0, we then find for the cor-
responding periodic orbit Cϵ,λ0 that it lies O(ϵ)-close to Cλ0 and thus
in particular, ∥Λ(ϑ) − λ0∥ = O(ϵ) for every ϑ ∈ Cϵ,λ0 . Further, since
(7.10) describes the dynamics, restricted to Mϵ, the orbit Cϵ,λ0 has ns
stable directions and nu unstable directions in Mϵ. Because Mϵ is nor-
mally attracting and (N − 2)-dimensional, Cϵ,λ0 has ns + 2 stable and
nu unstable directions in TNordered. On the other hand, for −ϵ0 < ϵ < 0,
the fixed point λ0 has nu stable and ns unstable directions and thus by
the same argumen, Cϵ,λ0 has nu + 2 stable and ns unstable directions
in TNordered. This finishes the proof.

Proposition 7.1 serves as a tool to determine periodic orbits from the
family M which become robust under a given choice for h. In practice,
this works as follows: Fixing λ, one starts by determining the periodic
solution ϕλ(t) of the unperturbed system (6.3). Then, one proceeds
by numerically evaluating and integrating the expression DΛ · h along
the orbit of ϕλ. If the integral vanishes for λ and its derivative with
respect to λ has no eigenvalues with zero real part, the correspond-
ing orbit Cλ will generally be slightly distorted to the orbit Cϵ,λ due
to the perturbation ϵh in (7.1). On the other hand, orbits for which
the integral does not vanish do not survive the introduction of the
perturbation. Intuitively speaking, the reason for this is that while all
Cλ ⊂ M lie somewhat parallel to their neighboring orbits for the WS-
integrable model (6.3), the introduction of ϵh in (7.1a) introduces a slow
“drift” in λ-direction along Mϵ such that a solution ϕ(t) ∈ Mϵ with
λ = Λ(ϕ(0)), instead of following the orbit Cλ, is now “pushed” away
from this orbit like a cruise ship may drift from its optimal course by
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sea currents, coming from different directions. However, if F̂ h(λ) = 0,
the pushes cancel each other out on average over the length of Cλ such
that ϕ(t) stays periodic just like the ship reaches its home port again if
the sea currents make it drift equally often in opposite directions over
its full cruise. Since Cϵ,λ becomes slightly distorted, the λ-components
of ϕ(t) oscillate slowly but stay close to λ. By the same reasoning, any
initial state that does not lie on one of the surviving orbits receives a
net drift term in some direction over a full rotation so that its trajectory
is not a periodic orbit but slowly spirals along Mϵ in that direction,
see Figure 18 for a schematic depiction. In this case, our proverbial
ship looses its course and will not find home if the sea currents push it
predominantly in one cardinal direction.

One might ask why we are not averaging over the periodic states
ϕ trunc

λ (t) = m(α0,Ωt,λ) from the truncated system (6.13) to compute
F̂ h(λ) since these solutions are much simpler (we even have explicit
expressions for them) and, at least for values of λ that are close to
λ∗, approximate the full dynamics of (6.3) well. However, as we show
in Appendix D, the averaged vector field F̂ h in λ-direction vanishes
identically for all λ if we integrate in (7.3) over the orbits C trunc

λ . Un-
der these circumstances, we cannot draw any conclusions about robust
orbits from the averaging principle and Proposition 7.1 becomes sterile.

In the next section, we discuss the main implications of Proposi-
tion 7.1. In particular, we investigate what can be said about the ro-
bustness and stability of the splay state for the perturbed system (7.1).

7.3 implications

Even though the explicit form of the averaged vector field F̂ h, defined in
(7.3), can in general not be determined because to do so would require
(i) to solve the unperturbed equations (6.3) for the periodic solution
ϕλ(t) and then (ii) integrate the expression (DΛ · h)(θ) over a period
of this solution, we can still draw some general conclusions for F̂ h by
using how the cross-ratios Λp,q,r,s transform under permutations of the
units θp, θq, θr, θs [Ric11]. Special focus is thereby put on splay states
due to their spatio-temporal symmetry.

7.3.1 Switch in Stability

We start with a rather simple observation which is a direct consequence
of point 4 of Proposition 7.1. In the averaged system (7.4), the sign of ϵ
controls the stability of any hyperbolic fixed point λ0 in the sense that
changing the sign of ϵ makes stable directions of λ0 unstable and vice
versa. Thus, the same happens to the stable and unstable directions
of the corresponding periodic orbit Cϵ,λ0 in the true system (7.1) in
Mϵ. The two normally attracting directions, inherited from Mϵ do not
change their stability. This means that if a surviving periodic orbit
Cϵ0,λ0 of (7.1a) is stable for ϵ0 ̸= 0 sufficiently small, the orbit C−ϵ0,λ0

is unstable (if it exists). Varying ϵ within the interval [−ϵ0,+ϵ0], the
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orbit Cϵ,λ0 switches its stability at ϵ = 0, i. e., when the system becomes
WS-integrable.

7.3.2 Persistence and Stability of Splay States

As established in Proposition 6.6, the periodic orbit Cλ∗ ⊂ M of the
continuum gives rise to a splay state which is of the form

ϕjλ∗(t) = φ

(︃
t+ j

T (λ∗)
N

)︃
for some T (λ∗)-periodic function φ and therefore possesses a spatio-
temporal symmetry. The finite group Γ, which is responsible for this
in the sense of Theorem 3.11 for equivariant systems, is the group of
cyclic permutations of order N :

Γ = {σn ; n = 1, . . . , N}

with

σ =
(︄

1 2 . . . N

N 1 . . . N − 1

)︄
(7.12)

in standard two-line notation [Car37]. The action of Γ on TNordered is
recursively defined by For better readability, in

the rest of this chapter, we
also write θj instead of θj
for the jth component of θ.

σθ := (θσ(1), . . . , θσ(N)) = (θN , θ1, . . . , θN−1) ∈ TNordered

σnθ := σ(σn−1θ), n > 1
(7.13)

for any θ ∈ TNordered. In particular, σnθ is again an element of TNordered
because a cyclic permutation of the θj does not change their cyclic
order and obviously, the system (6.3) is equivariant under the action of
Γ since all units are identical. In the same spirit as (7.13), we can then
for every periodic solution

ϕλ(t) =
(︂
ϕ1

λ(t), . . . , ϕNλ (t)
)︂

of (6.3) write

σϕλ(t) :=
(︂
ϕ
σ(1)
λ (t), ϕσ(2)

λ (t), . . . , ϕσ(N)
λ (t)

)︂
=
(︂
ϕNλ (t), ϕ1

λ(t), . . . , ϕN−1
λ (t)

)︂
.

In particular, for the splay state solution ϕλ∗(t), we have

σϕλ∗(t) :=
(︂
ϕ
σ(1)
λ∗ (t), ϕσ(2)

λ∗ (t), . . . , ϕσ(N)
λ∗ (t)

)︂
=
(︂
ϕNλ∗(t), ϕ1

λ∗(t), . . . , ϕN−1
λ∗ (t)

)︂
=
(︃
ϕ1

λ∗

(︃
t− T (λ∗)

N

)︃
, . . . , ϕNλ∗

(︃
t− T (λ∗)

N

)︃)︃
= ϕλ∗

(︃
t− T (λ∗)

N

)︃
(7.14)
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so that we have η = σ and m = N in Theorem 3.11. Because of this
spatio-temporal symmetry, splay states play a prominent role in M
so that, although they are not hyperbolic, one might ask nevertheless
whether they are robust under perturbations which leave the units iden-
tical. A necessary condition for this is that F̂ h(λ∗) = 0 for any possible
choice of h. To confirm this conjecture is content of the following two
propositions where we handle the case N = 4 separately from the case
of general N because for four units, we can deduce even more informa-
tion about F̂ h:

Proposition 7.2 For N = 4 and any smooth h, the function F̂ h fulfills

F̂ h(λ) = −F̂ h(1 − λ) (7.15)

and in particular, F̂ h(λ∗) = 0 holds with λ∗ = 1/2.

Proof. For N = 4, we have

σ =
(︄

1 2 3 4
4 1 2 3

)︄
(7.16)

and so write for any θ = (θ1, θ2, θ3, θ4) ∈ T4
ordered

σθ = (θσ(1), θσ(2), θσ(3), θσ(4)) = (θ4, θ1, θ2, θ3) ∈ T4
ordered.

For fixed θ = θ(λ) ∈ Cλ, letFor definiteness, in this
proof we write all solutions

of ODEs explicitly with
their initial condition.

ϕλ(t,θ) =
(︂
ϕ1

λ(t,θ), ϕ2
λ(t,θ), ϕ3

λ(t,θ), ϕ4
λ(t,θ)

)︂
denote the solution of the unperturbed system (6.3) with initial condi-
tion ϕλ(0,θ) = θ. As above, we set

σϕλ(t, σθ) :=
(︂
ϕ4

λ(t,θ), ϕ1
λ(t,θ), ϕ2

λ(t,θ), ϕ3
λ(t,θ)

)︂
for the cyclic permutation of ϕλ(t,θ) which again is a solution of (6.3)
since the functions f and g in it depend only on Z which in turn
is invariant under permutations of angles. The periodic orbit of this
new solution does in general not lie in the same level set Lλ(Λ) as Cλ

because permutations of the components of any θ transform the cross-
ratios Λ(θ). Indeed, for θ ∈ Lλ(Λ), we have σθ ∈ L1−λ(Λ) because

Λ(σθ) = Λ1,2,3,4(σθ)

=

(︂
eiθσ(1) − eiθσ(4)

)︂(︂
eiθσ(2) − eiθσ(3)

)︂
(︂
eiθσ(2) − eiθσ(4)

)︂(︂
eiθσ(1) − eiθσ(3)

)︂
=

(︂
eiθ4 − eiθ3

)︂(︂
eiθ1 − eiθ2

)︂
(︂
eiθ1 − eiθ3

)︂(︂
eiθ4 − eiθ2

)︂
= Λ4,1,2,3(θ) ≡ 1 − Λ1,2,3,4(θ)
= 1 − Λ(θ).

(7.17)
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Since σϕλ(0, σθ) = σθ = ϕ1−λ(0, σθ), we have

σϕλ(t,θ) = ϕ1−λ(t, σθ) (7.18)

by uniqueness of solutions for ODEs and it follows that the periodic
orbit of σϕλ is C1−λ. Note that from this we also read

T (λ) = T (1 − λ) (7.19)

so that the periodic orbits in Lλ(Λ) and L1−λ(Λ) have the same period.
From (7.17), we also read

(DΛ1,2,3,4 ·h)(σθ) = Dϑ1Λ1,2,3,4(ϑ) ·h(ϑ1) + Dϑ2Λ1,2,3,4(ϑ) ·h(ϑ2)+

+ Dϑ3Λ1,2,3,4(ϑ) ·h(ϑ3) + Dϑ4Λ1,2,3,4(ϑ) ·h(ϑ4)
⃓⃓⃓
ϑ=σθ

= Dθ4Λ4,1,2,3(θ) ·h(θ4) + Dθ1Λ4,1,2,3(θ) ·h(θ1)+
+ Dθ2Λ4,1,2,3(θ) ·h(θ2) + Dθ3Λ4,1,2,3(θ) ·h(θ3)

= (DΛ4,1,2,3 · h)(θ)

and thus find, using (7.17), (7.18), and (7.19),

F̂ h(1 − λ) = 1
T (1 − λ)

∫︂ T (1−λ)

0
(DΛ1,2,3,4 · h) ◦ ϕ1−λ(t, σθ) dt

= 1
T (λ)

∫︂ T (λ)

0
(DΛ1,2,3,4 · h) ◦ σϕλ(t,θ) dt

= 1
T (λ)

∫︂ T (λ)

0
(DΛ4,1,2,3 · h) ◦ ϕλ(t,θ) dt

= − 1
T (λ)

∫︂ T (λ)

0
(DΛ1,2,3,4 · h) ◦ ϕλ(t,θ) dt

= −F̂ h(λ)

from which also

F̂ h(1/2) = 0

follows. Since λ∗ = 1/2 by (4.6) for N = 4, we find that F̂ h indeed
vanishes at λ∗ for any smooth choice of h.

By virtue of Proposition 7.1, F̂ h is continuously differentiable so that
the derivative DF̂ h(λ∗) exists for smooth h. As long as this derivative
is not zero, λ∗ is then a hyperbolic fixed point of (7.4) and thus Cϵ,λ∗ is
a hyperbolic orbit for N = 4. By means of Corollary 3.12 and because
the considered perturbation term in (7.1) respects the equivariance of
(6.3) under the action of Γ, we can then conclude that the splay state
becomes a robust solution of (7.1).

Remarkably, in the proof of Proposition 7.2, we did not make use of
the fact that Cλ∗ lies in the level set Lλ∗(Λ). This means that in fact
for any splay state in T4

ordered, the integral (7.3) vanishes, regardless of
whether we are dealing with a WS-integrable system or not. However, for
general systems of four coupled identical angular variables, this average
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becomes meaningless because it is not guaranteed that the dynamics
of λ(t) for them is slow and thus it is by far not clear whether the
averaging principle is applicable to them in the first place.

The proof of Proposition 7.2 cannot readily be generalized to arbi-
trary N because we made explicit use of the fact that the level sets
in T4

ordered can be parameterized by a single cross-ratio λ = Λ(θ) =
Λ1,2,3,4(θ) for every θ ∈ T4

ordered. We cannot expect a similar relation
to (7.15) for N > 4 from which to conclude that F̂ h vanishes at λ∗.
Instead, we have to explicitly calculate F̂ h(λ∗) and show that this al-
ways yields zero. It is thus instructional to review the case N = 4 and
directly compute F̂ h(λ∗) for that case. Using the fact that averages
over a full period of a periodic function are invariant under shifts in
time as well as relation (7.18) and the cross-ratio identity (7.17), this
is easily done:

F̂ h(λ∗) = 1
T (λ∗)

∫︂ T (λ∗)

0
(DΛ1,2,3,4 · h) ◦ ϕλ∗(t) dt

= 1
T (λ∗)

∫︂ T (λ∗)

0
(DΛ1,2,3,4 · h) ◦ ϕλ∗

(︃
t− T (λ∗)

4

)︃
dt

= 1
T (λ∗)

∫︂ T (λ∗)

0
(DΛ1,2,3,4 · h) ◦ σϕλ∗(t) dt

= 1
T (λ∗)

∫︂ T (λ∗)

0
(DΛ4,1,2,3 · h) ◦ ϕλ∗(t) dt

= 1
T (λ∗)

∫︂ T (λ∗)

0
(−DΛ1,2,3,4 · h) ◦ ϕλ∗(t) dt

= −F̂ h(λ∗).

so that F̂ h(λ∗) = 0 for N = 4. Note that again, we did not use the
fact that the splay state lies in Lλ∗(Λ). To generalize this calculation
for the case of arbitrary N ≥ 4, we must take into consideration that
cyclic permutation of the units θj are not compatible with our choice
(4.3) for the cross-ratio function Λ: Computing, e. g.,

Λk(σθ) = Λ1,2,3,k+3(σθ)

=

(︂
eiθσ(1) − eiθσ(k+3)

)︂(︂
eiθσ(2) − eiθσ(3)

)︂
(︂
eiθσ(2) − eiθσ(k+3)

)︂(︂
eiθσ(1) − eiθσ(3)

)︂
=

(︂
eiθN − eiθk+2

)︂(︂
eiθ1 − eiθ2

)︂
(︂
eiθ1 − eiθk+2

)︂(︂
eiθN − eiθ2

)︂
= ΛN,1,2,k+2(θ),

the result is not a component of Λ(θ). From this, we see that the N−3
cross-ratios Λ1,2,3,k+3 are not an ideal choice for handling splay states
because these functions privilege the first three coordinates θ1, θ2, and
θ3 while we would prefer a choice of cross-ratios to parameterize the
level sets Lλ(Λ) for which there exists a simple expression for Λ(σθ)
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in terms of Λ(θ). Luckily, (4.3) is not the only possible way to param-
eterize the invariant level sets Lλ(Λ). Indeed, an equivalent choice of
N − 3 functionally independent cross-ratios which is more suitable for
handling splay states is given by

Λ(θ) := (Λ1(θ), . . . ,ΛN−3(θ))

Λk(θ) := Λk,k+1,k+2,k+3(θ) =

(︂
eiθk − eiθk+3

)︂ (︂
eiθk+1 − eiθk+2

)︂
(︂
eiθk − eiθk+2

)︂(︂
eiθk+1 − eiθk+3

)︂ (7.20)

which was in fact used by the authors of [MMS09] to show that every
cross-ratio can be expressed in terms of the N−3 functionally indepen-
dent ones above. While our previous choice (4.3) was more suitable for
the proof of the existence of M, we work from now on exclusively with
the ones, defined above. Evaluating Λ(σθ) then reveals that

Λk+1(σθ) = Λk+1,k+2,k+3,k+4(σθ)

=

(︂
eiθσ(k+1) − eiθσ(k+4)

)︂(︂
eiθσ(k+2) − eiθσ(k+3)

)︂
(︂
eiθσ(k+1) − eiθσ(k+3)

)︂(︂
eiθσ(k+2) − eiθσ(k+4)

)︂
=

(︂
eiθk − eiθk+3

)︂(︂
eiθk+1 − eiθk+2

)︂
(︂
eiθk − eiθk+2

)︂(︂
eiθk+1 − eiθk+3

)︂
= Λk,k+1,k+2,k+3(θ)
= Λk(θ)

(7.21)

so that the cross-ratios Λ(σθ) can indeed easily be written in terms
of Λ(θ). Let us now consider the point θ∗ in the level set of uniform
distributions, defined in (4.5), for which we find

σθ∗ = (θ∗
N , θ

∗
1 . . . , θ

∗
N−1)

=
(︃
θ∗

1 − 2π
N
, θ∗

2 − 2π
N
, . . . , θ∗

N − 2π
N

)︃
which we also write as σθ∗ ≡ θ∗ − 2π/N . For our new cross-ratios, we
then have

Λk(θ∗) = Λk+1(σθ∗) = Λk+1

(︃
θ∗ − 2π

N

)︃
= Λk+1(θ∗)

because any shift θj ↦→ θj + c in all components of θ by some fixed
value c corresponds to the Möbius map

eiθ ↦→ eiθ+ic = G0,c
(︂
eiθ
)︂

which in turn keeps cross-ratios invariant. This results in

λ∗ := (λ∗
1, . . . , λ

∗
1)

with λ∗
1 given by (4.6) for k = 1 because (4.3) and (7.20) coincide in

their first component. Of course, the averaging Proposition 7.1 is not
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affected by which cross-ratios we choose to parameterize the level sets
(i. e., equivalence classes) in TNordered so that in particular, we still find
a hyperbolic periodic orbit Cϵ,λ0 for every hyperbolic fixed point λ0 of
the averaged system

λ̇ = F̂ h(λ)

where F̂ h(λ) = ((F̂ h)1(λ), . . . , (F̂ h)N−3(λ)) is still given by (7.3) but
with the new choice (7.20) for Λ. With these remarks, we are ready to
prove our conjecture F̂ h(λ∗) = 0 for general N ≥ 4 (which took the
author an embarrassingly long time to prove):

Proposition 7.3 For any N ≥ 4 and smooth h,

F̂ h(λ∗) = 0.

Proof. For any fixed but arbitrarily chosen θ ∈ Cλ∗ , let again

ϕλ∗(t) =
(︂
ϕ1

λ∗(t), . . . , ϕNλ∗(t)
)︂

denote the splay state solution of (6.3) with initial condition ϕλ∗(0) =
θ. Next, for the cyclic permutation σ, given by (7.12), we recall from
(7.14) that

σϕλ∗(t) = ϕλ∗

(︃
t− T (λ∗)

N

)︃
and from (7.21), that

Λk+1(σθ) = Λk(θ)

and

DΛk+1(σθ) = DΛk(θ)

holds for all θ ∈ TNordered. Hence, we can for every k = 1, . . . , N (where
we set N + 1 ≡ 1, N + 2 ≡ 2, and N + 3 ≡ 3) and any splay state4

formally5 write

(F̂ h)k+1(λ∗) := 1
T (λ∗)

∫︂ T (λ∗)

0
(DΛk+1 · h) ◦ ϕλ∗(t) dt

= 1
T (λ∗)

∫︂ T (λ∗)

0
(DΛk+1 · h) ◦ ϕλ∗

(︃
t− T (λ∗)

N

)︃
dt

= 1
T (λ∗)

∫︂ T (λ∗)

0
(DΛk+1 · h) ◦ σϕλ∗(t) dt

= 1
T (λ∗)

∫︂ T (λ∗)

0
(DΛk · h) ◦ ϕλ∗(t) dt

=(F̂ h)k(λ∗)

4 I. e., any T -periodic state ϕ(t) that possesses the spatio-temporal symmetry σϕ(t) =
ϕ(t − T/N) which characterizes a splay state, cf. (7.14), regardless of whether the
orbit of ϕ lies in Lλ∗ (Λ) or not. In other words, in the calculation below, we only
use the fact that ϕλ∗ (t) is a splay state but not that Cλ∗ ⊂ Lλ∗ (Λ).

5 Note that we let k range over {1, . . . , N} instead of {1, . . . , N − 3} which will be im-
portant in the next step of the argument. The integrals (F̂h)N−2(λ∗), (F̂h)N−1(λ∗),
and (F̂h)N (λ∗), although not describing any component of the vector F̂ h(λ∗), are
still well-defined.
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where in the second line we again used the fact that integrals over a
full period of a function are invariant under shifts in t. This means that
in particular, the N − 3 components of F̂ h(λ∗) coincide. We also have
for any j ∈ {1, . . . , N}

(F̂ h)j(λ∗) = 1
N

N∑︂
k=1

(F̂ h)k(λ∗)

= 1
NT (λ∗)

∫︂ T (λ∗)

0

(︄
N∑︂
k=1

DΛk · h

)︄
◦ ϕλ∗(t) dt

= 1
NT (λ∗)

∫︂ T (λ∗)

0

N∑︂
k=1

(︂
DθkΛk(θ) · h(θk)+

+ Dθk+1Λk(θ) · h(θk+1)+
+ Dθk+2Λk(θ) · h(θk+2)+

+ Dθk+3Λk(θ) · h(θk+3)
)︂⃓⃓⃓

θ=ϕλ∗ (t)
dt

where in the third line, we simply expanded the scalar product from
the second line. Next, we observe that for every k, the cross-ratio Λk
only depends on θk, . . . , θk+3 according to (7.20) and thus for every θk,
we have exactly four terms in the sum above that contain a derivative
of some cross-ratio with respect to θk, namely

DθkΛk(θ) · h(θk) ≡ DθkΛk,k+1,k+2,k+3(θ) · h(θk),
DθkΛk−1(θ) · h(θk) ≡ DθkΛk−1,k,k+1,k+2(θ) · h(θk),
DθkΛk−2(θ) · h(θk) ≡ DθkΛk−2,k−1,k,k+1(θ) · h(θk), and
DθkΛk−3(θ) · h(θk) ≡ DθkΛk−3,k−2,k−1,k(θ) · h(θk).

We proceed by rearranging the sum accordingly. Collecting the respec-
tive terms for every θk yields

(F̂ h)j(λ∗) = 1
NT (λ∗)

∫︂ T (λ∗)

0

N∑︂
k=1

Dθk

(︂
Λk(θ) + Λk−1(θ)+

+ Λk−2(θ) + Λk−3(θ)
)︂

· h(θk)
⃓⃓⃓
θ=ϕλ∗ (t)

dt.

(7.22)

We claim that (7.22) vanishes because each term the sum in the inte-
grand vanishes identically. To see this, observe that for any θ ∈ Lλ∗(Λ),
there exists some (α,ψ) ∈ D × S1 with

eiθ = Gα,ψ
(︂
eiθ∗)︂ = α+ eiψeiθ∗

1 + ᾱeiψeiθ∗

where θ∗ is given by (4.5) so that inserting this in (7.22) yields

DθkΛk(θ) ≡ DθkΛk,k+1,k+2,k+3(θ)

= ieiθk

(︂
eiθk+3 − eiθk+2

)︂(︂
eiθk+2 − eiθk+1

)︂
(︂
eiθk+3 − eiθk+1

)︂(︂
eiθk+2 − eiθk

)︂2
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=
iei

2π(k−1)
N

−iψ
(︂
ei

2πk
N

+iψ − ei
2π
N α

)︂ (︂
ei

2π
N − ei

2πk
N

+iψᾱ
)︂

(︂
ei

2π
N − 1

)︂ (︂
1 + ei

2π
N

)︂3 (︂
1 − |α|2

)︂
= −ieiθk

(︂
eiθk−3 − eiθk−2

)︂(︂
eiθk−2 − eiθk−1

)︂
(︂
eiθk−3 − eiθk−1

)︂(︂
eiθk−2 − eiθk

)︂2

= −DθkΛk−3,k−2,k−1,k(θ)
≡ −DθkΛk−3(θ)

so that the first and last term in each summand in (7.22) cancel out.
Similarly, we have

DθkΛk−1(θ) ≡ DθkΛk−1,k,k+1,k+2(θ)

= ieiθk

(︂
eiθk−1 − eiθk+2

)︂(︂
eiθk+1 − eiθk+2

)︂
(︂
eiθk−1 − eiθk+1

)︂(︂
eiθk − eiθk+2

)︂2

=
i
(︂
1+ ei

2π
N + ei

4π
N

)︂(︂
1− e−i 2π(k−1)

N
−iψα

)︂(︂
ei

2π
N − ei

2πk
N

+iψᾱ
)︂

(︂
1 − ei

2π
N

)︂(︂
1 + ei

2π
N

)︂3(︂
1 − |α|2

)︂
= −ieiθk

(︂
eiθk−1 − eiθk−2

)︂(︂
eiθk+1 − eiθk−2

)︂
(︂
eiθk−1 − eiθk+1

)︂(︂
eiθk − eiθk−2

)︂2

= −DθkΛk−2,k−1,k,k+1(θ)
≡ −DθkΛk−2(θ)

so that the second and third term equally cancel in each summand and
hence, the integrand and therefore the integral for all components of
F̂ h(λ∗) vanishes identically. This finishes the proof.

Similar to Proposition 7.2, as long as the derivative DF̂ h(λ∗) has no
eigenvalues with zero real part, λ∗ is a hyperbolic fixed point of (7.11)
so that subsequently, Cϵ,λ∗ becomes a robust orbit and by preserved
equivariance, the splay state becomes a robust solution of the system
(7.1). That this is in practice really the case will be exemplified for the
generalized Active Rotator model, further below.

With this, we end our considerations on splay states. Next, we dis-
cuss an interesting consequence of Proposition 7.1 concerning arbitrary
orbits Cλ ⊂ M, which also becomes handy, later on.

7.3.3 Controlling Periodic Orbits

According to Proposition 7.3, each smooth choice of h in (7.2) renders
the splay state robust if DF̂ h(λ∗) has no eigenvalues on the imaginary
line. Further, as discussed in Chapter 5, at least for the generalized AR-
model (2.6), we know that periodic two-cluster states are also robust.
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This evokes the question whether there exist any other orbits Cλ ⊂ M
that can be made robust, i. e., hyperbolic, for a suitable perturbation
function h. More precisely: fixing λ0 ∈ W such that Cλ0 ⊂ M exists,
does there exist a smooth function h of the form (7.1b) such that Cλ0

becomes a hyperbolic orbit for (7.1a)?
To answer this question, we note first that the average (7.3) is linear

in h, i. e.,

F̂ a1h1+a2h2 = a1F̂ h1 + a2F̂ h2 . (7.23)

Choose now any set of N−2 linearly independent smooth perturbation
functions h1, . . . , hN−2 ∈ H where

H =
{︄
h ∈ C∞(S1,R) ; h(ϕ) =

∞∑︂
n=2

an sinnϕ+ bn cosnϕ
}︄

is the infinite-dimensional space of smooth functions from S1 to R of
the form (7.1b). Since the N − 2 vectors F̂ hj (λ0) ∈ RN−3 are elements
of an (N − 3)-dimensional vector space, there exist a set of nontrivial
coefficients c1, . . . , cN−2 ∈ R for which

N−2∑︂
j=1

cjF̂ hj (λ0) = 0

holds. Setting

h =
N−2∑︂
j=1

cjhj ,

we then find with (7.23) that

F̂ h(λ0) = F̂∑︁N−2
j=1 cjhj

(λ0) =
N−2∑︂
j=1

cjF̂ hj (λ0) = 0.

Again, as long as DF̂ h(λ0) has no eigenvalues on the imaginary line,
λ0 is a hyperbolic fixed point of the averaged system (7.4) and thus
corresponds to a robust periodic orbit Cϵ,λ0 ∈ Mϵ for the perturbed
system (7.1) by virtue of Proposition 7.1. Further, Cϵ,λ0 is O(ϵ)-close to
Cλ0 such that ∥Λ(θ) − λ0∥ = O(ϵ) for all θ ∈ Cϵ,λ0 . Summarizing and
intuitively speaking, we can therefore always construct a perturbation
h in such a way, that a given periodic orbit Cλ0 ⊂ M becomes a robust
orbit Cϵ,λ0 under this perturbation.

Note that the construction procedure above generally only yields a
hyperbolic orbit but cannot guarantee that this orbit is exponentially
stable. Whether the proposed construction can be refined to make the
orbit also exponentially stable is an open question. However, it stands to
reason that constructing stable limit cycles could actually be achievable:
We know that any orbit has at least two exponentially stable directions
from the fact that Cϵ,λ0 ⊂ Mϵ which is a NAIM. We also have an
infinite-dimensional space of possible perturbation function at disposal
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Figure 19: Averaged perturbation F̂ h for h1(ϕ) = sin 2ϕ, h2(ϕ) = − cos 2ϕ,
and the generic perturbation (7.24c) for a system of N = 4 units. System
parameters in (2.5) are fixed as ω = 0.8 and κ = −0.7. For all three choices
of h, splay states and two-cluster states are of opposite stability.

to choose a finite set {hj ; j = 1, . . . , N − 2} of linearly independent
perturbation functions so that it seems reasonable to assume that there
is enough variety to choose from in order to achieve our goal of making
Cϵ,λ0 exponentially stable.

We proceed by applying the general results above to our model (2.6)
of coupled generalized Active Rotators.

7.4 application: ensembles of active rotators

We now want to discuss the implications from the general results above
to our model (2.6) of generalized Active Rotators. We start with an in-
depth analysis of the simplest nontrivial case of just N = 4 units before
we discuss numerical results for larger ensembles.

7.4.1 A Case Study for N = 4 Units

averaging We begin our discussion by computing the averaged
vector field F̂ h for three different choices of perturbation functions
h for the classic AR-model (2.5) with fixed parameters ω = 0.8 and
κ = −0.7. Since, we are dealing with four units, we have only a single
independent cross-ratio λ = Λ1,2,3,4(θ) which ranges between zero and
one: λ ∈ V ≡ (0, 1). We choose the three functions

h1(ϕ) = sin 2ϕ (7.24a)
h2(ϕ) = − cos 2ϕ (7.24b)

h3(ϕ) = 1
sinϕ− 2 + 1√

3
+
(︃ 4√

3
− 2

)︃
sinϕ (7.24c)

where h1 and h3 are the same functions that we considered in Chap-
ter 5 on periodic two-cluster states. Numerical results for the respective
averages are shown in Figure 19.

As expected from Proposition 7.2, we find for all three choices of h
that (i) the function F̂ h indeed fulfills relation (7.15) and (ii) splay
states are robust solutions for sufficiently small |ϵ| ≠ 0 because of
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Figure 20: Splay state for the WS-integrable model (2.5) (left) and the per-
turbed model (2.6) (right) with h(ϕ) = sin 2ϕ for N = 4 units. Parameters are
fixed at ω = 0.8, κ = −0.7, and ϵ = 0.05. For comparison, the (normalized)
time series for the degenerate orbit is also plotted in the top right panel (dot-
ted lines). The splay state is robust under small changes in ϵ. It is stable for
ϵ > 0 and unstable for ϵ < 0. The cross-ratio λ(s) along the orbit oscillates
around λ∗ with an amplitude of order O(ϵ).

DF̂ h(λ∗) ̸= 0. Moreover, we can directly read from the plots that
for the choices h1 and h3, splay states must be stable for positive ϵ
and unstable otherwise while for h2, it is exactly the other way around.
In Figure 20, we plot the (normalized) times series for the splay state
solution for h1. The upper left panel shows the WS-case ϵ = 0 while the
upper right panel depicts the stable splay state for ϵ = 0.05 (together
with the time series of the degenerate orbit as dotted lines for compar-
ison). Indeed, we find that the robust orbit Cϵ,λ∗ stays a splay state
and that its cross-ratio λ(t) = Λ ◦ ϕϵ,λ∗(t) now oscillates around the
value λ∗ = 1/2, (lower right panel) while for the WS-case, λ(t) = λ∗ is
a conserved quantity (lower left panel). Note that this means in partic-
ular that the perturbed orbit Cϵ,λ∗ does not lie entirely in the level set
Lλ∗(Λ) anymore but intersects it instead. Note also that the amplitude
of the oscillation in λ is indeed of order O(ϵ).

Strictly speaking, λ∗ is the only zero for all three examples in Fig-
ure 19. However, we can see from the plots that

lim
λ→0

F̂ h(λ) = lim
λ→1

F̂ h(λ) = 0

in all three cases. Let us therefore formally include the two points λ = 0
and λ = 1 into our considerations even though for these two values, we
must have at least two of the four units coinciding according to (7.20)
so that any state θ with Λ(θ) = 0 or 1 is not an element of TNordered.
What is the nature of the dynamics for these limit cases? To answer this
question, we might look what the dynamics along the periodic orbits
Cλ look like for λ ≈ 0 and λ ≈ 1, respectively, in the WS-case ϵ = 0.
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Figure 21: Broken-symmetry state for N = 4 ARs for (2.5) with ω = 0.8,
κ = −0.7. The ensemble splits in two groups A and B such that the inter-
spike interval τ1 between two units in the same group is smaller than the
inter-spike interval τ2 between two consecutive units which belong to different
groups.

In general, we observe that the dynamics along any orbit Cλ with
λ ̸= λ∗ looks qualitatively like the one, depicted in Figure 21: The
ensemble splits in two groups A and B of two consecutive units each,
such that the rear units (in Figure 21 represented by a red line for
group A and a yellow line for group B) cross, e. g., the point6 ϕ = π
in the state space S1 with a time-delay of τ1 after the front element in
the respective groups (here, represented by a blue line for group A and
a green line for group B) while for two consecutive units, belonging
to different groups, this time-delay is τ2 > τ1. Intuitively speaking,
groups therefore consist of two units each, which are more “tightly
bound” together but do not yet form a proper cluster (i. e., they do not
coincide), they form an “almost-cluster”. All these states are of lower
spatio-temporal symmetry than the splay state ϕλ∗(t). Specifically, one
reads from Figure 21 that they obey the relation

σ2ϕλ(t) :=
(︂
ϕ
σ2(1)
λ (t), ϕσ

2(2)
λ (t), ϕσ

2(3)
λ (t), ϕσ

2(4)
λ (t)

)︂
=
(︂
ϕ3

λ(t), ϕ4
λ(t), ϕ1

λ(t), ϕ2
λ(t)

)︂
=
(︃
ϕ1

λ

(︃
t− T (λ)

2

)︃
, . . . , ϕ4

λ

(︃
t− T (λ)

2

)︃)︃
= ϕλ

(︃
t− T (λ)

2

)︃
with σ from (7.16). We therefore refer to them in what follows as
“broken-symmetry states” because in contrast to the splay state and
its spatio-temporal symmetry (7.14), the spatio-temporal symmetry of
the broken-symmetry states does not fully reflect the equivariance of
(2.6) under the action of the cyclic permutation group on TNordered. Note
that broken-symmetry states are also of lower symmetry than symmet-
ric two-cluster states since they are not invariant under permutations
of units belonging to the same group.

6 Of course, the choice of ϕ = π is arbitrary and works for any other point in the state
space in the same way.
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Figure 22: Broken-symmetry states for N = 4 ARs for (2.5) with ω = 0.8 and
κ = −0.7 for different values of λ. The closer λ is chosen to 0 or 1, the more
pronounced is the grouping of units. Note that for λ close to zero, units 1 and
4 form one group while units 3 and 2 form another. For λ close to one, units
1 and 2, and 3 and 4 form groups, respectively. The limit cases λ → 0 and
λ → 1, correspond to symmetric periodic two-cluster states.

Choosing λ close to λ∗ yields broken-symmetry states that are almost
indistinguishable from splays because there, the time intervals τ1 and τ2
are of comparable length: τ1 ≃ τ2. However, as can be seen in Figure 22
in the top row, if we choose λ ≈ 0, we find that the units 1 and 4 as well
as the units 2 and 3 form tighter and tighter groups so that in the limit
case λ → 0, we end up with a symmetric periodic two-cluster state
with clusters A = {1, 4} and B = {2, 3}, as familiar from Chapter 5.
On the other hand, for λ ≈ 1, the units 1 and 2 on one hand and 3
and 4 on the other form two respective groups until, in the limit case
λ → 1, we end up with a symmetric periodic two-cluster state with
clusters A = {1, 2} and B = {3, 4}, see the bottom row in the same
figure. In this sense, we can treat the two points λ = 0 and λ = 1 in
Figure 19 formally as fixed points, corresponding to two periodic two-
cluster states of different cluster compositions. Under this identification,
we can conclude that splay states and symmetric periodic two-cluster
states in the three given examples of Figure 19 are mutual exclusively
stable, i. e., if the splay state is stable, the periodic two-cluster states are
unstable and vice versa. Subsequently, a “nonlocal transfer of stability”
between these states occurs if we continuously vary ϵ: Three periodic
orbits, although well-separated in phase space, go nevertheless through
a common stability changing bifurcation at ϵ = 0. The reason for this
is of course the NAIM M. While it exists for a whole range of values of ϵ
around zero, the dynamics on M are degenerate at ϵ = 0. Depending on
the sign of ϵ, any state ϕ(t) ∈ Mϵ then spirals either towards or away
from the splay state orbit Cϵ,λ∗ or the symmetric periodic two-cluster
state orbits Cϵ,0 and Cϵ,1.
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Figure 23: Schematic depiction of how copies of M coincide in T4 along their
boundaries. Each square represents a copy of the ordered torus T4

ordered under
the action of the two permutations σA : (θ1, θ2, θ3, θ4) ↦→ (θ2, θ1, θ3, θ4) and
σB : (θ1, θ2, θ3, θ4) ↦→ (θ1, θ2, θ4, θ3). The resulting cyclic orders are also shown.
The four copies of M coincide in the two-cluster orbit C1 with clusters A =
{1, 2} and B = {3, 4}.

global structure of M We want to briefly discuss the rela-
tion between the NAIM M ⊂ T4

ordered and its copies with different cyclic
orders. As mentioned above, M ⊂ T4

ordered contains a periodic orbit Cλ

for every λ ∈ (0, 1) while its boundary is given by the symmetric pe-
riodic two-cluster orbits C0 and C1. Hence, we always have four copies
of M whose boundaries coincide along either C0 or C1. Each of these
copies is the result of a pairwise permutations of some consecutive units,
e. g., σA : (θ1, θ2, θ3, θ4) ↦→ (θ2, θ1, θ3, θ4), see Figure 23 where the four
copies of the closure M coincide along the orbit C1. Hence, globally, the
family M does not form a manifold any longer but is self-intersecting.
Arguably, this corresponds to the fact that the symmetric periodic two-
cluster states have in general N − 2 instead of N − 3 neutrally stable
directions.

existence and stability of splay states for |ϵ| ≫ 0
Let us further investigate the existence and stability of the splay state.
In particular, we are now interested in the regime of existence for splay
states for values of ϵ that are not necessarily small, in other words,
when the system is not close to being WS-integrable. For simplicity, we
restrict our attention to the choice h1(ϕ) = sin 2ϕ from (7.24).

In Figure 24 and Figure 25, we show numerical results on the ex-
istence and stability of the splay state in dependence of κ and ϵ for
fixed ω = 0.8 and ω = 0.6, respectively. Analogous to the diagrams in
Chapter 5, a white shading indicates that no splay state exists. In the
blue shaded area, it exists and is stable and in the red shaded area, it is
unstable. As for the symmetric periodic two-cluster states, we observe
a switch in stability at ϵ = 0, as we expected from the considerations
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Figure 24: Stability diagram for the splay state for N = 4 generalized ARs,
obeying (2.6) with h(ϕ) = sin 2ϕ and ω = 0.8. A white shading indicates that
no splay state exists. In the red shaded region, a splay state exists and is
unstable while in the blue shaded region, it is stable. The green line depicts
the THB of ∆s at κ0, according to (5.5). To the upper left of the orange line,
stable solitary state fixed points exist.

in Section 7.3.1 and Figure 19. We also find that the emergence of the
splay state coincides with the THB of the synchronous fixed point ∆s

(green line, given by (5.5), cf. Chapter 5) as long as ϵ is smaller than
some ϵmax(ω, κ) > 0 (from the figures, we read 0.5 > ϵmax(0.8, κ) > 0.4
and 0.4 > ϵmax(0.6, κ) > 0.2). This result falls in line with our expecta-
tions since for ϵ = 0, as we established in Theorem 6.8, the splay state
is one of the solutions whose orbits lie in M, which in turn emerges
in the THB at κ0 = −

√
1 − ω2. Remarkably, for ϵ > ϵmax(ω, κ), the

splay state does not emerge in the THB of ∆s, any longer. The expla-
nation for this lies in the nature of the orange lines, plotted in the two
figures. These lines delimit the upper left corners of the diagrams in
which additional stable fixed points exist, that are not synchronous:
They are stable two-cluster fixed points where one cluster consists of
three units and the other cluster consists of a singleton. Such states are
known in the literature as “solitary states” [MPR14; Mik+19; TR19;
Ber+20] and play a vital role in WS-theory: It can be shown that WS-
integrable systems can only exhibit four different types of attractors,
two of which are stationary and periodic solitary states [EM14]. For our
system, these fixed points emerge in a saddle-node bifurcation along the
upper right branch of the orange line and become unstable in a trans-
critical bifurcation along the lower left branch of that line in which the
larger cluster becomes unstable against splitting perturbations. Loosely
speaking, these fixed points take over the role of ∆s in the emergence of
periodic solutions if ∆s is rendered unstable through its THB. Although
a peculiar observation in its own right, a thorough investigation of the
solitary state fixed points and their connections to the emergence of
splay states is beyond the scope of this thesis because it lies outside
the parameter regime, in which Theorem 6.8 and Proposition 7.1 can
be applied.
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Figure 25: Stability diagram for the splay state for N = 4 generalized ARs,
obeying (2.6) with h(ϕ) = sin 2ϕ and fixed ω = 0.6. The regime of existence
for stable solitary state fixed points in the top left corner is delimited by an
orange line.

We also note the change in stability of the splay state in the regime
to the left of the THB. For ω = 0.8, this happens only for ϵ < 0 where we
observe a narrow band, close to the THB in parameter space in which
the splay state is stable. The width of this band shrinks to zero for
ϵ → 0. For ω = 0.6, this is not the case and instead we see that the
splay state for ϵ < 0 and κ ≲ κ0 is stable and only becomes unsta-
ble for stronger repulsion while for ϵ ≳ 0 and κ ≲ κ0, it is unstable
and becomes stable for sufficiently strong repulsion. In both case, the
responsible bifurcation is a pitchfork of the splay state with two broken-
symmetry states. For ϵ < 0, this pitchfork is subcritical (two unstable
broken-symmetry states exist to the right of the bifurcation line) while
for ϵ > 0, it is supercritical (the broken-symmetry states are stable).
This is again in accordance with our expectations from WS-theory since
these states lie in the manifold Mϵ and thus, one of their three Floquet
multipliers leaves the complex unit circle at ϵ = 0. Finally, comparing
Figure 24 with Figure 13, we note that indeed, splay states and symmet-
ric periodic two-cluster states are mutually exclusively stable for ϵ ≈ 0,
i. e., if the splay state is stable, the two-cluster states are unstable and
vice versa, in accordance with the Plot in Panel (a) of Figure 19 for
the averaged vector field F̂ h. That this is not the case for ω = 0.6 and
for κ close to κ0 is due to the broken-symmetry states as will become
clear in the next section. Before we come to this, and as final remark,
we note that for ω = 0.6, −0.8335 ≲ κ < −0.8, and ϵ = 0, the contin-
uum M exists while the symmetric periodic two-cluster orbits C0 and
C1 do not, compare Figure 12 in Chapter 5. In this regime, the points
λ = 0, 1 cannot be identified with periodic two-cluster states anymore
since these state do not exist, yet. We will come back to this problem in
Section 7.4.2. For now, let us continue by discussing broken-symmetry
states in more detail.
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Figure 26: Averaged perturbation F̂ h for h(ϕ) = ζ sin 2ϕ − (1 − ζ) cos 2ϕ for
N = 4 units. System parameters are fixed at ω = 0.8 and κ = −0.7 as
in Figure 19. Our Proposition 7.1 indicates the presence of robust broken-
symmetry states for suitable choices of ζ.

robust broken-symmetry states From Section 7.3.3, we
know that for four Active Rotators, only two linearly independent per-
turbation functions are needed, so that for a suitable linear combination
c1h1 + c2h2 of these two functions, any given periodic orbit Cλ ⊂ M
can be rendered hyperbolic and therefore robust in which case we write
Cϵ,λ. In what follows, let us fix ω = 0.8 and κ = −0.7 and consider the
perturbation function

h(ϕ) = ζ sin 2ϕ− (1 − ζ) cos 2ϕ (7.25)

for (2.6), which is a linear combination of the two linearly independent
functions h1 and h2 from (7.24). The parameter ζ ∈ [0, 1] lets h vary
smoothly between h1 and h2.

In Figure 26, we show plots for F̂ h for three different values of ζ for
which we find additional zeros 0 < λ1 < 1/2 < λ2 < 1 with λ2 = 1−λ2
so that we expect periodic broken-symmetry states ϕϵ,λ1(t) and ϕϵ,λ2(t)
in addition to the generic splay state and periodic two-cluster states.
From the slope of F̂ h at the zeros, we further infer that the broken-
symmetry states are stable for ϵ > 0 and unstable, otherwise. This
is corroborated by numerical results: Fixing ζ = 0.45 in Figure 27 so
that λ1 ≃ 0.121, we show the (normalized) time-series of the degenerate
orbit (left) and the corresponding perturbed state (right) together with
their respective cross-ratios λ(t). As in Figure 20, in the top right panel,
we also show for comparison the time series for the unperturbed orbit
as dotted lines. Again, we see that (i) the perturbed orbit indeed yields
a broken-symmetry state and (ii) the cross-ratio λ(t) ceases to be a
conserved quantity but oscillates around a value that is close to λ1.

Varying the value of ζ in Figure 26, we see that the loci of the non-
trivial zeros move from the two-cluster values λ = 0, 1 to the splay
state value λ∗ = 1/2 for increasing ζ. But for ζ = 0 and ζ = 1, there
are no nontrivial zeros present as we saw in Figure 19. Instead, λ1
and λ2 emerge in a supercritical pitchfork bifurcation of the periodic
two-cluster states at ζ ≃ 0.320 and vanish in a supercritical pitchfork
of the splay state at ζ ≃ 0.485. Hence, varying ζ for otherwise fixed
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Figure 27: Broken-symmetry state for the WS-integrable model (2.5) and the
perturbed model (2.6) with h(ϕ) = ζ sin 2ϕ − (1 − ζ) cos 2ϕ and ζ = 0.45 for
N = 4 units. System parameters are fixed at ω = 0.8, κ = −0.7, and ϵ = 0.002.
The stable broken-symmetry state is robust under small changes in ϵ.

system parameters ω, κ, and ϵ results in a “local transfer of stability”
instead of the nonlocal one that we saw for varying ϵ = 0: Changing
the bifurcation parameter ζ results in changes of stability for the splay
state and the two-cluster states that do not occur simultaneously but
for different values of ζ. If we interpret varying ζ for fixed ϵ ̸= 0 as
moving along a path in the two-dimensional space

H2 = span(h1, h2)

of linear combinations c1h1 + c2h2, this path avoids the point 0 ∈ H2,
which corresponds to the perturbation function

h : ϕ ↦→ 0

for which (2.6) simply becomes the WS-integrable model (2.5). Thus,
in a sense, varying ζ in (7.25) can “unfold” the nonlocal bifurcation
of (2.6) at ϵ = 0.7 The result is schematically illustrated in Panel
(a) of Figure 28: Along the x-axis, we vary ζ in (7.25) while the y-
axis shall represent the fixed point coordinate ϕfix

P of some suitable
Poincaré map P. Solid lines depict stable fixed points of P (i. e., periodic
orbits of (2.6)) and dashed lines depict unstable ones. Fixing ϵ > 0
and all other system parameters in (2.6) and varying ζ in (7.25), the
symmetric periodic two-cluster states (orange lines) become unstable
in supercritical pitchforks for ζ = ζ1 ≃ 0.32 in which two stable broken-
symmetry states (black lines) emerge. Note that the two additional
branches of the pitchforks above the top and below the bottom two-
cluster states can be interpreted as broken-symmetry states of different
cyclic order: The two-cluster state with, e. g., clusters ϕ1(t) = ϕ2(t) and

7 Within the picture of following paths in H2, varying ϵ corresponds to following a
straight line in H2 that goes through 0.
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Figure 28: Schematic depiction of the unfolding of the nonlocal stability trans-
fer to the simplest possible local transfer scenarios. In Panels (a) and (c),
the transfer occurs through broken-symmetry states (bss) which emerge in
pitchfork bifurcations. Panels (b) and (d) represent slightly more complicated
scenarios: The broken-symmetry states emerge in a saddle-node bifurcation
of periodic orbits and then vanish in consecutive pitchforks with two-cluster
states and the splay state, thus changing their respective stability.

ϕ3(t) = ϕ4(t) and therefore λ(t) = 0 gives, due to symmetry, rise to a
broken-symmetry state with ϕ1(t) < ϕ2(t) < ϕ3(t) < ϕ4(t) < ϕ1(t)+2π
and one with ϕ2(t) < ϕ1(t) < ϕ4(t) < ϕ1(t) < ϕ2(t) + 2π because both
of these solutions yield the same cross-ratio λ(t) ≈ 0.8 Since the latter
one is not in cyclic order and thus does not exist in TNordered, we can
discard it here. It lives in a copy of TNordered ⊂ TN of different cyclic
order. Now, increasing ζ further, the time intervals τ1 and τ2 become
more and more alike and thus, the broken-symmetry states appear
more and more like a splay state until at ζ = ζ2 ≃ 0.485, the two
broken-symmetry states vanish in another supercritical pitchfork, this
time with the unstable splay state, rendering it stable. For ϵ < 0, the
stability of all involved orbits is inverted and thus, the scenario looks
like in Panel (c) where the pitchforks are now subcritical. These two
possible scenarios, which result in a now local transfer of stability, are
arguably the simplest unfoldings of the degenerate nonlocal bifurcation
at ϵ = 0. However, more complicated versions are possible. In Panels
(b) and (d) of the same figure, we depict, as examples, scenarios that
involve the emergence of broken-symmetry states through a saddle-
node bifurcation at some ζ0, followed by two pitchforks of the two-
cluster states at ζ1 > ζ0 and the splay state at ζ2 > ζ1. Note that here,
the two pitchforks are of opposite criticality.

Such more complicated scenarios can be achieved by carefully tuning
the system parameters, see Figure 29. There, for ω = 0.6 and κ = −1.3,

8 This is due to the transformation laws for cross-ratios under permutations [Ric11].
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Figure 29: Averaged perturbation F̂ h(λ) for h(ϕ) = ζ sin 2ϕ − (1 − ζ) cos 2ϕ
for N = 4 units. System parameters are fixed at ω = 0.6 and κ = −1.3.
Proposition 7.1 dictates that additionally to the robust splay and two-cluster
states, two pairs of broken-symmetry states must emerge via two periodic
orbit saddle-node bifurcation at ζ0 ≃ 0.558 (inset). The resulting broken-
symmetry states vanish afterwards in respective pitchfork bifurcations with
the two-cluster state and the splay state for suitable values of ζ.

we observe two saddle-node bifurcations for the averaged dynamics at
ζ0 ≃ 0.558 in the vicinity of λ = 0 and λ = 1 through which a stable
and an unstable broken-symmetry fixed point/periodic orbit emerge,
respectively. For ϵ > 0, the two unstable broken-symmetry states then
render the symmetric periodic two-cluster states unstable in a subcriti-
cal pitchfork at ζ1 ≃ 0.589 while the stable ones render the splay state
stable in a supercritical pitchfork at ζ2 ≃ 0.661. Hence, this bifurca-
tion scenario corresponds to the schematic depiction in Panel (b) of
Figure 28. Changing the sign of ϵ results in a scenario, similar to the
one, depicted in Panel (d).

In the next section, we investigate the transfer of stability between
the splay state and two-cluster states in dependence of κ and ζ. This
also allows us to compare the predictions made by the averaging prin-
ciple with the actual dynamics of the generalized AR-model (2.6).

7.4.2 Transfer of Stability for N = 4 Units

We want to investigate the transfer of stability between splay states
and symmetric periodic two-cluster states in dependence of the cou-
pling strength κ and the parameter ζ which determines the form of
the perturbation function h via (7.25). For this, we fix the parameters
ω = 0.6 and ϵ = 0.05 and numerically determine the splay state, the
symmetric periodic two-cluster states, and any other occurring periodic
solutions that might exist together with their respective stabilities. As
established in the previous section, varying ζ can be interpreted as fol-
lowing a path in the two-dimensional space of perturbation functions,
spanned by h1 and h2 of (7.24). Due to the form of h, this path avoids
the point 0, corresponding to the WS-integrable model (2.5), so that we
can investigate the transfer of stability in a generic setting. It further
allows us to compare our predictions from the averaging principle for
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Figure 30: Existence and stability of the splay state, the symmetric periodic
two-cluster states, and the broken-symmetry states for (2.6) with h(ϕ) from
(7.25). System parameters are fixed at ω = 0.6, ϵ = 0.05, and N = 4. Re-
gion I: No periodic orbits exist. Black dash-double-dotted line: THB of
∆s. The resulting splay state is unstable in Regions II-V and stable in Re-
gion VI and VII. Black solid line: Symmetric periodic two-cluster states
emerge through double-SNIC and are stable in Region III and IV and un-
stable in Regions V and VI. Black dotted line: saddle-node bifurcations
of stable and unstable broken-symmetry states. Black dashed line between
Regions IV and V: subcritical pitchfork of two-cluster state with unstable
broken-symmetry states; between Regions III and V, the dashed line marks
a supercritical pitchfork in which stable broken-symmetry states branch off
of the two-cluster states. Black dash-dotted line: supercritical pitchfork of
the splay state and two stable broken-symmetry states. Gray lines indicate
corresponding predictions from applying Proposition 7.1.

any occurring limit cycle bifurcations with the actual dynamics for a
fixed, fairly large value of ϵ. The results are shown in Figure 30.

Let us begin by discussing the results on the existence and stability
of the splay state and the two-cluster states for the actual dynamics
in the diagram. In Region I, no periodic orbits exist whatsoever so
that the only attractor is the synchronous fixed point ∆s. The black
dash-double-dotted line denotes the THB of ∆s through which the splay
state, together with the manifold Mϵ, emerges. It is unstable in Regions
II-V and stable in Regions VI and VII. The black solid line denotes
the double-SNIC through which the two-cluster states emerge. These
states are stable in Regions III and IV and unstable above the black
dashed line in the Regions V and VI. From this we see that for fixed
coupling strength κ, repulsive enough such that both the splay state
and the two-cluster states exist, a local transfer of stability occurs if we
increase ζ ∈ [0, 1]: We always start with an unstable splay state and two
stable two-cluster state for small ζ, the latter of which become unstable
for some ζ1(κ). Further increasing ζ eventually renders the splay state
stable for some ζ2(κ) which corresponds to the depicted unfoldings in
Panels (a) and (b) of Figure 28.

Note that the black dashed line which indicated the stability change Two-cluster heteroclinic
cycle.of the periodic two-cluster state to the left of the double-SNIC can be
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extended into Region II. In this region, we observe two types of two-
cluster fixed points (the Σi and the Ξi that emerge in the THB of ∆s,
see Chapter 5) which vanish pairwise in the double-SNIC. These fixed
points differ essentially in their respective composition of cluster, i. e.,
whether A = {1, 2} and B = {3, 4} or A = {4, 1} and B = {2, 3} and
so on. For definiteness, let us assume that

A = {1, 2}, B = {3, 4}.

Then, the two-cluster fixed points are of the form

Ξ1 = (Ξs,Ξs,Ξu,Ξu) , Σ1 = (Σs,Σs,Σu,Σu)
Ξ2 = (Ξu,Ξu,Ξs,Ξs) , Σ2 = (Σu,Σu,Σs,Σs) .

A stability analysis reveals that the Jacobian of the vector field at the
Ξi has two negative non-splitting eigenvalues

λ1
non-splitting = λ1

non-splitting(Ξ1) = λ1
non-splitting(Ξ2) < 0

λ2
non-splitting = λ2

non-splitting(Ξ1) = λ2
non-splitting(Ξ2) < 0

as well as one positive and one negative splitting eigenvalue

λ−
splitting = λ−

splitting(Ξ1) = λ−
splitting(Ξ2) < 0

λ+
splitting = λ+

splitting(Ξ2) = λ+
splitting(Ξ2) > 0.

In the diction of Chapter 3, the first two eigenvalues above corre-
spond to non-splitting perturbations, which leave both clusters whole
(λ1

non-splitting and λ2
non-splitting correspond to eigenvectors of the form

(a, a, b, b)T ) and thus indicate that the Ξi are stable against such non-
splitting perturbations (which is in line with Chapter 5 since this means
that they are stable in T1/2). The eigenvalues λ±

splitting(Ξi) corresponds
to splitting perturbation, i. e., perturbations which keep one cluster
fixed and split the other. Since these eigenvalues differ in their sign, we
can conclude that the Ξi are stable with respect to splitting perturba-
tions of one cluster but are unstable with respect to perturbations that
split the other cluster. In particular, for Ξ1, the cluster A = {1, 2} is
stable and the cluster B = {3, 4} is unstable against splitting perturba-
tion while for Ξ2, we find the opposite: cluster A is unstable and cluster
B is stable.9

Numerically interpolating the unstable manifolds of the Ξi reveals
that they form a heteroclinic cycle. Figure 31 depicts how the angular
coordinates ϕj(ℓ) along these heteroclinic orbits depend on the arc
length ℓ ∈ [0, L] where L ≃ 7.2 is the total length of each of the two
heteroclinic orbits. Panel (a) shows ϕj(ℓ) along the heteroclinic orbit
that starts at Ξ1 and ends at Ξ2 while Panel (b) depicts the situation for
the heteroclinic orbit from Ξ2 to Ξ1. In particular, we see in Panel (a)

9 The eigenvalue λ−
splitting(Ξ1) < 0 corresponds to the eigenvector (+1,−1, 0, 0)T and

the eigenvalue λ+
splitting(Ξ1) corresponds to the eigenvector (0, 0,+1,−1)T . For Ξ2,

it is the other way around.
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Figure 31: Angular coordinates ϕj(ℓ) along the heteroclinic cycle between Ξ1

and Ξ2. The parameter ℓ parameterizes the two branches of the cycle by the
arc length ℓ ∈ [0, L] with L ≃ 7.2. Along each heteroclinic orbit, one cluster
splits and merges again while both clusters switch positions.

how the units 1 and 2 of cluster A (orange and blue line) stay together
while cluster B splits along the orbit in the two distinct units 3 and 4
(red and green line) and that at ℓ = L, the two clusters have switched
positions, i. e.,

ϕ1(L) = ϕ2(L) = ϕ3(0) = ϕ4(0) = Ξu

ϕ3(L) = ϕ4(L) = ϕ1(0) = ϕ2(0) = Ξs.

In Panel (b), it is the other way around. This heteroclinic cycle is
robust in Region II as a result of the permutation symmetry of the
system (2.6). Analogous to the discussion in Chapter 5, its asymptotic
stability is determined by the quantity

λ+
splitting + λ−

splitting.

If this quantity is greater than zero then, perturbing the system’s state
away from the cycle, the distance between two units that formed a
cluster before grows stronger along one heteroclinic orbit than it shrinks
along the other and thus the perturbation grows exponentially and the
heteroclinic cycle is asymptotically unstable. If the quantity is smaller
than zero, the cycle is stable [And+73; Fie20]. The extended black
dashed line in Region II marks where in the κ-ζ-plane we have

λ+
splitting + λ−

splitting = 0

and thus where the stability-changing bifurcation of the cycle occurs.
The broken-symmetry states emerge exactly in this bifurcation and
exist to the left of the dashed line in Region II so that in this regime,
we have to identify λ = 0 and λ = 1 with heteroclinic cycles instead of
the proper periodic two-cluster state.

Next, we discuss the observed bifurcations that result in the stabi- Pitchfork bifurcations.
lization and destabilization of the splay state and the periodic two-
cluster states. For this, we note first that at the black dotted line,
two saddle-node bifurcations occur in which a stable and an unstable
broken-symmetry state emerge, respectively. This corresponds to what
we have already observed for the averaged dynamics in Figure 29 in
the previous section. Along the border between the Regions IV and
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V, marked by the left branch of the black dashed line, the unsta-
ble broken-symmetry states vanish in subcritical pitchfork bifurcations
with the two-cluster states, rendering them unstable. Further increas-
ing ζ lets the stable broken-symmetry states vanish in another, this
time supercritical, pitchfork bifurcation (black dash-dotted line) with
the splay state which is subsequently stabilized in Region VI and VII.
At (κ, ζ) ≃ (−0.93, 0.6), we find a point of codimension 2 in which
the saddle-node bifurcations and the subcritical pitchforks coincide.
Branching off to the right of this point, the black dashed line now
marks two supercritical pitchforks between the two-cluster states and
the broken-symmetry states at the border between Regions III and V.
Overall, the transfer of stability between two-cluster states and the
splay state is now a local one. To the right of the codimension 2 point,
the transfer corresponds to Panel (a) in Figure 28, to the left, it corre-
sponds to Panel (b). As already noted, in Region II, broken-symmetry
states cannot bifurcate from the periodic two-cluster states along the
black dashed line but instead emerge in the stability changing bifurca-
tion of the heteroclinic cycle.

Gray lines in the diagram indicate the corresponding predictionsPredictions from the
averaging principle. from applying the averaging Proposition 7.1 to determine all stability-

changing bifurcations. We immediately see that the predicted bifurca-
tion lines fit better, the more repulsive we choose the coupling strength
κ. We note that for κ ≳ −0.85, the predicted additional nontrivial ze-
ros, indicating the presence of a broken-symmetry states, lie so close to
λ = 0, 1 that it becomes impossible to resolve them within numerical
accuracy. This explains the abrupt almost vertical slope of the gray
dashed line for ζ > 0.8 which is a numerical artifact. We expect that if
one was able to determine the nontrivial zeros with higher resolution,
the resulting curve would look smoother.

Since the predictions from the averaging principle must coincide with
the actual bifurcation diagram in the limit |ϵ| → 0, we conduct a second
stability analysis but this time for ϵ = 0.001. The results are shown in
Figure 32. Annotations and line styles are the same as in Figure 30.
Indeed, we now find the prediction from applying Proposition 7.1 and
the results from the actual dynamics in nearly perfect agreement with
each other. The only (slight) exception occurs again for κ ≳ −0.85 and
ζ ≳ 0.8 but as already mentioned above, it is reasonable to assume
that this discrepancy is due to finite resolution and accuracy of the nu-
merical integration, involved, in other words, a numerical artifact. In
particular, from Figure 32, we may conclude that our formal identifi-
cation of symmetric periodic two-cluster states (if they exist) with the
zeros of F̂ h at λ = 0, 1 is correct for small |ϵ|.

With the above observations, we end our discussion of the “local”
transfer of stability between splay state and two-cluster states forN = 4
and moreover conclude our investigation of systems of four Active Ro-
tators. In the next section, we discuss splay states for larger ensembles.
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Figure 32: Existence and stability of the splay state, the symmetric periodic
two-cluster states, and the broken-symmetry states for (2.6) with h(ϕ) from
(7.25) with ω = 0.6, ϵ = 0.001, and N = 4. Black and gray lines correspond
to the ones from Figure 30.

7.4.3 Persistence and Stability of Splay States for N > 4 Units

Leaving the case of N = 4 ARs behind, let us discuss how the picture
changes if one considers larger ensembles. Two problems arise for the
numerical study of splay states in this case: (i) Since for larger values
of N , the number of clustered periodic solutions grows rapidly (e. g.,
in form of clustered splay states), it becomes more and more difficult
to find and study pure splay states numerically, at least for the not
integrable case ϵ ̸= 0. (ii) In Chapter 5, we were in the advantageous
situation that periodic two-cluster states have at most three distinct
nontrivial Floquet multipliers µA, µB, and µnon-splitting, the first two
of which determine the splitting stability for the clusters A and B
while the latter characterizes the stability against non-splitting pertur-
bations. This occurrence of Floquet multipliers with high multiplicity,
however, does not hold anymore for splay states. For increasing N ,
we are instead confronted with a growing number of distinct Floquet
multipliers for which to our best knowledge no closed form exists. Of
course, as long as |ϵ| is sufficiently small, the averaging principle in
Proposition 7.1 allows us to determine the stability of the splay state
but this tool becomes less and less powerful (at least quantitatively)
for |ϵ| ≫ 0. Moreover, inquiring the stability of splay states from the
averaging principle requires us to find some expression for the deriva-
tive DF̂ h(λ∗) at the splay state cross-ratio value λ∗ which in general
can only be approximated by numerically computing DF̂ h around λ∗

which poses no real advantage over determining the stability of Cϵ,λ∗

directly by the numerical method, discussed in Chapter 3. In any case,
one has to expect that in contrast to the periodic two-cluster states,
the stability of splay states depends explicitly on the number N of ARs.
We nevertheless want to briefly discuss how our results for N = 4 units
may generalize for larger N . For this, we restrict our attention to the
cases of N ∈ {5, 6, 7, 8} Active Rotators for the above mentioned rea-
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Figure 33: Stability diagram for the splay state for ensemble sizes N = 5
to N = 8. We fix ω = 0.8 and choose h(ϕ) = sin 2ϕ. A black dotted line
indicates the presence of a subcritical Neimark-Sacker bifurcation for N = 7
or a subcritical pitchfork bifurcation of periodic orbits for N = 8.

sons. The results are depicted in Figure 33 where we fix ω = 0.8 and
consider the perturbation function

h1(ϕ) = sin 2ϕ. (7.24a)

We note first that, as expected, at least for ϵ ≈ 0, the splay state
emerges again via the THB of the synchronous fixed point ∆s (green
line). On the other hand, we still find that for ϵ ≳ 0.4 and κ ≲ −0.9,
the role of ∆s in the creation of the splay state is assumed instead by N
stable solitary state fixed points which now each consist of one cluster
of N − 1 units and a singleton. Since the loci and stability of these
steady states directly depend on N (because the relative sizes of, e. g.,
the clusters A = {1} and B = {2, . . . , N} change for varying N), the
border between the stable regime of the splay state (blue area) and the
regime of the stable solitary state fixed points also varies slightly with
increasing N . Next, we note that, at least in the considered parameter
regime for κ and ϵ, the stability diagram for the caseN = 5 looks overall
the same as the one in Figure 24 for N = 4. In particular, we observe
again a change in stability at ϵ = 0 so that for small negative values of
ϵ, the splay state is unstable (red area). We also note (for all N) the
narrow region of stability close to the THB for ϵ < 0 which we already
observed for four ARs. But for larger values of N , we see that the splay
state is not necessarily stable for all positive values of ϵ, anymore. This
is not in contradiction to the averaging principle: Numerical results
show that, e. g., for N = 6 and N = 8 and fixed ϵ > 0, starting with
κ close to the THB and then decreasing κ results in one of the (real)
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Figure 34: Time series for broken-symmetry states for N = 6 (Panel a) and
N = 8 (Panel b) ARs. System parameters are fixed at ω = 0.8, ϵ = 0.4,
κ = −1.25 and ω = 0.8, ϵ = 0.35, κ = −1.04, respectively.

Floquet multipliers of the splay state to leave the unit circle, rendering
the splay state unstable in this direction. Thus, for ϵ > 0, this results
in the border between the stable (blue) and the unstable (red) regime.
Choosing ϵ < 0 and gradually decreasing κ yields instead a splay state
for which, for moderately repulsive coupling, all but two nontrivial
Floquet multipliers lie outside the unit circle. Along the black dotted
line, one of these multipliers moves into the unit circle, rendering the
splay state stable in the corresponding direction and we see that this
line is the continuation of the red-blue border for positive ϵ. Hence,
the number of stable and unstable directions of the splay state in Mϵ

switches at ϵ = 0 in accordance to point four of Proposition 7.1.
Remarkably, if we choose (κ, ϵ) close to the right of the line along

which the stability of the splay states changes, we again find unstable
broken-symmetry states which eventually coalesce with the splay state
at that line and do not exist to its left, rendering the splay state un-
stable in one direction. Hence, the bifurcation at hand for N = 6 and
N = 8 is a subcritical pitchfork bifurcation of periodic orbits, similar
to the one that we observed for N = 4. In Figure 34, we show the
(normalized) time series of the involved broken-symmetry states. Now,
the ensemble splits in N/2 groups of two consecutive units, each, which
are more tightly placed together than with their other neighbors. The
closer (κ, ϵ) is to the dotted bifurcation curve, the more evenly spaced
the units in the broken-symmetry states become until the state coa-
lesces with the splay state ϕλ∗(t) at the bifurcation. This leads us to
the conjecture that broken-symmetry states are not just an artifact
from some hidden symmetry for the case of N = 4 units but that they
play in fact a vital role for general even N where they can generally be
characterized as periodic solutions ϕϵ,λbss(t) of (2.6) for which

σ2ϕϵ,λbss(t) = ϕϵ,λbss

(︄
t− 2T (λbss)

N

)︄

holds where T (λbss) denotes the period of ϕϵ,λbss . Due to the spatio-
temporal symmetry above, the corresponding cross-ratios λbss for the
WS-case ϵ = 0 are of alternating form

λbss = (λ1, λ2, λ1, . . . , λ2, λ1)
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in the cross-ratio coordinates (7.20).
Broken-symmetry states can only occur for even N since they areUneven N and the

Neimark-Sacker
bifurcation.

essentially characterized by the ensemble to split up in N/2 more or
less tightly bound groups. So, how can we explain the change in sta-
bility for fixed ϵ > 0 and gradually decreasing κ for N = 7? Here, in
contrast to the cases N = 6 and N = 8, we find a pair of complex
conjugate Floquet multipliers which leave the unit circle for sufficiently
negative κ, indicating that at the blue-red border, at least for N = 7,
the splay state goes through a Neimark-Sacker bifurcation, also known
as a secondary Hopf bifurcation [Kuz13]. Again, we find that the border
between the stable (blue) and the unstable (red) regime for positive ϵ
can be extended for ϵ < 0 (black dotted line) where then two of the
four unstable Floquet multipliers10 become stable for sufficiently strong
repulsion. Neimark-Sacker bifurcations, depending on whether they are
sub- or supercritical, generally go along with the bifurcation of an un-
stable or stable invariant two-dimensional torus from the periodic orbit.
Since we found no indications of a stable invariant torus in our numeri-
cal experiments, we conclude that in the case at hand, the bifurcation
is in fact subcritical and that the torus must occur to the right of the
bifurcation curve. In a sense, it replaces the broken-symmetry states in
their role of rendering the splay state unstable for even N an the sub-
critical Neimark-Sacker bifurcation replaces the subcritical pitchfork of
periodic orbits.

We end this chapter with the construction of a robust hyperbolic
orbit for an ensemble of N = 10 ARs in order to illustrate the proposed
procedure in Section 7.3.3.

7.4.4 Constructing a Robust Periodic Orbit for N = 10 Units

We want to illustrate the method, presented in Section 7.3.3, to control
a given periodic orbit Cλ ⊂ M for some fixed λ for the case of N = 10
Active Rotators. To this end, we fix the system parameters ω = 0.8
and κ = −0.8 and choose

λ0 = (λ1, . . . , λ7)
= (0.973, 0.907, 0.862, 0.832, 0.631, 0.248, 0.162)

for the cross-ratios. We show a (normalized) time series for the ϕj
along Cλ0 in Panel (a) of Figure 35 where, as always, different colors
indicate different units. For the eight linearly independent perturbation
functions h1, . . . , h8 that we need for controlling Cλ0 , we choose

h2j−1(ϕ) = sin(j + 1)ϕ
h2j(ϕ) = cos(j + 1)ϕ,

10 Remember, that the splay state always possesses at least two stable Floquet multi-
pliers that it inherits from Mϵ. Hence, close to the right of the dotted line, the splay
possesses four unstable Floquet multipliers.
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Figure 35: (Normalized) time series for the controlled orbit Cϵ,λ0 for different
values of ϵ. Panel (a) shows the degenerate orbit of the WS-integrable model
(2.5). Panel (b) to (d) show the corresponding time series for increasing values
of ϵ in (2.6) with h from (7.26) and (7.27). For comparison, we also show the
unperturbed time series as dotted lines.

with j = 1, . . . , 4. In other words, we choose the h1, . . . , h8 to be the first
eight higher Fourier modes so that our desired perturbation function h
is of the form

h(ϕ) =
4∑︂
j=1

c2j−1 sin(j + 1)ϕ+ c2j cos(j + 1)ϕ. (7.26)

In order to make Cλ0 robust, we now need to find suitable coefficients
c1, . . . , c8 to let F̂ h(λ0) = 0, i. e., we need to compute the F̂ hk(λ0) via
(7.3) and then solve

0 =
4∑︂
j=1

c2j−1F̂ h2j−1(λ0) + c2jF̂ h2j (λ0)

for the c1, . . . , c8. In doing so, we can always set, e. g., c8 = 1 because
for each h that fulfills the above equation, any multiple C ·h is another
solution. We then find

(c1, c3, c5, c7) ≃ (44.27, −26.78, −9.88, 5.01)
(c2, c4, c6, c8) ≃ (18.33, 28.17, −17.07, 1)

(7.27)

such that for sufficiently small |ϵ|, we expect Cϵ,λ0 to be a hyperbolic
orbit of (2.6) with h given by (7.26) and (7.27).

Let us compare this prediction with the numerical results. In Panel
(a) of Figure 35, we show the (normalized) time series along the original
orbit Cλ0 while Panels (b)-(d) show the normalized time series along
Cϵ,λ0 for three different values of ϵ (solid lines) together with the time
series for Cλ0 (dotted lines) for comparison. For ϵ = 0.0001, both time
series nearly coincide but increasing ϵ leads to larger and larger devi-
ations between the two orbits Cλ0 and Cϵ,λ0 and thus the time series.
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Increasing ϵ further would let units two and three (teal and olive green
lines) eventually form a cluster. Larger values of |ϵ| result in more and
more clustering of the units, i. e., the orbit goes through various bifurca-
tions. At this point, the original orbit Cλ0 cannot be further controlled
with our choice of h, it ceases to exist.

Computing DF̂ h(λ0) to determine the stability of Cϵ,λ0 results in the
eigenvalues

(λ1, λ2, λ3) ≃ (0.43,−0.79,−0.13)
λ4,5 ≃ −0.17 ± 0.13i
λ6,7 ≃ −0.08 ± 0.1i

so that we expect the Cϵ,λ0 to have one real unstable Floquet multi-
plier, two real stable ones and two pairs of stable complex conjugate
multipliers in addition to the two real stable multipliers, inherited by
the NAIM Mϵ. And indeed, this matches the results from numerical
stability analysis where, e. g., for ϵ = 0.0006 in Panel (d) of Figure 35,
we have

(µ1, µ2, µ3) ≃ (1.005, 0.9998, 0.9997)
µ4,5 ≃ 0.997 ± 0.002i
µ6,7 ≃ 0.9986 ± 0.0006i

(µ8, µ9) ≃ (−4 · 10−4,−1.6 · 10−7)

where the last two multipliers are the ones that are inherited from Mϵ.
Note that the first seven multipliers still have absolute values very close
to one since the perturbation parameter ϵ is so small. Overall, the above
example illustrates nevertheless that controlling arbitrary orbits in M
is possible.

7.5 conclusion

In Chapter 6, we saw that WS-integrable systems can, under certain
conditions, give rise to a NAIM M, foliated by periodic orbits which are
neutrally stable in M. This told us that, in some sense, M is the true
fundamental invariant geometric object that we should study because
of its robustness and not the individual periodic orbits it is composed
of. In this chapter, we put the manifold M in a broader context of
dynamical systems which are close to being WS-integrable. For this,
we developed a systematic method to determine which orbits of the
continuum survive the transition to nonintegrable systems. The method
is based on the averaging principle for periodic orbits. We restricted
our attention to the case of on-site perturbations but the results readily
generalize to perturbations of the coupling term, as well: In our proof of
Proposition 7.1, we only used the fact that the perturbation function is
smooth, not that it acts diagonally on TN . Chapter 5 and the present
chapter enable us now to view M in a broader context of generally
nonintegrable systems. The WS-integrable case then corresponds to a
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global bifurcation of the dynamics on M. This case is distinguished
from general dynamics exactly by its degenerate behavior.

The proposed method to determine robust orbits is really a direct
application of the averaging principle for periodic orbits to the dynam-
ics on the perturbed manifold Mϵ because only on this manifold are
the necessary conditions for applying averaging theory fulfilled. How-
ever, this fact does not pose a limitation on the method since Mϵ is a
NAIM and therefore, the asymptotic dynamics for initial conditions in a
neighborhood U(Mϵ) of Mϵ take place entirely on Mϵ. In other words,
the dynamics on Mϵ serve as a local model in the sense of [HI12], i. e.,
there exists a local continuous mapping h : U(Mϵ) → Mϵ that maps
solutions of the full system to those of the system, restricted to Mϵ, cf.
Theorems 4.2 and 4.3 in [HI12]. The result is a dimensional reduction
of the problem by two. Applying the averaging principle then means to
average those components of a given perturbation function that make
the cross-ratios nonconstant over a full period of a given periodic or-
bit in M of the unperturbed system. If this average vanishes and the
eigenvalues of DF̂ h do not lie on the imaginary line, the orbit is robust.

We note that the proof of Proposition 7.1 relies on the fact that there
exists an asymptotic phase-like function S in a neighborhood U(M) of
M which is C1 and together with the cross-ratio function Λ serves as
a set of coordinates on Mϵ and relates the dynamics on this manifold
to the dynamics on the unperturbed manifold M. The existence of an
asymptotic phase for NAIMs and even continuous families of periodic
orbits has been studied, e. g., in [Fen77] and [Aul82]. While the asymp-
totic phase for NAIMs is generally only guaranteed to be continuous,
we are in the advantageous position that M is composed of periodic
orbits so that there exists no exponential expansion or contraction on
M from which it follows in particular that S is as smooth as the vector
field and so is sufficiently smooth for our purposes [Fen74].

Surprisingly enough, we found that it is in general important to aver-
age over the periodic orbits of the full WS-integrable system since the
averaged vector field in λ-direction for the truncated system vanishes
identically which in turn makes the averaging principle sterile. To show
this in Appendix D, we used the fact that for constant α(t) = α0 and
ψ̇(t) = Ω, the Fourier series of the function ψ ↦→ (DΛ · h) ◦ m(α0, ψ,λ)
has a vanishing zeroth order Fourier mode for arbitrary α0, λ and
smooth h. Once α(ψ,λ) and ψ̇(ψ,λ) become nonconstant in ψ, the
calculations become highly nontrivial and in particular depend on the
specific form of the common fields f and g. We conjecture that both
the nonvanishing of F̂ h and the hyperbolicity of the derivative DF̂ h(λ∗)
are generic properties for systems of the type (6.3) but were not able
yet to prove this. However, as we saw that both properties hold for the
case of the generalized AR-model, it would be quite a surprise if this
was not a generic feature of systems of the type (6.3).

The result of removing WS-integrability from a system by breaking
its symmetry is that instead of infinitely many somewhat parallel lying
obits, we are confronted with a slowly spiraling motion along Mϵ and
that generally only few orbits survive the introduction of the perturba-
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tion term. In particular, we showed that F̂ h(λ∗) = 0 which indicates
that splay states are generally robust solutions for systems of type (7.1)
which further emphasizes their special role within the continuum of peri-
odic orbits (and in WS-theory, for that matter). Given the conjecture of
hyperbolicity above holds true, we further showed how one can control
any given periodic orbit of the continuum, i. e., make it hyperbolic, by
constructing a suitable perturbation function. It is not clear whether it
also possible to construct the perturbation function in such a way that
the orbit becomes exponentially stable. This is certainly the case for
N = 4 units where we only have a single cross-ratio and therefore F̂ h is
one-dimensional so that changing the sign of the perturbation param-
eter ϵ switches the stability of any orbit. However, for larger values of
N , things become more difficult because we have multiple components
of the averaged vector field which are generally all interrelated. Hence,
changing the perturbation function h has an effect on the values of all
components of F̂ h which poses a nontrivial problem of constructing h
in such a way that the spectrum of DF̂ h(λ0) has negative real part.
On the other hand, we have an infinite-dimensional space of perturba-
tion functions at our disposal to do the trick. This infinitude of valid
perturbation functions supplies us with a tantalizing variety to find a
function that actually makes a given orbit exponentially stable. In any
case, this remains a subject for future research.

In the first part of this chapter, all results presented were rigorous
and applied to the general class (6.3) of WS-integrable models that
only depend on the Kuramoto order parameter. In the second part,
we applied the averaging principle to the generalized Active Rotator
model which served two purposes: To analyze the asymptotic dynamics
of the model but also to discuss the possibilities and limitations of the
averaging principle. Particularly, we focused on the simplest nontrivial
case of N = 4 ARs for which the continuum of orbits in the integrable
case consists of what we call broken-symmetry states, which are hybrids
between splay states and symmetric periodic two-cluster states: They
consist of two groups of two more tightly bound units, each. Varying the
cross-ratio controls how tight this grouping is where the two extreme
cases yield either a splay state of a true two-cluster state. The proposed
method to control periodic orbits in M allowed us to study how the
nonlocal change in stability for splay states and two-cluster states that
we observe if we change the sign of the bifurcation parameter ϵ, gets
replaced by a more generic local transfer of stability between these two
types of solutions by means of broken-symmetry states.

We stress that broken-symmetry states show a striking resemblance
to so-called “generalized splay states”, which were studied in [Ber+21].
Such generalized splay states are defined as phase-locked states for
which the Kuramoto-Daido parameter11 vanishes. While our broken-
symmetry states feature compatible dynamics to 2-splay states in the
diction of [Ber+21], they seemingly do not fit the definition of a gener-

11 This parameter Zk(ϕ) = 1
N

∑︁N

j=1 eikϕj is a generalization of the Kuramoto order
parameter [Dai96].
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alized splay therein because the Kuramoto-Daido parameter does not
vanish for them. However, this is solely due to the fact that the compo-
nents of ϕλ(t) are not proper phase-variables because they do not grow
linearly in time. A suitable coordinate change to such phase variables
exists and would result in the vanishing of this order parameter.

We continued by conducting a numerical stability analysis for the
splay state for large values of ϵ and observed that this solution (and
therefore the NAIM Mϵ with it) always emerge in a THB, either of
the synchronous fixed point ∆s or a stationary solitary state. This
result, which is in agreement with a similar but rigorous result for
the WS-integrable case in Chapter 6, illustrates how periodic ensemble
dynamics of class I excitable units can emerge under sufficiently strong
repulsive coupling besides the already known periodic two-cluster states.
It also illustrates how periodic two-cluster states, although clustered
splay states themselves, fundamentally differ from all other (clustered)
splay states which emerge for the critical coupling κ0 in the THB. The
underlying reason for this is (i) that in T1/2, the transcritical character
of the bifurcation at κ0 is replaced by a pitchfork and (ii) two-cluster
dynamics are not subject to WS-theory.

The fact that splay states can at all exist for the systems at hand is
of course an immediate consequence of the fact that we are dealing with
identical units. If the units would be distinguishable, e. g., by replacing
the internal angular velocity parameter ω by site-dependent parameters
ωj , the resulting solution would not be a splay state but instead the
time intervals between two consecutive units, crossing a given point in
the state space, would not be equal. We already stated that our results
are fundamentally limited by the fact that, e. g., the existence of the
diffeomorphism m is only guaranteed for identical units since only then
the ordered torus TNordered is invariant. But at least for weakly heteroge-
neous ensembles and for sufficiently short times, a given state will stay
in TNordered and it might be possible to apply our results to such systems
for short times. In this case, since the splay state is generally hyperbolic,
it would survive in form of an “imperfect” splay: the time intervals be-
tween consecutive units to “spike” would be distinguishable albeit this
effect would be small if the differences in, say, the ωj are small. The
same holds true for any other orbit that becomes hyperbolic through
symmetry-breaking perturbations. Making the units distinguishable re-
sults in making the inter-spike-intervals between consecutive units also
more heterogeneous.

A special role in this regard is played by clustered splay states. Just as
the pure splay state, these solutions are hyperbolic. Making the number
of units per cluster unequal results in imperfect clustered splay states.
If N is large, the relative differences in cluster size are small and thus
these imperfect clustered splays are hyperbolic and of the same stability
type as the true clustered splays. Indeed, for randomly chosen initial
conditions and large N , it is much more likely that the state converges
to an imperfect clustered splay state than to any true (clustered) splay.

As a final result for N = 4 units, we investigated the transfer of
stability between splay states and two-cluster states under continuous
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changes of the perturbation function h. This also served as a compari-
son between the predictions from the averaging principle and the actual
dynamics of the generalized AR-model. Specifically, we found that in
the simplest case, the transfer happens via the emergence or disappear-
ance of broken-symmetry states through pitchfork bifurcations of the
splay and the symmetric periodic two-cluster states. More complicated
scenarios are possible and were, as a matter of fact, observed in the
form of additional saddle-node bifurcations of broken-symmetry states,
in agreement with the predictions from the averaging principle. Since
averaging is a perturbation method and therefore becomes less reliable
the larger the perturbation term is, the agreement between averaging
theory and numerical results becomes better, the smaller we choose |ϵ|.
However, we saw that even for fairly large |ϵ|, the predictions from aver-
aging theory became also quantitatively better, the larger we chose −κ.
Why this is, is not entirely clear to us. An explanation might be that
with increasing |κ|, the repulsive coupling term eventually dominates
the on-site dynamics and therefore, in particular, the perturbation term.
The result is that the ARs “feel” the perturbation less which has the
same effect as making |ϵ| smaller for fixed κ so that as a consequence,
averaging theory and actual dynamics are in better agreement.

Since the splay state is robust for any N , we went on by investigating
its stability for larger values of N . Because the Floquet multipliers of
the splay state, in contrast to periodic two-cluster states, are not degen-
erate, the picture here becomes more complex. In particular, for large
N , we are not guaranteed anymore to see a switch from exponential sta-
bility to exponential instability at ϵ = 0, as for N = 4. But at least for
moderate values of N and close to the THB of ∆s, we still observed this
behavior. For even N , any stability changing bifurcations of the splay
state again involved a broken-symmetry state where now the ensemble
splits in N/2 groups of two units, each. This leads to the conjecture
that such states are still a general feature for class I excitable units for
even N . Since for odd N , broken-symmetry states cannot exist, they
are also not responsible for any change in stability of the splay state in
this case. Hence, for N = 7, the subcritical pitchfork of the splay state
is replaced by a subcritical Neimark-Sacker bifurcation.

If both, the splay state and the periodic two-cluster states, are unsta-
ble, the question arises what asymptotic dynamics occur instead. These
dynamics are more complex than for the case N = 4: In our numerical
experiments, we observed, e. g., stable clustered splays or even stable
heteroclinic cycles of clustered periodic orbits, to name a few types
of asymptotically stable solutions. What all of these solutions have in
common is that they do not exist in TNordered but rather somewhere in
its boundary ∂TNordered which makes them, to some degree, inaccessible
to the averaging principle. This brings us to another limitation of the
method: It only works as long as we can use the cross-ratios as coordi-
nates together with the Möbius group parameters and this only works
rigorously in TNordered. On its boundary ∂TNordered, cross-ratios may or
may not become ill-defined because they may be of the form 0/0. For
N = 4, this was not a problem as long as we restricted our attention
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to symmetric two-cluster states but for larger N , two cluster states or
clustered splay states may have no well-defined cross-ratios any longer.
However, at least to some degree, we can still use the averaging prin-
ciple to study clustered splay states as long as we are only interested
in their stability against non-splitting perturbations since we can effec-
tively describe such states and perturbations by applying the averaging
principle to the reduced dynamics of the cluster coordinates.

Finally, as a proof of concept for the proposed method of controlling
any given orbit in M by constructing a suitable perturbation function,
we illustrated this procedure for an ensemble ofN = 10 Active Rotators,
in good agreement with the numerical stability analysis for the resulting
orbits. It is worth noting that while for N = 4, the controlled broken-
symmetry states are robust even for fairly large values of ϵ, for N = 10,
one has to be careful with how large to choose |ϵ|. In the example at
hand, the orbit went through a first bifurcation already for ϵ ≃ 0.0006
so that for larger values of ϵ, averaging theory already does not describe
the actual dynamics any longer. Of course, this has to be brought into
perspective by noting that the coefficients (7.27) for this particular h
are quite large such that, if we had normalized h first, the prediction
from the averaging principle would be valid for almost two more orders
of magnitude. Nevertheless, it becomes more and more cumbersome
to control orbits for large N and |ϵ|. It is also important to note that
averaging theory cannot explain the narrow region of stability of splay
states for negative ϵ and close to the THB in Figure 33. It turns out
that in this regime again broken-symmetry states exist (emerging in
the THB), a fact that is not captured by the averaging principle since
these states emerge only for large values of −ϵ. At the end of the day,
the averaging principle is an appropriate tool to study small deviations
away from the WS-case.

With this, we end this chapter and also Part II of this thesis. In
the next part, we leave the angular dynamics and in particular the
Active Rotator models behind us and investigate ensembles of higher-
dimensional class I excitable elements in the form of the Morris-Lecar
neuron model. This will also serve to study whether and how the previ-
ous results on Active Rotators generalize for general excitable elements.





Part III

E N S E M B L E S O F M O R R I S - L E C A R N E U RO N S

We generalize from one situation to another not because
we cannot tell the difference between the two situations but
because we judge that they are likely to belong to a set of
situations having the same consequence.

— Roger N. Shepard [She87]
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C O U P L E D M O R R I S - L E C A R N E U RO N S

abstract

The results on the existence and stability of periodic states for ensem-
bles of excitable elements, presented so far, exclusively dealt with en-
sembles of angular variables, i. e., with one-dimensional excitable units.
To view and assess these results in the broader context of general class
I excitable elements is the purpose of this chapter. For this, we conduct
numerical simulations for ensembles of voltage-coupled Morris-Lecar
neurons [ML81]. The Morris-Lecar model, introduced in 1981 by Mor-
ris and Lecar, is a two-dimensional neural model which was originally
designed to describe the neurophysiological properties of barnacle giant
muscle fibers. Its physiological meaning is of no real importance for this
work. We chose it mainly because its parameters can be tuned in such a
way that the single neuron exhibits class I excitability [EK90; Tsu+02;
Tsu+06].

After introducing the model itself in Section 8.1, we discuss the
observed bifurcation scenarios leading to either splay states in Sec-
tion 8.2.1 or periodic two-cluster states in Section 8.2.2. While many
of the effects for coupled Morris-Lecar neurons are also present in en-
sembles of generalized Active Rotators and can be understood within
the framework that we developed in the previous part of this thesis,
other effects cannot occur in ensembles of one-dimensional elements
and are thus due to the Morris-Lecar models’ higher dimensionality.
We proceed by discussing how the local transfer of stability, investi-
gated in Section 7.4.2 for Active Rotators, translates to coupled Morris-
Lecar neurons. The content of this chapter is based on the publications
[RZ21a] and [RZ21b].

8.1 the model

The Morris-Lecar model is a two-dimensional conductance based model
and describes the time evolution of the membrane voltage V of a neuron
and a recovery variable w, modeling the normalized conductance for
K+ ions through the cell membrane. Additionally, it assumes that the
conductance of the membrane for Ca2+ ions responds instantaneously
to changes in the membrane voltage. In particular, this instantaneous
response causes the upstroke for any spike while the finite time response
of the K+ conductance is responsible for the downstroke. A commonly
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studied setup in the context of the ensemble dynamics for N Morris-
Lecar neurons consists of an all-to-all pairwise coupling via mutual
voltage differences, see for example [PM06; WLL08; DKN13; Tan+14;
KSN16]. For the case of identical units, the dynamical equations then
read

C V̇ j = − gCa n∞(Vj) · (Vj − VCa) − gKwj · (Vj − VK)

− gL · (Vj − VL) + Iapp + κ

N

N∑︂
k=1

(Vk − Vj)
(8.1a)

ẇj = ν(Vj) · (w∞(Vj) − wj) . (8.1b)

Here, j = 1, . . . , N denotes the jth neuron with membrane voltage Vj
and recovery variable wj . The functions

n∞(V ) = 1
2

(︃
1 + tanh V − Va

Vb

)︃
w∞(V ) = 1

2

(︃
1 + tanh V − Vc

Vd

)︃
quantify the proportion of open ion channels for Ca2+ and K+ ions in
dependence of V , whereas

ν(V ) = ν0 cosh V − Vc
Ve

denotes the voltage-dependent inverse recovery time for the K+ chan-
nels. The coefficients gCa, and gK denote the maximum conductivity for
Ca2+ and K+ ions through the membrane while the term −gL(Vj −VL)
represents a leak current IL. In particular, the first term on the right
hand side of (8.1a) describes the instantaneous dependence on the Ca2+

conductance of Vj , while the second term together with (8.1b) describes
the finite-time response of the K+ conductance. The quantities VCa, VK,
and VL denote the reversal potentials for each of the ion channels and
the leak current, i. e., the potentials at which the respective currents
through the membrane change direction. Finally, Va, Vb, Vc, Vd, and Ve
are auxiliary constants while Iapp represents an external applied current
and C is the membrane capacitance.

Since the neurons are coupled exclusively via their respective voltage
variables, the notion of repulsive coupling from Chapter 2 does not
fully apply to this setup but has to be generalized. Throughout this
chapter, the coupling between any two units does not depend on the
distance between them in state space R2 but only on their distance in
V -direction. Aside from this caveat, the coupling still has the effect that
two units with voltages Vj and Vk experience a tendency to increase
the voltage difference Vj − Vk for κ < 0 so that we speak of repulsive
coupling while there exists a tendency to decrease this difference if
κ > 0 in which case we speak of attractive coupling.

One might argue that in order to compare the ensemble dynamics of
coupled Morris-Lecar neurons with those of the Active Rotator mod-
els from Part II, a more appropriate setup would consider a coupling
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parameter ermentrout tsumoto

C 1 1
ν0 0.33 1/3
Iapp 0.0332 395/1200

gK 2 8
gCa 1 4
gL 0.5 2

VK -0.7 -2/3
VCa 1 1
VL -0.4 -1/2

Va -0.01 -0.01
Vb 0.15 0.15
Vc 0.1 0.1
Vd 0.145 0.145
Ve 0.145 0.29

Table 1: System parameters for the model (8.1), in accordance with Ermen-
trout and Kopell [EK90] and Tsumoto et al. [Tsu+02], yielding class I ex-
citable neurons. The parameter Iapp is free in [Tsu+02] and fixed in [EK90].
We choose the shown values to bring the single neuron closer to its SNIC.

term that depends on the actual distance of the Morris-Lecar neurons
in state space instead of just the voltage difference. The motivation for
the coupling term at hand is the following: While coupling between neu-
rons usually involves more complicated mechanism like chemical synap-
tic transmission of signals [DA05], two neurons can also be connected
by so-called gap junctions, which act as direct electric connections be-
tween them and play an important role in fast signal transfers and in
synchronization effects between many types of cells, e. g., in the heart
[JW94]. On the other hand, the recovery variable w is a rather elusive
quantity and takes in practice no part in the coupling of neurons. It is
an entirely internal property of a neuron that is completely concealed
from other neurons. While the model (8.1) is not readily applicable for
the description of real world neural networks, it serves nevertheless as
a more realistic description of neural interactions and, as we will see
below, its dynamics are to some extend compatible with those of Active
Rotators.

The Morris-Lecar model, describing a single neuron, features a vari-
ety of intrinsic dynamics, depending on the choice of system parameters.
Following [EK90; Tsu+02], the parameters used by us are listed in Ta-
ble 1, for which each unit is close to a SNIC.1 The two choices differ

1 The parameters from [Tsu+02] are rescaled by measuring V in units of VCa and time
in such units that C = 1 and ν0 = 1/3.
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essentially in two ways. The first difference is more conceptual in that
the constant Ve, used in ν(V ) is chosen twice as large in [Tsu+02] as
in [EK90] which results in a significantly larger recovery time for the
former case. However, we found that this does not introduce any con-
siderable qualitative differences in the dynamics for the two parameter
sets. The second difference lies in the fact that the values for the con-
ductances gK, gCa, and gL in [Tsu+02] are four times higher than those
in [EK90] and we will see below that this has significant consequences.
We finally note that while the two sets differ, at first glance, signifi-
cantly in the external current Iapp as well, an expansion of (8.1a) as a
power series

V̇ j = a0 + a1Vj + O
(︁
V 2
j

)︁
+ O

(︁
wj
)︁

(8.2)

in Vj and wj yields the coefficients

a0 = Iapp + gLVL − 1
2gCaVCa

(︃
−1 + tanh Va

Vb

)︃
a1 = −gL + 1

2gCa

(︃
−1 + tanh Va

Vb
+ VCa

Vb

(︃
1 − tanh2 Va

Vb

)︃)︃
and reveals that the ratio a0/a1 is approximately 0.16 for both choices.
Since all auxiliary functions in (8.1) depend only on voltage ratios and
(8.1a) is otherwise linear in V , rescaling Vj → Vj/a1 renders (8.2) as

Vj̇ = ã0 + Vj + O
(︁
V 2
j

)︁
+ O

(︁
wj
)︁

with ã0 = a0/a1 ≃ 0.16. Under this rescaling, Iapp is completely ab-
sorbed into ã0 which is approximately the same for both parameter
choices. Hence, the two setups only differ significantly in the O(V 2

j )-
and O(wj)-terms which in turn depend on the membrane conductances.
Comparing this setup to the generalized AR-model (2.6), this suggests
to treat varying the coefficients gK, gCa, and gL for the Morris-Lecar
model (8.1) in a similar way to varying ϵh in (2.6), e. g., by varying the
parameters ζ in (7.25). We thus expect that a simultaneous rescaling
of gCa, gL, and gK results in a similar outcome as varying ζ in (7.25)
for (2.6). Hence, whenever we vary conductances, we do so using the
parameters from [EK90] and substituting

gK → (1 + ζ) gK

gCa → (1 + ζ) gCa

gL → (1 + ζ) gL

(8.3)

in (8.1) with scaling parameter ζ ∈ [0, 1] while adjusting Iapp such that

ã0 =
1

1+ζ Iapp + gLVL − 1
2gCaVCa

(︂
tanh Va

Vb
− 1

)︂
−gL + 1

2gCa
(︂
tanh Va

Vb
− 1 + VCa

Vb

(︂
1 − tanh Va

Vb

)︂
tanh Va

Vb

)︂ = const.

(8.4)
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Figure 36: Phase plot for a single Morris-Lecar neuron with system parameters
according to [EK90]. The system possesses a stable fixed point (green dot)
and a saddle (red dot) as well as an unstable spiral (blue dot). The unstable
manifold of the saddle (orange line) ends in the stable fixed point so that the
system is close to a SNIC. Gray lines indicate V - and w- nullclines.

to keep the zeroth order term in the rescaled expansion V̇ j = ã0 +Vj +
O(V 2

j ) + O(wj) constant. Specifically, we fix ã0 = 0.160367 in what
follows. Varying ζ in the unit interval [0, 1] then corresponds to a path
in parameters space of (8.1), leading from the parameters in [EK90] for
ζ = 0 to roughly those of [Tsu+02] at ζ = 1

Our aim is thus to investigate the bifurcation scenarios and the sta-
bility of periodic states for the model (8.1) in dependence on the pa-
rameters κ and ζ.

general remarks Before we discuss the limit cycle creating bi-
furcations that occur for (8.1), a word is at hand regarding the steady
states of the system.

A single Morris-Lecar neuron possesses, for the parameter choices
in [EK90] and [Tsu+02], three hyperbolic fixed points, as depicted in
Figure 36 for the parameters from [EK90]: A saddle (V u, wu) (red dot)
is connected via its unstable manifold (orange lines) with the stable
fixed point (V s, ws) (green dot) so that the system is close to a SNIC and
thus class I excitable. Additionally, the system possesses an unstable
spiral (blue dot) which is not of interest in this context and will be
neglected henceforth. Gray lines in Figure 36 indicate the V - and w-
nullclines.

For the system (8.1) of N Morris-Lecar neurons, this again gives rise
to a synchronous fixed point

∆s =
(︁
V s, . . . , V s⏞ ⏟⏟ ⏞
N entries

, ws, . . . , ws⏞ ⏟⏟ ⏞
N entries

)︁
as the unique attractor of the system at κ = 0 as well as an unstable
synchronous fixed point

∆u =
(︁
V u, . . . , V u⏞ ⏟⏟ ⏞
N entries

, wu, . . . , wu⏞ ⏟⏟ ⏞
N entries

)︁
.
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The phase space of (8.1) can be taken to be R2N . The state space is
given by R2 such that we may view the system as N units (Vj , wj) ∈ R2.
As for systems of Active Rotators, the neurons being identical yields
invariant two-cluster subspaces of the form

Tp :=
{︄

(V ,w) ∈ R2N ;
V1 = · · · = VpN , VpN+1 = · · · = VN ,

w1 = · · · = wpN , wpN+1 = · · · = wN

}︄

where without loss of generality we index the neurons in such a way
that the first mA = pN neurons belong to cluster A = {1, . . . , pN}
and the remaining mB = (1 − p)N neurons belong to cluster B =
{pN + 1, . . . , N}. For p ∈ (0, 1) and κ = 0, we find two saddles

Σ1 =
(︁
V s, . . . , V s⏞ ⏟⏟ ⏞
mA entries

, V u, . . . , V u⏞ ⏟⏟ ⏞
mB entries

, ws, . . . , ws⏞ ⏟⏟ ⏞
mA entries

, wu, . . . , wu⏞ ⏟⏟ ⏞
mB entries

)︁
Σ2 =

(︁
V u, . . . , V u⏞ ⏟⏟ ⏞
mA entries

, V s, . . . , V s⏞ ⏟⏟ ⏞
mB entries

, wu, . . . , wu⏞ ⏟⏟ ⏞
mA entries

, ws, . . . , ws⏞ ⏟⏟ ⏞
mB entries

)︁
.

Analogously to Chapter 5, a reduced model for the two-cluster states
can be introduced as

C V̇ A = − gCa n∞(VA) · (VA − VCa) − gKwA · (VA − VK)
− gL · (VA − VL) + Iapp + (1 − p)κ · (VB − VA)

ẇA =ν(VA) · (w∞(VA) − wA)
C V̇ B = − gCa n∞(VB) · (VB − VCa) − gKwB · (VB − VK)

− gL · (VB − VL) + Iapp + p κ · (VA − VB)
ẇB =ν(VB) · (w∞(VB) − wB)

(8.5)

where

VA = V1 = · · · = VpN

VB = VpN+1 = · · · = VN

and one may identify the reduced fixed points ∆s = (V s, V s, ws, ws),
∆u = (V u, V u, wu, wu), as well as the saddles Σ1 = (V s, V u, ws, wu)
and Σ2 = (V u, V s, wu, ws) of the reduced model at κ = 0 with their
counterparts for the full system.

8.2 limit cycle bifurcations

8.2.1 The Transcritical Homoclinic Bifurcation

The THB from [ZT16] for ensembles of one-dimensional units readily
translates to systems of two-dimensional elements. Consider a system
of general two-dimensional identical units (xj , yj), j = 1, . . . , N , un-
der pairwise, possibly nonlinear, all-to-all coupling in their mutual x-
differences. Assume that every single unit possesses a sink at (V,w) =
(0, 0), giving rise to a sink of the system at the origin 0 := (0, . . . , 0) ∈
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R2N for sufficiently small |κ|. The dynamics in the vicinity of 0 can be
written in a Taylor expansion as

ẋj = axj + byj +R1(xj , yj) + κ

N

N∑︂
k=1

[︁
(xk − xj) +R2(xk − xj)

]︁
ẏj = cxj + dyj +R3(xj , yj)

where R1(x, y) and R3(x, y) denote the nonlinearities in the on-site
dynamics and R2(xk −xj) denotes any nonlinear terms in the coupling
between units k and j. The (2N × 2N)-dimensional Jacobian of the
right hand side of this equation, evaluated at 0, possesses two negative
eigenvalues which correspond to the stability of the synchronous fixed
point against non-splitting perturbations. These eigenvalues are given
by

λ1,2 = 1
2

(︃
a+ d±

√︂
(a− d)2 + 4bc

)︃
and are exactly the eigenvalues of the Jacobian for the single unit at
(V,w) = (0, 0). In particular, this implies ad − bc < 0 and a + d <
0 due to the assumed single unit’s stability. Further, there exist two
degenerate eigenvalues

λ± = 1
2

(︃
a+ d− κ±

√︂
(a− d− κ)2 + 4bc

)︃
of multiplicity N − 1, each. These eigenvalues correspond to splitting
perturbations of the synchronous fixed point and vanish in a transcrit-
ical bifurcation for the critical coupling strength

κ0 = ad− bc

d
.

In particular, for Morris-Lecar neurons, we have

a = −gCa(V s − VCa)M ′(V s) + gCaM(V s) + gKw
s + gL

C

b = −gK(V s − VK)
C

c = ν ′(V s)(W (V s) − ws) + ν(V s)W ′(V s)
d = −ν(V s).

Numerical results confirm the homoclinic character of the transcrit-
ical bifurcation: At κ0, a multitude of homoclinic orbits forms where
along each orbit one or several of the N units leave (V s, ws) and return
from the opposite side as we observed for the AR-model. For κ < κ0,
these homoclinic orbits turn into periodic orbits which look similar to
those, discussed for Active Rotators in Chapter 7: The neurons for the
most part stay close to the point (V s, ws) in state space while from time
to time and in consecutive order each of the neurons departs from the
rest for a short time, tracing a macroscopic contour before returning to
the rest of the group, in a regular fashion, which results in a splay state.
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Figure 37: Splay state of period T ≃ 237.3 for an ensemble of N = 5 Morris-
Lecar neurons, obeying (8.1), with system parameters according to [EK90]
and κ = −0.07. Different colors represent different neurons. As for systems
of Active Rotators, single units depart from the rest of the ensemble during
short spike-like periods while the other units stay close to (V s, ws) in state
space.

In Figure 37, we show the voltage time series of such a splay state for an
ensemble of N = 5 units where we use system parameters according to
[EK90] and set κ = −0.07. For the parameters from [EK90], the splay
states are stable and are unstable for parameters from [Tsu+02]. We
discuss stability in more detail in Section 8.3. The existence of splay
states and their emergence through a THB is in direct correspondence
to the results from Chapter 6 and Chapter 7 where we discussed how
splay states emerge generally through a THB for ensembles of classic as
well as generalized Active Rotators.

Before we further investigate the stability of splay states, we discuss
the emergence of periodic two-cluster states.

8.2.2 Double-Heteroclinic Bifurcations

Looking for bifurcation scenarios which lead to periodic two-cluster
states, we again consider the invariant subspaces Tp and the two-cluster
dynamics, governed by the reduced equations (8.5). For simplicity, we
restrict our attention to the symmetric case p = 1/2. In T1/2, one ob-
serves again a pitchfork bifurcation instead of the transcritical one for
p ̸= 1/2. Since this pitchfork was always subcritical in our numerical
studies, no double-SNICs were observed. Instead, double-heteroclinic
bifurcations are found for parameters from [Tsu+02]. A typical sce-
nario is depicted in the panels (a)-(c) from Figure 36. (Here, we fixed
Iapp = 7/20 for a better graphical resolution.) where we show projec-
tions on the space, spanned by cluster voltages VA and VB. As in the
figures from Chapter 5 for Active Rotators, we increase the strength
|κ| of the repulsive coupling from the left to the right. Depicted are
the synchronous fixed points ∆s (green dot) and ∆u (red dot) to-
gether with the saddles Σ1 and Σ2 (black dots) and their respective
unstable manifolds (orange lines). The projection of the diagonal space
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Figure 38: Bifurcation scenarios resulting in symmetric periodic two-cluster
states. Depicted are the synchronous states of rest ∆s and ∆u and the saddles
Σ1 and Σ2 together with their unstable manifolds (orange lines). Gray arrows
indicate the flow on the space of total synchrony. System parameters are taken
from [Tsu+02] with Iapp = 7/30 in the top row and from [EK90] with Iapp = 0
in the bottom row for better graphical resolution. From the left to the right,
the repulsive coupling strength |κ| is gradually increased. For [Tsu+02], this
results in a double-heteroclinic bifurcation at κ ≃ −1.23 in Panel (b) and
for [EK90] in two simultaneous homoclinic bifurcations at κ ≃ −0.33 in Panel
(b′). Panels (c) and (c′) show the emerging periodic two-cluster states as closed
orange curves.

∆ := {(Vj , wj) = (Vk, wk) ; j, k = 1, . . . , N} of total synchrony is de-
picted as a gray line. Arrows indicate the direction of the flow. For
clarity, we do not show the stable manifolds of the saddles. In case
of the parameters from [Tsu+02] and for moderate coupling strength
in Panel (a), the two branches of the unstable manifolds for each Σi

again end in the synchronous fixed point ∆s, one branch coming close
to the respective opposite saddle, first. Panel (b) shows the hetero-
clinic orbits, connecting Σ1 and Σ2 at the double-heteroclinic bifurca-
tion while in Panel (c), a single periodic orbit has formed in which
both clusters spike in anti-phase. This scenario is a direct analog to the
double-heteroclinic bifurcation for (generalized) Active Rotators that
was discussed in Chapter 5. Letting p deviate slightly from the value
1/2 unfolds the bifurcation so that we again have first a heteroclinic
bifurcation, followed by a homoclinic one, equally in correspondence to
the (generalized) AR-model. Similar bifurcations can be observed for
parameters from [EK90], for sufficiently large Iapp.

Remarkably, choosing parameters from [EK90], but with Iapp be-
low the critical value I0 ≃ 0.0326 yields a rather different scenario, as
depicted in the bottom row (panels (a′)-(c′)) of Figure 38, where we
set Iapp = 0. Here, the unstable manifolds of the saddles still connect
each Σi with ∆s for moderate coupling in Panel (a′) but now, they do
not approach the respective opposite saddle first. As a result, in Panel
(b′), we see instead two simultaneous homoclinic orbits, one for each
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Figure 39: Bifurcation diagram around the codimension 2 point (I0, κ0(I0)) ≃
(0.0326,−0.0763) with parameters from [EK90]. The left panel shows numer-
ical results, the right one a schematic depiction to highlight distinct regimes.
Labels (a)-(c) and (a′)-(c′) mark regions in which the phase plots look like
in the corresponding panels in Figure 38. A dashed black line indicates the
THB of ∆s. The lower branch of the solid black line to its right indicates the
double-homoclinic bifurcation that yields “Chimera-like” states while the up-
per branch of this solid line indicates the double-heteroclinic bifurcation in
which periodic two-cluster states emerge. At the codimension 2 point (black
dot) all three bifurcations coincide. The solid line which branches off the point
to the top left indicates the transition between periodic two-cluster state and
“Chimera-like” state. The inset illustrates that the double-heteroclinic bifur-
cation and the THB are separate phenomena.

saddle. From these two simultaneous homoclinic bifurcations two peri-
odic orbits emerge in Panel (c′) in which one cluster spikes while the
other one stays close to (V s, ws) in state space, displaying only “sub-
threshold” oscillations. This in some loose sense (see the remarks in the
introduction) “Chimera-like” splitting into two populations with differ-
ent spiking properties constitutes a new type of dynamics that cannot
occur in ensembles of (generalized) Active Rotators. Its closest analogs
in the angular model would either consist of one cluster coordinate, say
ϕA, staying relatively still at one place on the circle while the other
cluster coordinate, say ϕB, periodically traverses the full circle or both
clusters performing “librations” on the circle where they do not tra-
verse the circle as a whole but stay in bounded subsets. Both behaviors
are forbidden for identical angular variables, as noted in Chapter 2.

Numerical results and a schematic depiction of the transition between
double-heteroclinic and double-homoclinic bifurcation are shown in the
left and right panel of Figure 39, respectively. Here, a dashed line de-
picts the THB of the synchronous fixed point ∆s while the solid black
line to its right depicts either the double-heteroclinic bifurcation (up-
per branch) or the double-homoclinic bifurcation (lower branch). The
inset shows that THB and double-heteroclinic bifurcation are indeed two
separate bifurcations, occurring for distinct sets of system parameters.
In the schematic diagram to the right, this distinction is highlighted
by separating the curves further. The labels (a)-(c) and (a′)-(c′) corre-
spond to the respective panels in Figure 38, where the corresponding
typical phase plots for each region are shown. To the left of the THB-
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Figure 40: Existence and stability of the splay state, symmetric periodic two-
cluster states, and broken-symmetry states for four Morris-Lecar neurons with
system parameters from [EK90] but with Ve = 0.2 and ν0 = 1/3. Region I:
no periodic solutions exist. Solid line: Periodic two-cluster states emerge
in a double-heteroclinic bifurcation and are unstable in Regions II and
III and stable otherwise. Dash-double-dotted line: THB of ∆s in which
a stable splay state emerges. Along the dashed line between Region III
and V, subcritical pitchforks of the two-cluster states occur in which broken-
symmetry states emerge and exist in Region V. Dash-dotted line: subcritical
pitchfork of the splay state and broken-symmetry states which renders the
splay state unstable in Region VI.

line, additional splay states exist for the full system. The transition
between double-heteroclinic and double-homoclinic bifurcation consti-
tutes a codimension 2 point at (I0, κ0(I0)) ≃ (0.0326,−0.0763) (black
dot) at which they coincide with the THB. From this point, another line
branches off to the upper left. Along this line, a homoclinic bifurcation
occurs in which the two “Chimera-like” periodic orbits from Panel (c′)
merge and form the orbit in Panel (c). Bifurcations of this kind were
discussed before, e. g., in [ZL84; ZL89].

We note that as for the two-cluster dynamics of (generalized) Active
Rotators that were discussed in Chapter 5, making the clusters slightly
unequal in size results in an unfolding of the process but does not
considerably change the resulting periodic orbits for the “Chimera-like”
states.

8.3 transfer of stability

As established above, varying the scaling of conductances in (8.1) ac-
cording to (8.3) bears some resemblance to varying the parameter ζ in
(7.25) for the generalized AR-model (2.6). Since we have to expect that
varying ζ in (8.3) generically avoids any point of (partial) integrability
(if such a point exists at all for the model) we expect a similar nonlocal
transfer of stability in ensembles of Morris-Lecar neurons as we ob-
served for Active Rotators in Chapter 7 by means of broken-symmetry
states. To compare our results, we again focus on the case of N = 4



170 coupled morris-lecar neurons

units. This also circumvents the computational problem of avoiding the
possibly many existing clustered solutions for larger N in our search
for pure splay states.

Defining a suitable domain in the coupling strength κ and scaling
parameter ζ is readily done. Since we found stable splay states and
unstable periodic two-cluster states for parameters from [EK90] and
unstable splay states and stable periodic two-cluster states for param-
eters from [Tsu+02], we want the model to be close to the former set
of parameters for ζ = 0 and close to the latter set of parameters for
ζ = 1. In our studies, it turned out to be sufficient to let κ vary between
κ = 0 and κ = −0.175 and scale ζ according to (8.3) to achieve this.
As mentioned above, we also need to adjust the applied current Iapp
according to (8.4). Since the parameter sets in [EK90] and [Tsu+02]
also differ significantly in Ve and somewhat in ν0, we further choose as
a compromise Ve = 0.2 and ν0 = 1/3 with the desired outcome that a
single neuron behaves qualitatively like the model in [EK90] for ζ = 0
and like the model in [Tsu+02] for ζ = 1. The results are shown in
Figure 40.

In Region I, no periodic orbits exist. At the left boundary (solid
line) of this region, periodic two-cluster states emerge in a double-
heteroclinic bifurcation which is unstable in Regions II and III and
stable in Regions IV, V, and VI.2 The dash-double-dotted line marks
the THB of ∆s. The splay state and broken-symmetry states exist only
to the left of this line and emerge in this bifurcation. The border be-
tween Regions III and V (dashed line) marks a subcritical pitchfork in
which the periodic two-cluster states are stabilized and unstable broken-
symmetry states emerge. Increasing ζ lets these states either vanish in
the THB or in a second subcritical pitchfork, this time with the splay
state which is stable in Regions III and V and is rendered unstable in
Region VI through the pitchfork.

The broken-symmetry states indeed feature the same characteristicCharacterizing
broken-symmetry states for
four Morris-Lecar neurons.

grouping of units as we have already observed for the Active Rotator
models. This is illustrated in Figure 41 where the ensemble splits in
two groups, say, A = {1, 2} (blue and red lines) and B = {3, 4} (green
and orange lines), such that we have (with N + 1 ≡ 1)

(Vj , wj)(t) = (Vj+1, wj+1)(t+ τ1) if j = 1, 3
(Vj , wj)(t) = (Vj+1, wj+1)(t+ τ2) if j = 2, 4

with τ1 < τ2 and τ1 + τ2 = T/2. Hence, the ensemble splits in two
groups of two units, each, where the inter-spike interval τ1 for two
units in the same group is smaller than the inter-spike interval τ2 for
two consecutive units from opposite groups, as for the Active Rotator
model.

2 Note that in the diagram, the Regions I, II, and IV seem to meet at ≃ (−0.025, 0.2).
This is in fact a graphical artifact from the finite resolution in κ and ϵ. As for the
Active Rotator model, numerical evidence suggests that Region II forms a increas-
ingly narrow band between Regions I and IV so that periodic two-cluster states are
always unstable sufficiently close to the double-heteroclinic bifurcation because they
inherit their (splitting) instability from the Σi.
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Figure 41: Exemplary voltage time series for a broken-symmetry state of four
Morris-Lecar neurons with period T ≃ 60.3 for parameters ζ = 0.6 and κ =
−0.152 in Figure 40.

To summarize, in contrast to Figure 30 of Chapter 7, this time we
have a regime (Region V) in which both, two-cluster states and the
splay state, are stable while in Regions III and VI, either the splay
state or the periodic two-cluster states are unstable. Comparing with
Figure 28, we see that the results match Panel (c) of that figure so that
the transfer of stability between splay and periodic two-cluster states is
indeed nonlocal and is qualitatively captured by the generalized Active
Rotator model.

8.4 conclusion

As for Active Rotators, (clustered) splay states and periodic two-cluster
states in ensembles of repulsively coupled Morris-Lecar neurons are
not the only possible periodic solutions. In fact, they are not even the
only potentially stable limit cycles. Variations again include imperfect
clustered splays where the clusters are of unequal size and thus the splay
nature is only approximate. Asymmetric periodic two-cluster states can
also be observed. This is not surprising, considering that both, splay
states and symmetric two-cluster states, are hyperbolic so that unequal
cluster sizes in a reduced description in terms of cluster coordinates can
be treated by considering weakly heterogeneous ensemble of units, as
for Active Rotators. However, the two-dimensional nature of the Morris-
Lecar model allows for additional states that are not compatible with
systems of one-dimensional units like the AR-models (2.5) and (2.6).
As mentioned in Section 8.2.2, one can observe periodic two-cluster
states in which one cluster spikes while the other one always stays
close to (V s, ws) in state space in subthreshould oscillations which in
the generalized AR-model would correspond to, e. g., a libration in which
the two clusters oscillate within two small segments of S1 rather than
traversing the entirety of S1. Such behavior is forbidden for ARs by
the gradient nature of (2.6). Another (stable) periodic state which we
did not mention here consists of two singletons, spiking in anti-phase
while the remainder of the ensemble forms a cluster which stays close
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to (V s, ws). In this case, the two spiking units act as “shepherds” that
keep the “flock” of the remaining N−2 units in place. Again, one could
call such solutions “Chimera-like” states in the broader sense of [ZP17]
since again, an ensemble of identical elements splits in two groups which
show qualitatively different behavior: The two “shepherds” spike while
the rest of the ensemble stays in a subthreshold regime in the lingo
of neuroscience. We note that we only observed such states for up to
an ensemble size of N = 10 units. The existence of such more exotic
periodic solutions illustrates the limitation of the angular models (2.5)
and (2.6) when it comes to classifying the plethora of possible periodic
states in ensembles of general class I excitable units. Studying such
more exotic (stable) periodic solutions in depth is beyond the scope of
this thesis where we focused on splay states and two-cluster states.

The main result of this chapter is the discussion of the local trans-
fer of stability for Morris-Lecar neurons between splay states and two-
cluster states with focus on the case of N = 4 units which closely
resembles the results for Active Rotators in Chapter 7. This remark-
able results implies that the generalized Active Rotator model (2.6)
with a controllable perturbation term as in (7.25) is able to serve at
least as a qualitative description of this transfer of stability for en-
sembles of higher-dimensional class I excitable elements. In particular,
splay states and periodic two-cluster states interchange (in)stability via
broken-symmetry states which, in the simplest case, emerge or vanish
in pitchfork bifurcations. At least for N = 4, these broken-symmetry
states look exactly like those for the angular model: the four units form
two groups of two units each so that inter-spike intervals between con-
secutively spiking neurons differ with respect to whether the two units
belong to the same cluster or not. This is reasonable since in order to
act as “mediators” between splays and two-cluster states, the broken-
symmetry states must vary continuously in their shape between these
two rather different types of solutions.

Finally, we note again that in this chapter, we only considered ensem-
bles of four units which was mostly due to the computational problem
of having to avoid clustered solutions in our search for pure splay states.
In any case, we assume that a more in-depth investigation of larger en-
sembles would be a worthwhile future endeavor, not least to look out
for broken-symmetry states and their role in the (de)stabilization of
splays and two-cluster states in these cases.

With this, we end our discussion of coupled Morris-Lecar neurons
and Part III of this thesis.



Part IV

C O N C L U S I O N

Every conclusion drawn from our observation is, as a rule,
premature, for behind the phenomena which we see clearly
are other phenomena that we see indistinctly, and perhaps
behind these latter, yet others which we do not see at all.

— Gustave Le Bon [LeB60]





9
C O N C L U S I O N

Synchronization phenomena and, in general, complex collective dynam- Hic et ubique.
ics of oscillatory systems are so ubiquitous in nature [Buc38; Wal69;
Ric+96; Yan+14] and technology [WS94; Str+05; FNP08] that their
study has become its own field within the general theory of nonlinear
dynamics [PRK03] and neuroscience [Izh10; HI12]. However, not every
element that can potentially display periodic activity is necessarily do-
ing so by itself but often has to receive a certain stimulus to switch
from a state of rest to a state of (periodic) activity. Arguably the prime
example for such an occurrence are neurons, which generally only pro-
duce some kind of nervous signal, if sufficiently stimulated; a property
known in the field as excitability.

The main objective of this thesis was the study of the collective dy-
namics of identical class I excitable elements. Class I excitability of
neurons translates to them being close to a Saddle-Node Bifurcation
on an Invariant Circle (SNIC) as a dynamical system [Izh10]. Uncou-
pled, such elements give rise to a stable synchronous state of rest and,
while attractive coupling between them tends to simply further increase
the stability of this state of rest, nontrivial dynamics can only be ex-
pected if at least some of the units are coupled sufficiently repulsively,
resulting in a destabilization of the synchronous fixed point [TZT08;
DKN13; TZ14; ZT16]. In order to investigate the emerging dynamics
for excitable elements, we focused in Parts I and II of this thesis on
ensembles of Active Rotators which can be regarded in some sense as a
dimensionally reduced description of more complex higher-dimensional
excitable units, restricting attention to the dynamics on the invariant
circle of the single class I excitable element. More precisely, they serve
as a local model in the sense of [HI12] for higher-dimensional units.

The classic Active Rotator model, introduced by Shinomoto and Ku-
ramoto in [SK86b] as a toy model for collective activity in, e. g., ex-
citable media, in its simplest form (i. e., identical elements with no
noise) falls into the class of Watanabe-Strogatz integrable systems. For
this reason, its dynamics is highly degenerate and so cannot serve as
an accurate description for the collective dynamics of general excitable
elements. The question thus arises what we can learn from the classic
model about systems that might be close to being WS-integrable and
thus might be accessible to perturbation methods, applied to the model
from Shinomoto and Kuramoto. For this, we focused on the case of on-
site perturbations, in other words, perturbations that generalize the
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single Active Rotator from obeying the Adler equation to cases that
involve higher order Fourier modes in the dynamics of each Rotator.

Anticipating one of our main results, we showed rigorously for all
WS-integrable systems where the involved common fields are functions
of the Kuramoto order parameter, under which conditions they do not
just give rise to a continuous family of periodic orbits but that the
union of these orbits is equipped with the additional geometric struc-
ture of a Normally Attracting Invariant Manifold (NAIM). While this
result may at first seem to be only of purely mathematical interest,
its consequences are far-reaching. NAIMs are robust under sufficiently
small perturbations and so persist if we, e. g., introduce higher Fourier
modes in the on-site dynamics, i. e., if we generalize the notion of the
Active Rotator to account for more complicated angular dynamics of
each individual element. Since in particular, such terms make the full
system nonintegrable, the manifold is indeed not just an artifact of WS-
integrability but a general feature of such systems and in particular,
for ensembles of generalized Active Rotators.

Adding higher order Fourier modes to the on-site dynamics of theDifferent coupling terms.
classic model is only one way to generalize it. Other maybe more pop-
ular generalizations involve changes in the coupling term, see [EK09;
LZL12; Lai18; FOW21] and one might argue that these scenarios are
more relevant for practical purposes: At least for coupled oscillators and
weak coupling, there always exists a local model in terms of phase os-
cillators so that, with qualifications, one can restrict one’s attention to
this case and focus on the effects of different coupling terms which may
mimic, e. g., the synaptic coupling between neurons, a coupling that
works considerably different from the arguably simplistic sinusoidal
coupling term that we were dealing with. However, the existence of
the NAIM is not restricted to the special case of Active Rotator mod-
els under sinusoidal coupling that we studied. Since NAIMs are robust
under any small perturbation, introducing such perturbations in the
coupling term still results in the persistence of this manifold. Adding,
e. g., higher order Fourier modes to the sinusoidal coupling term is
thus not fundamentally different from perturbing the on-site dynam-
ics as long as the amplitudes of these modes are sufficiently small. We
therefore expect no fundamentally different outcome for such systems
of more complicated coupling terms. In particular, our results on the
existence of splay states hold in general because their proofs did not
rely on the fact that the perturbation term is on-site.

In order to develop suitable methods to investigate systems of gener-WS-variables.
alized Active Rotators that are close to being WS-integrable, we started
in Chapter 4 by establishing a set of coordinates on the ordered torus
(to which we could without loss of generality restrict our attention for
the case at hand of identical elements) in terms of Möbius group pa-
rameters and cross-ratios. This was done by proving the existence of a
diffeomorphism between that ordered torus and the product space, de-
fined by the ranges of the respective group parameters and cross-ratios.
A common approach to apply WS-theory is based on embedding the
phase space TN in a higher-dimensional product space D × S1 × TN
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with variables (α,ψ, θ1, . . . , θN ) where θj = const. for all j = 1, . . . , N .
This introduces three additional degrees of freedom in the description
of a given system which has to be accounted for by a suitable choice of,
e. g., initial conditions for the WS-equations [WS94]. On the other hand,
we chose an approach which establishes a unique correspondence be-
tween angular variables on the one hand and WS-variables on the other.
In particular, by doing so, we did not have to deal with the “gauge”
freedom that is present for the usual approach. Describing arbitrary
systems of coupled ODEs for angular variables in terms of WS-variables
is than easily done by virtue of the found diffeomorphism which is at
least not as straight forward for the common embedding approach.

Since in particular for large ensembles of coupled Rotators, one has Splays and two-cluster
states as prominent
periodic solutions.

to expect an abundance of possible periodic solutions, it is a necessity
to choose a sensible subset of periodic orbits to focus on which should
be distinct enough in order to cover a wide range of possible asymptotic
dynamics for the system at hand. Numerical experiments reveal that
two types of periodic solutions play a prominent role as possible stable
limit cycles for ensembles of identical Active Rotators: periodic two-
cluster states and (clustered) splay states.

Periodic two-cluster states, although themselves clustered splay states, Periodic two-cluster states.
stand out from other clustered splays (i. e., those that are composed
of at least three clusters) since their dynamics can generally not be
captured through WS-theory. In Chapter 5, we therefore studied such
solutions from a more heuristic point of view in the setting for general-
ized Active Rotators. We discussed the two basic bifurcation scenarios
that yield periodic two-cluster solutions in a reduced description of
cluster coordinates. We found that they emerge either through two het-
eroclinic bifurcations or two SNICs, which occur simultaneously in the
case of symmetric solutions where both clusters are of equal size, and
in consecutive order in the case of asymmetric states. An important re-
sult is that periodic two-cluster states do not emerge in the THB of the
synchronous state of rest while how they emerge is still related to this
fixed point bifurcation. In particular, for the symmetric case, the bifur-
cation of the synchronous fixed point is accompanied by either a sub-
or supercritical pitchfork bifurcation that also includes two two-cluster
saddles. We also gave a criterion for the criticality of this bifurcation.
Even though criticality of the pitchfork does not immediately determine
whether periodic two-cluster states are born in double-heteroclinic bi-
furcations or double-SNICs, it can be used to rule out the latter.

We then showed that for general WS-integrable systems of identical
elements, symmetric two-cluster states must be neutrally stable with re-
spect to splitting perturbations while asymmetric two-cluster states are
always composed of one stable and one unstable cluster. This statement,
which is closely related to a similar finding for ensembles of Kuramoto
oscillators under common noise [Gon+19], supports observations from
numerical experiments that symmetric two-cluster states are part of
the aforementioned continuous family of periodic orbits if that family
exist. Surprisingly enough though, these solutions can exist and are
then neutrally stable even when no such family of orbits is present.
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On the other hand, the family of orbits may also exist without the
presence of the periodic two-cluster states. In this case, the two-cluster
states are replaced by a heteroclinic cycle. As another result, we could
conclude that the exponential stability of symmetric two-cluster states
against splitting perturbations for ensembles of generalized Active Ro-
tators directly depends on the choice of higher order Fourier modes
in their on-site dynamics which goes along with a generic change of
stability if the signs of these higher order terms change. On the other
hand, for asymmetric two-cluster states, we described how the regimes
of stability for these states in parameter space are nested in each other
so that particularly, in order for a given periodic two-cluster state of
fixed cluster size ratio, coupling must be chosen sufficiently repulsive
in order to stabilize the state.

The second prominent possible type of attractor for ensembles ofThe splay state and the
continuum. (generalized) Active Rotators is the (clustered) splay state and its im-

perfect1 variations. Previous numerical evidence suggested that this
periodic solutions for the WS-integrable case emerges when the syn-
chronous state of rest ceases to be asymptotically stable and that it is
just one solution in a whole continuum of orbits [ZT16]. We thus con-
ducted an exhaustive investigation of this continuum in Chapter 6 by
means of the tools, introduced and developed in Chapter 3 and Chap-
ter 4. For this, we studied the above-mentioned class of WS-integrable
systems for which the common fields in the equations of motion only
depend on the Kuramoto order parameter. We were then able to show
rigorously that under certain simple conditions, systems of this type
possess a continuous family of periodic orbits and moreover, that the
union of these orbits is equipped with the desired NAIM-structure. For
this, we first showed that the order parameter can be approximated
by one of the Möbius group parameters in C1-norm on those level sets
that lie close to the level set of uniform distributions. Using this ap-
proximation, studying the continuum can be drastically simplified by
truncating higher order terms in the equations of motion, effectively
reducing the problem of finding periodic orbits to determining stable
fixed point in one of the truncated equations. For this truncated system,
we could then show directly that the found periodic orbits form a NAIM.
Using the persistence theorem for NAIMs then guarantees the existence
of the continuum and subsequently normal hyperbolicity of its union
also for the full system. Using a result from the theory of equivariance
of ODEs under finite group actions, it could then be shown, that the
periodic solution in the level set of uniform distributions must be a
splay state. Since the classic Shinomoto-Kuramoto model falls in the
studied class of WS-integrable systems, existence and normal hyperbol-
icity for this model become a simple application of the results above.
In particular, we could prove that for the classic model, the contin-
uum indeed emerges exactly when the synchronous fixed point of the
system becomes unstable so that the transcritical bifurcation of the
synchronous state of rest is indeed also homoclinic in nature, validat-

1 I. e., variations where the individual clusters differ in size.
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ing the observations from [ZT16]. As an additional result, it follows
that a similar family of periodic orbits emerges for attractive coupling
but that this family is normally repelling and thus unstable. Applying
the same results to the case where the Shinomoto-Kuramoto elements
become oscillating on their own further reveals the existence of yet
another family of orbits with the same normal hyperbolicity property
which remarkably changes stability when the coupling constant changes
its sign but otherwise exists for all coupling strengths. We note that
the occurrence of splay states in WS-integrable systems has been shown
before for different setups [AGM91; Mir94].

Introducing higher order Fourier modes in Chapter 7, we could make Handling perturbations
with the averaging
principle.

use of the normal hyperbolicity of the continuum to develop a frame-
work for determining which orbits of the continuum become robust for
a given perturbation of the WS-integrable model by means of averaging
theory. As already mentioned, we focused on perturbations that leave
the units of the ensemble identical and perturb them in their on-site
dynamics, even though this is not a necessary condition for applying
averaging methods in general. For this, we could build on the results
of the preceding chapter by restricting attention to the dynamics on
the NAIM. While the periodic orbits that composed this NAIM in the
WS-integrable case are neutrally stable and are therefore not readily ro-
bust, the manifold itself is, so that it makes sense to study the dynamics
on it even when the system becomes nonintegrable. Then, for all initial
states sufficiently close by, the corresponding trajectories will essentially
travel along this manifold after a short initial episode of exponentially
fast convergence to it. The objective is then to determine which orbits
“survive” the introduction of perturbation terms. To achieve this, we
used a classic result from averaging theory which allows to compute,
based on the degenerate dynamics of the integrable model, the time-
averaged dynamics of the now slowly varying cross-ratios for any initial
state on the NAIM. Determining the averaged vector field is done by in-
tegrating the projection of the perturbation normal to the level sets of
constant cross-ratios along a given orbit of the continuum. If the inte-
gral vanishes, there exists (with qualifications) a corresponding orbit
with cross-ratios close to those of the orbit over which was averaged.
This orbit for the perturbed vector field can then be viewed as the ro-
bust survivor of the continuum in the new perturbed system. We stress
again that this approach relies heavily on the fact that the continuum
in the WS-case forms a NAIM. If this was not the case, the introduction
of perturbations might very well leave no remnants of the continuum
behind to which restricting the dynamics and averaging would make
sense. We also stress that the criterion only works if the found fixed
point of the averaged dynamics is hyperbolic. Whether this is the case
depends on the specific setup but we conjecture that it is the case for
generic systems and on-site perturbation functions h.

Assuming that the conjecture above holds, we proceeded by showing Robust splay states.
that the splay state, which always exists for the investigated class of
systems (cf. [Mir94] for a related result on the existence of splay states),
persists for smooth h. Hence, splay states are in particular general
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features in ensembles of identical generalized Active Rotators. Their
stability directly depends on the form of h. This also implies that such
states generally change their stability if the sign of the perturbation
parameter changes which is corroborated by numerical results on the
stability of splay states. However, in contrast to two-cluster states, the
stability of splay states also depends on the size of the ensemble. While
we saw for four Rotators that splay states can be made asymptotically
stable by changing the sign of the perturbation parameter ϵ, the picture
becomes more complicated for larger ensembles. Remarkably, we couldBroken-symmetry states.
observe how for even ensemble sizes, the stabilization or destabilization
of splay states involves what we call broken-symmetry states which
are generally hybrids between splay states and clustered splay states
and are essentially what is known as generalized splay states in the
literature in disguise [Ber+21]. Even though for systems of just four
Active Rotators, broken-symmetry states can be asymptotically stable,
they suffer from the same problem as splay states for larger ensembles:
Their Floquet multipliers are not degenerate and thus, their stability
depends explicitly on the ensemble size. Nevertheless, they stand out
from the rest of the continuum by their spatio-temporal symmetry as
a third vital class of periodic solutions, on par with the splay state and
periodic two-cluster states.

Another consequence2 from the averaging principle is that one canControlling orbits and the
transfer of stability between

splay states and
two-cluster states.

always control a given periodic orbit (i. e., make it hyperbolic and thus
robust) by choosing a suitable perturbation term. While making the
orbit hyperbolic is easily done, it stands to question whether one can
choose h to also make it exponentially stable. Although this seems rea-
sonable, given the fact that we have an infinite-dimensional space of
possible perturbation terms from which we only need to choose a finite
linear combination in order to do the trick, this is by far not a trivial
statement and remains an open problem. In any case, this is not just
a gimmick without practical implications. We made excessive use of
it in our subsequent study of four Active Rotators because it allows
to “unfold” the “nonlocal transfer of stability” between the splay state
and the periodic two-cluster states that is present in the classic Active
Rotator model. Studying this unfolded general interplay that now in-
volves the splay state, broken-symmetry states, and two-cluster states
did not just serve as a proof of concept for the averaging method (which
is in good agreement with the numerical results) but also illuminates
how general systems of repulsively coupled class I excitable elements
interact.

We already noticed that continuous families of periodic solutionsFamilies of periodic orbits
and clustering in other

settings.
are a common occurrence in WS-integrable systems since continuously
varying cross-ratios lets one not just move continuously through the
invariant level sets of the cross-ratio function but also varies the vector
field from level set to level set. Remarkably enough, families of neu-
trally stable periodic solutions have been observed and investigated for
systems of random Janus oscillator networks [Per+20] which features

2 Again assuming the conjecture on generic hyperbolicity.
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what the authors therein call “breathing standing wave solutions”. One
major difference in their work is that the single units of the ensem-
ble are distinguishable so that the system cannot be described within
the Watanabe-Strogatz framework but instead with the Ott-Antonsen
ansatz. This remarkable result illustrates that families of periodic so-
lutions are not just a phenomenon in WS-theory. However, the nature
of the periodic solutions in [Per+20] is of a rather different kind since
they occur as solutions to equations that describe the system’s order
parameter rather than the single angular variables so that it is not
clear whether, e. g., the method of averaging could be used in order to
investigate random networks of Janus oscillator.

Clustering in ensembles of phase oscillators is a common phenomenon
in numerous setups and with various types of coupling , cf. [HMM93;
Oku93; Ash+07; LY12], to name a few and is, e. g., necessary for the
existence of Chimera states [SK15]. However, a crucial difference be-
tween Kuramoto-type phase oscillators and Active Rotators lies in the
fact that the former show homogeneous evolution in S1 while for the
latter, the angular velocity ϕ̇ is intrinsically coordinate-dependent. As
a result, in case of global coupling, the symmetry of the ensemble of
identical phase oscillators is higher than that of ensembles of identical
ARs. While both systems are equivariant under permutations, the dy-
namics of the former is additionally invariant with respect to shifts of
all angles by an arbitrary constant, while the latter model lacks this
equivariance. This might explain why we did not observe persistent
heteroclinic networks (apart from those in the two-cluster subspace)
in our numerical studies, while they are characteristic for angular os-
cillators with higher-order Fourier terms [HMM93; Ash+07; ABM08].
Instead, as demonstrated in Chapter 5 and Chapter 7, introducing such
terms leads to the birth of collective oscillations via the formation of
structurally unstable hetero- or homoclinic connections. The splitting
stability of the resulting periodic states is directly linked to these higher
order terms.

A word of caution is at hand about the limitation of our results, so Limitations.
far. Another common generalization of the classic identical Active Ro-
tator model (which was already studied by Shinomoto and Kuramoto)
is to consider heterogeneous ensembles, i. e., ensembles of nonidentical
elements. There exist results on weakly heterogeneous perturbations
to WS-integrable systems [PR08; PR11; VRP16] not to mention the
Ott-Antonsen ansatz as an alternative approach to handle heteroge-
neous ensembles of angular variables [OA08; Gol+18; Gol19; Tyu+18;
Tyu+19]. We, on the other hand, are to some extent confined to study-
ing perturbations that leave the units identical. If the ensemble becomes
heterogeneous, the dynamics is generally not any longer confined to the
ordered torus. But this ordered torus is crucial to establishing the WS-
variables as equivalent coordinates to the angular coordinates in which
the dynamics are usually written. While the NAIM should still persist
locally even when the units become distinguishable, it becomes in this
case important to know how far the NAIM extends in the phase space
and what can be said about its boundary and at least for N = 4 units,
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we saw that multiple copies of M can be joined along clustered periodic
orbits such that the global NAIM intersects itself. How the manifold in
the ordered torus and its various copies in the other subspaces of fixed
cyclic order are connected along their boundaries for general N is yet
not fully understood. In any case, we believe that looking for NAIMs and
applying the averaging principle could also be important techniques for
the study of (weakly) nonidentical Active Rotators because in this case,
any state with initial condition in the ordered torus should at least for
some amount of time stay there.

Another question that we did not address in this work is what hap-Noise.
pens to the continuum if we consider noisy systems. Noise affects the
continuum since the cross-ratios are no longer conserved quantities and
hence, the system jumps between the Cλ = M ∩ Lλ(Λ). However, at
least as long as the noise is not too strong, it should not dramatically
effect the dynamics on the NAIM for short times: For the classic model,
instead of being restricted to one of the infinitely many orbits of the
manifold, the state of the system will randomly move between level sets
and thus orbits. But since the vector field changes only slightly between
neighboring level sets, the dynamics will look rather similar. Only over
long times should a considerable change in the dynamics of the state be
noticeable. For the generalized model, and again under weak noise, the
splay state and periodic two-cluster state stay potential attractors as
hyperbolic orbits in which case weak noise will lead to random fluctu-
ations of the state around these orbits. Both, the case of nonidentical
elements and that of noisy systems, pose limitations with respect to
observing the continuum and NAIM in experimental setups. Already
the original work by Watanabe and Strogatz on Josephson junctions
dealt with the highly idealized model of identical junctions in the over-
damped limit. Since one has to expect both, noise and heterogeneity, in
practice, it is not clear in what respect the degenerate dynamics that
were discussed here can be observed in experiments. For this, a more
general approach is necessary that also incorporates, e. g., the results
from [VRP16].

Phase oscillators emerge in the study of coupled general oscillatorsThe connection between
Active Rotators and

Morris-Lecar neurons.
via phase reduction under the assumption of weak coupling between
units. Since class I excitable elements are characterized by the existence
of an invariant circle, the (generalized) Active Rotator model suggests
itself as a similar reduction for such elements by restricting attention
to the dynamics on the invariant circle, i. e., it serves as a local model
for higher-dimensional excitable systems. Of course, any ensemble of
general higher-dimensional class I excitable units will be far from being
WS-integrable but on the other hand, the results from Chapter 7 (in
particular on the transfer of stability) suggest that the found dynamics
are robust features of ensembles of Active Rotators even for fairly large
perturbations away from the integrable case so that it is reasonable to
expect compatible dynamics in higher-dimensional systems. To further
investigate the general dynamics of excitable elements, in Part III of
this thesis, we studied ensembles of Morris-Lecar neurons, repulsively
coupled via their mutual membrane voltage differences. Even though



conclusion 183

this membrane coupling is not an exact equivalent of the repulsive
coupling between ARs because it acts only in the voltage variable, this
setup looks sufficiently similar to the angular model to test how our
results from Part II generalize to somewhat more realistic models.3

Indeed, regarding periodic two-cluster states, we found that these
solutions emerge in double-heteroclinic bifurcations that we already
observed for the angular model. As mentioned before, this is not sur-
prising given that these clustered solutions can be written in terms of
cluster coordinates such that we are effectively dealing with two coupled
excitable elements for which it was rigorously shown before that double-
heteroclinic bifurcations yield periodic solutions under weak coupling
if both neurons are close to their respective SNIC [BM13]. While we
did not observe any double-SNICs, this can be explained by the fact
that the occurring pitchfork bifurcations of two-cluster saddles and the
synchronous fixed point were always subcritical so that SNICs simply
cannot occur. Whether the pitchforks can be made supercritical so
that one might observe a double-SNIC is hard to say. The dynamics
of a single Morris-Lecar neuron depends intimately on a plethora of
parameters so that it is an art to tune these parameters to yield the
desired behavior [Tsu+06]. On the other hand, we observed, again for
a minimal example of four units to avoid clustering in the numerical ex-
periments, splay states which emerge in a THB of the synchronous state
of rest. Moreover, we observed a local transfer of stability between peri-
odic two-cluster states and splay states by means of broken-symmetry
states, akin to what we found in Chapter 7 for Active Rotators. This
finding is in so far remarkable as that it indicates that such transfers
are indeed general features and not artifacts of the nature of the Ac-
tive Rotator model.4 It is therefore not far fetched to conjecture that
broken-symmetry states equally exist for larger even numbered ensem-
bles of Morris-Lecar neurons, just as we observed them for the Active
Rotator model.

In our proof for the existence of the NAIM, we made use of the fact Generalizations and
outlook.that the Kuramoto order parameter can under certain conditions be

approximated by one of the group parameters of the group of Möbius
transformations. The order parameter naturally occurs for systems of
coupled Active Rotators due to the first order sinusoidal coupling term.
However, since the effects of higher order coupling terms in oscillatory
systems are an ongoing subject of interest from a theoretical [Dai92;
SOR11; GP19; Li+19; XS21] as well as from an experimental perspec-
tive [KZH05; Gol+11; Gol+13], it might be worthwhile to further in-
vestigate the implications of more complicated types of coupling than
the purely sinusoidal one beyond our perturbative results. We note that
splay states and corresponding continua of periodic orbits have for ex-

3 We stress that the voltage-coupled Morris-Lecar neurons are still by far not a realistic
model for actual neural networks because this is not how neurons are connected in
reality. However, at least to some extend it might be considered more realistic than
the AR-model by virtue of the fact that the Morris-Lecar neuron is modeled after
some types of real neurons.

4 They are, however, the direct result of dealing with identical elements.
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ample been observed and investigated in ensembles of pulse-coupled
theta neurons, which are equivalent to Active Rotators [Lai18]. This
finding can be understood in terms of the WS-framework, since this
system is also WS-integrable. It has also been shown that integrability
can under certain circumstances (e. g., pure higher order harmonic cou-
pling, see [GP19]) be extended to systems that involve different types
of coupling than the simple sinusoidal one. One might thus ask what
happens if we consider systems for which the common fields in the
equations of motion depend on the higher order generalizations of the
Kuramoto parameter, known as Kuramoto-Daido parameters. Whether
the arguments, presented here, also work for these more general cases is
a matter of future research so that for now we can only speculate: Most
of the methods and arguments that we presented in this work are fairly
general and should work in different settings, as well. In particular, the
averaging method should be readily applicable because it does not actu-
ally depend on the specific type of dynamics of the system. As longs as
there exists a NAIM of periodic orbits, the averaging principle could be
applied fruitfully to the dynamics on that manifold. The problem then
really lies in whether one can show that the continuous family of peri-
odic orbits for WS-integrable systems yields a NAIM in the first place.
Here, our argument depended heavily on the approximation, mentioned
above. Whether a similar approximation holds for general Kuramoto-
Daido parameters is an intriguing question for future work. Even bolder
would be the ambition to investigate under which conditions the contin-
uous families of periodic orbits, which are a common occurrence within
the context of WS-integrability, are equipped with the structure of a
normally hyperbolic or even attracting invariant manifold. Whenever
this is the case, perturbing the equations of motion could in general be
dealt with by investigating the dynamics on that manifold, for example
by means of the averaging principle.

Finally, it is also tantalizing to speculate whether or not such a man-
ifold is present for models like the coupled Morris-Lecar neurons. But
this model is far from being integrable so to assume the existence of
such a structure for this model is bold, to say the least. If it does
not exist, it means that the NAIM for the case of ARs is not really
essential to understand the dynamics of repulsively coupled class I ex-
citable units, however useful it is for the systematic study of coupled
Active Rotators. On the other hand, there, the NAIM emerged together
with the splay state in the transcritical homoclinic bifurcation of the
synchronous state of rest just as the splay state for the Morris-Lecar
neurons emerged in a THB. The question is then how exactly the net-
work of homoclinic orbits at this bifurcation and the NAIM are related.
If one could figure out what made the THB for coupled Active Rotators
in that respect so special, one might also hold the answer to whether or
not a NAIM exists for more complicated systems of repulsively coupled
excitable elements.



Part V

A P P E N D I X

Do not worry about your difficulties in Mathematics. I can
assure you mine are still greater.

— Albert Einstein [Ein43]





A
T H E M Ö B I U S G RO U P

In this appendix, we discuss the group properties of the Möbius group
G. Recall that a group (G, ◦) consists of a set G and a group operation
◦ : G × G → G such that (i) there exists an identity element e ∈ G
with e ◦ g = g ◦ e = g for all g ∈ G, (ii), for each g ∈ G, there exists an
inverse element g−1 such that g ◦ g−1 = g−1 ◦ g = e, and (iii) the group
operation is associative, i. e., f ◦ (g ◦ h) = (f ◦ g) ◦ h for all f, g, h ∈ G.
When there is no ambiguity with respect to what the group operation
looks like, we also write G instead of (G, ◦) to denote the group.

For the definition of (real and complex) Lie groups and the fact that
G is a Lie group, we refer to [Hal15] and [Ols10], respectively.

the group operation in G We start by writing down an ex-
plicit formula for the group operation in terms of the group parameters
α and ψ of G. Recall the definition (4.2) of a Möbius transformation

Gα,ψ(w) := α+ eiψw
1 + ᾱeiψw (4.2)

with α ∈ D and ψ ∈ S1 for every w ∈ ∂D. From this, we demand for
every two Möbius maps Gα,ψ and Gα′,ψ′ that the composition Gα,ψ ◦
Gα′,ψ′ can be equally written as Gα′′,ψ′′ for some α′′ ∈ D and ψ′′ ∈ S1.
We compute

Gα,ψ ◦Gα′,ψ′(w) = Gα,ψ

(︄
α′ + eiψ′

w

1 + ᾱ′eiψ′w

)︄

=
α+ eiψ α′+eiψ′

w
1+ᾱ′eiψ′w

1 + ᾱeiψ α′+eiψ′w
1+ᾱ′eiψ′w

= α(1 + ᾱ′eiψ′
w) + eiψ(α′ + eiψ′

w)
1 + ᾱ′eiψ′w + ᾱeiψ(α′ + eiψ′w)

= α+ eiψα′ + (αᾱ′eiψ′ + eiψeiψ′)w
1 + ᾱeiψα′ + (ᾱ′eiψ′ + ᾱeiψeiψ′)w

=
α+eiψα′

1+ᾱeiψα′ + 1+αe−iψᾱ′

1+ᾱeiψα′ eiψeiψ′
w

1 + ᾱ+e−iψᾱ′

1+αe−iψᾱ′
1+αe−iψᾱ′

1+ᾱeiψα′ eiψeiψ′w

!= Gα′′,ψ′′(w).
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Extending the domain of Gα,ψ from ∂D to C, we set

α′′ = Gα,ψ(α′) and eiψ′′ = 1 + αe−iψᾱ′

1 + ᾱeiψα′ eiψeiψ′
. (A.1)

Next, we need to verify that ψ′′ ∈ S1 and α′′ ∈ D. We find

|eiψ′′ |2 = 1 + αe−iψᾱ′

1 + ᾱeiψα′
1 + ᾱeiψα′

1 + αe−iψᾱ′ = 1

and

|α′′|2 = α+ eiψα′

1 + ᾱeiψα′
ᾱ+ e−iψᾱ′

1 +αe−iψᾱ′ = |α|2 + |α′|2 +αe−iψᾱ′ + ᾱeiψα′

1 + |α|2|α′|2 +αe−iψᾱ′ + ᾱeiψα′ < 1

because of

|α|2 + |α′|2 < 1 + |α|2|α′|2

⇔ |α′|2(1 − |α|2) < 1 − |α|2

⇔ |α′|2 < 1.

Hence, the composition rules (A.1) are well-defined.

group properties of G Next, we check the group properties,
i. e., we confirm the existence of the identity element, inverse elements,
and the associative property of the group operation. The first two can
be readily derived from the definition of Gα,ψ and the composition rule
(A.1). For this, we note first that Gα,ψ = Gα,1 ◦G0,ψ for which we find
G−1
α,1 = G−α,1 and G−1

0,ψ = G0,−ψ. Hence, with the neutral element e
being the identity map id : w ↦→ w, we have

e = id = G0,0

G−1
α,ψ = (Gα,1 ◦G0,ψ)−1 = G−1

0,ψ ◦G−1
α,1 = G0,−ψ ◦G−α,1.

Thus, we have

e(w) = w

G−1
α,ψ(w) = e−iψ−α+ w

1 − ᾱw
.

The associative property follows immediately from the associative prop-
erty for compositions of functions.



B
T H E T R A N S C R I T I C A L H O M O C L I N I C
B I F U RC AT I O N O F ∆ s

In this appendix, we derive implicit expressions in the system param-
eters ω, ϵ, and κ0 for the THB of the synchronous fixed point ∆s to
study the dependence of κ0 on ω and ϵ. At ∆s, we have ϕj = ϕk
and ϕ̇j = 0 for all j, k ∈ {1, . . . , N} and the Jacobian of the vector
field in (2.4) is highly degenerate. It possesses one simple eigenvalue
λ1 = f ′(ϕs) < 0 which is just the eigenvalue for an isolated Active
Rotator at its stable fixed point and is thus non-splitting, and a second
eigenvalue λ2 = f ′(ϕs) − κ g′(0) of multiplicity (N − 1) which corre-
sponds to splitting perturbations. The condition for the occurrence of
the THB is therefore λ2 = 0.

Focusing on the generalized AR-model (2.6), to derive implicit ex-
pressions that interrelate the system parameters at the THB, we start
by writing down the two resulting equations for ϕ̇j = 0 and λ2 = 0

0 = ω − sinϕ+ ϵ h(ϕ) (B.1a)
0 = − cosϕ+ ϵ h′(ϕ) − κ0 (B.1b)

in polynomial form by use of the Weierstraß (tangent half-angle) sub-
stitution

q ≡ tan ϕ2 , sinϕ = 2q
1 + q2 , cosϕ = 1 − q2

1 + q2 .

To eliminate q in the resulting polynomial expressions for (B.1), we then
compute the resultant [GKZ94], with help of Mathematica 12.1.1.0. We
start with the perturbation h(ϕ) = sin 2ϕ in (5.1a).

second sine mode perturbation (5.1a) Our considerations
above yield for the system ϕ̇j = ω−sinϕj +ϵ sin 2ϕj + κ

N

∑︁N
k=1 sin(ϕk−

ϕj) with the perturbation function (5.1a) the two defining equations

0 = ω − sinϕs + ϵ sin 2ϕs

0 = − cosϕs + 2ϵ cos 2ϕs − κ0.

Employing the Weierstraß transformations then results, after multiply-
ing with (1 + q2)2, in the two polynomial equations

0 = ω(1 + q2)2 − 2q(1 + q2) + 4ϵq(1 − q2) (B.2a)

0 = (1 − q4) − 2ϵ
(︂
(1 − q2)2 − (2q)2

)︂
+ κ0(1 + q2)2. (B.2b)
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Computing the resultant of the right hand sides of these equations and
eliminating nonzero prefactors yields

0 = − 1 + 12ϵ2 − 48ϵ4 + 64ϵ6 + κ2
0 + 4ϵ2κ2

0−
− 32ϵ4κ2

0 − 4ϵκ3
0 + 4ϵ2κ4

0 + ω2 − 80ϵ2ω2−
− 128ϵ4ω2 + 32ϵ2ω2κ2

0 + 64ϵ2ω4
(5.5)

which is the desired expression for the THB that we use in Chapter 5
and Chapter 7.

Equation (5.5) cannot be solved explicitly for κ0. However, it allows
for a series expansion of κ0 in powers of ϵ. Inserting the formal power
series κ0 =

∑︁∞
n=0 anϵ

n with unknown coefficients an, and collecting
powers of ϵ yields

0 =
[︂
a2

0 + ω2 − 1
]︂

+
[︂
2a0a1 − 4a3

0

]︂
ϵ+

[︂
4a4

0 + 32ω2a2
0 − 12a1a

2
0+

+ 4a2
0 + 2a2a0 + 64ω4 + a2

1 − 80ω2 + 12
]︂
ϵ2 + O

(︁
ϵ3
)︁

which can be solved successively for the an since each prefactor of ϵmust
vanish. For a0, we find two possible solutions a0 = ±

√
1 − ω2. This is

due to the fact that (B.1a) and subsequently (5.5) do not discriminate
between the fixed points ∆s and ∆u. Since we are exclusively interested
in the bifurcation of ∆s, we dismiss the positive solution corresponding
to the bifurcation of ∆u and thus find a0 = −

√
1 − ω2. The remaining

coefficients can than be computed consecutively so that we arrive at
the unique expansion

κ0 = −
√︁

1 − ω2 + 2(1 − ω2)ϵ+ 2ω2 4ω2 − 5√
1 − ω2

ϵ2 + O(ϵ3). (5.6)

generic perturbation (5.1b) Applying the same procedure
as above to the perturbation function

h(ϕ) = 1
sinϕ− 2 + 1√

3
+
(︃ 4√

3
− 2

)︃
sinϕ (5.1b)

leads to the trigonometric expressions

0 = ω − sinϕs + ϵ

(︄
1

sinϕs − 2 + 1√
3

+ 4 − 2
√

3√
3

sinϕs
)︄

0 = cosϕs
(︃

1 + ϵ

(︃ 1
(sinϕs − 2)2 − 4√

3
+ 2

)︃)︃
+ κ0.
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These expressions can again be brought into purely polynomial form

0 =
[︂

− (3 − 2
√

3) − (24 − 14
√

3)q + (18 − 12
√

3)q2−

− (24 − 14
√

3)q3 − (3 − 2
√

3)q4
]︂
ϵ−

− 12
[︁
q − q2 + q3]︁+ 6

[︁
1 − q + 2q2 − q3 + q4]︁ω

0 =
[︂

− (27 − 16
√

3) + (48 − 32
√

3)q − (51 − 32
√

3)q2+

+ (51 − 32
√

3)q4 − (48 − 32
√

3)q5 + (27 − 16
√

3)q6
]︂
ϵ−

− 12
[︁
1 − 2q + 2q2 − 2q4 + 2q5 − q6]︁−

− 12
[︁
1 − 2t+ 4q2 − 4q3 + 4q4 − 2q5 + q6]︁κ0

by using the Weierstraß substitution and eliminating any occurring
denominators. Computing the resultant of the right hand sides of these
equations to eliminate the variable q, we find

0 =
[︂

− 1296 − (24192 − 14688
√

3)ϵ− (414072 − 238752
√

3)ϵ2−

− (3923784 − 2265480
√

3)ϵ3 − (23142105 − 13361088
√

3)ϵ4−
− (86925726 − 50186592

√
3)ϵ5 − (203065782 − 117240084

√
3)ϵ6−

− (269732688 − 155730240
√

3)ϵ7 − (155967240 − 90047728
√

3)ϵ8
]︂
+

+
[︂
1296 + (18360 − 11232

√
3)ϵ+ (229176 − 132120

√
3)ϵ2+

+ (1474002 − 851040
√

3)ϵ3 + (5318343 − 3070548
√

3)ϵ4+

+ (10200132 − 5889048
√

3)ϵ5 + (8125452 − 4691232
√

3)ϵ6
]︂
κ2

0+

+
[︂
27ϵ2 + (108 − 72

√
3)ϵ3 + (252 − 144

√
3)ϵ4

]︂
κ4

0+

+
[︂
2592 + (38880 − 24624

√
3)ϵ+ (544968 − 313488

√
3)ϵ2+

+ (3987936 − 2302740
√

3)ϵ3 + (17329248 − 10005000
√

3)ϵ4+
+ (44550756 − 25721394

√
3)ϵ5 + (62598048 − 36141000

√
3)ϵ6+

+ (36958320 − 21337896
√

3)ϵ7
]︂
ω−

−
[︂
2592 + (29160 − 18576

√
3)ϵ+ (289872 − 166644

√
3)ϵ2+

+ (1359612 − 785088
√

3)ϵ3 + (3186288 − 1839600
√

3)ϵ4+

+ (2978352 − 1719552
√

3)ϵ5
]︂
κ2

0 ω−

−
[︂
648 + (3672 − 3240

√
3)ϵ+ (2106 − 288

√
3)ϵ2−

− (324396 − 186984
√

3)ϵ3 − (2296917 − 1326168
√

3)ϵ4−

− (6437124 − 3716472)
√

3ϵ5 − (6648996 − 3838800
√

3)ϵ6
]︂
ω2+

(continue on next page)
(B.3)
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+
[︂
1944 + (16686 − 11016

√
3)ϵ+ (123660 − 70740

√
3)ϵ2+

+ (375624 − 217008
√

3)ϵ3 + (429264 − 247824
√

3)ϵ4
]︂
κ2

0 ω
2−

−
[︂
1944 + (24192 + 15444

√
3)ϵ+ (262440 − 150840

√
3)ϵ2+

+ (1325304 − 765288
√

3)ϵ3 + (3312576 − 1912512
√

3)ϵ4+

+ (3277152 − 1892064
√

3)ϵ5
]︂
ω3−

−
[︂
648 + (3996 − 2700

√
3)ϵ+ (19440 − 11088

√
3)ϵ2+

+ (28656 − 16560
√

3)ϵ3
]︂
κ2

0 ω
3+

+
[︂
1863 + (16362 − 11016

√
3)ϵ+ (126468 − 72108

√
3)ϵ2+

+ (393912 − 227664
√

3)ϵ3 + (461376 − 266352
√

3)ϵ4
]︂
ω4+

+
[︂
81 + (324 − 216

√
3)ϵ+ (756 − 432

√
3)ϵ2

]︂
κ2

0 ω
4−

−
[︂
648 + (3996 − 2754

√
3)ϵ+ (19872 − 11304

√
3)ϵ2+

+ (29520 − 17064
√

3)ϵ3
]︂
ω5+

+
[︂
81 + (324 − 216

√
3)ϵ+ (756 − 432

√
3)ϵ2

]︂
ω6.

(B.3)

This is the expression that was used to plot the THB (green line) in
Figure 14. Due to the scope of this equation, we refrain from calculating
a series expansion of κ0 in ϵ.



C
C H A N G E O F P I T C H FO R K C R I T I C A L I T Y

In this appendix, we derive an implicit expression in ω and ϵ for the
codimension 2 bifurcation in which the pitchfork bifurcation of ∆s in
(2.6) with perturbation function h(ϕ) = sin 2ϕ changes its criticality. At
this point, we have additionally to the condition (5.5) for the critical
coupling strength κ0 the conditions c1 = 1 or c1 = 0 with c1 given by
(5.11).

We start by bringing (5.11) in polynomial form via a Weierstraß
substitution which yields

0 = −
[︂
2c1ϵ+ 1

]︂
q8 +

[︂
12c1ϵ+ 4(8ϵ+ 1)2

]︂
q6+

+
[︂

− 2c1ϵ+ c1(2ϵ+ 1) + c1 − 64ϵ(8ϵ+ 1) + 8(8ϵ+ 1)
]︂
q4+

+
[︂

− 12c1ϵ+ 256ϵ2 − 64ϵ+ 4
]︂
q2 + 2c1ϵ− c1.

Computing the resultant of the right hand side of this expression with
the one of (B.2a) which determines coordinates if ∆s yields for the
critical value c1 = 1

0 = + 4
[︂
1 − 2ω2

]︂2
+
[︂
1796ω6 − 1924ω4 + 545ω2 − 48

]︂
ϵ2+

+ 4
[︂
16384ω8 − 22272ω6 + 9390ω4 − 1393ω2 + 48

]︂
ϵ4−

− 4
[︂
256ω4 − 273ω2 + 64

]︂
ϵ6

(5.12)

which is the sought expression in Chapter 5. For the case c1 = 0, we
find analogously

9ω + 64ω
[︂
16ω2 − 9

]︂
ϵ2 = 0.

However, this second case did not occur in our numerical work. We
refrain from computing similar expressions for perturbation type (5.1b)
due to its complicated algebraic form.
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D
AV E R AG I N G FO R T H E T RU N C AT E D S Y S T E M

We want to discuss the limitations of the averaging principle for WS-
integrable systems (6.3) from Proposition 7.1 by showing that the func-
tion F̂ h, defined in (7.3), vanishes identically for any smooth choice
of h if one averages over the periodic orbits C trunc

λ ⊂ M trunc of the
truncated system (6.13). This serves two purposes: (i) It shows that
F̂ h can indeed be trivial and hence, it is not guaranteed that we can
use Proposition 7.1 to determine robust periodic orbits for perturbed
WS-integrable systems. (ii) It illustrates that to compute F̂ h and its
zeros for systems of the type (6.3), we cannot approximate the dynam-
ics on the manifold M by the dynamics on M trunc. (For the truncated
dynamics, we would have exact expressions which in turn would make
computing the integral in (7.3) much easier!) Instead, we have to first
determine the periodic orbit Cλ of the full system (6.3) and subsequently
average DΛ · h over it.

Recall from the proof of Theorem 6.5 that the periodic solutions of
(6.13) that formed the NAIM M trunc were of the form

(α(t), ψ(t),λ(t)) = (α,Ωt,λ)

in WS-variables where α0 ∈ D is a fixed point of (6.13a) and Ω ̸= 0 is
the angular velocity of the 2π/Ω-periodic solution ϕ trunc

λ (t). In general,
there exists no further restrictions on α0 and Ω so that we can consider
them arbitrarily fixed. The solution in angular variables with orbit
C trunc

λ ⊂ M trunc is then given by

ϕ trunc
λ (t) = m(α0,Ωt,λ) (D.1)

via the diffeomorphism m from Proposition 4.12. From (7.3), we sub-
sequently find with the substitution ψ = Ωt From now on, we drop the

index from α0 for brevity
and just write α.

F̂ h(λ) = Ω
2π

∫︂ 2π
Ω

0
(DΛ · h) ◦ ϕ trunc

λ (t) dt

= Ω
2π

∫︂ 2π
Ω

0
(DΛ · h) ◦ m(α,Ωt,λ) dt

= 1
2π

∫︂ 2π

0
(DΛ · h) ◦ m(α,ψ,λ) dψ

= 1
2π

∫︂ 2π

0
DΛ(θ) · h(θ)

⃓⃓⃓
eiθ=Gα,ψ(z)

dψ

(D.2)
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where we set z = eiΘ(λ) for brevity. From this, we see that F̂ h(λ) is in
fact the zeroth Fourier mode of the vector-valued function

ψ ↦→ DΛ(θ) · h(θ)
⃓⃓⃓
eiθ=Gα,ψ(z)

with fixed α and z. We claim that this zeroth mode vanishes for any
smooth choice for h : S1 → R, independently of α ∈ D and z ∈{︂

z ∈ ∂DN ; zp ̸= zq for p ̸= q
}︂

which then implies that F̂ h vanishes
identically for any periodic solution of type (D.1). Because of the lin-
earity of (D.2) in h, in order to prove our claim, it suffices to show that
this zeroth mode vanishes for every function

H : ψ ↦→ DΛp,q,r,s(θ) · h(θ)
⃓⃓⃓
eiθ=Gα,ψ(z)

where Λp,q,r,s is an arbitrary cross-ratio function with mutually distinct
p, q, r, s ∈ {1, . . . , N} and any smooth h : θ ↦→ sin νθ or h : θ ↦→ cos νθ
with ν ∈ Z and, with the identities

sin νθ = 1
2i
(︂
eiνθ − e−iνθ

)︂
cos νθ = 1

2
(︂
eiνθ + e−iνθ

)︂
,

this amounts to showing that the zeroth complex Fourier mode of H
vanishes for every h : θ ↦→ eiνθ with ν ∈ Z.

The only nonzero entries of DΛp,q,r,s are

DθpΛp,q,r,s(θ) = i
eiθp

(︁
eiθr − eiθq

)︁(︁
eiθr − eiθs

)︁(︁
eiθp − eiθr

)︁2(︁eiθq − eiθs
)︁

DθqΛp,q,r,s(θ) = i
eiθq

(︁
eiθs − eiθp

)︁(︁
eiθs − eiθr

)︁(︁
eiθq − eiθs

)︁2(︁eiθp − eiθr
)︁

DθrΛp,q,r,s(θ) = i
eiθr

(︁
eiθq − eiθp

)︁(︁
eiθp − eiθs

)︁(︁
eiθp − eiθr

)︁2(︁eiθq − eiθs
)︁

DθsΛp,q,r,s(θ) = i
eiθs

(︁
eiθp − eiθq

)︁(︁
eiθq − eiθr

)︁(︁
eiθq − eiθs

)︁2(︁eiθp − eiθr
)︁ .

(D.3)

We further find
eiθj = Gα,ψ(zj)

= α+ eiψzj
1 + ᾱeiψzj

= α+ (1 − |α|2)
∞∑︂
n=1

(−ᾱ)n−1znj einψ

(D.4)

where in the last line, we used again the geometric series identity∑︁∞
n=0 z

n = 1/(1 − z) for |z| < 1. The last line of (D.4) is simply the
Fourier series of the function ψ ↦→ Gα,ψ(zj). Subsequently, we find for
the powers of eiθj and e−iθj with ν ≥ 0 the Fourier series

eiνθj = αν + νzj(1 − |α|2)αν−1eiψ + higher modes
e−iνθj = ᾱν + νz̄j(1 − |α|2)ᾱν−1e−iψ + higher modes
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up to their respective first modes. Inserting (D.4) in (D.3) and collecting
powers of eiψ yields

DθpΛp,q,r,s(θ) = Ap,q,r,s +Bp,q,r,s e−iψ + Cp,q,r,s eiψ

DθqΛp,q,r,s(θ) = Aq,p,s,r +Bq,p,s,r e−iψ + Cq,p,s,r eiψ

DθrΛp,q,r,s(θ) = Ar,s,p,q +Br,s,p,q e−iψ + Cr,s,p,q eiψ

DθsΛp,q,r,s(θ) = As,r,q,p +Bs,r,q,p e−iψ + Cs,r,q,p eiψ

with Fourier coefficients

Aa,b,c,d = −i
za
(︁
zb − zc

)︁(︁
zc − zd

)︁(︁
1 + |α|2

)︁(︁
za − zc

)︁2(︁
zb − zd

)︁(︁
1 − |α|2

)︁
Ba,b,c,d = −i

(︁
zb − zc

)︁(︁
zc − zd

)︁
α(︁

za − zc
)︁2(︁
zb − zd

)︁(︁
1 − |α|2

)︁
Ca,b,c,d = −i

z2
a

(︁
zb − zc

)︁(︁
zc − zd

)︁
ᾱ(︁

za − zc
)︁2(︁
zb − zd

)︁(︁
1 − |α|2

)︁
for which the identities

Ap,q,r,s +Aq,p,s,r +Ar,s,p,q +As,r,q,p = 0
Bp,q,r,s zp +Bq,p,s,r zq +Br,s,p,q zr +Bs,r,q,p zs = 0
Cp,q,r,s z̄p + Cq,p,s,r z̄q + Cr,s,p,q z̄r + Cs,r,q,p z̄s = 0

(D.5)

hold. We are now ready to determine the Fourier expansion of H. Be-
ginning with h : θ ↦→ eiνθ and ν ≥ 0, we find

H(ψ) = DΛp,q,r,s(θ) · h(θ)
⃓⃓⃓
eiθ=Gα,ψ(z)

= DθpΛp,q,r,s(θ)eiνθp + DθqΛp,q,r,s(θ)eiνθq+
+ DθrΛp,q,r,s(θ)eiνθr + DθsΛp,q,r,s(θ)eiνθs

= (Ap,q,r,s +Aq,p,s,r +Ar,s,p,q +As,r,q,p)αν+
+ (Bp,q,r,s zp +Bq,p,s,r zq+

+Br,s,p,q zr +Bs,r,q,p zs)ν(1 − |α|2)αν−1+
+ higher modes

for which the zeroth mode vanishes identically because of the identities
(D.5). Similarly, we find for the case h : θ ↦→ e−iνθ with ν ≥ 0 the
expansion

H(ψ) = DΛp,q,r,s(θ) · h(θ)
⃓⃓⃓
eiθ=Gα,ψ(z)

= DθpΛp,q,r,s(θ)e−iνθp + DθqΛp,q,r,s(θ)e−iνθq+
+ DθrΛp,q,r,s(θ)e−iνθr + DθsΛp,q,r,s(θ)e−iνθs

= (Ap,q,r,s +Aq,p,s,r +Ar,s,p,q +As,r,q,p)ᾱν+
+ (Cp,q,r,s z̄p + Cq,p,s,r z̄q+

+ Cr,s,p,q z̄r + Cs,r,q,p z̄s)ν(1 − |α|2)ᾱν−1+
+ higher modes

which again vanishes because of (D.5). This finishes the proof.
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