400 research outputs found

    Sensing and Control in Symmetric Networks

    Full text link
    In engineering applications, one of the major challenges today is to develop reliable and robust control algorithms for complex networked systems. Controllability and observability of such systems play a crucial role in the design process. The underlying network structure may contain symmetries -- caused for example by the coupling of identical building blocks -- and these symmetries lead to repeated eigenvalues in a generic way. This complicates the design of controllers since repeated eigenvalues might decrease the controllability of the system. In this paper, we will analyze the relationship between the controllability and observability of complex networked systems and graph symmetries using results from representation theory. Furthermore, we will propose an algorithm to compute sparse input and output matrices based on projections onto the isotypic components. We will illustrate our results with the aid of two guiding examples, a network with D4 D_4 symmetry and the Petersen graph

    Deterministic continutation of stochastic metastable equilibria via Lyapunov equations and ellipsoids

    Full text link
    Numerical continuation methods for deterministic dynamical systems have been one of the most successful tools in applied dynamical systems theory. Continuation techniques have been employed in all branches of the natural sciences as well as in engineering to analyze ordinary, partial and delay differential equations. Here we show that the deterministic continuation algorithm for equilibrium points can be extended to track information about metastable equilibrium points of stochastic differential equations (SDEs). We stress that we do not develop a new technical tool but that we combine results and methods from probability theory, dynamical systems, numerical analysis, optimization and control theory into an algorithm that augments classical equilibrium continuation methods. In particular, we use ellipsoids defining regions of high concentration of sample paths. It is shown that these ellipsoids and the distances between them can be efficiently calculated using iterative methods that take advantage of the numerical continuation framework. We apply our method to a bistable neural competition model and a classical predator-prey system. Furthermore, we show how global assumptions on the flow can be incorporated - if they are available - by relating numerical continuation, Kramers' formula and Rayleigh iteration.Comment: 29 pages, 7 figures [Fig.7 reduced in quality due to arXiv size restrictions]; v2 - added Section 9 on Kramers' formula, additional computations, corrected typos, improved explanation

    Generic bifurcation of Hamiltonian vector fields with symmetry

    Get PDF
    One of the goals of this paper is to describe explicitly the generic movement of eigenvalues through a one-to-one resonance in a linear Hamiltonian system which is equivariant with respect to a symplectic representation of a compact Lie group. We classify this movement, and hence answer the question of when the collisions are 'dangerous' in the sense of Krein by using a combination of group theory and definiteness properties of the associated quadratic Hamiltonian. For example, for systems with no symmetry or O(2) symmetry generically the eigenvalues split, whereas for systems with S1 symmetry, generically the eigenvalues may split or pass. It is in this last case that one has to use both group theory and energetics to determine the generic eigenvalue movement. The way energetics and group theory are combined is summarized in table 1. The result is to be contrasted with the bifurcation of steady states (zero eigenvalue) where one can use either group theory alone (Golubitsky and Stewart) or definiteness properties of the Hamiltonian (Cartan-Oh) to determine whether the eigenvalues split or pass on the imaginary axis

    Observing the Symmetry of Attractors

    Full text link
    We show how the symmetry of attractors of equivariant dynamical systems can be observed by equivariant projections of the phase space. Equivariant projections have long been used, but they can give misleading results if used improperly and have been considered untrustworthy. We find conditions under which an equivariant projection generically shows the correct symmetry of the attractor.Comment: 28 page LaTeX document with 9 ps figures included. Supplementary color figures available at http://odin.math.nau.edu/~jws

    Relatively Coherent Sets as a Hierarchical Partition Method

    Get PDF
    Finite time coherent sets [8] have recently been defined by a measure based objective function describing the degree that sets hold together, along with a Frobenius-Perron transfer operator method to produce optimally coherent sets. Here we present an extension to generalize the concept to hierarchially defined relatively coherent sets based on adjusting the finite time coherent sets to use relative mesure restricted to sets which are developed iteratively and hierarchically in a tree of partitions. Several examples help clarify the meaning and expectation of the techniques, as they are the nonautonomous double gyre, the standard map, an idealized stratospheric flow, and empirical data from the Mexico Gulf during the 2010 oil spill. Also for sake of analysis of computational complexity, we include an appendic concerning the computational complexity of developing the Ulam-Galerkin matrix extimates of the Frobenius-Perron operator centrally used here
    • …
    corecore