285 research outputs found

    A Regression-Based Technique for Capacity Estimation of Lithium-Ion Batteries

    Get PDF
    Electric vehicles (EVs) and hybrid vehicles (HEVs) are being increasingly utilized for various reasons. The main reasons for their implementation are that they consume less or do not consume fossil fuel (no carbon dioxide pollution) and do not cause sound pollution. However, this technology has some challenges, including complex and troublesome accurate state of health estimation, which is affected by different factors. According to the increase in electric and hybrid vehicles’ application, it is crucial to have a more accurate and reliable estimation of state of charge (SOC) and state of health (SOH) in different environmental conditions. This allows improving battery management system operation for optimal utilization of a battery pack in various operating conditions. This article proposes an approach to estimate battery capacity based on two parameters. First, a practical and straightforward method is introduced to assess the battery’s internal resistance, which is directly related to the battery’s remaining useful life. Second, the different least square algorithm is explored. Finally, a promising, practical, simple, accurate, and reliable technique is proposed to estimate battery capacity appropriately. The root mean square percentage error and the mean absolute percentage error of the proposed methods were calculated and were less than 0.02%. It was concluded the geometry method has all the advantages of a recursive manner, including a fading memory, a close form of a solution, and being applicable in embedded systems

    Model-free non-invasive health assessment for battery energy storage assets

    Get PDF
    Increasing penetration of renewable energy generation in the modern power network introduces uncertainty about the energy available to maintain a balance between generation and demand due to its time-fluctuating output that is strongly dependent on the weather. With the development of energy storage technology, there is the potential for this technology to become a key element to help overcome this intermittency in a generation. However, the increasing penetration of battery energy storage within the power network introduces an additional challenge to asset owners on how to monitor and manage battery health. The accurate estimation of the health of this device is crucial in determining its reliability, power-delivering capability and ability to contribute to the operation of the whole power system. Generally, doing this requires invasive measurements or computationally expensive physics-based models, which do not scale up cost-effectively to a fleet of assets. As storage aggregation becomes more commonplace, there is a need for a health metric that will be able to predict battery health based only on the limited information available, eliminating the necessity of installation of extensive telemetry in the system. This work develops a solution to battery health prognostics by providing an alternative, a non-invasive approach to the estimation of battery health that estimates the extent to which a battery asset has been maloperated based only on the battery-operating regime imposed on the device. The model introduced in this work is based on the Hidden Markov Model, which stochastically models the battery limitations imposed by its chemistry as a combination of present and previous sequential charging actions, and articulates the preferred operating regime as a measure of health consequence. The resulting methodology is demonstrated on distribution network level electrical demand and generation data, accurately predicting maloperation under a number of battery technology scenarios. The effectiveness of the proposed battery maloperation model as a proxy for actual battery degradation for lithium-ion technology was also tested against lab tested battery degradation data, showing that the proposed health measure in terms of maloperation level reflected that measured in terms of capacity fade. The developed model can support condition monitoring and remaining useful life estimates, but in the wider context could also be used as the policy function in an automated scheduler to utilise assets while optimising their health.Increasing penetration of renewable energy generation in the modern power network introduces uncertainty about the energy available to maintain a balance between generation and demand due to its time-fluctuating output that is strongly dependent on the weather. With the development of energy storage technology, there is the potential for this technology to become a key element to help overcome this intermittency in a generation. However, the increasing penetration of battery energy storage within the power network introduces an additional challenge to asset owners on how to monitor and manage battery health. The accurate estimation of the health of this device is crucial in determining its reliability, power-delivering capability and ability to contribute to the operation of the whole power system. Generally, doing this requires invasive measurements or computationally expensive physics-based models, which do not scale up cost-effectively to a fleet of assets. As storage aggregation becomes more commonplace, there is a need for a health metric that will be able to predict battery health based only on the limited information available, eliminating the necessity of installation of extensive telemetry in the system. This work develops a solution to battery health prognostics by providing an alternative, a non-invasive approach to the estimation of battery health that estimates the extent to which a battery asset has been maloperated based only on the battery-operating regime imposed on the device. The model introduced in this work is based on the Hidden Markov Model, which stochastically models the battery limitations imposed by its chemistry as a combination of present and previous sequential charging actions, and articulates the preferred operating regime as a measure of health consequence. The resulting methodology is demonstrated on distribution network level electrical demand and generation data, accurately predicting maloperation under a number of battery technology scenarios. The effectiveness of the proposed battery maloperation model as a proxy for actual battery degradation for lithium-ion technology was also tested against lab tested battery degradation data, showing that the proposed health measure in terms of maloperation level reflected that measured in terms of capacity fade. The developed model can support condition monitoring and remaining useful life estimates, but in the wider context could also be used as the policy function in an automated scheduler to utilise assets while optimising their health

    SoC estimation for lithium-ion batteries : review and future challenges

    Get PDF
    ABSTRACT: Energy storage emerged as a top concern for the modern cities, and the choice of the lithium-ion chemistry battery technology as an effective solution for storage applications proved to be a highly efficient option. State of charge (SoC) represents the available battery capacity and is one of the most important states that need to be monitored to optimize the performance and extend the lifetime of batteries. This review summarizes the methods for SoC estimation for lithium-ion batteries (LiBs). The SoC estimation methods are presented focusing on the description of the techniques and the elaboration of their weaknesses for the use in on-line battery management systems (BMS) applications. SoC estimation is a challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and to the distinct nonlinear behavior. This has led scholars to propose different methods that clearly raised the challenge of establishing a relationship between the accuracy and robustness of the methods, and their low complexity to be implemented. This paper publishes an exhaustive review of the works presented during the last five years, where the tendency of the estimation techniques has been oriented toward a mixture of probabilistic techniques and some artificial intelligence

    Online state of charge estimation for the aerial lithium-ion battery packs based on the improved extended Kalman filter method.

    Get PDF
    An effective method to estimate the integrated state of charge (SOC) value for the lithium-ion battery (LIB) pack is proposed, because of its capacity state estimation needs in the high-power energy supply applications, which is calculated by using the improved extended Kalman filter (EKF) method together with the one order equivalent circuit model (ECM) to evaluate its remaining available power state. It is realized by the comprehensive estimation together with the discharging and charging maintenance (DCM) process, implying an accurate remaining power estimation with low computational calculation demand. The battery maintenance and test system (BMTS) equipment for the aerial LIB pack is developed, which is based on the proposed SOC estimation method. Experimental results show that, it can estimate SOC value of the LIB pack effectively. The BMTS equipment has the advantages of high detection accuracy and stability and can guarantee its power-supply reliability. The SOC estimation method is realized on it, the results of which are compared with the conventional SOC estimation method. The estimation has been done with an accuracy rate of 95% and has an absolute root mean square error (RMSE) of 1.33% and an absolute maximum error of 4.95%. This novel method can provide reliable technical support for the LIB power supply application, which plays a core role in promoting its power supply applications

    Interpretable Battery Lifetime Prediction Using Early Degradation Data

    Get PDF
    Battery lifetime prediction using early degradation data is crucial for optimizing the lifecycle management of batteries from cradle to grave, one example is the management of an increasing number of batteries at the end of their first lives at lower economic and technical risk.In this thesis, we first introduce quantile regression forests (QRF) model to provide both cycle life point prediction and range prediction with uncertainty quantified as the width of the prediction interval. Then two model-agnostic methods are employed to interpret the learned QRF model. Additionally, a machine learning pipeline is proposed to produce the best model among commonly-used machine learning models reported in the battery literature for battery cycle life early prediction. The experimental results illustrate that the QRF model provides the best range prediction performance using a relatively small lab dataset, thanks to its advantage of not assuming any specific distribution of cycle life. Moreover, the two most important input features are identified and their quantitative effect on predicted cycle life is investigated. Furthermore, a generalized capacity knee identification algorithm is developed to identify capacity knee and capacity knee-onset on the capacity fade curve. The proposed knee identification algorithm successfully identifies both the knee and knee-onset on synthetic degradation data as well as experimental degradation data of two chemistry types.In summary, the learned QRF model can facilitate decision-making under uncertainty by providing more information about cycle life prediction than single point prediction alone, for example, selecting a high-cycle-life fast-charging protocol. The two model-agnostic interpretation methods can be easily applied to other data-driven methods with the aim of identifying important features and revealing the battery degradation process. Lastly, the proposed capacity knee identification algorithm can contribute to a successful second-life battery market from multiple aspects

    Exploring the Correlation Between Ultrasound Speed and the State of Health of LiFePO4_4 Prismatic Cells

    Full text link
    Electric vehicles (EVs) have become a popular mode of transportation, with their performance depending on the ageing of the Li-ion batteries used to power them. However, it can be challenging and time-consuming to determine the capacity retention of a battery in service. A rapid and reliable testing method for state of health (SoH) determination is desired. Ultrasonic testing techniques are promising due to their efficient, portable, and non-destructive features. In this study, we demonstrate that ultrasonic speed decreases with the degradation of the capacity of an LFP prismatic cell. We explain this correlation through numerical simulation, which describes wave propagation in porous media. We propose that the reduction of binder stiffness can be a primary cause of the change in ultrasonic speed during battery ageing. This work brings new insights into ultrasonic SoH estimation techniques

    Kalman-variant estimators for state of charge in lithium-sulfur batteries

    Get PDF
    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of ‘standard’ lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and ‘Coulomb counting’ are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit–network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort

    Prediction of lithium-ion battery capacity by functional monitoring data using functional principal component analysis

    Get PDF
    Lithium-ion batteries have been a promising energy storage technology for applications such as electronics, automobiles, and smart grids over the years. Extensive research was conducted to improve the prediction of the remaining capacity of the lithium-ion battery. A robust prediction model would improve the battery performance and reliability for forthcoming usage. To develop a data-driven capacity prediction model of lithium-ion batteries most of past studies employed capacity degradation data, yet very few tried using other performance monitoring variables such as temperature, voltage, and current data to estimate and predict the battery capacity. In this thesis, we aim to develop a data-driven model for predicting the capacity of lithium-ion battery adopting functional principal component analysis applied to functional monitoring data of temperature, voltage, and current observations collected from NASA Ames Prognostics Center of Excellence repository. The result of capacity prediction has been substantiated with past studies and obtained root mean square error (RMSE) of 0.009. The proposed data-driven approach performs well to predict the capacity employing functional performance measures over the life span of a lithium-ion battery

    A Critical Review on Battery Aging and State Estimation Technologies of Lithium-Ion Batteries: Prospects and Issues

    Get PDF
    Electric vehicles (EVs) have had a meteoric rise in acceptance in recent decades due to mounting worries about greenhouse gas emissions, global warming, and the depletion of fossil resource supplies because of their superior efficiency and performance. EVs have now gained widespread acceptance in the automobile industry as the most viable alternative for decreasing CO2 production. The battery is an integral ingredient of electric vehicles, and the battery management system (BMS) acts as a bridge between them. The goal of this work is to give a brief review of certain key BMS technologies, including state estimation, aging characterization methodologies, and the aging process. The consequences of battery aging limit its capacity and arise whether the battery is used or not, which is a significant downside in real-world operation. That is why this paper presents a wide range of recent research on Li-ion battery aging processes, including estimations from multiple areas. Afterward, various battery state indicators are thoroughly explained. This work will assist in defining new relevant domains and constructing commercial models and play a critical role in future research in this expanding area by providing a clear picture of the present status of estimating techniques of the major state indicators of Li-ion batteries
    • …
    corecore