289 research outputs found

    A comparative study of metaheuristics for blood assignment problem.

    Get PDF
    Master’s degree. University of KwaZulu-Natal, Durban.The Blood Assignment Problem (BAP) is a real world and NP-hard combinatorial optimization problem. The study of BAP is significant due to the continuous demand for blood transfusion during medical emergencies. However, the formulation of this problem faces various challenges that stretch from managing critical blood shortages, limited shelf life and, blood type incompatibility that constrain the random transfusion of blood to patients. The transfusion of incompatible blood types between patient and donor can lead to adverse side effects on the patients. Usually, the sudden need for blood units arises as a result of unforeseen trauma that requires urgent medical attention. This condition can interrupt the supply of blood units and may result in the blood bank importing additional blood products from external sources, thereby increasing its running cost and other risk factors associated with blood transfusion. This however, might have serious consequences in terms of medical emergency, running cost and supply of blood units. Therefore, by taking these factors into consideration the aforementioned study implemented five global metaheuristic optimization algorithms to solve the BAP. Each of these algorithms was hybridized with a sustainable blood assignment policy that relates to the South Africa blood banks. The objective of this study was to minimize blood product wastage with emphasis on expiry and reduction in the amount of importation from external sources. Extensive computational experiments were conducted over a total of six different datasets, and the results validate the reliability and effectiveness of each of the proposed algorithms. Results were analysed across three major aspects, namely, the average levels of importation, expiry across a finite time period and computational time experienced by each of the metaheuristic algorithms. The numerical results obtained show that the Particle Swarm Optimization algorithm was better in terms of computational time. Furthermore, none of the algorithms experienced any form of expiry within the allotted time frame. Moreover, the results also revealed that the Symbiotic Organism Search algorithm produced the lowest average result for importation; therefore, it was considered the most reliable and proficient algorithm for the BAP

    Peningkatan Performa Cluster Fuzzy C-Means pada Klastering Sentimen Menggunakan Particle Swarm Optimization

    Get PDF
    Fuzzy C-Means (FCM) merupakan algoritma klastering  yang sangat baik dan lebih fleksibel dari algoritma klastering konvensional. Selain kelebihan tersebut, kelemahan utama algoritma ini adalah sensitif terhadap pusat klaster. Pusat klaster yang sensitif mengakibatkan hasil akhir sulit di kontrol dan FCM  mudah terjebak  pada optimum lokal. Untuk mengatasi masalah tersebut, penelitian ini memperbaiki kinerja FCM dengan menerapkan Particle Swarm Optimization (PSO) untuk menentukan pusat klaster yang lebih baik. Penelitian ini diterapkan pada klastering sentimen dengan menggunakan data berdimensi tinggi yaitu ulasan produk yang dikumpulkan dari beberapa situs toko online di Indonesia. Hasil penelitian menunjukkan bahwa penerapan PSO pada pembangkitan pusat klaster FCM dapat memperbaiki performa FCM serta memberikan luaran yang lebih sesuai. Performa klastering yang menjadi acuan  adalah Rand Index, F-Measure dan Objective Function Value (OFV). Untuk keseluruhan performa tersebut, FCM-PSO memberikan hasil yang lebih baik dari FCM. Nilai OFV yang lebih baik menunjukkan bahwa FCM-PSO tersebut membutuhkan waktu konvergensi yang lebih cepat serta penanganan noise yang lebih baik.AbstractFuzzy C-Means (FCM) algorithm is one of the popular fuzzy clustering techniques. Compared with the hard clustering algorithm, FCM is more flexible and fair. However, FCM is significantly sensitive to the initial cluster center and easily trapped in a local optimum. To overcome this problem, this study proposes and improved FCM with Particle Swarm Optimization (PSO) algorithm to determine a better cluster center for high dimensional and unstructured sentiment clustering. This study uses product review data collected from several online shopping websites in Indonesia. Initial processing product review data consists of Case Folding, Non Alpha Numeric Removal, Stop Word Removal, and Stemming. PSO is applied for the determination of suite cluster center. Clustering performance criteria are Rand Index, F-Measure and Objective Function Value (OFV). The results showed that FCM-PSO can provide better performance compared to the conventional FCM in terms of Rand Index, F-measure and Objective Function Values (OFV). The better OFV value indicates that FCM-PSO requires faster convergence time and better noise handling

    On the performance of metaheuristics for the blood platelet production and inventory problem.

    Get PDF
    Master of Science in Computer Science. University of KwaZulu-Natal, Durban, 2016.Abstract available in PDF file

    A solution method for a two-layer sustainable supply chain distribution model

    Get PDF
    This article presents an effective solution method for a two-layer, NP-hard sustainable supply chain distribution model. A DoE-guided MOGA-II optimiser based solution method is proposed for locating a set of non-dominated solutions distributed along the Pareto frontier. The solution method allows decision-makers to prioritise the realistic solutions, while focusing on alternate transportation scenarios. The solution method has been implemented for the case of an Irish dairy processing industry׳s two-layer supply chain network. The DoE generates 6100 real feasible solutions after 100 generations of the MOGA-II optimiser which are then refined using statistical experimentation. As the decision-maker is presented with a choice of several distribution routes on the demand side of the two-layer network, TOPSIS is applied to rank the set of non-dominated solutions thus facilitating the selection of the best sustainable distribution route. The solution method characterises the Pareto solutions from disparate scenarios through numerical and statistical experimentations. A set of realistic routes from plants to consumers is derived and mapped which minimises total CO2 emissions and costs where it can be seen that the solution method outperforms existing solution methods

    A Metaheuristic-Based Simulation Optimization Framework For Supply Chain Inventory Management Under Uncertainty

    Get PDF
    The need for inventory control models for practical real-world applications is growing with the global expansion of supply chains. The widely used traditional optimization procedures usually require an explicit mathematical model formulated based on some assumptions. The validity of such models and approaches for real world applications depend greatly upon whether the assumptions made match closely with the reality. The use of meta-heuristics, as opposed to a traditional method, does not require such assumptions and has allowed more realistic modeling of the inventory control system and its solution. In this dissertation, a metaheuristic-based simulation optimization framework is developed for supply chain inventory management under uncertainty. In the proposed framework, any effective metaheuristic can be employed to serve as the optimizer to intelligently search the solution space, using an appropriate simulation inventory model as the evaluation module. To be realistic and practical, the proposed framework supports inventory decision-making under supply-side and demand-side uncertainty in a supply chain. The supply-side uncertainty specifically considered includes quality imperfection. As far as demand-side uncertainty is concerned, the new framework does not make any assumption on demand distribution and can process any demand time series. This salient feature enables users to have the flexibility to evaluate data of practical relevance. In addition, other realistic factors, such as capacity constraints, limited shelf life of products and type-compatible substitutions are also considered and studied by the new framework. The proposed framework has been applied to single-vendor multi-buyer supply chains with the single vendor facing the direct impact of quality deviation and capacity constraint from its supplier and the buyers facing demand uncertainty. In addition, it has been extended to the supply chain inventory management of highly perishable products. Blood products with limited shelf life and ABO compatibility have been examined in detail. It is expected that the proposed framework can be easily adapted to different supply chain systems, including healthcare organizations. Computational results have shown that the proposed framework can effectively assess the impacts of different realistic factors on the performance of a supply chain from different angles, and to determine the optimal inventory policies accordingly

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    A multi-objective centralised agent-based optimisation approach for vehicle routing problem with unique vehicles

    Get PDF
    Motivated by heterogeneous service suppliers in crowd shipping routing problems, vehicles’ similarity assumption is questioned in the well-known logistical Vehicle Routing Problems (VRP) by considering different start/end locations, capacities, as well as shifts in the Time Window variant (VRPTW). In order to tackle this problem, a new agent-based metaheuristic architecture is proposed to capture the uniqueness of vehicles by modelling them as agents while governing the search with centralised agent cooperation. This cooperation aims to generate near optimum routes by minimising the number of vehicles used, total travelled distance, and total waiting times. The innovative architecture encapsulates three individual core modules in a flexible metaheuristic implementation. First, the problem is modelled by an agent-based module that includes its components in representing, evaluating, and altering solutions. A second metaheuristic module is then designed and integrated, followed by a multi-objective module introduced to sort solutions generated by the metaheuristic module based on Pareto dominance. Tests on benchmark instances were run, resulting in better waiting times, with an average reduction of 2.21-time units, at the expense of the other objectives. Benchmark instances are modified to tackle the unique vehicle's problem by randomising locations, capacities, and operating shifts and tested to justify the proposed model's applicability

    Design of Heuristic Algorithms for Hard Optimization

    Get PDF
    This open access book demonstrates all the steps required to design heuristic algorithms for difficult optimization. The classic problem of the travelling salesman is used as a common thread to illustrate all the techniques discussed. This problem is ideal for introducing readers to the subject because it is very intuitive and its solutions can be graphically represented. The book features a wealth of illustrations that allow the concepts to be understood at a glance. The book approaches the main metaheuristics from a new angle, deconstructing them into a few key concepts presented in separate chapters: construction, improvement, decomposition, randomization and learning methods. Each metaheuristic can then be presented in simplified form as a combination of these concepts. This approach avoids giving the impression that metaheuristics is a non-formal discipline, a kind of cloud sculpture. Moreover, it provides concrete applications of the travelling salesman problem, which illustrate in just a few lines of code how to design a new heuristic and remove all ambiguities left by a general framework. Two chapters reviewing the basics of combinatorial optimization and complexity theory make the book self-contained. As such, even readers with a very limited background in the field will be able to follow all the content

    Optimized Machine Learning Models Towards Intelligent Systems

    Get PDF
    The rapid growth of the Internet and related technologies has led to the collection of large amounts of data by individuals, organizations, and society in general [1]. However, this often leads to information overload which occurs when the amount of input (e.g. data) a human is trying to process exceeds their cognitive capacities [2]. Machine learning (ML) has been proposed as one potential methodology capable of extracting useful information from large sets of data [1]. This thesis focuses on two applications. The first is education, namely e-Learning environments. Within this field, this thesis proposes different optimized ML ensemble models to predict students’ performance at earlier stages of the course delivery. Experimental results showed that the proposed optimized ML ensemble models accurately identified the weak students who needed help. More specifically, these models achieved an accuracy of up to 96% in the binary case and 93.1% in the multi-class case. The second application is network security intrusion detection. Within this application field, this thesis proposes different optimized ML classification frameworks using a variety of optimization modeling algorithms and heuristics to improve the performance of the IDSs through anomaly detection while maintaining or reducing their time complexity. Experimental results showed that the developed models reduced the training sample size by up to 74%, reduced the feature set size by almost 60%, and improved the detection accuracy by up to 2%. This thesis can be divided into two main parts. The first part analyzes different educational datasets and proposes different optimized ML classification ensemble models that accurately predict weak students who may need help. The second part proposes optimized ML classification frameworks that accurately detect network attacks while maintaining a low false alarm rate and time complexity. It is noteworthy that the developed models and frameworks could be generalized as follows: Optimized ML ensemble models proposed in the first part of this thesis can be generalized to many applications such as finance, network security, social media, and healthcare systems. Optimized ML classification models proposed in the second part of this thesis can be generalized to other applications that typically generate large datasets in terms of instances and feature set
    corecore