26 research outputs found

    It wasn't me! Motor activation from irrelevant spatial information in the absence of a response

    Get PDF
    Embodied cognition postulates that perceptual and motor processes serve higher-order cognitive faculties like language. A major challenge for embodied cognition concerns the grounding of abstract concepts. Here we zoom in on abstract spatial concepts and ask the question to what extent the sensorimotor system is involved in processing these. Most of the empirical support in favor of an embodied perspective on (abstract) spatial information has derived from so-called compatibility effects in which a task-irrelevant feature either facilitates (for compatible trials) or hinders (in incompatible trials) responding to the task-relevant feature. This type of effect has been interpreted in terms of (task-irrelevant) feature-induced response activation. The problem with such approach is that incompatible features generate an array of task relevant and irrelevant activations [e.g., in primary motor cortex (M1)], and lateral hemispheric interactions render it difficult to assign credit to the task-irrelevant feature per se in driving these activations. Here, we aim to obtain a cleaner indication of response activation on the basis of abstract spatial information. We employed transcranial magnetic stimulation (TMS) to probe response activation of effectors in response to semantic, task-irrelevant stimuli (i.e., the words left and right) that did not require an overt response. Results revealed larger motor evoked potentials (MEPs) for the right (left) index finger when the word right (left) was presented. Our findings provide support for the grounding of abstract spatial concepts in the sensorimotor system

    Étude du caractère automatique du processus de contrôle en ligne lors de tâche de pointage manuel

    Get PDF
    Lors d’une tâche de pointage manuel, la présence de corrections rapides, adaptées, automatiques et même réflexes (Franklin et Wolpert, 2008) suite à une perturbation par saut de curseur a pu être observée dans de nombreuses études. Ici, nous avons souhaité déterminer si ces corrections étaient purement réflexes où si elles étaient amorcées seulement lorsque la perturbation mettait en péril l’atteinte de la cible ; ces corrections ont-elles aussi un aspect fonctionnel ? Dans une première expérience nous avons fait varier la taille des cibles (5 ou 30 mm de diamètre) et des sauts du curseur (5, 15 ou 25 mm) de manière à obtenir certaines combinaisons où la cible pourrait être atteinte sans qu’aucune correction du mouvement pour contrecarrer l’effet du saut du curseur ne soit nécessaire. Des corrections réduisant l’erreur d’environ 65% ont été observées dans toutes les conditions. Dans une seconde expérience, les participants devaient atteindre une très grande cible (arc de 30°) et un saut de curseur de 15 mm était introduit pour certains essais peu de temps après l’amorce du mouvement. Les participants ont modifié leur mouvement dans le sens opposé à celui de la perturbation, et cela même s’ils n’avaient pas détecté consciemment le saut. Cependant, ces corrections étaient moins rapides et plus petites (42% de l’amplitude du saut de curseur) que celles observées lors de la première expérience. Nos résultats supportent le fait que l’amorce des corrections pour des erreurs de trajectoire induites expérimentalement soit de nature réflexe. Un deuxième processus serait alors responsable du déroulement de ces corrections ; ce deuxième processus est basé, entre autres, sur les caractéristiques de la cible.Cursor-jump experiments have suggested the existence of quick, efficient, automatic and even reflexive (Franklin and Wolpert, 2008) online correction processes in manual aiming movements. In the present study, we wanted to determine whether corrections for a cursor jump are purely automatic/reflexive or whether they are functional in that they occur only when they are required for the target to be reached. In a first experiment, we used different target sizes (5 mm to 30 mm) and cursor-jump amplitudes (5 mm to 25 mm) so that for some target size/cursor-jump combinations, no correction would be needed to reach the target. In all cases, we observed a correction for the cursor-jump. This correction reduced the error induced by the cursor jump by 60-70%, regardless of target size. In a second experiment, we asked participants to point at a large wedge (30° of circular arc). For some trials, a cursor-jump translated the location of the cursor laterally by 15 mm soon after movement initiation. Participants never consciously detected the cursor-jump but clearly modified the trajectory of their movement in the direction opposite to that of the cursor-jump. These corrections were smaller than those observed in the first experiment (42% of the cursor-jump). Our results indicate that the initiation of a correction for a cursor-jump is more reflexive than it is functional. A second correction process would tailor the movement's initial impulse based on the target characteristics

    Cortical Activations in Humans Grasp-Related Areas Depend on Hand Used and Handedness

    Get PDF
    Background: In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified whether activity within this circuit varies depending on handedness has yet to be investigated. Methodology/Principal Findings: We used functional magnetic resonance imaging (fMRI) to explicitly test how handedness modulates activity within human grasping-related brain areas. Right- and left-handers subjects were requested to reach towards and grasp an object with either the right or the left hand using a precision grip while scanned. A kinematic study was conducted with similar procedures as a behavioral counterpart for the fMRI experiment. Results from a factorial design revealed significant activity within the right dPMC, the right cerebellum and AIP bilaterally. The pattern of activity within these areas mirrored the results found for the behavioral study. Conclusion/Significance: Data are discussed in terms of an handedness-independent role for the right dPMC in monitoring hand shaping, the need for bilateral AIP activity for the performance of precision grip movements which varies depending on handedness and the involvement of the cerebellum in terms of its connections with AIP. These results provide the first compelling evidence of specific grasping related neural activity depending on handedness

    No effect of triple-pulse TMS medial to intraparietal sulcus on online correction for target perturbations during goal-directed hand and foot reaches

    Get PDF
    Marigold DS, Lajoie K, Heed T. No effect of triple-pulse TMS medial to intraparietal sulcus on online correction for target perturbations during goal-directed hand and foot reaches. PLOS ONE. 2019;14(10): e0223986.Posterior parietal cortex (PPC) is central to sensorimotor processing for goal-directed hand and foot movements. Yet, the specific role of PPC subregions in these functions is not clear. Previous human neuroimaging and transcranial magnetic stimulation (TMS) work has suggested that PPC lateral to the intraparietal sulcus (IPS) is involved in directing the arm, shaping the hand, and correcting both finger-shaping and hand trajectory during movement. The lateral localization of these functions agrees with the comparably lateral position of the hand and fingers within the motor and somatosensory homunculi along the central sulcus; this might suggest that, in analogy, (goal-directed) foot movements would be mediated by medial portions of PPC. However, foot movement planning activates similar regions for both hand and foot movement along the caudal-to-rostral axis of PPC, with some effector-specificity evident only rostrally, near the central regions of sensorimotor cortex. Here, we attempted to test the causal involvement of PPC regions medial to IPS in hand and foot reaching as well as online correction evoked by target displacement. Participants made hand and foot reaches towards identical visual targets. Sometimes, the target changed position 100–117 ms into the movement. We disturbed cortical processing over four positions medial to IPS with three pulses of TMS separated by 40 ms, both during trials with and without target displacement. We timed TMS to disrupt reach execution and online correction. TMS did not affect endpoint error, endpoint variability, or reach trajectories for hand or foot. While these negative results await replication with different TMS timing and parameters, we conclude that regions medial to IPS are involved in planning, rather than execution and online control, of goal-directed limb movements

    Space-Time Separation During Obstacle-Avoidance Learning in Monkeys

    Get PDF
    Is the movement duration time known before we move? To answer this question, a new experimental paradigm is introduced that for the first time monitors the acquisition of a new motor skill in rhesus monkeys. Straight reaches were interleaved with reaches around physical obstacles that elicited a different path geometry. Curved and longer spatial paths were immediately resolved and consistent over months of training. A new temporal strategy separately evolved over repetitions from multiple to a single velocity peak. We propose that the obstacle-avoidance spatial paths were resolved before motion execution and used as reference in the computation of the new dynamics. Path conservation from the first trial occurred both at the hand and at the joint angle levels, whereas the speed profile dramatically changed over time. The spatial solution required no learning and was anticipated by the spontaneous repositioning of the initial arm posture. The learning was in the temporal domain, involving the adjustment of the speed during the motion's first impulse. Within the movement initiation, the partial distance traveled by the hand up to the first velocity peak was finely tuned under a constant time. For a given space location, the time of the first impulse remained robust to learning, but significantly shifted for different targets and obstacle configurations. Differences in the temporal-related parameters across time provided a clear distinction between learning and automatic behavior

    Impaired peripheral reaching and on-line corrections in patient DF: optic ataxia with visual form agnosia

    Get PDF
    An influential model of vision suggests the presence of two visual streams within the brain: a dorsal occipito-parietal stream which mediates action and a ventral occipito-temporal stream which mediates perception. One of the cornerstones of this model is DF, a patient with visual form agnosia following bilateral ventral stream lesions. Despite her inability to identify and distinguish visual stimuli, DF can still use visual information to control her hand actions towards these stimuli. These observations have been widely interpreted as demonstrating a double dissociation from optic ataxia, a condition observed after bilateral dorsal stream damage in which patients are unable to act towards objects that they can recognize. In Experiment 1, we investigated how patient DF performed on the classical diagnostic task for optic ataxia, reaching in central and peripheral vision. We replicated recent findings that DF is remarkably inaccurate when reaching to peripheral targets, but not when reaching in free vision. In addition we present new evidence that her peripheral reaching errors follow the optic ataxia pattern increasing with target eccentricity and being biased towards fixation. In Experiments 2 and 3, for the first time we examined DF’s on-line control of reaching using a double-step paradigm in fixation-controlled and free-vision versions of the task. DF was impaired when performing fast on-line corrections on all conditions tested, similarly to optic ataxia patients. Our findings question the long-standing assumption that DF’s dorsal visual stream is functionally intact and that her on-line visuomotor control is spared. In contrast, in addition to visual form agnosia, DF also has visuomotor symptoms of optic ataxia which are most likely explained by bilateral damage to the superior parietal occipital cortex. We thus conclude that patient DF can no longer be considered as an appropriate single-case model for testing the neural basis of perception and action dissociations

    Emergent Synergistic Grasp-Like Behavior in a Visuomotor Joint Action Task: Evidence for Internal Forward Models as Building Blocks of Human Interactions

    Get PDF
    Central to the mechanistic understanding of the human mind is to clarify how cognitive functions arise from simpler sensory and motor functions. A longstanding assumption is that forward models used by sensorimotor control to anticipate actions also serve to incorporate other people’s actions and intentions, and give rise to sensorimotor interactions between people, and even abstract forms of interactions. That is, forward models could aid core aspects of human social cognition. To test whether forward models can be used to coordinate interactions, here we measured the movements of pairs of participants in a novel joint action task. For the task they collaborated to lift an object, each of them using fingers of one hand to push against the object from opposite sides, just like a single person would use two hands to grasp the object bimanually. Perturbations of the object were applied randomly as they are known to impact grasp-specific movement components in common grasping tasks. We found that co-actors quickly learned to make grasp-like movements with grasp components that showed coordination on average based on action observation of peak deviation and velocity of their partner’s trajectories. Our data suggest that co-actors adopted pre-existing bimanual grasp programs for their own body to use forward models of their partner’s effectors. This is consistent with the long-held assumption that human higher-order cognitive functions may take advantage of sensorimotor forward models to plan social behavior.New and Noteworthy: Taking an approach of sensorimotor neuroscience, our work provides evidence for a long-held belief that the coordination of physical as well as abstract interactions between people originates from certain sensorimotor control processes that form mental representations of people’s bodies and actions, called forward models. With a new joint action paradigm and several new analysis approaches we show that, indeed, people coordinate each other’s interactions based on forward models and mutual action observation

    Lateral parietal cortex in the generation of behavior:Implications for apathy

    Get PDF
    A reduction in goal-directed behavior, or apathy, occurs in neurological and psychiatric disorders, though its neural substrates remain unclear. Deficits in circuits connecting the prefrontal cortex to subcortical regions are considered to underlie apathy. Although apathy is empirically associated with widespread changes in these regions, studies across disorders also link apathy with the lateral parietal cortex. Such variety in regional involvement is consistent with the established role of prefrontal and subcortical regions in models of goal-directed behavior, and with the suggestion of subtypes of apathy. However, these models do not provide a basis for the involvement of the lateral parietal cortex with apathy. Here, we review the association between lateral parietal cortex dysfunction and apathy across disorders and analyze the putative cognitive functions that may link this region with goal-directed behavior. We suggest that neural processes in the angular and supramarginal gyri of the inferior parietal lobule may provide an interface enabling the transformation of internal goals to external actions through intentional initiation of action interrelated with mechanisms of primary sensorimotor transformation. Consequently, we propose that impairment in this process of embedding intended action in a 'body schema' facilitating adequate recruitment of an effector system, is the likely mechanism underlying the association between the lateral parietal cortex and apathy. Considering the evidence, we propose a revised neurocognitive model of apathy where deficient internal initiation of behavior mediated by the inferior parietal lobule may be sufficient, though not necessary, to reduce goal-directed behavior, and may constitute a volitional subtype of apathy

    Dorsal and ventral stream contributions to goal-directed actions

    Get PDF
    Goal-directed actions are of vital importance for our everyday life. Yet, their underlying mechanisms and neuronal correlates are still under debate. Two anatomically informed models try to integrate a variety of neurophysiological and functional descriptions of frontal, parietal and temporal areas: the idea of distinct fronto-parietal channels of reach vs. grasp motor control and the two visual stream hypothesis associating occipito-parietal processing with visuomotor control and occipito-temporal processing with visual perception. We addressed three controversial topics in the context of these two models. We investigated the lateralization of online control of visually-guided reaching and grasping in humans using an fMRI paradigm. The two channel hypotheses would suggest that corrections in grasping should be anatomically distinguishable from corrections in reaching. Our main finding was an increased coupling between the hemispheres when fast movement corrections were required. A specific increase of functional connectivity within the ipsilateral hemisphere without corresponding contralateral activation increases during movement corrections, suggested that activations of the ipsilateral PPC are of functional importance for visually-guided actions. Furthermore, the connectivity analysis demonstrated changes in inter-regional coupling between the reaching and grasping networks during grip perturbations but no difference between reaching and grasping when those actions were matched in difficulty, arguing against an effector specificity of different cortical channels during online control. Lesions in the posterior parietal cortex can cause optic ataxia, which is defined as a reaching deficit to visual targets in the periphery. While such modality-specificity is essential for the definition of optic ataxia, comparisons of reaching accuracy across modalities have rarely been conducted. We investigated the potential multimodality of optic ataxia in two patients who both showed the typical misreaching in the periphery for the visual modality. Reaching to auditory targets differed significantly from reaching to visual targets for both patients, arguing against an effect of optic ataxia on auditory-guided reaching. Reaching to proprioceptive targets was unimpaired in one patient, but impaired towards nonfoveated targets in line with optic ataxia. However, this misreaching for proprioceptive targets was observed for the whole hemifield but did not increase with eccentricity as observed for visually-guided reaching. Thus, we propose that optic ataxia is unimodal but misreaching to targets in other modalities may co-occur resembling optic ataxia. Finally, we examined the role of occipito-temporal regions in memory-guided reaching in a stroke patient suffering from lateralized visual form agnosia. In agreement with the only previous examination of memory-guided reaching in a patient suffering from visual form agnosia (David Milner, Dijkerman, & Carey, 1999), reaching to visual targets was unimpaired. In contrast, the patient showed deficits when reaching to memorized targets in the contralesional hemifield. In contrast to existing studies, we excluded working memory or short-term memory deficits that may account for the observed misreaching. A second experiment using a delayed localization task suggested that the misreaching during memory-guided reaching is associated with visuomotor processing, but not with purely perceptual deficits
    corecore